

1 **Fungal pathogens exposed – genomic and phenotypic insights into *Candida auris* and its
2 relatives of the *Candida haemulonii* species complex**

3

4 **Running title:** Fungal pathogens exposed

5

6 Auke W. de Jong^{1,2,3}, Sander Boden^{1,6}, Annemarie Zandijk¹, Alexandra M. Kortsinoglou⁴,
7 Bert Gerrits van den Ende¹, Elaine C. Francisco^{1,4}, Podimata Konstantina Nefeli⁴, Vassili N.
8 Kouvelis⁴, Miaomiao Zhou⁶, Ferry Hagen^{1,2,3*}

9

10 ¹ Westerdijk Fungal Biodiversity Center (WI-KNAW), Utrecht, The Netherlands; ² Institute
11 for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The
12 Netherlands; ³ Department of Medical Microbiology, University Medical Center Utrecht,
13 Utrecht, The Netherlands; ⁴ Section of Genetics and Biotechnology, Department of Biology,
14 National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece; ⁵
15 Laboratório Especial de Micologia, Division of Infectious Diseases, Universidade Federal de
16 São Paulo, São Paulo, Brazil; ⁶ Avans University of Applied Science, Breda, The Netherlands

17

18 * Corresponding author

19 Prof. dr. Ferry Hagen, FESCMID, FECMM

20 Westerdijk Fungal Biodiversity Institute

21 Department of Medical Mycology

22 Uppsalaalaan 8, 3584CT Utrecht, The Netherlands

23 Telephone +31 (0)30 2122 600

24 Email f.hagen@wi.knaw.nl

25

26 **Abstract**

27 *Candida auris* showed the world the ability of fungi to rapidly emerge as an urgent threat to
28 public health. Close relatives of the *Candida haemulonii* complex exhibit also a similar multi-
29 drug resistant nature and are increasingly reported as nosocomial pathogens. Here, we
30 analyze both complete genomes assemblies and extensive phenotypic data for the five *C.*
31 *auris* clades and pathogenic and non-pathogenic species related to the *C. haemulonii* species
32 complex. First, we resolved the phylogeny of the species complex. Next, comparing *C. auris*
33 to its pathogenic and non-pathogenic relatives we identified a pathogenic potential for the
34 whole *C. haemulonii* species complex by shared gene content and phenotypic traits linked to
35 drug resistance and virulence. *In vivo* virulence assays using the *Galleria mellonella* fungal
36 infection model show that *C. auris* strains are significantly more virulent than any of the
37 sibling species in the *C. haemulonii* complex. Phenotypic analysis links the increased
38 virulence of *C. auris* to a more stress resistant phenotype compared to its siblings.

39

40 **Keywords**

41 Comparative genomics; Fungal virulence; Phenotypic screening; *Metschnikowiaceae*;
42 *Saccharomycotina*

43

44 **Introduction**

45 Fungi are on the rise. Climate change, globalization, habitat disturbance, and an increasing
46 population of immunocompromised patients all contribute to the spread and rising incidence
47 of fungal infections (Fisher et al. 2018; Geddes-McAlister et al., 2019; Garcia-Solache et al.,
48 2010). Each year, over 300 million people worldwide are affected by serious fungal
49 infections, resulting annually in 2.5 million deaths (Denning, 2024). These numbers are on
50 par with the number of deaths caused by well-known bacterial and parasite pathogens, such
51 as tuberculosis and malaria (Brown et al., 2012). The economic burden of fungal diseases in
52 the US alone was estimated at \$11.5 billion in 2019 (Benedict et al., 2022). This is likely an
53 underestimation due to persisting underdiagnoses and underreporting. Nevertheless, fungi are
54 notoriously neglected as a serious threat to global health making them an unrecognized
55 pandemic (Nat Microbiol, 2017). In 2022, the World Health Organization (WHO) released
56 the fungal priority pathogens list (WHO FPPL), a significant milestone in the recognition of
57 fungal infections (WHO, 2022).

58 *Candida* yeasts are the primary cause of hospital-acquired fungal infections, estimated to
59 affect >1.5 million people each year (Denning, 2024; Pfaller et al., 2019; Bassetti et al.,
60 2019). Therefore, *Candida* contributes considerably to morbidity, mortality, and economic
61 losses caused by fungal infections. While *Candida albicans* is still recognized as the main
62 cause of candidiasis, other *Candida* species are on the rise (Pfaller et al., 2019; Stavrou et al.,
63 2019). Most of these emerging species show reduced sensitivity to one or more of the three
64 antifungal drugs classes used in clinical settings. Increased resistance combined with the
65 misidentification of emerging species by commercial biochemical systems and standard
66 laboratory methods makes adequate treatment increasingly challenging (Kathuria et al., 2015;
67 Castanheira et al., 2013; Gow et al., 2022).

68 *Candida auris* rapidly became the most notorious emerging fungal pathogen. This multi-drug
69 resistant yeast has conquered nosocomial environments all over the world by storm. The US
70 Centers for Disease Control and Prevention even classified *C. auris* as one of five microbes
71 that are the most urgent threat to public health, and the WHO recently listed *C. auris* as a
72 ‘critical priority fungal pathogen’ (WHO, 2022; CDC, 2019). *C. auris* has the unique ability
73 to persistently colonize the hospital environment and the host skin resulting in high
74 transmission rates and subsequent outbreaks (de Jong & Hagen, 2019). Nevertheless, the
75 unprecedented global spread of *C. auris* remains a mystery. Genomic analyses revealed the

76 near simultaneous, but independent, emergence of four distinct clades on different continents
77 (South Asian (I), East Asian (II), African (III), and South American (IV)) (Lockhart et al.,
78 2017; Chow et al., 2020). A minor fifth and more recent sixth clade were also described
79 (Chow et al., 2018; Suphavilai et al., 2024).

80 Despite *C. auris* being the most worrisome emerging fungal pathogen, more yeasts are on the
81 rise. Phylogenetic studies revealed that *C. auris* is closely related to the *Candida haemulonii*
82 complex (Muñoz et al., 2018; Gade et al., 2020; Francisco et al., 2023). This complex
83 contains other emerging nosocomial pathogens such as *Candida haemulonii*, *Candida*
84 *duobushaemulonii*, and *Candida pseudohaemulonii* (Muñoz et al., 2018; Cendejas-Bueno et
85 al., 2012). In recent years, additional members have been identified including new pathogens
86 such as *Candida vulturea* and *Candida khanbhai*, but also the non-pathogenic species
87 *Candida chanthaburiensis*, *Candida heveicola*, *Candida konsanensis*, *Candida metrosideri*,
88 *Candida ohialehuiae*, and *Candida ruelliae* (Jackson et al., 2019; Klaps et al., 2020; Sipiczki
89 & Tap, 2016; de Jong et al., 2023). This independent evolution of pathogenicity within the
90 same complex is observed throughout the genus *Candida* (Stavrou et al., 2019; Gabaldón et
91 al., 2016; Rokas, 2022). The mix of closely related pathogens and non-pathogens within the
92 *C. haemulonii* complex suggests that members within this complex harbor traits that pre-
93 adapt them to human pathogenicity (Rokas, 2022). Nevertheless, pathogens of the *C.*
94 *haemulonii* complex differ substantially in their virulence (Fakhim et al., 2018; Muñoz et al.,
95 2020). This observation is similar in other *Candida* complexes. For example, *C. albicans* is
96 much more virulent than its sibling species *C. dubliniensis* (Singh-Babak et al., 2021), and
97 the common pathogen *Nakaseomyces glabratus* is closely related to the non-pathogenic
98 species *Nakaseomyces castellii* (Gabaldón et al., 2016).

99 Notably, variation in pathogenicity is not restricted between complexes and species but is
100 even present among strains of the same species (Rokas, 2022). *C. auris* abundantly
101 demonstrates this strain heterogeneity. Particularly, clade-specific differences in virulence
102 and antifungal resistance are found. For example, Clade II and Clade V strains typically cause
103 relatively harmless ear infections, while strains from other clades cause life-threatening
104 invasive blood infections (Chow et al., 2018; Welsh et al., 2019). Strain specific virulence
105 differences of *C. auris* have also been observed in both *Galleria mellonella* and mice *in vivo*
106 infection models (Fakhim et al., 2018; Muñoz et al., 2020; Forgács et al., 2020). In addition,
107 resistance levels vary significantly between *C. auris* strains, with some being pan-resistant
108 and others totally susceptible (Chow et al., 2020; de Jong et al., 2022). Most clinical strains

109 are resistant against fluconazole, but resistance to amphotericin B is common too (Chow et
110 al., 2020). Species of the *C. haemulonii* complex have a similar resistance pattern displaying
111 intrinsic resistance against azoles and amphotericin B (Cendejas-Bueno et al., 2012). While
112 resistance mechanisms in *C. auris* are starting to be understood, those used by other *C.*
113 *haemulonii* complex members still need to be elucidated (Carolus et al., 2021; Rybak et al.,
114 2022). Finally, initial studies observed strain-specific variability for *C. auris* in other
115 virulence factors such as lytic enzyme production, stress resistance and biofilm production
116 (de Jong & Hagen, 2019). However, data on phenotypic differences between *C. auris* clades
117 is highly fragmented and little to none is known about differences with other species of the *C.*
118 *haemulonii* complex.

119 Although the mechanisms of infection of the well-known *Candida* pathogens are starting to
120 be unveiled, it remains unclear what exactly makes a virulent phenotype. It is to be expected
121 that infection-relevant traits are more pronounced in human pathogens compared to their
122 closest related non-pathogenic relatives. While comparative genomic efforts provided an
123 initial idea of the mechanisms behind the pathogenic success of *C. auris* and some of its
124 relatives, only few strains were used and a complete representation of the *C. haemulonii*
125 complex is lacking (Muñoz et al., 2018). Here we combine genomic and extensive
126 phenotypic data for both pathogenic and non-pathogenic members of the *C. haemulonii*
127 complex to elucidate phylogenetic relationships and gain novel insights into the evolution of
128 pathogenesis within this increasingly important species complex.

129

130

131 **Methods**

132 **Strains and culture**

133 Details of the strains used in this study are listed in Table 1. *C. auris* strains were selected as
134 follows: two strains per clade, representing the four clades that are specific to each
135 geographic region, and one strain representing the rare fifth clade. Strains of other members
136 of the *C. haemulonii* complex and close relatives were selected to represent both clinical and
137 environmental strains of each species when possible (Table 1). Strains were maintained at -
138 80°C in yeast extract 1%, peptone 2%, dextrose 2% (YPD) medium with 25% glycerol.
139 Before use strains were subcultured onto YPD with 1.5% agar at 25°C for 24–48h. A single
140 colony was picked and put onto YPD slants that were kept at room temperature as a stock
141 culture for inoculation of future experiments. Specific culture conditions for each experiment
142 are described below.

143

144 **Nanopore sequencing, genome assembly and gene annotation**

145 For long-read nanopore sequencing DNA was extracted using an established
146 cetyltrimethylammonium bromide (CTAB) DNA extraction protocol optimized to yield high
147 quantity and quality genomic DNA as previously described (Navarro-Muñoz et al., 2019).
148 DNA concentrations were quantified by Qubit fluorometric method (ThermoFisher,
149 Waltham, MA, USA). Genomic libraries were prepared and barcoded using the ligation
150 sequencing kit (SQK-LSK109; ONT, Oxford, UK) and native barcoding kit (EXP-NBD104;
151 ONT) and run on a MinION flow cell (FLO-MIN106D R9.4; ONT) according to the
152 manufacturer's instructions. Basecalling of raw data was performed with Guppy v6 (Wick et
153 al., 2019). For raw read data, quality control was done using NanoPlot v1.39.0 (De Coster et
154 al., 2018), before and after read filtering/trimming by NanoFilt v2.8.0 (De Coster et al.,
155 2018). The filtered reads were then assembled using Flye v2.9.2 (Kolmogorov et al., 2019)
156 followed by two rounds of polishing. Each assembly was assessed using Quast v5.0.2
157 (Gurevich et al., 2013) to generate statistics of assembly quality. Genome assemblies were
158 manually checked, and mitochondrial genomes were corrected for redundancy prior data
159 deposition in the NCBI Genome database (see Data availability statement). Draft assemblies
160 were annotated using Helixer v0.3.1 for *de novo* prediction of gene structure combining deep
161 learning and a hidden Markov Model (Holst et al., 2023). A specific fungi training model
162 which includes *C. auris* and *C. haemulonii* references (fungi_v0.3_a_0100), was set and run

163 using the general recommendations provided by the authors. Annotation quality was assessed
164 by BUSCO v5.3.0 in protein mode (Simão et al., 2015).

165

166 **Phylogenomic analysis and comparative genomics**

167 Protein sequences were extracted from the Helixer annotations using the gffread utility
168 v0.12.7. Orthology and phylogenetic analysis were performed by OrthoFinder v2.5.3 (Emmes
169 et al., 2019). In addition, average nucleotide identity was calculated using OrthoANI (Lee et
170 al., 2016). Conservation of resistance and virulence genes was compared using a list of genes
171 associated with various resistance mutations and virulence traits compiled from the literature
172 (Supplementary Data 2). Orthologous clusters containing these genes were extracted from the
173 OrthoFinder data using the respective protein sequence from *C. auris* reference strain B8441
174 (=AR0387) (<https://www.candidagenome.org/>; Supplementary Data 2). Sums of gene counts
175 from these extracted clusters were calculated per strain, per trait. The summed gene counts
176 were visualized along with the OrthoFinder phylogeny and phenotypic data using iTOL
177 (Letunic et al., 2021).

178

179 **Phenotypical analysis**

180 All strains were phenotypically characterized based on standard physiological procedures as
181 previously described (Kurtzman et al., 2011). Fermentation and assimilation of carbohydrates
182 were performed in liquid media at 25°C up to 21 days. Assimilation of nitrogen compounds
183 was assessed with the auxanographic method. Additionally, specific virulence related
184 characteristics like stress resistance, lytic enzyme production and biofilm formation (de Jong
185 & Hagen., 2019) were determined by the methods described below.

186

187 **Stress resistance assays**

188 For the stress resistance assays, strains were grown in YPD for 18h at 30°C in liquid shaken
189 culture at 200rpm, unless stated otherwise. Cells were collected by centrifugation and washed
190 twice using phosphate-buffered saline (PBS; without Ca, Mg; pH 7.3–7.5; Lonza, Basel,
191 Switzerland). Ten-fold serial dilutions were made and 5µl of each dilution was spotted onto
192 YPD agar plates, which contained the following compounds: 1M CaCl₂, 300 µg/ml

193 Calcofluor white, 300 µg/ml Congo Red, 10% glycerol, 1.75M NaCl (obtained from Merck,
194 Darmstadt, Germany) and 15 mM β -mercapto-ethanol, 15mM caffein, 12 mM hydrogen
195 peroxide (H_2O_2), 1M KCl 0.05% SDS (obtained from ThermoFisher) or YPD adjusted to
196 pH3 with 37% HCl solution or pH8 with 5M Tris buffered saline. After 48h at 37°C, growth
197 was compared to the control YPD plates. The growth of each strain was rated qualitatively on
198 a scale of 0 to 5 (see Supplementary Data 4 for assignment of the scale).

199 Hydrogen peroxide resistance was tested in liquid culture using a 96-wells format in which
200 cells were inoculated at different H_2O_2 concentrations (0, 1, 5, 7.5, 10, 15, 25, and 50mM).
201 Cells were enumerated using a Cellometer X2 cell counter (Nexcelom Bioscience, Lawrence,
202 MA, USA) and resuspended in yeast nitrogen base supplemented with 2% glucose (Difco;
203 BD, Franklin Lakes, NJ, USA), to obtain a concentration of 2.0×10^6 cells/ml. The 96-wells
204 plates were filled with 50µl of 2× the indicated concentrations of H_2O_2 . Next, 50 µl of the
205 cell suspensions was added to obtain the indicated H_2O_2 concentrations and a final cell
206 concentration of 1.0×10^6 cells/ml. Strains were inoculated in quadruplicate. Plates were
207 incubated at 25°C and 37°C. After 48h the concentration of H_2O_2 at which growth was still
208 observed was determined using a SPECTROstar Nano spectrophotometer (BMG Labtech,
209 Ortenberg, Germany) at 600nm. The experiments were repeated twice.

210

211 **Biofilm formation**

212 Biofilm formation was evaluated using standardized methods described previously (Ramage
213 et al., 2001), with slight modifications. Briefly, cell suspensions were made in YNB with 2%
214 glucose to a concentration of 1.0×10^6 cells/ml. On two separate occasions, 4 biofilms of each
215 *Candida* species were grown in Cellstar flat-bottomed 96-well plates (Greiner bio-one,
216 Alphen aan den Rijn, The Netherlands). One-hundred µl of cell suspension was added to each
217 well and the plates were incubated at 25°C and 37°C for 24h. After washing the biofilms an
218 XTT (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide-reduction
219 assay was carried out to measure biofilm activity as a semiquantitative measure of biofilm
220 formation. To this end, the Cell proliferation Kit II (XTT) (Roche, Basel, Switzerland) was
221 used. Fifty µl of the XTT labelling mixture was added to the washed biofilms and incubated
222 in the dark for 1h at 35°C. After incubation the supernatant was transferred to a clean 96-
223 wells plate and biofilms were washed with 50µl PBS to dissolve left-over XTT product. This
224 was added to the first 50µl in the clean plate to end up with 100µl aliquots, which were

225 measured at 492nm using an automated plate reader. The plate with biofilms was then air
226 dried and additionally used to quantify biofilm biomass using a crystal violet assay as
227 described elsewhere (Jose et al., 2010).

228

229 **Enzymatic activity**

230 Enzymatic activity was evaluated using different culture media to measure phospholipase
231 (Price et al., 1982), lipase (Buzzini & Martini, 2002), esterase (Slifkin et al., 2000), secreted
232 aspartyl proteinase (SAP)(Crandall & Edwards, 1987), and hemolysin (Luo et al., 2001)
233 activity. To this end, strains were inoculated in YNB broth with 2% glucose for 18h at 30°C,
234 and 200rpm. Cells were collected and washed twice with PBS by centrifugation at $3000 \times g$
235 for 2 min. Next, the samples were diluted in PBS to a final concentration of 1.0×10^8
236 cells/ml. 5 μ l cell suspension was spotted in triplicates onto the assay plates and incubated at
237 25°C and 37°C for 2 days (hemolysin), 5 days (phospholipase and SAP) or 7 days (lipase).
238 The enzymatic activity index value (Pz) was calculated as (1 - (diameter colony / diameter
239 precipitation zone)). Hemolysin activity was divided into β activity represented by a
240 translucent halo around the colony defined as the hemolytic index (Hi) and α activity
241 represented by a black-greenish ring at the periphery of the distinctive translucent halo
242 defined as the peripheral hemolytic index (Hp)(Wan et al., 2015). All media were prepared
243 according to the previously described protocols except for the blood (hemolysin) and
244 tributyrin (lipase) agar plates, which were prepared with 5% fresh human blood and 0.1%
245 tributyrin, respectively. Each experiment was repeated twice.

246

247 **Antifungal susceptibility testing**

248 *In vitro* antifungal susceptibility of each strain was determined using the EUCAST broth
249 microdilution method according to protocol E.DEF.7.3.2 (Arendrup et al., 2020). Included
250 antifungals in this test were: amphotericin B (AMB), anidulafungin (AND), micafungin
251 (MCF), 5-flucytosine (5FC), azoles including fluconazole (FLU), itraconazole (ITR),
252 voriconazole (VOR), posaconazole (POS) and isavuconazole (ISA) (all obtained from Sigma
253 Aldrich, St. Louis, MI, USA). Minimal inhibitory concentration (MIC) values were
254 determined after 24h and 48h. The tentative MIC breakpoints given for *C. auris* by the CDC
255 were used as references (CDC, 2018).

256

257 ***Galleria mellonella* survival assays**

258 Survival assays were performed using the *Galleria mellonella* model for fungal infection
259 following previously described protocols (Fuchs et al., 2010). Briefly, *Candida* strains were
260 grown for 18h in YNB supplemented with 2% glucose at 30°C, 200rpm. Cells were collected
261 by centrifugation and washed twice with PBS. After counting with a Cellometer X2 cell
262 counter (Nexcelom Bioscience), the cell suspensions were adjusted to 1.0×10^8 cells/ml in
263 PBS. Larvae were purchased from Kreca Ento-Feed (Ermelo, The Netherlands) and sorted to
264 obtain homogenous groups of 15 larvae without grey markings, weighing approximately
265 250mg each (de Jong et al., 2022). Larvae were maintained at 25°C in the dark and used
266 within 5 days of receipt. Individual larvae were cleaned with 70% ethanol and inoculated in
267 the left rear proleg with 1.0×10^6 yeast cells (10 μ l final inoculum volume) using a 10- μ l
268 Hamilton syringe fitted with a 26-gauge point style 2 needle. Two control groups were
269 included: untreated larvae and larvae injected with PBS. Larvae were put in petri dishes
270 without food and incubated at 37°C over a period of 10 days. Viability was scored daily, and
271 dead larvae were removed together with faeces and webbing. The experiment was repeated
272 three times on different occasions. The combined (additive) data from all experiments
273 ($n = 45$) was used to generate Kaplan–Meier survival plots and analysed using the Mantel–
274 Cox pairwise Log-rank test: $P < 0.001$; ns, $P > 0.05$ (GraphPad Prism v10.0.0, GraphPad
275 Software, Boston, MA, USA).

276

277 **Data availability**

278 Yeast strains used in this study have been deposited in the CBS culture collection (hosted at
279 the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands), or are available via
280 the CDC Isolate Bank (hosted at the Centers for Disease Control & Prevention, Atlanta, GA,
281 USA). All genome assemblies have been deposited in the NCBI GenBank repository under
282 the following BioProject numbers: PRJNA1002224, PRJNA1003053 and PRJNA1050609.
283 The individual strains and sequence data accession numbers are provided in Supplementary
284 Data 1.

285

286

287 **Results**

288 **Genome features of the *Candida haemulonii* complex**

289 To determine potential genomic characteristics related to virulence within *C. auris* and the *C.*
290 *haemulonii* complex, we generated complete genomes of each species (Table 1). Strains of all
291 five *C. auris* clades, and its pathogenic relatives *C. haemulonii*, *C. pseudohaemulonii*, *C.*
292 *duobushaemulonii*, *C. vulturina* (Navarro-Muñoz et al., 2019), and the recently described
293 clinical species *C. khanhai* were included (de Jong et al., 2023). Additionally, non-
294 pathogenic relatives including *C. chanthaburiensis*, *C. heveicola*, *C. konsanensis*, *C.*
295 *metrosideri*, *C. ohialehuae*, and *C. ruelliae* were also sequenced to enable comparative
296 genomic analysis of pathogens and non-pathogens (Table 1). Where possible, two strains of
297 each species were selected to also enable intraspecies genome comparison (Table 1). All
298 genome assemblies were sequenced using nanopore long-read technology. As an outgroup
299 genome assemblies of *C. albicans* CBS 562 and *N. glabratus* CBS 138 were included for
300 comparison.

301 *C. auris* genomes were organized in 8 to 11 contigs. Like previous highly contiguous genome
302 assemblies generated by long reads, most of the sequenced bases are grouped into 7 contigs
303 and an 8th circular contig (Muñoz et al., 2018). This is in line with the presence of 7
304 chromosomes and a circular mitochondrial genome reported by previous studies for *C. auris*
305 (Muñoz et al., 2018; Muñoz et al., 2021; Misas et al., 2020).

306 For most other members of the *C. haemulonii* species complex, only Illumina or no genome
307 data at all was available. Here we generated highly contiguous genomes for these species
308 with the amount of contigs ranging from 8 to 11, except for *C. metrosideri* (CBS 16091) with
309 an assembly of 17 contigs (Table 1). Like *C. auris*, most assemblies include 7 large contigs
310 and an 8th circular contig. This observation indicates species of the *C. haemulonii* complex
311 share the same number of chromosomes with *C. auris*. Comparison of genome sizes and gene
312 counts revealed all species have very similar genome sizes ranging between 12.13Mb in *C.*
313 *auris* CBS 12373 and 13.61Mb in *C. haemulonii* var. *vulnera* CBS 12437. *C. auris* strains
314 tend to have slightly smaller genomes with an average of 12.4 ± 0.18 Mb compared to $13.1 \pm$
315 0.34Mb for species of the *C. haemulonii* complex (Table 1).

316 Strains of *C. auris* are known to be highly identical, especially within clades more than >99%
317 average pairwise nucleotide identity (ANI) was observed. But even between clades an
318 average identity of 98.7% was reported (Muñoz et al., 2018). Here we observed similar

319 percentages, except for *C. auris* Clade V which shared 97% identity (Supplementary Data 1).
320 Compared to its relatives of the *C. haemulonii* complex *C. auris* shared 74% identity on
321 average. Within the *C. haemulonii* complex, species display high similar intraspecies
322 nucleotide identities of >99%, but on average between species 80% identity was observed
323 (Supplementary Data 1). On the other hand, sibling species such as *C. pseudohaemulonii* and
324 *C. duobushaemulonii* will have higher ANI's, mostly >90%. In contrast, the distantly related
325 species *C. albicans* and *N. glabratus* only shared an average pairwise nucleotide identity of
326 67-68% with *C. auris* and the other members of the *C. haemulonii* complex.

327

328 **Phylogeny of *C. auris* and its relatives of the *C. haemulonii* complex**

329 *C. auris* is most closely related to the *C. haemulonii* species complex. After reclassification
330 the *C. haemulonii* species complex was described to consist of *C. haemulonii*, *C.*
331 *duobushaemulonii* and *C. pseudohaemulonii* and the variety *C. haemulonii* var. *vulnera*
332 (Cendeja-Bueno et al., 2012). Recently the emerging pathogen *C. vulturina* was added as a
333 member (Sipiczki & Tap, 2016). However, more species are linked to the *C. haemulonii*
334 species complex including the recently described emerging pathogen *C. khanbhai* (de Jong et
335 al., 2023) and non-pathogenic species like *C. heveicola* (Wang et al., 2008), *C. konsanensis*
336 (Sarawan et al., 2013), *C. chanthaburiensis* (Limtong et al., 2010), *C. ruelliae* (Saluja et al.,
337 2008), *C. ohialehuae*, and *C. metrosideri* (Klaps et al., 2021) (Table 1). Previous genomic
338 studies only focused on the emerging human pathogens of the *C. haemulonii* complex
339 (Muñoz et al., 2018; Gade et al., 2020). Therefore, available genomic data on the non-
340 pathogenic species is scarce and does not provide a complete representation of the *C.*
341 *haemulonii* complex. To resolve the phylogenetic relationships of species within the *C.*
342 *haemulonii* complex the generated complete genomes were used to estimate the phylogeny
343 relative to *C. auris* and other species of the *Saccharomycetales* including *C. albicans* and *N.*
344 *glabratus*.

345 OrthoFinder was used to build a phylogenetic tree by Species Tree inference from All Genes
346 (STAG). This method was shown to have higher accuracy than other commonly used
347 methods, including concatenated alignments of protein sequences (Emms & Kelly, 2019).
348 The resulting species tree placed *C. khanbhai* as well as the non-pathogenic species within
349 the *C. haemulonii* complex (Figure 1). Interestingly, within the newly resolved phylogeny of
350 the *C. haemulonii* complex, several 'sub-clades' can be observed. *C. auris* strains form a sub-

351 clade (Figure 1) that seems to be more recently diverged based on the short branch lengths as
352 previously reported (Muñoz et al., 2018). *C. ruelliae* appears as a more basally branching
353 species. Next, *C. haemulonii* and *C. haemulonii* var. *vulnera* strains form a well-supported
354 sub-clade that we call the ‘*haemulonii* clade’. Interestingly all non-pathogenic species, except
355 one, fall within a separate sub-clade named the ‘*haemulonii* I clade’. Only *C. metrosideri*
356 groups in the ‘*haemulonii* II clade’ which includes the known emerging pathogens *C.*
357 *khanhai*, *C. vulturena*, *C. pseudohaemulonii* and *C. duobushaemulonii* (Figure 1).

358

359 **Conservation of virulence genes within the *C. haemulonii* complex**

360 We used Helixer for gene structural annotation of the assembled genomes. Helixer improves
361 predictions by combining traditional *de novo* hidden Markov models with deep learning
362 (Holst et al., 2023). This resulted in nearly complete genomes. BUSCO analysis of the
363 predicted gene sets by analysing the representation of core eukaryotic genes showed that the
364 genomes were highly complete with on average 95.7% of these genes present in all
365 assemblies (Table 1; Simão et al., 2015).

366 In line with the genome sizes, the predicted numbers of protein-coding genes were very
367 similar among *C. auris* and the related species of the *C. haemulonii* complex, ranging from
368 5,629 genes in *C. auris* CBS 12373 to 6,002 in *C. haemulonii* var. *vulnera* CBS 12347. *C.*
369 *vulturena* CBS 14366 showed an increased gene number of 6,174 genes, probably due to a
370 high number of fragmented genes, shown by the BUSCO analyses (Table 1). *C. albicans* did
371 have a similar gene number of 6,183 genes, whereas *N. glabratus* CBS 138 had a much lower
372 gene count of 4,560 genes, caused by an apparent incomplete genome assembly regarding the
373 only 85% complete BUSCOs (Table 1)

374 Examining the orthologous genes in *C. auris* and the *C. haemulonii* complex strains showed
375 that the *C. auris* clades had 51 unique orthogroups compared to the close relatives of the *C.*
376 *haemulonii* complex, and the more distantly related pathogens *C. albicans* and *N. glabratus*
377 (Supplementary Data 1). Functional analyses of these orthogroups using the Interpro database
378 (Paysan-Lafosse et al., 2023), showed most genes within these orthogroups did not contain
379 any relevant functional protein family domains that could predict a role in the virulence of *C.*
380 *auris* (Supplementary Data 1). However, three out of 51 unique orthogroups were found to
381 contain genes that had predicted metallopeptidase, deaminase, and aspartic type
382 endopeptidase activity. Additional PFAM analysis by HMMscan (Potter et al., 2018),

383 predicted the presence of genes with functional domains for xylanase activity, more related to
384 phytopathogenesis, and ferrous iron transporter proteins. Other domains detected were
385 involved in regular cellular processes such as actin remodelling and ribosomal activity or
386 linked to uncharacterized proteins (Supplementary Data 1)

387 We also examined whether gene families associated with *Candida* virulence were conserved
388 in the *C. haemulonii* complex. *C. auris* orthologs of gene families predicted to be involved in
389 several virulence traits such as lytic enzyme production (proteinases, lipases, and
390 phospholipases) (Muñoz et al., 2018), hemolysis (Pendrak et al., 2004), biofilm formation
391 (Kean et al., 2018) and stress resistance (pH, osmotic, cell wall and heat stress) (Day et al.,
392 2018; Kim et al., 2019; Ismail et al., 2022) were identified across all species (Figure 1,
393 Supplementary Data 2). Generally similar numbers of virulence genes are present in *C. auris*
394 and members of the *C. haemulonii* complex. Notably, higher numbers of genes encoding the
395 important lytic enzyme family of lipases (LIPs), were more often observed in the pathogenic
396 species compared to the non-pathogenic species (Figure 1, Supplementary Data 2). On the
397 other hand, similar numbers of phospholipases were present in all species. An interesting
398 exception was found for strains of *C. auris* clade II (CBS 10913 and CBS 12373) which had a
399 reduced number of secreted aspartyl proteases (SAPs) and also less genes involved in
400 hemolysis and biofilm formation compared to the other *C. auris* strains.

401 Increased or decreased numbers for genes involved in biofilm formation could be attributed
402 to specific gene families. Where most genes were present in similar numbers, an increased
403 number of ALS cell surface proteins, involved in cell adhesion, was found in strains of *C.*
404 *pseudohaemulonii* (7-8 genes) and *C. ruelliae* (7 genes). In contrast, in *C. auris* only 3-4 ALS
405 genes were present and specifically in Clade II strains only 2 ALS genes were found.
406 Moreover, numbers of HYR/IFF genes, which encode for another important adhesin-like cell
407 surface protein family, also varied a lot. The highest numbers were found in *C.*
408 *pseudohaemulonii* (14-15 genes) and *C. ruelliae* (16 genes), which was similar to *C. albicans*
409 (15 genes). *C. auris* strains contained 8-10 HYR/IFF genes with again a decreased number in
410 *C. auris* Clade II strains (3 genes) (Figure 1, Supplementary Data 2).

411

412 **Drug resistance within *C. auris* and the *C. haemulonii* complex**

413 *C. auris* and its pathogenic relatives of the *C. haemulonii* complex are notorious for their
414 multi-drug resistance, especially against azoles and to a lesser extent the echinocandins and

415 amphotericin B (Cendejas-Bueno et al., 2012). Antifungal susceptibility testing showed this
416 pattern of drug resistance is conserved among all species of the *C. haemulonii* complex
417 (Table 2). All strains in this study displayed similar patterns of drug resistance. Increased
418 resistance for fluconazole, amphotericin B and most of the triazoles (voriconazole,
419 posaconazole, itraconazole) was common. Resistance against the echinocandins tested was
420 rarely observed. Only after 48h of incubation *C. auris* Clade III and V strains do have
421 increased MIC values for micafungin. For anidulafungin high MIC values are more often
422 observed not only among *C. auris* but also within all sub-clades of the *C. haemulonii*
423 complex.

424 Due to the worrying ability of *C. auris* to develop resistance against all available classes of
425 antifungal drugs, the mechanisms associated with drug resistance have been well studied in
426 *C. auris* (Rybak et al., 2022). We identified orthologs of genes noted to confer drug
427 resistance in *C. auris*, in all species of the *C. haemulonii* complex (Supplementary Data 3).
428 Multiple sequence alignment showed that most of these genes are well conserved within the
429 *C. haemulonii* complex. Interestingly, none of the drug-resistant mutations described
430 specifically for *C. auris* (Rybak et al., 2022) were observed in the other species
431 (Supplementary Data 3). Only in the important azole target *ERG11* several commonly
432 described mutations were found, also reported to cause drug resistance in *C. albicans* for
433 example (Lockhart et al., 2017). This included mutations F105L, S110A, D116A, D153E,
434 R267T, and A432S, which were detected in all the sub-clades and almost all strains
435 (Supplementary Data 3) (Lockhart et al., 2017). Other important drug targets like the
436 echinocandin target *FKS1* or the amphotericin B target *ERG6* were well conserved, but did
437 not contain any of the described mutations, indicating other mechanisms are causing the
438 observed resistance against these classes of drugs in the *C. haemulonii* complex.

439 Therefore, orthologs of transporters involved in clinical antifungal resistance in *C. albicans*
440 and *C. auris* were also identified (Supplementary Data 2). Previously high copy numbers of
441 oligopeptide transporters (OPT) and siderophore iron transporters (SIT) were reported in *C.*
442 *auris* and the *C. haemulonii* complex (Muñoz et al., 2018). We observed similar numbers for
443 these transporters in all species of the *C. haemulonii* complex. Strains of the *C. haemulonii*
444 sub-clade had the highest number with 14 and 4 copies of OPT and SIT genes, respectively.
445 Additionally, transporters from the ATP binding cassette (ABC) and major facilitator
446 superfamily (MFS) may confer resistance by overexpression (Muñoz et al., 2018). We
447 identified orthologs of the ABC transporter family CDR (*CDR1*, *CDR2*, *CDR4*, and *CDR11*)

448 and *SNQ2* across the whole *C. haemulonii* complex. Three genes related to the CDRs were
449 found in all strains. For *SNQ2* all *C. auris* strains contained two related genes, whereas most
450 of the *C. haemulonii* complex species had 1 or 2 related genes. Strains of the non-pathogenic
451 species *C. heveicola* (CBS 10701 and CBS 7249) as well as *C. konsanensis* (CBS 12666) and
452 *C. chanthaburiensis* (CBS 10926) were lacking a *SNQ2* ortholog. On the other hand, only
453 one copy of the MFS transporter *MDR1* was found in *C. auris*, where all other species
454 contained two copies. *C. ruelliae* (CBS 10815) and *C. vulturna* (CBS 14366) even contained
455 three *MDR1* copies. Finally, orthologs of the transcription factors *TAC1B*, and *MRR1* which
456 regulate the expression of the ABC and MFS transporter families were also detected (Rybak
457 et al., 2020; Li et al., 2022). Nevertheless, multiple mutations in *TAC1B* that lead to
458 overexpression of the CDR genes were only found in the *C. auris* strains. Also, the N647T
459 mutation in *MRR1*, described to cause overexpression of *MDR1*, was only observed in *C.*
460 *auris* Clade III strains (Li et al., 2022).

461

462 **Phenotypic differences related to virulence between *C. auris* and the *C. haemulonii* 463 complex**

464 We observed limited genetic diversity between *C. auris* strains and those of the *C.*
465 *haemulonii* complex. Therefore, we explored whether specific phenotypic variation could be
466 observed among the strains, specifically focussing on infection relevant traits. Physiological
467 characterization did not show variation that could be linked to a more virulent phenotype
468 (Supplementary Data 4). Also, between the sub-clades a specific physiological profile was
469 not observed. Some intra- and inter-species variability was found regarding growth on
470 different carbon and nitrogen sources but did not vary between pathogenic and non-
471 pathogenic strains. However, compared to the distantly related pathogens *C. albicans* and *N.*
472 *glabratus*, a greater diversity regarding assimilation and fermentation of different carbon
473 sources was observed within *C. auris* and the *C. haemulonii* complex. The most significant
474 difference was the ability to grow at high temperatures. Only *C. auris*, *C. ruelliae*, *C.*
475 *khanhai* and *C. albicans* were able to grow at 42°C. However, all species except for *C.*
476 *metrosideri* and *C. ohialehuae* were able to grow at human body temperature of 37°C.

477 Lytic enzymes are an important virulence factor allowing the fungus to invade and survive
478 within the host (de Jong & Hagen, 2019). Despite the increased number of genes encoding
479 lipases in the genome of *C. auris* and other emerging pathogens of the *C. haemulonii*

480 complex, no increased activity of these enzymes was found compared to the non-pathogenic
481 species (Figure 1). Esterase activity was more present in the *C. auris* strains at 37°C, but high
482 activity was also found for the non-pathogenic species *C. chanthaburiensis* and *C. heveicola*.
483 Hemolytic activity was more common in *C. auris* compared to most species. Especially
484 increased β -hemolysis was observed within the *C. auris* strains of Clade I at 37°C. On the
485 other hand, some non-pathogenic species such as, *C. ruelliae*, *C. konsanensis* and *C.*
486 *chanthaburiensis* displayed similar hemolytic activity. In general, the common pathogens *C.*
487 *albicans* and *N. glabratus* had the highest lytic enzyme activities. Especially, regarding
488 phospholipase and β -hemolytic activity.

489 Biofilm formation is seen as another important virulence factor of *Candida* species. Biofilm
490 formation is linked to increased antifungal resistance and protects the cells against to host
491 immune system (de Jong & Hagen, 2019). Yet, low levels of biofilm formation were
492 observed in almost all *C. auris* and *C. haemulonii* complex strains. Compared to *C. albicans*,
493 only *C. ruelliae* produced similar biofilms, with more biomass (crystal violet staining) but
494 less metabolic activity (XTT reduction). *C. ruelliae* did have an increased number of genes
495 involved in biofilm formation, but so did strains of *C. pseudohaemulonii*, which lacked
496 increased biofilm formation under the conditions tested.

497 Ultimately, the most significant phenotypic differences were observed regarding traits
498 involved in stress resistance. The ability to adapt to stresses imposed by the host during
499 invasion is required for the pathogenicity of most fungal pathogens (Day et al., 2018; Heaney
500 et al., 2020). Where all strains could grow at pH 8, only *C. auris*, *C. ruelliae* and *C. albicans*
501 would have good growth at the more acidic pH 3. High resistance to cationic stress imposed
502 by either sodium chloride (NaCl) or calcium chloride (CaCl₂) was observed among all *C.*
503 *auris* and *C. haemulonii* complex strains. Some strains even displayed improved growth in
504 the presence of NaCl, including strains of *C. haemulonii*, *C. duobushaemulonii*, *C.*
505 *konsanensis* and *C. chanthaburiensis*. Growth on CaCl₂ was more restricted, but most *C.*
506 *auris* and *C. haemulonii* complex strains did show some growth on plates containing CaCl₂,
507 where *N. glabratus* and *C. albicans* did not grow. *C. auris* also seems best adapted to cell
508 wall stress (calcofluor white, Congo red, caffeine, SDS). Especially on caffeine medium *C.*
509 *auris* strains displayed better growth compared to most species. Only *C. ruelliae* had better
510 resistance, growing in the presence of all cell wall-damaging agents. Inducing oxidative stress
511 by exposure to hydrogen peroxide (H₂O₂) showed an interesting pattern. Most non-
512 pathogenic species were able to grow at high H₂O₂ concentrations, but only at 25°C.

513 Increasing the temperature to 37°C, strongly reduced the H₂O₂ concentration at which these
514 species could grow. Only *C. auris*, *C. vulturea*, *C. khanbhai*, *C. ruelliae* and *N. glabratus*
515 grew at similar or even higher concentrations at 37°C. Notably, strains of *C. auris* clade II
516 and V and *C. albicans* would not grow under any oxidative stress. In addition, the response to
517 endoplasmic reticulum (ER) stress was observed by growth on β-mercapto-ethanol. *C.*
518 *albicans* and *N. glabratus* grew well under ER stress, where most *C. haemulonii* complex
519 strains did not show any growth. The exceptions were *C. auris*, *C. ruelliae* and *C. khanbhai*
520 (CBS 16555).

521

522 ***In vivo* virulence of *C. auris* and related species of the *C. haemulonii* complex**

523 To evaluate the pathogenicity of *C. auris* compared to its relatives of the *C. haemulonii*
524 complex we used the invertebrate *Galleria mellonella* fungal infection model. All strains
525 were able to cause death, but mostly at low levels. *C. auris* strains showed to be significantly
526 more virulent (Figure 2; Supplementary Data 5). However, *C. auris* strains displayed high
527 inter clade variability. Strains belonging to Clade I were most virulent compared to the other
528 *C. auris* strains and were even more virulent than *C. albicans*. Strains of Clade IV displayed
529 similar virulence as those of Clade I, where strains of Clade III and especially Clade II were
530 significantly less virulent (Figure 2, Supplementary Data 5). Of the *C. haemulonii* complex
531 only *C. ruelliae* showed increased virulence, killing similar amounts of larvae as *C. auris*
532 clade II and III strains. Interestingly, the other known emerging pathogens *C. haemulonii*, *C.*
533 *vulturea*, *C. pseudohaemulonii*, *C. khanbhai* and *C. duobushaemulonii*, did not have any
534 increased virulence compared to their non-pathogenic relatives.

535

536 **Discussion**

537 The rise of *Candida auris* showed the world the ability of fungi to rapidly become an urgent
538 threat to public health (Lockhart et al., 2017). The worsening spread of *C. auris* and the
539 simultaneous emergence of its close relatives of the *C. haemulonii* complex (Geddes-
540 McAlister et al., 2019; Garcia-Solache et al., 2010; Denning et al., 2024), require a thorough
541 understanding of the virulence traits of these pathogens in order to stop their spread and
542 initiate optimal treatment. Comparing pathogens to their closest non-pathogenic relatives is a
543 common strategy to provide new insights into how virulence appears and evolves across

544 species. Proven in bacteria and fungi (Moran et al., 2011; Wurtzel et al., 2012), including
545 *Candida* (Butler et al., 2009), this strategy is promising to generate valuable insights into the
546 virulence of *C. auris* and the *C. haemulonii* complex. Here, we generated new genomic and
547 phenotypic data for all *C. auris* clades, and both pathogenic and non-pathogenic relatives
548 within the *C. haemulonii* complex. We observed that *C. auris* and its relatives of the *C.*
549 *haemulonii* complex are genetically very similar and harbour traits that likely prime them to
550 become human pathogens. Despite the shared genetic virulence properties, *C. auris* was
551 shown to be significantly more virulent in the *G. mellonella* fungal infection model. Our
552 phenotypic analysis highlights unique traits of *C. auris* compared to its *C. haemulonii*
553 complex relatives that likely contributed to this increased virulence. Overall, this work lays a
554 foundation to study the evolution of virulence in *C. auris* and its close relatives.

555 Genomic comparison of *C. auris* to its siblings was impaired by the lack of genomes
556 available for most species of the *C. haemulonii* complex. Using nanopore long-read
557 sequencing we generated highly continuous and complete genomes for all described relatives
558 of *C. auris*, including the non-pathogenic ones. With these annotated genomes the full current
559 phylogenetic relationship of the *C. haemulonii* complex could be resolved. Our phylogenetic
560 analysis showed that the *C. haemulonii* complex consists of several sub-clades. In line with
561 previous studies, *C. haemulonii* is more distantly related to the other emerging species *C.*
562 *vulturna*, *C. pseudohaemulonii* and *C. duobushaemulonii*, which here form a sub-clade with
563 the newly described pathogen *C. khanhai* (Muñoz et al., 2018; Gade et al., 2020; Francisco
564 et al., 2023). Interestingly, all non-pathogenic species group together, except for *C.*
565 *metrosideri* –which groups with *C. vulturna*– and *C. ruelliae* that is the basal branching
566 species. The resolved phylogeny highlights the repeated evolution of virulence within the *C.*
567 *haemulonii* complex.

568 Repeated evolution of virulence suggests that *C. auris* and its relatives harbour traits that pre-
569 adapt them to become human pathogens. *C. auris* and its pathogenic relatives *C. haemulonii*,
570 *C. duobushaemulonii*, and *C. pseudohaemulonii*, share notable expansions of virulence
571 related gene families described in *C. albicans* and other common pathogenic *Candida* species
572 (Muñoz et al., 2018; Butler et al., 2009). Notably, the shared expansion of lipases between all
573 pathogens suggests a shared mechanism of virulence (Muñoz et al., 2018). Here we observed
574 that this expansion of lipases is indeed present in *C. auris* and most pathogens of the *C.*
575 *haemulonii* complex, supporting the idea that lipases play an important role in the evolution
576 of virulence within *Candida*. In contrast, the non-pathogenic species *C. ohialehuae* exhibited

577 a similar number of lipases, suggesting the expansion of lipases alone is not enough to
578 become pathogenic. This idea was supported by *C. auris* Clade II strains, that do share the
579 same number of lipases with other pathogens, but are significantly less virulent in *in vivo*
580 infection models (Forgács et al., 2020; Abe et al., 2020). Moreover, *C. auris* Clade II strains
581 have a seemingly unique propensity for the ear instead of invasive infection (Welsh et al.,
582 2019). Notably, a significant reduction of *HYR/IFF* adhesins from 8 to 3 copies was found in
583 these Clade II strains, which was previously reported to be caused by the deletion of sub-
584 telomeric regions enriched in these and other cell-surface proteins (Muñoz et al., 2021). The
585 reduced virulence of Clade II strains was linked to this loss of cell-wall proteins (Muñoz et
586 al., 2021). In addition, our analysis showed the loss of SAP genes encoding secreted
587 proteases, which fulfil multiple specialized functions during *Candida* infection (Naglik et al.,
588 2003). In contrast, *C. auris* clades did possess unique genes with proteolytic activity. On the
589 other hand, these were also present in *C. auris* clade II strains which makes it unlikely that
590 these genes will play a major role in the virulence of *C. auris*. Since the non-pathogenic
591 species, shared gene content for most of the analysed virulence related gene families, they
592 indeed seem primed to become human pathogens. However, most of the virulence gene
593 orthologs identified in *C. auris* and the other species still need to be characterized as their
594 function has been mainly inferred from the distantly related *C. albicans* (Muñoz et al., 2018).
595 Moreover, we did not take genomic re-arrangements, and discrete point mutations in coding
596 or non-coding regions into consideration that may also be key factors in the evolution of
597 virulence.

598 *C. auris* and its relatives are notorious for their multi-drug resistance. Resistance mechanisms
599 of *C. auris* have been studied thoroughly (Rybak et al., 2022), but not much is known about
600 those of its close relatives of the *C. haemulonii* complex. The shared antifungal resistance
601 phenotype between *C. auris* and most of the siblings in the *C. haemulonii* complex indicates
602 that common resistance mechanisms are present. Nevertheless, resistance mutations
603 described for *C. auris* in the well conserved azole and echinocandin drug targets, *ERG11* and
604 *FKS1*, respectively (Rybak et al., 2022), were not found in any of the other closely related
605 species. Also, the recently reported mutation YY98V* in *ERG6*, which could have explained
606 the generally reduced sensitivity for amphotericin B, was not detected (Rybak et al., 2022).
607 The lack of known drug resistance mutations in members of the *C. haemulonii* species
608 complex pointed out that other molecular mechanisms likely play a role. *C. auris* has the
609 unique ability to rapidly develop drug resistance either by acquiring point mutations,

610 increasing transcription, or copy number variation (Bassetti et al., 2019; Lockhart et al.,
611 2017). In contrast, resistance of *C. haemulonii* complex members seem to rely on more
612 conserved intrinsic mechanisms, yet to be understood (Francisco et al., 2023). Alternatively,
613 multiple transporter families such as oligopeptide transporters (OPT), siderophore iron
614 transporters (SIT), ABC transporters and MFS transporters were all reported to confer
615 resistance through upregulation during exposure to antifungals (Muñoz et al., 2018; Li et al.,
616 2022; Wasi et al., 2019). We did see shared gene content for all these types of transporters in
617 *C. auris* and its relatives but with variations between the sub-clades. The variability in gene
618 content for transporter families suggests that *C. auris* and its relatives rely on different
619 transporters during their antifungal drug response. Our genomic analyses showed the relative
620 variation of orthologues genes within the genomes of the species. Hence, more transcriptomic
621 data is needed to shed light on specific molecular mechanisms activated by species of the *C.*
622 *haemulonii* complex during exposure to the different classes of antifungal drugs.

623 Our phenotypic analysis highlighted *C. auris* and its close relatives share the same
624 physiological characteristics but do vary in some crucial virulence traits. Efficient metabolic
625 adaptation was shown to be at the basis of *C. albicans* virulence (Brown et al., 2014).
626 Notably, members of the *C. haemulonii* complex displayed assimilation and fermentation of
627 even more carbon sources than *C. albicans*. Following the assimilation of local nutrients, a
628 fungus should be able to counter any local environmental stresses and evade host defences
629 (Brown et al., 2014; Lionakis et al., 2023). Especially when it comes to stress resistance, *C.*
630 *auris* showed a unique phenotype compared to most of its relatives. This unique stress
631 resistance phenotype probably increases the ability of *C. auris* to survive within the host and
632 cause disease. Interestingly, *C. auris* Clade II strains were much less stress resistant. Which is
633 in accordance with the previously mentioned propensity to only cause ear-infections (Welsh
634 et al., 2019). It is tempting to speculate that the here observed phenotype of *C. auris* could
635 explain its pathogenic success. However, the non-pathogenic species *C. ruelliae* had an
636 almost identical phenotype. On the other hand, *C. khanbhai* also shared the stress resistant
637 phenotype and has been reported as an emerging nosocomial pathogen. In the end, stress
638 resistance is most likely a combinatorial virulence trait. Moreover, the expression of
639 phenotypic traits *in vitro* is heavily affected by the culture conditions used. For example, *C.*
640 *auris* biofilm formation was almost absent under the standard conditions in this study, where
641 recent studies show a high biofilm forming capacity for *C. auris* when grown in synthetic
642 sweat medium, mimicking axillary skin conditions (Horton et al., 2020; Biswas et al., 2023).

643 Ultimately, *in vivo* models remain essential to mimic the multifarious environment needed to
644 study the pathogenesis of infectious diseases. *G. mellonella* larvae have been widely adopted
645 to study fungal infections (Pereira et al., 2018). Our survival analysis showed that *C. auris*
646 was significantly more virulent than its relatives, especially Clade I strains. This is in line
647 with the genotypic and phenotypic observations indicating an increased virulence potential
648 for *C. auris*. The reduced virulence of Clade II strains which lack some of these important
649 traits also supports this direct relationship. Notably, pathogens and non-pathogens within the
650 *C. haemulonii* complex displayed similar virulence. Substantiating the idea that these species
651 all have a pathogenic potential. An explanation for the clinical emergence of only a sub-set of
652 species may lay in their ecological niche. The emerging pathogens of the *C. haemulonii*
653 complex probably reside in environments where they are easier transmitted to humans
654 allowing them to cause infection. Despite recent sampling efforts, the ecological niches of all
655 species including *C. auris* remain elusive (Arora et al., 2021; Escandón, 2022; Irinyi et al.,
656 2022). Therefore, we could only speculate how these species emerge into the nosocomial
657 environment. To this end, more environmental sampling studies should be conducted.

658 The data presented in this study provides a basis for further analysis of the virulence and
659 resistance mechanisms in *C. auris* and the *C. haemulonii* complex. Unique genomic and
660 phenotypic traits seem to have contributed to the increased virulence of *C. auris*, where
661 shared traits have primed the whole *C. haemulonii* complex for virulence. Transcriptomic
662 together with gene deletion studies should shed light on the role of shared and species-
663 specific genes in virulence and resistance. As we are beginning to understand the biology of
664 these species, future research should also focus on their ecology. More sampling is needed to
665 find out where these species are hiding and what drives their emergence into the nosocomial
666 environment. The data provided here could aid in the development of specific and rapid
667 diagnostic tools to monitor the spread of this important emerging group of fungal pathogens.

668

669 **Acknowledgements**

670 *Candida auris* reference strains were provided by the Centers for Disease Control and
671 Prevention (Atlanta, GA, USA) Antimicrobial Resistance Isolate Bank. Authors thank the
672 depositors of the strains that were made available by the CBS Culture Collection hosted at the
673 Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands).

674

675 **Author's contributions**

676 Auke W. de Jong: Conceptualization; Data curation; Formal analysis; Investigation;
677 Methodology; Validation; Visualization; Roles/Writing - original draft; and Writing - review
678 & editing. Sander Boden: Data curation; Formal analysis; Investigation; Methodology;
679 Software; Validation; Visualization; Roles/Writing - original draft; and Writing - review &
680 editing. Annemarie Zandijk: Formal analysis; Investigation; Methodology; Writing - review
681 & editing. Alexandra M. Kortsinoglou: Investigation; Writing – review & editing. Bert
682 Gerrits van den Ende: Formal analysis; Investigation; Methodology; Writing - review &
683 editing. Elaine C. Francisco: Investigation; Methodology; Resources; Writing - review &
684 editing. Podimata Konstantina Nefeli: Investigation; Writing – review & editing. Vassili N.
685 Kouvelis: Investigation; Resources; Supervision; Writing – review & editing. Miaomiao
686 Zhou: Conceptualization; Investigation; Methodology; Project administration; Resources;
687 Supervision; Validation; Writing - review & editing. Ferry Hagen: Conceptualization; Data
688 curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project
689 administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing -
690 original draft; and Writing - review & editing.

691 **References**

692 Abe M, Katano H, Nagi M, Higashi Y, Sato Y, Kikuchi K, Hasegawa H, Miyazaki Y. Potency of
693 gastrointestinal colonization and virulence of *Candida auris* in a murine endogenous candidiasis.
694 PLoS One. 2020;15:e0243223. <https://doi.org/10.1371/journal.pone.0243223>.

695 Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J. EUCAST Definitive
696 Document EDef 7.3.2: method for the determination of broth dilution MICs of antifungal agents
697 for fermentative yeasts. 2020. Accessible via <https://www.eucast.org/astoffungi/>

698 Arora P, Singh P, Wang Y, Yadav A, Pawar K, Singh A, Padmavati G, Xu J, Chowdhary A.
699 Environmental isolation of *Candida auris* from the coastal wetlands of Andaman Islands, India.
700 mBio. 2021;12:e03181-20. <https://doi.org/10.1128/mBio.03181-20>.

701 Bassetti M, Giacobbe DR, Vena A, Trucchi C, Ansaldi F, Antonelli M, Adamkova V, Alicino C,
702 Almyroudi MP, Atchade E, Azzini AM, Carannante N, Carnelutti A, Corcione S, Cortegiani A,
703 Dimopoulos G, Dubler S, García-Garmendia JL, Girardis M, Cornely OA, Ianniruberto S,
704 Kullberg BJ, Lagrou K, Le Bihan C, Luzzati R, Malbrain MLNG, Merelli M, Marques AJ, Martin-
705 Loches I, Mesini A, Paiva JA, Peghin M, Rainieri SM, Rautemaa-Richardson R, Schouten J,
706 Brugnaro P, Spapen H, Tasioudis P, Timsit JF, Tisa V, Tumbarello M, van den Berg CHSB, Veber
707 B, Venditti M, Voiriot G, Wauters J, Montravers P. Incidence and outcome of invasive candidiasis
708 in intensive care units (ICUs) in Europe: results of the EUCANDICU project. Crit Care.
709 2019;23:219. <https://doi.org/10.1186/s13054-019-2497-3>.

710 Benedict K, Whitham HK, Jackson BR. Economic burden of fungal diseases in the United States.
711 Open Forum Infect Dis. 2022;9:ofac097. <https://doi.org/10.1093/ofid/ofac097>.

712 Biswas B, Rana A, Gupta N, Gupta I, Puria R, Thakur A. A Novel robust method mimicking human
713 substratum to dissect the heterogeneity of *Candida auris* biofilm formation. Microbiol Spectr.
714 2023;0:e00892-23. <https://doi.org/10.1128/spectrum.00892-23>.

715 Brown AJP, Brown GD, Netea MG, Gow NAR. Metabolism impacts upon *Candida* immunogenicity
716 and pathogenicity at multiple levels. Trends Microbiol. 2014;22:614–22.
717 <https://doi.org/10.1016/j.tim.2014.07.001>.

718 Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: Human
719 fungal infections. Sci Transl Med. 2012;4:16rv13. <https://doi.org/10.1126/scitranslmed.3004404>.

720 Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M,
721 Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC,
722 Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N,
723 Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger
724 FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP,
725 Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC,
726 Birren BW, Kellis M, Cuomo CA. Evolution of pathogenicity and sexual reproduction in eight
727 *Candida* genomes. Nature. 2009;459:657–62. <https://doi.org/10.1038/nature08064>.

728 Buzzini P, Martini A. Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated
729 from tropical environments. J Appl Microbiol. 2002;93:1020–5. <https://doi.org/10.1046/j.1365-2672.2002.01783.x>.

731 Carolus H, Pierson S, Muñoz JF, Suboti A, Dijk PV. Genome-wide analysis of experimentally
732 evolved *Candida auris* reveals multiple novel mechanisms of multidrug resistance. mBio.
733 2021;12:e03333-20. <https://doi.org/10.1128/mBio.03333-20>.

734 Castanheira M, Woosley LN, Diekema DJ, Jones RN, Pfaller MA. *Candida guilliermondii* and other
735 species of *Candida* misidentified as *Candida famata*: Assessment by Vitek 2, DNA sequencing
736 analysis, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in
737 two global antifungal surveillance programs. *J Clin Microbiol*. 2013;51:117–24.
738 <https://doi.org/10.1128/JCM.01686-12>.

739 Cendejas-Bueno E, Kolecka A, Alastrauey-Izquierdo A, Theelen B, Groenewald M, Kostrzewska M,
740 Cuenca-Estrella M, Gómez-López A, Boekhout T. Reclassification of the *Candida haemulonii*
741 complex as *Candida haemulonii* (*C. haemulonii* Group I), *C. duobushaemulonii* sp. nov. (*C.*
742 *haemulonii* Group II), and *C. haemulonii* var. *vulnera* var. nov.: Three multiresistant human
743 pathogenic yeasts. *J Clin Microbiol*. 2012;50:3641–51. <https://doi.org/10.1128/JCM.02248-12>.

744 Centers for Disease Control and Prevention. Antifungal susceptibility testing and interpretation.
745 <https://www.cdc.gov/fungal/Candida-auris/c-auris-antifungal.html>. Published 2018.

746 Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States,
747 2019 [Internet]. Centers for Disease Control and Prevention (U.S.); 2019 Nov. Available from:
748 <https://stacks.cdc.gov/view/cdc/82532>.

749 Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. Potential fifth clade of *Candida*
750 *auris*, Iran, 2018. *Emerg Infect Dis*. 2019;25:1780–1. <https://doi.org/10.3201/eid2509.190686>.

751 Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, Forsberg K, Lockhart SR, Adam R,
752 Alanio A, Alastrauey-Izquierdo A, Althawadi S, Araúz AB, Ben-Ami R, Bharat A, Calvo B,
753 Desnos-Ollivier M, Escandón P, Gardam D, Gunturu R, Heath CH, Kurzai O, Martin R,
754 Litvintseva AP, Cuomo CA. Tracing the evolutionary history and global expansion of *Candida*
755 *auris* using population genomic analyses. *mBio*. 2020;11:e03364-19.
756 <https://doi.org/10.1128/mBio.03364-19>.

757 Crandall M, Edwards JEY 1987. Segregation of proteinase-negative mutants from heterozygous
758 *Candida albicans*. *Microbiology*. 133:2817–24. <https://doi.org/10.1099/00221287-133-10-2817>.

759 Day AM, McNiff MM, da Silva Dantas A, Gow NAR, Quinn J. Hog1 regulates stress tolerance and
760 virulence in the emerging fungal pathogen *Candida auris*. *mSphere*. 2018;3:e00506-18.
761 <https://doi.org/10.1128/mSphere.00506-18>.

762 De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: Visualizing and
763 processing long-read sequencing data. *Bioinformatics*. 2018;34:2666–9.
764 <https://doi.org/10.1093/bioinformatics/bty149>.

765 de Jong AW, Al-Obaid K, Mohd Tap R, Gerrits van den Ende B, Groenewald M, Joseph L, Ahmad S,
766 Hagen F. *Candida khanbhai* sp. nov., a new clinically relevant yeast within the *Candida*
767 *haemulonii* species complex. *Med Mycol*. 2023;61:myad009.
768 <https://doi.org/10.1093/mmy/myad009>.

769 de Jong AW, Francisco EC, de Almeida JN, Brandão IB, Pereira FM, Dias PHP, de Miranda Costa
770 MM, de Souza Jordão RT, Vu D, Colombo AL, Hagen F. Nanopore genome sequencing and
771 variant analysis of the susceptible *Candida auris* strain L1537/2020, Salvador, Brazil.
772 *Mycopathologia*. 2021;186:883–7. <https://doi.org/10.1007/s11046-021-00593-7>.

773 de Jong AW, Hagen F. Attack, Defend and persist: How the fungal pathogen *Candida auris* was able
774 to emerge globally in healthcare environments. *Mycopathologia*. 2019;184:353–65.
775 <https://doi.org/10.1007/s11046-019-00351-w>.

776 de Jong AW, van Veldhuizen D, Groot AT, Hagen F. Standardized methods to rear high-quality
777 Galleria mellonella larvae for the study of fungal pathogens. Entomol Exp Appl. 2022;170:1073–
778 80. <https://doi.org/10.1111/eea.13237>.

779 Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis.
780 2024;S1473-3099(23)00692-8. [https://doi.org/10.1016/S1473-3099\(23\)00692-8](https://doi.org/10.1016/S1473-3099(23)00692-8).

781 Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics.
782 Genome Biol. 2019;20:238. <https://doi.org/10.1186/s13059-019-1832-y>.

783 Escandón P. Novel environmental niches for *Candida auris*: Isolation from a coastal habitat in
784 Colombia. J Fungi. 2022;8:748. <https://doi.org/10.3390/jof8070748>.

785 Fakhim H, Vaezi A, Dannaoui E, Chowdhary A, Nasiry D, Faeli L, Meis JF, Badali H. Comparative
786 virulence of *Candida auris* with *Candida haemulonii*, *Candida glabrata* and *Candida albicans* in
787 a murine model. Mycoses. 2018;61:377–82. <https://doi.org/10.1111/myc.12754>.

788 Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs
789 challenges human health and food security. Science. 2018;360:739–42.
790 <https://doi.org/10.1126/science.aap7999>.

791 Forgács L, Borman AM, Prépost E, Tóth Z, Kardos G, Kovács R, Szekely A, Nagy F, Kovacs I,
792 Majoros L. Comparison of *in vivo* pathogenicity of four *Candida auris* clades in a neutropenic
793 bloodstream infection murine model. Emerg Microbes Infect. 2020;9:1160–9.
794 <https://doi.org/10.1080/22221751.2020.1771218>.

795 Francisco EC, de Jong AW, Colombo AL. *Candida haemulonii* species complex: A mini-review.
796 Mycopathologia. 2023;188:909–17. <https://doi.org/10.1007/s11046-023-00748-8>.

797 Fuchs BB, O'Brien E, El Khoury JB, Mylonakis E. Methods for using *Galleria mellonella* as a model
798 host to study fungal pathogenesis. Virulence. 2010;1:475–82.
799 <https://doi.org/10.4161/viru.1.6.12985>.

800 Gabaldón T, Naranjo-Ortíz MA, Marcet-Houben M. Evolutionary genomics of yeast pathogens in the
801 *Saccharomycotina*. FEMS Yeast Res. 2016;16:fow064. <https://doi.org/10.1093/femsyr/fow064>.

802 Gade L, Muñoz JF, Sheth M, Wagner D, Berkow EL, Forsberg K, Jackson BR, Ramos-Castro R,
803 Escandón P, Dolande M, Ben-Ami R, Espinosa-Bode A, Caceres DH, Lockhart SR, Cuomo CA,
804 Litvintseva AP. Understanding the emergence of multidrug-resistant *Candida*: Using whole-
805 genome sequencing to describe the population structure of *Candida haemulonii* species complex.
806 Front Genet. 2020;11:554. <https://doi.org/10.3389/fgene.2020.00554>.

807 Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals.
808 mBio. 2010;1:e00061-10. <https://doi.org/10.1128/mBio.00061-10>.

809 Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal
810 pathogens and future prospects for antifungal therapeutics: Drug-resistant fungal pathogens. Ann
811 N Y Acad Sci. 2019;1435:57–78. <https://doi.org/10.1111/nyas.13739>.

812 Gow NAR, Johnson C, Berman J, Coste AT, Cuomo CA, Perlin DS, Bicanic T, Harrison TS,
813 Wiederhold N, Bromley M, Chiller T, Edgar K. The importance of antimicrobial resistance in
814 medical mycology. Nat Commun. 2022;13:5352. <https://doi.org/10.1038/s41467-022-32249-5>.

815 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
816 assemblies. Bioinformatics. 2013;29:1072–5. <https://doi.org/10.1093/bioinformatics/btt086>.

817 Heaney H, Laing J, Paterson L, Walker AW, Gow NAR, Johnson EM, MacCallum DM, Brown AJP.
818 The environmental stress sensitivities of pathogenic *Candida* species, including *Candida auris*,
819 and implications for their spread in the hospital setting. *Med Mycol*. 2020;58:744–55.
820 <https://doi.org/10.1093/mmy/myz127>.

821 Holst F, Bolger A, Günther C, Maß J, Triesch S, Kindel F, et al. Helixer-de novo prediction of
822 primary eukaryotic gene models combining deep learning and a Hidden Markov Model. *bioRxiv*.
823 2023;p.2023.02.06.527280. <https://doi.org/10.1101/2023.02.06.527280>.

824 Horton MV, Johnson CJ, Kernien JF, Patel TD, Lam BC, Cheong JZA, Meudt JJ, Shanmuganayagam
825 D, Kalan LR, Nett JE. *Candida auris* forms high-burden biofilms in skin niche conditions and on
826 porcine skin. *mSphere*. 2020;5:10.1128/mSphere.00910-19.
827 <https://doi.org/10.1128/mSphere.00910-19>.

828 Irinyi L, Roper M, Malik R, Meyer W. Finding a needle in a haystack - In silico search for
829 environmental traces of *Candida auris*. *Jpn J Infect Dis*. 2022;75:490-495.
830 <https://doi.org/10.7883/yoken.JJID.2022.068>.

831 Ismail M, Srivastava V, Marimani M, Ahmad A. Carvacrol modulates the expression and activity of
832 antioxidant enzymes in *Candida auris*. *Res Microbiol*. 2022;173:103916.
833 <https://doi.org/10.1016/j.resmic.2021.103916>.

834 Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR, Welsh R, Vallabhaneni S, Chiller T.
835 On the origins of a species: What might explain the rise of *Candida auris*? *J Fungi*. 2019;5:58.
836 <https://doi.org/10.3390/jof5030058>.

837 Jose A, Coco BJ, Milligan S, Young B, Lappin DF, Bagg J, Murray C, Ramage G. Reducing the
838 incidence of denture stomatitis: Are denture cleansers sufficient?: Anti-biofilm activity of denture
839 cleansers. *J Prosthodont*. 2010;19:252–7. <https://doi.org/10.1111/j.1532-849X.2009.00561.x>.

840 Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, Meis JF, Chowdhary A. Multidrug-
841 resistant *Candida auris* misidentified as *Candida haemulonii*: Characterization by Matrix-Assisted
842 Laser Desorption Ionization–Time of Flight Mass Spectrometry and DNA sequencing and its
843 antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest
844 method. *J Clin Microbiol*. 2015;53:1823–30. <https://doi.org/10.1128/JCM.00367-15>.

845 Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Williams C, Ramage G.
846 Transcriptome assembly and profiling of *Candida auris* reveals novel insights into biofilm-
847 mediated resistance. *mSphere*. 2018;3:e00334-18. <https://doi.org/10.1128/mSphere.00334-18>.

848 Kim SH, Iyer KR, Pardeshi L, Muñoz JF, Robbins N, Cuomo CA, Wong KH, Cowen LE. Genetic
849 analysis of *Candida auris* implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in
850 azole resistance. *mBio*. 2019;10:e02529-18. <https://doi.org/10.1128/mBio.02529-18>.

851 Klaps J, de Vega C, Herrera CM, Junker RR, Lievens B, Álvarez-Pérez S. *Candida metrosideri* pro
852 tempore sp. nov. and *Candida ohialehuae* pro tempore sp. nov., two antifungal-resistant yeasts
853 associated with *Metrosideros polymorpha* flowers in Hawaii. *PLoS One*. 2020;15:e0240093.
854 <https://doi.org/10.1371/journal.pone.0240093>.

855 Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs.
856 *Nat Biotechnol*. 2019;37:540–6. <https://doi.org/10.1038/s41587-019-0072-8>.

857 Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and
858 maintenance of yeasts. *The Yeasts*. 2011;p. 87–110. <https://doi.org/10.1016/B978-0-444-52149-1.00007-0>.

860 Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating
861 average nucleotide identity. *Int J Syst Evol Microbiol*. 2016;66:1100–3.
862 <https://doi.org/10.1099/ijsem.0.000760>.

863 Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and
864 annotation. *Nucleic Acids Res*. 2021;49:W293–6. <https://doi.org/10.1093/nar/gkab301>.

865 Li J, Coste AT, Bachmann D, Sanglard D, Lamoth F. Deciphering the Mrr1/Mdr1 pathway in azole
866 resistance of *Candida auris*. *Antimicrob Agents Chemother*. 2022;66:e00067-22.
867 <https://doi.org/10.1128/aac.00067-22>.

868 Limtong S, Yongmanitchai W. *Candida chanthaburiensis* sp. nov., *Candida kungkraebaensis* sp. nov.
869 and *Candida suratensis* sp. nov., three novel yeast species from decaying plant materials
870 submerged in water of mangrove forests. *Antonie Van Leeuwenhoek*. 2010;98:379–88.
871 <https://doi.org/10.1007/s10482-010-9451-3>.

872 Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and
873 therapeutic prospects. *Nat Rev Immunol*. 2023;1–20. <https://doi.org/10.1038/s41577-022-00826-w>.

875 Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL,
876 Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar
877 RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP. Simultaneous emergence of multidrug-resistant
878 *Candida auris* on 3 continents confirmed by whole-genome sequencing and epidemiological
879 analyses. *Clin Infect Dis*. 2017;64:134–40. <https://doi.org/10.1093/cid/ciw691>.

880 Luo G, Samaranayake LP, Yau JYY. *Candida* species exhibit differential in vitro hemolytic activities.
881 *J Clin Microbiol*. 2001;39:2971–4. <https://doi.org/10.1128/JCM.39.8.2971-2974.2001>.

882 Misas E, Chow NA, Gómez OM, Muñoz JF, McEwen JG, Litvintseva AP, Clay OK. Mitochondrial
883 genome sequences of the emerging fungal pathogen *Candida auris*. *Front Microbiol*. 2020.
884 <https://doi.org/10.3389/fmicb.2020.560332>.

885 Moran GP, Coleman DC, Sullivan DJ. Comparative genomics and the evolution of pathogenicity in
886 human pathogenic fungi. *Eukaryot Cell*. 2011;10:34–42. <https://doi.org/10.1128/EC.00242-10>.

887 Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP,
888 Cuomo CA.. Genomic insights into multidrug-resistance, mating and virulence in *Candida auris*
889 and related emerging species. *Nat Commun*. 2018;9:5346. <https://doi.org/10.1038/s41467-018-07779-6>.

891 Muñoz JE, Ramirez LM, Dias L dos S, Rivas LA, Ramos LS, Santos ALS, Taborda CP, Parra-Giraldo
892 CM. Pathogenicity levels of Colombian strains of *Candida auris* and Brazilian strains of *Candida*
893 *haemulonii* species complex in both murine and *Galleria mellonella* experimental models. *J Fungi*.
894 2020;6:104. <https://doi.org/10.3390/jof6030104>.

895 Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Howard D, Rowe LA, Meis JF, Litvintseva AP,
896 Cuomo CA. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in
897 *Candida auris*. *Genetics*. 2021;218:iyab029. <https://doi.org/10.1093/genetics/iyab029>.

898 Naglik JR, Challacombe SJ, Hube B. *Candida albicans* Secreted Aspartyl Proteinases in virulence and
899 pathogenesis. *Microbiol Mol Biol Rev*. 2003;67:400–28. <https://doi.org/10.1128/MMBR.67.3.400-428.2003>.

901 Navarro-Muñoz JC, de Jong AW, Gerrits van den Ende B, Haas P-J, Then ER, Mohd Tap R,
902 Collemare J, Hagen F. The high-quality complete genome sequence of the opportunistic fungal

903 pathogen *Candida vulturena* CBS 14366T. *Mycopathologia*. 2019;184:731–4.
904 <https://doi.org/10.1007/s11046-019-00404-0>.

905 Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P,
906 Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo
907 CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu
908 CH, Bateman A. InterPro in 2022. *Nucleic Acids Res.* 2023;51(D1):D418-D427.
909 <https://doi.org/10.1093/nar/gkac993>.

910 Pendrak ML, Yan SS, Roberts DD. Sensing the host environment: recognition of hemoglobin by the
911 pathogenic yeast *Candida albicans*. *Arch Biochem Biophys*. 2004;426:148–56.
912 <https://doi.org/10.1016/j.abb.2004.02.006>.

913 Pereira TC, De Barros PP, Fugisaki LR de O, Rossoni RD, Ribeiro F de C, De Menezes RT,
914 Junqueira JC, Scorzoni L. Recent advances in the use of *Galleria mellonella* model to study immune
915 responses against human pathogens. *J Fungi*. 2018;4:128. <https://doi.org/10.3390/jof4040128>.

916 Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY
917 Antifungal Surveillance Program: Results for *Candida* species from 1997–2016. *Open Forum
918 Infect Dis*. 2019;6:S79–94. <https://doi.org/10.1093/ofid/ofy358>.

919 Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update.
920 *Nucleic Acids Res.* 2018;46:W200–4. <https://doi.org/10.1093/nar/gky448>.

921 Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in *Candida*
922 *albicans*. *Sabouraudia*. 1982;20:7–14. <https://doi.org/10.1080/00362178285380031>.

923 Ramage G, Vande Walle K, Wickes BL, López-Ribot JL. Standardized method for in vitro antifungal
924 susceptibility testing of *Candida albicans* biofilms. *Antimicrob Agents Chemother*. 2001;45:2475–
925 9. <https://doi.org/10.1128/AAC.45.9.2475-2479.2001>.

926 Rokas A. Evolution of the human pathogenic lifestyle in fungi. *Nat Microbiol*. 2022;7:607–19.
927 <https://doi.org/10.1038/s41564-022-01112-0>.

928 Rybak JM, Barker KS, Muñoz JF, Parker JE, Ahmad S, Mokaddas E, Abdullah A, Elhagracy RS,
929 Kelly SL, Cuomo CA, Rogers PD. *In vivo* emergence of high-level resistance during treatment
930 reveals the first identified mechanism of amphotericin B resistance in *Candida auris*. *Clin
931 Microbiol Infect*. 2022;28:838–43. <https://doi.org/10.1016/j.cmi.2021.11.024>.

932 Rybak JM, Cuomo CA, David Rogers P. The molecular and genetic basis of antifungal resistance in
933 the emerging fungal pathogen *Candida auris*. *Curr Opin Microbiol*. 2022;70:102208.
934 <https://doi.org/10.1016/j.mib.2022.102208>.

935 Rybak JM, Muñoz JF, Barker KS, Parker JE, Esquivel BD, Berkow EL, Lockhart SR, Gade L, Palmer
936 GE, White TC, Kelly SL, Cuomo CA, Rogers PD. Mutations in *TAC1B*: A novel genetic
937 determinant of clinical fluconazole resistance in *Candida auris*. *mBio*. 2020;11:e00365-20.
938 <https://doi.org/10.1128/mBio.00365-20>.

939 Saluja P, Prasad GS. *Candida ruelliae* sp. nov., a novel yeast species isolated from flowers of *Ruellia*
940 sp. (*Acanthaceae*). *FEMS Yeast Res*. 2008;8:660–6. <https://doi.org/10.1111/j.1567-1364.2008.00372.x>.

942 Sarawan S, Mahakhan P, Jindamorakot S, Vichitphan K, Vichitphan S, Sawaengkaew J. *Candida*
943 *konsanensis* sp. nov., a new yeast species isolated from *Jasminum adenophyllum* in Thailand with
944 potentially carboxymethyl cellulase-producing capability. *World J Microbiol Biotechnol*.
945 2013;29:1481–6. <https://doi.org/10.1007/s11274-013-1313-5>.

946 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome
947 assembly and annotation completeness with single-copy orthologs. *Bioinformatics*. 2015;31:3210–
948 2. <https://doi.org/10.1093/bioinformatics/btv351>.

949 Singh-Babak SD, Babak T, Fraser HB, Johnson AD. Lineage-specific selection and the evolution of
950 virulence in the *Candida* clade. *Proc Natl Acad Sci*. 2021;118:e2016818118.
951 <https://doi.org/10.1073/pnas.2016818118>.

952 Sipiczki M, Tap RM. *Candida vulturina* pro tempore sp. nov., a dimorphic yeast species related to the
953 *Candida haemulonis* species complex isolated from flowers and clinical sample. *Int J Syst Evol
954 Microbiol*. 2016;66:4009–15. <https://doi.org/10.1099/ijsem.0.001302>.

955 Slifkin M. Tween 80 opacity test responses of various *Candida* species. *J Clin Microbiol*.
956 2000;38:4626–8. <https://doi.org/10.1128/JCM.38.12.4626-4628.2000>.

957 Stavrou AA, Lackner M, Lass-Flörl C, Boekhout T. The changing spectrum of *Saccharomycotina*
958 yeasts causing candidemia: phylogeny mirrors antifungal susceptibility patterns for azole drugs
959 and amphotericin B. *FEMS Yeast Res*. 2019;19:foz037. <https://doi.org/10.1093/femsyr/foz037>.

960 Stop neglecting fungi. *Nat Microbiol*. 2017;2:1–2. <https://doi.org/10.1038/nmicrobiol.2017.120>.

961 Suphavilai C, Ko KKK, Lim KM, Tan MG, Boonsimma P, Keat Chu JJ, Goh SS, Rajandran P, Lee
962 LC, Tan KY, Ismail BBS, Aung MK, Yang Y, Sim JXY, Venkatachalam I, Cherng BPZ,
963 Spruijtenburg B, Chan KS, Oon LLE, Tan AL, Tan YE, Wijaya L, Tan BH, Ling ML, Koh TS,
964 Meis JF, Tsui CKM, Nagarajan N. Discovery of the sixth *Candida auris* clade in Singapore. 2023.
965 Available from: <http://medrxiv.org/lookup/doi/10.1101/2023.08.01.23293435>.

966 Wan L, Luo G, Lu H, Xuan D, Cao H, Zhang J. Changes in the hemolytic activity of *Candida* species
967 by common electrolytes. *BMC Microbiol*. 2015;15:171. <https://doi.org/10.1186/s12866-015-0504-7>.

969 Wang S-A, Jia J-H, Bai F-Y. *Candida alocasiicola* sp. nov., *Candida hainanensis* sp. nov., *Candida*
970 *heveicola* sp. nov. and *Candida musiphila* sp. nov., novel anamorphic, ascomycetous yeast species
971 isolated from plants. *Antonie Van Leeuwenhoek*. 2008;94:257–65. <https://doi.org/10.1007/s10482-008-9238-y>.

973 Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, et al. ABC
974 transporter genes show upregulated expression in drug-resistant clinical isolates of *Candida auris*:
975 A genome-wide characterization of ATP-binding cassette (ABC) transporter genes. *Front
976 Microbiol*. 2019;10:1445. <https://doi.org/10.3389/fmicb.2019.01445>.

977 Welsh RM, Sexton DJ, Forsberg K, Vallabhaneni S, Litvintseva A. Insights into the unique nature of
978 the East Asian Clade of the emerging pathogenic yeast *Candida auris*. *J Clin Microbiol*.
979 2019;57:e00007-19. <https://doi.org/0.1128/JCM.00007-19>.

980 Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore
981 sequencing. *Genome Biol*. 2019;20:129. <https://doi.org/10.1186/s13059-019-1727-y>.

982 World Health Organization. WHO fungal priority pathogens list to guide research, development and
983 public health action. Geneva: World Health Organization; 2022. Available from:
984 <https://apps.who.int/iris/handle/10665/363682>.

985 Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Bécavin C, Archambaud C, Cossart P, Sorek
986 R. Comparative transcriptomics of pathogenic and non-pathogenic *Listeria* species. *Mol Syst Biol*.
987 2012;8:583. <https://doi.org/10.1038/msb.2012.11>.

988 Zhu Y, Kilburn S, Kapoor M, Chaturvedi S, Shaw KJ, Chaturvedi V. In vitro activity of manogepix
989 against multidrug-resistant and panresistant *Candida auris* from the New York outbreak.
990 *Antimicrob Agents Chemother*. 2020;64:e01124-20. <https://doi.org/10.1128/AAC.01124-20>.
991

992 **Legends of Tables and Figures**

993

994 **Table 1. *Candida auris* and *C. haemulonii* species complex genome assembly statistics.**

995 Strains with a CBS number are deposited in the public CBS culture collection hosted by the
996 Westerdijk Fungal Biodiversity Institute (WI-KNAW; Utrecht, The Netherlands). Strains
997 with an AR-number are part of the CDC & FDA Antimicrobial Resistance (AR) Isolate Bank
998 (CDC, Atlanta, GA, USA). Additional information on each strain can be found in the CBS
999 strain database (<https://www.wi.knaw.nl/>) and the CDC database
1000 (<https://www.cdc.gov/arisolatebank/>). All assemblies reported in this study are deposited in
1001 the NCBI GenBank Database; Bioproject number: PRJNA1002224, PRJNA1003053 and
1002 PRJNA1050609. See supplementary Data 1 for extra information on genome assembly
1003 statistics. **T** indicates the type-strain of the species.

1004

1005 **Table 2. Antifungal susceptibility profiles of *Candida auris* and the *Candida haemulonii***
1006 **complex.** a: Minimum inhibitory concentration (MIC) to Amphotericin B (AMB),
1007 fluconazole (FLU), itraconazole (ITR), posaconazole (POS), voriconazole (VOR),
1008 isavuconazole (ISA), anidulafungin (AND), and micafungin (MCF); b: Growth only after 48
1009 hours - as described by Cendejas-Bueno et al. (2012). Rose highlighted cells indicate MIC
1010 values above the tentative breakpoints for *C. auris* (CDC, 2018).

1011

1012 **Figure 1. Annotated phylogeny of *C. auris* and the *C. haemulonii* complex.** Phylogenetic
1013 species tree inferred by OrthoFinder using tree inference from all genes (STAG) of 30
1014 annotated genomes including *C. auris* Clades I-V, *C. haemulonii* complex species and the
1015 distantly related species *C. albicans* and *N. glabratus*. support values at each node represent
1016 the proportion of gene-trees in which the same bipartition is found. Branch lengths indicate
1017 the mean number of changes per site. The background is color coded per identified sub-clade.
1018 Species names are color-coded, red refers to a clinical origin, brown to a veterinary origin,
1019 and blue to an environmental origin. Gene count of virulence related gene families is grouped
1020 per virulence trait and visualized next to the phylogenetic tree together with the related
1021 phenotypic data using iTOL (Letunic et al., 2021). The size of each dot represents gene
1022 family expansions or contractions and increased or decreased expression of the related
1023 phenotypes. Dots are color coded to match Gene families to their respective phenotypic test.

1024 Gene names and orthologues in *C. auris* used for the gene content analysis of each virulence
1025 trait can be found in Supplementary Data 2. Absolute values and more details about each
1026 phenotypic test can be found in the Materials and Methods and Supplementary Data 4.

1027

1028 **Figure 2. The virulence of *C. auris* and its relatives of the *C. haemulonii* complex in**
1029 ***Galleria mellonella* larvae at 37 °C.** Kaplan–Meier survival plots of *Galleria mellonella*
1030 injection with 10⁶ CFU/larva of the indicated *Candida* species, organized by their sub-clade;
1031 *C. auris* (A), ‘haemulonii’ (B), ‘haemulonii I’ (C), and the ‘haemulonii II’ (D) are shown.
1032 Equivalent plots obtained with phosphate-buffered saline injected larvae (PBS) and
1033 untouched larvae are included in all four panels as controls. Per strain 15 larvae were
1034 inoculated. Experiments were performed in triplicate; plots represent the combined (additive)
1035 data from all experiments (n = 45). Statistical comparison of each survival curve (pairwise
1036 Log-rank test: P<0.05; ns, P>0.05) can be found in Supplementary Data 5. **C. albicans* (CBS
1037 562) was added as a reference strain to the *C. auris*-clade plot and *C. ruelliae* (CBS 10815)
1038 was added to the haemulonii-clade plot for comparison.

1039

1040 **Supplementary Data 1.** Genome assembly statistics and orthogroup analysis of *C. auris* and
1041 the *C. haemulonii* species complex.

1042 **Supplementary Data 2.** Gene copy number variation and conservation analysis of genes
1043 associated with drug resistance and virulence in *C. auris* and the *C. haemulonii* species
1044 complex.

1045 **Supplementary Data 3.** Observed amino acid substitutions in *C. auris* compared with *C.*
1046 *auris* strains used in this study and strains of the *C. haemulonii* species complex after
1047 multiple alignment of the drug resistance genes *ERG11*, *FKS1*, *TAC1B*, *UPC2*, *FUR1*, *CIS2*,
1048 *MEC3*, *MRR1*, *ERG3*, *ERG6*, and *FUR1*.

1049 **Supplementary Data 4.** Phenotypic characterization of *C. auris* Clade I–V strains and close
1050 relatives of the *C. haemulonii* complex, together with reference strains *C. albicans* CBS 562
1051 and *N. glabratus* CBS 138 for comparison.

1052 **Supplementary Data 5.** Statistical analyses of species-specific differences in pathogenicity
1053 in the *G. mellonella* fungal infection model.

Table 1. *Candida auris* and *Candida haemulonii* species complex genome assembly statistics

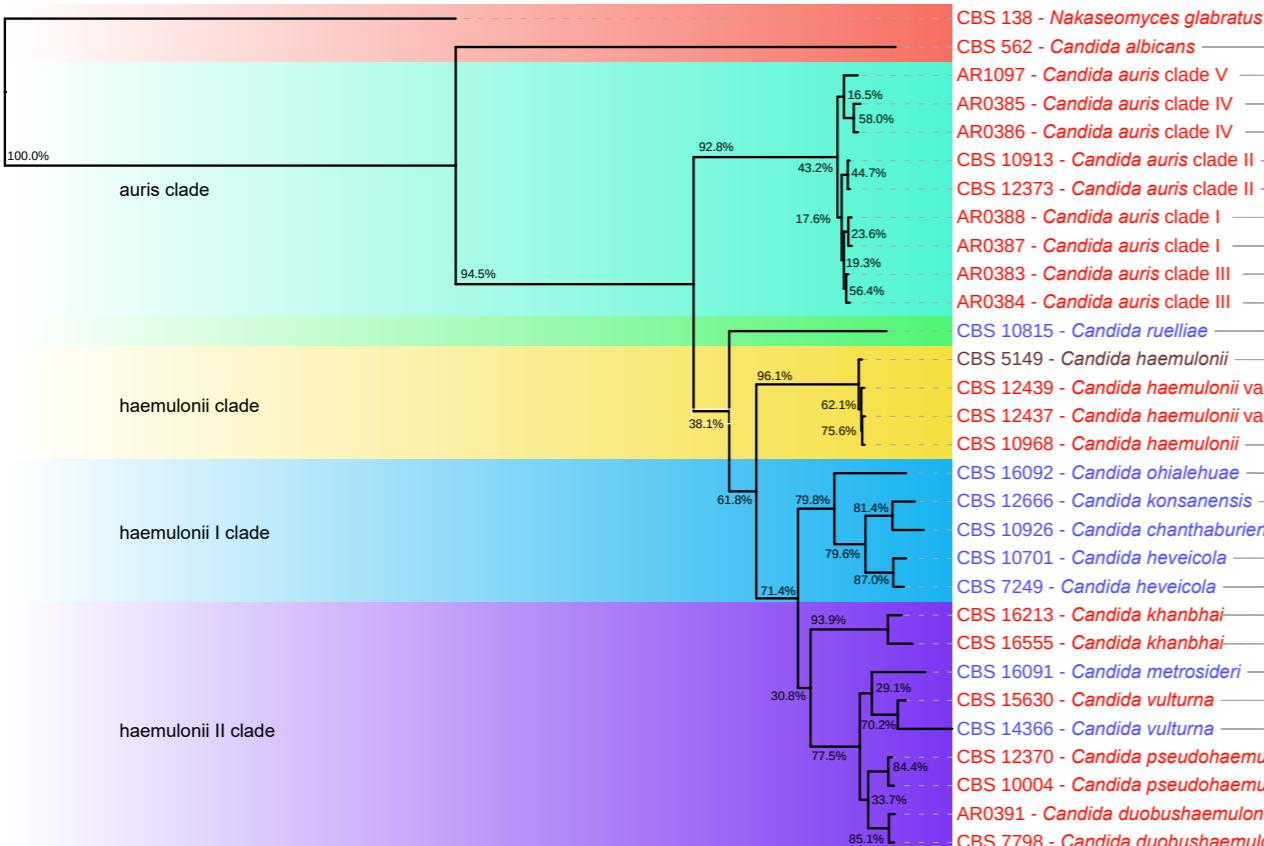
Strain	Species	origin	Assembly size (Mb)	Contigs	Genes	BUSCO Scores: Complete single-copy (C), Complete & Duplicated (D), Fragmented (F), Missing (M)			
						C	D	F	M
AR0387	<i>Candida auris</i> clade I	Clinical, Pakistan	12.43	8	5757	96.54	0.19	1.73	1.73
AR0388	<i>Candida auris</i> clade I	Clinical, Pakistan	12.38	9	5749	96.72	0.19	1.64	1.64
CBS 10913 T	<i>Candida auris</i> clade II	Clinical, Japan	12.27	9	5630	97.24	1.45	1.26	1.50
CBS 12373	<i>Candida auris</i> clade II	Clinical, Korea	12.13	10	5629	97.33	0.19	1.08	1.59
AR0383	<i>Candida auris</i> clade III	Clinical, South Africa	12.52	8	5711	96.91	0.19	1.03	2.06
AR0384	<i>Candida auris</i> clade III	Clinical, South Africa	12.37	11	5744	96.58	0.19	1.54	1.87
AR0385	<i>Candida auris</i> clade IV	Clinical, Venezuela	12.71	10	5886	94.85	0.80	2.39	2.76
AR0386	<i>Candida auris</i> clade IV	Clinical, Venezuela	12.43	11	5788	96.21	0.14	1.78	2.01
AR1097	<i>Candida auris</i> clade V	Clinical, Iran	12.49	9	5758	96.35	0.14	1.73	1.92
CBS 10968	<i>Candida haemulonii</i>	Clinical, Kuwait	13.54	8	5958	97.75	0.05	0.84	1.40
CBS 5149 T	<i>Candida haemulonii</i>	Animal, USA	13.39	8	5965	97.85	0.05	0.94	1.22
CBS 12437	<i>Candida haemulonii</i> var. <i>vulnera</i>	Clinical, Spain	13.61	11	6002	97.47	0.09	1.08	1.45
CBS 12439 T	<i>Candida haemulonii</i> var. <i>vulnera</i>	Clinical, Spain	13.41	8	5991	97.24	0.05	1.26	1.50
CBS 10926 T	<i>Candida chanthaburiensis</i>	Environmental, Thailand	13.13	9	5738	94.10	0.19	2.25	3.65
CBS 10701 T	<i>Candida heveicola</i>	Environmental, China	13.07	8	5781	95.69	0.19	1.97	2.34
CBS 7249	<i>Candida heveicola</i>	Environmental, South Africa	13.22	10	5764	96.68	0.23	1.26	2.06
CBS 12666 T	<i>Candida konsanensis</i>	Environmental, Thailand	13.13	10	5710	95.84	0.14	1.59	2.57
CBS 16092 T	<i>Candida ohialehuiae</i>	Environmental, USA	13.30	8	5775	94.10	0.14	2.53	3.37
AR0391	<i>Candida duobushaemulonii</i>	Clinical, USA	12.75	8	5896	96.72	0.09	1.26	2.01
CBS 7798 T	<i>Candida duobushaemulonii</i>	Clinical, USA	12.70	9	5902	97.01	0.19	0.80	2.20
CBS 16213 T	<i>Candida khanbhai</i>	Clinical, Kuwait	12.47	11	5666	95.74	0.61	1.40	2.85
CBS 16555	<i>Candida khanbhai</i>	Clinical, Malaysia	12.46	10	5733	94.06	1.03	2.53	3.42
CBS 16091 T	<i>Candida metrosideri</i>	Environmental, USA	13.15	17	5839	93.68	0.19	2.39	3.93
CBS 10004 T	<i>Candida pseudohaemulonii</i>	Clinical, Thailand	12.86	9	5892	96.40	0.23	1.08	2.53
CBS 12370	<i>Candida pseudohaemulonii</i>	Clinical, Korea	12.87	8	5898	97.19	0.14	0.94	1.87
CBS 14366 T	<i>Candida vulturena</i>	Environmental, Philippines	12.83	11	6174	87.08	0.19	6.41	6.50
CBS 15630	<i>Candida vulturena</i>	Clinical, Malaysia	12.91	8	5948	96.26	0.14	1.26	2.48
CBS 10815 T	<i>Candida ruelliae</i>	Environmental, India	13.54	9	5895	96.86	0.09	1.26	1.87
CBS 562 T	<i>Candida albicans</i>	Clinical, Uruguay	14.66	30	6183	98.18	1.12	1.17	0.66
CBS 138 T	<i>Nakaseomyces glabrata</i>	Clinical, Unknown	10.95	13	4560	85.25	0.65	0.37	14.36

Strains with a CBS number are deposited in the public CBS culture collection hosted by the Westerdijk Fungal Biodiversity Institute (WI-KNAW; Utrecht, The Netherlands). Strains with an AR-number are part of the CDC & FDA Antimicrobial Resistance (AR) Isolate Bank (CDC, Atlanta, GA, USA). Additional information on each strain can be found in the CBS strain database (<https://www.wi.knaw.nl/>) and the CDC database (<https://www.cdc.gov/arisolatbank/>). See supplementary Data 1 for extra information on genome assembly statistics. T indicates the type strain of the species.

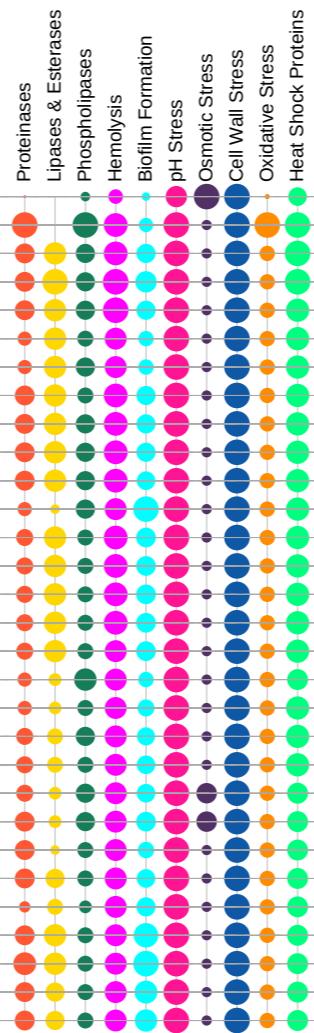
Table 2. Antifungal susceptibility profiles of *Candida auris* and the *Candida haemulonii* complex

Sub-clade	Strain	MIC (μ g/mL) ^a															
		AMB ^d		FLU ^d		ITR		POS		VOR		ISA		AND ^d			
		24h	48h	24h	48h	24h	48h	24h	48h	24h	48h	24h	48h	24h	48h		
ruelliae	CBS 10815	1	2	16	32	0.063	0.25	0.016	0.063	0.016	0.031	0.016	0.063	0.5	4	0.125	0.25
haemulonii	CBS 10968	2	2	8	>64	4	>4	4	>4	>4	>4	2	>4	0.063	0.063	0.063	0.063
	CBS 5149 ^c	N/A	1	N/A	16	N/A	4	N/A	0.125	N/A	4	N/A	>4	N/A	0.031	N/A	0.063
	CBS 12437 ^c	N/A	1	N/A	>64	N/A	0.5	N/A	2	N/A	>4	N/A	>4	N/A	0.063	N/A	0.063
	CBS 12439 ^c	N/A	1	N/A	>64	N/A	0.5	N/A	4	N/A	>4	N/A	>4	N/A	>4	N/A	0.125
haemulonii I	CBS 16092 ^b	N/A	>8	N/A	4	N/A	0.06	N/A	0.03	N/A	0.06	N/A	N/A	N/A	1	N/A	0.5
	CBS 12666	1	2	32	>64	0.031	0.063	<0.125	0.031	0.031	0.063	0.031	0.031	0.125	0.125	0.031	0.031
	CBS 10926	1	2	32	>64	0.063	0.063	2	>4	0.031	0.063	0.5	4	0.125	0.125	0.031	0.031
	CBS 7249	1	2	32	>64	>4	>4	0.25	>4	>4	>4	0.125	>4	0.063	0.063	0.063	0.063
	CBS 10701	2	2	32	64	0.125	0.125	0.031	0.031	0.031	0.063	0.063	0.0125	0.125	0.125	0.031	0.063
haemulonii II	CBS 16555	2	2	32	>64	0.25	>4	0.125	>4	0.125	>4	0.063	>4	0.125	4	0.063	0.125
	CBS 16213	2	2	32	>64	>4	>4	>4	>4	>4	>4	>4	>4	0.25	4	0.063	0.125
	CBS 10004	1	2	16	16	0.031	0.063	<0.008	0.016	0.031	0.063	0.016	0.125	4	4	0.25	0.25
	CBS 12370	1	2	32	>64	0.031	0.063	0.031	0.031	0.031	0.063	0.125	0.125	0.125	0.25	0.063	0.063
	CBS 16091 ^b	N/A	4	N/A	2	N/A	0.06	N/A	0.03	N/A	0.03	N/A	N/A	N/A	0.25	N/A	0.06
	CBS 14366	0.25	0.5	>64	>64	4	>4	<0.125	>4	0.031	>4	0.016	>4	0.125	0.125	0.063	0.063
	CBS 15630	1	2	>64	>64	>4	>4	>4	>4	>4	>4	>4	>4	0.125	0.25	0.063	0.06
	CBS 16530	1	2	>32	>64	>4	>4	>4	>4	>4	>4	>4	>4	2	>4	0.063	0.125
	CBS 7798	4	4	>64	>64	>4	>4	0.5	>4	>4	>4	4	>4	1	2	0.125	0.125
auris	AR0383	0.25	1	>64	>64	>4	>4	>4	>4	>4	>4	>4	>4	0.125	>4	0.5	>4
	AR0384	0.5	1	>64	>64	>4	>4	>4	>4	>4	>4	>4	>4	0.125	>4	0.5	>4
	AR0385	1	1	>32	>64	0.5	0.5	0.25	0.25	>4	>4	4	4	2	2	0.5	1
	AR0386	1	1	>32	>64	0.5	0.5	0.125	0.125	>4	>4	4	4	1	2	0.25	1
	AR0387	1	1	32	>64	0.063	>4	0.016	4	0.063	>4	0.016	>4	1	2	0.125	0.25
	AR0388	1	2	>32	>64	0.5	0.5	0.25	0.25	>4	>4	2	2	2	>4	0.25	1
	CBS 10913	0.5	1	16	32	0.031	0.063	<0.008	0.016	0.016	0.031	<0.008	0.016	0.031	0.031	0.031	0.031
	CBS 12373	0.5	1	>32	>64	0.25	0.25	0.125	0.25	0.5	4	1	2	0.063	1	0.063	0.125
	AR1097	1	1	>32	>64	0.5	0.5	0.25	0.25	1	4	1	4	0.125	1	0.125	>4

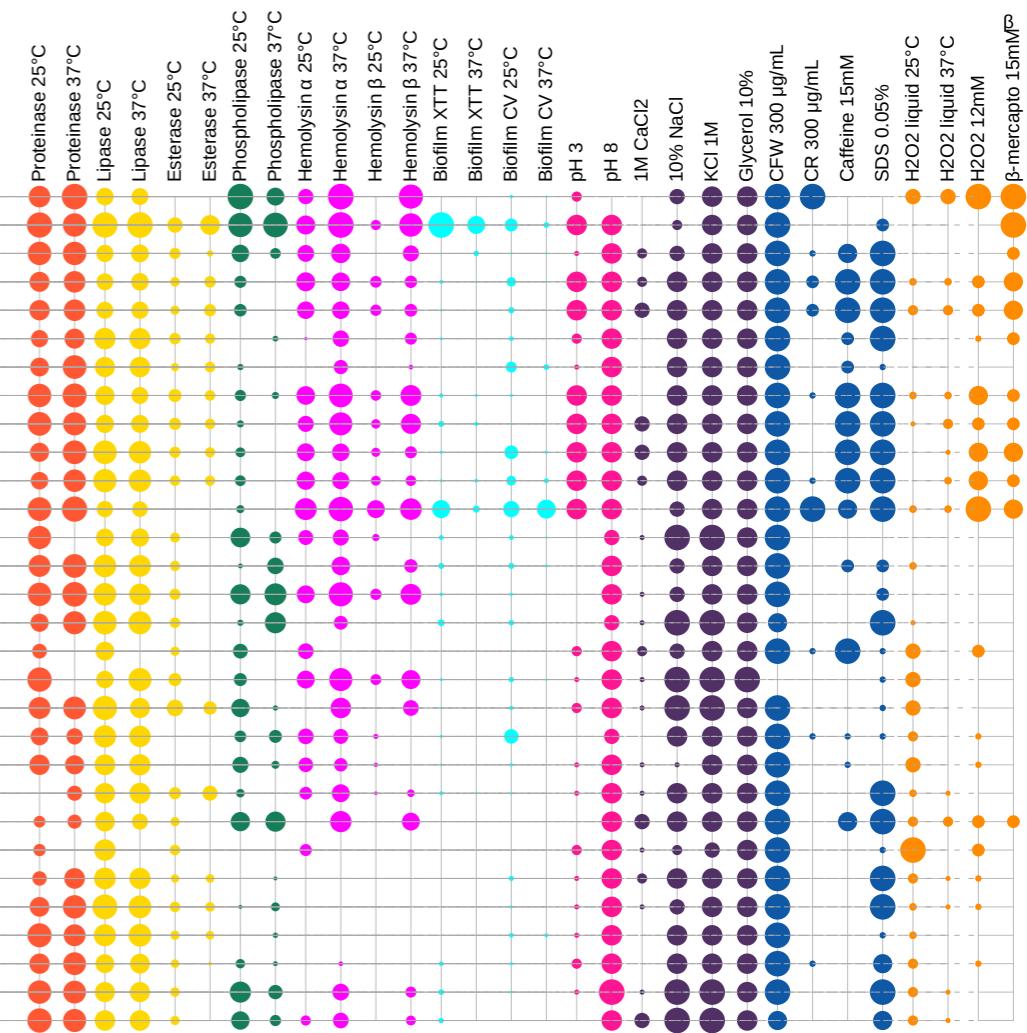
^a Minimum inhibitory concentration (MIC) to: Amphotericin B (AMB), fluconazole (FLU), itraconazole (ITR), posaconazole (POS), voriconazole (VOR), isavuconazole (ISA), anidulafungin (AND), and micafungin (MCF).

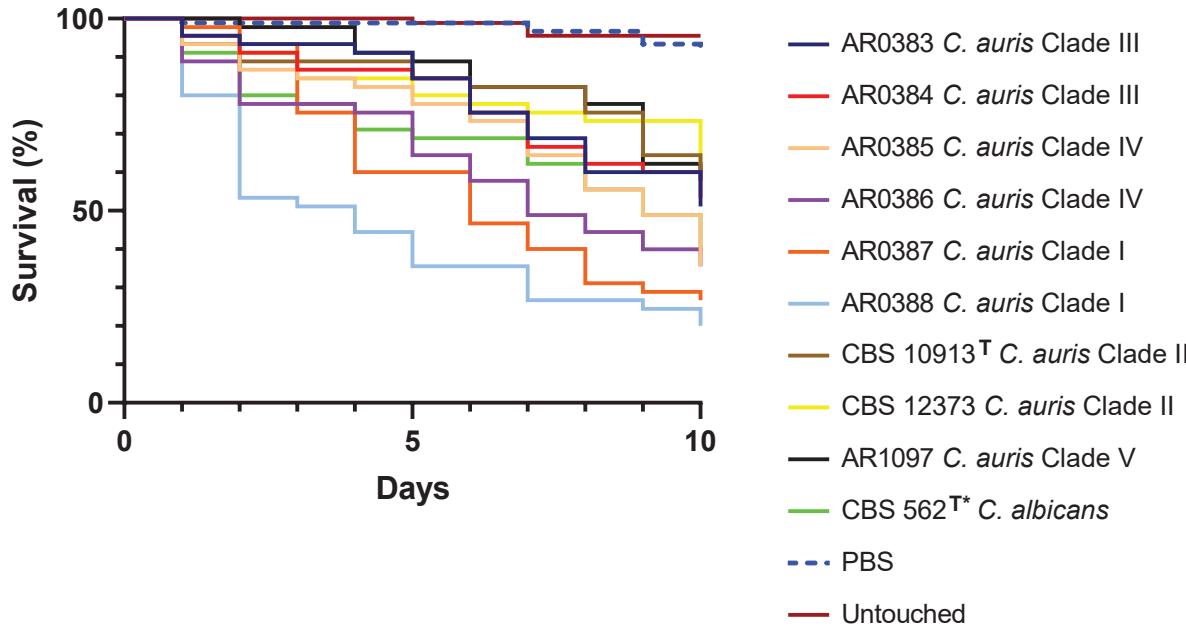

^b Growth only after 48 hours - as described by Cendejas-Bueno et al. (2012).

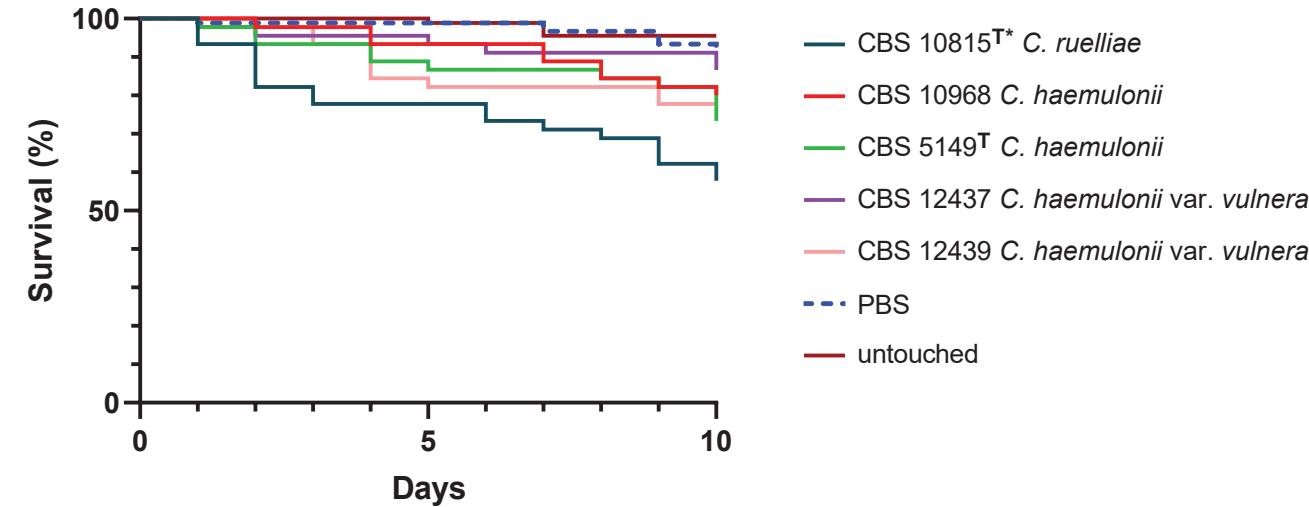
^c CBS 16091 and CBS 16092 maximum growth temperature is 30°C - therefore data retrieved from original article by Klaps et al. (2020).

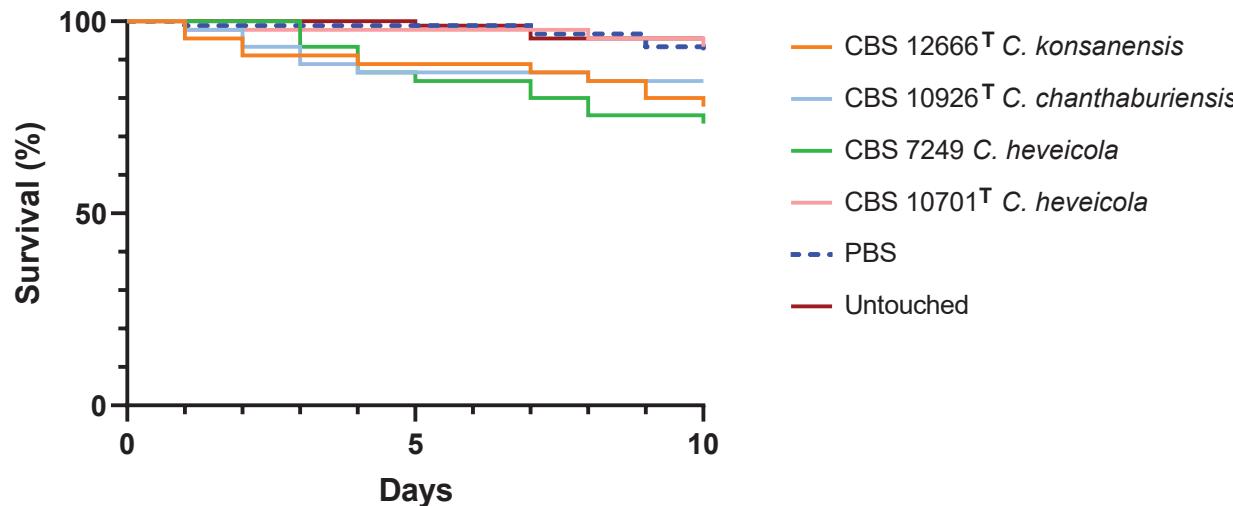

^d Pink highlighted cells indicate strains with MIC values above tentative breakpoints for *C. auris* (CDC, Atlanta, GA, USA): AMB \geq 2 μ g/mL, FLU \geq 32 μ g/mL, AND \geq 4 μ g/mL, and MCF \geq 4 μ g/mL.

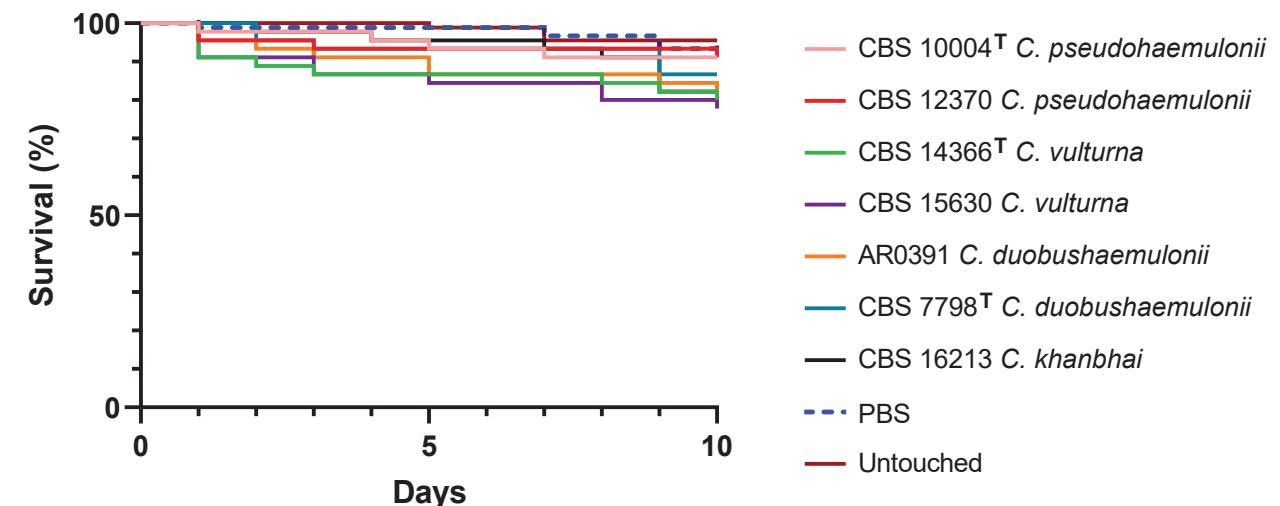
Phylogeny


Tree scale: 0.1


Gene count


Phenotypic data


'auris'-clade


'haemulonii'-clade

'haemulonii I'-clade

'haemulonii II'-clade

