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Abstract.13

Significance: Voltage imaging is a powerful tool for studying the dynamics of neuronal activities in the brain. How-14

ever, voltage imaging data are fundamentally corrupted by severe Poisson noise in the low-photon regime, which15

hinders the accurate extraction of neuronal activities. Self-supervised deep learning denoising methods have shown16

great potential in addressing the challenges in low-photon voltage imaging without the need for ground truth, but17

usually suffer from the tradeoff between spatial and temporal performance.18

Aim: We present DeepVID v2, a novel self-supervised denoising framework with decoupled spatial and temporal19

enhancement capability to significantly augment low-photon voltage imaging.20

Approach: DeepVID v2 is built on our original DeepVID framework,1, 2 which performs frame-based denoising by21

utilizing a sequence of frames around the central frame targeted for denoising to leverage temporal information and22

ensure consistency. The network further integrates multiple blind pixels in the central frame to enrich the learning of23

local spatial information. Additionally, DeepVID v2 introduces a new edge extraction branch to capture fine structural24

details in order to learn high spatial resolution information.25

Results: We demonstrate that DeepVID v2 is able to overcome the tradeoff between spatial and temporal performance,26

and achieve superior denoising capability in resolving both high-resolution spatial structures and rapid temporal neu-27

ronal activities. We further show that DeepVID v2 is able to generalize to different imaging conditions, including28

time-series measurements with various signal-to-noise ratios (SNRs) and in extreme low-photon conditions.29

Conclusions: Our results underscore DeepVID v2 as a promising tool for enhancing voltage imaging. This framework30

has the potential to generalize to other low-photon imaging modalities and greatly facilitate the study of neuronal31

activities in the brain.32

Keywords: deep learning, self-supervised denoising, voltage imaging, low photon, microscopy.33
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1 Introduction35

Voltage imaging is a powerful tool for studying the dynamics of neuronal activities in the brain. It36

enables the visualization of the spatiotemporal patterns of membrane potential changes in neurons,37

which is critical for understanding the underlying mechanisms of brain functions.3, 4 Recently,38

two-photon imaging has also been adapted for voltage imaging, as it provides high spatial resolu-39

tion and deep tissue penetration.1, 5, 6 However, voltage imaging data is often corrupted by strong40

noise, which hinders the accurate extraction of neuronal activities. The noise in voltage imaging41

data is mainly attributed to the low photon count of the fluorescence signal, which is further exac-42

erbated by the high-speed acquisition required for capturing fast neuronal activities. The noise in43
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voltage imaging data is often non-Gaussian and dominated by Poisson distribution, which poses a44

significant challenge for denoising.745

Deep learning-based denoising methods have shown great potential in addressing the chal-46

lenges of denoising voltage imaging data. These methods have demonstrated superior performance47

in denoising various types of microscopy data, including fluorescence microscopy,8 light-sheet mi-48

croscopy,9 and two-photon microscopy.10 However, in realistic denoising applications, the ground-49

truth high signal-to-noise ratio (SNR) measurements are often not available, which makes super-50

vised learning-based methods less practical. In contrast, self-supervised learning-based methods51

have emerged as a promising alternative for denoising calcium or voltage imaging data, such as52

Noise2Void,11 Deep Interpolation,12 DeepVID,1, 2 DeepCAD (and DeepCAD-RT),13, 14 and SUP-53

PORT.15 These self-supervised learning frameworks leverage the inherent spatial and/or temporal54

structure within the data, learning meaningful latent representations to perform denoising. With55

specifically designed tasks and loss functions, these models are adept at predicting a subset of data56

using the rest, bypassing the need for explicit supervision from ground truth labels. This adapt-57

ability underscores their potential for robust denoising performance in applications with limited58

high-SNR data availability.59

In voltage imaging, achieving high spatial resolution is essential for accurately resolving fine60

neuronal structures, while superior temporal resolution is crucial for capturing the rapid dynamics61

of neuronal activities. Traditional deep learning-based methods for denoising voltage imaging data62

often face a significant trade-off between spatial and temporal resolution. Existing self-supervised63

learning frameworks typically require a large number of input frames,12, 14 which leads to over-64

smoothed temporal traces and poor temporal resolution, or they use too few frames, resulting in65

low spatial resolution.1, 15 Therefore, there is an unmet need for an advanced self-supervised de-66

noising framework that can effectively decouple the spatial and temporal performance, and achieve67

superior denoising capability in resolving both fine spatial structures and rapid temporal dynamics.68

In this work, we present DeepVID v2, a self-supervised denoising framework with decoupled69

spatiotemporal enhancement for low-photon voltage imaging. In our previous work,1 we intro-70

duced DeepVID, which performs frame-based voltage imaging denoising by utilizing a sequence71

of frames around the target frame. This leverages temporal information while ensuring reconstruc-72

tion consistency. The network also integrates multiple blind pixels in the target frame to enrich73

learning the local spatial information. To further enhance the spatial performance, DeepVID v274

presents a novel method to preserve sharp edge information inherent in the raw data. Prior studies75

have demonstrated the effectiveness of utilizing edge information to improve the spatial resolution76

of denoised images.16–18 Here, by integrating an additional edge extraction branch into the Deep-77

VID network (Fig. 1), DeepVID v2 significantly enhances the spatial resolution and integrity of78

the neuronal structures in the denoised images.79

Critically, DeepVID v2 achieves the decoupling of spatial and temporal performance by intro-80

ducing two adjustable parameters: the number of input frames, N , and the number of frames used81

for edge extraction, M . This dual-parameter strategy enables precise fine-tuning of the denoising82

process, allowing for optimal resolution of both spatial structures and temporal activities, thereby83

overcoming the limitations observed in previous models.84

We demonstrate that DeepVID v2 achieves superior spatial and temporal denoising perfor-85

mance under diverse imaging conditions, including various SNRs and in extreme low-photon sce-86

narios. Our results indicate that DeepVID v2 is a promising tool for denoising in vivo voltage87

imaging data, and has the potential to facilitate the study of neuronal activities in the brain.88
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Fig 1 Block diagram of DeepVID v2. DeepVID v2 is composed of two main components: a main branch for denoising
(bottom) and a side branch for edge extraction (top). Components adapted from our original DeepVID network are
represented in the blue-shaded area.

2 Methods89

2.1 Voltage Imaging Data Collection90

The data used in this study are two-photon voltage imaging image series collected from the SMURF91

microscope in our previous study.1 Spatial and temporal beam multiplexing along with a multian-92

ode photomultiplier tube (MAPMT) were used in the SMURF microscope setup. This configura-93

tion is engineered to maximize the effective repetition rate of pulsed lasers with minimal crosstalk94

on MAPMT, therefore enabling high-speed low-light imaging across a wide field of view (FOV).95

To measure the sensory-evoked neuronal responses, voltage imaging was performed at a sampling96

rate of 803 Hz in the primary somatosensory cortex (S1) from awake, head-fixed mice. Whisker97

stimulation was delivered as air puffs to the whisker pad at 10-Hz stimulus frequency in one- or98

five-puff trains, with 4-s intervals. The captured voltage imaging images contain 400 × 192 pixels99

in total concatenated from 8 strips (400 × 24 pixels per strip), with a pixel size of 1.0 µm along100

the x-axis and 2.1 µm along the y-axis.101

2.2 DeepVID v2 Framework102

The system diagram of DeepVID v2 is illustrated in Fig. 1. DeepVID v2 performs denoising on 3D103

(2D space + 1D time) image stacks on a frame-by-frame basis. The network is composed of two104

main components: a main branch for denoising similar to our previously developed DeepVID,1 and105

a side branch for edge extraction. DeepVID v2 utilizes both the spatial and temporal information106

in the raw data, as well as edge information from the side branch, to perform denoising. The neural107
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network in the main branch is composed of four residual blocks, each containing two convolutional108

layers with batch normalization layers, followed by a PReLU activation layer attached after the first109

convolution layer. A skip connection is added between the input and output for each residual block.110

Given a frame to be denoised, the side branch first takes a M = 2M0 + 1 image series as the111

input, from M0 frames before to M0 frames after the central frame, to calculate a local mean frame,112

resulting in an improved spatial representation than any raw single frame. A Gaussian blur filter113

is then applied to the mean frame to remove residual noise, followed by four Sobel filters from114

0◦, 45◦, 90◦, 135◦ to extract the edge information along different directions. The outputs from the115

Sobel filters are then treated as four additional input channels to the main branch.116

In addition to the four edge channels, the main branch takes another N = 2N0+1 image series117

as the input, consisting of N0 frames before and N0 frames after the central frame, as well as the118

degraded central frame to perform denoising. A random set of pixels are set as blind pixels in119

the degraded central frame with a ratio of pblind, whose intensities are replaced by random values120

sampled from the pixel intensities within the frame. These blind pixels are used to guide the121

network to learn the spatial and temporal information in the raw data, and to prevent the network122

from simply replicating the input to the output.1123

The loss function is the mean squared error (MSE) computed between the output denoised124

image and the input noisy image, calculated only at the locations of the blind pixels. In this study,125

parameters are optimized to achieve the best spatial and temporal performance at the same time,126

using 7 frames as N , all available frames as M , and pblind = 0.5%. The training dataset comprises127

1,181 videos, with each video containing 1,000 frames captured at a rate of 803 Hz. The training128

utilizes the Adam optimizer with a configuration of 360 steps per epoch and a batch size of four.129

To avoid overfitting, the training stopped after iterating through the entire dataset three times. The130

initial learning rate is set to 5× 10−6, then halved if the loss on the validation set plateaus over the131

last 288,000 samples, until it reaches the minimum learning rate of 1× 10−7.132

2.3 Spike Detection133

Spike Detection is performed to infer evoked potentials from the extracted time traces. Time traces134

are first normalized by the mean and standard deviation of the entire time trace. For each stimulus,135

spikes are detected in a window from 0 s to 0.1 s after the stimulus onset, using a threshold of 3136

and a minimum distance of 0.1 s between spikes. The full width at half maximum (FWHM) of137

the detected spikes is calculated as the time difference between the two points where the intensity138

reached half of the peak value. Only spikes with an FWHM falling within 3 standard deviations139

are retained. The number of detected spikes and the FWHM of these spikes are used to evaluate140

the temporal performance of the denoised videos.141

2.4 Performance Metrics142

The performance of DeepVID v2 is evaluated using a variety of metrics. Pearson Correlation Coef-143

ficient (PCC) is used to evaluate the spatial and temporal performance of DeepVID v2. The spatial144

PCC is determined by comparing the pixel-wise correlation between the reference frame and ei-145

ther the raw or DeepVID v2 denoised frame. The temporal average frame serves as the reference146

frame for calculating spatial PCC. Temporal PCC is computed by comparing the correlation of147

the reference time traces with the raw or DeepVID v2 denoised time traces. The reference time148

traces are obtained by employing a 7-frame moving average of the raw traces, which uses the same149
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number of input frames as in DeepVID v2. The temporal Signal-to-Noise Ratio (SNR) is also used150

to evaluate the temporal performance, defined as the ratio of the mean to the standard deviation of151

the time trace.152

2.5 Dataset Division based on Temporal SNR153

The dataset is divided into three subsets representing low, medium, and high SNR, respectively.154

The averaged temporal SNR of each FOV is obtained by averaging the temporal SNR calculated155

from each ROI trace for all the ROIs in the FOV. The FOVs are then sorted by the averaged156

temporal SNR. The bottom 1/3, middle 1/3, and top 1/3 are grouped as the low, medium, and high157

SNR subsets, respectively.158

2.6 Simulation of Videos in Lower-photon Regimes159

In low-photon regimes, the signal is dominated by Poisson noise, in which the variance is propor-160

tional to the mean intensity. This feature is verified in our dataset by calculating the mean and161

variance of each single-pixel time trace (Fig. 2c). The ratio of this linear correlation, β, reflects162

the characteristic of the imaging system, and therefore should be stable in varied light conditions.163

The simulated video in lower-photon conditions should follow the same principle, whose variance164

is still proportional to the mean intensity, with the same ratio as the raw video.165

To simulate voltage imaging data in lower photon regimes, we propose a two-step simulation166

protocol on a pixel-by-pixel basis. Before the simulation, we calculate the ratio β0 between the167

variance and the mean intensity for the raw video.168

First, for each pixel intensity in the raw video I0, we apply Binomial degradation with a proba-169

bility of p to obtain Ib, and calculate the updated ratio βb after applying Binomial degradation to all170

pixels in the video. This step reduces the intensity in the measurements, but also lowers the ratio.171

Second, we multiply all pixel intensities in the simulated video Ib by a factor of A = β0/βb172

to obtain Id, which increases both the intensity and the ratio by a factor of A. After this two-step173

simulation, the simulated video Id has a lower intensity with a factor of d = pA compared with the174

raw video I0, while the ratio between the variance and the mean remains the same (Fig. S8). The175

proposed simulation protocol is able to simulate voltage imaging data in lower photon regimes,176

while maintaining the same characteristics of the imaging system.177

3 Results178

3.1 DeepVID v2 Improves Spatial Resolution while Preserving Temporal Dynamics179

To demonstrate the denoising capability of DeepVID v2, we present single-frame full-FOV images180

from both the raw and DeepVID v2 denoised videos in Fig. 2a. The noisy raw video was captured181

in an extremely low-photon regime, with the raw pixel intensity readout lower than 10 for almost182

all pixels (Fig. 2b). The variance of single-pixel time traces is linear to the mean of such traces,183

which validates that Poisson noise dominates the raw measurements (Fig. 2c). After denoising, the184

membrane and other neuronal structures are clearly resolved at the single-frame level. Heatmaps185

displaying time traces extracted from 74 manually labeled regions of interest (ROIs) with active186

neurons during the 37-second measurements are depicted in Fig. 2e to highlight the improvement187

from the DeepVID v2 denoising. The traces from the denoised video exhibit a more pronounced188
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Fig 2 DeepVID v2 denoising enhances both the spatial and temporal quality of the voltage imaging data. (a) Single-
frame images from the raw and DeepVID v2 denoised videos. (b) Histogram of the raw video. (c) Characteristics of
noise in the raw video. The variance of single-pixel time traces (Y-axis) is linearly proportional to the mean of the
traces (X-axis). (d) Spatial and temporal PCCs of the raw and DeepVID v2 denoised videos. (e) Heatmaps displaying
time traces extracted from 74 ROIs in the raw and DeepVID v2 denoised videos. Air puff whisker stimuli are shown
as red ticks on the top. (f) Temporal SNRs of the raw and DeepVID v2 denoised time traces.
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Fig 3 Denoising performance on single-neuron activities. (a) A single-frame full-FOV denoised image. (b) Zoom-in
view and (c) time trace of the ROI from the raw video. (d) Zoom-in view and (e) time trace of the ROI from the
DeepVID v2 denoised video. (f) Detected evoked potentials, (g) heatmap of the detected evoked potentials, and (h)
time traces of the detected evoked potentials from the raw video. (i) Detected evoked potentials , (j) heatmap of the
detected evoked potentials, and (k) time traces of the detected evoked potentials from the DeepVID v2 denoised video.
Air puff whisker stimuli are shown as dotted lines in (f) and (i).

contrast compared to the raw video, suggesting enhanced signals from the underlying neuronal189

activities after denoising.190

To quantitatively assess the performance of DeepVID v2 denoising, we compute the spatial191

and temporal PCCs for both the raw and DeepVID v2 denoised videos, illustrated in Fig. 2d. Both192

the spatial and temporal PCC values of the denoised video significantly surpass those of the raw193

video (spatial PCC: 0.90± 0.01 for DeepVID v2, 0.15± 0.01 for raw, n = 38972; temporal PCC:194

0.77±0.06 for DeepVID v2, 0.44±0.04 for raw, n = 516), indicating that DeepVID v2 effectively195

denoises the raw voltage imaging video in both the spatial and temporal domains.196

Furthermore, we calculate the temporal SNRs for the raw and DeepVID v2 denoised time traces197

extracted from all ROIs in the FOV, as presented in Fig. 2f. The temporal SNRs of denoised time198

traces are consistently higher than that of the raw traces for all ROIs (DeepVID v2, 15.57± 3.19;199

raw, 4.25 ± 1.17; n = 516), further underscoring the effective temporal denoising capability of200

DeepVID v2.201

Next, we investigate the performance of DeepVID v2 with a focus on single-neuron activities.202

From another time-series measurement with a single-frame full-FOV denoised image shown in203

Fig. 3a, we extract a few key frames from an ROI in Fig. 3d, along with the corresponding raw204

frames in Fig. 3b. The time traces from an active neuron (circled in red in Fig. 3d) are extracted205

from both the raw and denoised videos, as shown in Fig. 3c and Fig. 3e, respectively. The activa-206
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Fig 4 Parameter analysis. (a) Time traces extracted from the same ROI from the DeepVID v2 denoised videos with
different N . (b) Temporal metrics and (c) spatial PCC of the DeepVID v2 denoised videos with different N . (d)
Zoom-in view of a ROI from a single-frame image in the DeepVID v2 denoised videos with different M . (e) Temporal
metrics and (f) spatial PCC of the DeepVID v2 denoised videos with different M .

tion on the neuronal membranes is consistently resolved in the zoom-in images at the timestamps207

marked on the time traces.208

We further apply spike detection on the time traces to extract evoked potentials (Fig. S1). The209

evoked potentials extracted are marked in red, while the stimuli are shown as dotted lines in Fig. 3f210

and Fig. 3i. All 45 detected evoked potentials are aligned at the peak and presented as heatmaps211

in Fig. 3g and Fig. 3j. The time traces of the evoked potential are displayed in Fig. 3h and Fig. 3k.212

The evoked potentials extracted from the denoised video exhibit less noisy traces compared to the213

raw video, which indicates the improved capability of DeepVID v2 in resolving neuronal activities.214

3.2 DeepVID v2 Overcomes Tradeoff Between Spatial and Temporal Performance215

The performance of previous self-supervised denoising algorithms has often been influenced by216

the tradeoff between spatial and temporal resolution, which is controlled by the number of input217

frames N to the network (Fig. S5 and Fig. S6). Unlike previous methods, DeepVID v2 is designed218

to decouple spatial and temporal performance by incorporating two key parameters: the number of219

input frames, N , and the number of frames used for edge extraction, M . To investigate the effect220
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of these parameters on the performance of DeepVID v2, we vary N and M and train a neural221

network model for each combination.222

First, we fix M as the maximum available frames and vary N from 3 to 127. As N increases,223

time traces become over-smoothed and spikes become harder to recognize, as shown in Fig. 4a and224

Fig. S2. To evaluate the temporal performance, spike detection is performed on the time traces,225

and the temporal metrics including the number of detected spikes and the FWHM of the detected226

spikes are calculated. The FWHM of the detected spikes increases with increasing N , while the227

number of detected spikes initially increased due to improved temporal SNR but later decreased as228

the traces become over-smoothed, as shown in Fig. 4b. The spatial PCCs of the denoised videos are229

significantly higher than that of the raw video but remain comparable across different N , indicating230

that the spatial performance is not significantly affected by N , as shown in Fig. 4c and Fig. S3.231

From this analysis, we conclude that the optimal value for N is 7 for our experimental conditions,232

which provides the best combination of narrow FWHMs and a large number of reliably detected233

spikes.234

Next, we fix N at 7 frames for the optimal temporal performance and vary M from 7 to the235

maximum available frames. Fig. 4d shows the zoomed-in views of an ROI from a single-frame236

image in the raw and denoised videos using DeepVID v2 with different M indicated above each237

image. The number of detected spikes and the FWHM of the detected spikes are comparable across238

different M , indicating that the temporal performance is not significantly affected by M , as shown239

in Fig. 4e and Fig. S4. The spatial PCCs of the denoised videos increase with M , suggesting better240

spatial performance with an increased M , as shown in Fig. 4f.241

Our parameter analysis reveals that the new framework of DeepVID v2 is able to decouple the242

spatial and temporal performance by independently adjusting M and N . This decoupling enables243

DeepVID v2 to achieve superior denoising capability in resolving both spatial neuronal structures244

and temporal neuronal activities with high SNR.245

We further conduct a comparative analysis of DeepVID v2 against other recently developed246

self-supervised denoising methods, including Deep Interpolation,12 SUPPORT,15 DeepCAD-RT,14
247

and our previously developed DeepVID1, 2. All benchmarks, except DeepCAD-RT, utilize N = 7248

frames as input to the network, whereas DeepCAD-RT adheres to the default optimal setting of249

N = 127 after splitting odd and even stacks, based on our own extensive parameter search. Deep-250

VID v2 uses all available frames (M ) for edge extraction. Our evaluation focuses on spatial per-251

formance using single-frame images and temporal performance using time traces extracted from252

ROIs (Fig. 5a). Regarding the temporal performance, we conduct spike detection for each bench-253

mark. DeepVID v2 demonstrates strong temporal performance in terms of the number of detected254

spikes and FWHM of the detected spikes (Fig. 5b), in contrast to the over-smoothed time traces255

observed in DeepCAD-RT with N = 127. DeepVID v2 also exhibits superior spatial performance256

in terms of spatial PCC (Fig. 5c), matching the performance of DeepCAD-RT using many more257

input frames, and surpassing other benchmarks.258

To characterize the benchmark performance given similar inputs, we also compare the perfor-259

mance of all benchmark networks in two other conditions, including one with a small N at 7 frames260

(Fig. S5), and another with a large N at 127 frames (Fig. S6). DeepVID v2 maintains the same261

optimal parameter settings, with N = 7 and M using all available frames. When N is small at 7262

frames, all benchmarks show similar temporal performance in terms of small FWHM of detected263

spikes, while jagged edges are observed only in DeepCAD-RT, as limited frames are available for264

3-D convolution in the time axis. SUPPORT shows good but unstable spatial performance, with265
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Fig 5 Benchmark comparison. (a) Single-frame images and ROI time traces from the raw and denoised videos. (b)
The number of detected spikes and FWHM of the detected spikes from the raw and denoised ROI time traces. (c)
Spatial PCC of the raw and denoised videos.
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Fig 6 Generalization over measurements with various SNRs. (a) Temporal SNR of time traces from the raw measure-
ments and DeepVID v2 trained using data with different SNRs. (b) Spatial PCC and (c) temporal PCC of the raw and
DeepVID v2 denoised videos.

clear structures in some high spatial SNR strips, but with a strong blur in other lower spatial SNR266

strips. When N is large at 127 frames, all benchmarks show similar spatial performance with high267

spatial PCC, but only DeepVID v2 maintains the optimal temporal performance with small FWHM268

of detected spikes.269

Except for DeepVID v2, all other benchmarks encounter a trade-off between spatial and tem-270

poral performance: achieving good spatial but poor temporal performance with small N (Fig. S5),271

and vice versa with large N (Fig. S6). By decoupling spatial and temporal performance into two272

parameters, DeepVID v2 successfully overcomes this trade-off, thereby achieving superior perfor-273

mance in both spatial and temporal metrics simultaneously.274

3.3 DeepVID v2 Generalizes to Different Imaging Conditions275

To evaluate the generalization capability of DeepVID v2 under different imaging conditions, we276

test apply it to voltage imaging data with various SNRs. To perform this study, our experimental277

dataset is divided into three subsets, labeled as low, medium, and high SNR groups. The data278

division is based on the averaged temporal SNR calculated on all the manually labeled ROIs for279

each FOV in our dataset, as detailed in Sec. 2.5. A separate DeepVID v2 model is trained for280

each subset. The temporal SNR of the time trace for each ROI after denoising using each model281

is calculated and presented in Fig. 6a. The ROIs are sorted by the temporal SNR of the raw time282

traces, which spans a wide range from 1.14 to 10.17, as shown in the black curve. The temporal283

SNR after denoising by all three DeepVID v2 models consistently improves by over 3.2 fold for284

all ROIs (low SNR model, 3.20 ± 0.86; medium SNR model, 3.26 ± 0.87; high SNR model,285

3.28 ± 0.90; n = 2717), regardless of the SNR of the raw video. The spatial (Fig. 6b) and286

temporal PCC (Fig. 6c) of the denoised videos are significantly higher than that of the raw video,287

and importantly remain consistent across all models trained with different SNRs (see Fig. S7 for288

single-frame images and time traces), indicating that DeepVID v2 is able to generalize to data with289

various SNRs.290

We further evaluate DeepVID v2 in extreme low-photon regimes. To perform this study, we291

simulate voltage imaging data at various photon levels from 10% to 100% with respect to the292
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Fig 7 Simulation of DeepVID v2 denoising capability in extreme low-photon regimes. (a) Zoom-in image of an ROI
and (b) the time traces from the simulated noisy and denoised videos. (c) Temporal PCC of the simulated noisy and
denoised time traces. (d) Spatial PCC of the simulated noisy and denoised videos.
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original measurement (see details in Sec. 2.6 and Fig. S8), and test the denoising performance293

of DeepVID v2. For each photon level, we train a separate DeepVID v2 model, which is possi-294

ble as DeepVID v2 is a self-supervised method that does not need external ground-truth data for295

training. The zoom-in image of an ROI and the time traces extracted from the simulated noisier296

measurements and the denoised videos are presented in Fig. 7a and Fig. 7b, respectively. DeepVID297

v2 is able to reliably perform denoising on data with photon levels as low as 30% of the original298

measurement. Both the temporal PCC (Fig. 7c) and spatial PCC (Fig. 7d) show dramatic improve-299

ments after denoising for photon levels as low as 30% of the original. The results underscore300

DeepVID v2’s ability to perform voltage imaging denoising in extreme low-photon conditions,301

which is critical for further pushing the limits in voltage imaging in vivo.302

4 Discussion303

We introduced DeepVID v2, a self-supervised denoising framework with decoupled spatiotem-304

poral enhancement capability for low-photon voltage imaging. By integrating an additional edge305

extraction branch into the DeepVID architecture1 with two adjustable parameters, DeepVID v2306

effectively addresses the inherent tradeoff between spatial and temporal performance, resulting in307

enhanced denoising capabilities for resolving both spatial neuronal structures and temporal dy-308

namics. Additionally, our experiments demonstrated the robustness of DeepVID v2 across diverse309

imaging conditions, including videos with varying SNR and measurements simulated under ex-310

treme low-photon regimes. These results highlight DeepVID v2’s potential as a valuable tool for311

denoising voltage imaging data, offering promising prospects for advancing the study of neuronal312

activities within the brain.313

As a limitation of this work, the performance of DeepVID v2 may be influenced by the re-314

lationship between imaging speed and the object’s motion. The extraction of edge information315

in DeepVID v2 is based on the assumption that the local mean frame is clean without motion316

artifacts, which may not hold true when the moving speed of the object is much faster than the317

imaging speed. In such scenarios, the framework used in SUPPORT would be an alternative solu-318

tion as it demonstrated its denoising capability on moving C.elegans when the object’s locomotion319

was faster than the imaging speed. In this case, spatial information from neighboring pixels in320

the central frame contributes more to the denoising process in SUPPORT, rather than temporal321

information from adjacent frames.15 However, the spatial performance of the SUPPORT denoised322

result may be sensitive to the spatial quality of the raw measurements, as observed in the vary-323

ing spatial performance for different strips in our benchmark comparison (Fig. 5). It remains a324

challenge to achieve robust denoising performance in high-speed low-photon large-FOV imaging325

scenarios where object movement surpasses the imaging speed, indicating the need for further326

methodological developments to address this issue effectively.327
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List of Figures376

1 Block diagram of DeepVID v2. DeepVID v2 is composed of two main compo-377

nents: a main branch for denoising (bottom) and a side branch for edge extraction378

(top). Components adapted from our original DeepVID network are represented in379

the blue-shaded area.380

2 DeepVID v2 denoising enhances both the spatial and temporal quality of the volt-381

age imaging data. (a) Single-frame images from the raw and DeepVID v2 denoised382

videos. (b) Histogram of the raw video. (c) Characteristics of noise in the raw383

video. The variance of single-pixel time traces (Y-axis) is linearly proportional384

to the mean of the traces (X-axis). (d) Spatial and temporal PCCs of the raw and385

DeepVID v2 denoised videos. (e) Heatmaps displaying time traces extracted from386

74 ROIs in the raw and DeepVID v2 denoised videos. Air puff whisker stimuli387

are shown as red ticks on the top. (f) Temporal SNRs of the raw and DeepVID v2388

denoised time traces.389

3 Denoising performance on single-neuron activities. (a) A single-frame full-FOV390

denoised image. (b) Zoom-in view and (c) time trace of the ROI from the raw391

video. (d) Zoom-in view and (e) time trace of the ROI from the DeepVID v2 de-392

noised video. (f) Detected evoked potentials, (g) heatmap of the detected evoked393

potentials, and (h) time traces of the detected evoked potentials from the raw video.394

(i) Detected evoked potentials , (j) heatmap of the detected evoked potentials, and395

(k) time traces of the detected evoked potentials from the DeepVID v2 denoised396

video. Air puff whisker stimuli are shown as dotted lines in (f) and (i).397

4 Parameter analysis. (a) Time traces extracted from the same ROI from the Deep-398

VID v2 denoised videos with different N . (b) Temporal metrics and (c) spatial PCC399

of the DeepVID v2 denoised videos with different N . (d) Zoom-in view of a ROI400

from a single-frame image in the DeepVID v2 denoised videos with different M .401

(e) Temporal metrics and (f) spatial PCC of the DeepVID v2 denoised videos with402

different M .403

5 Benchmark comparison. (a) Single-frame images and ROI time traces from the404

raw and denoised videos. (b) The number of detected spikes and FWHM of the405

detected spikes from the raw and denoised ROI time traces. (c) Spatial PCC of the406

raw and denoised videos.407

6 Generalization over measurements with various SNRs. (a) Temporal SNR of time408

traces from the raw measurements and DeepVID v2 trained using data with dif-409

ferent SNRs. (b) Spatial PCC and (c) temporal PCC of the raw and DeepVID v2410

denoised videos.411

7 Simulation of DeepVID v2 denoising capability in extreme low-photon regimes.412

(a) Zoom-in image of an ROI and (b) the time traces from the simulated noisy413

and denoised videos. (c) Temporal PCC of the simulated noisy and denoised time414

traces. (d) Spatial PCC of the simulated noisy and denoised videos.415
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