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13 Abstract.

14 Significance: Voltage imaging is a powerful tool for studying the dynamics of neuronal activities in the brain. How-
15 ever, voltage imaging data are fundamentally corrupted by severe Poisson noise in the low-photon regime, which
16 hinders the accurate extraction of neuronal activities. Self-supervised deep learning denoising methods have shown
17 great potential in addressing the challenges in low-photon voltage imaging without the need for ground truth, but
18 usually suffer from the tradeoff between spatial and temporal performance.

19 Aim: We present DeepVID v2, a novel self-supervised denoising framework with decoupled spatial and temporal
20 enhancement capability to significantly augment low-photon voltage imaging.

21 Approach: DeepVID v2 is built on our original DeepVID framework,"? which performs frame-based denoising by
22 utilizing a sequence of frames around the central frame targeted for denoising to leverage temporal information and
23 ensure consistency. The network further integrates multiple blind pixels in the central frame to enrich the learning of
24 local spatial information. Additionally, DeepVID v2 introduces a new edge extraction branch to capture fine structural
25 details in order to learn high spatial resolution information.

26 Results: We demonstrate that DeepVID v2 is able to overcome the tradeoff between spatial and temporal performance,
27 and achieve superior denoising capability in resolving both high-resolution spatial structures and rapid temporal neu-
28 ronal activities. We further show that DeepVID v2 is able to generalize to different imaging conditions, including
29 time-series measurements with various signal-to-noise ratios (SNRs) and in extreme low-photon conditions.

30 Conclusions: Our results underscore DeepVID v2 as a promising tool for enhancing voltage imaging. This framework
31 has the potential to generalize to other low-photon imaging modalities and greatly facilitate the study of neuronal
32 activities in the brain.
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s 1 Introduction

s Voltage imaging is a powerful tool for studying the dynamics of neuronal activities in the brain. It
37 enables the visualization of the spatiotemporal patterns of membrane potential changes in neurons,
s which is critical for understanding the underlying mechanisms of brain functions.** Recently,
3 two-photon imaging has also been adapted for voltage imaging, as it provides high spatial resolu-
« tion and deep tissue penetration.'->® However, voltage imaging data is often corrupted by strong
41 noise, which hinders the accurate extraction of neuronal activities. The noise in voltage imaging
4«2 data is mainly attributed to the low photon count of the fluorescence signal, which is further exac-
4«3 erbated by the high-speed acquisition required for capturing fast neuronal activities. The noise in
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s+ voltage imaging data is often non-Gaussian and dominated by Poisson distribution, which poses a
s significant challenge for denoising.’

46 Deep learning-based denoising methods have shown great potential in addressing the chal-
47 lenges of denoising voltage imaging data. These methods have demonstrated superior performance
s in denoising various types of microscopy data, including fluorescence microscopy,® light-sheet mi-
4 croscopy,’ and two-photon microscopy.'® However, in realistic denoising applications, the ground-
so truth high signal-to-noise ratio (SNR) measurements are often not available, which makes super-
st vised learning-based methods less practical. In contrast, self-supervised learning-based methods
s2 have emerged as a promising alternative for denoising calcium or voltage imaging data, such as
s Noise2Void,'! Deep Interpolation,'? DeepVID,"? DeepCAD (and DeepCAD-RT),'*'* and SUP-
s« PORT."> These self-supervised learning frameworks leverage the inherent spatial and/or temporal
s5  structure within the data, learning meaningful latent representations to perform denoising. With
ss  specifically designed tasks and loss functions, these models are adept at predicting a subset of data
s7 using the rest, bypassing the need for explicit supervision from ground truth labels. This adapt-
ss ability underscores their potential for robust denoising performance in applications with limited
se  high-SNR data availability.

60 In voltage imaging, achieving high spatial resolution is essential for accurately resolving fine
st neuronal structures, while superior temporal resolution is crucial for capturing the rapid dynamics
&2 of neuronal activities. Traditional deep learning-based methods for denoising voltage imaging data
es often face a significant trade-off between spatial and temporal resolution. Existing self-supervised
e+ learning frameworks typically require a large number of input frames,'>'* which leads to over-
&5 smoothed temporal traces and poor temporal resolution, or they use too few frames, resulting in
e low spatial resolution.!"!> Therefore, there is an unmet need for an advanced self-supervised de-
&7 noising framework that can effectively decouple the spatial and temporal performance, and achieve
es superior denoising capability in resolving both fine spatial structures and rapid temporal dynamics.
69 In this work, we present DeepVID v2, a self-supervised denoising framework with decoupled
70 spatiotemporal enhancement for low-photon voltage imaging. In our previous work,! we intro-
71 duced DeepVID, which performs frame-based voltage imaging denoising by utilizing a sequence
72 of frames around the target frame. This leverages temporal information while ensuring reconstruc-
73 tion consistency. The network also integrates multiple blind pixels in the target frame to enrich
74 learning the local spatial information. To further enhance the spatial performance, DeepVID v2
75 presents a novel method to preserve sharp edge information inherent in the raw data. Prior studies
76 have demonstrated the effectiveness of utilizing edge information to improve the spatial resolution
77 of denoised images.!*'®* Here, by integrating an additional edge extraction branch into the Deep-
78 VID network (Fig. 1), DeepVID v2 significantly enhances the spatial resolution and integrity of
79 the neuronal structures in the denoised images.

80 Critically, DeepVID v2 achieves the decoupling of spatial and temporal performance by intro-
st ducing two adjustable parameters: the number of input frames, /V, and the number of frames used
g2 for edge extraction, M. This dual-parameter strategy enables precise fine-tuning of the denoising
ss process, allowing for optimal resolution of both spatial structures and temporal activities, thereby
s« overcoming the limitations observed in previous models.

85 We demonstrate that DeepVID v2 achieves superior spatial and temporal denoising perfor-
ss mance under diverse imaging conditions, including various SNRs and in extreme low-photon sce-
&7 narios. Our results indicate that DeepVID v2 is a promising tool for denoising in vivo voltage
ss 1maging data, and has the potential to facilitate the study of neuronal activities in the brain.
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Fig 1 Block diagram of DeepVID v2. DeepVID v2 is composed of two main components: a main branch for denoising
(bottom) and a side branch for edge extraction (top). Components adapted from our original DeepVID network are

represented in the blue-shaded area.

so 2 Methods
o0 2.1 Voltage Imaging Data Collection

ot The data used in this study are two-photon voltage imaging image series collected from the SMURF
2 microscope in our previous study.! Spatial and temporal beam multiplexing along with a multian-
s ode photomultiplier tube (MAPMT) were used in the SMURF microscope setup. This configura-
s« tion is engineered to maximize the effective repetition rate of pulsed lasers with minimal crosstalk
s on MAPMT, therefore enabling high-speed low-light imaging across a wide field of view (FOV).
o To measure the sensory-evoked neuronal responses, voltage imaging was performed at a sampling
o7 rate of 803 Hz in the primary somatosensory cortex (S1) from awake, head-fixed mice. Whisker
s stimulation was delivered as air puffs to the whisker pad at 10-Hz stimulus frequency in one- or
oo five-puff trains, with 4-s intervals. The captured voltage imaging images contain 400 x 192 pixels
100 1in total concatenated from 8 strips (400 x 24 pixels per strip), with a pixel size of 1.0 um along
101 the z-axis and 2.1 um along the y-axis.

12 2.2 DeepVID v2 Framework

103 The system diagram of DeepVID v2 is illustrated in Fig. 1. DeepVID v2 performs denoising on 3D
104 (2D space + 1D time) image stacks on a frame-by-frame basis. The network is composed of two
105 main components: a main branch for denoising similar to our previously developed DeepVID,! and
106 a side branch for edge extraction. DeepVID v2 utilizes both the spatial and temporal information
107 in the raw data, as well as edge information from the side branch, to perform denoising. The neural
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10s  network in the main branch is composed of four residual blocks, each containing two convolutional
100 layers with batch normalization layers, followed by a PReLLU activation layer attached after the first
110 convolution layer. A skip connection is added between the input and output for each residual block.
11 Given a frame to be denoised, the side branch first takes a M = 2M, + 1 image series as the
12 input, from M, frames before to M, frames after the central frame, to calculate a local mean frame,
1z resulting in an improved spatial representation than any raw single frame. A Gaussian blur filter
114 1s then applied to the mean frame to remove residual noise, followed by four Sobel filters from
ns 0°,45°,90°, 135° to extract the edge information along different directions. The outputs from the
116 Sobel filters are then treated as four additional input channels to the main branch.

117 In addition to the four edge channels, the main branch takes another N = 2N, + 1 image series
ns as the input, consisting of /Ny frames before and NV, frames after the central frame, as well as the
19 degraded central frame to perform denoising. A random set of pixels are set as blind pixels in
120 the degraded central frame with a ratio of py;,4, Whose intensities are replaced by random values
121 sampled from the pixel intensities within the frame. These blind pixels are used to guide the
122 network to learn the spatial and temporal information in the raw data, and to prevent the network
123 from simply replicating the input to the output.'

124 The loss function is the mean squared error (MSE) computed between the output denoised
125 1mage and the input noisy image, calculated only at the locations of the blind pixels. In this study,
126 parameters are optimized to achieve the best spatial and temporal performance at the same time,
127 using 7 frames as N, all available frames as M, and py;,g = 0.5%. The training dataset comprises
128 1,181 videos, with each video containing 1,000 frames captured at a rate of 803 Hz. The training
120 utilizes the Adam optimizer with a configuration of 360 steps per epoch and a batch size of four.
130 To avoid overfitting, the training stopped after iterating through the entire dataset three times. The
11 initial learning rate is set to 5 x 1079, then halved if the loss on the validation set plateaus over the
132 last 288,000 samples, until it reaches the minimum learning rate of 1 x 1077,

133 2.3 Spike Detection

13« Spike Detection is performed to infer evoked potentials from the extracted time traces. Time traces
135 are first normalized by the mean and standard deviation of the entire time trace. For each stimulus,
136 spikes are detected in a window from O s to 0.1 s after the stimulus onset, using a threshold of 3
137 and a minimum distance of 0.1 s between spikes. The full width at half maximum (FWHM) of
138 the detected spikes is calculated as the time difference between the two points where the intensity
139 reached half of the peak value. Only spikes with an FWHM falling within 3 standard deviations
10 are retained. The number of detected spikes and the FWHM of these spikes are used to evaluate
141 the temporal performance of the denoised videos.

12 2.4 Performance Metrics

13 The performance of DeepVID v2 is evaluated using a variety of metrics. Pearson Correlation Coef-
1a ficient (PCC) is used to evaluate the spatial and temporal performance of DeepVID v2. The spatial
15 PCC is determined by comparing the pixel-wise correlation between the reference frame and ei-
146 ther the raw or DeepVID v2 denoised frame. The temporal average frame serves as the reference
147 frame for calculating spatial PCC. Temporal PCC is computed by comparing the correlation of
1s the reference time traces with the raw or DeepVID v2 denoised time traces. The reference time
149  traces are obtained by employing a 7-frame moving average of the raw traces, which uses the same
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150 number of input frames as in DeepVID v2. The temporal Signal-to-Noise Ratio (SNR) is also used
151 to evaluate the temporal performance, defined as the ratio of the mean to the standard deviation of
12 the time trace.

153 2.5 Dataset Division based on Temporal SNR

15« The dataset is divided into three subsets representing low, medium, and high SNR, respectively.
155 The averaged temporal SNR of each FOV is obtained by averaging the temporal SNR calculated
156 from each ROI trace for all the ROIs in the FOV. The FOVs are then sorted by the averaged
157 temporal SNR. The bottom 1/3, middle 1/3, and top 1/3 are grouped as the low, medium, and high
158 SNR subsets, respectively.

159 2.6 Simulation of Videos in Lower-photon Regimes

1e0 In low-photon regimes, the signal is dominated by Poisson noise, in which the variance is propor-
161 tional to the mean intensity. This feature is verified in our dataset by calculating the mean and
162 variance of each single-pixel time trace (Fig. 2c). The ratio of this linear correlation, [, reflects
1es the characteristic of the imaging system, and therefore should be stable in varied light conditions.
164 The simulated video in lower-photon conditions should follow the same principle, whose variance
1es 18 still proportional to the mean intensity, with the same ratio as the raw video.

166 To simulate voltage imaging data in lower photon regimes, we propose a two-step simulation
17 protocol on a pixel-by-pixel basis. Before the simulation, we calculate the ratio 5, between the
1ss  variance and the mean intensity for the raw video.

169 First, for each pixel intensity in the raw video [, we apply Binomial degradation with a proba-
170 bility of p to obtain [, and calculate the updated ratio [, after applying Binomial degradation to all
171 pixels in the video. This step reduces the intensity in the measurements, but also lowers the ratio.
172 Second, we multiply all pixel intensities in the simulated video I, by a factor of A = [y/0,
173 to obtain I, which increases both the intensity and the ratio by a factor of A. After this two-step
174 simulation, the simulated video I, has a lower intensity with a factor of d = pA compared with the
175 raw video Iy, while the ratio between the variance and the mean remains the same (Fig. S8). The
176 proposed simulation protocol is able to simulate voltage imaging data in lower photon regimes,
177 while maintaining the same characteristics of the imaging system.

178 3 Results
179 3.1 DeepVID v2 Improves Spatial Resolution while Preserving Temporal Dynamics

180 'To demonstrate the denoising capability of DeepVID v2, we present single-frame full-FOV images
181 from both the raw and DeepVID v2 denoised videos in Fig. 2a. The noisy raw video was captured
1.2 1n an extremely low-photon regime, with the raw pixel intensity readout lower than 10 for almost
s all pixels (Fig. 2b). The variance of single-pixel time traces is linear to the mean of such traces,
1e«  which validates that Poisson noise dominates the raw measurements (Fig. 2¢). After denoising, the
1ss membrane and other neuronal structures are clearly resolved at the single-frame level. Heatmaps
186 displaying time traces extracted from 74 manually labeled regions of interest (ROIs) with active
1e7 neurons during the 37-second measurements are depicted in Fig. 2e to highlight the improvement
1es  from the DeepVID v2 denoising. The traces from the denoised video exhibit a more pronounced
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Fig 2 DeepVID v2 denoising enhances both the spatial and temporal quality of the voltage imaging data. (a) Single-
frame images from the raw and DeepVID v2 denoised videos. (b) Histogram of the raw video. (c) Characteristics of
noise in the raw video. The variance of single-pixel time traces (Y-axis) is linearly proportional to the mean of the
traces (X-axis). (d) Spatial and temporal PCCs of the raw and DeepVID v2 denoised videos. (¢) Heatmaps displaying
time traces extracted from 74 ROIs in the raw and DeepVID v2 denoised videos. Air puff whisker stimuli are shown
as red ticks on the top. (f) Temporal SNRs of the raw and DeepVID v2 denoised time traces.
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Fig 3 Denoising performance on single-neuron activities. (a) A single-frame full-FOV denoised image. (b) Zoom-in
view and (c) time trace of the ROI from the raw video. (d) Zoom-in view and (e) time trace of the ROI from the
DeepVID v2 denoised video. (f) Detected evoked potentials, (g) heatmap of the detected evoked potentials, and (h)
time traces of the detected evoked potentials from the raw video. (i) Detected evoked potentials , (j) heatmap of the
detected evoked potentials, and (k) time traces of the detected evoked potentials from the DeepVID v2 denoised video.
Air puff whisker stimuli are shown as dotted lines in (f) and (i).

180 contrast compared to the raw video, suggesting enhanced signals from the underlying neuronal
190 activities after denoising.

191 To quantitatively assess the performance of DeepVID v2 denoising, we compute the spatial
192 and temporal PCCs for both the raw and DeepVID v2 denoised videos, illustrated in Fig. 2d. Both
19a the spatial and temporal PCC values of the denoised video significantly surpass those of the raw
194 video (spatial PCC: 0.90 £ 0.01 for DeepVID v2, 0.15 £ 0.01 for raw, n = 38972; temporal PCC:
15 0.77£0.06 for DeepVID v2, 0.4440.04 for raw, n = 516), indicating that DeepVID v2 effectively
196 denoises the raw voltage imaging video in both the spatial and temporal domains.

197 Furthermore, we calculate the temporal SNRs for the raw and DeepVID v2 denoised time traces
198 extracted from all ROIs in the FOV, as presented in Fig. 2f. The temporal SNRs of denoised time
190 traces are consistently higher than that of the raw traces for all ROIs (DeepVID v2, 15.57 + 3.19;
200 raw, 4.25 + 1.17; n = 516), further underscoring the effective temporal denoising capability of
201 DeepVID v2.

202 Next, we investigate the performance of DeepVID v2 with a focus on single-neuron activities.
203 From another time-series measurement with a single-frame full-FOV denoised image shown in
204 Fig. 3a, we extract a few key frames from an ROI in Fig. 3d, along with the corresponding raw
205 frames in Fig. 3b. The time traces from an active neuron (circled in red in Fig. 3d) are extracted
206 from both the raw and denoised videos, as shown in Fig. 3¢ and Fig. 3e, respectively. The activa-
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Fig 4 Parameter analysis. (a) Time traces extracted from the same ROI from the DeepVID v2 denoised videos with
different V. (b) Temporal metrics and (c) spatial PCC of the DeepVID v2 denoised videos with different N. (d)
Zoom-in view of a ROI from a single-frame image in the DeepVID v2 denoised videos with different M. (e) Temporal
metrics and (f) spatial PCC of the DeepVID v2 denoised videos with different M.

207 tion on the neuronal membranes is consistently resolved in the zoom-in images at the timestamps
20s marked on the time traces.

209 We further apply spike detection on the time traces to extract evoked potentials (Fig. S1). The
210 evoked potentials extracted are marked in red, while the stimuli are shown as dotted lines in Fig. 3f
211 and Fig. 3i. All 45 detected evoked potentials are aligned at the peak and presented as heatmaps
212 1n Fig. 3g and Fig. 3j. The time traces of the evoked potential are displayed in Fig. 3h and Fig. 3k.
213 The evoked potentials extracted from the denoised video exhibit less noisy traces compared to the
214 raw video, which indicates the improved capability of DeepVID v2 in resolving neuronal activities.

215 3.2 DeepVID v2 Overcomes Tradeoff Between Spatial and Temporal Performance

216 The performance of previous self-supervised denoising algorithms has often been influenced by
217 the tradeoff between spatial and temporal resolution, which is controlled by the number of input
218 frames NV to the network (Fig. S5 and Fig. S6). Unlike previous methods, DeepVID v2 is designed
219 to decouple spatial and temporal performance by incorporating two key parameters: the number of
220 input frames, N, and the number of frames used for edge extraction, M. To investigate the effect
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221 of these parameters on the performance of DeepVID v2, we vary N and M and train a neural
222 network model for each combination.

223 First, we fix M as the maximum available frames and vary N from 3 to 127. As N increases,
224 time traces become over-smoothed and spikes become harder to recognize, as shown in Fig. 4a and
225 Fig. S2. To evaluate the temporal performance, spike detection is performed on the time traces,
226 and the temporal metrics including the number of detected spikes and the FWHM of the detected
227 spikes are calculated. The FWHM of the detected spikes increases with increasing /N, while the
228 number of detected spikes initially increased due to improved temporal SNR but later decreased as
229 the traces become over-smoothed, as shown in Fig. 4b. The spatial PCCs of the denoised videos are
230 significantly higher than that of the raw video but remain comparable across different /V, indicating
231 that the spatial performance is not significantly affected by N, as shown in Fig. 4c and Fig. S3.
2;2  From this analysis, we conclude that the optimal value for /V is 7 for our experimental conditions,
233 which provides the best combination of narrow FWHMs and a large number of reliably detected
234 spikes.

235 Next, we fix N at 7 frames for the optimal temporal performance and vary M from 7 to the
236 maximum available frames. Fig. 4d shows the zoomed-in views of an ROI from a single-frame
237 1mage in the raw and denoised videos using DeepVID v2 with different M indicated above each
233 1mage. The number of detected spikes and the FWHM of the detected spikes are comparable across
239 different M, indicating that the temporal performance is not significantly affected by M, as shown
200 in Fig. 4e and Fig. S4. The spatial PCCs of the denoised videos increase with M, suggesting better
241 spatial performance with an increased M, as shown in Fig. 4f.

242 Our parameter analysis reveals that the new framework of DeepVID v2 is able to decouple the
2.3 spatial and temporal performance by independently adjusting M and N. This decoupling enables
22¢ DeepVID v2 to achieve superior denoising capability in resolving both spatial neuronal structures
25 and temporal neuronal activities with high SNR.

246 We further conduct a comparative analysis of DeepVID v2 against other recently developed
247 self-supervised denoising methods, including Deep Interpolation,'> SUPPORT,!® DeepCAD-RT,!*
245 and our previously developed DeepVID'2. All benchmarks, except DeepCAD-RT, utilize N = 7
229 frames as input to the network, whereas DeepCAD-RT adheres to the default optimal setting of
250 N = 127 after splitting odd and even stacks, based on our own extensive parameter search. Deep-
251 VID v2 uses all available frames (M) for edge extraction. Our evaluation focuses on spatial per-
252 formance using single-frame images and temporal performance using time traces extracted from
53 ROIs (Fig. 5a). Regarding the temporal performance, we conduct spike detection for each bench-
s mark. DeepVID v2 demonstrates strong temporal performance in terms of the number of detected
255 spikes and FWHM of the detected spikes (Fig. 5b), in contrast to the over-smoothed time traces
256 observed in DeepCAD-RT with N = 127. DeepVID v2 also exhibits superior spatial performance
257 1n terms of spatial PCC (Fig. 5¢), matching the performance of DeepCAD-RT using many more
253 input frames, and surpassing other benchmarks.

259 To characterize the benchmark performance given similar inputs, we also compare the perfor-
260 mance of all benchmark networks in two other conditions, including one with a small /V at 7 frames
261 (Fig. S5), and another with a large N at 127 frames (Fig. S6). DeepVID v2 maintains the same
262 optimal parameter settings, with N = 7 and M using all available frames. When NN is small at 7
263 frames, all benchmarks show similar temporal performance in terms of small FWHM of detected
26« spikes, while jagged edges are observed only in DeepCAD-RT, as limited frames are available for
265 3-D convolution in the time axis. SUPPORT shows good but unstable spatial performance, with
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Fig 5 Benchmark comparison. (a) Single-frame images and ROI time traces from the raw and denoised videos. (b)
The number of detected spikes and FWHM of the detected spikes from the raw and denoised ROI time traces. (c)
Spatial PCC of the raw and denoised videos.
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Fig 6 Generalization over measurements with various SNRs. (a) Temporal SNR of time traces from the raw measure-
ments and DeepVID v2 trained using data with different SNRs. (b) Spatial PCC and (c) temporal PCC of the raw and
DeepVID v2 denoised videos.

266 clear structures in some high spatial SNR strips, but with a strong blur in other lower spatial SNR
267 strips. When NV is large at 127 frames, all benchmarks show similar spatial performance with high
268 spatial PCC, but only DeepVID v2 maintains the optimal temporal performance with small FWHM
269 of detected spikes.

270 Except for DeepVID v2, all other benchmarks encounter a trade-off between spatial and tem-
271 poral performance: achieving good spatial but poor temporal performance with small N (Fig. S5),
272 and vice versa with large NV (Fig. S6). By decoupling spatial and temporal performance into two
273 parameters, DeepVID v2 successfully overcomes this trade-off, thereby achieving superior perfor-
274 mance in both spatial and temporal metrics simultaneously.

275 3.3 DeepVID v2 Generalizes to Different Imaging Conditions

276 'To evaluate the generalization capability of DeepVID v2 under different imaging conditions, we
277 test apply it to voltage imaging data with various SNRs. To perform this study, our experimental
278 dataset is divided into three subsets, labeled as low, medium, and high SNR groups. The data
279 division is based on the averaged temporal SNR calculated on all the manually labeled ROIs for
250 each FOV in our dataset, as detailed in Sec. 2.5. A separate DeepVID v2 model is trained for
281 each subset. The temporal SNR of the time trace for each ROI after denoising using each model
2s2 1s calculated and presented in Fig. 6a. The ROIs are sorted by the temporal SNR of the raw time
283 traces, which spans a wide range from 1.14 to 10.17, as shown in the black curve. The temporal
28« SNR after denoising by all three DeepVID v2 models consistently improves by over 3.2 fold for
2s5 all ROIs (low SNR model, 3.20 + 0.86; medium SNR model, 3.26 £ 0.87; high SNR model,
286 3.28 £ 0.90; n = 2717), regardless of the SNR of the raw video. The spatial (Fig. 6b) and
257 temporal PCC (Fig. 6¢) of the denoised videos are significantly higher than that of the raw video,
25 and importantly remain consistent across all models trained with different SNRs (see Fig. S7 for
289 single-frame images and time traces), indicating that DeepVID v2 is able to generalize to data with
200 various SNRs.

291 We further evaluate DeepVID v2 in extreme low-photon regimes. To perform this study, we
202 simulate voltage imaging data at various photon levels from 10% to 100% with respect to the
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203 original measurement (see details in Sec. 2.6 and Fig. S8), and test the denoising performance
20« of DeepVID v2. For each photon level, we train a separate DeepVID v2 model, which is possi-
205 ble as DeepVID v2 is a self-supervised method that does not need external ground-truth data for
206 training. The zoom-in image of an ROI and the time traces extracted from the simulated noisier
207 measurements and the denoised videos are presented in Fig. 7a and Fig. 7b, respectively. DeepVID
208 V2 1is able to reliably perform denoising on data with photon levels as low as 30% of the original
200 measurement. Both the temporal PCC (Fig. 7c) and spatial PCC (Fig. 7d) show dramatic improve-
a0 ments after denoising for photon levels as low as 30% of the original. The results underscore
s DeepVID v2’s ability to perform voltage imaging denoising in extreme low-photon conditions,
a2 which is critical for further pushing the limits in voltage imaging in vivo.

s34 Discussion

s«  We introduced DeepVID v2, a self-supervised denoising framework with decoupled spatiotem-
s0s poral enhancement capability for low-photon voltage imaging. By integrating an additional edge
s06 extraction branch into the DeepVID architecture! with two adjustable parameters, DeepVID v2
a7 effectively addresses the inherent tradeoff between spatial and temporal performance, resulting in
ss enhanced denoising capabilities for resolving both spatial neuronal structures and temporal dy-
a9 nhamics. Additionally, our experiments demonstrated the robustness of DeepVID v2 across diverse
a0 imaging conditions, including videos with varying SNR and measurements simulated under ex-
a1 treme low-photon regimes. These results highlight DeepVID v2’s potential as a valuable tool for
sz denoising voltage imaging data, offering promising prospects for advancing the study of neuronal
at3  activities within the brain.

314 As a limitation of this work, the performance of DeepVID v2 may be influenced by the re-
a5 lationship between imaging speed and the object’s motion. The extraction of edge information
sie  1n DeepVID v2 is based on the assumption that the local mean frame is clean without motion
s17  artifacts, which may not hold true when the moving speed of the object is much faster than the
s imaging speed. In such scenarios, the framework used in SUPPORT would be an alternative solu-
a19  tion as it demonstrated its denoising capability on moving C.elegans when the object’s locomotion
s20 was faster than the imaging speed. In this case, spatial information from neighboring pixels in
321 the central frame contributes more to the denoising process in SUPPORT, rather than temporal
s22 information from adjacent frames.'> However, the spatial performance of the SUPPORT denoised
223 result may be sensitive to the spatial quality of the raw measurements, as observed in the vary-
224 ing spatial performance for different strips in our benchmark comparison (Fig. 5). It remains a
a5 challenge to achieve robust denoising performance in high-speed low-photon large-FOV imaging
a6 scenarios where object movement surpasses the imaging speed, indicating the need for further
327 methodological developments to address this issue effectively.
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= List of Figures

377 1 Block diagram of DeepVID v2. DeepVID v2 is composed of two main compo-

378 nents: a main branch for denoising (bottom) and a side branch for edge extraction
379 (top). Components adapted from our original DeepVID network are represented in
380 the blue-shaded area.

381 2 DeepVID v2 denoising enhances both the spatial and temporal quality of the volt-
32 age imaging data. (a) Single-frame images from the raw and DeepVID v2 denoised
383 videos. (b) Histogram of the raw video. (c) Characteristics of noise in the raw
384 video. The variance of single-pixel time traces (Y-axis) is linearly proportional
385 to the mean of the traces (X-axis). (d) Spatial and temporal PCCs of the raw and
386 DeepVID v2 denoised videos. (e) Heatmaps displaying time traces extracted from
387 74 ROIs in the raw and DeepVID v2 denoised videos. Air puff whisker stimuli
388 are shown as red ticks on the top. (f) Temporal SNRs of the raw and DeepVID v2
389 denoised time traces.

390 3 Denoising performance on single-neuron activities. (a) A single-frame full-FOV
391 denoised image. (b) Zoom-in view and (c) time trace of the ROI from the raw
392 video. (d) Zoom-in view and (e) time trace of the ROI from the DeepVID v2 de-
393 noised video. (f) Detected evoked potentials, (g) heatmap of the detected evoked
394 potentials, and (h) time traces of the detected evoked potentials from the raw video.
395 (1) Detected evoked potentials , (j) heatmap of the detected evoked potentials, and
396 (k) time traces of the detected evoked potentials from the DeepVID v2 denoised
397 video. Air puff whisker stimuli are shown as dotted lines in (f) and (i).

398 4  Parameter analysis. (a) Time traces extracted from the same ROI from the Deep-
399 VID v2 denoised videos with different /V. (b) Temporal metrics and (c) spatial PCC
400 of the DeepVID v2 denoised videos with different N. (d) Zoom-in view of a ROI
401 from a single-frame image in the DeepVID v2 denoised videos with different M.
402 (e) Temporal metrics and (f) spatial PCC of the DeepVID v2 denoised videos with
403 different M.

404 5 Benchmark comparison. (a) Single-frame images and ROI time traces from the
405 raw and denoised videos. (b) The number of detected spikes and FWHM of the
406 detected spikes from the raw and denoised ROI time traces. (c) Spatial PCC of the
407 raw and denoised videos.

408 6 Generalization over measurements with various SNRs. (a) Temporal SNR of time
409 traces from the raw measurements and DeepVID v2 trained using data with dif-
410 ferent SNRs. (b) Spatial PCC and (c) temporal PCC of the raw and DeepVID v2
411 denoised videos.

412 7 Simulation of DeepVID v2 denoising capability in extreme low-photon regimes.
413 (a) Zoom-in image of an ROI and (b) the time traces from the simulated noisy
414 and denoised videos. (c) Temporal PCC of the simulated noisy and denoised time
415 traces. (d) Spatial PCC of the simulated noisy and denoised videos.
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