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Abstract

Permanently cold deep-sea sediments (2500-3500 m water depth) with or without indications of
thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and
potential of aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms
for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded
more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep
sediments removed BTEX compounds more readily. Naphtha-driven aerobic respiration was
more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that
responded less rapidly. In all cases, enrichment of Gammaproteobacteria included lineages of
Oleispira, Pseudomonas, and Alteromonas known to be associated with marine oil spills. On the
other hand, taxa known to be prevalent in situ and diagnostic for thermogenic hydrocarbon
seepage in deep sea sediment did not respond to naphtha amendment. This suggests a limited
role for seep-associated populations in the context of oil spill biodegradation.

Keywords: deep sea sediments, hydrocarbon biodegradation, microbial community composition,
Gammaproteobacteria

1. Introduction

Offshore oil exploration has been happening for over 100 years (Hyne, 2001) with recent
advances in drilling technology seeing activities extending farther offshore into deeper waters
(EIA, 2016). Ultra deep-water operations in the Gulf of Mexico include Perdido at 2,450 m and
Stones at 2,900 m, with similarly deep discoveries off the coast of Brazil such as the Carcana site
in 2,030 m (Offshore Technology, 2017). Deep water presents challenging operational
environments as illustrated by the Deepwater Horizon (DWH) oil blowout that occurred while
producing oil in approximately 1,500 m water (Hazen et al., 2010; Camilli et al., 2011; Shukla
and Karki 2016). This highlights the importance of understanding the microbial ecology of the
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deep sea, both with respect to baseline microbial communities (Joye, 2015; Ferguson et al.,
2023) and the potential these microbiomes harbour for the biodegradation of spilled oil.

Hydrocarbonoclastic bacteria in marine ecosystems can derive carbon and energy from
the degradation of petroleum hydrocarbons (Hazen et al., 2010, Kimes et al, 2014, Yang et al.,
2016, Berry and Gutierrez, 2017). These bacteria have been observed to proliferate following oil
spills and thus represent catalytic potential that can be harnessed for bioremediation (Yakimov et
al., 2007, Acosta-Gonzalez et al., 2015, Joye et al., 2016, Duran and Cravo-Laureau, 2016; Yang
et al., 2016). Reasons for the presence of oil-degrading microbial populations in the ocean
include widespread occurrences of natural seabed hydrocarbon seepage (Head et al., 2006), yet it
is unclear whether bacteria commonly understood to be hydrocarbonoclastic (Berry and
Gutierrez, 2017; Gutierrez et al., 2013; Sanni et al., 2015) are a guild that overlaps with
dominant microbial populations inhabiting hydrocarbon seep sediments in the deep sea (Dong et
al., 2019, 2020; Chakraborty et al., 2020; Li et al., 2023).

Most published studies following the DWH interrogated the response of microbial
communities in the water column to the introduction of spilled oil and gas (Hazen et al., 2010;
Redmond and Valentine., 2012; Yang et al., 2016). Additional research showed 2-15% of the oil
released from the Macondo wellhead eventually became deposited onto the deep-sea sediments
via marine oil snow sedimentation and floc accumulation (Passow et al., 2012; Valentine et al.
2014; Chanton et al. 2015). Hydrocarbons deposited in marine sediments become absorbed into
the sediment organics impacting ecosystem functioning (Karickhoff et al., 1979; Eadie et al.,
1982, McGroddy and Farrington., 1995; Coates et al., 1997, Cravo-Laureau and Duran., 2014).
Nearby sediments investigated following the DWH blowout revealed oil deposition penetrating
the top 5 cm of the seabed (Joye et al., 2014). Natural hydrocarbon seeps on the other hand
receive inputs of petroleum compounds from below via slower advection as part of geological
petroleum systems (Joye, 2020). As a result, deep sea sediments experiencing hydrocarbon
seepage are enriched in particular taxa, including Caldatribacteriota, Aminicenantes and
Campilobacterota (Chakraborty et al. 2020; Li et al. 2023). Whether or not these taxa would be
involved in the biodegradation of petroleum compounds entering the seabed from above in an oil
spill scenario requires further investigation.

Temperature is another factor that controls the fate of oil in the marine environment.
Physical and chemical properties of hydrocarbon compounds as well as the metabolic rates
catalyzed by hydrocarbonoclastic microbes are influenced by temperature. The deep sea is
generally very cold, with temperatures close to 0°C (Yasuhara and Danovaro 2016). To
investigate the potential for psychrophilic aerobic hydrocarbon biodegradation in a deep-sea
setting, sediments with and without in situ hydrocarbons were incubated with naphtha (low
molecular weight hydrocarbons including short- and long-chain alkanes and monoaromatic
hydrocarbons) at 4°C for 100 days and compared with each other to test the hypothesis that cold
seep sediments are primed for biodegradation.

2. Materials and methods
2.1. Seismic description

Seismic interpretation was performed on the Shelburne (NS24-S006-003E) and Tangier (NS24-
B071-001E) 3D surveys using Schlumberger’s Petrel software platform to assess potential piston
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coring locations based on amplitude anomalies and the presence of direct hydrocarbon indicators
(DHIs). Geophysical Reports for the 3D seismic surveys can be accessed here:
https://cnsopbdigitaldata.ca/dmc-summary/. DHIs were inferred to be associated with possible
seabed seeps on the basis of potential hydrocarbon migration pathways in the form of faults from
deeper in the subsurface up to the seafloor (Figure 1B, C).

2.2. Study site and sampling

Sampling was conducted onboard the CCGS Hudson in June and July in 2016. Sediments
from four stations 16-06, 16-13, 16-18 and 16-21 were sampled via piston coring along the
Scotian slope off the coast of Nova Scotia in the NW Atlantic Ocean (Fig 1). Within a few hours
of core retrieval, sediments from these cores were sub-sampled and used to establish
experimental microcosms that were amended with hydrocarbons and incubated at 4°C. Surface
sediments (0-20 cmbsf) were sampled from 16-06, 16-13 and 16-18, and deeper sediments were
also subsampled at 134-141 cmbsf (16-18) and 142-148 cmbsf (16-21).

2.3. Sulfate measurements

Sulfate concentrations in sediment porewater were measured at several depths following
porewater extraction by centrifugation of a small aliquot of wet sediment (ca. 500 mg) taken
from cores that were longitudinally sectioned on board the ship. Porewater was obtained by
centrifugation. Initial sulfate measurements were made onboard by monitoring barium sulfate
using the “USEPA SulfaVer 4” method with the Pocket Colorimeter II (Hach, Canada) and
barium chloride ampules (AccuVac Ampules, Hach Canada). This rapid estimation of sulfate
profiles and hence overall redox zonation in the sediments guided the choice of deeper sediment
layers from cores 0018 and 0021. Additional sediment aliquots sampled in parallel were
immediately stored on board in a -20°C freezer. These samples were eventually thawed and
centrifuged similarly, allowing for sulfate measurements using a Dionex ICS 5000 reagent-free
ion chromatography system (Thermo Scientific, CA, USA) equipped with an anion-exchange
column (Dionex IonPac AS22; 4 x 250 mm; Thermo Scientific, USA), an EGC-500 eluent
generator cartridge, and a conductivity detector. The eluent was Na,CO3 (4.5 mM) and NaHCO3
(1.4 mM) with a flow rate of 1.2 mL min! at 30 °C column temperature.

2.4. Hydrocarbon gas and liquid analysis in piston core sediment samples

Sediment was collected immediately after core retrieval from near the base of each core
for hydrocarbon gas analysis by placing 200-300 g of sediment into a 500 ml Isojar that was
flushed with nitrogen before sealing. Headspace gas aliquots were transferred to exetainers as
0.1-1.0 ml, arranged in a Gerstel MPS2 autosampler and injected into an Agilent 7890 RGA GC
equipped with Molsieve and Poraplot Q columns, a flame ionisation detector (FID) and a thermal
conductivity detector (TCD). Hydrocarbons were measured by FID. To measure liquid
hydrocarbons, separate samples were wrapped in aluminium foil and stored at -20°C on board.
Following extraction of organic matter, liquid hydrocarbons from this fraction were measured
using a HP7890 A GC instrument equipped with a CP-Sil-5 CB-MS column (length 30 m, i.d.
0.25 mm, film thickness 0.25 pm) using synthesized C20D42 compound as an internal standard.
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2.5. Sediment microcosms amended with low-molecular weight hydrocarbons.

Microcosms set up under oxic conditions (i.e., with air in the headspace) were established
to assess how aerobic microbial communities in different surface sediments respond to
exogenous hydrocarbon exposure. Sediment from 0-20 cmbsf was sampled from cores 16-06,
16-13 and 16-18. Deeper sediment layers corresponding to the sulfate reduction zone were
sampled from cores 16-18 (134-141 cmbsf) and 16-21 (142-148 cmbsf), to additionally test
for the presence of more deeply buried aerobic microbial communities and their ability to
respond to hydrocarbon exposure in oxic microcosms. Microcosms consisted of 6 ml of
sediment and 25 mL of ONR7a medium (Dyksterhouse et al., 1995) added to sterile 50 mL
serum bottles with air in the headspace that were sealed with septa and aluminum crimp tops.
Bottles were amended with 0.2% (v/v) naphtha, which is a qualitative reference blend of low
molecular weight alkanes and aromatics. Heat killed controls (autoclaved microcosms),
unamended controls (artificial seawater and sediment without naphtha amendment) and
uninoculated controls (no sediment) were also established and incubated in parallel. All
microcosms were kept static and incubated as triplicate bottles in the dark at 4°C for between
100 and 106 days.

2.6. Microbial respiration in microcosms

Headspace carbon dioxide and oxygen levels were measured at different sampling points
using an Agilent 7890B gas chromatograph equipped with a thermal conductivity detector (TCD)
and according to a protocol described elsewhere (Novotnik et al. 2019). The instrument operated
under the following parameters: TCD temperature: 200°C, reference flow: He 40 mL/min. FID:
Heater T: 200°C, Air flow 400 ml/min, H> fuel flow 50 ml/min. Column 1: 0.5 m % 1/8” Hayesep
N (80/100 mesh); Column 2: 6" x 1/8” Hayesep N (80/100 mesh); Column 3: 8’ x 1/8” MS5A
(60/80 mesh). A reference gas mix from Praxair (Mississauga, Canada) was used for calibration.

2.7. Hydrocarbon consumption in microcosms

Volatile hydrocarbons were analyzed by injecting 100 pl headspace sample from each
microcosm directly into an Agilent 6890N gas chromatograph/mass spectrometer (GC/MS) with
a model 5973 inert mass selective detector and HP-5MS capillary column (30 m length, 0.25 mm
internal diameter and 0.25 um film thickness). The injector temperature was 250°C, and He carrier
gas had a flow rate of 1 ml min™! and split/splitless ratio of 1:10. The GC temperature program was
40°C for 5 min, then ramping up at 5°C min™! to 85°C (Abu Laban et al., 2015). The GC/MS was
run in full scan monitoring mode for m/z = 50-500. Headspace hydrocarbon depletion was assessed
using the GC-MS method described by Prince and Suflita (2007) using 1,1,3-trimethylcyclohexane
as the conserved internal standard (Townsend et al., 2004). The percentage of specific hydrocarbon
(HC) compounds remaining in the headspace was calculated as (Asample/Csample)/(Aneat killed/Cheat
kitled) % 100, where A and C represent specific HC compounds and an internal standard respectively
(Tan et al., 2015).

2.8. DNA extraction and 16S rRNA gene sequencing
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Total genomic DNA was extracted from microcosm sediment slurries using the DNeasy
PowerSoil kit (Qiagen, Valencia, CA, USA) according to manufacturer protocols. Extracted
DNA was quantified using a Qubit 2.0 Fluorometer (Invitrogen). The V3—V4 hypervariable
region of Bacterial and Archaeal 16S rRNA genes was amplified by polymerase chain reaction
(PCR) using the universal primers Pro341F and Pro805R (Takahashi et al., 2014). Amplicon
libraries were generated as triplicate twenty-five microliter reactions of 5-10 ng/uL. DNA
template, 1 pM of each primer, and 12.5 uL 2x KAPA HiFi Hot Start (Kapa Biosystems, Boston,
USA). Amplification was performed using a Nexus GSX1 Master cycler (Eppendorf, Germany)
as follows: initial denaturation at 94°C for 2 min, followed by 35 cycles of denaturation at 94°C
for 30 sec, annealing at 58°C for 60 sec, and extension at 72°C for 60 sec, and final elongation at
72°C for 5 min. Triplicate PCR products were pooled and prepared for [llumina paired end
sequencing using [llumina’s dual indexing protocol. Sequencing was performed using an in-
house benchtop Illumina MiSeq sequencer (Illumina, San Diego, CA, USA).

2.9. DNA sequence analysis

Primer and adapter removal of raw demultiplexed reads was performed using cutadapt
v1.16 (Martin, 2011). Primer trimmed sequences were quality checked and merged in DADA?2
v1.9.0 (Callahan et al., 2016). Using the filterAndTrim function in DADA2, forward and reverse
reads were trimmed to 280 bp and 220 bp, with filtering for reads with no ambiguous bases
(maxN=0). Any reads with a quality score below 8 were truncated (trunqQ = 8). All suspect
phiX sequences from the [llumina run were removed (rm.phix=TRUE) and only reads with
expected error less than 2 for forward and 4 for reverse reads, were retained (max EE = ¢(2,4)).
Two million high quality random forward and reverse reads that passed these filters were used to
learn the error rates. Using error profiles of forward and reverse reads, libraries were merged
using the mergePairs function in DADA2. From these merged reads amplicon sequence variants
(ASVs) were inferred using makeSequenceTable function, followed by chimera removal using
removeBimeraDenovo function. Chimera-free SVs were then assigned taxonomy using
assignTaxonomy function with Silva nr training set v128 and a minimum bootstrap of 80. The
deepest assigned taxonomy of each sequence variant was chosen to depict the taxonomic
classification.

The ASV table generated was then consolidated at the genus level and used in Divnet
(Willis and Martin, 2022) within the R software package to calculate alpha diversity indices with
the parameters, seed=2021 and base=ASV 46. Differential abundance analysis was performed on
a table with all ASVs using differentialTest function of Corncob (Martin et al 2020). With a seed
set to 2021 reads, all differential abundance analyses were carried out using Wald test with
bootstrapping and a false detection rate of 0.05, for each experimental parameter and
combinations (e.g., hydrocarbon amendment, comparison between cores, etc). Using this
approach, a set of statistically significant differentially abundant ASVs was determined. The
abundance of these ASVs was plotted using package ggplot2 v 2.2.1 (Wickham 2016).

Sequences for six ASVs suspected to belong to genera considered to be obligate
hydrocarbonoclastic bacteria (Yakimov et al., 2007) were used in BLAST searches of the NCBI
nr database. Hits with 299% sequence identity to these six 16S rRNA gene sequences were
compiled and aligned using SINA aligner, (Pruesse et al., 2012) with Sulfolobus islandicus
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(AY247900.1) as an outgroup. Phylogenetic tree reconstruction used RaxML (Stamatakis 2014)
with Gamma livelihood and GTR models, and iTOL for visualization.

2.10. Data availability

Raw sequencing data used in this study can be accessed through NCBI BioProject Acc#
PRINA1014963

3. Results
3.1: Geophysical and geochemical evidence of hydrocarbon seepage

Geophysical imagery revealed sites 16-18 and 16-21 have subsurface acoustic features
considered to be direct hydrocarbon indicators (DHIs), faulting, and a seafloor irregularity
(Figure 1; Table 1). Site 16-13 exhibits faults to surface but no apparent DHI (Fig 1C). In
agreement with these geophysical observations, the strongest geochemical evidence for
sedimentary hydrocarbon gases and liquids was observed in cores 16-18 and 16-21 (Fig 2A, B).
Furthermore, downcore sulfate concentration profiles differed distinctly between sampling sites
(Fig 2C). A much steeper drop in sulfate concentration was observed in cores 16-18 and 16-21,
where sulfate was completely depleted by 250 cmbsf; this is consistent with hydrocarbons
providing additional substrates elevated sulfate reduction in these sediments. In contrast, cores
16-06 and 16-13 exhibited no marked drop in sulfate, with relatively flat profiles throughout the
top 500 cm of the seabed.

3.2. Aerobic respiration coupled to hydrocarbon removal at 4°C in sediment microcosms.

Carbon dioxide production and oxygen depletion in the headspace of microcosms were
monitored periodically as a proxy for naphtha biodegradation. Figure 3 shows that during the
surface sediment incubations, O2 depletion and CO; production did not differ significantly
between naphtha-amended and unamended control microcosms until after 100 days for 16-13
and 16-18 sediments. On the other hand, sediment 16-06 showed a more rapid response to the
naptha amendment (see ANOVA significance values in Table S1). In agreement with O and
CO; observations, GC-MS analysis revealed decreasing concentrations of certain volatile
hydrocarbon compounds in the headspace of naphtha-amended microcosms compared to no-
sediment controls with identical naphtha amendment (Fig 3G, H & I). However, naphtha-
amended microcosms were not substantially different in headspace hydrocarbon profiles
compared to heat killed controls (ANOVA values in Table S2).

Deeper anoxic sediment layers exhibited similar potential for aerobic hydrocarbon
biodegradation. Naphtha-amended microcosms established with the sediment from the sulfate
reduction zone (130 -150 cmbsf) of cores 16-18 and 16-21 gave rise to CO» production that was
more extensive than 16-18 surface sediments (0—20 cmbsf), but still not as extensive as the
surface sediments from cores 16-06 and 16-13 where hydrocarbons were not detected in situ.
Deeper sediment microcosms did not show substantial differences in the depletion of headspace
oxygen concentration when compared to controls (Fig. S1).
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248 Hydrocarbon analysis of naphtha-amended microcosms revealed different degrees of

249  hydrocarbon compound depletion relative to heat killed controls between 50 and 100 days of
250 incubation at 4°C. In order to inoculate the microcosms with fresh sediment, incubations were
251  established within hours of sampling on board the ship where headspace measurements of initial
252 volatile hydrocarbon concentrations were not possible; hence the percentage of removal between
253  the period of 50 and 100 days is used for comparison. In general, a greater variety of

254  hydrocarbon compounds were depleted in surface sediment incubations compared to incubation
255  with sediments from deeper anoxic layers (Fig 4; Fig. S2). Toluene, ethylbenzene and xylene
256  were primarily removed from microcosms established with sediment from cores 16-18 and 16-21
257  where hydrocarbons were detected in situ, whereas microcosms with sediment from core 16-06
258  showed a depletion of the larger aromatic compounds cyclohexane, ethyl cyclohexane and

259  methyl cyclopentane.

260
261  3.3. DNA sequence analysis

262  Amplicon sequencing resulted in 98 paired end libraries from different microcosms and

263  incubation time points for the various treatments and controls. This resulted in 4,985,354 raw
264  reads (2 x 300 bp), with individual library sizes varying from 1,104 to 542,925 reads (median
265 63,330 reads). After quality processing and merging of read pairs, the total dataset comprised
266 2,022,825 reads, with libraries ranging from 3,415 to 245,687 reads (median 24,682 reads)

267  (Table S3). Chimera-free amplicon sequence variants (ASVs) detected by DADA?2 differed in
268  length. To avoid spurious ASVs while retaining diversity, all the ASVs shorter than 380 bp or
269  longer than 435 bp were removed. The remaining 14,754 ASVs received taxonomic assignments
270  resulting in 1,195 archaeal, 13,364 bacterial and 91 eukaryotic ASVs as well as 104 ASVs that
271 were unclassified. Corncob identified 29 non-redundant statistically significant ASVs with

272 differential abundance patterns across all experimental parameters that are elaborated on in the
273 next section.

274
275  3.4. Shifts in microbial community composition during sediment incubations.

276 Comparing microcosms established with sediment from core 16-18 (in situ hydrocarbons
277  detected) with the 16-06 and 16-13 microcosms (no hydrocarbons detected in the cores),

278  revealed very few differences (Fig 5). Increases in the relative abundance of Oleispira ASV_9,
279  Pseudomonas ASV 1 and Alteromonas ASV_3 was evident in all surface sediment incubations,
280 compared to being detectable but at low levels (<10%) in parallel incubations without naphtha
281  (Fig. S3). A notable difference was Colwellia ASV_6 being significantly elevated in relative

282  abundance only microcosms from cores 16-06 and 16-13, whereas ASV_51 Moritella was only
283  detected in microcosms established with 16-06 and 16-18 sediment, albeit at lower relative

284  abundance. Interestingly, the relative abundance of Oleispira ASV_9 increased over time in

285  naphtha-amended microcosm from cores 16-06, 16-13, 16-18 but not in parallel unamended

286  microcosms, whereas Oleispira ASV_7 exhibited a divergent pattern by increasing in

287  unamended microcosms from core 16-13 sediment (Figure S3) but not in corresponding naphtha-
288  amended microcosms (Fig 5).
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Comparison of microbial communities in oxic naphtha-amended microcosms inoculated
with sediment from deeper anoxic layers of cores 16-18 and 16-21 (Fig. S4) revealed general
differences relative to the surface sediment incubations. Increased relative abundance of
Pseudomonas ASV_11 was pronounced in the deeper sediment microcosms (both 16-18 and 16-
21). This effect was most dramatic in 16-18 sediment (the only site with parallel incubations of
surface and deeper sediment from the same core) where ASV_11 was not enriched in surface
sediments but reached >30% in the deeper sediment incubation. In contrast the increase in
Olesipira ASV_9 in 16-18 surface sediment microcosms was not observed in deeper sediment
from the same core (ASV 9 not detected), however this organism did get enriched in the
incubation of deeper sediment from core 16-21. The other two populations enriched in all surface
sediments, Pseudomonas ASV 1 and Alteromonas ASV 3, both increased over time in the
deeper sediment incubations, where they were similarly among the most prevalent ASVs (Fig.
S4).

4. Discussion

Oxygen availability is key amidst abiotic and biotic factors that influence hydrocarbon
degradation in marine sediments. Microbes preferentially deplete available oxygen during
respiration (Breitburg et al., 2010) and as oxygen availability is diminished, alternative electron
acceptors, such as sulfate, are used (Lam and Kuypers, 2011). Seabed study sites used here
presented not only habitats differing in sulfate concentrations but also proximity to potential
hydrocarbon seeps. Additional input of carbon in the form of the hydrocarbon fluids flowing up
from below facilitates a more rapid depletion of oxygen leading to the use of sulfate as an
alternate electron acceptor at shallower intervals given its high concentration in seawater and
marine sediment porewater. The presence of hydrocarbon liquids and gases in cores 16-18 and
16-21 are consistent with the steeper sulfate profiles in these locations. Accordingly, these sites
enabled a comparison of biodegradation in deep sea sediments with and without exposure to
natural sources of hydrocarbons.

Despite levels of in situ hydrocarbons in cores 16-18 and 16-21 being higher than in
cores 16-06 and 16-13 (Figure 2), these hydrocarbon seep sediments did not exhibit a more rapid
biodegradation response in 4°C microcosm experiments. Naphtha amendment in surface
sediments resulted in enhanced respiration in samples from the top of cores 16-06 and 16-13
relative to surface sediment from core 16-18 where hydrocarbons were detected (Figure 3).
Compared to controls incubated in parallel without hydrocarbon amendment, significantly higher
carbon dioxide production (P = 0.03) and oxygen depletion (P = 0.001) were recorded in 0006
sediment amended with naphtha after 60 days. This rapid <60-day response was not observed in
naphtha-amended surface sediments from site 16-13, but by 100 days activity in the 16-13
microcosms was comparable to the 0006 microcosms, i.e., >10 mM CO> production, whereas
only 3 mM CO> production was measured in the naphtha-amended incubation of surface
sediment from core 0018 (Fig 3; Fig S1; Table S1). These experiments do not provide evidence
to suggest that prior exposure to hydrocarbons due to seepage leads to an enhanced
biodegradation response.

Enrichment of Gammaproteobacterial groups in all microcosms reflects observations in
other marine systems in response to oil spills. Gammaproteobacteria were not among the taxa
deemed to be diagnostic for thermogenic hydrocarbon seepage in the deep-sea sediments at this
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333  study site (Li et al. 2023) or at Gulf of Mexico seabed hydrocarbon seeps (Chakraborty et al.

334  2020) where lineages including Caldatribacteria, Aminicenantes and Campilobacterota are

335 common indicators. Instead, naphtha resulted in the enrichment of Oleispira, Alteromonas and
336  Pseudomonas as being among the most important populations in the biodegradation response.
337  Some of these gammaproteobacterial groups, such as Oleispira, are considered obligate

338  hydrocarbonoclastic taxa (Yakimov et al., 2007) that are otherwise minor bacterial constituents
339  of the pristine (oil-free) marine systems (Radwan et al., 2019). Different Oleispira strains were
340 enriched in both naphtha amended (ASV_9) and unamended (ASV_7) 4°C incubations over the
341  course of 100 days (Fig. 5 and S3), calling into question the designation of this genus as being
342  ‘obligately’ hydrocarbonoclastic. Non-detection of Oleispira ASV_9 at the onset of the

343  incubations (week 0) in all but one of the sediments (i.e., the deeper anoxic layer of core 16-21;
344  Fig. S3) is consistent with hydrocarbon-degrading taxa being minor constituents with low in situ
345  abundance. On the other hand, Alteromonas ASV_3, which was enriched in the presence of

346  naphtha in all five microcosms spanning surface and deeper sediments, could be detected in three
347  out of the five unincubated in situ sediment samples (i.e., week 0) at 0.04 to 0.17% relative

348  sequence abundance. This is consistent with its 16S rRNA gene phylogeny indicating a close
349  relationship with the known hydrocarbon degrader Alteromonas naphthalenivorans (Fig. S5).
350 Instances of Alteromonas detection in situ include both 16-18 and 16-21 sediments where

351  hydrocarbons were detected in the sediment cores (Fig. 1). Detection and enrichment of

352 Alteromonas, Pseudomonas and other aerobic hydrocarbon degrading Gammaproteobacteria

353  both in surface sediment and down to 148 cmbsf in these two locations (Figure 1A, B) suggests
354 that these aerobic hydrocarbon degraders persist in a viable state during sediment burial to this
355  depth, which lasted thousands of years in this area given the low sedimentation rate of 0.4 mm y
356 ! (Normandeau & Campbell, 2020).

357 Metagenomic and metatranscriptomic analyses conducted during the unmitigated release
358  of oil for 84 days during DWH blowout revealed alkane degradation was a dominant

359  hydrocarbon-degrading pathway coinciding with Gammaproteobacteria including Pseudomonas
360  being dominant members of the community (Mason et al., 2012). In our study, an increased

361 relative abundance of different Pseudomonas ASVs was observed in oxic naphtha-amended

362  microcosms, corresponding to headspace depletion of alkanes and aromatic compounds, as has
363  been reported for other members of this genus (Whyte et al., 1997). Toluene removal was

364  especially prevalent in the 16-18 and 16-21 microcosms during 50-100 days, corresponding with
365 increased abundance of Pseudomonas ASVs (Fig.4; Fig. S2). More rapid hydrocarbon

366  metabolism may be explained by the observed natural hydrocarbon seepage at this location

367  (Figure 1B). This could be relevant in the context of deep marine ecosystems like this study site
368  and the DWH location in the Gulf of Mexico where there will be reduced weathering of light
369  hydrocarbons in released crude oil due to the cold seawater with resultant higher concentrations
370  of volatile toxic compounds such as BTEX (Brakstad et al., 2017). Widespread capacity for

371  alkane biodegradation in the marine microbiome may not depend solely on the presence of

372 natural hydrocarbon seeps. Alkane production by marine phototrophs exerts more widespread
373 selective pressure for alkane biodegradation (Lea-Smith et al. 2015; Love et al. 2021). For

374  aromatic hydrocarbons, seabed seeps may be a more likely point of introduction into the marine
375  environment, resulting in ‘priming’ the marine microbiome for aromatic metabolism. Despite the
376  overall slower response to naphtha amendment in the seep sediments, as described above,

377  aromatic hydrocarbons were more readily consumed by the microbial communities enriched
378  from the 16-18 and 16-21 sediments (Fig. 4; Fig. S3) where there is prior exposure to
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379  thermogenic hydrocarbons (Figs. 1, 2). Pseudomonas spp. are well documented for their ability
380  to degrade BTEX (Chicca et al., 2020) with the Pseudomonas ASVs in this study being closely
381 related to those in other hydrocarbon-degrading systems (Fig. S5). For example, enrichment of
382  Alteromonas in similar cold deep sea enrichment cultures amended with crude oil has also been
383  linked to the degradation of aromatic compounds (Cui et al. 2008).

384 Permanently cold deep-sea sediments and their incubation with hydrocarbons at 4°C also
385  expand knowledge of marine biodegradation processes and populations that operate at low

386 temperatures. While Oleispira, Alteromonas, Pseudomonas and other “usual suspects’ within the
387  Gammaproteobacteria are typically considered mesophiles, it is inferred from their enrichment
388  here and their close phylogenetic relationships to bacteria from cold environments (Fig. S5) that
389 these strains are psychrophilic inhabitants of the deep sea. Many psychrotolerant and some

390  psychrophilic strains of Pseudomonas have been isolated (Canion et al., 2013; Kim et al., 2013;
391  Kosina et al., 2013). Other studies have similarly shown that Pseudomonas spp. are found in low
392  abundance across a range of cold environments and become dominant under stress, such as acute
393  hydrocarbon exposure (Farrell et al., 2003; Aislabe et al., 2006; Yergeau et al., 2012).

394  Enrichment of Oleispira ASVs in naphtha-amended microcosms is similarly unsurprising.

395  Gregson et al. (2020) highlight that Oleispira shares many traits with other described genera of
396  well-known marine obligate hydrocarbon degraders like Alcanivorax (Yakimov et al., 1998) and
397  Thalassolituus (Yakimov et al., 2004) including marine origin, respiratory metabolism and

398  ability to metabolise aliphatic alkanes and their derivatives. However, in contrast to other so-

399 called obligate genera, Oleispira antarctica was shown to exhibit a broad growth temperature
400  optimum between 1°C and 15°C (Yakimov et al., 2003) suggesting a potential for Oleispira spp.
401  to dominate microbial communities due to their ecological competitiveness in cold environments
402  (Hazen et al., 2010; Mason et al., 2012; Kube et al., 2013).

403
404 5. Conclusions

405 Microcosm experiments with deep sea sediments sampled from sites with and without
406  background thermogenic hydrocarbon seepage did not support the hypothesis that prior exposure
407  to hydrocarbons would lead to enhanced biodegradation. The capacity for the biodegradation of
408  spilled petroleum compounds by marine microbial communities is often explained by the

409  presence of natural hydrocarbon seeps in the seabed. Chemosynthetic ecosystems fuelled by

410  thermogenic hydrocarbons highlight an important role for microbial populations capable of

411  oxidizing these compounds as primary producers in the seabed (Dong et al 2019; 2020). Despite
412 this premise, bacterial groups like Oleispira, Alteromonas, Pseudomonas and other members of
413  the Gammaproteobacteria that typically respond to oil spills or oil-amendment enrichment

414  experiments, like the ones performed here, differ from the signature microbial groups that define
415  cold seep sediments such as Caldatribacteria, Aminicenantes and Campilobacterota. In the

416  present study, none of the latter groups became enriched when sediments were exposed to low
417  molecular weight hydrocarbons (naphtha) over a 100-day period. Instead, relatively rare

418  psychrophilic Gammaproteobacteria responded to acute hydrocarbon exposures, supporting and
419  expanding the widespread importance of these aerobic hydrocarbon-degrading bacteria across a
420  range of marine oil pollution scenarios.

421
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Figure 1: Map of the Scotian Slope, NW Atlantic Ocean showing (A) the location of four piston coring
sites sampled aboard CCGS Hudson in 2016. Sites 16-18 and 16-21 are 160m apart and overlap on the
map. Geophysical images showing sites 16-18 and 16-21 (B) and site 16-13 (C) at higher resolution
reveal suspected direct hydrocarbon indicators (DHIs) such as deep-seated fault near surface, amplitude
diming (in circles) and faults (broken lines) for sites 16-18 and 16-21, but not 16-13 which shows only
faults to surface above a large shallow diapir.
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Figure 2: Sediment geochemical parameters in four sediment cores. (A) C1 gas measurements made
following incubating different sediment depths in isojars immediately after sampling. (B) Liquid
hydrocarbons were assessed using GC-MS for sediment sampled from the bottom of each of the cores,
with each symbol of the same colour denoting different individual compounds in the C+o to C42 range. (C)
Porewater sulfate concentrations determined at different depths throughout each core.
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Figure 3: Analysis of carbon dioxide (A-C), oxygen (D-F) and volatile hydrocarbons (G-I) in the
headspace of surface sediment (0-20 cmbsf) microcosms during incubation at 4°C. Carbon dioxide
production (A-C) and oxygen consumption (D-F) over time reveal most activity during the first 100
days of incubation. Analysis of headspace hydrocarbons after 100 days (G-l) show much lower
hydrocarbon concentrations in microcosms that combined sediment and naphtha, compared to
uninoculated sediment-free controls (the same data for these controls are plotted beside each of
the three sediment-inoculate microcosms in G-I to enable easier comparison). Hydrocarbon
concentrations were calculated relative to composition of specific compound in naphtha added.
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Figure 4: Percentage headspace hydrocarbon depleted in naphtha-amended sediment microcosms
relative to heat killed controls for the same sediments between 50 and 100 days of incubation at 4°C.
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Figure 5: Relative sequence abundance of significantly enriched ASVs in naphtha-amended
microcosms over 100 days at 4°C revealed by differential abundance analysis of 16S rRNA gene
amplicon libraries. The extra underscore indicates a taxonomy classification at a level higher than

genus.
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Table 1: Site location and core information of sampled cores' from the Scotian slope, NW Atlantic Ocean

Core Coordinates Water depth Surface sediment Subsurface sediment Hydrocarbon
(m) for microcosm for microcosm assessment
establishment establishment

16-06 41°37.4476N 3260 0-20 cmbsf N | No faults
64956.3773W -20 cmbs ot sampled No acoustic DHIs

16-13  41°90.5008N 2601 0-20 cmbsf N od Faults
63°47.7986W "€V Cmbs ot sample No acoustic DHIs

16-18  42°30.8748N 2235 0-20 cmbsf Faults
62983.6243W 134-141cmbst 5 oustic DHIs

16-21 42°30.8531N 2930 Not Samp|ed Faults
62°83.8306W 142-148 cmbsf 5 - stic DHIs

' All sampling was conducted during the summer in 2016.
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Figure S1: Analysis of carbon dioxide (A, B), oxygen (C, D) and volatile
hydrocarbons (E, F) in the headspace of deeper sediment 16-18 (134-141 cmbsf),
16-21 (142-148 cmbsf) microcosms during incubation at 4°C. Carbon dioxide

production (A, B) over time reveal most activity during the first 100 days of

- & - sediment +
naphtha

——killed
control

—&e— unamended
control

E Heptane
= Cyclohexane
O Toluene
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m Xylene

incubation. Analysis of headspace hydrocarbons after 100 days (E, F) show much
lower hydrocarbon concentrations in microcosms that combined sediment and
naphtha, compared to uninoculated sediment-free controls (the same data for
these controls are plotted beside each of the two sediment-inoculate microcosms in
E & F to enable easier comparison). Hydrocarbon concentrations were calculated
relative to composition of specific compound in naphtha added.
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Figure S2: Percentage headspace hydrocarbon depleted in naphtha amended
subsurface sediment microcosms relative to heat killed controls for the same sediments

between 50 and 100 days of incubation at 4°C.
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Figure S3: Relative sequence abundance of statistically significant ASVs revealed
by differential analysis based on 16S rRNA gene amplicons showing community
change in unamended microcosms inoculated with surface sediment during a
period of 100 days incubation at 4°C. The extra underscore indicates a taxonomy
classification at a level higher than genus.
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Figure S4: Relative sequence abundance of statistically significant ASVs
revealed by differential analysis based on 16S rRNA gene amplicons showing
community change in naphtha-amended microcosms inoculated with surface
and deeper sediment (16-18) and deeper sediment (16-21) during a period of
100 days incubation at 4°C. The extra underscore indicates a taxonomy
classification at a level higher than genus.
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Cognaticolwellia sediminilitoris] MG681180.1 %
Cognaticolwellia beringensis|NR_159245.1 %
Colwellia sp|KF477359.1 %

Aliiglaciecola aliphaticivorans|NR_135697.1
Alteromonas oceani|NR_159349.1 %
Alteromonas australica|NR_116737.1 %
Alteromonas mediterranea|NR_148755.1 %
Alteromonas tagae|NR_043977.2
Alteromonas stellipolaris|MK224736.1 %

r Alteromonas naphthalenivorans|MN746143.1
- Alteromonas sp|MH260558.1

Alteromonas stellipolaris|LR218097.1 %
Alteromonas naphthalenivorans|NR_145589.1

ASV 3|Alteromonas
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Figure S5: Phylogeny of ASVs from sediment incubations (bold) affiliated with
known hydrocarbon-degrading genera and their close sequence matches
(299% sequence identity) in the NCBI nr database. NCBI hits annotated as
being from hydrocarbon-associated environments are highlighted in red, and
hits with cold tolerance as demonstrated through their cultivation or inferred
from the environment are marked by a star.
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Table S1. Analysis of variance (ANOVA) comparing respiration in naphtha amendment,
heat killed and unamended microcosms of each tested core.

Core Day Sum Mean Sq | F Val Probability
Sq

16 - 06 20 02 2531 | 1265.5 26.67 0.15
(0-20cm) 60 25039 | 12520 26.63 1.04 e-03**

100 53808 | 26904 177 6e-06***

20 [CO2| 316 |[15.80 2.32 0.18

60 530.0 |265.02 6.16 0.0351*

100 1080.3 | 540.2 186.7 3.96e-06***
16-13 20 O2 5483 | 2742 1.933 0.225
(0-20cm) 60 5182 | 2591 1.786 0.246

100 30758 | 15379 35.29 4.81 e-04***

20 [CO2| 23.86 |11.93 0.933 0.444

60 124.0 |61.98 2.996 0.125

100 370.6 | 185.31 178.6 4.51e-06***
16-18 20 O2 79 39.6 0.042 0.959
(0-20cm) 60 4320 |2159.8 3.58 0.0948

100 5971 | 2985.6 13.18 6.38 e-03**

20 | CO2| 0.0857 |0.0428 0.99 0.422

60 4141 |2.071 1.276 0.345

100 8.749 |4.375 12.5 7.25 e-03**
16-18 20 O2 | 1231.2 | 6156 84.63 0.0023**
(134-141cm) | 60 1692 | 845.8 2.323 0.246

100 750.5 |375.5 1.085 0.442

20 | CO2 NA NA NA NA

60 3.622 |1.8112 4113 0.138

100 8.401 | 4.201 2.612 0.22
16 - 21 20 02 1532 | 766 16.93 0.0112*
(142-148 cm) | 60 179.9 |90 0.243 0.795

100 892 445.9 0.322 0.742

20 | CO2 NA NA NA NA

60 2.858 | 1.429 5.067 0.080

100 18.34 | 9.170 1.716 0.29

Sum Sq: Sum of squares; Mean Sq: Mean sum of squares.
F val: F value; Signif. codes: *** P 0.001 ** P 0.01 * P 0.05

NA: Not applicable as all values were 0.
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Table S2. Analysis of variance (ANOVA) comparing hydrocarbon concentration in
naphtha amendment, heat killed and unamended microcosms of each tested core after
100 days of incubation at 4°C.

Core Hydrocarbon | Sum | Mean |F Val | Probability
Sq Sq

16 - 06 Heptane 0.02 |0.01 221.19 | 8.03 e -05***

(0-20cm) Cyclohexane 0.001 | 0.005 | 195.59 | 1.02 e-04***
Toluene 0.003 | 0.001 |23.61 |6.09e-03*
Ethylbenzene | 0.003 | 0.001 | 570.67 | 1.22 e-05***
Xylene 0.02 |0.01 41.99 0.02*

16-13 Heptane 0.03 0.01 1.70 0.29

(0-20cm) Cyclohexane 0.01 |0.004 |1.07 0.42
Toluene 0.003 [ 0.002 |1.95 0.26
Ethylbenzene | 0.002 | 0.001 | 6.69 0.05*
Xylene 0.009 | 0.004 | 2.41 0.2

16-18 Heptane 0.01 [0.006 |0.79 0.51

(0-20cm) Cyclohexane 0.005 | 0.002 |0.89 0.47
Toluene 0.004 | 0.002 | 6.51 0.06
Ethylbenzene | 0.002 | 0.001 | 12.87 0.02*
Xylene 0.006 | 0.003 | 1.41 0.34

16-18 Heptane 0.019 | 0.009 | 252.93 | 3.93 e-03**

(134-141cm) | Cyclohexane 0.006 [ 0.003 |34.79 |0.03*
Toluene 0.003 | 0.001 |45.12 |0.02*
Ethylbenzene | 0.002 | 0.001 | 231.05 | 4.30 e-03**
Xylene 0.007 | 0.004 |52.68 |0.02*

16 - 21 Heptane 0.019 [ 0.009 |53.53 |0.02*

(142-148 cm) | Cyclohexane 0.008 | 0.004 |85.61 |0.01*
Toluene 0.004 | 0.002 |33.37 |0.03*
Ethylbenzene | 0.002 | 0.001 |230.98 | 4.31 e-03**
Xylene 0.009 [ 0.005 |79.09 |0.01*

Sum Sq: Sum of squares; Mean Sq: Mean sum of squares.

F val: F value; Signif. codes: *** P 0.001 ** P 0.01 * P 0.05
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Table S3. Description and read count for 16S rRNA gene amplicon libraries.

Library Core | Treatment | Core Time | Rep | Reads- | Reads-
Section Raw Filtered

13_PC_BS_0cm_TBS_1 16-13 | insitu Ocm TBS 1| 68913 28554

13_PC_BS_0Ocm_TBS_2 16-13 | insitu Ocm TBS 2| 28013 13378

13 PC BS Ocm _TBS 3 16-13 | in situ Ocm TBS 3| 16197 6778

13_PC_BS 20cm_TBS 1 16-13 | in situ 20cm TBS 1 37582 14580

13_PC_BS_20cm_TBS_2 16-13 | insitu 20cm TBS 2| 25532 12436

13_PC_BS_20cm_TBS_3 16-13 | insitu 20cm TBS 3 8901 3415

13_PC_NA_OX_T0_1 16-13 | Naphtha 0-20 Day 1| 63427 31508
0

13_PC_NA_OX_T0_2 16-13 | Naphtha 0-20 Day 2| 50127 24589
0

13_PC_NA_OX_T0_3 16-13 | Naphtha 0-20 Day 3 | 120670 58376
0

13_PC_NA_OX_T1_1 16-13 | Naphtha 0-20 Day 1| 100964 53304
50

13_PC_NA_OX_T1_2 16-13 | Naphtha 0-20 Day 2| 84322 56213
50

13_PC_NA_OX_T1_3 16-13 | Naphtha 0-20 Day 3| 28467 14538
50

13_PC_NA_OX_T2_1 16-13 | Naphtha 0-20 Day 1| 26350 13251
100

13_PC_NA_OX_T2_2 16-13 | Naphtha 0-20 Day 2| 70306 47777
100

13_PC_NA_OX_T2_3 16-13 | Naphtha 0-20 Day 3| 67189 34131
100

13_PC_UN_OX_T0_3 16-13 | Naphtha 0-20 Day 3| 77685 35965
0

13_PC_UN_OX_T1_3 16-13 | Naphtha 0-20 Day 3| 49951 28427
50

13_PC_UN_OX_T2_3 16-13 | Naphtha 0-20 Day 3| 90644 53020
100

18_PC_NA_AN_TO_1 16-18 | Naphtha 134-141 | Day 1] 102873 21871
0

18_PC_NA_AN_TO0_2 16-18 | Naphtha 134-141 | Day 2| 37588 5618
0

18_PC_NA_AN_T1_1 16-18 | Naphtha 134-141 | Day 1| 52960 12134
50

18_PC_NA_AN_T1_2 16-18 | Naphtha 134-141 | Day 2 | 55584 11068
50

18_PC_NA_AN_T2_1 16-18 | Naphtha 134-141 | Day 1| 61778 12414
100

18_PC_NA_AN_T2_2 16-18 | Naphtha 134-141 | Day 2| 48266 11159
100

18_PC_NA_OX_T0_1 16-18 | Naphtha 0-20 Day 1| 53631 9050
0
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18_PC_NA_OX_T0_2 16-18 | Naphtha 0-20 Day 2 | 126587 24111
18_PC_NA_OX_T0_3 16-18 | Naphtha 0-20 (E))ay 3| 45988 7220
18_PC_NA_OX_T1_1 16-18 | Naphtha 0-20 (E))ay 1| 59846 12285
18_PC_NA_OX_T1_2 16-18 | Naphtha 0-20 g(;y 2| 73274 9275
18_PC_NA_OX_T1_3 16-18 | Naphtha 0-20 g(;y 3| 80382 17898
18_PC_NA_OX_T2_1 16-18 | Naphtha 0-20 g(;y 1| 46501 10074
18_PC_NA_OX_T2_2 16-18 | Naphtha 0-20 E)(;?/ 2| 37888 7957
18_PC_NA_OX_T2_3 16-18 | Naphtha 0-20 E)(;?/ 3| 48739 8717
18_PC_UN_OX_T0_3 16-18 | Unamende | 0-20 E)(;?/ 3| 42398 8059
18_PC_UN_OX_T1_3 16-18 (LjJnamende 0-20 (E))ay 3| 63664 15785
18 PC_UN_OX T2 3 16-18 ?Jnamende 0-20 g(;y 3| 84820 22177
21_PC_NA_AN_TO_1 16-21 ﬁlaphtha 142-148 E)(;?/ 1| 542925 | 245687
21_PC_NA_AN_TO_2 16-21 | Naphtha 142-148 (E))ay 2 | 53654 24015
21_PC_NA_AN_TO_3 16-21 | Naphtha 142-148 (E))ay 3| 74551 32453
21_PC_NA_AN_T1_1 16-21 | Naphtha 142-148 (E))ay 1] 111523 52267
21_PC_NA_AN_T1_2 16-21 | Naphtha 142-148 g(;y 2| 85445 35070
21_PC_NA_AN_T1_3 16-21 | Naphtha 142-148 g(;y 3| 99668 43013
21_PC_NA_AN_T2_1 16-21 | Naphtha 142-148 g(;y 1| 87234 38298
21_PC_NA_AN_T2_2 16-21 | Naphtha 142-148 E)(;?/ 2 | 105263 43592
21_PC_NA_AN_T2_3 16-21 | Naphtha 142-148 E)(;?/ 3| 63234 26824
21_PC_UN_AN_TO_1 16-21 | Unamende | 142-148 E)(;?/ 1 1104 145
21_PC_UN_AN_TO0_2 16-21 (LjJnamende 142-148 (E))ay 2| 52026 23598
21_PC_UN_AN_T1_1 16-21 (LjJnamende 142-148 (E))ay 1| 116479 54463
21_PC_UN_AN_T1_2 16-21 (LjJnamende 142-148 g(;y 2| 82790 36920
21_PC_UN_AN_T2_1 16-21 (LjJnamende 142-148 g(;y 1| 27585 10381
21_PC_UN_AN_T2_2 16-21 :L}namende 142-148 I%)Zag/ 2| 73325 29910
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6_PC_BS_Ocm_TBS_1 16-06 | in situ Ocm TBS 11107353 | 37578

6_PC_BS_Ocm_TBS_2 16-06 | in situ Ocm TBS 2| 86573 | 31704

6_PC_BS_Ocm_TBS_3 16-06 | in situ Ocm TBS 3| 68553 | 25839

6_PC_BS_20cm_TBS_1 16-06 | in situ 20cm | TBS 1] 61646 | 21459

6_PC_BS_20cm_TBS 2 | 16-06 | in situ 20cm | TBS 2| 102366 | 38911

6_PC_BS_20cm_TBS_3 | 16-06 | in situ 20cm | TBS 3| 56663 | 19880

6_PC_NA_OX_T0_1 16-06 | Naphtha | 0-20 Day 1] 56220 | 24682
0

6_PC_NA_OX_T0_2 16-06 | Naphtha | 0-20 Day 2| 52507 | 22262
0

6_PC_NA_OX_T0_3 16-06 | Naphtha | 0-20 Day 3| 103443 | 42542
0

6_PC_NA_OX_T1_1 16-06 | Naphtha | 0-20 Day 1| 99888 | 56890
50

6_PC_NA_OX _T1 2 16-06 | Naphtha | 0-20 Day 2| 96378 | 55388
50

6_PC_NA_OX T1_3 16-06 | Naphtha | 0-20 Day 3| 54027 | 29668
50

6_PC_NA_OX T2 _1 16-06 | Naphtha | 0-20 Day 1] 44976 | 23396
100

6_PC_NA_OX T2 2 16-06 | Naphtha | 0-20 Day 2| 67414 | 33963
100

6_PC_NA OX_T2_3 16-06 | Naphtha | 0-20 Day 3| 51115| 25481
100

6_PC_UN_OX_T0 3 16-06 | Unamende | 0-20 Day 3| 102921 | 47855

d 0
6_PC_UN_OX_T1 3 16-06 | Unamende | 0-20 Day 3| 58408 | 31579
d 50
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