

1 **Expanding the cultivable human archaeome: *Methanobrevibacter intestini***
2 **sp. nov. and strain *Methanobrevibacter smithii* “GRAZ-2” from human feces**

3

4 Viktoria Weinberger^{1†}, Rokhsareh Mohammadzadeh^{1†}, Marcus Blohs¹, Kerstin Kalt¹,
5 Alexander Mahnert¹, Sarah Moser¹, Marina Cecovini¹, Polona Mertelj¹, Tamara Zurabishvili¹,
6 Jacqueline Wolf³, Tejas Shinde¹, Tobias Madl^{2,4}, Hansjörg Habisch⁴, Dagmar Kolb^{5,6},
7 Dominique Pernitsch⁵, Kerstin Hingerl⁵, William Metcalf⁷, Christine Moissl-Eichinger^{1,2*}

8

9 ¹ D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz,
10 Graz, Austria

11 ² BioTechMed Graz, Graz, Austria

12 ³ Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and
13 Cell Cultures GmbH, Braunschweig, Germany.

14 ⁴ Otto Loewi Research Center, Medicinal Chemistry, Research Unit Integrative Structural Biology,
15 Medical University of Graz, Graz, Austria

16 ⁵ Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria

17 ⁶ Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of
18 Graz, Graz, Austria

19 ⁷ Department of Microbiology, University of Illinois, Urbana, Illinois, USA

20

21 *Corresponding author

22 christine.moissl-eichinger@medunigraz.at

23

24 Repositories: The genome of GRAZ-2 is available through BioProject ID PRJNA1067514. The 16S rRNA
25 gene sequence of WWM1085 is available through NCBI GenBank PP338268.

26

27 [†]These authors contributed equally: Viktoria Weinberger, Rokhsareh Mohammadzadeh

28

29 **Abstract**

30 Two mesophilic, hydrogenotrophic methanogens, WWM1085 and *M. smithii* GRAZ-2 were
31 isolated from human fecal samples. WWM1085 was isolated from an individual in the USA,
32 and represents a novel species with in the genus *Methanobrevibacter*. *M. smithii* GRAZ-2 (=
33 DSM 116045) was retrieved from fecal samples of a European, healthy female and represents
34 a novel strain within this genus. Both *Methanobrevibacter* representatives form non-
35 flagellated, short rods with variable morphologies and the capacity to form filaments. Both
36 isolates showed the typical fluorescence of F₄₂₀ and methane production.

37 Compared to *M. smithii* GRAZ-2, WWM1085 did not accumulate formate when grown on H₂
38 and CO₂. The optimal growth conditions were at 37°C, and pH 7. Full genome sequencing
39 revealed a genomic difference of WWM1085 to the type strain of *M. smithii* PS (type strain;
40 DSM 861), with 93.55% ANI and major differences in the sequence of its *mcrA* gene (3.3%
41 difference in nucleotide sequence). Differences in the 16S rRNA gene were very minor and
42 thus distinction based on this sequence might not be possible. *M. smithii* GRAZ-2 was
43 identified as a novel strain within the *Methanobrevibacter* genus (ANI 99.04 % to *M. smithii*
44 PS).

45 Due to the major differences of WWM1085 and *M. smithii* type strain PS in phenotypic,
46 genomic and metabolic features, we propose *M. intestini* sp. nov. as a novel species with
47 WWM1085 as the type strain (DSM 116060T = CECT 30992).

48 **Keywords:** *Methanobrevibacter smithii*, *Methanobrevibacter intestini*, fecal methanogens,
49 human archaeome

51 Introduction

52 *Methanobrevibacter* species are widespread and have been found in numerous host
53 microbiomes. They exhibit remarkable adaptability in engaging with both animal hosts and
54 non-archaeal elements within their microbiome. By metabolizing diverse small fermentation
55 byproducts, these species effectively facilitate and support various syntrophic interactions.
56 They stand out as the predominant archaea thriving in the gastrointestinal tracts of not only
57 several animals (1–3).

58 Among these species, *M. smithii* (with four isolates currently available, source: Global catalog
59 of microorganisms, Nov 2023, <https://gcm.wdcm.org/>), represents the most prevalent
60 archaeon within the human gut, exhibiting an average relative abundance of up to 2% in
61 individuals with high methane emission levels in their breath (4).

62 It's worth noting that the *M. smithii* type strain PS (DSM 861; hereby referred to as: "*M. smithii*
63 PS"), was initially isolated from sewage samples rather than human feces (5). A contamination
64 of the sewage sample with human feces cannot be excluded, in particular as the
65 gastrointestinal tract is the most favorable habitat for *M. smithii*. In contrast, strain ALI (DSM
66 2375; hereby referred to as: "*M. smithii* ALI") (6) is considered as one of the first publicly
67 available *M. smithii* strains described and isolated directly from human fecal samples.

68 Additionally, a recent discovery indicated that *M. smithii* encompasses two distinct clades,
69 tentatively labeled as *smithii* and *smithii_A* within the GTDB taxonomy (Rinke et al., 2021).
70 This differentiation was further corroborated through genomic analyses and the
71 incorporation of numerous metagenome-assembled genomes (MAGs) from studies on the
72 human microbiome, confirming the taxonomic separation between *smithii* and *smithii_A* (8).

73 It was found that the median genome size of *smithii_A* slightly surpasses that of *smithii* (1.9
74 Mbp compared to 1.7 Mbp), while showing an average nucleotide identity (ANI) of 93.95%.
75 Despite this variance, key genes linked to methanogenesis were shared between both strains.
76 The *mcrA* gene exhibited an average amino acid sequence difference of 2.15% (8), a potential
77 marker for distinguishing these clades using molecular methods (9). Following these
78 observations, *smithii_A* was tentatively designated as a distinct species namely, *Candidatus*
79 *Methanobrevibacter intestini*.

80 *Cand. M. intestini* is represented by WWM1085 (formerly recognized as a strain of *M. smithii*),
81 which was initially isolated from human stool in the presence of CO₂-H₂ as a carbon and
82 energy source (Chibani et al., 2022; Jennings et al., 2017). This species demonstrates extensive
83 distribution and a notably high prevalence among the human population, accounting for
84 approximately 90.01% ((11)). In the present paper, we further describe *Methanobrevibacter*
85 *intestini* as a novel species within the *Methanobrevibacter* genus using comparative 16S rRNA
86 and genome sequencing, culture-based methods, electron microscopy, lipidomics, and
87 metabolomics. We provide this *Methanobrevibacter intestini* strain (WWM1085) as a new
88 addition to the culture collection (DSM 116060) of anaerobic archaea found in humans.
89 Moreover, we characterize another newly isolated strain of *M. smithii* called *M. smithii* GRAZ-
90 2.

91

92 **Materials and methods**

93 **Sources of microorganisms.**

94 Strain WWM1085 (= DSM 116060 = CECT 30992) was enriched by the Department of
95 Microbiology, University of Illinois, Urbana, Illinois, United States, from a fecal sample (Mayo
96 Clinic Minnesota, biome number 101159) in the presence of CO₂ and H₂ as a carbon and
97 energy source. Further details are provided in the draft genome sequence announcement by
98 Jennings et al. (Jennings et al., 2017). The enrichment was subcultured and purified via
99 antibiotic treatment to a pure culture in 2021 at the Medical University of Graz, Austria. In
100 detail, the growth medium (MpT1, see below) was supplemented with streptomycin sulfate
101 (10 mg/ml) and penicillin G potassium salt (10 mg/ml) at a volume ratio of 1:100 (0.2 ml of
102 the antibiotics mixture in a volume of 20 ml of medium).

103 *M. smithii* GRAZ-2 was isolated from a stool sample of a healthy female aged 42 at Medical
104 University of Graz, Graz, Austria in 2018 in presence of CO₂ and H₂ as a carbon and energy
105 source. This strain is also currently available in DSMZ (= DSM 116045) (German Collection of
106 Microorganisms and Cell Cultures GmbH, Braunschweig, Germany).

107 *M. smithii* ALI (= DSM 2375) was obtained from the DSMZ and was used for comparative
108 analysis.

109 **Ethical approval**

110 Sampling of the human fecal sample was evaluated and approved by the local ethics
111 committee (27-151 ex 14/15). Before participation, the participant signed an informed
112 consent.

113

114 **Enrichment and isolation of strain GRAZ-2.**

115 The stool sample was collected from a fresh fecal sample with an ESwab (COPAN Diagnostics
116 Inc., Italy). The collection fluid, which keeps anaerobic microorganisms alive, was transferred
117 to ATCC medium 1340 (MS medium for methanogens, see below), supplemented with
118 ampicillin (100 µg/mL), streptomycin (100 µg/mL), tetracycline (10 µg/mL) and nystatin (20
119 µg/mL). Methane production in the culture's headspace was verified after visible growth
120 (turbidity and microscopy) using a methane sensor (BCP-CH4 sensor, BlueSens).

121 Enrichment of methanogens was achieved via fluorescence-activated cell sorting (FACS)
122 exploiting the auto-fluorescence of the cofactor F₄₂₀. FACS was performed at the ZMF Core
123 Facility Molecular Biology in Graz, Austria. For detection of the F₄₂₀ fluorescence, the violet
124 laser (405 nm) and the bandpass filter 450/40 of the FACSaria III system (Becton Dickinson)
125 were used. During the short sorting process, cells were kept and sorted into reduced medium.
126 500,000 events were collected and re-grown in liquid MS medium (see below).

127 Subsequently, the culture was plated on solid MS medium (1.5 % agar, w/v) in Hungate tubes
128 using the roll-tube method as described (12). A single colony was picked and re-grown in liquid
129 media. To further ensure purity, serial dilutions were performed.

130 **Growth media.**

131 Standard archaeal medium (13) was used to grow all isolates, with some modifications. This
132 medium contained the following constituents (l⁻¹ distilled water): 0.45 g NaCl, 5 g NaHCO₃, 0.1
133 g MgSO₄.7H₂O, 0.225 g KH₂PO₄, 0.3 g K₂HPO₄.3H₂O, 0.225 g (NH₄)₂SO₄, 0.060 g CaCl₂.2H₂O, 2

134 ml (NH₄)₂Ni(SO₄)₂ solution (0.1% w/v), 2 ml FeSO₄.7 H₂O solution (0.1% w/v in 0.1 M H₂SO₄),
135 and 0.7 ml resazurin solution (0.1% w/v). These compositions were then supplemented with
136 1 ml of each 10x Wolfe's vitamin and 10x mineral solutions (13). Media was then
137 deoxygenated with N₂ and 0.75 g L-cysteine was added under anaerobic conditions. pH was
138 adjusted to 7.0 if necessary. 20 ml of liquid was then aliquoted into 100 ml serum bottles,
139 sealed with rubber stopper and aluminum cap, and pressurized with H₂/CO₂ (4:1) before
140 autoclaving. Before use, 0.001 g/ml of yeast extract and 0.001 g/ml sodium acetate were
141 added to the media.

142 For growth of WWM1085, MpT1 medium, based on AM-5 (14), was used with some
143 modifications. Modified MpT1 medium had the following compositions (l⁻¹ distilled water): 1
144 g NaCl, 0.5 g KCl, 0.19 g MgCl₂, 0.1 g CaCl₂ x 2 H₂O, 0.3 g NH₄Cl, 0.2 g KH₂PO₄, 0.15 g Na₂SO₄, 2
145 g casamino acids, 2 g yeast extract, 0.082 g sodium acetate. Then, 1 ml trace element solution
146 (1.2 ml HCl (12.5 M), 0.01 g MnCl₂ x 4 H₂O, 0.019 g CoCl₂ x 6 H₂O, 0.0144 g ZnSO₄ x 7 H₂O,
147 0.0002 g CuCl₂ x 2H₂O, 0.003 g H₃BO₃, 0.0024 g NiCl₂ x 6 H₂O, 0.0036 g Na₂MoO₄ x 2 H₂O in
148 150 ml distilled water), 20 µl of selenite-tungstate solution (2 g NaOH, 0.01 g Na₂SeO₃.5H₂O,
149 and 0.017 g Na₂WO₄.2H₂O dissolved in 50 ml distilled water) and 0.7 ml resazurin solution
150 (0.1% w/v) were added. Media was deoxygenated with N₂ and subsequently, 0.24 g L-Cysteine
151 and 2.52 g NaHCO₃ were added. 20 ml of medium was distributed in 100-ml serum bottle and
152 was then sealed and pressurized with H₂/CO₂ (4:1). After autoclaving, 0.2 ml of the following
153 were added to each bottle under anoxic conditions: methanol (50 mM), dithiothreitol (0.154
154 g/L), Na-formate (0.034 g/L) / Na-coenzyme M (0.01 g/L) and vitamin solution (3 mg Biotin, 3
155 mg Folic acid, 15 mg Vitamin B6, 7.5 mg Vitamin B1, 7.5 mg Vitamin B2, 7.5 mg Nicotinic acid,
156 7.5 mg DL-Panthothenic acid, 1.5 mg Vitamin B12, 7.5 mg P-Aminobenzoic acid, 0.3 g Choline

157 chloride dissolved in 150 ml distilled water) were added to each bottle under anaerobic
158 conditions. The pH was adjusted to 7.0 if applicable.

159 All growth experiments were carried out in triplicates under static conditions at 37 °C unless
160 mentioned otherwise.

161 **Scanning electron microscopy (SEM)**

162 For scanning electron microscopy, cells were mounted on coverslips, fixed with 2 % (w/v)
163 paraformaldehyde in 0.1 M phosphate buffered saline, pH 7.4 and 2.5% glutaraldehyde in 0.1
164 M phosphate buffered saline, pH 7.4, and dehydrated stepwise in a graded ethanol series.
165 Samples were post-fixed with 1 % osmium tetroxide for 1 h at room temperature and
166 subsequently dehydrated in graded ethanol series (30-96 % and 100 % (v/v) EtOH). Further,
167 Hexamethyldisilane (HMDS (Merck | Sigma - Aldrich) was applied. Coverslips were placed on
168 stubs covered with a conductive double coated carbon tape. The images were taken with a
169 Sigma 500VP FE-SEM with a SEM Detector (Zeiss Oberkochen) operated at an acceleration
170 voltage of 5 kV.

171 **Optimum pH and temperature**

172 The 100-ml serum bottles, each containing 20 ml of modified standard archaeal medium (for
173 all tested isolates) and MpT1 (only for WWM1085), were inoculated with 2.5% (v/v) fresh
174 cultures. Growth, measured in terms of OD at 600 nm, and methane production were
175 monitored daily for 10 days to assess the impact of pH and temperature on growth. Methane
176 levels were quantified using a gas sensor (BluSens, Germany), and data integration and
177 analysis were performed using the provided BacVis Gas Formation software.

178 To explore the effect of pH on growth, media with different pH values ranging from 5 to 8
179 with 0.5 intervals, as well as pH values of 9, 10, and 11, were prepared by adjusting with
180 varying amounts of 0.1 M NaOH or 0.1 M HCl. The pH values of the media were checked daily
181 for potential alterations (pH indicator strips, VWR, Germany) and were maintained constant.
182 The optimum pH was determined at 37°C.

183 For the determination of the optimum temperature, cultures were incubated at various
184 temperatures (20, 30, 35, 37, 39, 40, and 50 °C), while pH was kept constant at 7. Temperature
185 was monitored continuously using a temperature logger (Sensor Blue, Brifit) inside the
186 incubator. Both pH and temperature experiments for WWM1085 were conducted in modified
187 standard archaeal medium and MpT1.

188

189 **Culture purity check and sequencing**

190 Cultures were routinely checked for purity using microscopy, PCR and Sanger sequencing.
191 Microscopic examination of the cells was performed using a Nikon microscope equipped with
192 a fluorescence attachment and a UV excitation filter. Extracted DNA was subjected to PCR
193 targeting the archaea *mcrA* (forward primer sequence: 5' CAACCCAGACATTGGTACTCCT 3',
194 reverse: 5' GCTGGGGTGATGACAGTTCT 3') and the bacterial 16S rRNA gene (primers 341F
195 and 1391R) (15,16). Media blanks and no-template controls served as negative controls.

196 **Nanopore sequencing**

197 The studied archaeal species underwent Nanopore sequencing using the MinION Mk1C
198 system (Oxford Nanopore Technologies plc., UK) according to the protocols as detailed in
199 (nanoporetech.com). To summarize, DNA extraction was done according to the
200 manufacturer's protocol (Invitrogen™ PureLink™ Microbiome DNA Purification Kit, Thermo

201 Fisher Scientific Inc, USA), and subsequently, Nanodrop 2000c spectrophotometer (Thermo
202 Fisher Scientific Inc., USA) and an Invitrogen™ Qubit™ 3 Fluorometer (Thermo Fisher
203 Scientific Inc., USA) were used to confirm the quality and concentration of the extracted DNA.
204 In addition, gel electrophoresis was employed for checking DNA fragmentation. DNA was then
205 stored at -20 °C for further analyses.

206 In the process of preparing the library, DNA underwent repair utilizing the NEBNext
207 Companion Module (New England Biolabs GmbH, GER). Subsequently, it was prepared for
208 sequencing on a chemistry version 14 flow cell (R10.4.1, FLO-MIN114) following the Ligation
209 sequencing gDNA – Native Barcoding Kit 24 V14 (SQK-NBD114.24) as outlined by the
210 guidelines of the manufacturer as detailed in (nanoporetech.com).

211 **DNA-based comparisons**

212 16S rRNA genes were retrieved from isolates' genomes using the ContEst16S tool created by
213 EzBioCloud (17) (Supplementary Table S1). The genomes were retrieved from own
214 sequencing (GRAZ-2) or public databases (NQLD00000000 for WWM1085, all other accession
215 numbers are provided in Supplementary Table S1).

216 Some genomes contained multiple copies of the 16S rRNA genes; in such a case, all were
217 included in the subsequent analyses. Alignment of the sequences was performed via Muscle
218 ((18,19), implemented in Mega11 (standard settings of MEGA11; (20)). All aligned 16S rRNA
219 genes were manually trimmed to the same length. Pairwise distance estimation was
220 performed using the standard settings. The matrix is available in Supplementary Table 2. The
221 16S rRNA gene-based tree was created via SILVA SINA using the FastTree option (model: GTR,
222 rate model for likelihoods: Gamma; variability profile: Archaea; Positional variability filter,
223 domain Archaea) (21–23).

224 *mcrA* genes were retrieved through MAGE genoscope ((24); Supplementary Table 3), a
225 platform for genomic comparison. Genes were aligned through Muscle (see above) and
226 pairwise distance estimation was calculated using the standard settings of Mega11. The
227 matrix is provided in Supplementary Table 4.

228 The probability of whether one or two isolated *Methanobrevibacter* strains represent novel
229 species was tested using JSpeciesWS (25). The Average Nucleotide Identity (ANI) was
230 calculated against all isolates listed in Supplementary Table 5-6, and those provided by the
231 curated reference database GenomesDB. This tool also provided the GC content of each
232 genome.

233 The whole genome tree was calculated using MAGE genoscope (24) and the integrated
234 “Clustering Genomes” function. The tree is constructed from the Mash distance matrix
235 (26,27) and computed dynamically using a rapid neighbour joining algorithm. For details,
236 please refer to the tutorial of MAGE genoscope.

237 **Lipid and carbohydrate profile analyses by mass spectrometry**

238 Intact polar lipids were extracted from freeze-dried material (approx. 30 mg) using a modified
239 Bligh and Dyer extraction as described previously (28–31). Briefly, two extractions each were
240 performed using methanol/dichloromethane (DCM)/50 mM phosphate buffer pH 7-8 (2:1:0.8
241 v/v/v) and methanol/DCM/0.3 M trichloroacetic acid pH 2-3 (2:1:0.8 v/v/v). Combined
242 supernatants were adjusted to a ratio of methanol/DCM/50 mM phosphate buffer of (2:1:0.9
243 v/v/v) by adding DCM and phosphate buffer, before the DCM phase was collected. The
244 remaining mixture was additionally extracted twice with DCM and the combined DCM phases

245 were evaporated to dryness. For HPLC-MS/MS analysis dried extracts were recovered in
246 hexane/isopropanol/water (718:271:10 v/v/v).

247 Archaeal lipids were separated on a YMC-Triart Diol column (150 x 2.0 mm, 1.9 μ m particles)
248 and analyzed in positive ESI mode by mass spectrometry on an Agilent 6545 Q-ToF mass
249 spectrometer (Agilent, Waldbronn, Germany) as described previously (28,32). Mass spectra
250 were recorded in the mass range of m/z 300-2000. Core lipids were identified by the exact
251 masses of their [M+H]⁺ ions.

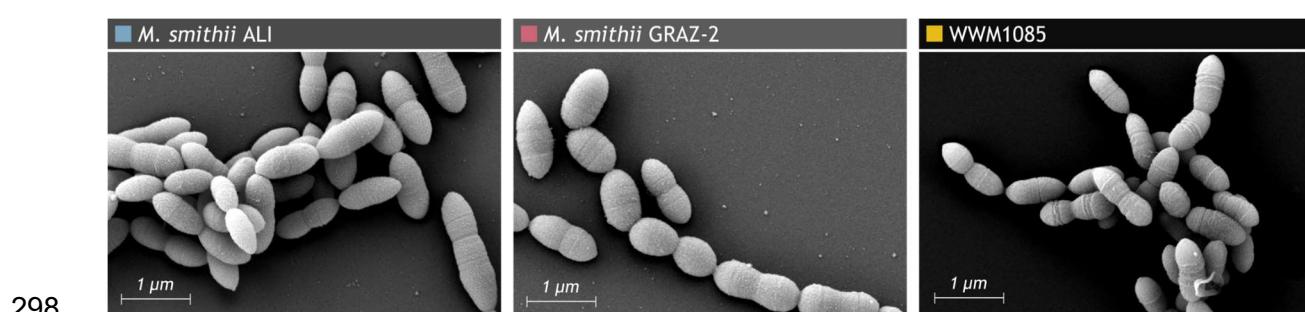
252 For analysis of lipid associated sugars, lipid extracts were prepared as described above and
253 hydrolyzed according to (33) with slight modifications. Briefly, dried extracts were resolved in
254 1 ml 2 N H₂SO₄ and incubated for 2 h at 100 °C. Afterwards the samples were chilled on ice
255 and neutralized by adding 2 N NaOH (final pH 6-8). After centrifugation the supernatant was
256 evaporated to dryness.

257 For GC-MS analysis of sugar residues tried extracts were reconstituted in 1 ml methanol and
258 filtered through a Nylon spin filter to remove excess salt. The remaining supernatant was
259 mixed with 10 μ l of a 4 % ribitol-methanol solution and dried under a stream of nitrogen. In
260 addition, non-hydrolyzed extracts were analyzed to detect any residual free sugars in the lipid
261 extracts. Derivatization and GC-MS analysis was performed as described previously (34). Data
262 analysis was performed with the MetaboliteDetector software (35) as described previously
263 (36).

264 **Quantification of metabolic activity by NMR spectroscopy**

265 Five replicates for each of the studied archaeal cultures (in MS medium and yeast extract
266 supplement (see above)) at different time points (72h, 168h, and 240h), were subjected to

267 analysis utilizing Nuclear Magnetic Resonance (NMR) spectroscopy, following the
268 methodology outlined before (4). Briefly, a methanol-water mixture (2:1) was employed to
269 eliminate proteins from samples followed by centrifugation. Subsequently, the supernatant
270 was lyophilized, re-dissolved in sodium phosphate-buffered NMR buffer also containing 4.6
271 mM 3-trimethylsilyl propionic acid-2,2,3,3,-d4 sodium salt (TMSP) as internal standard, and
272 subsequently transferred to NMR tubes. NMR analysis was then conducted on a Bruker
273 Avance Neo NMR spectrometer running at 600 MHz and equipped with a TXI probe head at
274 310 K and Topsin 4.3 software (Bruker GmbH, Rheinstetten, Germany). The obtained spectra
275 (cmpgpr1d/Carr-Purcell-Meiboom-Gill pulse sequence with 128 scans) were further
276 processed using MATLAB 2014b (Mathworks, Natick, MA, USA), aligned, and normalized by
277 probabilistic quotient normalization (37,38). For absolute quantification of carbonic acids,
278 known peaks of substances of aligned raw spectra were integrated using trapezium
279 subtraction for baseline correction (39), and eventually normalized on their respective proton
280 number, J-coupling pattern, and TMSP integral of the sample in order to calculate their molar
281 concentrations.


282

283 **Results and discussion**

284 Based on our findings, the investigated archaeal strains, namely WWM1085 and *M. smithii*
285 GRAZ-2, along with *M. smithii* DSM 2375, which was used for comparison, exhibit unique
286 features discerned through our culture-based, genomics, and metabolomics methods. These
287 distinctive characteristics are outlined in Supplementary Table 1 and elaborated upon in the
288 subsequent sections.

289 **Morphology**

290 WWM1085 cells appeared morphologically similar to both *M. smithii* ALI and *M. smithii* GRAZ-
291 2 albeit being slightly shorter. In general, they measure 0.16-0.43 μm in width and 0.29-0.54
292 μm in length and appear mostly in the form of short rods with rounded ends (Fig. 1). Similar
293 to *M. smithii* ALI and *M. smithii* GRAZ-2, not only they occurred in single cells, but were also
294 observed more frequently in pairs, short chains or long filaments. Pili or flagella were not
295 detected, but some cells appeared fluffy on their surface. All isolates showed F₄₂₀
296 fluorescence, which is typical for methanogenic archaea, when observed under fluorescence
297 microscopy (excitation 420 nm). No cells were observed in media controls.

299 **Fig 1.** Scanning electron micrograph of *Methanobrevibacter smithii* ALI, *Methanobrevibacter smithii* GRAZ-2,
300 and WWM1085.
301

302 **Substrates and nutritional requirements**

303 WWM1085 underwent growth testing in two media, namely MS and MpT1 media, with
304 various substrates to assess potential variations in its nutritional requirements compared to
305 *M. smithii* ALI and *M. smithii* GRAZ-2. At pH 7 and 37°C, this strain demonstrated optimal
306 growth in both media and reached high cell density after 72 hours (2.5% (v/v) inoculation),
307 utilizing H₂/CO₂ as its energy source. No growth was observed when growth media were
308 exposed to oxygen.

309 **Optimum pH range for growth and methane production**

310 WWM1085 (in both media), along with *M. smithii* ALI, and *M. smithii* GRAZ-2 constantly
311 produced methane across a broad pH spectrum (6.5 - 10) (Table. 1). On the basis of methane
312 production and OD600, the optimum pH was found to be 7-7.5 in the MS medium. In modified
313 MpT1, WWM1085 showed the optimal growth at a pH range of 6.5-7. The type strain *M.*
314 *smithii* PS showed an optimal pH range between pH 6.9 and 7.4 (40). None of the isolates,
315 showed growth at pH 5 and 11.

316

317

318

319

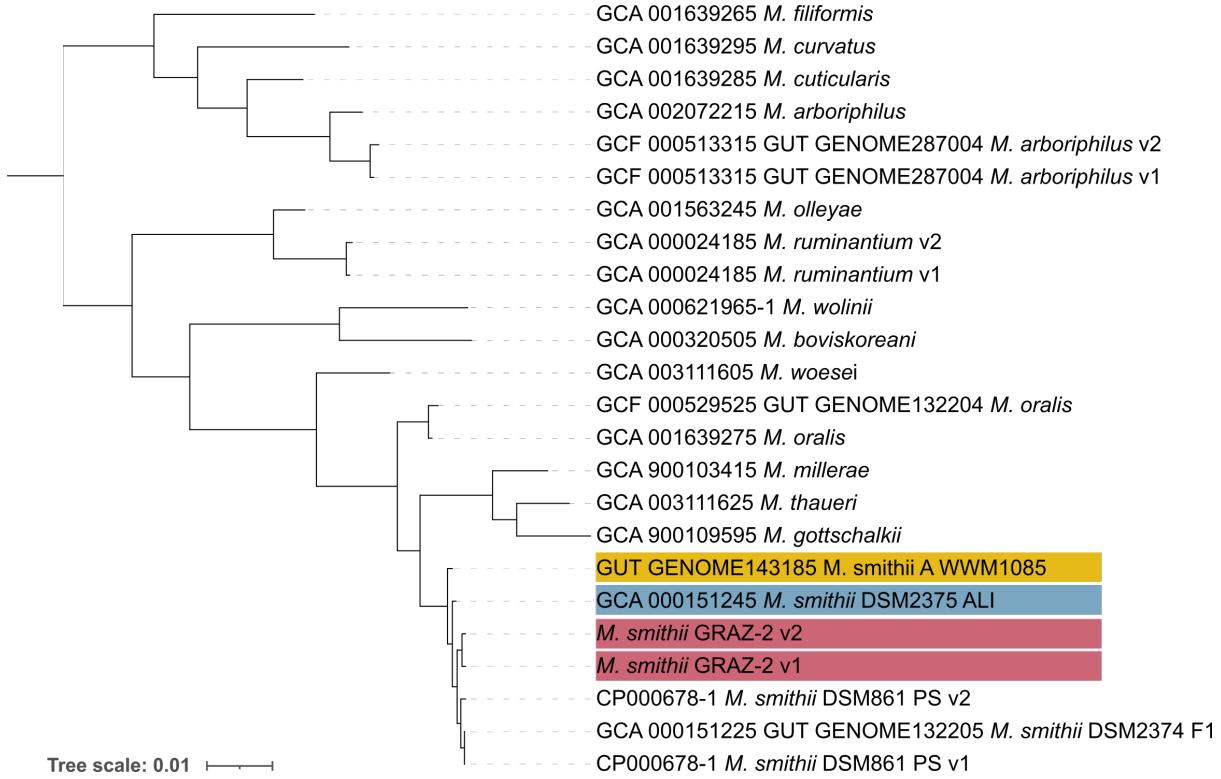
320

321 **Table 1.** Optimal pH and temperature for the growth of the studied strains. Growth was determined
322 by measuring OD600 in the growth medium and the ability of the strains to produce methane. (+) minimal growth; (++) moderate growth; (+++) optimal growth; (-) no growth; ND: Not determined.

324

Strain		<i>M. smithii</i> ALI	<i>M. smithii</i> GRAZ-2	WWM1085	
Growth condition	Medium	MS	MS	MS	Modified MpT1
	Temperature (°C)	20	⊕	⊕	⊕
pH	30	⊕	⊕	⊕⊕	⊕⊕
	35	⊕	⊕	⊕⊕⊕	⊕⊕
	37	⊕⊕	⊕⊕	⊕⊕⊕	⊕⊕⊕
	39	⊕⊕⊕	⊕⊕⊕	⊕⊕⊕	⊕⊕⊕
	40	⊕⊕⊕	⊕⊕⊕	⊕	⊕⊕
	50	⊕	⊕	⊕	⊕
	5	⊕	⊕	⊕	⊕
6.5	⊕	⊕	⊕⊕	⊕⊕⊕	
7	⊕⊕⊕	⊕⊕⊕	⊕⊕⊕	⊕⊕	
8	⊕⊕⊕	⊕⊕⊕	⊕⊕⊕	⊕⊕	
9	⊕⊕	⊕⊕	⊕⊕	⊕	
10	⊕⊕	⊕	⊕	⊕	ND
11	⊕	⊕	⊕	⊕	

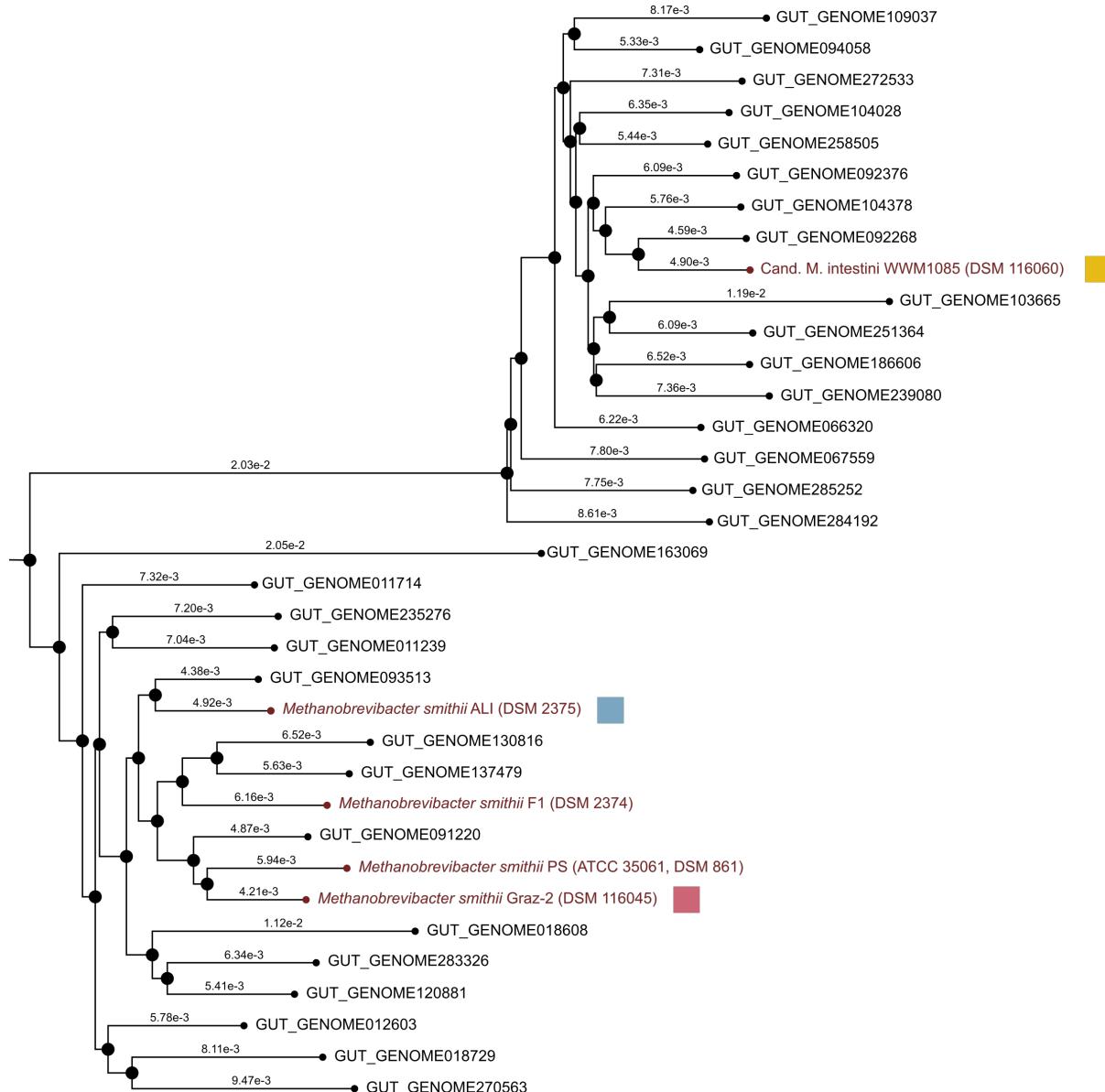
325


326 **Optimum temperature range for growth and methane production**

327 All three isolates exhibited growth and methane production within a temperature range of
328 30-40°C (30, 35, 37, 39, and 40°C) (Table 1). In the modified standard archaeal medium, the
329 optimum temperature range for *M. smithii* ALI, *M. smithii* GRAZ-2, and WWM1085 was
330 determined to be 39-40°C, 39-40°C, and 35-39°C, respectively (Table 1). Notably, WWM1085
331 demonstrated the identical optimal growth at 35-39°C in the modified MpT1 medium, too. In

332 summary, WWM1085 displayed a broader but lower temperature range for moderate or
333 optimal growth as compared to the other two strains. No growth was observed under more
334 extreme temperature conditions (20°C or 50°C) for any of the isolates. The type strain *M.*
335 *smithii* PS showed an optimal temperature range between 37 and 39°C (40).

336 **Phylogenetic relationships**


337 The full-length 16S rRNA gene analysis of WWM1085 showed small variations as compared
338 to closely related *Methanobrevibacter smithii* isolates (*M. smithii* ALI: 0.135%, *M. smithii* PS:
339 0.203%; Supplementary Table S2). These slight discrepancies pose a challenge for
340 differentiating the isolates solely through 16S rRNA gene sequencing. It's important to
341 highlight that these sequence variations arose within a homopolymeric sequence region
342 (multiple T), and at this juncture, we cannot dismiss the possibility of differences arising from
343 sequencing artifacts or technical issues. The 16S rRNA gene of *M. smithii* GRAZ-2 was found
344 to be highly similar to the genes of *M. smithii* PS and *M. smithii* ALI (difference: 0.068%;
345 Supplementary Table S2) (Fig. 2).

361 DSMZ collection (30.3% as opposed to 31.0-31.3%). When performing pairwise ANI
362 calculations, the similarity values of WWM1085 against strains from GenomesDB and the
363 culture collection consistently fell well below the species threshold (cutoff: 95%). The closest
364 relatives were found to be *M. smithii* ALI (ANI: 93.04%) and *M. smithii* PS (ANI: 93.55%).

365 Consequently, it can be concluded that WWM1085 represents a distinct species within the
366 *Methanobrevibacter* genus. However, it is important to note that despite these genomic
367 differences, the disparities in the 16S rRNA gene are subtle, and in some cases, imperceptible
368 in amplicon-based studies.

369 *M. smithii* GRAZ-2 showed the closest relationship to *M. smithii* PS (ANI: 99.04 %) and
370 therefore does not represent a novel species within the *Methanobrevibacter* genus (all
371 information given in Supplementary Table S6). For visualization, a genome-based tree is
372 provided in Fig. 3.

373

374 **Fig. 3.** Neighbour Joining tree, calculated for genomes of *Methanobrevibacter* isolates (which are
375 available in culture collections and are shown in dark red), and respective MAGs (Chibani et al., 2022)
376 from the *M. smithii* clade. Representative genomes of the recently identified clade centered around
377 WWM1085 (highlighted with a yellow square) are designated as “Mbb_smithii_A” based on the current
378 GTDB classification. Consistent and stable clustering of the two *Methanobrevibacter* clades was
379 observed. Pink square indicates *M. smithii* GRAZ-2, blue square *M. smithii* ALI. Distances based on the
380 Mash distance matrix (24) are correlated to the average nucleotide identity (ANI) such as $D \approx 1 - ANI$.

381 WWM1085 shares its closest genetic relationship with the readily accessible *M. smithii* strain,
382 known as *M. smithii* ALI. Notably, this particular strain was isolated from human
383 gastrointestinal samples as well (in contrast to the available *M. smithii* PS, which was isolated

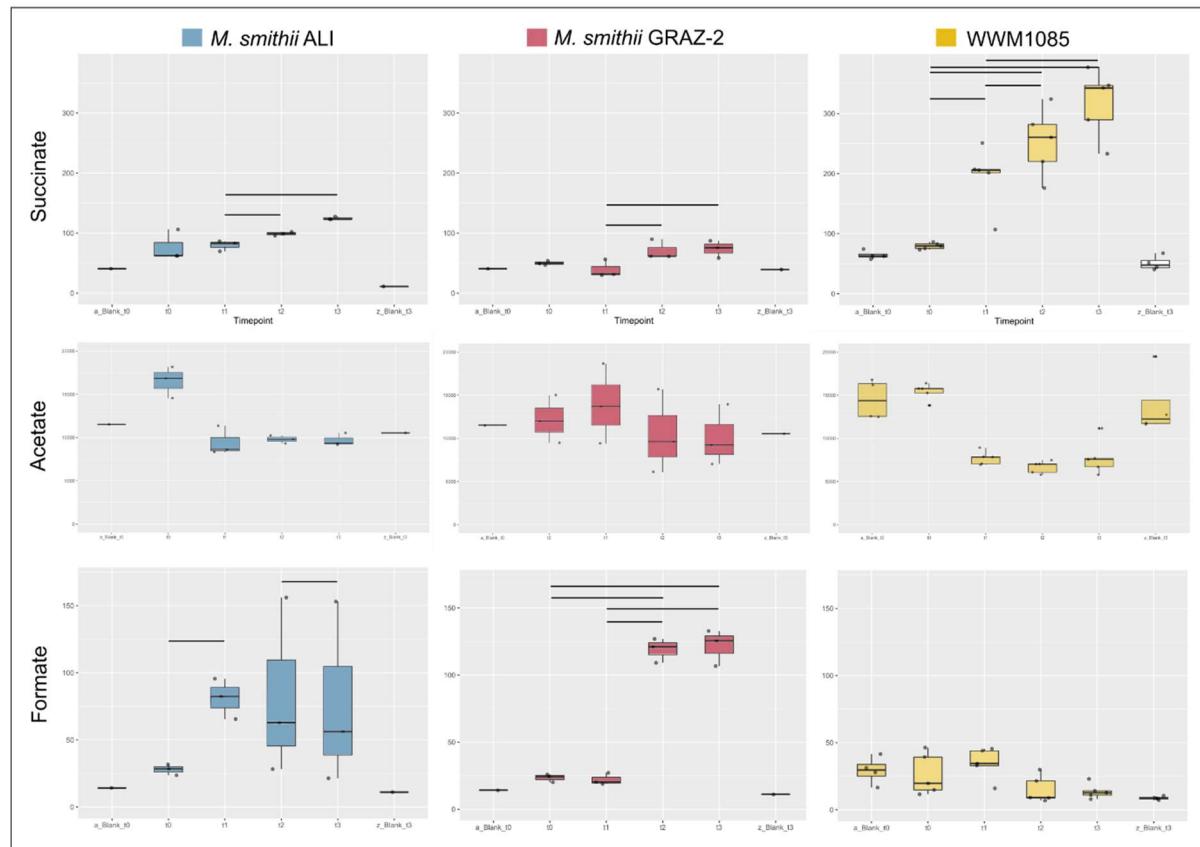
384 from sewage). Consequently, throughout this study, WWM1085 and *M. smithii* GRAZ-2 were
385 specifically compared to *M. smithii* ALI.

386 **Polar lipid composition and lipid-associated sugars**

387 Major detected lipids were largely congruent across species and strains, with archaeol
388 ($C_{43}H_{88}O_3$) being the most prevalent lipid (Relative abundance for *M. smithii* ALI: 83.93%;
389 WWM1085: 72.57%; and *M. smithii* GRAZ-2: 93.85%), followed by Caldarchaeol ($C_{86}H_{172}O_6$)
390 (*M. smithii* ALI: 13.65%; WWM1085: 26.37%; *M. smithii* GRAZ-2: 5.81%), and cyclic archaeol
391 ($C_{43}H_{86}O_3$) (*M. smithii* ALI: 0.65%; WWM1085: 1.06%; *M. smithii* GRAZ-2: 0.34%). Traces of
392 glycerol dialkyl glycerol tetraether lipids (GDGT-1) or H-shaped caldarchaeol were found in *M.*
393 *smithii* ALI (1.77%), but not in the other strains.

394 Lipid-associated sugar profiles were very similar for all strains with glucose being most
395 prevalent, accompanied by minor amounts of fructose, rhamnose, ribose and xylose.

396 **Comparative genomics and metabolomics**


397 Detailed genomic comparisons of WWM1085 with available *M. smithii* genomes are provided
398 in our earlier publication (8), indicating several differences. For instance, WWM1085 does not
399 possess modA/B for molybdate transport. The *M. smithii*_A genomes (including those from
400 MAGs) were further characterized by additional unique membrane/cell-wall-associated
401 proteins, such as adhesin-like proteins, surface proteins and a number of uncharacterized
402 membrane proteins/transporters (8). Notably, *M. smithii* GRAZ-2 and the WWM1085 genome
403 contained the ABC.FEV.P/S/A iron transport system (EC 3.6.3.34), which was distinctive to all
404 other tested genomes, indicating a potential adaptation towards the human gut environment,
405 where iron is a highly-demanded resource.

406 Utilizing NMR-based metabolomics, the turnover of metabolites was examined among three
407 strains (*M. smithii* ALI, *M. smithii* GRAZ-2, and WWM1085) in a medium containing yeast
408 extract. All strains reached the stationary phase after 72 h (*M. smithii* ALI and WWM1085) or
409 at the latest, after 168 h (*M. smithii* GRAZ-2) of growth (growth curves shown in
410 Supplementary Fig. 1).

411 All strains exhibited a notable and expected statistically significant uptake of acetate and
412 production of succinate, which was highest in the WWM1085 culture (4-fold increase; Fig. 4)
413 (Supplementary Table S7).

414 Unlike the *M. smithii* cultures, WWM1085 did not exhibit formate accumulation in the
415 medium. Specifically, there was a notable and substantial increase in formate accumulation
416 for *M. smithii* GRAZ-2, reaching a fivefold increase (Fig. 4).

Compound	DSM 2375 ALI	GRAZ-2	WWM1085
Succinate ($\text{C}_4\text{H}_6\text{O}_4$)	⊕	⊕	⊕⊕⊕⊕
Acetate ($\text{C}_2\text{H}_3\text{O}_2$)	⊖	⊖	⊖
Formate (CH_2O_2)	⊕⊕	⊕⊕⊕⊕⊕	⊖

418 **Fig. 4.** Metabolic dynamics and variability in various compounds among the studied
419 *Methanobrevibacter* strains in MS medium supplemented with yeast extract. Concentrations in $\mu\text{M/L}$.
420 Upper panel (table): The symbols indicate statistically significant changes over time, with the number
421 of symbols reflecting the fold change (e.g., 5 symbols denote a 5-fold change or more). The gray
422 symbol signifies a statistical trend ($p=0.05X$). The symbol "-" denotes no change. Lower panel: Boxplots
423 of the respective measurements (all original data provided in Supplementary Table S7). It's
424 noteworthy that media blanks did not exhibit any statistically significant changes in compound levels.

425

426 All biological properties of the tested strains, including *M. smithii* PS are provided in Table 2.

427

428

429 **Table 2.** Distinguishing features among the strains *M. smithii* ALI, *M. smithii* GRAZ-2, and WWM1085.

430 * Description for type strain *M. smithii* PS taken from (40) and (42). ND: Not determined, med: medium.

431

432

Trait	<i>M. smithii</i> PS (type strain) *	<i>M. smithii</i> ALI	<i>M. smithii</i> GRAZ-2	WWM1085 (MS med.)	WWM1085 (MpT1 med.)
DSM indication number	DSM 861	DSM 2375	DSM 116045	DSM 116060	
Cell shape	Short, lancet-shaped to oval cocci	Coccobacillus, short rods	Coccobacillus, short rods	Coccobacillus, short rods	
Cell size, width, length	0.5-1.0 µm 1.0-1.5 µm	0.22-0.54 µm 0.26-0.77 µm	0.18-0.58 µm 0.33-1.46 µm	0.16-0.43 µm 0.29-0.54 µm	
Genome size	1.85 Mbp	1.71 Mbp	1.79 Mbp	1.9 Mbp	
DNA G+C content (mol%)	31.03	31.28	31.11	30.30	
N50	1.85 Mbp	226.2 kb	1.79 Mbp	240.4 kb	
Number of contigs	1	24	1	16	
Number of CDS	1838	1712	1906	1875	
Number of tRNAs	34	33	34	34	
Lipid profile	mostly (cald-)archaeol	mostly archaeol	mostly archaeol	mostly archaeol	
Temperature range (°C)	ND	30-40	30-40	30-40	
Optimal temperature (°C)	37-39	39-40	39-40	35-39	37-40
pH range	ND	6.5-10	6.5-10	6.5-10	6.5-9
Optimal pH	6.9-7.4	7-7.5	7-7.5	7-7.5	6.5-7
growth on formate as sole H ₂ source	Possibly	No	No	No	
CO ₂ /H ₂ as carbon and energy source	Yes	Yes	Yes	Yes	
Isolation source	Sludge	Human	Human	Human	

433

434

435 **Description of *Methanobrevibacter intestini* sp. nov.**

436

437 *Methanobrevibacter intestini* (in.tes.ti'ni. L. gen. n. *intestini*, of the gut). Coccobacillus with
438 slightly tapered or rounded ends, about 0.16-0.43 μm in width and 0.29-0.54 μm in length,
439 occurring mostly in pairs or short chains. The DNA GC content is 30.30 mol%. Optimum
440 temperature: 35-40°C; optimum pH 6.5-7.5. Strictly anaerobic. Grows and produces methane
441 from H_2 and CO_2 . Requires acetate and additional organics (e.g. yeast extract) for growth. Can
442 not grow on formate as a sole electron source. Genome comparisons with type species *M.*
443 *smithii* PS revealed numerous differences including an average nucleotide identity of 93.55%.
444 With such, WWM1085 represents a novel species within the *Methanobrevibacter* genus, and
445 is the first isolated representative. Strain WWM1085 was isolated from human feces from an
446 US American individual. The type strain WWM1085^T (=DSM 116060, CECT 30992). The
447 GenBank accession number of its genome is NQLD00000000.

448

449 **Sequencing data**

450 The GenBank accession number of the genome of WWM1085 is NQLD00000000. The genome
451 of GRAZ-2 is available through BioProject ID PRJNA1067514. The 16S rRNA gene sequence of
452 WWM1085 is available through NCBI GenBank PP338268.

453

454 **Funding information**

455 This research was funded in whole or in part by the Austrian Science Fund (FWF) [grants P
456 32697, P 30796, COE 7, 10.55776/P28854, 10.55776/I3792, 10.55776/DOC130, and
457 10.55776/W1226]; Austrian Research Promotion Agency (FFG) grants 864690 and 870454;
458 the Integrative Metabolism Research Center Graz; the Austrian Infrastructure Program
459 2016/2017; the Styrian Government (ZukunftsFonds, doc.fund program); the City of Graz; and

460 BioTechMed-Graz (flagship project). For open access purposes, the author has applied a CC
461 BY public copyright license to any author-accepted manuscript version arising from this
462 submission.

463

464 **Conflicts of interest**

465 The authors declare that there is no conflict of interest regarding the publication of this
466 research paper.

467

468 **Acknowledgements**

469 We would like to acknowledge the computational resources of the MedBioNode at the
470 Medical University of Graz, as funded by the Austrian Federal Ministry of Education, Science
471 and Research, Hochschulraum-Strukturmittel 2016 grant as part of BioTechMed Graz, and the
472 support of the ZMF team at the Core Facility Computational Bioanalytics (Medical University
473 of Graz). We further thank Birgit Grün and Gesa Martens (DSMZ) for excellent technical
474 assistance.

475

476

477

478 **References**

- 479 1. Borrel G, Brugère JF, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-
480 associated archaeome. Vol. 18, *Nature Reviews Microbiology*. Nature Research;
481 2020. p. 622–36.
- 482 2. Youngblut ND, Reischer GH, Dauser S, Maisch S, Walzer C, Stalder G, et al.
483 Vertebrate host phylogeny influences gut archaeal diversity. *Nat Microbiol* [Internet].
484 2021 Nov 26;6(11):1443–54. Available from: <https://www.nature.com/articles/s41564-021-00980-2>
- 485 3. Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G. Factors shaping the
486 abundance and diversity of the gut archaeome across the animal kingdom. *Nat
487 Commun.* 2022 Jun 10;13(1):3358.
- 488 4. Kumpitsch C, Fischmeister FPS, Mahnert A, Lackner S, Wilding M, Sturm C, et al.
489 Reduced B12 uptake and increased gastrointestinal formate are associated with
490 archaeome-mediated breath methane emission in humans. *Microbiome*. 2021;9(1):1–
491 18.
- 492 5. Bryant MP, Tzeng SF, Robinson IM, Joiner AEJ. Nutrient requirements of
493 methanogenic bacteria. In: Pohland FG, editor. *Anaerobic biological treatment
494 processes*. Amer. Chem. Soc.; 1971. p. 23–40.
- 495 6. Miller TL, Wolin MJ. Fermentation by the human large intestine microbial community
496 in an in vitro semicontinuous culture system. *Appl Environ Microbiol* [Internet]. 1981
497 [cited 2024 Jan 26];42(3):400–7. Available from:
498 <https://journals.asm.org/doi/10.1128/aem.42.3.400-407.1981>
- 499 7. Rinke C, Chuvochina M, Mussig AJ, Chaumeil PA, Davín AA, Waite DW, et al. A
500 standardized archaeal taxonomy for the Genome Taxonomy Database. *Nat Microbiol*.
501 2021;1–14.
- 502 8. Chibani CM, Mahnert A, Borrel G, Almeida A, Werner A, Brugère JF, et al. A
503 catalogue of 1,167 genomes from the human gut archaeome. *Nat Microbiol*. 2022 Jan
504 30;7(1):48–61.
- 505 9. Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S
506 rRNA in the phylogenetic analysis of methanogen populations in landfill b bThe
507 GenBank accession numbers for the mcrA sequences reported in this paper are
508 AF414034–AF414051 (see Fig. 2) and AF414007–AF414033 (environmental isolates
509 in Fig. 3). *Microbiology (N Y)*. 2002 Nov 1;148(11):3521–30.
- 510 10. Jennings ME, Chia N, Boardman LA, Metcalf WW. Draft genome sequence of
511 *Methanobrevibacter smithii* Isolate WWM1085, obtained from a human stool sample.
512 *Genome Announc*. 2017;5(39):e01055-17.
- 513 11. Mohammadzadeh R, Mahnert A, Duller S, Moissl-Eichinger C. Archaeal key-residents
514 within the human microbiome: characteristics, interactions and involvement in health
515 and disease. *Curr Opin Microbiol*. 2022 Jun 1;67:102146.
- 516 12. Hungate RE. Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes.
517 *Methods in Microbiology*. 1969 Jan 1;3(PART B):117–32.
- 518 13. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of
519 a unique biological group. *Microbiol Rev*. 1979;43(2):260.
- 520 14. Paul K, Nonoh JO, Mikulski L, Brune A. “*Methanoplasmatales*,” *Thermoplasmatales*-
521 related archaea in termite guts and other environments, are the seventh order of
522 methanogens. *Appl Environ Microbiol*. 2012;78(23):8245–53.

524 15. Walker JJ, Pace NR. Phylogenetic Composition of Rocky Mountain Endolithic
525 Microbial Ecosystems. *Appl Environ Microbiol* [Internet]. 2007 Jun [cited 2024 Jan
526 26];73(11):3497. Available from: [/pmc/articles/PMC1932665/](https://PMC1932665/)

527 16. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of
528 general 16S ribosomal RNA gene PCR primers for classical and next-generation
529 sequencing-based diversity studies. *Nucleic Acids Res*. 2013 Jan;41(1):e1–e1.

530 17. ContEST16S tool. <https://www.ezbiocloud.net/tools/contest16s>. 2024. ContEst16S
531 tool .

532 18. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
533 throughput. *Nucleic Acids Res*. 2004 Mar 8;32(5):1792–7.

534 19. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and
535 space complexity. *BMC Bioinformatics*. 2004 Aug 19;5(1):113.

536 20. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis
537 Version 11. *Mol Biol Evol* [Internet]. 2021 Jun 25 [cited 2024 Feb 13];38(7):3022–7.
538 Available from: <https://dx.doi.org/10.1093/molbev/msab120>

539 21. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple
540 sequence alignment of ribosomal RNA genes. *Bioinformatics*. 2012;28(14):1823–9.

541 22. Price MN, Dehal PS, Arkin AP. FastTree: Computing Large Minimum Evolution Trees
542 with Profiles instead of a Distance Matrix. *Mol Biol Evol*. 2009 Jul 1;26(7):1641–50.

543 23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
544 ribosomal RNA gene database project: improved data processing and web-based
545 tools. *Nucleic Acids Res*. 2013 Jan;41(D1):D590–6.

546 24. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, et al. MicroScope: an
547 integrated platform for the annotation and exploration of microbial gene functions
548 through genomic, pangenomic and metabolic comparative analysis. *Nucleic Acids
549 Res* [Internet]. 2020 Jan 8 [cited 2024 Feb 13];48(D1):D579–89. Available from:
550 <https://dx.doi.org/10.1093/nar/gkz926>

551 25. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server
552 for prokaryotic species circumscription based on pairwise genome comparison.
553 *Bioinformatics* [Internet]. 2016 Mar 15 [cited 2024 Feb 13];32(6):929–31. Available
554 from: <https://dx.doi.org/10.1093/bioinformatics/btv681>

555 26. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al.
556 Mash: fast genome and metagenome distance estimation using MinHash. *Genome
557 Biol*. 2016;17(1):1–14.

558 27. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for
559 prokaryotes. *Proceedings of the National Academy of Sciences*. 2005 Feb
560 15;102(7):2567–72.

561 28. Hofmann M, Norris PR, Malik L, Schippers A, Schmidt G, Wolf J, et al. Metallosphaera
562 javensis sp. nov., a novel species of thermoacidophilic archaea, isolated from a
563 volcanic area. *Int J Syst Evol Microbiol*. 2022 Oct 17;72(10).

564 29. Weber Y, Sinninghe Damsté JS, Hopmans EC, Lehmann MF, Niemann H. Incomplete
565 recovery of intact polar glycerol dialkyl glycerol tetraethers from lacustrine suspended
566 biomass. *Limnol Oceanogr Methods*. 2017 Sep;15(9):782–93.

567 30. Lengger SK, Hopmans EC, Sinninghe Damsté JS, Schouten S. Impact of sedimentary
568 degradation and deep water column production on GDGT abundance and distribution
569 in surface sediments in the Arabian Sea: Implications for the TEX86
570 paleothermometer. *Geochim Cosmochim Acta*. 2014 Oct;142:386–99.

571 31. Bligh EG, Dyer WJ. A RAPID METHOD OF TOTAL LIPID EXTRACTION AND
572 PURIFICATION. *Can J Biochem Physiol*. 1959 Aug 1;37(8):911–7.

573 32. Besseling MA, Hopmans EC, Boschman RC, Sinnighe Damsté JS, Villanueva L.
574 Benthic archaea as potential sources of tetraether membrane lipids in sediments
575 across an oxygen minimum zone. *Biogeosciences*. 2018 Jul 4;15(13):4047–64.

576 33. Schumann P. Peptidoglycan Structure. In 2011. p. 101–29.

577 34. Will SE, Henke P, Boedeker C, Huang S, Brinkmann H, Rohde M, et al. Day and
578 Night: Metabolic Profiles and Evolutionary Relationships of Six Axenic Non-Marine
579 Cyanobacteria. *Genome Biol Evol*. 2019 Jan 1;11(1):270–94.

580 35. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D.
581 MetaboliteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted
582 GC/MS Based Metabolome Analysis. *Anal Chem*. 2009 May 1;81(9):3429–39.

583 36. Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D. Time-resolved amino acid
584 uptake of *Clostridium difficile* 630Δerm and concomitant fermentation product and
585 toxin formation. *BMC Microbiol*. 2015 Dec 18;15(1):281.

586 37. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as
587 robust method to account for dilution of complex biological mixtures. Application in ¹H
588 NMR metabonomics. *Anal Chem*. 2006 Jul;78(13):4281–90.

589 38. Bohus E, Coen M, Keun HC, Ebbels TMD, Beckonert O, Lindon JC, et al. Temporal
590 Metabonomic Modeling of L-Arginine-Induced Exocrine Pancreatitis. *J Proteome Res*.
591 2008 Oct 3;7(10):4435–45.

592 39. Hedjazi L, Gauguier D, Zalloua PA, Nicholson JK, Dumas ME, Cazier JB.
593 mQTL.NMR: An Integrated Suite for Genetic Mapping of Quantitative Variations of ¹H
594 NMR-Based Metabolic Profiles. *Anal Chem*. 2015 Apr 21;87(8):4377–84.

595 40. Balch, WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation
596 of a unique biological group. *Microbiol Rev [Internet]*. 1979 Jun [cited 2024 Feb
597 13];43(2):260–96. Available from: <https://journals.asm.org/journal/mr>

598 41. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified
599 catalog of 204,938 reference genomes from the human gut microbiome. *Nat
600 Biotechnol*. 2021;39(1):105–14.

601 42. Sprott GD, Brisson JR, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, et al. A
602 structural comparison of the total polar lipids from the human archaea
603 *Methanobrevibacter smithii* and *Methanospaera stadtmanae* and its relevance to the
604 adjuvant activities of their liposomes¹¹Publication number 42395 of the National
605 Research Council of Canada. *Biochimica et Biophysica Acta (BBA) - Molecular and
606 Cell Biology of Lipids*. 1999 Sep;1440(2–3):275–88.

607