

1 **Exploring Probiotic Potential: A Comparative Genomics and In Silico Assessment of Genes**
2 **within the Genus *Geobacillus***

3 Ishfaq Nabi Najar¹, Prayatna Sharma², Rohit Das³, Krishnendu Mondal⁴, Ashish Kumar Singh⁵,
4 Anu Radha⁶, Varsha Sharma⁷, Sonali Sharma⁸, Nagendra Thakur⁹, Sumit G. Gandhi¹⁰ and Vinod
5 Kumar^{11*}

6 **Authors:**

7 **Dr. Ishfaq Nabi Najar¹**, Research Associate, Fermentation and Microbial Biotechnology
8 Division, CSIR IIIM, Jammu India. Email: urooj.ishfaq@gmail.com.

9 **Prayatna Sharma²**, Ph.D. Scholar, Department of Microbiology, School of Life Sciences, Sikkim
10 University, 6th Mile, Samdur, Tadong, Gangtok – 737102, Sikkim, India. Email:
11 psharma.su@gmail.com.

12 **Rohit Das³**, Ph.D. Scholar, Department of Microbiology, School of Life Sciences, Sikkim
13 University, 6th Mile, Samdur, Tadong, Gangtok – 737102, Sikkim, India. Email:
14 rohithd322@gmail.com.

15 **Krishnendu Mondal⁴**, Ph.D. Scholar, Department of Microbiology, Vidyasagar University,
16 Midnapur India. Email: kmondals99@gmail.com.

17 **Ashish Kumar Singh⁵**, Research Associate, Department of Biotechnology and Synthetic Biology,
18 CIAB, Mohali, India. Email: a.singhmicro@gmail.com.

19 **Anu Radha⁶**, Ph.D. Scholar, Fermentation and Microbial Biotechnology Division, CSIR IIIM,
20 Jammu India. Email: anur8492@gmail.com.

21 **Varsha Sharma⁷**, Ph.D. Scholar, Fermentation and Microbial Biotechnology Division, CSIR
22 IIIM, Jammu India. Email: sophiasharma224@gmail.com.

23 **Sonali Sharma⁸**, MSc, Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu
24 India. Email: sonalisonali607@gmail.com.

25 **Dr. Nagendra Thakur⁹**; Associate Professor, Department of Microbiology, School of Life
26 Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok – 737102, Sikkim, India. Email:
27 nthakur@cus.ac.in.

28 **Dr. Sumit G. Gandhi¹⁰**; Sr. Principal Scientist, Infectious Diseases Division. CSIR IIIM Jammu,
29 India. Email: sumit@iiim.res.in.

30 ***Corresponding Author: Dr. Vinod Kumar¹¹**, Scientist, Fermentation and Microbial
31 Biotechnology Division, CSIR IIIM, Jammu India. Phone No. +91-8427595494, Email:
32 vinod.udsc@iiim.res.in.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 Abstract

55 The pursuit of new probiotic targets has seen a surge, aided by next-generation sequencing,
56 facilitating a thorough exploration of bacterial traits. The genus *Geobacillus* stands out as a
57 promising target for uncovering its potential as a probiotic. The study explored the genetic
58 attributes of the genus *Geobacillus* for their resilience to gastrointestinal conditions, nutrient
59 production, and immunomodulatory compound creation, revealing potential probiotic traits.
60 Additionally, the research undertook predictive analyses of genomic elements such as prophages,
61 CRISPR-Cas systems, insertion sequences, genomic islands, antibiotic resistance genes, and
62 CAZymes. These evaluations aimed to assess the safety aspects associated with the genus
63 *Geobacillus*. A comparative genomic analysis was also carried out using 18 validly published
64 genomes of the genus *Geobacillus* and a few other genomes of *Lactobacillus* and *Bifidobacterium*
65 were taken as control. Genes associated with probiotic traits like adhesion, stress tolerance
66 (acid/bile, osmotic, oxidative), immune modulation, and molecular chaperones were uniformly
67 detected in the *Geobacillus* genus. Notably, mobile genetic elements such as plasmids, prophages,
68 and insertion sequences were absent, as were virulence factors, toxins, and Antibiotic resistance
69 genes. Additionally, CRISPR-Cas systems and CAZymes were present. The pan-genome
70 encompassed 25,284 protein-coding genes with translation. Comparative genomic analysis
71 revealed an open pan-genome for *Geobacillus*. Pan-genome exhibited variability, particularly in
72 genes linked to environmental interaction and secondary metabolite synthesis. In conclusion,
73 *Geobacillus* appears potentially safe and well-suited for the gut habitat. However, further *in vitro*
74 studies are essential to add to the knowledge of the probiotic potential of *Geobacillus* species.
75

76 Importance

77 This comprehensive study highlights the significant probiotic potential and genetic makeup of the
78 *Geobacillus* genus, shedding light on its unique attributes in adapting to extreme environmental
79 conditions. Understanding the probiotic properties of *Geobacillus* is crucial amidst growing
80 concerns over antibiotic resistance, offering promising alternatives for combating pathogenic
81 microbes. Additionally, exploring the genetic diversity and adaptive mechanisms of *Geobacillus*
82 through genomic and metagenomic approaches provides valuable insights into its biotechnological
83 applications and evolutionary history. By employing in-silico methods and comparative analyses
84 with established probiotic genera, this study contributes to elucidating the probiotic characteristics

85 of *Geobacillus*, paving the way for further research in harnessing its beneficial traits for various
86 applications in health, biotechnology, and environmental remediation.

87

88

89 **Key Words:** *Geobacillus*, Probiotics, Pan-Genome, Comparative Genomics, Probiogenomics,
90 Phylogenetics

91

92 **Introduction**

93 The Earth encompasses unique repositories characterized by extreme environmental conditions,
94 where some microbes termed extremophiles thrive with the aid of evolutionary adaptations
95 required for survival (1). Particularly, the genus *Geobacillus* belongs to obligate thermophilic,
96 Gram-positive rods, aerobic or facultative aerobic species, thriving in the warmest regions on
97 earth, from geothermal springs to equatorial deserts. Surviving in regions accustomed to 45-80°C,
98 these obligatory thermophiles possess optimum growth at 55-65°C (2, 3). Previously known to
99 belong to the genus *Bacillus*, the reclassified genus *Geobacillus* holds immense biotechnological
100 importance. Their habitat remains remarkably diverse, ranging from cold environments such as
101 Antarctica (4) to extremely hot niches (5). Their ability to withstand harsh temperature conditions
102 paves their way towards numerous biotechnological applications; these species serve as key hosts
103 for thermostable proteins with robust catalytic activity, such as amylases, protease, and lipases;
104 and also serve various roles in bioprocessing applications such as bioproduction of biofuels and
105 biodiesel and bioremediation (2, 6).

106 The genus *Geobacillus* was previously classified as a separate unit, known as group 5 of the
107 thermophilic genus *Bacillus*, as demonstrated by a 16S rRNA gene sequencing study by Ash et al,
108 1991 (7). However, due to genetic heterogeneity, the revision of taxonomic classification let the
109 group be reclassified as *Geobacillus* (7). Currently, there are 20 species prescribed under the genus
110 *Geobacillus* (8). Research since the last century has involved the reclassification of the genus
111 *Bacillus* to *Geobacillus*, with the earliest report of isolation of *Bacillus stearothermophilus* (now
112 termed *Geobacillus stearothermophilus*) by Donk (9). Until the end of the 21st century, a
113 taxonomic study carried out by (10) revealed species of *B. kaustophilus*, *B. stearothermophilus*, *B.*

114 *thermocatenulatus*, *B. thermodenitrificans*, *B. thermoglucosidasius*, and *B. thermoleovorans*
115 exhibited similar physiological and phylogenetic properties, thereby classifying these species into
116 a new genus “*Geobacillus*”. With most of the species with a Gram-positive nature and few showing
117 a Gram-variable nature, the bacteria appear in short chains and may or may not be motile. With an
118 optimum temperature for growth at 55–65 °C, these species are obligate thermophiles and exhibit
119 growth in neutral pH ranges (6.0–8.5) (1). The nutritional profile of *Geobacillus* emerges as
120 chemoorganotrophs, with oxygen as the terminal electron acceptor (with few cases showing nitrate
121 as an electron acceptor). The species require no special nutrients like vitamins and can be grown
122 in simple media such as nutrient agar, with basic requirements like carbohydrates, peptone, and
123 tryptone as primary carbon and energy sources (11). Various studies have been done to evaluate
124 the biotechnological potential of the *Geobacillus* species, however, there are very few studies done
125 on the probiotic potential of the genus *Geobacillus*.

126 Probiotics that are often considered live microbes confer health benefits when administered due to
127 their antagonistic activity against their surrounding microbes (12). Considering the immense
128 global threat that antibiotic resistance poses to humanity today (13), there remains a constant need
129 for novel strains with enhanced probiotic properties that confer stronger activity against pathogenic
130 microbes. Members belonging to the *Firmicutes* have gained considerable attention for their
131 probiotic properties for humans and animals (14, 15). The genera *Geobacillus* and *Parageobacillus*
132 secrete anti-microbial compounds such as bacteriocins, antibiotics, and bacteriocin-like inhibitory
133 substances (BLISes) and serve as potential candidates exhibiting unique probiotic properties (12).
134 For instance, a preliminary study on *Geobacillus thermoleovorans* isolated from oil waste showed
135 antimicrobial activity against pathogenic strains of *Salmonella typhimurium*, *Vibrio*
136 *parahemolitycus*, *Staphylococcus aureus* as evident by antagonism and adherence assay, denoting
137 the strain as a potential probiotic candidate (16). The ability to adhere to abiotic surfaces to create
138 a bio-secure environment may assist in inhibiting the growth of pathogenic strains (12). Other
139 mechanisms include the inhibition of Quorum-sensing in Gram-negative bacteria by *Geobacillus*
140 strains, due to their Acyl Homoserine Lactones (AHLs) degrading ability (17). The plausible
141 explanation for their candidature in the ever-increasing probiotic market may be due to their
142 enhanced survival strategies as compared to the routinely used probiotic strains. Additionally,
143 these organisms are part of a group that is both biologically safe and non-pathogenic. They are
144 recognized as a bimodal probiotic microbiota present in both humans and animals and are an

145 essential composite of the soil, skin, gastrointestinal, and plant microbiome (15). The strains of
146 *Geobacillus* thrive in extreme environmental parameters of high temperature, different pH ranges,
147 UV radiation, heavy metals, salts, organic/inorganic chemicals and detergents, and arid and
148 minuscule moisture environments, mainly owned by their ability to form durable endospores (12,
149 15).

150 Various reports suggest the prevalence of antibiotic resistance in mesophilic bacterial species,
151 however, the phenomenon of antibiotic resistance in thermophiles is lesser known. It remains
152 crucial to unravel the antibiotic resistance patterns and the intricate mechanism involved in
153 thermophilic bacteria, given the immense biotechnological applications that the thermophilic
154 bacteria impose (Najar et al., 2020c). Understanding antibiotic resistance in thermophiles remains
155 crucial. Very few studies suggest the study of antibiotic-resistance profiling among thermophilic
156 bacteria. Given this, Najar et al, 2022 conducted research to study antibiotic resistance prevailing
157 in the microbiota of Sikkim hot springs. Both the culture-dependent and PCR amplification
158 analyses revealed the absence of antibiotic resistance by the thermophilic bacteria. Similarly, no
159 antibiotic-resistance genes were found in *Geobacillus* species, suggesting that the genus
160 susceptible to antibiotics natively (13). However, it is crucial to evaluate the genetic makeup of
161 these *Geobacillus* species, particularly emphasizing the diverse attributes that contribute to their
162 probiotic potential using metagenomic and pan-genomic approaches.

163 One of the approaches such as standard Sanger sequencing is well known and over the years,
164 numerous sequencing platforms like the next generation sequencing have emerged that employ
165 different sequencing strategies to unravel the genomic and metabolic potential of the genome (19).
166 Genome sequencing infers to unraveling the sequences of the entire genome of an organism,
167 instead of sequencing individual genes (20). The whole genome shotgun sequencing method helps
168 in understanding the metabolic and genomic potential of the repertoire of genes present in an
169 organism. Deciphering the complete genome of an organism helps to provide insight into
170 understanding the metabolic potential, metabolomics, functional genes, and adaptive mechanisms
171 (21). For instance, the whole genome sequence of a putative novel strain of thermophilic bacterium
172 *Parageobacillus* sp. indicates the presence of various important genes for carbohydrate, Sulphur,
173 nitrogen, and phosphorus metabolism (21). Another widely employed method is the metagenomic
174 approach which helps in elucidating the diversity of microbes present and crucial genes that are

175 responsible for conferring adaptive strategies to the microbiome, such as antibiotic resistance or
176 stress-related genes. Functional metagenomic study on hot spring samples of Sikkim hot springs
177 reveal diverse set of genes required to cope with stressful conditions such as heat shock, acid, and
178 osmotic stress; various multidrug efflux pumps and transport systems, genes for degradation of
179 xenobiotics, etc. (22).

180 Pan-genome analyses are a powerful tool in bacterial taxonomy that may help redefine the
181 categorization of species or, in defining new species (23). The term pan-genome represents the
182 entire set of genes present in a species and is categorized into three main categories- a core genome
183 that comprises sequences shared between all the species; an accessory genome that represents
184 genes shared in some species; and a singleton or unique genome that is present in a particular
185 species only. The core genome comprises genes required for basic metabolic activities such as
186 genes for antibiotic resistance and housekeeping genes. These genes that are conserved usually
187 infer evolutionary relationships amongst different strains. The genes present in the accessory
188 genome participate in adaptive strategies in a strain, where horizontal gene transfer (thus are
189 subjected to gene gain/loss) plays a major role that aids in coping up adaptive mechanisms in a
190 bacterium when subjected to a new niche (24). Pan-genome analysis plays a major role in
191 implicating the evolution of the genus *Geobacillus* from *Bacillus*. There remains limited study
192 about pan-genome analyses of the *Geobacillus* genus, although reports for other bacteria from the
193 neighboring genus *Bacillus* have been reported (25). Bezuidt et al, 2016, provided insights into the
194 role of horizontal gene transfer in the diversification of *Geobacillus* (26).

195 This study employs an in-silico approach to assess the potential probiotic characteristics of the
196 *Geobacillus* genus. It delves into various attributes, including taxonomy, phylogenomics,
197 probiotic-related genes, prediction of antibiotic resistance genes, virulence factors, toxins, mobile
198 genetic elements, plasmids, bacteriocins, CRISPR-Cas systems, and CAZymes. Additionally, a
199 pan-genome analysis was conducted. To benchmark and contextualize the findings, comparative
200 analysis involved two established genera, *Bifidobacterium* and *Lactobacillus*, serving as positive
201 controls. Overall, this comprehensive study serves as a significant exploration of both the probiotic
202 potential and genetic makeup of the *Geobacillus* genus.

203

204

205 **Results**

206 **Source and quality check of various genomes**

207 Among 18 *Geobacillus* species used in this study, 13 are validly published under ICNP as per
208 LPSN and among 13 *Geobacillus* species used, 7 are type species such as *Geobacillus*
209 *icigianus* G1w1, *Geobacillus kaustophilus* NBRC 102445, *Geobacillus lituanicus* N-3,
210 *Geobacillus proteiniphilus* 1017, *Geobacillus stearothermophilus* ATCC 12980, *Geobacillus*
211 *thermocatenulatus* BGSC 93A1, and *Geobacillus thermodenitrificans* DSM 465. In the case
212 of control, probiotic species used are validly published and type species. The quality of
213 genomes was assessed and it was shown that all the genomes possess good quality with >97%
214 completeness and very low fractional contamination as shown in **Table.1. and**
215 **Supplementary Report File.1.** The GC content of *Geobacillus* genomes range between 49-
216 53%, *Lactobacillus* genomes range between 34-49% and to that of *Bifidobacterium* genomes
217 range between 58-60%. The total genome length of the *Geobacillus* genomes was higher
218 (3.45mb-3.80mb) than those of *Lactobacillus* (2.03mb-3.2mb), and *Bifidobacterium* genomes
219 (2.23mb-2.83mb). The isolation source of most of the *Geobacillus* species analyzed in this
220 study is environmental such as Oil fields, Hot springs, fumaroles, and sediments. However, the
221 isolation source of *Geobacillus stearothermophilus* ATCC 12980 and *Geobacillus*
222 *thermodenitrificans* DSM 465 was food products such as spoiled canned food and sugar beet
223 juice respectively. On the other hand, the isolation source of other probiotic species was food
224 and gastrointestinal tract as shown in **Table 1.**

225 **Taxonomy and Phylogenomics Analysis**

226 The ANI values were plotted on a heat map **Fig.1.** It has been shown that the *Geobacillus*
227 genomes possess ANI values between 90-100%, thus predicting their high nucleotide identity.
228 Whereas the *Lactobacillus* and *Bifidobacterium* genomes possess ANI values between 60-
229 70%, also concerning genomes of genus *Geobacillus*, thus indicating their low nucleotide
230 identity. The cluster analysis represented by the dendrogram shown in the heat map formed
231 two major clades bifurcating the genus *Geobacillus* and two other genera studied i.e.
232 *Lactobacillus* and *Bifidobacterium* based on ANI values. This supports the above assumption
233 indicating that genomes of genus *Geobacillus* possess high nucleotide identity. The genus
234 *Geobacillus* clade further differentiates into two main sub-clades. It was interesting to see that

235 the earlier isolated and type species such as *G. stearothermophilus*, *G. icigianus*, *G.*
236 *thermodenitrificans*, *G. lituanicus*, *G. uzenensis*, and *G. subterraneus* possess little variation
237 in ANI values than the recently isolated genomes which are not validly published. The
238 phylogenetic analysis among the genomes of only the genus *Geobacillus* shows a similar
239 pattern with two major clades and three separate clades have been formed by *G. icigianus*, *G.*
240 *jurassicus*, and *G. vulcani* **Fig.2**.

241 We were also trying to find out the phylogenetic relation among the genus *Geobacillus* and
242 two other probiotic species of genus *Lactobacillus* and *Bifidobacterium* based on COG-based
243 core genes **Fig.3. and Supplementary Fig.1.** and single copy genes using single-copy BV-
244 BRC PGFams. The phylogenetic tree, established using a set of 49 core universal genes defined
245 by COG, indicates the emergence of two primary clades encompassing the genus *Geobacillus*
246 as well as the genus *Lactobacillus* and *Bifidobacterium*. The genus *Geobacillus* further
247 differentiates into two sub clades, whereas species *G. jurassicus*, *G. vulcani*, and *G. icigianus*
248 form separate clades similar to the phylogenetic tree of only genus *Geobacillus* based on ANI
249 values. The genus *Lactobacillus* shows a close relation to *Parageobacillus* species whereas
250 *Lactobacillus* and *Bifidobacterium* are distantly related to genus *Geobacillus* as they possess
251 separate clades. Similar results were shown by phylogenetic tree based on single copy genes
252 as shown in **Fig.4.** However, based on these genes *Lactobacillus* forms a clade close to *G.*
253 *icigianus*, and other earlier isolated genomes such as *G. stearothermophilus*, *G.*
254 *thermodenitrificans*, *G. lituanicus*, and *G. subterraneus*. Thus, based on core gene
255 phylogenetic analysis of *Geobacillus*, *Lactobacillus*, and *Bifidobacterium* genomes, it has been
256 shown that they significantly differ which is further supported by phylogenetic analysis based
257 on single gene analysis.

258 All the genomes were annotated with Prokka using the KBase platform. However, the cross-
259 genus comparisons were also done using the new Comparative Systems service at BV-BRC
260 which annotates the genomes based on global protein families, known as PGFams using
261 RASTtk4. The functional assessment (subsystem analysis) among the genomes using
262 canonical gene family assignment from COG, PFAM, TIGRFAM, and The SEED has been
263 done using **View Function Profile for Genomes - v1.4.0** and is represented in Heatmap **Fig.5.**
264 it has been shown that subsystems like secondary metabolites biosynthesis, transport,

265 catabolism, intracellular trafficking, secretion, chromatin structure and dynamics,
266 cytoskeleton, and RNA processing and modification were uncharacterized in all the genomes.
267 However, there is not much difference in other characterized subsystems between genomes of
268 the genus *Geobacillus*, *Lactobacillus*, and *Bifidobacterium*. Cell motility is absent in the genus
269 *Lactobacillus* and *Bifidobacterium* whereas present in the genus *Geobacillus*. Moreover, there
270 are slight differences in a few subsystems among the studied genus such as Energy production
271 and conversion, and lipid transport and metabolism. This signifies that there might be
272 similarities among these genera considering probiotic properties.

273 **Identification of Genes Related to Probiotics**

274 Genes involved in the mechanism of modulation of the immune system, vitamin biosynthesis,
275 fatty acid synthesis, resistance to stress conditions (acid, bile, osmotic, and oxidative stress),
276 adhesion, bacterial colonization, and molecular chaperones were detected. The predicted genes
277 among all these categories are present differently in **Table 2**. 25 genes of immune system
278 modulation were screened and genes such as *Pyrc*, *PyrE*, *PyrH*, *PyrB*, *PyrG*, *PyrK*, *TxrA*, *TxrB*,
279 *Clpb*, *CysC*, *nrdR* are present in all the genomes whereas *CysE*, *YjbK*, and *YjbM* were present
280 only in *Geobacillus* genomes and *nrdH* and *dltC* are present only in *Bifidobacterium* and
281 *Lactobacillus* genomes. 25 genes of adhesion were screened and genes such as *Tuf*, *clpB*, *clpX*,
282 and *clpC* are present in all the genomes. *comC*, *srtD*, *PilT*, *PilZ*, and *lapA* are present in only
283 the *Geobacillus* genomes whereas *dltD* and *dltA* were present in *Bifidobacterium* and
284 *Lactobacillus* genomes only. Three sortase genes such as *strA1*, *strA2*, and *strA3* were absent
285 in all genomes except *srtA1* was present in *Lactobacillus* genomes only. Also, *PilA*, *PilB*, *PilC*,
286 *PilO*, and *PilM* adhesion genes were absent in all the genomes. Six bacterial colonization genes
287 were screened, and only gene *TadA* was present in all the genomes rest were absent such as
288 *TadB*, *TadC*, *TadE*, *TadF*, and *TadZ*. All the acid stress-related genes such as *atpB*, *atpC*, *atpD*,
289 *atpE*, *atpF*, *atpG*, *atpH*, *recA*, *sodA*, *luxS*, *glmU*, *glmS*, *glmM1*, *glmM2* and asps were present
290 in all the genomes whereas *cspA* and *gpmA* were only present in *Bifidobacterium* and
291 *Lactobacillus* genomes. Some acid resistance genes such as *gpmL*, *bshA*, *bshB*, and *bshC* were
292 only present in *Geobacillus* genomes. 8 bile resistance genes such as *nagB*, *pyrG*, *argS*, *rpsC*,
293 *rpsE*, *rplD*, *rplE*, and *rplF* were present in all the genomes. Osmotic stress-related genes were
294 absent in *Bifidobacterium* and *Lactobacillus* genomes, however, *opuD* and *opuC* were present

295 in some *Geobacillus* genomes, and *opuCA*, *opuCB*, and *opuCC* were only present in
296 *Geobacillus* genomes. Molecular chaperones such as *dnaK*, *dnaJ*, and *dnaG* were present in
297 all the genomes whereas *groES* and *groEL* were present in some *Geobacillus* genomes only.
298 18 genes related to oxidative stress were screened and among them *taxA*, *TaxB*, *feoB*, and *msrC*
299 were present in all the genomes whereas *ndhH*, *ndhB*, and *ndhC* were present only in
300 *Geobacillus* genomes and *msrB* only in *Lactobacillus*. 7 genes related to vitamin biosynthesis
301 were screened and genes *BtuD*, *copA*, and *copZ* were present in all the genomes whereas *BtuF*
302 and *CsoR* were only present in *Geobacillus* genomes. Principle component analysis was done
303 based on all the parameters (genes) related to probiotics including antibiotic resistance genes.
304 The Principle component 1 (PC1) significantly shows the positive correlation between
305 *Bifidobacteria* and *Lactobacillus* genomes and their relatively less positive correlation with the
306 genomes of *Geobacillus* as shown in **Fig.6**.

307 **Assessment of Antibiotic Resistance Genes, Virulence Factors, and Toxins**

308 The presence of antibiotic resistance genes was anticipated within the genomes under
309 investigation. It was shown that only a few antibiotic-resistance genes such as *vanY*, *vanT*, and
310 *rpoB* were present in all the genomes. However, other genes like *ImrD*, *rpsL*, and *qacJ* were
311 present in *Lactobacillus* genomes as shown in **Table 3**. None of the toxin-related genes were
312 present in *Geobacillus*, *Lactobacillus*, and *Bifidobacterium* genomes. Only a few toxin-like
313 proteins such as *PhoH*, *MazF*, *HicA*, and *PemK* genes were predicted in some *Geobacillus*
314 genomes. However, many genes coding toxins such as *FitB*, *PemK*, *MazF*, *ParB*, *RelB*, *RelE*,
315 *MraZ*, *YoeB*, *PhoH*, and *HipA* toxin-related genes were present in genus *Bifidobacterium* and
316 *Lactobacillus* species as shown in **Table.4**. No virulence factors were found in any genomes
317 studied as shown in **Table.3**.

318 **Assessment of Mobile Genetic Elements, Insertion Sequences, Plasmids, Prophages, 319 Bacteriocins, and CRISPR-Cas Systems**

320 Mobile genetic elements were found to be absent in all genomes except a few mobile elements
321 present in *B. brevis* such as IS/Tn. Putative insertion sequences were present in many
322 *Geobacillus*, *Lactobacillus*, and *Bifidobacterium* genomes such as Putative IME, Putative ICE
323 with T4SS, and Putative IME without identified DR as shown in **Supplementary Table. 1**.
324 Plasmids were found to be absent in all the genomes **Table.3**. Many bacteriocins such as

325 Circularin_A, ComX1, ComX4, Salivaricin_D, Sactipeptides, Pumilarin, and
326 Geobacillin_I_like were present in various genomes of *Geobacillus* like *G. icigianus*, *G.*
327 *kaustophilus*, *G. lituanicus*, *G. C56T3*, *G. stearothermophilus*, *G. thermocatenulatus*, *G.*
328 *vulcani*, etc. However, among the two *Bifidobacterium* genomes, only *B. longum* possesses a
329 few bacteriocins such as Geobacillin_I_like and Propionicin_SM1. Moreover, *Lactobacillus*
330 genomes possess different bacteriocins than that of *Geobacillus* and *Bifidobacterium* genomes
331 such as Plantaricin_E/F/A/N/J/K, Enterocin_X, Acidocin_J1132, Enterolysin_A, and
332 Bacteriocin_helveticin_J as shown in **Table.5**. Among 18 *Geobacillus* genomes, 11 possess
333 prophages mainly within the family of Myoviridae and Siphoviridae. Similarly,
334 *Bifidobacterium* and *Lactobacillus* possess prophages mainly from the family of Siphoviridae
335 shown in **Table. 6**. CRISPR-Cas Systems were found to be present only in *Geobacillus*
336 genomes. *Cas1*, *Cas2*, *Cas3*, *Cas4*, *Cas5h*, *Cas6*, *Cas9*, *Cmr1*, *Cmr3*, *Cmr4*, *Cmr5*, and *Cmr6*
337 are present in many *Geobacillus* genomes such as *G. icigianus*, *G. thermoleovorans*, *G.*
338 *uzenensis*, *G. stearothermophilus*, *G. subterraneus*, and *G. jurassicus* etc. However, CRISPR-
339 Cas Systems were found to be absent in *Bifidobacterium* and *Lactobacillus* genomes as shown
340 in **Table. 2**.

341 **Identification of Carbohydrate-active Enzymes (CAZyme)**

342 Carbohydrate-active Enzymes (CAZyme) were found to be present in almost all genomes.
343 Glycoside hydrolases were present in abundance and various glycoside hydrolase classes such
344 as GH1, GH13, GH13_1, GH13_2, GH13_4, GH13_4, GH13_10, GH13_12, GH13_13,
345 GH13_14, GH13_20, GH13_21, GH13_23, GH13_29, GH13_31, GH13_36, GH13_37,
346 GH13_39, GH13_41, and GH18 were present with more than 2 hits or genes present. Among
347 Glycosyl transferases GT2, GT4, GT51, and GT108 were present with more than 2 hits.
348 CBM34 and CBM68 are present with more than 2 hits. CE4 and CE9 were the carbohydrate
349 esterases present with more than 2 hits. Polysaccharide lyases were absent in all the genomes.
350 AA1 and AA1_3 were CAZymes with Auxiliary activities having more than 2 hits. The above-
351 mentioned CAZymes (except Polysaccharide lyases) were present in all the genomes as shown
352 in Heatmap **Fig.7**.

353

354

355 **Pangenome Analysis**

356 The total number of genomes studied in the pangenome was 23 and among them 18 were
357 *Geobacillus* species, 3 were *Lactobacillus* species and 2 were *Bifidobacterium* species. The
358 pan-genome analysis was done within the genus *Geobacillus* alone and with other genera like
359 *Lactobacillus* and *Bifidobacterium*. The pan-genome analysis of all 23 genomes represented
360 38393 protein-coding genes (with translation), 30702 genes in homolog families, and 7691
361 genes in singleton families. The total number of families was 11637, 3764 were homolog
362 families, and 7873 were singleton families. When taking the pan-genome analysis of only the
363 genus *Geobacillus* into consideration, the pan-genome represented 25284 protein-coding genes
364 (with translation), 23504 genes in homolog families, and 1680 genes in singleton families. The
365 total number of families was 4641, 2813 were homolog families and 1828 were singleton
366 families **Supplementary Table 2**. The core pangenome rarefaction curve of the genus
367 *Geobacillus* shows the increasing number of gene clusters with every added genome. Thus,
368 this shows that the *Geobacillus* pan-genome is an open pangenome as shown in **Fig.8**. The
369 pangenome circle plot was contrived to plot the core, non-core, and singletons. The circle plot
370 of the genus *Geobacillus* shows larger core genes than that of singletons shared between the
371 genomes whereas when the circle plot was made between *Geobacillus*, *Lactobacillus*, and
372 *Bifidobacterium* genomes, they shared very few core genes as shown in **Fig.9; Fig10**,
373 **Supplementary Fig.2; Fig3**. Phylogenetic Pangenome Accumulation was run to view the
374 pangenome in a phylogenetic context and to determine the entry and exit of gene families in
375 the branch of interest. The Phylogenetic Pangenome Accumulation tree shows the bifurcation
376 of two main clades as shown in the phylogenetic trees discussed above. Node zero was
377 important as it bifurcates into two main clades with node 1 (gives rise to genus *Bifidobacterium*
378 clade) and node 6. Node 6 was also important as it bifurcates into two separate branches of the
379 genus *Geobacillus* as one clade and the genus *Lactobacillus* as another clade. At node zero,
380 there was the maximum number of total genes present (17392) with a very less perfect core of
381 only 0.8%. there is the accumulation of genes at node 1 for genus *Bifidobacterium* with an
382 increase in perfect core of 27.3%. Similar to node zero there was the second maximum number
383 of total genes (14861) (as the rest of the genes got accumulated into genus *Bifidobacterium*)
384 with a very small perfect core of only 1.6%. This total gene numbers gradually accumulated
385 and shows the increase in perfect core as shown at node 18 (with the perfect core of 8.6%) for

386 the genus *Geobacillus* and at node 7 (with a perfect core of 8.9%) for the genus *Lactobacillus*.
387 These genes further get accumulated within sub-branches as shown in **Fig.11**.

388 **Discussion**

389 The species of the *Geobacillus* genus exhibits ecological, physiological, and genetic diversity,
390 merely due to micro-evolutionary traits such as horizontal gene transfer, which remains a
391 strong factor contributing to the evolution of *Bacillus* to *Geobacillus* (26) Thriving in various
392 harsh conditions thermophiles have been exploited in various industrial and biotechnological
393 applications. However, only a few studies suggest the probiotic nature of the species belonging
394 to the genus *Geobacillus*. Here we have presented the vast *in silico* evaluation of the genus
395 *Geobacillus* considering its probiotic nature. The analysis has been done in genus *Geobacillus*
396 keeping already known probiotic strains of genus *Lactobacillus* and *Bifidobacterium* as
397 positive controls. Various characteristics studied so far for claiming any probiotic species have
398 been covered in this study.

399 Taxonomic and phylogenetic studies revealed that the genomes of *Geobacillus* possess high
400 nucleotide identity and thus are correctly represented in the genus *Geobacillus*. Similar
401 phylogenetic results have been shown earlier for genus *Geobacillus* (27). When considering
402 two other genera such as *Lactobacillus* and *Bifidobacterium*, the phylogenetic trees based on
403 COG-based core genes and single-copy genes using single-copy PGFams specifically form
404 separate clades of each genus thus confirm their correct representation within their respective
405 genus. The annotation results using Prokka suggested that the subsystems highly represented
406 were replication, recombination, repair; post-translational modifications, protein metabolism,
407 and chaperones; nucleotide transport and metabolism; signal transduction mechanism; general
408 functions; energy production and conversion; translation, ribosome structure, and biogenesis;
409 carbohydrate metabolism, amino acid metabolism, and transcription. Whereas the
410 unrepresented features were secondary metabolites biosynthesis, transport, catabolism,
411 intracellular trafficking, secretion, chromatin structure and dynamics, cytoskeleton, and RNA
412 processing and modification. Our research demonstrates that the core genome encompasses
413 the majority of the COG categories. However, flexible genome (accessory and singleton) also
414 shows a considerable percentage as shown in pan-genome accumulation results. Consequently,
415 comprehensive comparative analyses unveiled that crucial functional classes and essential

416 housekeeping genes remained constant within the core genome. Conversely, genes associated
417 with environmental interaction or the synthesis of secondary metabolites notably exhibited
418 higher abundance within the pan-genome. Also, the considerable flexible genome percentage
419 reveals that Horizontal Gene Transfer (HGT) could represent a crucial mechanism contributing
420 to the environmental adaptive characteristics observed in the genus *Geobacillus*.

421 Similar findings were reported by Bezuidt et al. in 2016, indicating an overabundance of genes
422 related to COG categories including translation, ribosomal structure, coenzyme transport and
423 metabolism, nucleotide transport and metabolism, as well as protein turnover and chaperones
424 within the conserved core. (26). In a study conducted by Wang et al. in 2020, detailed
425 comparative analyses indicated that core genome stability persisted in fundamental functional
426 classes and essential housekeeping genes, while the flexible genome exhibited a higher
427 prevalence of genes associated with environmental interaction or energy metabolism.
428 Furthermore, instances of horizontal gene transfer (HGT) were identified among various
429 *Geobacillus* species and thus the *Geobacillus* evolution appears to be influenced by
430 environmental factors (28).

431 As in our study, we found that secondary metabolite metabolism is mainly confined to a
432 flexible genome. Thus, to evaluate this metabolite potential is very important for industrial and
433 biotechnological applications. Wang et al, 2020, shows that various genes for starch, arabinose,
434 glucose, mannose, galactose, and xylose metabolism were also observed in the pan-genome,
435 with a high occurrence of ABC-type sugar transporters that aid in sugar uptake. Therefore, the
436 pan-genome analyses in *Geobacillus* reveal it as a good candidature for hemicellulose
437 degradation (28). A similar overrepresentation of the genes was observed in a study conducted
438 by (26) on pan-genome analyses of 29 *Geobacillus* genomes, depicting that such diverse
439 metabolic machinery aids in its diverse biotechnological potential.

440 There are various measures for the assessment of any species to be probiotic. The FAO and
441 WHO (2002) guidelines, alongside regulations from the Food and Drug Administration and
442 the Ministry of Public Health in Thailand, delineate the criteria for utilizing probiotic
443 microorganisms in food. These standards encompass specific criteria such as accurate
444 identification, evaluation of probiotic characteristics (such as resistance to gastric acid and bile
445 salts, adherence to mucosal surfaces and epithelial cells, and bile salt hydrolase activity), and

446 a safety assessment encompassing factors like antimicrobial resistance (AMR), toxin
447 production, and hemolytic activity (29, 30). We have evaluated and covered almost all the
448 characteristics of genus *Geobacillus* to assess its probiotic potential concerning genus
449 *Lactobacillus* and *Bifidobacterium*. Genes related to tolerance to various stress conditions,
450 adhesion, colonization, immune response, etc. governing the probiotic potential were
451 determined. Several genes associated with adhesion, such as *srtD*, *clpB*, and *clpC*, were
452 identified, potentially playing a role in binding to cells or mucosal surfaces within the gut. (31,
453 32). Other genes such as *TadA*, *PilT*, *PilZ*, and *lapA* essential for pili structure, and thus
454 bacterial colonization were found in the genus *Geobacillus* (33). The key feature defining a
455 bacterium as a probiotic strain hinges on its ability to survive, adapt, or resist low-pH
456 environments (34). Studies suggest that probiotic microorganisms harbor particular genes that
457 aid in enduring or resisting adverse conditions (34). *Lactobacillus* strains typically exhibit
458 resilience to acid and bile, allowing these bacteria to endure and adjust to harsh conditions,
459 rendering them promising candidates for probiotic applications (35). Here we have detected
460 various genes for acid and bile resistance in genus *Geobacillus* such as *sodA*, *luxS*, *glmU*, *atpH*,
461 *recA*, etc. The F1F0-ATPase, encoded by the *atp* operon, typically comprises genes—namely,
462 *atpB*, *atpE*, *atpF*, *atpH*, *atpA*, *atpG*, *atpD*, and *atpC*—in most microbes (36). While most of
463 these genes were identified in the *Geobacillus* genome. These *atp* genes play a crucial role in
464 enabling host microorganisms to survive or withstand acidic environments. The main role of
465 the "atp" operon is to facilitate proton pumping, transporting protons from the bacterial
466 cytoplasm outward, and contributing to the maintenance of a neutral pH in the bacterial
467 cytosol. (37).

468 In response to hyperosmotic stress, organisms accumulate osmotically active compounds.
469 These compounds, known as compatible solutes, do not hinder enzymatic processes within the
470 cell. The gathering of these solutes, known as osmoadaptation, works to counter the outward
471 movement of water, thereby maintaining cell turgor (38). Numerous thoroughly characterized
472 compatible solute transporters have been detected in various gram-positive organisms, such as
473 *Bacillus subtilis* and *Lactococcus lactis*. *OpuA*, *OpuB*, and *OpuC* belong to the ATP binding
474 cassette (ABC) superfamily and are closely associated transporters. These transporters have
475 the capability to transport distinct compounds: *OpuA* transports proline betaine and glycine
476 betaine, *OpuB* transports choline, while *OpuC* transports ectoine, crotonobetaine, γ –

477 butyrobetaine, carnitine, choline-O-sulfate, choline, proline betaine, and glycine betaine. (39).
478 These osmotic stress-related genes were absent in *Bifidobacterium* and *Lactobacillus* genomes,
479 however, *opuD* and *opuC* were present in some *Geobacillus* genomes, and *opuCA*, *opuCB*, and
480 *opuCC* were only present in *Geobacillus* genomes. Genes related to oxidative stress such as
481 thioredoxin (*trx*), and ferrous iron transporter (*feoB*) were present in almost all the genomes.
482 However, transcriptional regulator (*oxyR*), and NADH (*ndhH*, *ndhB*, and *ndhC*) were present
483 only in *Geobacillus* genomes. These genes are associated with antioxidant and oxidative stress
484 responses in many bacteria (40, 41).

485 The genes responsible for encoding chaperones (*dnaK*, *groEL*, *groES*) play a crucial role in a
486 broad stress response, involving protection, elimination of damaged proteins, and various
487 related functions. Additionally, the analysis revealed *dnaJ* and *grpE*, which have demonstrated
488 a responsive behavior (upregulation) specifically to acidic environments (42). All the genomes
489 examined contained these molecular chaperones. However, *groES* and *groEL* were present in
490 some *Geobacillus* genomes only. The presence of these probiotic-related genes in the genus
491 *Geobacillus* makes them a promising candidate for exploiting them as probiotic strains.
492 However, culture-dependent analysis of these probiotic features must be validated.

493 Analyzing the mobilome offers a deeper comprehension of genome stability, adaptability, and
494 evolution in host probiotics, particularly in evaluating the potential acquisition and transfer of
495 new genes, including those linked to antibiotic resistance. Nevertheless, if a probiotic strain's
496 genome harbors mobile genetic elements (MGEs) along with antibiotic resistance genes, it
497 becomes unfit for use due to the risk of transferring these resistance genes via processes like
498 conjugation or other mechanisms (43, 44). The lack of mobile genetic elements, virulence
499 factors, and minimal putative insertion sequences indicates the stability of the genus
500 *Geobacillus*, potentially making it favorable for probiotic candidacy. Regarding the anticipated
501 prophages found in *Geobacillus* genomes, only a small number belonging to the Myoviridae
502 and Siphoviridae families were identified. However, most of these were hypothetical and
503 lacked the typical genes responsible for encoding structural proteins, DNA regulation, lysis,
504 and other essential functions as per the Prokaryotic Virus Orthologous Groups (pVOGs)
505 database. Consequently, these could be classified as defective prophages (45). Plasmids can
506 impart new traits to probiotic bacteria, including enhancements in bacterial metabolism,

507 adherence, and even antibiotic resistance. However, if plasmids contribute antibiotic resistance
508 to probiotic bacteria, this particular attribute is considered undesirable for a probiotic bacterium
509 (46). However, in our study, we did not find any plasmid in the genomes of genus *Geobacillus*.
510 We have also reported the same results previously in different studies (13, 27). The absence of
511 mobile genetic elements, prophages, and plasmids reveals that the genomes of the genus
512 *Geobacillus* are stable and good candidates as probiotics.

513 Bacteriocins, a diverse array of ribosomally synthesized antimicrobial peptides, provide
514 probiotic bacteria with the advantageous ability to effectively combat other bacterial strains.
515 They assist in the establishment of a producer bacterium within a specific environment, directly
516 hinder the intrusion of competing strains or pathogens, and have the potential to alter the
517 microbiota's composition while influencing the host's immune system (47). Certain studies
518 have documented the production of bacteriocins within the *Bifidobacterium* genus (48).
519 Similarly, several bacteriocins, including Circularin_A, ComX1, ComX4, Salivaricin_D,
520 Sactipeptides, Pumilarin, and *Geobacillin_I*_like, were found across different genomes of
521 *Geobacillus*. CRISPR-Cas systems are adaptive immune systems of microbes. These elements
522 play a crucial role for bacteria in managing phage sequences found in the environment,
523 particularly within the intricate ecosystem of the gut where a diverse viral community thrives.
524 Phages can disrupt bacteria, significantly affecting the survival of bacterial populations,
525 thereby impacting various parameters including the production of probiotics, fermentation
526 duration, taste, and other essential factors (49). Given the resilience of phages to pasteurization
527 and the difficulty in eliminating them, the pursuit of probiotics possessing the capacity to shield
528 against phages and other genetic intruders like plasmids becomes an urgent necessity. In a
529 previous study, 77% of 48 analyzed species of *Bifidobacterium* possess CRISPR-Cas systems
530 (50). In our study, considering two prominent probiotic species of *Bifidobacterium* (*B. breve*
531 and *B. longum*), we didn't find any CRISPR-Cas-related genes. However, there were diverse
532 genes related to CRISPR-Cas systems present in the genomes of *Geobacillus* such as *Cas1*,
533 *Cas2*, *Cas3*, *Cas4*, *Cas5h*, *Cas6*, *Cas9*, *Cmr1*, *Cmr3*, *Cmr4*, *Cmr5*, and *Cmr6*. Thus, the
534 presence of bacteriocins and CRISPR-Cas-related genes suggested the promising potential of
535 probiotics among the genus *Geobacillus*.

536 A pivotal aspect of defining a probiotic strain is its stance on antibiotic resistance. Within the
537 Qualified Presumption of Safety (QPS) criteria, evaluating probiotics involves examining the
538 safety and antimicrobial resistance (51). Ideally, probiotics ought to be susceptible to at least
539 two antibiotics or should lack inherent antimicrobial resistance (52). The genotypic approach
540 involves full genome sequencing, including plasmids, to detect known antibiotic resistance
541 (AR) genes. If these genes are surrounded by mobile elements or encoded within plasmids, it
542 is advised against commercializing the strain. Safety considerations are crucial, especially if
543 resistance involves clinically important antibiotics like vancomycin. If resistance affects less
544 clinically relevant antibiotics, the risk is lower, but thorough evaluation is needed before
545 commercialization (53). In our previous study (13) we found the genus *Geobacillus* is devoid
546 of any antibiotic resistance. The results collide with the findings of Puopolo and co-workers,
547 where *G. stearothermophilus* GF16 isolated from the active volcanic area was susceptible to
548 different antibiotics used (even at the lowest concentrations of 5 µg/mL) (54). Likewise, the
549 complete genome examination of *G. thermoleovorans* derived from geothermal springs
550 indicates the lack of antimicrobial resistance genes (55). All of these findings of the absence
551 of antibiotic susceptibility in *Geobacillus* in general (13). Similarly, in the present study, we
552 only found two genes *vanY* and *vanT* related to vancomycin resistance. *VanY* acts as a D, D-
553 carboxypeptidase, eliminating the terminal D-Ala from peptidoglycan to incorporate D-
554 Lactate. The resulting D-Ala-D-Lac peptidoglycan subunits exhibit lower binding affinity with
555 vancomycin in comparison to D-Ala-D-Ala. *VanY* serves as an "accessory" component in the
556 Van cascade and isn't an absolute necessity for vancomycin resistance (56). *Bifidobacterium*
557 and *Lactobacillus* genomes were found to possess more genes apart from *vanY* and *vanT* such
558 as *ImrD*, *rpsL*, and *qacJ*. A study has also reported the presence of *erm*, *ileS*, and *rpoB* genes
559 in *B. breve*. Investigating the presence of virulence factors (including toxins and enzymes that
560 could potentially heighten the microorganism's pathogenicity) in the genome is crucial for
561 identifying potential safety concerns. However, only a few toxin-like proteins and virulence
562 factors are also absent in all the genomes of the genus *Geobacillus*. A few toxin-like proteins
563 detected were *PhoH*, *MazF*, and *PemK* as compared to genus *Bifidobacterium* and
564 *Lactobacillus* which possess an array of toxin-related genomes such as *FitB*, *PemK*, *MazF*,
565 *ParB*, *RelB*, *RelE*, *MraZ*, *YoeB*, *PhoH*, and *HipA*. *PhoH2* proteins, found in various
566 microorganisms across bacteria and archaea, comprise two domains: An N-terminal PIN-

567 domain connected to a C-terminal *PhoH* domain. This fusion function as both an RNA helicase
568 and ribonuclease. Mainly within mycobacteria, the genome encodes *PhoH2* proteins alongside
569 an adjacent gene, *phoAT*, believed to function as an antitoxin (57). The *mazEF* module, found
570 on *Escherichia coli*'s chromosome, serves as a stress-induced toxin-antitoxin system that
571 triggers programmed cell death in *E. coli*. Precisely, *mazF* encodes a resilient toxin, whereas
572 *mazE* encodes a comparatively less stable antitoxin (58). In the *Bacillus anthracis* genome, a
573 toxin-antitoxin (TA) module is present, consisting of *pemI* (antitoxin) and *pemK* (toxin). *PemK*
574 functions as a powerful ribonuclease, demonstrating a preference for pyrimidines (specifically
575 C and U), operating as a translational attenuator (59). Thus, in comparison to already known
576 probiotic candidates of genus *Bifidobacterium* and *Lactobacillus*, the genus *Geobacillus*
577 possess very few toxin-like protein coding genes. Thus, it has been proposed that genus
578 *Geobacillus* may be good candidates with good probiotic potential.

579 Microbial genomes encode a multitude of genes responsible for Carbohydrate-active enzymes
580 (CAZymes), whereas in humans, only 17 relevant ones have been identified (60). This
581 discrepancy reveals that humans lack extensive enzyme machinery to utilize a wide array of
582 complex carbohydrates. As a result, humans depend on a symbiotic co-metabolism with their
583 microbiota to extract energy, particularly from carbohydrates that are otherwise indigestible
584 (61). The dynamic CAZyme profile is influenced by factors like available carbohydrates, non-
585 carbohydrate food sources, delivery methods, and individual lifestyles (62). Differences in host
586 CAZymes or the lack of particular microbial species possessing distinct CAZymes can
587 substantially impact how the host metabolizes various sources of carbohydrates (63),
588 impacting gut microbiota metabolism and potentially affecting host health. Assessing
589 microbial genetic diversity (CAZy-typing) helps predict which carbohydrates the host can
590 metabolize and identifies underrepresented CAZyme families that might require
591 supplementation through methods like microbiota transplantation or probiotics. In our study,
592 we found an abundance of glycoside hydrolases followed by Glycosyl transferases and
593 carbohydrate esterases among the genus *Geobacillus*. Thus, suggesting that they are capable
594 of enzymatic degradation of various carbohydrates and consequently adding to the probiotic
595 potential of these species. Thus, all the studied in silico features favor the probiotic nature of
596 the genus *Geobacillus*. Yet, an assessment of *in vitro* characterization remains essential
597 concerning probiotic attributes.

598 The unprecedented probiotic potential of the *Geobacillus* genus remains unexplored. With the
599 Pan-Genome analysis's advent, the intricate genetic makeup, the core genome concerning the
600 essential function genes, and genes required to acclimatize in a new niche or secondary
601 metabolite synthesis (conferred by the flexible genome) in a bacterium can be comprehensively
602 disclosed. Analyzing the Pan-genome serves as a crucial method to provide insights into
603 evolution and adaptation, and to explore potential probiotic characteristics in the group.
604 Comparison to the genus *Lactobacillus* and *Bifidobacterium* in the current study revealed that
605 the genus *Geobacillus* possesses an array of genes that aid in combatting stress conditions.
606 Various genes conferring acidic tolerance and osmotic stress tolerance were found, with certain
607 genes aiding in osmotic and oxidative stress tolerance confined to the genome of *Geobacillus*
608 only. Determining the presence of mobile genetic elements (MGEs) remains paramount to
609 instigating a strain with probiotic potential. Notably, *Geobacillus* appears stable, lacking
610 mobile genetic elements (MGEs), antibiotic resistance genes, and mostly defective prophages.
611 There were no observed plasmids, reducing the risk of horizontal gene transfer for antibiotic
612 resistance. The presence of diverse bacteriocins and an abundance of CRISPR-Cas system
613 genes in *Geobacillus* further suggests its potential against harmful elements like
614 bacteriophages. Additionally, the prevalence of carbohydrate-active enzymes (CAZymes),
615 especially glycoside hydrolases, glycosyl transferases, and carbohydrate esterases, hints at the
616 ability of the genus *Geobacillus* to break down complex carbohydrates. This could enhance its
617 potential as a probiotic, particularly in creating symbiotic food products when combined with
618 prebiotics. While this study unveils promising probiotic traits in the genus *Geobacillus*, further
619 in vitro and in vivo investigations are necessary to confirm these findings. Overall, the
620 comparative genomic analysis sheds light on *Geobacillus*' probiotic potential, yet empirical
621 studies are imperative for substantiating these observations.

622 Materials and Methods

623 Genome Availability and Quality Control

624 All the 13 validly published *Geobacillus* species with correct names as per List of Prokaryotic
625 names with Standing in Nomenclature (LPSN) and 5 randomly selected genomes (not validly
626 published) of genus *Geobacillus* were selected and extracted in Fasta and GenBank formats
627 from NCBI datasets <https://www.ncbi.nlm.nih.gov/datasets/genome/>. To access the probiotic

628 potential of various studied *Geobacillus* species, 5 already known probiotic species such as
629 *Lactobacillus acidophilus* ATCC 9224 [NZ_CP130437], *Lactobacillus delbrueckii* subsp.
630 *lactis* DSM 20072 [CP022988], *Lactiplantibacillus plantarum* DSM 20174 [CP039121],
631 *Bifidobacterium breve* DSM 20213 [BBAO00000000], and *Bifidobacterium longum* subsp.
632 *infantis* ATCC 15697 [CP001095] were taken as control species. After the extraction of a total
633 of 23 genomes, they were further analyzed for quality check, trimming, and alignment. The
634 assessment of genome quality was done involved utilizing QUAST (version 4.4) (64).
635 Additionally, to reconfirm genome completeness and identify any contamination, CheckM
636 v1.0.18 (65) was employed, followed by trimming using the Trimmomatic program (version
637 0.36) (66). Multiple whole genome sequence alignments were conducted using Bowtie2 v2.3.2
638 (67). These analyses were performed on the KBase platform, available at
639 <https://www.kbase.us/> (68).

640 Phylogenomic Analysis and Annotation

641 The study examined the phylogenetic relationships among *Geobacillus* species and their
642 connections with other *Lactobacillus* and *Bifidobacterium* probiotic genomes used in this
643 research, based on a defined set of 49 core, universally recognized genes from COG (Clusters
644 of Orthologous Groups) gene families. This was performed by a KBase app Species Tree
645 Builder v0.1.4 (68). This process begins by choosing a subset of publicly available KBase
646 genomes that exhibit close relations to the genomes we've provided. Subsequently, these
647 genomes undergo multiple sequence alignment (MSA) against 49 COG domains. The resulting
648 alignments are meticulously refined using GBLOCKS to eliminate inadequately aligned
649 sections within the MSA. These refined MSAs are concatenated, and a phylogenetic tree is
650 generated using the maximum likelihood method via FastTree2 version 2.1.11. The
651 phylogenomic analysis was also done by using the Codon Tree Test method of the
652 phylogenetic tree-building service of Bacterial and Viral Bioinformatics Resource Center (BV-
653 BRC) (<https://www.bv-brc.org/>) (69). The Codon Tree approach uses the RAxML program to
654 analyze aligned proteins and coding DNA from single-copy genes after choosing single-copy
655 BV-BRC PGFams. RAxML's "Rapid" bootstrapping option was used to produce support values
656 over 100 iterations.

657 The genomes were annotated using Prokka v1.14.5 (70) through the KBase platform. To assess
658 the genes carrying known functions among the Prokka annotated genomes was done by the
659 KBase app “View Function Profile for Genome-v1.4.0” and a heatmap was generated. It
660 summarizes gene functions using canonical gene family assignment from COG, PFAM,
661 TIGRFAM, and the SEED. Before this step, the domains of the Prokka annotated genomes
662 were first annotated using the Domain Annotation app v1.0.10. (68).

663 **Detection of Genes Related to Probiotic Features**

664 Genes involved in the mechanism of modulation of the immune system, vitamin biosynthesis,
665 fatty acid synthesis, resistance to stress conditions (acid, bile, osmotic, and oxidative stress),
666 adhesion, bacterial colonization, and molecular chaperones were detected from Prokka
667 annotated genomes (70). These probiotic-related genes were compared with those of already
668 known probiotic species considered in this study.

669 **Detection of Mobile Elements, Insertion Sequences, Plasmids, Prophages, Bacteriocins, 670 and CRISPR-Cas Systems**

671 The in-silico identification of plasmids among the studied genomes was done with
672 PlasmidFinder 2.0 (71). Phage presence was assessed using Phigaro through the Proksee
673 platform. (72). The mobile elements and insertion sequences were predicted by ICEFinder (73)
674 and VRprofile2 (74). The putative bacteriocins were predicted by using BAGEL4 (75), and
675 the presence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and
676 Cas proteins were analyzed with the CRISPRCasfinder v4.2.20 tool (76) using Proksee (72)
677 platform and were also cross-checked in Prokka annotations of genomes using KBase platform.

678 **Detection of Antibiotic Resistance Genes, Virulence Factors, and Toxins**

679 The assessment of antibiotic resistance gene predictions was conducted using ABRIcate v1.0.1
680 within the Galaxy platform, RGI (Resistance Gene Identifier) 6.0.3, and CARD
681 (Comprehensive Antibiotic Resistance Database) (77) using PATRIC (BV-BRC v3.32.13a)
682 and Proksee platforms. The virulence factors were predicted with PATRIC (BV-BRC
683 v3.32.13a) and ABRIcate v1.0.1 against VFDB (virulence factor data base) (69). The toxins
684 were predicted with TAser (<https://shiny.bioinformatics.unibe.ch/apps/taser/>) using the

685 TASmania database (78). Only those genes were considered with hmm_E_value less than 1e-
686 15.

687 **Identification of Carbohydrate-active Enzymes (CAZyme)**

688 The carbohydrate-active enzymes were identified by annotating the genome sequences through
689 dbCAN (79) with dbCAN2 HMMs of CAZy families - v10 app in KBase. This method scans
690 protein sequences found in Genomes using a set of Hidden Markov Models (HMMs) from the
691 dbCAN2 CAZy family collection or CAZy database (<http://www.cazy.org/>). It uses HMMER
692 software v3.3.2 is installed from <http://hmmer.org>.

693 **Pangenome Analysis**

694 The Pangenome analysis was performed with Genome Comparison SDK v.0.0.7 app in KBase.
695 The KBase algorithm for computing the protein pangenome relies on a k-mer-based approach,
696 providing significant advantages. It entails identifying uniquely distinct k-mers, specifically of
697 length 8, present in each protein across all genomes. Phylogenetic Pangenome Accumulation
698 v1.4.0 (https://kbase.us/applist/apps/kb_phylogenomics/view_pan_phylo/) was run to view the
699 pangenome in phylogenetic context and to compare among two genome sets (between
700 *Geobacillus* and *Lactobacillus/Bifidobacterium*). This application allows to dissecting of
701 pangenome categories using a species tree to determine the entry and exit of gene families in
702 the branch of interest.

703 The Pangenome analysis was also done with IPGA (Integrated Prokaryotes Genome and Pan-
704 Genome Analysis) v1.09 (80). Before any analysis quality control is done on input genomes.
705 After QC, the genes of all filtered genomes are predicted using prokka. Using up to eight
706 different types of software such as OrthoMCL, PanOCT, Roary,
707 OrthoFinder, panX, Panaroo, PPanGGoLiN, and PEPPAN each gene is annotated against the
708 COG database to provide a unique pan-genome profile. To assist users in choosing the optimal
709 pan-genome profile from the possibly inconsistent findings, IPGA extracts all orthologous
710 gene clusters and then assigns a score to each of them (80). Pangenome Circle Plot was formed
711 using Pangenome Circle Plot-v1.2.0 in KBase
712 (https://kbase.us/applist/apps/kb_phylogenomics/view_pan_circle_plot/release). This app
713 allows the overlapping membership of genes against a base genome.

714

715 **Acknowledgments:** Dr. Ishfaq Nabi Najar would like to thank DBT-RA, Department of
716 Biotechnology, Govt. of India, for providing the DBT-RA Fellowship (**DBT-RA/2022/JULY/N/2877**) for research work. I would also like to thank CSIR IIIM Jammu, for
718 providing me lab space to carry out my research.

719 **Ethics approval:** Not applicable

720 **Funding:** Not applicable.

721 **Credit authorship contribution statement:**

722 **Ishfaq Nabi Najar:** Conceptualization, Data Curation, Analysis, Writing – original draft.
723 **Prayatna Sharma:** Analysis and Writing– original draft. **Rohit Das:** Analysis and Editing –
724 original draft. **Krishnendu Mondal, Ashish Kumar Singh, Anu Radha, Varsha Sharma,**
725 **Sonali Sharma**- Data Curation, Writing and Editing – original draft, **Nagendra Thakur:** Review
726 & Editing. **Sumit G Gandhi:** Review & Editing. **Vinod Kumar:** Conceptualization, Review &
727 Editing.

728 **Declaration of Competing Interest:** The authors declare no competing interests.

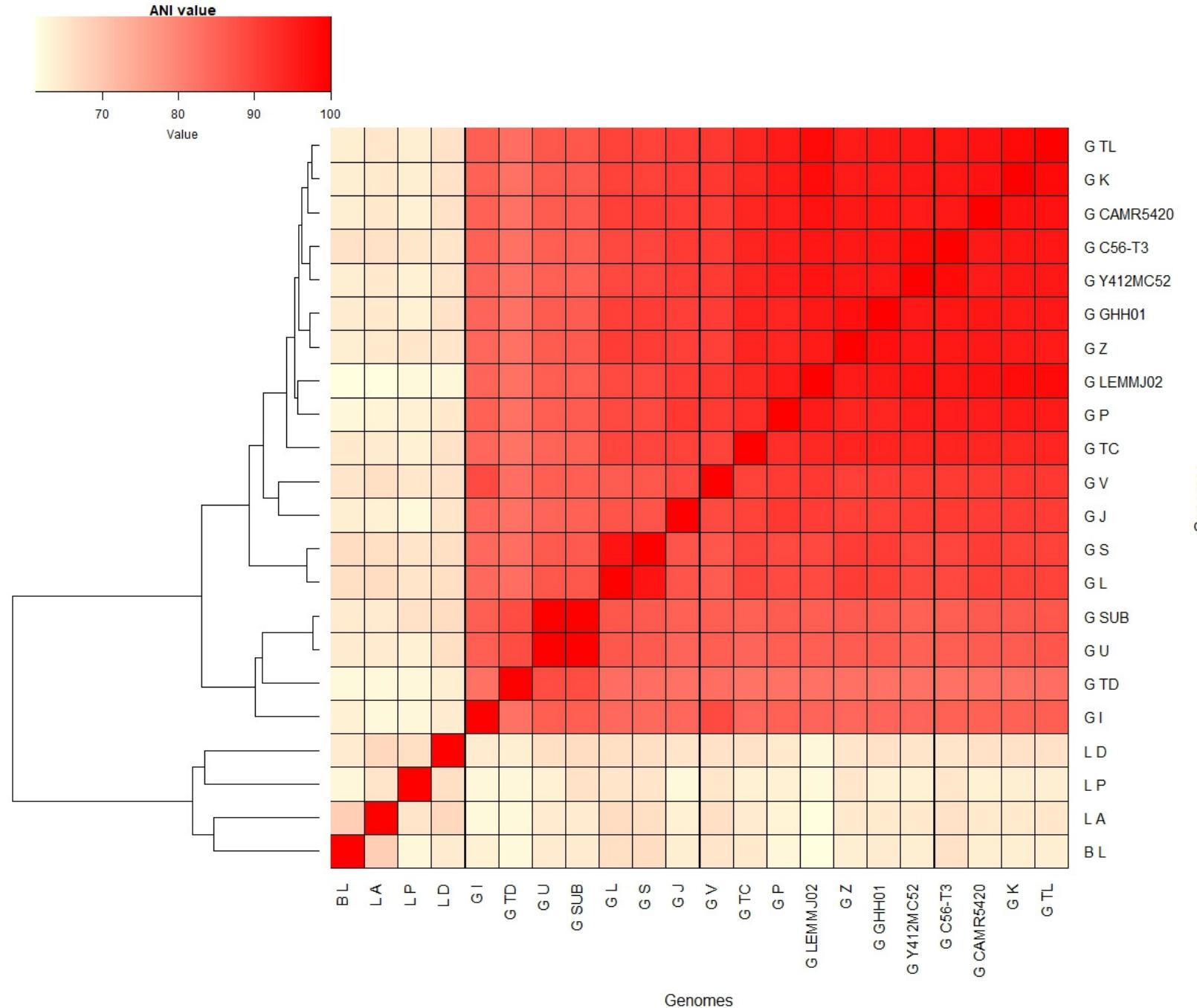
729

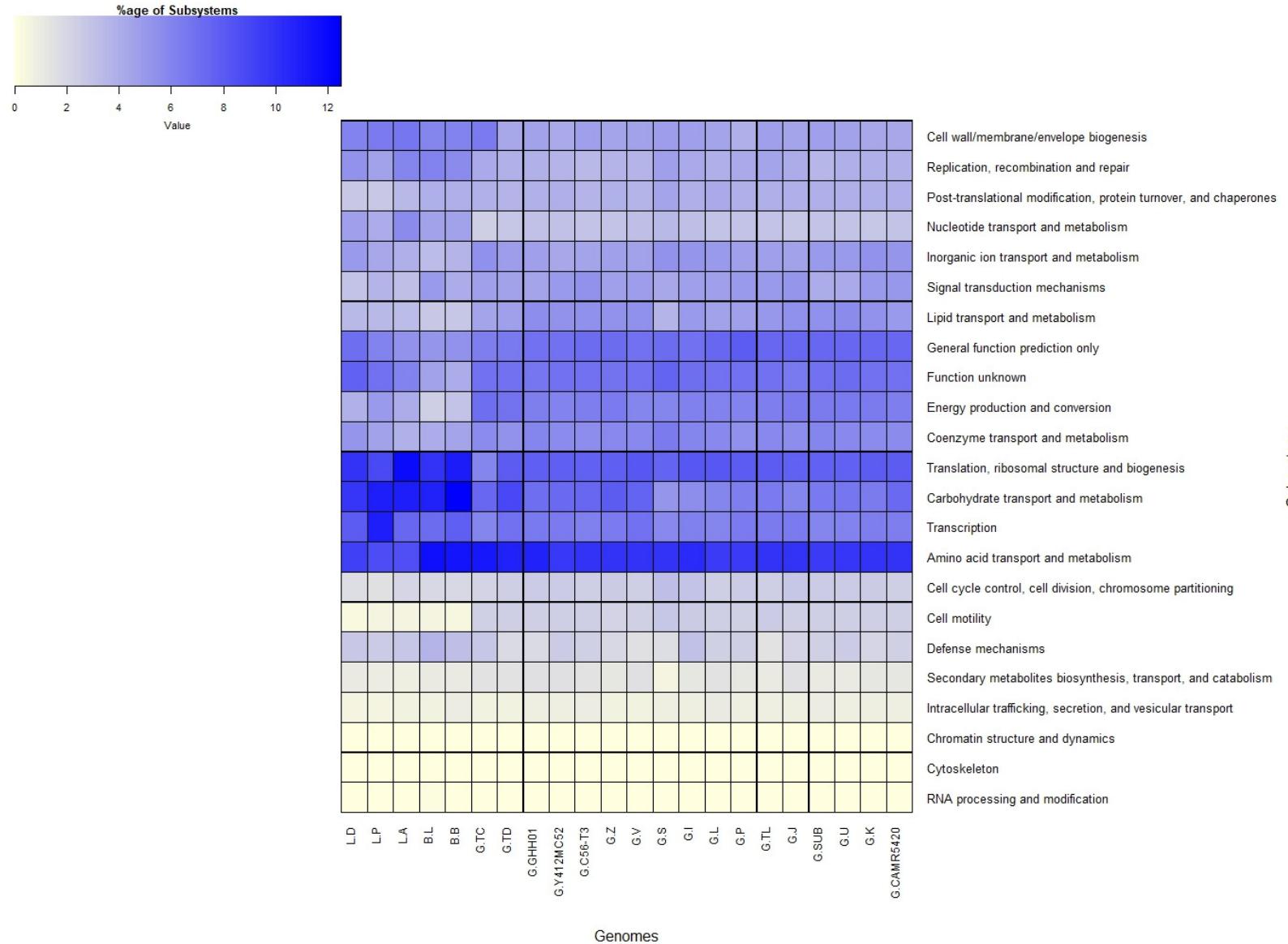
730 **References:**

- 731 Najar IN, Thakur N. 2020. A systematic review of the genera *Geobacillus* and *Parageobacillus*:
732 Their evolution, current taxonomic status, and major applications. *Microbiology* 166: 800–816.
733 <https://doi.org/10.1099/mic.0.000945>.
- 734 Khaswali A, Chaturvedi N, Mishra SK, Kumar PR, Paul PK. 2022. Current status and applications
735 of genus *Geobacillus* in the production of industrially important products—a review. *Folia
736 Microbiol* 67: 389–404. <https://doi.org/10.1007/s12223-022-00961-w>.
- 737 Novik G, Savich V, Meerovskaya O. 2019. *Geobacillus* Bacteria: Potential Commercial
738 Applications in Industry, Bioremediation, and Bioenergy Production Growing and Handling of
739 Bacterial Cultures. IntechOpen.
- 740 Cortés-Antiquera R, Márquez SL, Espina G, Sánchez-SanMartín J, Blamey JM. 2023.
741 Recombinant expression and characterization of a new laccase, bioinformatically identified, from
742 the Antarctic thermophilic bacterium *Geobacillus* sp. ID17. *Extremophiles* 27.

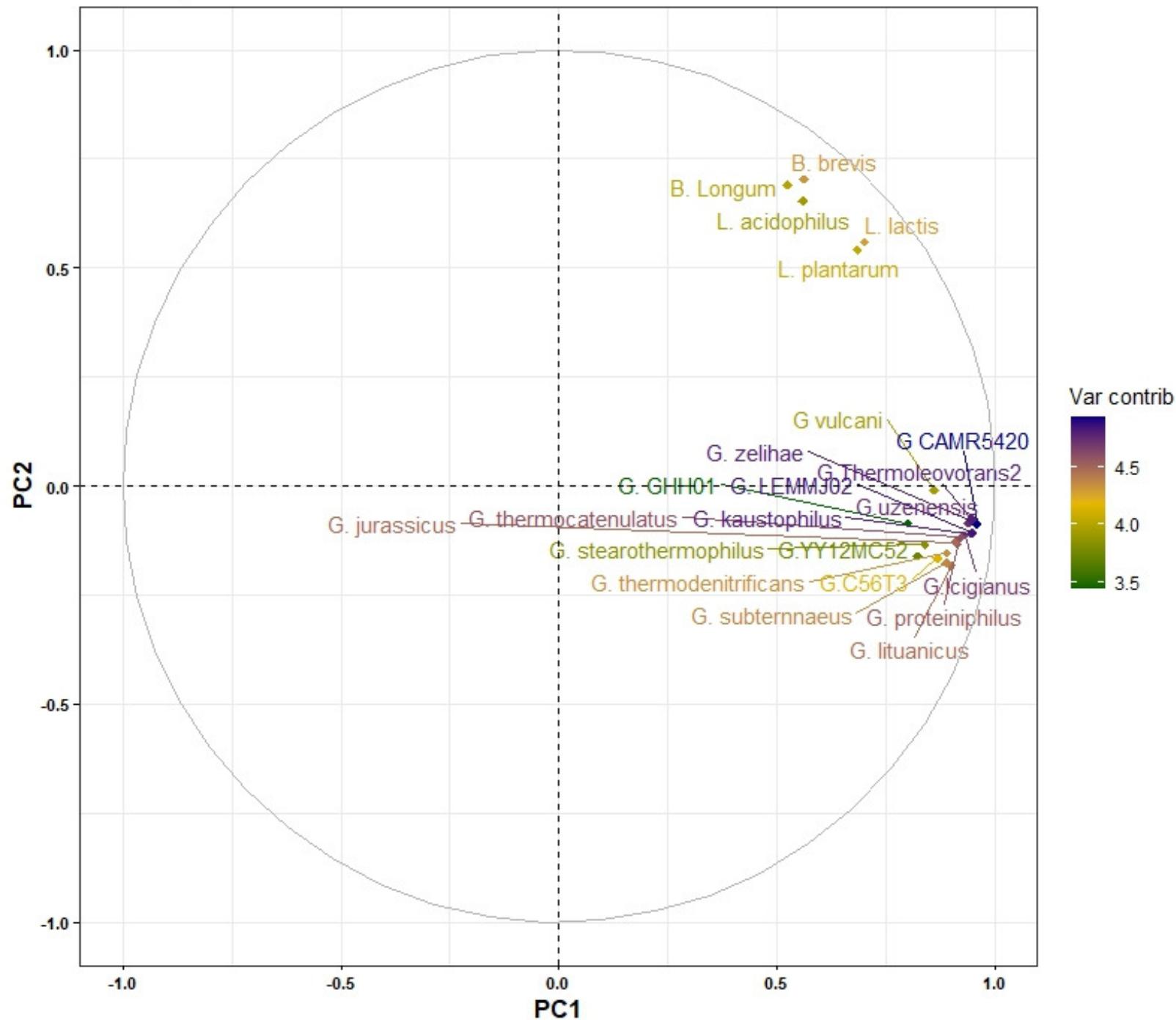
- 743 Meslé MM, Mueller RC, Peach J, Eilers B, Tripet BP, Bothner B, Copié V, Peyton BM. 2022.
744 Isolation and Characterization of Lignocellulose-Degrading *Geobacillus thermoleovorans* from
745 Yellowstone National Park. *Appl Environ Microbiol* 88.
- 746 Wada K, Suzuki H. 2020. Biotechnological platforms of the moderate thermophiles, *Geobacillus*
747 species: notable properties and genetic tools, p. 195–218. *In* Physiological and Biotechnological
748 Aspects of Extremophiles. Elsevier.
- 749 Ash C, Farrow JAE, Wallbanks S, Collins MD. 1991. Phylogenetic heterogeneity of the genus
750 *Bacillus* revealed by comparative analysis of small-subunit-ribosomal RNA sequences. *Lett Appl*
751 *Microbiol* 13:202–206.
- 752 Lin JH, Zhang KC, Tao WY, Wang D, Li S. 2019. *Geobacillus* strains that have potential value in
753 microbial-enhanced oil recovery. *Appl Microbiol Biotechnol* 103: 8339–8350.
754 <https://doi.org/10.1007/s00253-019-10115-7>.
- 755 Donk PJ. 1920. A highly resistant thermophilic organism. *J Bacteriol* 5:373–374.
- 756 Nazina TN, Tourova TP, Poltaraus AB, Novikova E V, Grigoryan AA, Ivanova AE, Lysenko AM,
757 Petrunyaka V V, Osipov GA, Belyaev SS, MV I. 2001. Taxonomic study of aerobic thermophilic
758 bacilli: descriptions of *Geobacillus subterraneus* gen. nov., sp. nov. and *Geobacillus uzenensis* sp.
759 nov. from petroleum reservoirs and transfer of *Bacillus stearothermophilus*, *B. thermocatenulatus*,
760 *B. thermoleovorans*. *Int J Syst Evol Microbiol* 51:433–446.
- 761 Logan NA. 2014. The genus *Geobacillus*, p. 133–147. *In* The Prokaryotes: Firmicutes and
762 Tenericutes. Springer-Verlag Berlin Heidelberg.
- 763 Zebrowska J, Witkowska M, Struck A, Laszuk PE, Raczk E, Ponikowska M, Skowron PM,
764 Zylicz-Stachula A. 2022. Antimicrobial Potential of the Genera *Geobacillus* and *Parageobacillus*,
765 as Well as Endolysins Biosynthesized by Their Bacteriophages. *Antibiotics* 11.
- 766 Najar IN, Das S, Kumar S, Sharma P. 2022. Coexistence of Heavy Metal Tolerance and Antibiotic
767 Resistance in Thermophilic Bacteria Belonging to Genus *Geobacillus*. *Front Microbiol* 13:1–15.
- 768 Jeżewska-Frackowiak J, Seroczynska K, Banaszczyk J, Jedrzejczak G, Zylicz-Stachula A,
769 Skowron PM. 2018. The promises and risks of probiotic *Bacillus* species. *Acta Biochim Pol*
770 65:509–519.
- 771 Łubkowska B, Jeżewska-frąckowiak J, Sobolewski I, Skowron PM. 2021. Bacteriophages of
772 thermophilic ‘*Bacillus* group’ bacteria—a review. *Microorganisms* 9: 1-27.
773 <https://doi.org/10.3390/microorganisms9071522>.
- 774 Mahdhi A, Hmila Z, Behi A, Bakhrouf A. 2011. Preliminary characterization of the probiotic
775 properties of *Candida famata* and *Geobacillus thermoleovorans*. *Iranian journal of microbiology*,
776 3(3), 129–134.
- 777 McMullan G, Christie JM, Rahman TJ, Banat IM, Ternan NG, Marchant R. 2004. Habitat,
778 applications and genomics of the aerobic, thermophilic genus *Geobacillus*. *Biochemical Society*
779 *transactions*, 32: 214–217. <https://doi.org/10.1042/bst0320214>.

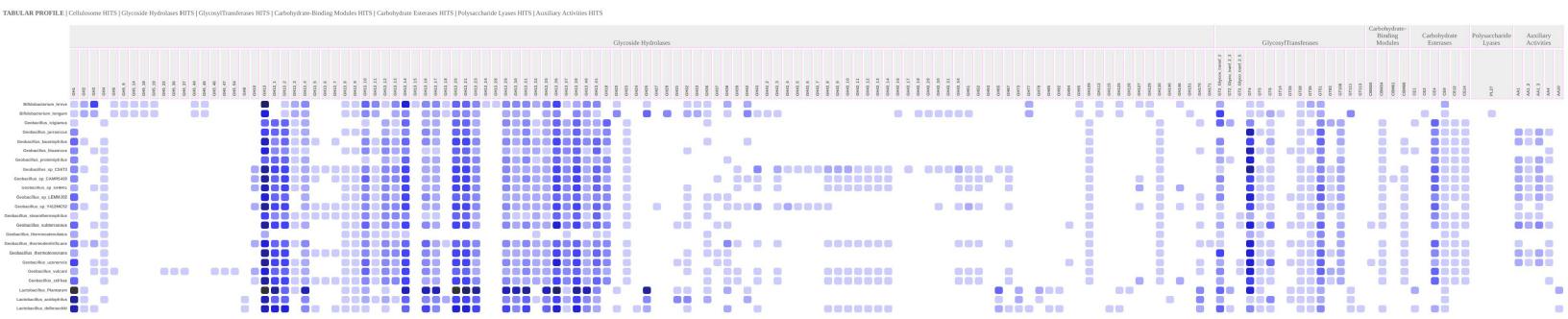
- 780 Najar IN, Sherpa MT, Das S, Das S, Thakur N. 2020. Diversity analysis and metagenomic insights
781 into antibiotic and metal resistance among Himalayan hot spring bacteriobiome insinuating
782 inherent environmental baseline levels of antibiotic and metal tolerance. *J Glob Antimicrob Resist*
783 21:342–352.
- 784 Donkor ES. 2013. Sequencing of Bacterial Genomes: Principles and Insights into Pathogenesis
785 and Development of Antibiotics. *Genes (Basel)* 4:556–572.
- 786 Saraswathy N, Ramalingam P. 2011. Genome sequencing methods. *Concepts and Techniques in*
787 *Genomics and Proteomics*, 95–107. doi:10.1533/9781908818058.95, p. 95–107. *In* Saraswathy,
788 N, Ramalingam, P (eds.), *Concepts and Techniques in Genomics and Proteomics*. Woodhead
789 Publishing.
- 790 Najar IN, Sherpa MT, Das S, Thakur N. 2021. The draft genome sequence of *Parageobacillus* sp.
791 strain SY1 gives insights into its physiological properties and protease production. *Meta Gene*
792 29:100894.
- 793 Najar IN, Sherpa MT, Das S, Thakur N. 2020. Bacterial diversity and functional metagenomics
794 expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-
795 efficiency to Himalayan Hot Springs. *Funct Integr Genomics* 20:479–496.
- 796 Caputo A, Fournier PE, Raoult D. 2019. Genome and pan-genome analysis to classify emerging
797 bacteria. *Biol Direct* 14. <https://doi.org/10.1186/s13062-019-0234-0>.
- 798 Tiwary BK. 2020. Chapter 3 - Evolutionary pan-genomics and applications, p. 65–80. *In* Barh, D,
799 Soares, S, Tiwari, S, Azevedo, V (eds.), *Pan-genomics: Applications, Challenges, and Future*
800 *Prospects*. Academic Press.
- 801 Asif M, Li-Qun Z, Zeng Q, Atiq M, Ahmad K, Tariq A, Al-Ansari N, Blom J, Fenske L, Alodaini
802 HA, Hatamleh AA. 2023. Comprehensive genomic analysis of *Bacillus paralicheniformis* strain
803 BP9, pan-genomic and genetic basis of biocontrol mechanism. *Comput Struct Biotechnol J*
804 21:4647–4662.
- 805 Bezuidt OK, Pierneef R, Gomri AM, Adesioye F, Makhalanyane TP, Kharroub K, Cowan DA.
806 2016. The *Geobacillus* pan-genome: Implications for the evolution of the genus. *Front Microbiol*
807 7:1–9.
- 808 Najar IN, Das S, Thakur N. 2020. Reclassification of *Geobacillus galactosidasius* and *Geobacillus*
809 *yumthangensis* as *Parageobacillus galactosidasius* comb. nov. and *Parageobacillus*
810 *yumthangensis* comb. nov., respectively. *Int J Syst Evol Microbiol* 70:6518–6523.
- 811 Wang M, Zhu H, Kong Z, Li T, Ma L, Liu D, Shen Q. 2020. Pan-genome analyses of *Geobacillus*
812 spp. reveal genetic characteristics and composting potential. *Int J Mol Sci* 21:1–16.
- 813 Foongsawat N, Sunthornthummas S, Nantavisai K, Surachat K, Rangsiruji A, Sarawaneeyaruk S,
814 Insian K, Sukontasing S, Suwannasai N, Pringsulaka O. 2023. Isolation, Characterization, and
815 Comparative Genomics of the Novel Potential Probiotics from Canine Feces. *Food Sci Anim*
816 *Resour* 43:685–702.

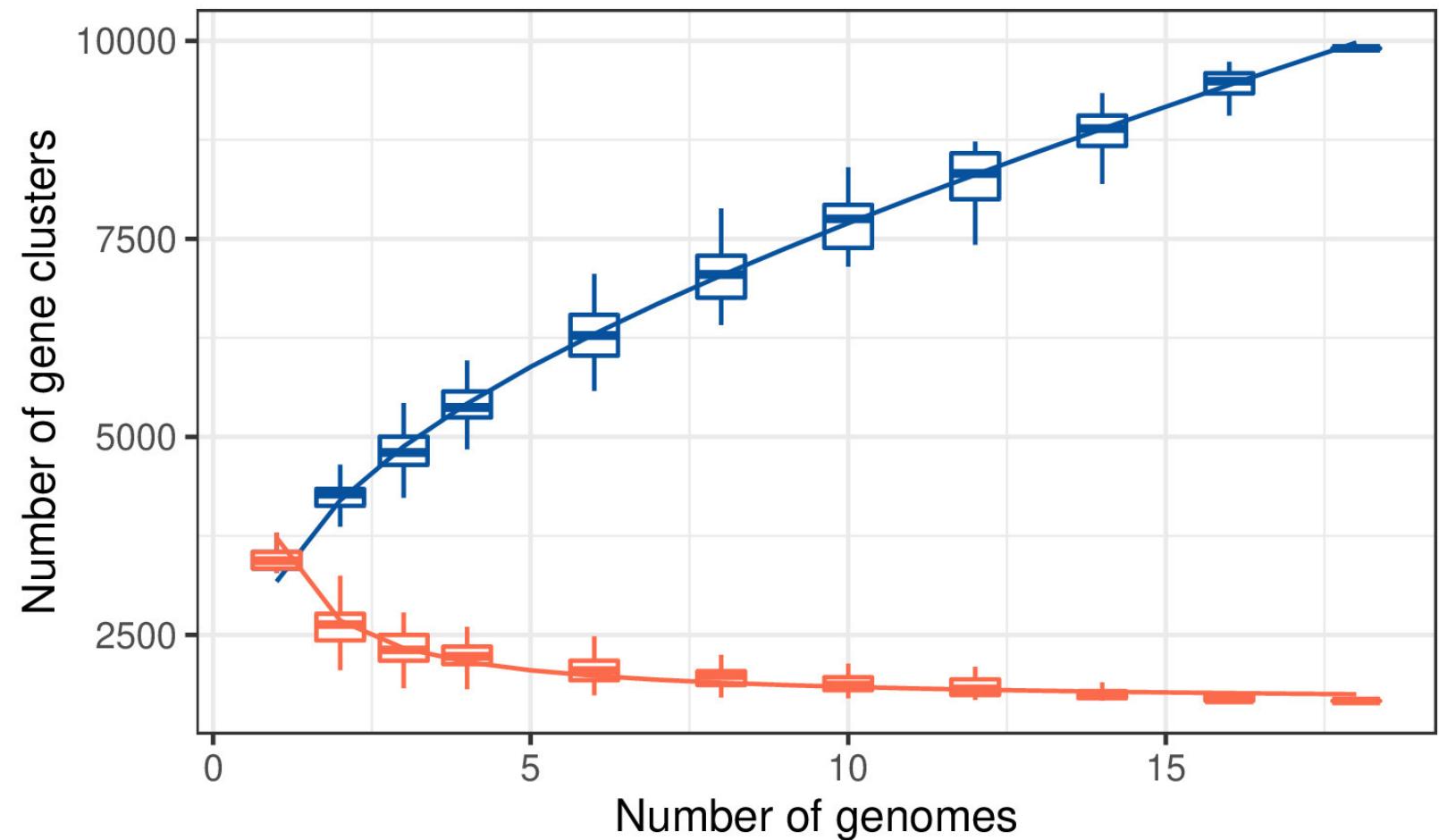

810. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, Tremblay A, Ouwehand AC. 2020.
818 Criteria to Qualify Microorganisms as “Probiotic” in Foods and Dietary Supplements. *Front*
819 *Microbiol* 11:1–9.
820. Zhao X, Wang Y, Shang Q, Li Y, Hao H, Zhang Y, Guo Z, Yang G, Xie Z, Wang R. 2015.
821 Collagen-like proteins (ClpA, ClpB, ClpC, and ClpD) are required for biofilm formation and
822 adhesion to plant roots by *Bacillus amyloliquefaciens* FZB42. *PLoS One* 10:1–16.
823. Lee J, Sullivan DJO. 2010. Genomic Insights into *Bifidobacteria*. *Microbiology and Molecular*
824 *Biology Reviews* 74:378–416.
825. Connell MO, Zomer A, Leahy SC, Reunanen J, Bottacini F. 2011. Functional genome analysis of
826 *Bifidobacterium breve* UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and
827 conserved host-colonization factor. *PNAS* 108:11217–11222.
828. Nguyen TL, Kim D. 2018. Genome-Wide Comparison Reveals a Probiotic Strain *Lactococcus*
829 *lactis* WFLU12 Isolated from the Gastrointestinal Tract of Olive Flounder (*Paralichthys*
830 *olivaceus*) Harboring Genes supporting probiotic action. *Mar Drugs* 16:1–17.
831. Chou L, Weimer B. 1999. Isolation and Characterization of Acid- and Bile-Tolerant Isolates from
832 Strains of *Lactobacillus acidophilus*. *J Dairy Sci* 82:23–31.
833. Ventura M, Canchaya C, Sinderen D Van, Fitzgerald GF, Zink R. 2004. *Bifidobacterium lactis*
834 DSM 10140: Identification of the atp (atpBEFHAGDC) Operon and Analysis of Its Genetic
835 Structure, Characteristics, and Phylogeny. *Appl Environ Microbiol* 70:3110–3121.
836. Duary RK, Batish VK, Grover S. 2010. Expression of the atpD gene in probiotic *Lactobacillus*
837 *plantarum* strains under in vitro acidic conditions using RT-qPCR. *Res Microbiol* 161:399–405.
838. Fraser KR, Harvie D, Coote PJ, O’Byrne CP. 2000. Identification and characterization of an ATP
839 binding cassette L-carnitine transporter in *Listeria monocytogenes*. *Appl Environ Microbiol*
840 66:4696–4704.
839. Kempf B, Bremer E. 1995. OpuA, an osmotically regulated binding protein-dependent transport
840 system for the osmoprotectant glycine betaine in *Bacillus subtilis*. *Journal of Biological Chemistry*
841 270:16701–16713.
842. Shamsuzzaman M, Dahal RH, Kim S, Kim J. 2023. Genome insight and probiotic potential of
843 three novel species of the genus *Corynebacterium*. *Front Microbiol* 14:1–14.
844. Méndez V, Rodríguez-Castro L, Durán RE, Padrón G, Seeger M. 2022. The OxyR and SoxR
845 transcriptional regulators are involved in a broad oxidative stress response in *Paraburkholderia*
846 *xenovorans* LB400. *Biol Res* 55:1–19.
847. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. 2007. Characterization of a novel bile-
848 inducible operon encoding a two-component regulatory system in *Lactobacillus acidophilus*. *J*
849 *Bacteriol* 189:4624–4634.


- 852 Bačun-Družina V, Mrvčić J, Butorac AS, Stehlik-Tomas V, Gjuračić K. 2009. The influence of
853 gene transfer on the lactic acid bacteria evolution. *Mljekarstvo* 59:181–192.
- 854 Sylvere N, Mustopa AZ, Budiarti S, Meilina L, Hertati A, Handayani I. 2023. Whole-genome
855 sequence analysis and probiotic characteristics of *Lactococcus lactis* Subsp. *lactis* strain Lac3
856 isolated from traditional fermented buffalo milk (Dadih). *Journal of Genetic Engineering and*
857 *Biotechnology* 21:1–12.
- 858 Valdez-Baez J, Morais F, Da Costa R, Pinto Gomide AC, Profeta R, Lima Da Silva A, De T, Sousa
859 J, Vinícius M, Viana C, Kato RB, Ferrary Americo M, Dos A, Freitas S, Dias De Oliveira Carvalho
860 R, Brenig B, Martins S, Aburjaile F, Azevedo V. 2022. Comparative Genomics and In Silico
861 Evaluation of Genes Related to the Probiotic Potential of *Bifidobacterium breve* 110 1A. *Bacteria*
862 2022:161–182.
- 863 Abriouel H, Pérez Montoro B, de la Fuente Ordoñez JJ, Lavilla Lerma L, Knapp CW, Benomar
864 N. 2019. New insights into the role of plasmids from probiotic *Lactobacillus pentosus* MP-10 in
865 Aloreña table olive brine fermentation. *Sci Rep* 9:1–19.
- 866 Dobson A, Cotter PD, Paul Ross R, Hill C. 2012. Bacteriocin production: A probiotic trait? *Appl*
867 *Environ Microbiol* 78:1–6.
- 868 Sarkar A, Mandal S. 2016. *Bifidobacteria*—Insight into clinical outcomes and mechanisms of its
869 probiotic action. *Microbiol Res* 192:159–171.
- 870 Yang L, Li W, Ujiroghene OJ, Yang Y, Lu J, Zhang S, Pang X, Lv J. 2020. Occurrence and
871 Diversity of CRISPR Loci in *Lactobacillus casei* Group. *Front Microbiol* 11:1–9.
- 872 Briner AE, Lugli GA, Milani C, Duranti S, Turroni F, Gueimonde M, Margolles A, Van Sinderen
873 D, Ventura M, Barrangou R. 2015. Occurrence and diversity of CRISPR-Cas systems in the genus
874 *Bifidobacterium*. *PLoS One* 10:1–16.
- 875 Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R,
876 De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P,
877 Suffredini E, Cocconcelli PS, Fernández Escámez PS, Prieto-Maradona M, Querol A, Sijtsma L,
878 Evaristo Suarez J, Sundh I, Vlak J, Barizzone F, Hempen M, Herman L. 2022. Update of the list
879 of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA
880 15: suitability of taxonomic units notified to EFSA until September 2021. *EFSA Journal* 20:1–40.
- 881 Borriello SP, Hammes WP, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V. 2003.
882 Safety of probiotics that contain *Lactobacilli* or *Bifidobacteria*. *Clinical Infectious Diseases*
883 36:775–780.
- 884 Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, Hill C, Lewis ZT, Shane
885 AL, Zmora N, Petrova MI, Collado MC, Morelli L, Montoya GA, Szajewska H, Tancredi DJ,
886 Sanders ME. 2023. Emerging issues in probiotic safety: 2023 perspectives. *Gut Microbes* 15:1–
887 22.

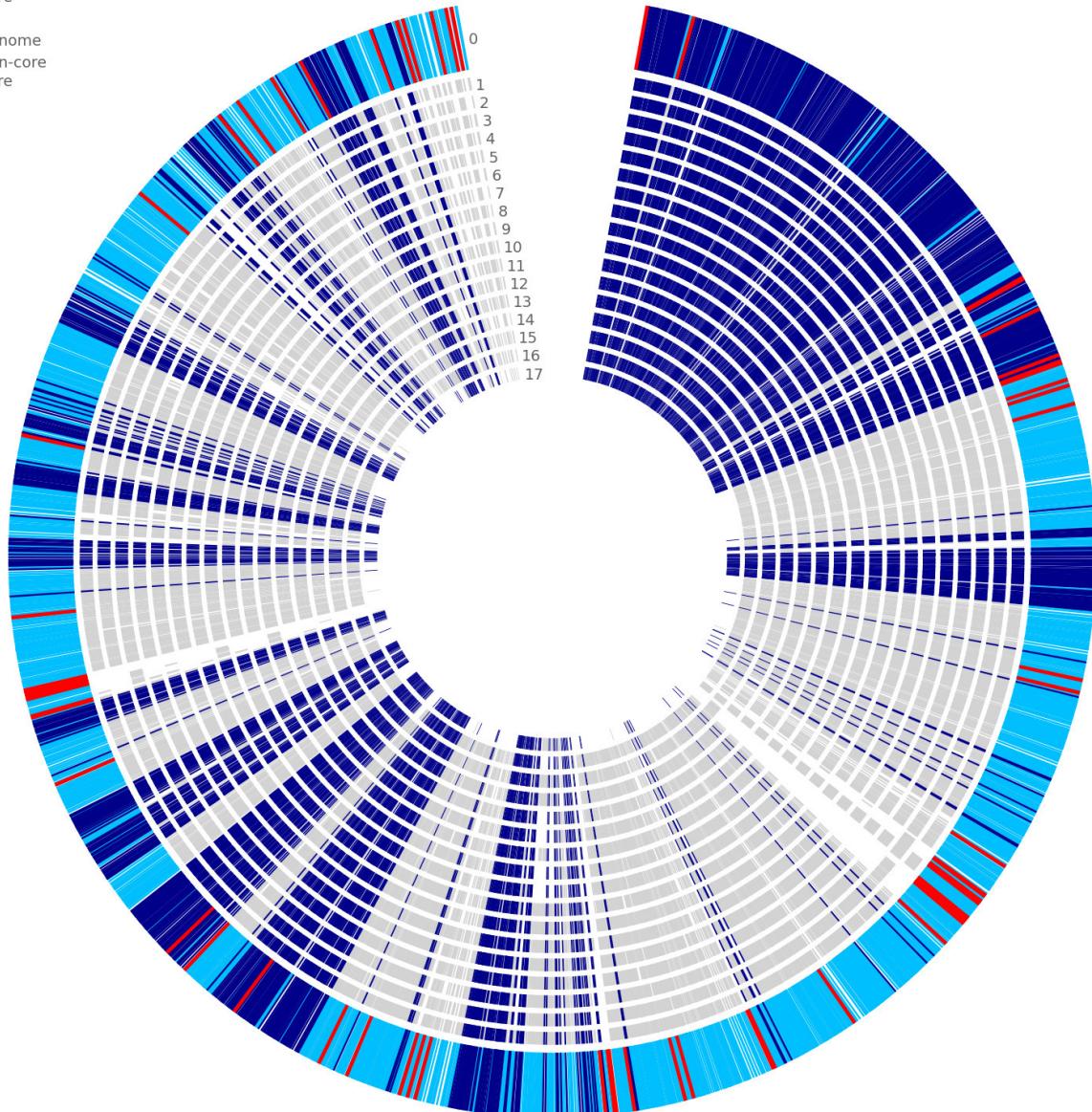
- 888 Puopolo R, Gallo G, Mormone A, Limauro D, Contursi P, Piochi M, Bartolucci S, Fiorentino G.
889 2020. Identification of a new heavy-metal-resistant strain of *Geobacillus stearothermophilus*
890 isolated from a hydrothermally active volcanic area in southern Italy. *Int J Environ Res Public*
891 *Health* 17.
- 892 Oztug M, Cebeci A, Mumcu H, Akgoz M, Karaguler NG. 2020. Whole-Genome Sequence of
893 *Geobacillus thermoleovorans* ARTRW1, Isolated from Armutlu Geothermal Spring, Turkey
894 *Microbiol Resour Announc* 9: e00269-20. <https://doi.org/10.1128/MRA.00269-20>.
- 895 Arthur M, Depardieu F, Snaith HA, Reynolds PE, Courvalin P. 1994. Contribution of vanY D, D-
896 carboxypeptidase to glycopeptide resistance in *Enterococcus faecalis* by hydrolysis of
897 peptidoglycan precursors. *Antimicrob Agents Chemother* 38:1899–1903.
- 898 Andrews ESV, Arcus VL. 2020. PhoH2 proteins couple RNA helicase and RNase activities.
899 *Protein Science* 29:883–892.
- 900 Amitai S, Yassin Y, Engelberg-Kulka H. 2004. MazF-mediated cell death in *Escherichia coli*: A
901 point of no return. *J Bacteriol* 186:8295–8300.
- 902 Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R. 2010. PemK toxin of *Bacillus anthracis* is a
903 ribonuclease: An insight into its active site, structure, and function. *Journal of Biological*
904 *Chemistry* 285:7254–7270.
- 905 Kaoutari A El, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The abundance and variety
906 of carbohydrate-active enzymes in the human gut microbiota. *Nat Rev Microbiol* 11:497–504.
- 907 Soverini M, Turroni S, Biagi E, Quercia S, Brigidi P, Candela M, Rampelli S. 2017. Variation of
908 carbohydrate-active enzyme patterns in the gut microbiota of Italian healthy subjects and type 2
909 diabetes patients. *Front Microbiol* 8:1–8.
- 910 Ye L, Das P, Li P, Ji B, Nielsen J. 2019. Carbohydrate active enzymes are affected by diet
911 transition from milk to solid food in infant gut microbiota. *FEMS Microbiol Ecol* 95:1–9.
- 912 Aakko J, Pietilä S, Toivonen R, Rokka A, Mokkala K, Laitinen K, Elo L, Hänninen A. 2020. A
913 carbohydrate-active enzyme (CAZy) profile links the successful metabolic specialization of
914 *Prevotella* to its abundance in gut microbiota. *Sci Rep* 10:1–12.
- 915 Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: Quality assessment tool for genome
916 assemblies. *Bioinformatics* 29:1072–1075.
- 917 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM : assessing the
918 quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome*
919 *Res* 25:1043–1055.
- 920 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence
921 data. *Bioinformatics* 30:2114–2120.
- 922 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9:357–
923 359.


- 928 Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez
925 F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY, Kamimura RT,
926 Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston DJ, Allen BH,
927 Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia JM, Chia JM, Colasanti R,
928 Conrad N, Davis JJ, Davison BH, Dejongh M, Devoid S, Dietrich E, Dubchak I, Edirisinghe JN,
929 Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M, Greiner A, Gurtowski J, Haun HL, He
930 F, Jain R, Joachimiak MP, Keegan KP, Kondo S, Kumar V, Land ML, Meyer F, Mills M,
931 Novichkov PS, Oh T, Olsen GJ, Olson R, Parrello B, Pasternak S, Pearson E, Poon SS, Price GA,
932 Ramakrishnan S, Ranjan P, Ronald PC, Schatz MC, Seaver SMD, Shukla M, Sutormin RA, Syed
933 MH, Thomason J, Tintle NL, Wang D, Xia F, Yoo H, Yoo S, Yu D. 2018. KBase: The United
934 States Department of Energy Systems biology knowledgebase. *Nat Biotechnol* 36:566–569.
- 935 Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, Dickerman A,
936 Dietrich EM, Kenyon RW, Kuscuoglu M, Lefkowitz EJ, Lu J, Machi D, Macken C, Mao C,
937 Niewiadomska A, Nguyen M, Olsen GJ, Overbeek JC, Parrello B, Parrello V, Porter JS, Pusch
938 GD, Shukla M, Singh I, Stewart L, Tan G, Thomas C, VanOeffelen M, Vonstein V, Wallace ZS,
939 Warren AS, Wattam AR, Xia F, Yoo H, Zhang Y, Zmasek CM, Scheuermann RH, Stevens RL.
940 2023. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource
941 combining PATRIC, IRD, and ViPR. *Nucleic Acids Res* 51: D678–D689.
- 942 Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–2069.
- 943 Carattoli A, Zankari E, Garcia-Fernandez A, Larsen MV, Lund O, Villa L, Aarestrup FM, Hasman
944 H. 2014. In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus
945 sequence typing. *Antimicrob Agents Chemother* 58:3895–3903.
- 946 Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C, Graham M, Domselaar G Van,
947 Stothard P. 2023. Proksee: in-depth characterization and visualization of bacterial genomes.
948 *Nucleic Acids Res* 51:484–492.
- 949 Liu M, Li X, Xie Y, Bi D, Sun J, Li J, Tai C, Deng Z, Ou HY. 2019. ICEberg 2.0: An updated
950 database of bacterial integrative and conjugative elements. *Nucleic Acids Res* 47: D660–D665.
- 951 Wang M, Goh YX, Tai C, Wang H, Deng Z, Ou HY. 2022. VRprofile2: Detection of antibiotic
952 resistance-associated mobilome in bacterial pathogens. *Nucleic Acids Res* 50: W768–W773.
- 953 Van Heel AJ, De Jong A, Song C, Viel JH, Kok J, Kuipers OP. 2018. BAGEL4: A user-friendly
954 web server to thoroughly mine RiPPs and bacteriocins. *Nucleic Acids Res* 46: W278–W281.
- 955 Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC,
956 Vergnaud G, Gautheret D, Pourcel C. 2018. CRISPRCasFinder, an update of CRISRFinder,
957 includes a portable version, enhanced performance, and integrates search for Cas proteins. *Nucleic
958 Acids Res* 46: W246–W251.
- 959 Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen
960 AL V., Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M,
961 Speicher DJ, Florescu A, Singh B, Falty M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau


- 962 E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman
963 FSL, Hsiao WWL, Domselaar G V., McArthur AG. 2020. CARD 2020: Antibiotic resistome
964 surveillance with the comprehensive antibiotic resistance database. *Nucleic Acids Res* 48: D517–
965 D525.
- 966 Akarsu H, Bordes P, Mansour M, Bigot DJ, Genevaux P, Falquet L. 2019. TASmania: A bacterial
967 toxin-antitoxin systems database. *PLoS Comput Biol* 15:1–28.
- 968 Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. DbCAN: A web resource for automated
969 carbohydrate-active enzyme annotation. *Nucleic Acids Res* 40:445–451.
- 970 Liu D, Zhang Y, Fan G, Sun D, Zhang X, Yu Z, Wang J, Wu L, Shi W, Ma J. 2022. IPGA: A
971 handy integrated prokaryotes genome and pan-genome analysis web service. *iMeta* 1:1–7.
- 972
- 973
- 974

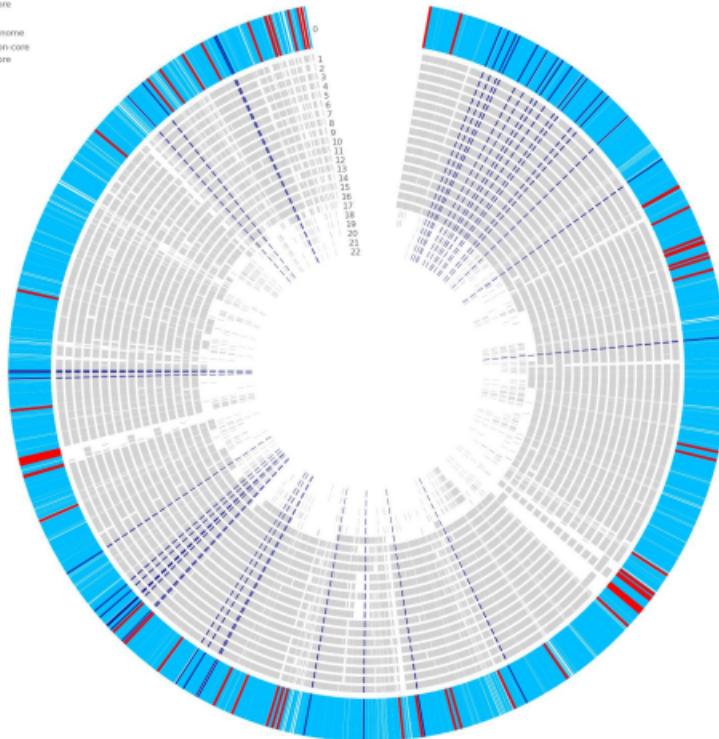


PCA - Biplot

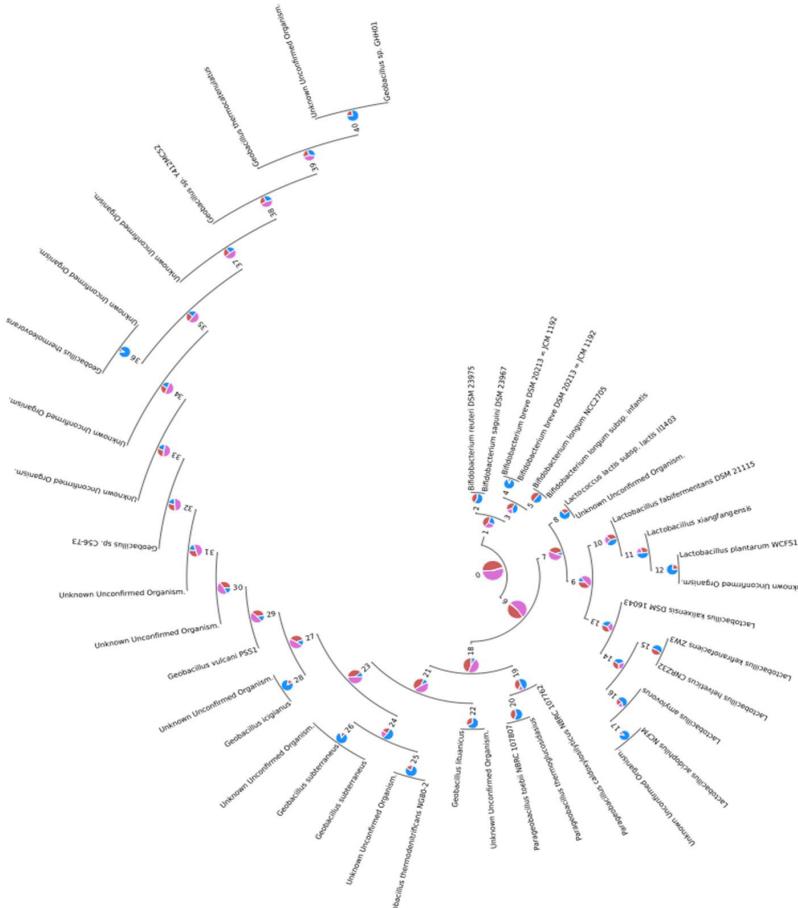


Unknown Unconfirmed Organism.

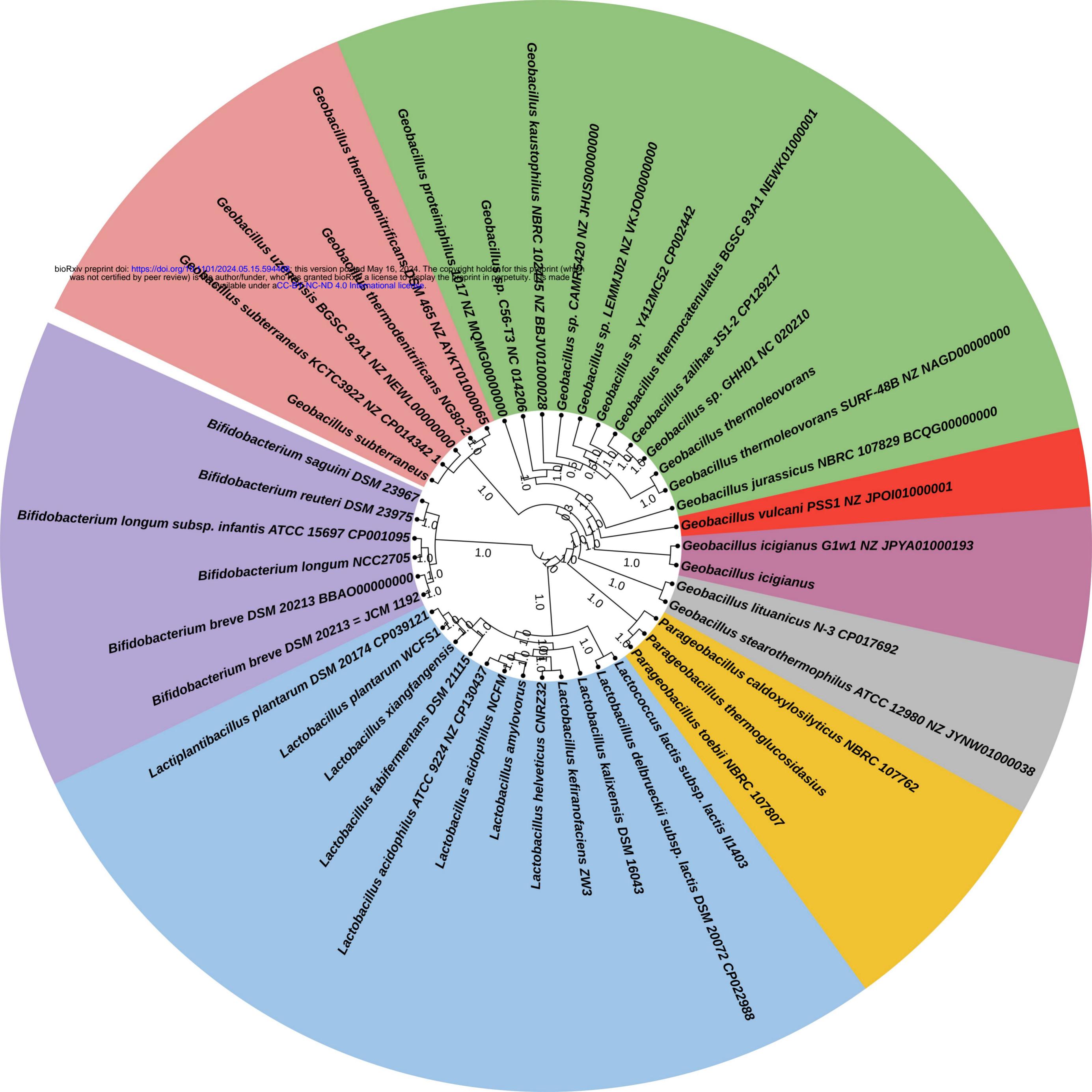
base singletons
non-core
core


Pangenome
non-core
core

Unknown Unconfirmed Organism:


base-singletons
non-core
core

Pangenome:
non-core
core



bioRxiv preprint doi: <https://doi.org/10.1101/2024.05.15.594408>; this version posted May 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

		Total	Singlet on	Partial	Perfect Core			Total	Singlet on	Partial	Perfect Core
Node 0	Gene No	17392	7974	9279	139	Node 11	Gene No	3676	1068	733	19.9
	%	100	45.8	53.4	0.8		%	100	29.1	0	19.9
Node 1	Gene No	3945	1687	1180	1078	Node 12	Gene No	3204	718	0	0
	%	100	42.8	29.9	27.3		%	100	22.4	0	0
Node 2	Gene No	2567	1108	0	1459	Node 13	Gene No	3240	1244	1005	39.1
	%	100	43.2	0	56.8		%	100	38.4	31	39.1
Node 3	Gene No	3085	1194	645	1246	Node 14	Gene No	2953	1050	858	10.1
	%	100	38.7	20.9	40.4		%	100	35.6	29	10.1
Node 4	Gene No	1936	194	0	1742	Node 15	Gene No	2248	1034	0	1.1
	%	100	10	0	90		%	100	46	0	1.1
Node 5	Gene No	2698	1335	0	1363	Node 16	Gene No	2220	513	583	1.1
	%	100	49.5	0	50.5		%	100	23.1	17.3	1.1
Node 6	Gene No	14861	6674	7956	231	Node 17	Gene No	1844	201	0	16.4
	%	100	44.9	53.5	1.6		%	100	10.9	0	8.9
Node 7	Gene No	6998	2733	3641	624	Node 18	Gene No	9590	4273	4489	82.9
	%	100	39.1	52	8.9		%	100	44.6	46.8	8.9
Node 8	Gene No	2458	692	0	1766	Node 19	Gene No	4721	1728	695	22.9
	%	100	28.2	0	71.8		%	100	36.6	14.7	48.9
Node 9	Gene No	5943	2297	2884	762	Node 20	Gene No	4101	1637	0	24.4
	%	100	38.7	48.5	12.8		%	100	39.9	0	60.1
Node 10	Gene No	4199	1417	1040	1742	Node 21	Gene No	8391	3452	4057	882
	%	100	33.7	24.8	41.5		%	100	41.1	48.4	10.5

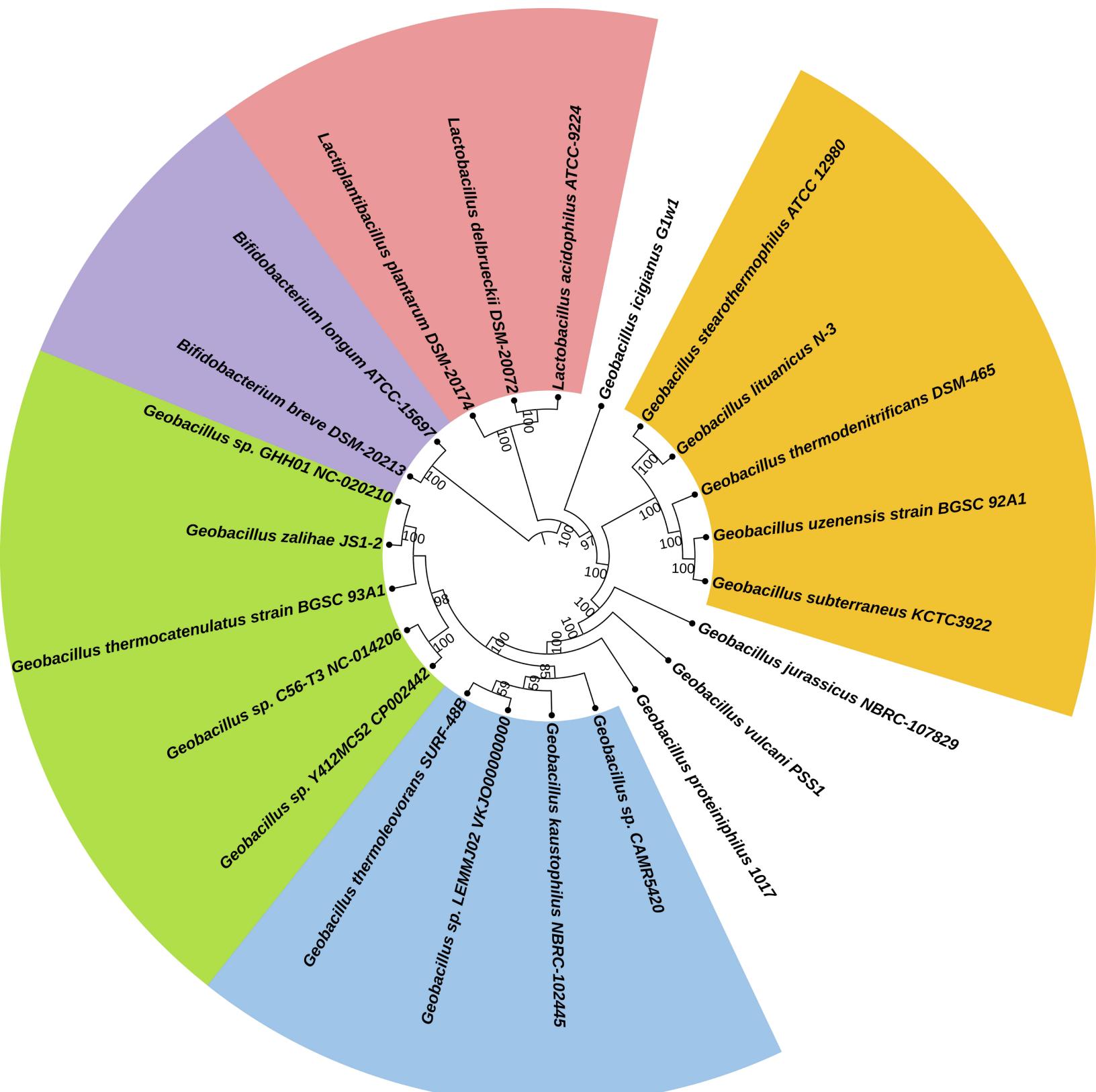


Table1. Quality control, source and GC content of studied genomes.

Genomes	Source	Total Length	N50	GC	Completeness	Contamination	CheckM
<i>Geobacillus_icigianus_G1w1_NZ_JPYA01000193</i>	Hot spring sediments	3457810	39998	52.03	99.45	0.34	
<i>Geobacillus_kaustophilus_NBRC_102445_NZ_B</i>	Pasteurized milk	3454242	50413	51.86	98.31	0	
<i>Geobacillus_jurassicus_NBRC_107829_BCQG00000000</i>	Unknown	3670957	3670957	52.22	99.45	0	
<i>Geobacillus_lituanicus_N-3_CP017692</i>	High-temperature oilfield	3499511	3447958	52.14	98.91	0.55	
<i>Geobacillus_proteiniphilus_1017_NZ_MQMG00000000</i>	High-temperature heavy oil reservoir	3574950	52882	51.76	99.45	0.68	
<i>Geobacillus_stearothermophilus_ATCC_12980_NZ_JYNW01000038</i>	Spoiled canned food	2860911	2831741	52.77	98.61	0	
<i>Geobacillus_subterraneus_KCTC3922_NZ_CPO14342_1</i>	Oil field	3474426	3474426	52.2	99.45	0	
<i>Geobacillus_thermocatenulatus_BGSC_93A1_N</i>	Oil field	3563800	1841649	51.77	99.45	0.03	
<i>Geobacillus_thermodenitrificans_DSM_465_NZ_AYKT01000065</i>	Sugar beet juice	3400546	264274	49.05	99.45	0	
<i>Geobacillus_thermolevorans_SURF-48B_NZ_NAGD00000000</i>	Yates Shaft, SURF	3808577	3808577	52.19	99.45	1.5	
<i>Geobacillus_uzenensis_BGSC_92A1_NZ_NEWL00000000</i>	Oil field	3357711	429603	52.23	99.45	0	
<i>Geobacillus_sp_GHH01_NC_020210</i>	Botanischer Garten	3583134	3583134	52.28	99.45	0	
<i>Geobacillus_vulcani_PSS1_NZ_JPOI01000001</i>	Unknown	3389115	3389115	52.4	99.45	1.39	
<i>Geobacillus_sp_CAMR5420_NZ_JHUS00000000</i>	Unknown	3499823	95605	51.89	99.45	0.14	
<i>Geobacillus_sp_Y412MC52_CP002442</i>	hot spring	3673940	3628883	52.34	99.45	0	
<i>Geobacillus_sp_C56-T3_NC_014206</i>	hot spring	3650813	3650813	52.49	99.45	0	
<i>Geobacillus_sp_LEMMJ02_NZ_VKJO00000000</i>	Fumarole sediment	3436274	150524	52.48	99.45	0.69	
0							

<i>Geobacillus zalihae JS1-2</i>	CP129217	Compost	3567837	3532984	52.26	99.45	1.41
<i>Lactobacillus acidophilus</i>	ATCC_9224_NZ_CP	Gastrointestinal tract	2035536	2035536	34.76	98.3	0
130437							
<i>Lactobacillus delbrueckii</i>	subsp. <i>lactis</i> DSM_200	Emmental cheese	2165984	2165984	49.05	100	0.75
72	CP022988						
<i>Lactiplantibacillus plantarum</i>	DSM_20174_CP0	Pickled cabbage	3250154	3242936	44.5	99.07	2.78
39121							
<i>Bifidobacterium breve</i>	DSM_20213_BBAO0000	Gastrointestinal tract	2232812	35183	58.69	100	0
0000							
<i>Bifidobacterium longum</i>	subsp. <i>infantis</i> ATCC_15697	Intestine of infant	2832748	2832748	59.86	100	0
CP001095							

Table 2. Prediction of genes related to probiotics

	Bacterial colonization		Act d	ess
<i>srpD</i>	P	P	P	P
<i>fbpA</i>	N	N	N	N
<i>lpsA</i>	N	N	N	N
<i>dltD</i>	N	N	N	N
<i>dltA</i>	N	N	N	N
<i>ClpB</i>	P	P	P	P
<i>ClpX</i>	P	P	P	P
<i>ClpS</i>	N	N	N	N
<i>ClpC</i>	P	P	P	P
<i>strA1</i>	N	N	N	N
<i>strA2</i>	N	N	N	N
<i>strA3</i>	N	N	N	N
<i>tuf</i>	P	P	P	P
<i>lapA</i>	N	P	N	N
<i>PilA</i>	N	P	N	N
<i>PilB</i>	N	N	N	N
<i>PilT</i>	P	P	P	P
<i>PilC</i>	N	N	N	N
<i>PilM</i>	N	N	N	N
<i>PilN</i>	N	N	N	N
<i>PilO</i>	N	N	N	N
<i>PilZ</i>	N	N	N	N
<i>comC</i>	P	P	P	P
<i>TadA</i>	P	P	P	P
<i>TadB</i>	N	N	N	N
<i>TadC</i>	N	N	N	N
<i>TadE</i>	N	N	N	N
<i>TadF</i>	N	N	N	N
<i>TadZ</i>	N	N	N	N
<i>atpC</i>	P	P	P	P

Gene	Bile resistance		Acid stress/bile resistance	
	Os mo tic ess	Str	Os mo tic ess	Str
<i>atpD</i>	P	P	P	P
<i>atpG</i>	P	P	P	P
<i>atpH</i>	P	P	P	P
<i>atpF</i>	P	P	P	P
<i>atpB</i>	P	P	P	P
<i>atpE</i>	P	P	P	P
<i>recA</i>	P	P	P	P
<i>sodA</i>	P	P	P	P
<i>relA</i>	P	P	P	P
<i>aspS</i>	P	P	P	P
<i>cspA</i>	N	N	N	N
<i>gpmA</i>	N	N	P	P
<i>gpmI</i>	N	P	N	P
<i>glmU</i>	P	P	P	P
<i>glmS</i>	P	P	P	P
<i>glmM1</i>	P	P	P	P
<i>glmM2</i>	P	P	N	N
<i>bshA</i>	P	P	P	P
<i>bshB</i>	P	P	P	P
<i>bshC</i>	P	P	P	P
<i>luxS</i>	P	P	P	P
<i>nagB</i>	P	P	P	P
<i>pyrG</i>	P	P	P	P
<i>argS</i>	P	P	P	P
<i>rpsC</i>	P	P	P	P
<i>rpsE</i>	P	P	P	P
<i>rplD</i>	P	P	P	P
<i>rplE</i>	P	P	P	P
<i>rplF</i>	P	P	P	P
<i>opmA</i>	N	N	N	N

	CRISPR-Cas									
	Oxidative Stress									
<i>BtuC</i>	N	N	P	N	N	N	N	N	N	N
<i>BtuD</i>	P	P	P	P	P	P	P	P	P	P
<i>trxA</i>	P	P	P	P	P	P	P	P	N	P
<i>trxB</i>	P	P	P	P	P	P	P	P	P	P
<i>feoB</i>	P	P	P	P	P	P	P	P	P	P
<i>oxyR</i>	N	N	N	N	P	N	N	N	N	N
<i>cydA</i>	N	N	N	N	N	N	N	N	N	N
<i>cydC</i>	N	N	N	N	N	N	N	N	N	N
<i>yocS</i>	N	N	P	N	N	N	N	P	N	N
<i>gpx</i>	N	N	P	N	N	P	N	N	N	N
<i>ndh</i>	P	P	P	P	P	P	P	P	P	N
<i>ndhF</i>	N	N	N	N	N	N	N	N	P	N
<i>ndhS</i>	P	P	P	P	N	P	P	P	P	P
<i>ndhB</i>	P	N	P	P	P	P	P	P	P	N
<i>ndhC</i>	P	P	P	P	N	P	P	P	P	N
<i>ndhH</i>	P	P	P	N	N	N	N	P	P	P
<i>ndhD</i>	N	N	P	N	N	N	N	N	N	N
<i>msrA</i>	P	P	P	P	P	P	P	P	P	P
<i>msrB</i>	N	N	N	N	N	N	N	N	N	P
<i>msrC</i>	P	P	P	P	P	P	P	P	P	P
<i>Cmr1</i>	N	N	N	N	N	N	N	P	N	N
<i>Cmr2</i>	N	N	N	N	N	N	N	P	N	N
<i>Cmr3</i>	N	N	N	N	N	N	N	P	N	N
<i>Cmr4</i>	N	N	N	N	N	N	N	P	N	N
<i>Cmr5</i>	N	N	N	N	N	N	N	P	N	N
<i>Cmr6</i>	N	N	N	N	N	N	N	N	P	N
<i>TM1812</i>	N	N	N	N	N	N	N	N	N	N
<i>Csd1</i>	N	N	N	N	N	N	N	N	N	N
<i>Csd2</i>	N	N	N	N	N	N	N	N	N	N
<i>Cas5h</i>	N	N	N	N	N	N	N	P	P	N

	<i>Cas3</i>	N	N	N	N	N	N	N	N	N	N	N	N	P	N	N	N	N	N	N	N
<i>Cas4</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	P	N	N	N	N	N	N	N
<i>CasI</i>	P	N	P	N	P	P	N	P	P	P	P	P	P	P	P	N	N	N	N	N	N
<i>Cas2</i>	P	N	P	N	P	P	P	P	P	P	P	P	P	P	P	P	N	N	N	N	N
<i>Cas6</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	P	P	P	N	N	N	N	N
<i>cas9</i>	P	P	N	N	P	N	N	N	P	N	N	N	N	N	N	P	N	N	N	N	N
<i>cas10</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	P	N	N	N	N	N	N	N
<i>cpxI</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	P	P	N	N	N	N	N	N
<i>csm6</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	P	P	N	N	N	N	N	N
<i>cstI</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	P	N	N	N	N	N
<i>DevR</i>	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	P	N	N	N	N	N

A= *G. iciganus*, B= *G. thermolevorans*, C= *G. uzenensis*, D= *G. vulcani*, E= *G. zalihae*, F= *G. lituanicus*, G= *G. stearothermophilus*, H= *G. subterraneus*, I= *G. thermodenitrificans*, J= *G. kaustophilus*, K= *G. proteiniphilus*, L= *G. jurassicus*, M= *G. thermocatenulatus*, N= *G. sp. CAMR5420*, O= *G. sp. GHH01*, P= *G. sp. Y412MC52*, Q= *G. sp. C56-T3*, R= *G. sp. LEMMJ02*, S= *B. breve*, T= *B. longum*, U= *L. plantarum*, V= *L. acidophilus*, W= *L. delbrueckii*.

P=Positive/Present, N=Negative/Not Present

Table 3. ARGs, Plasmids and Virulence factors present in studied genomes.

Genomes	CARD PATRIC	CARD PROKSEE	CARD	PLASMIDS	VF (Patric)	VF (Abricate)
<i>G. icigianus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. thermoleovorans</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. uzenensis</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. vulcani</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. sp. CAMR5420</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. sp. GHH01</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. sp. Y412MC52</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. sp. C56-T3</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. sp. LEMMJ02</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. zalihae</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. jurassicus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. kaustophilus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. lituanicus</i>	Linzolid	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. proteiniphilus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. stearothermophilus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. subterraneus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. thermocatenulatus</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>G. thermodenitrificans</i>	0	<i>vanT, vanY</i>	<i>vanT, vanY</i>	0	0	0
<i>B. breve</i>	<i>rrsA, ilvS, rpoB</i>	<i>rpoB</i>	<i>rpoB, rpsL</i>	<i>rpoB</i>	0	0
<i>B. longum</i>		<i>rpoB, rpsL</i>		<i>rpoB, rpsL</i>	0	0
<i>L. plantarum</i>		<i>vanH, vanY</i>	<i>vanY</i>	0	0	0
<i>L. acidophilus</i>		<i>vanT</i>	<i>vanT</i>	0	0	0
<i>L. delbrueckii</i>		<i>ImrD, vanY, qacJ</i>	<i>ImrD, vanY, qacJ</i>	0	0	0

Table 4. Presence of genes related to Toxins.

G1= *G. iciganus*, G2= *G. jurassicus*, G3= *G. kaustophilus*, G4= *G. lituanicus*, G5= *G. proteiniphilus*, G6= *G. stearothermophilus*, G7= *G. subterraneus*, G8= *G. thermocatenulatus*, G9= *G. thermodenitrificans*, G10= *G. uzenensis*, G11= *G. vulcani*, G12= *G. sp. CAMR5420*, G13= *G. sp. LEMM102*, G14= *G. sp. Y412M52*, G15= *G. sp. C56-T3*, G16= *G. sp. GHH01*, G17= *G. zalihae*, G18= *G. thermolevorans*, B2= *B. breve*, B1= *B. longum*, L1= *L. plantarum*, L2= *L. acidophilus*, L3= *L. delbrueckii*.

P=Positive/Present, N=Negative/Not Present

Table 5. Presence of bacteriocins in studied genomes.

Genome	Name	Function	Motif
<i>G. iciganus</i>	Circularin_A	Bacteriocin_IId; 147.1; Circularin_A	PF09221
	318.1; ComX1	318.1; ComX1	
Sactipeptides		Uncharacterized MFS-type transporter YfkF OS	
<i>G. jurassicus</i>	0		
<i>G. kaustophilus</i>	37.1; Geobacillin_I_like	MA-NIS+EPI; MA-NIS; 37.1; Geobacillin_I_like	RBS=G
<i>G. lituanicus</i>	37.1; Geobacillin_I_like	leaderLanBC; LE-LanBC; MA-EPI; MA-NIS+EPI; MA-NIS; Gallidermin; 37.1; Geobacillin_I_like	PF02052
	107.1; Salivaricin_D	107.1; Salivaricin_D	
<i>G. proteiniphilus</i>	0		
<i>G. sp. C56-T3</i>	321.1; ComX4	321.1; ComX4	
	147.1; Circularin_A	Bacteriocin_IId; 147.1; Circularin_A	PF09221
<i>G. sp. CAMR5420</i>	321.1; ComX4	321.1; ComX5	
<i>G. sp. GHH01</i>	0		
<i>G. sp. LEMM-J02</i>	0		
<i>G. sp. Y412MC52</i>	147.1; Circularin_A	Bacteriocin_IId; 147.1; Circularin_A	PF09221
<i>G. stearothermophilus</i>	147.1; Circularin_A	Bacteriocin_IId; 147.1; Circularin_A	PF09222
<i>G. subterraneus</i>	0		
<i>G. thermocatenulatus</i>	37.1; Geobacillin_I_like	MA-NIS+EPI; MA-NIS; 37.1; Geobacillin_I_like	RBS=TG
	147.1; Circularin_A	Bacteriocin_IId; 147.1; Circularin_A	PF09221
<i>G. thermodenitrificans</i>	36.1; geobacillin_I	leaderLanBC; MA-EPI; MA- NIS+EPI; MA-NIS; Gallidermin; 36.1; geobacillin_I	PF02052
<i>G. thermoleovorans</i>	37.1; Geobacillin_I_like	LE-LanBC; 37.1; Geobacillin_I_like	

<i>G. uzenensis</i>	0	
<i>G. vulcani</i>	490.1; Pumilarin	Bacteriocin_IId; 490.1; Pumilarin
<i>G. zalihae</i>	321.1; ComX4	PF09221
<i>B. longum</i>	37.1; Geobacillin_I-like	leaderLanBC; MA-EPI; MA-NIS+EPI; MA-NIS; Gallidermin; 37.1; Geobacillin_I-like
	7.1; BLD_1648	PF02052
	186.2; Propionicin_SM1	Mersacidin; 7.1; BLD_1648
	0	PF16934
<i>L. plantarum</i>	170.2; Plantaricin_E	186.2; Propionicin_SM1
	171.2; Plantaricin_F	
	167.2; Plantaricin_A	
	174.2; Plantaricin_N	
	172.2; Plantaricin_J	
	173.2; Plantaricin_K	
<i>L. acidophilus</i>	97.2; Enterocin_X_chain_beta	97.2; Enterocin_X_chain_beta
	6.2; Acidocin_J1132_beta_peptide_N-terminal	Bacteriocin_IId; 6.2; Acidocin_J1132_beta_peptide_N-terminal
	64.3; Enterolysin_A	PF10439
	6.3; Bacteriocin_helveticin_J	PF10439
	63.3; Enterolysin_A	PF10439

Table 6. Presence of Prophages in studied genomes.

Genomes	Scaffold	Begin	End	Transposable	Taxonomy
<i>G. iciganus</i>	GCA_000750005.1-30	2666	13563	FALSE	Myoviridae
<i>G. thermoleovorans</i>	GCA_001610955.1	2273102	2279397	FALSE	Myoviridae / Siphoviridae
	GCA_001610955.1	3090580	3093683	TRUE	Unknown
<i>G. uzenensis</i>	0				
<i>G. vulcani</i>	GCA_000733845.1	272535	293893	FALSE	Siphoviridae
	GCA_000733845.1	296023	305288	FALSE	Siphoviridae
	GCA_000733845.1	1473929	1477744	FALSE	Unknown
<i>G. sp. CAMR5420</i>	0				
<i>G. sp. GHH01</i>	CP004008.1	798882	806496	TRUE	Myoviridae
<i>G. sp. Y412MC52</i>	CP002442.1	2966755	2991656	FALSE	Siphoviridae
	CP002442.1	2993517	3001469	FALSE	Unknown
<i>G. sp. C56-T3</i>	CP002050.1	256841	291284	FALSE	Siphoviridae
<i>G. sp. LEMM102</i>	0				
<i>G. zalihae</i>	0				
<i>G. jurassicus</i>	Ga0128515_1001	35934	47638	FALSE	Myoviridae / Siphoviridae
	Ga0128515_1027	19546	45535	FALSE	Myoviridae
<i>G. kaustophilus</i>	GCA_000739955.1-78	2021	35631	FALSE	Myoviridae
<i>G. lituanicus</i>	GCA_002243605.1	2236888	2243431	TRUE	Unknown
<i>G. proteiniphilus</i>	Ga0347354_038	2748	33525	FALSE	Myoviridae
<i>G. stearothermophilus</i>	GCA_001277805.1-68	3732	10749	FALSE	Siphoviridae
	GCA_001277805.1-68	29604	41176	FALSE	Myoviridae / Siphoviridae
<i>G. subterraneus</i>	0				
<i>G. thermocatenulatus</i>	0				
<i>G. thermodenitrificans</i>	0				
<i>B. longum</i>	CP059048.1	534111	543342	FALSE	Siphoviridae
	CP059048.1	1707977	1741362	FALSE	Siphoviridae

<i>B. breve</i>	AP012324.1	1485228	1507366	FALSE	Siphoviridae
<i>L. plantarum</i>	CP025991.1	1732	21277	FALSE	Siphoviridae
	CP025991.1	692782	722751	FALSE	Siphoviridae
	CP025991.1	1192860	1224623	FALSE	Siphoviridae
	CP025991.1	1318309	1338974	FALSE	Siphoviridae
	CP025991.1	1345766	1349279	FALSE	Siphoviridae
	CP025991.1	1714169	1737434	FALSE	Siphoviridae
	CP025991.1	1742814	1749863	FALSE	Siphoviridae
<i>L. acidophilus</i>	0				
<i>L. delbrueckii</i>	CP059048.1	534111	543342	FALSE	Siphoviridae
	CP059048.1	1707977	1741362	FALSE	Siphoviridae