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Functional brain networks predicting sustained attention are not specific to perceptual modality
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Significance statement

While previous work has demonstrated external validity of functional connectivity-based networks for the
prediction of cognitive and attentional performance, testing generalization across visual and auditory
perceptual modalities has been limited. The current study demonstrates robust prediction of sustained
attention performance, regardless of perceptual modality models are trained or tested in. Results
demonstrate that connectivity-based models may generalize broadly capturing variance in sustained
attention performance which is agnostic to the perceptual modality of model training.
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Abstract

Sustained attention is essential for daily life and can be directed to information from different
perceptual modalities including audition and vision. Recently, cognitive neuroscience has aimed to
identify neural predictors of behavior that generalize across datasets. Prior work has shown strong
generalization of models trained to predict individual differences in sustained attention performance from
patterns of fMRI functional connectivity. However, it is an open question whether predictions of
sustained attention are specific to the perceptual modality in which they are trained. In the current study
we test whether connectome-based models predict performance on attention tasks performed in different
modalities. We show first that a predefined network trained to predict adults’ visual sustained attention
performance generalizes to predict auditory sustained attention performance in three independent datasets
(N1=29, N>=60, N3=17). Next, we train new network models to predict performance on visual and
auditory attention tasks separately. We find that functional networks are largely modality-general, with
both model-unique and shared model features predicting sustained attention performance in independent
datasets regardless of task modality. Results support the supposition that visual and auditory sustained
attention rely on shared neural mechanisms and demonstrate robust generalizability of whole-brain
functional network models of sustained attention.

Introduction

The maintenance of attention to information over time is essential for daily activities such as
driving to work or conversing with friends. Recent work in cognitive neuroscience has been aimed at
identifying neural signatures of sustained attention ability with the goal of constructing models that
generalize across people and datasets to predict individual differences in attention function. However,
while sustained attention can be deployed to information from multiple perceptual (e.g., visual and
auditory) modalities, it is an open question whether predictive models generalize across modality. For
example, models trained to predict performance on visual sustained attention tasks may contain modality-
specific features and therefore fail to generalize or generalize poorly to capture auditory sustained
attention performance. Alternatively, features may capture modality-general aspects of attention and
generalize broadly. Here, we construct and test the generalizability of models trained to predict sustained
attention to visual and auditory stimuli from functional connections.

Identifying brain-based markers of cognition is beneficial both for understanding associations
between functional brain organization and behavior and for developing predictive models. Network
neuroscience provides a framework for the identification of interpretable neural signatures of cognition
(Srivastava et al., 2022). One method, connectome-based predictive modeling (CPM), identifies
functional connections, or edges, between brain regions whose strength is reliably associated with
phenotypes across individuals (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017). This method
has identified edge networks that predict sustained attention within and across samples of individuals
(Rosenberg et al., 2016a, 2020; Yoo et al., 2022).

The utility of predictive models lies in their external validity, i.e., generalizability across
independent datasets and contexts (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost et al., 2019).
Successful generalizability across datasets ensures a model’s accuracy in the identification of relevant
features as well as robustness to differences between samples. Predictive models of sustained attention
constructed using CPM have demonstrated generalizability across datasets, as well as generalization to
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90 other attention tasks and attention-related symptoms (Rosenberg et al., 2016a; 2018, 2020; Yoo et al.,

91 2022). Therefore, CPM successfully captures functional networks related to attention across contexts.

92 Sustained attention is often measured using tasks that require continuous vigilance for the

93  detection or discrimination of rare stimuli (Mackworth, 1948; Langner and Eickhoff, 2013). While much

94  work has investigated sustained attention to visual stimuli, attention can be deployed to other perceptual

95  modalities, such as audition. Previous work has shown that the ability to sustain attention to visual and

96  auditory information is reliable within individuals, suggesting that these abilities rely on shared cognitive

97  mechanisms (Corriveau et al., 2024; Seli et al., 2011; Terashima et al., 2021). Work using

98  clectroencephalography and fMRI data has identified neural substrates underlying detection of both visual

99 and auditory rare targets (Katayama & Polich, 1999; Kondo et al., 2023; Kim, 2014; Linden et al., 1999;
100  Stevens et al., 2000), further supporting a modality-general neural basis of sustained attention. However,
101 recent work shows that neurometabolites are differentially related to auditory and visual sustained
102  attention (Kondo et al., 2023). Further, selective attention to visual or auditory information elicits both
103  supramodal and modality-specific neural activation patterns (Smith et al., 2010; Stevens et al., 2000),
104  suggesting that attending these modalities relies on distinct neural mechanisms as well. Therefore, the
105  extent to which visual and auditory sustained attention networks are modality-specific may depend on the
106  extent to which they rely on modality-specific neural mechanisms.
107 Here, we test the extent to which predictions from functional networks of sustained attention are
108  biased by the perceptual modality in which they are trained. We find that a network previously defined to
109  predict visual sustained attention predicts performance across datasets and modalities. Further, we show
110  that models trained on auditory and visual tasks are highly generalizable across perceptual modalities.
111 Even after the removal of features identified by both visual and auditory networks, i.e., modality-general
112 features, models successfully predict cross-modality sustained attention ability. These results demonstrate
113  that sustained attention relies on distributed patterns of connectivity. Additionally, they suggest that
114 distributed patterns may be different between perceptual modality but still capture generalizable variance
115  in sustained attention ability across datasets and modalities.

116

117

118  Methods

119

120  Dataset 1

121 The first dataset analyzed was described in detail by Kondo et al. (2022; 2023). This study was

122  reviewed and approved by the Research Ethics and Safety Committees of Chukyo University and ATR-
123  Promotions. Participants provided their written informed consent to participate in this study.

124 Participants (N=29, ages 20-35) were healthy Japanese adults who completed an fMRI scan

125  consisting of two visual runs and two auditory runs of a gradual onset continuous performance task

126  (gradCPT; Esterman et al., 2013; Rosenberg et al., 2013; Terashima et al., 2021). Data were collected
127  using a 3T Magnetom Prisma MRI scanner (Siemens, Munich, Germany). Task runs were 400 seconds in
128  length. A multiband echo-planar imaging (EPI) sequence was used to collect 205 volumes per task run
129  with a repetition time (TR) of 2 seconds. Voxels were 2mm x 2mm x 2mm. The first five volumes of each
130  run were discarded for data analysis.

131 The gradCPT was developed to measure sustained attention performance. In the task, stimuli
132  gradually transition one into the next to avoid abrupt onsets. Visual runs of the grad CPT featured round,
133  grayscale images of city (90%) and mountain (10%) scenes. Images transitioned from off to fully visible
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134  over 1.6 seconds such that a stimulus reached maximum visibility every 1.6 s. Images faded from peak
135  visibility to off as presentation of the next image began. Participants were instructed to press a button for
136  each city scene and withhold a button press for mountain scenes.

137 Stimuli for the auditory gradCPT were narrations from a foreign language database, excluding
138  Japanese narrations to avoid presentation of a participant’s native language. Thus, participants used

139  acoustic clues of the stimuli, rather than semantic clues, to judge the gender of voice streams. Narrations
140  were performed by male (90%) and female (10%) voices and gradually transitioned from one to the next
141 using sinusoidal ramps (Terashima et al., 2021) such that a voice reached maximum presentation every
142 1.6 seconds. Participants were instructed to press a button for male voices and withhold a button press for
143  female voices.

144 Because stimuli faded from one to the next, key presses were assigned to trials in an iterative
145  manner that first assigned unambiguous presses and then assigned more ambiguous ones. Unambiguous
146  key presses occurring in a window from 70% presented to 40% disappeared were assigned to the current
147  trial. Key presses that occurred outside the window were assigned to adjacent trials if no responses to
148  those trials had been made. If no response was made to either adjacent trial, the key press was attributed
149  to the closer trial. If either trial was an infrequent trial (mountain scene, female voice), the key press was
150  assigned to the adjacent frequent trial. Sustained attention performance was quantified using a measure of
151 sensitivity (d’) which is calculated as the normalized hit rate minus the normalized false alarm rate for
152  each run.

153

154

155  Dataset 2

156 The second dataset was collected at the MRI Research Center at the University of Chicago. Study

157  procedures were approved by the Social and Behavioral Sciences Institutional Review Board at the

158  University of Chicago. All participants provided their written informed consent prior to participation.
159 Participants (N=60) participated in at least one session of a two-session fMRI study collected
160  approximately one week apart (mean time between sessions=10.88 days, SD=9.87 days). During both
161 sessions, participants performed a 10-minute audio-visual continuous performance task (avCPT;

162  Corriveau et al., 2024). Functional MRI data were collected on a 3T Philips Ingenia scanner. Volumes
163  were collected using a multiband sequence with a repetition time of 1 second. Three volumes were

164  removed from the start of each scan.

165 During the avCPT, streams of trial-unique images and sounds were presented simultaneously.
166  Images were presented continuously for 1.2 seconds each whereas sounds were presented for 1 second
167  with a 200 ms inter-trial interval to allow participants to distinguish individual sounds. Each task run was
168 500 trials in length. Images were indoor and outdoor scenes drawn from the SUN image database (Xiao et
169  al,, 2010). Sound stimuli were natural and manmade sounds drawn from online sound databases and

170  cropped to be 1 s in length. Full details of stimulus curation procedures are described in Corriveau et al.
171 (2024).

172 Before the task run, participants were instructed to make a button press to frequent stimuli (90%)
173  from either the auditory or visual modality and to withhold a button press for infrequent stimuli (10%).
174  They were told that the stimuli from the other modality were not relevant for the task. Over the two scan
175  sessions, participants performed both the auditory and visual task and the order of task runs and frequent
176  stimulus category was counterbalanced across participants.
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177 For frequent trials, correct responses were trials in which participants responded before the onset
178  of a new stimulus (within 1200 ms of trial start). However, to allow for the possibility of RTs longer than
179 1200 ms, we reassigned key presses for frequent trials which met the following criteria: (1) the participant
180  made more than one key press for a trial with a frequent-category stimulus (2) the first key press was

181 faster than 100 ms, and (3) no response was made to the previous frequent-category stimulus. In this case,
182  the first key press was attributed to the previous trial. This reassignment of key presses is meant to more
183  accurately account for accurate performance with slower response times. Press reassignment was rare in
184  both visual (mean number of trials with presses reassigned=.548, SD=.861) and auditory sessions (mean
185  number of trials with presses reassigned=3.81, SD=3.46), affecting less than .8% of the trials in each task.
186  Therefore, this analytical decision has a negligible effect on results. Performance during the avCPT was
187  calculated as sensitivity (d’).

188

189

190  Dataset 3

191 The final fMRI dataset analyzed was described in Walz et al. (2013) and shared on OpenNeuro

192  (ds000116). This dataset contained runs from 17 adults (6 females, ages 20-40 years) who performed
193  three auditory and three visual runs of an oddball task. Simultaneous fMRI and electroencephalography
194  data were collected for the original study but only the fMRI data are analyzed here. Data were collected
195  ona 3T Philips Achieva scanner. Each run consisted of 170 volumes collected with a 2 s TR. While the
196  authors note that discarding of extra runs is unnecessary for the shared data, the first three volumes of
197  each run were removed in keeping with a standard preprocessing pipeline. We do not expect this to affect
198  the current results.

199 Task runs consisted of 125 stimuli presented for 200 ms with a variable inter-trial interval of 2-3
200  seconds. Participants were instructed to press a button for infrequent targets (20%) and could ignore

201 standard stimuli (80%). In visual runs, standard trials consisted of a small green circle and target trials
202  were the presentation of a large red circle. For auditory runs, the standard stimulus was a 390 Hz tone,
203  whereas the target stimulus was a broadband laser gun sound.

204 Because the response pattern for this task was inverted and responses were only required on

205  target trials, detection of oddball targets in this task is trivial, leading to overall high performance.

206  Therefore, sustained attention performance in this dataset was quantified using the mean run reaction time
207  (RT) variability which has previously been shown to be robustly related to sustained attention

208  performance in both healthy adults and in populations characterized by sustained attention deficits

209  (Chidharom & Carlisle, 2021; Esterman et al., 2013; Karamacoska et al., 2018; Robertson et al., 1996;
210 Seli et al., 2011; Tamm et al., 2012). Importantly, this measure provides more variability across

211 participants than a measure of sensitivity on a task where performance is at ceiling, as in the current

212 dataset. RT variability is predictive of sustained attention ability such that individuals with more variable
213  pressing show worse performance on sustained attention tasks. Since RT variability has previously been
214 shown to be negatively related to sustained attention performance, we report the inverse of RT variability
215  (mean RT / standard deviation) for ease of comparison with Datasets 1 and 2 in the current study.

216

217
218  fMRI preprocessing procedure
219 Functional MRI data for the three datasets underwent the same preprocessing steps in AFNI

220  (Cox, 1996). Preprocessing included the following steps: Removal of leading TRs as previously noted for
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221 individual datasets; alignment of functional data to MNI space; regression of covariates of no interest,
222  including a 24-parameter head motion model (6 motion parameters, 6 temporal derivatives, and their
223  squares), mean signal from subject-level white matter and ventricle masks, and mean whole-brain signal;
224  and censoring of volumes for which the derivative of motion parameters exceeded .25 mm or for which
225  more than 10% of the brain were outliers.

226
227  Exclusion criteria
228 To ensure high-quality data, individual runs were excluded if they did not meet the following

229  criteria regarding head motion inside the scanner and behavioral performance. Runs were excluded if
230  mean framewise head displacement after motion censoring exceeded .15mm, if the maximum head

231 displacement exceeded 4mm, or if greater than 50% of frames were censored during preprocessing. Runs
232  in Datasets 1 and 2 were also excluded if hit rates were more than 2.5 standard deviations below the mean
233 it rate value. The tasks used in these datasets asked participants to respond to frequent trials (90%), such
234  that good performance would require presses to the vast majority of trials. Therefore, low hit rates for
235  these tasks indicate participant non-compliance. Finally, we excluded runs if behavioral performance,
236  quantified as sensitivity (d’) in Datasets 1 and 2 and inverse RT variability in Dataset 3, was greater than
237 2.5 standard deviations below the mean across all runs within a dataset.

238 In Dataset 1, two visual runs were removed based on head motion criteria and 6 visual runs were
239  excluded for extremely low hit rates. No auditory runs were removed based on any of the listed criteria. In
240  Dataset 2, 56 participants completed the visual avCPT and 55 participants completed the auditory avCPT.
241 9 visual runs and 10 auditory runs were excluded based on head motion criteria. An additional two visual
242  runs and one auditory run were removed due to low hit rates. In the final sample for Dataset 2, 36

243  participants completed both a visual and an auditory run. For Dataset 3, 47 visual and 44 auditory runs
244  were successfully preprocessed. Preprocessing failed for the remaining 4 visual and 7 auditory runs due to
245  the number of time points censored. No additional runs were removed based on head motion criteria. No
246  runs in any dataset were excluded on the basis of low sensitivity or RT variability measures. The final
247  sample sizes for each dataset and run type were as follows: Dataset 1 included 50 visual and 58 auditory
248  runs, Dataset 2 included 45 visual and 44 auditory runs, and Dataset 3 included 47 visual and 44 auditory
249  runs.

250
251  External validation of sustained attention CPM
252 Functional MRI data were parcellated into 268 functionally-defined regions of interest (ROIs,

253  Shenetal., 2013). Whole-brain functional connectivity matrices were calculated by correlating the blood
254  oxygen level dependent (BOLD) time courses for a given task run between all pairs of ROIs. Edges in
255  this 268 by 268 matrix provide an index of coactivation similarity between all pairs of regions in the brain
256  for each run.

257 Our first question of interest was whether a predefined network trained to predict sustained

258  attention performance in a visual task generalized to the present datasets which include both visual and
259  auditory sustained attention tasks. The network tested was defined using connectome-based predictive
260  modeling (CPM,; Finn et al., 2015; Rosenberg et al., 2016a; Shen et al., 2017) which identifies a set of
261  edges whose coactivation strength is related to a performance metric across a set of participants. In CPM,
262  the strength of every edge in a functional connectivity matrix is correlated with a behavior of interest, in
263  this case sustained attention performance. The predefined network, referred to in the current manuscript
264  as the saCPM (sustained attention CPM) consists of a set of edges whose strength was either positively
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265 (757 edges) or negatively (630 edges) correlated with visual gradCPT performance across an independent
266  set of participants (N=25). Significant edges were defined as those whose network strength was

267  significantly correlated (Pearson’s r; p<.01) with visual gradCPT sensitivity (d’) across participants.

268  Positively correlated edges are connections whose strength increased with higher sustained attention

269  performance across participants, whereas negatively correlated edges are connections whose strength
270  increased with worse performance. This network is described in previous work by Rosenberg et al.,

271  (2016a; 2020) and is shared publicly (https://github.com/monicadrosenberg/Rosenberg PNAS2020).

272 Here, we tested whether strength in this predefined network also predicted sustained attention

273  performance in datasets that include novel participants, multiple perceptual modalities, and new

274  behavioral measures of interest. Network strength is defined as the difference between mean connectivity
275  in the high-attention and mean connectivity in the low-attention network for each run in the current

276  datasets. Because strength in the high-attention and low-attention networks will be negatively correlated
277 by nature of how the networks were identified, taking the difference provides a single summary measure
278  which is interpretable. CPM-predicted behavior is a linear transformation of network strength (predicted
279  behavior = m*network strength + b, where m and b are learned during model training). Therefore, for
280  external model validation as we perform in the current set of analyses, the correlation between network
281 strength and observed behavior is mathematically equivalent to correlation between predicted and

282  observed behavioral scores. Network strength values were normalized across participants within dataset
283  for comparison with other analyses. We then tested whether that network strength was related to

284  behavioral performance by calculating the partial Spearman’s 7o value between network strength and the
285  behavioral measure of interest for visual and auditory runs separately, controlling for mean head motion
286  (mean framewise displacement) in the scanner. Spearman’s rho values were used to mitigate any potential
287  effects of outliers on predictions. However, results are consistent when using Pearson’s correlation.

288 As a note, we do not apply multiple comparison correction for the present study because all tests
289  of model generalization tested a non-omnibus hypothesis, i.e., that network strength in the trained model
290  will predict sustained attention performance in an independent sample (Garcia-Perez, 2023). Each

291  external validation of model prediction tests a single outcome (significance of correlation between

292  network strength and performance) and therefore multiple comparisons corrections would create

293  unnecessarily large barriers to generalization.

294
295  Modality-specific model construction
296 Next, we tested whether a network that is trained on fMRI data collected during a sustained

297  attention task performed in a given perceptual modality better predicts performance on a task performed
298  in the same vs. a different modality. To test this, we defined new models on the functional connectivity
299  matrices and behavior in Dataset 1 using a CPM approach (Finn et al., 2015; Rosenberg et al., 2016a;
300  Shenetal.,, 2017). CPM identifies a set of edges that is correlated, either negatively or positively

301 (Pearson’s r, p<.01) with behavioral performance across the training set. For the current analyses, the
302 training set was all visual or auditory runs in Dataset 1. For each edge in a functional connectivity matrix,
303  a Pearson’s correlation is calculated between edge strength and sustained attention performance across the
304  dataset. This is repeated for all edges in the functional connectivity matrix and significant edges are those
305  whose correlation with sustained attention is stronger than a given threshold, in this case, p<.01. Positive
306  network edges are those where connectivity strength is positively related to behavior across an entire

307 training sample, while negative network edges are those whose connectivity is negatively related to

308  behavior across the sample. Significant edges are isolated to represent a network of edges for which edge
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309  strength is related to sustained attention in a given dataset. This results in binary edge “masks” consisting
310  of 0s and 1s for both positive and negative networks. Edge masks are used to calculate network strength
311 in independent datasets by calculating the dot product between the binary mask and each individual’s FC
312  matrix and taking the difference between average connectivity strengths in the positive and negative edge
313  networks. Networks were defined on visual and auditory runs of Dataset 1 separately. We then tested the
314 generalizability of these networks by calculating the partial Spearman’s correlation between modality-
315  specific network strength and performance in the left-out datasets 2 and 3 visual and auditory runs,

316  controlling for in-scanner head motion. For these external validation analyses, the correlation between
317  network strength and observed behavioral scores is again equivalent to the correlation between predicted
318  and observed behavioral scores.

319 To investigate the composition of visual, auditory, and overlapping sustained attention networks,
320  we quantified the relative contribution of canonical brain networks (Finn et al., 2015) to these networks.
321 This functionally-defined canonical network parcellation includes visual networks labeled based on their
322  similarity to resting-state visual networks. There is no comparable auditory network included in this

323  parcellation. However, connections from auditory cortex may be best encompassed by medial frontal and
324  motor networks. We quantified relative contribution to high and low sustained attention networks by

325  calculating the difference between the number of edges identified by high and low networks within and
326  between canonical networks. This relative contribution was normalized by the total number of edges

327  contained in a network. Significance of network contributions was calculated non-parametrically by

328  shuffling edges in the high and low attention networks separately and recalculating the difference in

329  network contribution 1000 times.

330 We quantified the significance of overlap between our new visual and auditory sustained

331 attention networks using a hypergeometric cumulative distribution function, which calculates the

332  probability of observing the number of overlapping edges given a random sampling with no replacement
333  of two networks of the sizes observed (Rosenberg et al., 2016b). Significance values were calculated in
334  MATLAB as p=1-hygcdf(x,M,K,N) where x is the number of shared edges between networks of interest,
335 M s the total number of functional edges in the matrix (35,778), and K and N are the number of

336  functional edges the networks of interest.

337 We tested whether model generalization was biased towards the perceptual modality of training
338 by calculating a measure of modality-specificity for each external validation dataset. Modality-specificity
339  of visual and auditory networks was calculated as the prediction (partial Spearman’s rho) of within-

340  modality generalization (e.g., visual performance predicted by the visual CPM) minus cross-modality
341 generalization (e.g., visual performance predicted by the auditory CPM) for each dataset and modality.
342  We determined significance with a permutation test whereby predicted performance values were shuffled
343  and correlated with observed performance, controlling for head motion. Auditory and visual predicted
344  performance values were shuffled independently and the difference between these partial Spearman’s rho
345  values was calculated. This process was repeated across 5000 iterations to obtain a null distribution of
346  permuted difference scores.

347 Finally, we tested the contribution of network components to the generalizability of auditory and
348  visual networks. To do so, we calculated whether network strength in reliably predictive edges, i.e., edges
349  that appeared in both visual and auditory predictive networks, was related to sustained attention

350  performance in independent datasets. We hypothesized that these edges would reflect connectivity

351 involved in supramodal sustained attention and therefore would generalize to predict performance in both
352  modalities. We also tested whether edges that appeared only in the visual network or the auditory network
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353  would show specificity to their training modality. To do this we calculated network strength in edges that
354  appeared either in the visual network or the auditory network, but not in both. We calculated the modality
355  specificity of visual-only and auditory-only network edges by comparing predictions within and across
356  modality, as described in the previous paragraph.

357 All preprocessed data and analysis code required to recreate the described analyses are publicly
358  available at https://osf.io/bt2xy/.

359

360

361  Results

362

363 A predefined visual network generalizes across datasets and modalities

364 We first tested whether the saCPM, a network trained to predict performance on a visual

365  sustained attention task generalized to the current datasets. Sustained attention performance, measured as
366  sensitivity (d’) in Dataset 1, ranged from 1.14 to 5.11 in visual runs (M=3.11, SD=.957) and .306 to 3.69
367  in auditory runs (M=1.51, SD=.679). In Dataset 2, visual d’ values ranged from 1.08 to 4.40 (M=3.09,
368  SD=.640) and auditory d’ values ranged from -.112 to 2.22 (M=.968, SD=.599). Inverse RT variability in
369  Dataset 3 ranged from 3.67 to 10.88 (M=7.39, SD=1.76) in visual runs and from 2.76 to 11.47 (M=5.53,
370  SD=1.98) in auditory runs. Mean visual and auditory sustained attention measures were positively related
371 across subjects in all datasets (Spearman’s rh0,=.497, p1=9.84*107; Spearman’s rh0,=.537, p»<.001;

372  Spearman’s rhos=.589, p;=.021). However, performance was not perfectly correlated across modalities,
373  such that not all variance in auditory task performance was explained by performance on the visual task.
374  Therefore, successful generalization of the saCPM would require that it rely on features which capture the
375  shared, supramodal variance.

376 For visual task runs, network strength in the saCPM was positively related to performance in all
377  datasets (partial 770,=.230, p1=.112; partial rh0,=.317, p=.036; partial rhos=.343, p1=.020) and this

378  relationship was significant in Datasets 2 and 3 (Figure 1). While the prediction of visual sustained

379  attention was not significant in Dataset 1, the relationship between network strength and observed

380  performance was in the predicted direction and aligns with predictions in other datasets. As a validation
381  that the saCPM captures visual sustained attention performance in Dataset 1, we also tested whether

382  network strength in the saCPM predicted inverse RT variability in this dataset. RT variability was

383  significantly correlated with sustained attention performance in visual runs of Dataset 1 (r=.649, p<.001)
384  but may capture more meaningful variance in performance in this dataset. saCPM Network strength

385  positively predicted inverse RT variability during the visual task (partial 720=.313, p=.028). Therefore,
386  we concluded that this previously-validated network generalizes to predict visual sustained attention

387  performance in Dataset 1. When applied to auditory task runs, saCPM network strength significantly
388  predicted auditory sustained attention performance in all three datasets (partial 7ho,=.344, p1=8.74*107;
389  partial rho,=.360, p,=.018; partial rh05=.552, p1<.001). Successful generalization of the predefined

390  saCPM demonstrates that this network captures features of sustained attention that are general across

391  datasets as well as perceptual modalities.
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393
394  Figure 1. Network strength in the saCPM network significantly predicted visual sustained attention

395  performance in Datasets 2 and 3 and auditory sustained attention performance in all datasets.

396

397  Sustained attention networks are not modality-specific

398 We next asked whether a model trained on an auditory sustained attention task would generalize
399  to predict performance on other auditory attention tasks better than a model trained on a visual attention
400 task. One option for doing so would be training a new CPM to predict auditory task performance,

401  applying the model to new data, comparing its predictive power to that of the saCPM. However, in this
402  scenario any differences in predictive power could be due to differences between training datasets

403  (number of participations, amount and quality of data, etc.) rather than attention modality per se. Thus, to
404  more directly compare the generalizability of auditory and visual attention models, we constructed two
405  new models—an auditory model trained to predict auditory gradCPT performance in Dataset 1 and a
406  visual model trained to predict visual gradCPT performance in Dataset 1. Dataset 1 was selected as the
407  training dataset because sustained attention performance in this dataset was measured using the gradCPT.
408  Thus, networks from this dataset are most comparable to saCPM networks which were trained using the
409  same task. We tested the generalizability of these models within and across perceptual modalities by
410  relating network strength in the visual and auditory networks to visual and auditory sustained attention
411 performance in Datasets 2 and 3, controlling for head motion during task runs. For all results reported
412  below, models were applied to functional connectivity data from an auditory or visual task run and

413  resulting predictions were related to behavioral performance from that same task run.

414 The visual network generalized to predict visual sustained attention in Dataset 2 (partial

415  rho=.329, p=.029) and Dataset 3 (partial 720=.305, p=.039; Figure 2A). The auditory network similarly
416  generalized to predict auditory sustained attention performance in both datasets (partial 720,=.376,

417  p>=.013; partial rho3=.537, p3<.001). Within-modality generalization confirms that CPM successfully
418  identified networks whose strength predicts out-of-sample sustained attention performance.
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419 We next tested whether these networks predicted sustained attention performance when tasks
420  were performed in a different modality. The visual network significantly predicted auditory sustained
421  attention performance in both Dataset 2 (partial 7h0=.461, p=1.84*107) and Dataset 3 (partial 710=.620,
422  p<.001; Figure 2B). The auditory network predicted visual sustained attention performance in Dataset 2
423  (partial 7h0=.503, p<.001) and was positively but not significantly related to visual sustained attention
424  performance in Dataset 3 (partial rh0=.228, p=.127). Successful generalization across dataset and

425  perceptual modality suggests that sustained attention relies on a modality-general mechanism captured, at
426  least to some extent, by the edges identified by CPM.

427 To quantify the extent to which networks were modality specific, we calculated the difference
428  between within-modality prediction and across-modality prediction by subtracting the respective partial
429  Spearman’s rho values. We created a null distribution by shuffling model-predicted visual and auditory
430  behavioral performance values independently. The difference between partial Spearman’s rho values was
431  permuted and this was repeated 5000 times. A one-tailed test was used to determine whether the observed
432  difference between within- and between-modality predictions was greater than permuted values. Visual
433  performance was not better predicted by a visual network than an auditory network in Dataset 2 (p=.788)
434  orin Dataset 3 (p=.329; Figure 2C). Similarly, auditory performance predictions from the auditory

435  network were not higher than predictions from the visual network in either Dataset 2 (p=.775) or Dataset
436 3 (p=.741). Across both models, we found no modality-specificity such that the networks identified to
437  predict visual or auditory sustained attention performance did not better predict task performance in the
438  same modality.

439 We note that the number of runs available in Dataset 1 to train these models differs between

440  auditory (N=58) and visual (N=50) runs. To ensure that training the auditory model on a larger number of
441  runs did not bias the model’s generalizability, we subsampled the number of runs used to train the

442  auditory network to be equal to the number of runs used to train the visual network, i.e., 50 runs. We refit
443 1000 auditory models using a random subsampling of 50 auditory runs from Dataset 1 and tested how
444  well these models generalized across datasets and modalities. In all cases, prediction from the model

445  trained on the full N=58 sample fell within one standard deviation of the mean prediction from models
446  trained on a smaller sample (Prediction of visual performance: mean partial 740,=.478, SD,=.054; mean
447  partial rhos=.220, SD3=.053; Prediction of auditory performance: mean partial rh0,=.365, SD»=.026;

448  mean partial 7h03=.534, SD3=.040). Therefore, it is not the case that prediction from the auditory model in
449  the current analyses is biased due to a larger amount of training data.

450

451
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460  Figure 2. (A) Visual and auditory networks generalized to predict visual and auditory sustained attention
461  performance, respectively, in independent datasets. Network strength is quantified as the difference

462  between the average high and the average low network strength values. (B) The visual network predicted
463  auditory sustained attention in independent datasets and the auditory network predicted visual

464  performance in one dataset. (C) Neither network showed modality-specificity, i.e., generalized better to
465  within-modality prediction than across-modality prediction. The vertical black bar represents the true
466  difference between prediction of task performance from a within-modality model vs. an across-modality
467  model. The gray distribution reflects null differences from predictions of shuffled sustained attention
468  performance. Positive partial 7%0 difference values reflect better prediction within vs. across perceptual
469  modality. Negative partial rho difference values reflect better performance prediction for a task performed
470  in a different perceptual modality than training.

471

472

473  Cross-modality generalization is not explained by within-modality performance

474 Sustained attention performance is reliable across modalities, such that individuals with high

475  visual sustained attention performance tend to have high auditory sustained attention performance.

476  Therefore, cross-modality generalization of network predictions could result simply because cross-

477  modality performance is related to within-modality performance. Another alternative, however, is that
478  network models capture variance above and beyond sustained attention performance consistency. To test
479  this, we included within-modality sustained attention performance as an additional variable in the partial
480  correlation between cross-modality performance and network strength. If models fail to generalize when
481 supramodal sustained attention performance is captured by the additional variable of within-modality
482  performance, this suggests that the generalizability of these models across modalities relies heavily on
483  features related to this shared supramodal ability. If models still generalize after controlling for

484  supramodal sustained attention performance, this would suggest that networks capture unique variance
485  beyond what can be explained by similarity in sustained attention performance across runs.
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486 The partial correlation between saCPM network strength and auditory sustained attention

487  performance remained significant in both Dataset 1 (partial 740=.301, p=.024) and Dataset 3 (partial

488  rho=.540, p<.001), even when controlling for participants’ visual sustained attention performance.

489  Prediction in Dataset 2 was positive but not significant after controlling for visual sustained attention
490  performance (partial rho=.215, p=.183). Therefore, in two of three datasets, generalization of the saCPM
491  to auditory tasks cannot be explained by a correlation between performance across modalities.

492 We further tested whether generalization of visual and auditory networks trained on Dataset 1
493  remained after controlling for within-modality performance. Predictions of auditory sustained attention
494  performance from the visual network remained significant after removing variance explained by visual
495  sustained attention performance in Dataset 2 (partial 720=.339, p=.033) and Dataset 3 (partial 720=.605,
496  p<.001). When controlling for auditory sustained attention performance, predictions of visual sustained
497  attention from auditory networks were significant in Dataset 2 (partial rho=.455, p=2.81*107) and

498  remained non-significant in Dataset 3 (partial 720=.096, p=.532). Therefore, generalization of sustained
499  attention networks across task modalities is not simply due to performance similarity across modalities,
500  but rather networks capture sustained attention ability beyond what can be explained by shared

501  supramodal variance.

502 As a final test of the extent to which cross-modality generalization relies on shared variance in
503 task performance between modalities, we retrained sustained attention networks to predict auditory and
504  visual performance in Dataset 1, controlling for performance in the other modality. In other words, during
505 the feature selection step of visual sustained attention model training, positive and negative network edges
506  were those that were significantly correlated with visual sustained attention performance across

507  individuals in Dataset 1 partialling out auditory sustained attention performance. Similarly, visual

508  sustained attention performance was included as a partial covariate when identifying auditory sustained
509  attention model features. Therefore, these models should no longer capture variance that can be explained
510 by consistency in performance across individuals. A failure of these models to generalize across datasets
511 and modalities would suggest that previous model generalization relied heavily on the shared variance in
512  sustained attention performance across task modality. However, if these models indeed predict sustained
513  attention performance in a modality different than training, it suggests that model features capture

514  relevant variance beyond what can be explained by consistency in performance across modalities.

515 Cross-modality predictions of visual sustained attention performance from the retrained auditory
516  network were significant in Dataset 2 (partial 770=.546, p<.001) and remained non-significant in Dataset
517 3 (partial 7h0=.092, p=.544). The retrained visual network significantly predicted auditory sustained

518  attention performance in both Dataset 2 (partial 7420=.379, p=.012) and Dataset 3 (partial »h0=.494,

519  p<.001). The strength of prediction, i.c., partial rho values, were reduced in three of these cross-modal
520  generalizations, suggesting that shared variance at least partially contributed to the generalizability of
521 sustained attention networks. However, models’ ability to significantly generalize across task modality
522  after controlling for the shared variance in task performance suggests that these models do not rely only
523  on this supramodal variance.

524

525

526  Unique features underlie auditory and visual networks

527 Is successful cross-modal prediction a result of shared network edges between visual and auditory
528  networks? If CPM identified a largely overlapping set of edges related to performance on both visual and
529  auditory tasks, it should follow that predictions would not be modality-specific. However, if auditory and
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530  visual networks are independent, generalization across modalities might suggest that sustained attention
531  performance can be captured by a diverse set of features.

532 The visual network consisted of 581 positive (high attention) edges and 659 negative (low

533  attention) edges. In the auditory network, 626 edges were positively related to auditory sustained attention
534  performance and 970 edges were negatively related to auditory sustained attention performance.

535  Edgewise contributions to individual networks are grouped into lobe and canonical network groupings
536  (Finn et al., 2015) and visualized in Figure 3.

537 Within-network connections in the medial frontal, frontal parietal, and default mode networks
538  contributed to the visual high-attention network (Figure 3B). Connections between the motor network
539  and the visual II, and visual association networks also contributed to the high-attention network, as well
540  as connections between the default mode and medial frontal and subcortical-cerebellar networks. Within-
541  network edges in the motor and subcortical-cerebellar networks contributed to the visual low-attention
542  network. Connections between the default mode and frontal parietal and visual association networks were
543  also stronger in the visual low-attention network, as well as connections between motor and medial

544  frontal networks.

545 Connections within the visual association network, as well as connections between the visual
546 association and frontal parietal, subcortical-cerebellar, and visual II networks were represented in the
547  auditory high-attention network (Figure 3C). Edges shared between motor networks and visual I, visual
548 I, and default mode networks were also represented in the auditory high-attention network. Connections
549  between the subcortical-cerebellar network and visual I and default mode networks contributed

550  significantly to the auditory high-attention network, as well as connections between the medial frontal and
551 visual IT networks. Conversely, connections between the visual association network and medial frontal,
552  default mode, and motor networks were strongly represented in the auditory low-attention network.

553  Connections between the medial frontal network and frontal parietal and motor networks were also found
554  more strongly in the auditory low-attention network. Finally, connections within the subcortical-

555  cerebellar networks and motor networks contributed to the auditory low-attention network.

556 Overlap between visual and auditory networks was significant for both high-attention (25 edges,
557  p<.001) and low-attention networks (41 edges; p<.001; Figure 3A). Networks also overlapped with the
558  predefined saCPM. Auditory networks significantly overlapped with the saCPM, sharing 46 high-

559  attention (p<.001) and 68 low-attention edges (p<.001). The visual network also significantly overlapped
560  with the saCPM, sharing 37 high- (p<.001) and 21 low-attention edges (p=3.52%107). Network overlap in
561  unexpected directions was non-significant in all cases (all ps>.826; Figure 3A).

562
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Figure 3. (A) Networks constructed using connectome-based predictive modeling identified shared edges
relevant for brain-behavior predictions in both high (+) and low (-) attention networks. Not all overlap
between could be visualized in the Venn diagram but is described fully in the text. Stars reflect p<.01.
Contributions to network structure grouped by lobe and canonical network differed between (B) visual
and (C) auditory networks. Matrices visualize the relative contribution of canonical network edges to
high- and low-attention networks. Colors represent the difference between the number of edges in the
high and low predictive networks, divided by network size. Stars in the matrix reflect significant
contribution to high- or low-attention networks; p<.05, uncorrected. Significance was determined by
shuffling high- and low-attention networks and recalculating the contribution of edges to each network
1000 times.

Predictions _from non-overlapping features generalize across modality

Does removing overlapping edges from visual and auditory networks induce modality
specificity? It is possible that the generalizability of networks across modality is driven by the subset of
shared edges between networks. To ask this, we tested whether edges that were unique to the auditory or

15


https://doi.org/10.1101/2024.05.15.594382
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594382; this version posted October 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

580  visual network—e.g., edges that positively predicted auditory performance but did not predict visual

581  performance—generalized in a modality-specific manner.

582 Predictions of visual sustained attention performance from visual-unique model edges were

583  significant in Dataset 2 (partial 740=.326, p=.031) and positive but non-significant in Dataset 3 (partial
584  rho=.277, p=.063). Edges specific to the visual network remained generalizable across perceptual

585  modality such that they predicted auditory sustained attention performance in both Dataset 2 (partial

586  rho=.466, p=1.64*107) and Dataset 3 (partial 770=.582, p<.001). We observed no evidence for better
587  prediction for visual sustained attention from a model trained on a visual sustained attention task, even
588  after removing modality-general features (p.=.805; p3=.365).

589 Auditory-unique edges significantly predicted auditory sustained attention performance in both
590  Dataset 2 (partial 7h0=.371, p=.014) and Dataset 3 (partial 7h0=.537, p<.001). For visual performance, the
591 auditory-unique network predictions were significant in Dataset 2 (partial 7h0=.511, p<.001) and positive
592  but not significant in Dataset 3 (partial 7ho=.212, p=.158). Again, there was no evidence for modality
593  specificity in predictions from auditory-only network edges (p>=.783; p3=.606). Therefore, predictions
594  from non-overlapping edges did not result in modality-specific generalization. Instead, even network
595  edges unique to a network trained on one modality captured sustained attention ability in another

596  modality.

597
598  Overlapping features are sufficient for prediction
599 Within-network edges in the default mode network, as well as edges shared between the default

600 mode and medial frontal networks contributed to the overlapping high-attention network (Figure 4A).
601  Additionally, connections shared by the frontal parietal and visual II networks, as well as connections
602  shared between the visual association and subcortical-cerebellar networks were strongly represented in
603  the overlapping high-attention network. This suggests that stronger connections between these networks
604  are associated with higher modality-general sustained attention performance. Conversely, within-network
605  edges in the visual association, subcortical-cerebellar, and motor networks contributed strongly to the
606  overlapping low attention network. These results suggest that strong with-network connectivity in these
607  networks is associated with worse sustained attention.

608 We wondered whether the edges shared by both visual and auditory networks defined in Dataset
609 1 were sufficient to predict visual and auditory sustained attention performance in independent datasets.
610  To ask this, we tested whether strength in the edges shared by high visual and auditory attention networks
611 (25 edges) and low visual and auditory attention networks (41 edges) was related to observed behavioral
612  performance. Results are visualized in Figure 4B-C.

613 We observed robust prediction from these overlapping edges such that network strength in this
614  subset of edges significantly predicted visual performance in Dataset 2 (partial 720=.492, p<.001) and
615  Dataset 3 (partial rh0=.409, p=4.78*107), as well as auditory sustained attention performance in Dataset 2
616  (partial 7h0=.394, p=8.99%10~) and Dataset 3 (partial 7h0=.529, p<.001). Therefore, while the number of
617 shared network features was small between visual and auditory networks, these shared features were

618  sufficient for generalizable prediction of sustained attention performance.

619 Is prediction from a small set of edges specific to the shared edges between visual and auditory
620  networks? To ask this question, we compared the predictive performance from overlapping edges to

621  predictions from equal-sized subsets of visual or auditory network edges. 5000 random subsets were

622  drawn from either the visual or auditory network and network strength from these subsets was related to
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623  observed performance. Distributions of partial 7o values from edge subsets were created for visual and
624  auditory networks separately.

625 In visual runs, edges that overlapped between the visual and auditory networks outperformed
626  visual sustained attention performance prediction from other edge subsets of the same size drawn from
627  the visual network in Dataset 2 (p=7.20*107) but did not significantly outperform visual network edge
628  subsets in Dataset 3 (p=.056). Predictions for visual sustained attention performance from overlapping
629  edges did not outperform edge subsets drawn from the auditory network in Dataset 2 (p=.171) but overlap
630  predictions did outperform auditory subset predictions and Dataset 3 (p=.024). This suggests that

631  overlapping visual and auditory predictive edges may carry unique predictive ability related to visual

632  sustained attention performance. When predicting auditory sustained attention performance, predictions
633  from overlapping edges were not better than predictions from edge subsets drawn from either the visual
634  (p2=.230; ps=.081) or the auditory network (p,=.233; ps=.254). Therefore, reliable edges provided specific
635  predictive boost in visual runs only.

636
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Figure 4. (A) Edges shared by both auditory and visual models trained on Dataset 1 are visualized by
lobe. The matrix depicts relative contribution to high and low overlapping predictive networks, grouped
into 8 canonical networks. Significance stars on the matrix reflect greater representation of network edges
than chance; p<.05, uncorrected. Significance was determined by shuffling network edges 1000 times and
recalculating relative contribution to high- and low-attention networks. Network strength in edges shared
by the auditory and visual networks predicts (B) visual and (C) auditory sustained attention performance
in independent datasets. Histograms beneath each plot depict the extent to which prediction from network
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645  strength in the overlapping edges outperforms predictions from equally-sized subsets of edges drawn
646  from either the visual or auditory networks alone (5000 permutations).

647

648

649

650  Discussion

651

652 Prior predictions from connectome-based models of sustained attention may have been more
653  limited than previously thought if they were driven by visual task performance specifically. Here, we
654  tested the extent to which functional networks of sustained attention are modality-specific, with two likely
655  outcomes. First, functional networks or a subset of functional networks may have predicted sustained
656  attention in a modality-specific manner, generalizing better to tasks performed in the same perceptual
657  modality as training. Alternatively, functional networks may not show modality-specificity and predict
658  sustained attention performance for tasks performed in different modalities similarly. Results show

659  evidence for the latter, demonstrating wide-spread cross-modality generalization even when predictive
660  model features are largely unique. This suggests that sustained attention performance can be captured by
661 distributed, supramodal connections in the brain. Further, we demonstrate that both shared and unique
662  edges in visual and auditory networks predict sustained attention performance across modality, showing
663 that both reliable (overlapping) and unreliable (unique) model features can capture relevant brain-

664  behavior relationships.

665 Work investigating brain-behavior relationships emphasizes that testing model generalizability,
666  and in particular generalizability to external datasets, is the gold standard for the construction of accurate
667  predictive models (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost et al., 2019). Connectome-
668  based predictive models have previously demonstrated robust generalizability to predict relevant

669  cognitive phenotypes across independent samples (Avery et al., 2020; Fountain-Zaragoza et al., 2019;
670  Gao etal., 2020; Kardan et al., 2022; Rosenberg et al., 2016a, 2018, 2020). Therefore, CPM meets this
671 high benchmark for model validity and holds promise for identifying robust and interpretable predictors
672  of cognitive variation.

673 Here, we test whether CPM-derived functional networks capture variability in sustained attention
674  performance across participants in three independent datasets. All three datasets included fMRI tasks
675  which required sustained attention to stimuli presented either in the visual or auditory domain. However,
676  tasks differed across datasets in several ways, including frequency of responding, selection demands, and
677  inhibitory control. Therefore, successful prediction of performance in these datasets suggests that

678  functional networks successfully capture a signal of sustained attention which is general across all three
679  task contexts rather than a distinct process idiosyncratic to a subset.

680 We first validate that a network of sustained attention previously defined using a CPM approach,
681  the saCPM, generalizes to predict sustained attention performance in these datasets. Previous work has
682  demonstrated that the saCPM captures patterns of connectivity related to attention by predicting out-of-
683 sample performance on multiple attention tasks (Fountain-Zaragoza et al., 2019; Kardan et al., 2022;
684  Rosenberg et al., 2018, 2020; Yoo et al., 2022) as well as ADHD symptomatology (Rosenberg et al.,
685  2016a) and variability in narrative engagement within individuals (Song & Rosenberg, 2021). A previous
686  study also found that network strength in the saCPM during rest predicted performance on an auditory
687  sustained attention task (Wu et al., 2020). Our results show that the saCPM also generalizes to predict
688  sustained attention across perceptual modalities from task connectivity, demonstrating that it captures
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689  domain-general signatures of attentional ability. Whereas previous work speculated that selective

690  generalization of the saCPM to audiovisual movie engagement, but not audio-only story engagement, was
691  due to modality-specificity of the model (Song & Rosenberg, 2021), our results find no modality bias
692  when predicting individual differences in visual and auditory sustained attention. Rather, the differences
693  in prediction observed in previous work may instead reflect other differences between stimuli, for

694  example in the overall engagement with the narratives.

695 We further show that models trained on sustained attention tasks performed in separate visual and
696  auditory modalities generalize to predict sustained attention performance both in external datasets and
697  when tasks were performed in a different perceptual modality than in training. This suggests that

698  connectome-based predictive modeling identifies edges that capture variability in sustained attention

699  performance that is not specific to the perceptual modality of the task. These results support previous
700 findings that the ability to sustain attention to visual and auditory information relies to some extent on
701 shared neural mechanisms. We used a CPM approach to identify a subset of edges that significantly

702  predicted both auditory and visual sustained attention performance across individuals in a dataset. This
703  subset of edges predicted both visual and auditory sustained attention performance in independent

704  datasets. Therefore, this overlapping network of edges provides one mechanism that may support a

705  modality-general ability to sustain attention over time.

706 Importantly, we show that successful generalization across modalities is not simply a

707  mathematical inevitability due to correlations between sustained attention performance across modalities.
708  While performance was reliable across participants regardless of task modality, generalization across
709  modality persisted after controlling for performance in the other task modality during both model training
710  and model testing. Therefore, predictive edges identified by CPM were able to capture relevant variance
711 in sustained attention beyond consistency in performance.

712 Intriguingly, we observed significant prediction both from overlapping visual and auditory edges
713 as well as modality-specific edges identified using a CPM approach. Therefore, feature reliability, or the
714 identification of the same model features across training sets, was not necessary for successful

715 generalization. These results highlight a distinction between model feature reliability and the ability to
716  predict behavioral phenotypes in an external sample. Previous work has noted this difference,

717  demonstrating that predictive accuracy is not necessarily a result of reliable features (Kragel et al., 2021;
718  Noble et al., 2017; Tian and Zalesky, 2021, although see Chen et al., 2022). Researchers have suggested
719  that a lack of reliability may be a function of the scale at which features are identified, leading to high
720  numbers of model features (Srivastava et al., 2022; Tian & Zalesky, 2021). Here, model features were
721 identified from whole-brain patterns of functional connectivity, consisting of >35,000 pairwise

722  connections between regions. Therefore, it is difficult to determine whether the failure of an edge to be
723  significantly related to performance in both visual and auditory networks is the result of the modality-
724  specificity of the edges or a result of the relatively small scale at which features were identified. As a
725  result, edges identified only in one training set may capture modality-general sustained attention, leading
726  to the significant prediction across modalities observed in the current study.

727 Individual edge contributions to auditory and visual networks from canonical functional networks
728  varied. We found that connectivity within the default mode network was represented in the auditory high-
729  attention and overlapping high-attention networks but did not significantly contribute to visual predictive
730  networks. Much previous work has related relative increases in default mode network activation with in-
731 the-zone attentional states (Esterman et al., 2013, 2014; Jones et al., 2024; Kucyi et al., 2016, 2017,

732  Fortenbaugh et al., 2018; Song et al., 2022), although changes in activity are not functionally equivalent
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733  to changes in connectivity. Past work has shown links between greater within-default mode network

734 connectivity and higher attention (Gordon et al., 2012; Kucyi & Davis, 2014). Further, attention-related
735  disorders are characterized by decreased connectivity within the default mode network (Castellanos et al.,
736 2008; Fair et al., 2010). However, other work has found an inverse or no relationship (Kucyi et al., 2017,
737  Mittner et al. 2014; Esterman et al., 2013), suggesting associations of within-network connectivity of the
738  default mode network with sustained attention are complex. The current findings suggest that stronger
739  within-default mode network connections are associated with higher modality-general sustained attention
740  performance.

741 We observed a large contribution of within-network edges from the subcortical-cerebellar and
742 motor networks to visual and auditory low-attention networks, as well as the overlapping low-attention
743  network. This is in line with previous work which has implicated greater within-subcortical-cerebellar
744 connectivity in lower sustained attention performance (Fong et al., 2019; Jones et al., 2024; Rosenberg et
745  al., 2016a). Increased within-motor connectivity has similarly been related to poor sustained attention in
746  adolescents, whereas connections between motor and visual regions are increased with better sustained
747  attention (O’Halloran et al., 2018). We observed a similar pattern of results, with connectivity between
748  motor and visual II networks contributing to visual and auditory high-attention networks. We do not see a
749  significant contribution of motor to visual II connectivity to the overlapping high-attention network,

750  suggesting the individual edges may differ between visual and auditory networks. Since the gradCPT
751  used to train networks in the current study requires a motor (button press) response, it is possible that
752 connections within and between the motor network are more strongly represented in these networks than
753  would be expected if a different sustained attention task were used for network training. Future work may
754  seek to test the extent to which task demands influence network architecture.

755 We should also note a few limitations of the current study. First, our analyses utilized a

756  connectome-based predictive modeling approach which sought to identify connections between brain
757  regions whose strength captured variability in modality unique or modality general sustained attention.
758  However, it is likely that functional relationships in the brain, beyond those at the edge level, may differ
759  between task-modality. While outside the scope of the current manuscript, future work may aim to more
760  fully characterize functional differences between task, for example, at the level of graph-theoretic

761 differences between whole-brain connectivity patterns. An additional limitation is the precision of the
762  current predicted sustained attention performance values. Significant correlations between predicted and
763  observed sustained attention performance suggest that our sustained attention networks capture reliable
764  differences in performance and are therefore useful in understanding neural mechanisms involved in

765  sustained attention. However, the current models leave much variance unexplained, which may result
766  from a number of individual, task, and dataset differences. Work aimed at precise predictions of sustained
767  attention performance may choose to include additional variables in predictive models that better-capture
768  this remaining variability.

769 While the current analyses focused on the generalization of sustained attention networks, a

770  similar question could be asked of predictive networks trained on any cognitive process that can be

771 performed in separate perceptual modalities. For example, it is an open question whether a network

772  trained to predict visual recognition memory across participants would also generalize to predict auditory
773  recognition memory, which is reliably worse (Cohen et al., 2009). Future work testing the validity of
774  brain-based models of cognition should aim to test model generalizability across perceptual modalities to
775  evaluate the extent to which a cognitive process is fully captured by a given model.
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776 Our results demonstrate that functional connectivity-based networks of sustained attention are not
777  specific to the perceptual modality of training, suggesting that these networks capture domain- and
778  modality-general aspects of attention. Both non-overlapping and overlapping, modality-general edges
779  predicted cross-modal sustained attention performance in independent datasets, thereby providing one
780  mechanism by which modality-general sustained attention ability may be supported. These results
781 highlight that the ability to sustain attention to information over time relies on distributed, modality-
782  general connections in the brain and demonstrate the potential for highly-generalizable predictive models
783  constructed from functional connectivity features.
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