

Functional brain networks predicting sustained attention are not specific to perceptual modality

Anna Corriveau¹, Jin Ke¹, Hiroki Terashima², Hirohito M. Kondo³, Monica D. Rosenberg^{1,4,5}

¹ Department of Psychology, The University of Chicago

² NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation

³ School of Psychology, Chukyo University

⁴ Institute for Mind and Biology, The University of Chicago

⁵ Neuroscience Institute, The University of Chicago

Significance statement

29 While previous work has demonstrated external validity of functional connectivity-based networks for the
30 prediction of cognitive and attentional performance, testing generalization across visual and auditory
31 perceptual modalities has been limited. The current study demonstrates robust prediction of sustained
32 attention performance, regardless of perceptual modality models are trained or tested in. Results
33 demonstrate that connectivity-based models may generalize broadly capturing variance in sustained
34 attention performance which is agnostic to the perceptual modality of model training.

36 **Key Words:** sustained attention, visual attention, auditory attention, functional connectivity, predictive
37 model

39 CRediT author statement

40 **A.C.** Conceptualization, Formal analysis, Investigation, Visualization, Writing-Original Draft. **J.K.**
41 Investigation, Data Curation, Writing-Review & Editing. **H.T.** Investigation, Writing-Review & Editing.
42 **H.M.K.** Investigation, Writing-Review & Editing, Funding Acquisition. **M.D.R.** Conceptualization,
43 Methodology, Resources, Writing-Review & Editing, Supervision, Project Administration, Funding
44 Acquisition.

46

47 **Abstract**

48 Sustained attention is essential for daily life and can be directed to information from different
49 perceptual modalities including audition and vision. Recently, cognitive neuroscience has aimed to
50 identify neural predictors of behavior that generalize across datasets. Prior work has shown strong
51 generalization of models trained to predict individual differences in sustained attention performance from
52 patterns of fMRI functional connectivity. However, it is an open question whether predictions of
53 sustained attention are specific to the perceptual modality in which they are trained. In the current study
54 we test whether connectome-based models predict performance on attention tasks performed in different
55 modalities. We show first that a predefined network trained to predict adults' *visual* sustained attention
56 performance generalizes to predict *auditory* sustained attention performance in three independent datasets
57 ($N_1=29$, $N_2=60$, $N_3=17$). Next, we train new network models to predict performance on visual and
58 auditory attention tasks separately. We find that functional networks are largely modality-general, with
59 both model-unique and shared model features predicting sustained attention performance in independent
60 datasets regardless of task modality. Results support the supposition that visual and auditory sustained
61 attention rely on shared neural mechanisms and demonstrate robust generalizability of whole-brain
62 functional network models of sustained attention.

63

64 **Introduction**

65

66 The maintenance of attention to information over time is essential for daily activities such as
67 driving to work or conversing with friends. Recent work in cognitive neuroscience has been aimed at
68 identifying neural signatures of sustained attention ability with the goal of constructing models that
69 generalize across people and datasets to predict individual differences in attention function. However,
70 while sustained attention can be deployed to information from multiple perceptual (e.g., visual and
71 auditory) modalities, it is an open question whether predictive models generalize across modality. For
72 example, models trained to predict performance on visual sustained attention tasks may contain modality-
73 specific features and therefore fail to generalize or generalize poorly to capture auditory sustained
74 attention performance. Alternatively, features may capture modality-general aspects of attention and
75 generalize broadly. Here, we construct and test the generalizability of models trained to predict sustained
76 attention to visual and auditory stimuli from functional connections.

77 Identifying brain-based markers of cognition is beneficial both for understanding associations
78 between functional brain organization and behavior and for developing predictive models. Network
79 neuroscience provides a framework for the identification of interpretable neural signatures of cognition
80 (Srivastava et al., 2022). One method, connectome-based predictive modeling (CPM), identifies
81 functional connections, or edges, between brain regions whose strength is reliably associated with
82 phenotypes across individuals (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017). This method
83 has identified edge networks that predict sustained attention within and across samples of individuals
84 (Rosenberg et al., 2016a, 2020; Yoo et al., 2022).

85 The utility of predictive models lies in their external validity, i.e., generalizability across
86 independent datasets and contexts (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost et al., 2019).
87 Successful generalizability across datasets ensures a model's accuracy in the identification of relevant
88 features as well as robustness to differences between samples. Predictive models of sustained attention
89 constructed using CPM have demonstrated generalizability across datasets, as well as generalization to

90 other attention tasks and attention-related symptoms (Rosenberg et al., 2016a; 2018, 2020; Yoo et al.,
91 2022). Therefore, CPM successfully captures functional networks related to attention across contexts.

92 Sustained attention is often measured using tasks that require continuous vigilance for the
93 detection or discrimination of rare stimuli (Mackworth, 1948; Langner and Eickhoff, 2013). While much
94 work has investigated sustained attention to visual stimuli, attention can be deployed to other perceptual
95 modalities, such as audition. Previous work has shown that the ability to sustain attention to visual and
96 auditory information is reliable within individuals, suggesting that these abilities rely on shared cognitive
97 mechanisms (Corriveau et al., 2024; Seli et al., 2011; Terashima et al., 2021). Work using
98 electroencephalography and fMRI data has identified neural substrates underlying detection of both visual
99 and auditory rare targets (Katayama & Polich, 1999; Kondo et al., 2023; Kim, 2014; Linden et al., 1999;
100 Stevens et al., 2000), further supporting a modality-general neural basis of sustained attention. However,
101 recent work shows that neurometabolites are differentially related to auditory and visual sustained
102 attention (Kondo et al., 2023). Further, selective attention to visual or auditory information elicits both
103 supramodal and modality-specific neural activation patterns (Smith et al., 2010; Stevens et al., 2000),
104 suggesting that attending these modalities relies on distinct neural mechanisms as well. Therefore, the
105 extent to which visual and auditory sustained attention networks are modality-specific may depend on the
106 extent to which they rely on modality-specific neural mechanisms.

107 Here, we test the extent to which predictions from functional networks of sustained attention are
108 biased by the perceptual modality in which they are trained. We find that a network previously defined to
109 predict visual sustained attention predicts performance across datasets and modalities. Further, we show
110 that models trained on auditory and visual tasks are highly generalizable across perceptual modalities.
111 Even after the removal of features identified by both visual and auditory networks, i.e., modality-general
112 features, models successfully predict cross-modality sustained attention ability. These results demonstrate
113 that sustained attention relies on distributed patterns of connectivity. Additionally, they suggest that
114 distributed patterns may be different between perceptual modality but still capture generalizable variance
115 in sustained attention ability across datasets and modalities.

116

117

118 **Methods**

119

120 *Dataset 1*

121 The first dataset analyzed was described in detail by Kondo et al. (2022; 2023). This study was
122 reviewed and approved by the Research Ethics and Safety Committees of Chukyo University and ATR-
123 Promotions. Participants provided their written informed consent to participate in this study.

124 Participants ($N=29$, ages 20-35) were healthy Japanese adults who completed an fMRI scan
125 consisting of two visual runs and two auditory runs of a gradual onset continuous performance task
126 (*gradCPT*; Esterman et al., 2013; Rosenberg et al., 2013; Terashima et al., 2021). Data were collected
127 using a 3T Magnetom Prisma MRI scanner (Siemens, Munich, Germany). Task runs were 400 seconds in
128 length. A multiband echo-planar imaging (EPI) sequence was used to collect 205 volumes per task run
129 with a repetition time (TR) of 2 seconds. Voxels were 2mm x 2mm x 2mm. The first five volumes of each
130 run were discarded for data analysis.

131 The *gradCPT* was developed to measure sustained attention performance. In the task, stimuli
132 gradually transition one into the next to avoid abrupt onsets. Visual runs of the *gradCPT* featured round,
133 grayscale images of city (90%) and mountain (10%) scenes. Images transitioned from off to fully visible

134 over 1.6 seconds such that a stimulus reached maximum visibility every 1.6 s. Images faded from peak
135 visibility to off as presentation of the next image began. Participants were instructed to press a button for
136 each city scene and withhold a button press for mountain scenes.

137 Stimuli for the auditory *gradCPT* were narrations from a foreign language database, excluding
138 Japanese narrations to avoid presentation of a participant's native language. Thus, participants used
139 acoustic clues of the stimuli, rather than semantic clues, to judge the gender of voice streams. Narrations
140 were performed by male (90%) and female (10%) voices and gradually transitioned from one to the next
141 using sinusoidal ramps (Terashima et al., 2021) such that a voice reached maximum presentation every
142 1.6 seconds. Participants were instructed to press a button for male voices and withhold a button press for
143 female voices.

144 Because stimuli faded from one to the next, key presses were assigned to trials in an iterative
145 manner that first assigned unambiguous presses and then assigned more ambiguous ones. Unambiguous
146 key presses occurring in a window from 70% presented to 40% disappeared were assigned to the current
147 trial. Key presses that occurred outside the window were assigned to adjacent trials if no responses to
148 those trials had been made. If no response was made to either adjacent trial, the key press was attributed
149 to the closer trial. If either trial was an infrequent trial (mountain scene, female voice), the key press was
150 assigned to the adjacent frequent trial. Sustained attention performance was quantified using a measure of
151 sensitivity (d') which is calculated as the normalized hit rate minus the normalized false alarm rate for
152 each run.

153

154

155 *Dataset 2*

156 The second dataset was collected at the MRI Research Center at the University of Chicago. Study
157 procedures were approved by the Social and Behavioral Sciences Institutional Review Board at the
158 University of Chicago. All participants provided their written informed consent prior to participation.

159 Participants ($N=60$) participated in at least one session of a two-session fMRI study collected
160 approximately one week apart (mean time between sessions=10.88 days, SD=9.87 days). During both
161 sessions, participants performed a 10-minute audio-visual continuous performance task (*avCPT*;
162 Corriveau et al., 2024). Functional MRI data were collected on a 3T Philips Ingenia scanner. Volumes
163 were collected using a multiband sequence with a repetition time of 1 second. Three volumes were
164 removed from the start of each scan.

165 During the *avCPT*, streams of trial-unique images and sounds were presented simultaneously.
166 Images were presented continuously for 1.2 seconds each whereas sounds were presented for 1 second
167 with a 200 ms inter-trial interval to allow participants to distinguish individual sounds. Each task run was
168 500 trials in length. Images were indoor and outdoor scenes drawn from the SUN image database (Xiao et
169 al., 2010). Sound stimuli were natural and manmade sounds drawn from online sound databases and
170 cropped to be 1 s in length. Full details of stimulus curation procedures are described in Corriveau et al.
171 (2024).

172 Before the task run, participants were instructed to make a button press to frequent stimuli (90%)
173 from either the auditory or visual modality and to withhold a button press for infrequent stimuli (10%).
174 They were told that the stimuli from the other modality were not relevant for the task. Over the two scan
175 sessions, participants performed both the auditory and visual task and the order of task runs and frequent
176 stimulus category was counterbalanced across participants.

177 For frequent trials, correct responses were trials in which participants responded before the onset
178 of a new stimulus (within 1200 ms of trial start). However, to allow for the possibility of RTs longer than
179 1200 ms, we reassigned key presses for frequent trials which met the following criteria: (1) the participant
180 made more than one key press for a trial with a frequent-category stimulus (2) the first key press was
181 faster than 100 ms, and (3) no response was made to the previous frequent-category stimulus. In this case,
182 the first key press was attributed to the previous trial. This reassignment of key presses is meant to more
183 accurately account for accurate performance with slower response times. Press reassignment was rare in
184 both visual (mean number of trials with presses reassigned=.548, SD=.861) and auditory sessions (mean
185 number of trials with presses reassigned=3.81, SD=3.46), affecting less than .8% of the trials in each task.
186 Therefore, this analytical decision has a negligible effect on results. Performance during the *avCPT* was
187 calculated as sensitivity (d').

188

189

190 *Dataset 3*

191 The final fMRI dataset analyzed was described in Walz et al. (2013) and shared on OpenNeuro
192 (ds000116). This dataset contained runs from 17 adults (6 females, ages 20-40 years) who performed
193 three auditory and three visual runs of an oddball task. Simultaneous fMRI and electroencephalography
194 data were collected for the original study but only the fMRI data are analyzed here. Data were collected
195 on a 3T Philips Achieva scanner. Each run consisted of 170 volumes collected with a 2 s TR. While the
196 authors note that discarding of extra runs is unnecessary for the shared data, the first three volumes of
197 each run were removed in keeping with a standard preprocessing pipeline. We do not expect this to affect
198 the current results.

199 Task runs consisted of 125 stimuli presented for 200 ms with a variable inter-trial interval of 2-3
200 seconds. Participants were instructed to press a button for infrequent targets (20%) and could ignore
201 standard stimuli (80%). In visual runs, standard trials consisted of a small green circle and target trials
202 were the presentation of a large red circle. For auditory runs, the standard stimulus was a 390 Hz tone,
203 whereas the target stimulus was a broadband laser gun sound.

204 Because the response pattern for this task was inverted and responses were only required on
205 target trials, detection of oddball targets in this task is trivial, leading to overall high performance.
206 Therefore, sustained attention performance in this dataset was quantified using the mean run reaction time
207 (RT) variability which has previously been shown to be robustly related to sustained attention
208 performance in both healthy adults and in populations characterized by sustained attention deficits
209 (Chidharom & Carlisle, 2021; Esterman et al., 2013; Karamacoska et al., 2018; Robertson et al., 1996;
210 Seli et al., 2011; Tamm et al., 2012). Importantly, this measure provides more variability across
211 participants than a measure of sensitivity on a task where performance is at ceiling, as in the current
212 dataset. RT variability is predictive of sustained attention ability such that individuals with more variable
213 pressing show worse performance on sustained attention tasks. Since RT variability has previously been
214 shown to be negatively related to sustained attention performance, we report the inverse of RT variability
215 (mean RT / standard deviation) for ease of comparison with Datasets 1 and 2 in the current study.

216

217

218 *fMRI preprocessing procedure*

219 Functional MRI data for the three datasets underwent the same preprocessing steps in AFNI
220 (Cox, 1996). Preprocessing included the following steps: Removal of leading TRs as previously noted for

221 individual datasets; alignment of functional data to MNI space; regression of covariates of no interest,
222 including a 24-parameter head motion model (6 motion parameters, 6 temporal derivatives, and their
223 squares), mean signal from subject-level white matter and ventricle masks, and mean whole-brain signal;
224 and censoring of volumes for which the derivative of motion parameters exceeded .25 mm or for which
225 more than 10% of the brain were outliers.

226

227 *Exclusion criteria*

228 To ensure high-quality data, individual runs were excluded if they did not meet the following
229 criteria regarding head motion inside the scanner and behavioral performance. Runs were excluded if
230 mean framewise head displacement after motion censoring exceeded .15mm, if the maximum head
231 displacement exceeded 4mm, or if greater than 50% of frames were censored during preprocessing. Runs
232 in Datasets 1 and 2 were also excluded if hit rates were more than 2.5 standard deviations below the mean
233 hit rate value. The tasks used in these datasets asked participants to respond to frequent trials (90%), such
234 that good performance would require presses to the vast majority of trials. Therefore, low hit rates for
235 these tasks indicate participant non-compliance. Finally, we excluded runs if behavioral performance,
236 quantified as sensitivity (d') in Datasets 1 and 2 and inverse RT variability in Dataset 3, was greater than
237 2.5 standard deviations below the mean across all runs within a dataset.

238 In Dataset 1, two visual runs were removed based on head motion criteria and 6 visual runs were
239 excluded for extremely low hit rates. No auditory runs were removed based on any of the listed criteria. In
240 Dataset 2, 56 participants completed the visual *avCPT* and 55 participants completed the auditory *avCPT*.
241 9 visual runs and 10 auditory runs were excluded based on head motion criteria. An additional two visual
242 runs and one auditory run were removed due to low hit rates. In the final sample for Dataset 2, 36
243 participants completed both a visual and an auditory run. For Dataset 3, 47 visual and 44 auditory runs
244 were successfully preprocessed. Preprocessing failed for the remaining 4 visual and 7 auditory runs due to
245 the number of time points censored. No additional runs were removed based on head motion criteria. No
246 runs in any dataset were excluded on the basis of low sensitivity or RT variability measures. The final
247 sample sizes for each dataset and run type were as follows: Dataset 1 included 50 visual and 58 auditory
248 runs, Dataset 2 included 45 visual and 44 auditory runs, and Dataset 3 included 47 visual and 44 auditory
249 runs.

250

251 *External validation of sustained attention CPM*

252 Functional MRI data were parcellated into 268 functionally-defined regions of interest (ROIs,
253 Shen et al., 2013). Whole-brain functional connectivity matrices were calculated by correlating the blood
254 oxygen level dependent (BOLD) time courses for a given task run between all pairs of ROIs. Edges in
255 this 268 by 268 matrix provide an index of coactivation similarity between all pairs of regions in the brain
256 for each run.

257 Our first question of interest was whether a predefined network trained to predict sustained
258 attention performance in a visual task generalized to the present datasets which include both visual and
259 auditory sustained attention tasks. The network tested was defined using connectome-based predictive
260 modeling (CPM; Finn et al., 2015; Rosenberg et al., 2016a; Shen et al., 2017) which identifies a set of
261 edges whose coactivation strength is related to a performance metric across a set of participants. In CPM,
262 the strength of every edge in a functional connectivity matrix is correlated with a behavior of interest, in
263 this case sustained attention performance. The predefined network, referred to in the current manuscript
264 as the *saCPM* (sustained attention CPM) consists of a set of edges whose strength was either positively

265 (757 edges) or negatively (630 edges) correlated with visual *gradCPT* performance across an independent
266 set of participants ($N=25$). Significant edges were defined as those whose network strength was
267 significantly correlated (Pearson's r ; $p<.01$) with visual *gradCPT* sensitivity (d') across participants.
268 Positively correlated edges are connections whose strength increased with higher sustained attention
269 performance across participants, whereas negatively correlated edges are connections whose strength
270 increased with worse performance. This network is described in previous work by Rosenberg et al.,
271 (2016a; 2020) and is shared publicly (https://github.com/monicadrosenberg/Rosenberg_PNAS2020).

272 Here, we tested whether strength in this predefined network also predicted sustained attention
273 performance in datasets that include novel participants, multiple perceptual modalities, and new
274 behavioral measures of interest. Network strength is defined as the difference between mean connectivity
275 in the high-attention and mean connectivity in the low-attention network for each run in the current
276 datasets. Because strength in the high-attention and low-attention networks will be negatively correlated
277 by nature of how the networks were identified, taking the difference provides a single summary measure
278 which is interpretable. CPM-predicted behavior is a linear transformation of network strength (predicted
279 behavior = m^* network strength + b , where m and b are learned during model training). Therefore, for
280 external model validation as we perform in the current set of analyses, the correlation between network
281 strength and observed behavior is mathematically equivalent to correlation between predicted and
282 observed behavioral scores. Network strength values were normalized across participants within dataset
283 for comparison with other analyses. We then tested whether that network strength was related to
284 behavioral performance by calculating the partial Spearman's ρ value between network strength and the
285 behavioral measure of interest for visual and auditory runs separately, controlling for mean head motion
286 (mean framewise displacement) in the scanner. Spearman's ρ values were used to mitigate any potential
287 effects of outliers on predictions. However, results are consistent when using Pearson's correlation.

288 As a note, we do not apply multiple comparison correction for the present study because all tests
289 of model generalization tested a non-omnibus hypothesis, i.e., that network strength in the trained model
290 will predict sustained attention performance in an independent sample (Garcia-Perez, 2023). Each
291 external validation of model prediction tests a single outcome (significance of correlation between
292 network strength and performance) and therefore multiple comparisons corrections would create
293 unnecessarily large barriers to generalization.

294
295 *Modality-specific model construction*
296 Next, we tested whether a network that is trained on fMRI data collected during a sustained
297 attention task performed in a given perceptual modality better predicts performance on a task performed
298 in the same vs. a different modality. To test this, we defined new models on the functional connectivity
299 matrices and behavior in Dataset 1 using a CPM approach (Finn et al., 2015; Rosenberg et al., 2016a;
300 Shen et al., 2017). CPM identifies a set of edges that is correlated, either negatively or positively
301 (Pearson's r , $p<.01$) with behavioral performance across the training set. For the current analyses, the
302 training set was all visual or auditory runs in Dataset 1. For each edge in a functional connectivity matrix,
303 a Pearson's correlation is calculated between edge strength and sustained attention performance across the
304 dataset. This is repeated for all edges in the functional connectivity matrix and significant edges are those
305 whose correlation with sustained attention is stronger than a given threshold, in this case, $p<.01$. Positive
306 network edges are those where connectivity strength is positively related to behavior across an entire
307 training sample, while negative network edges are those whose connectivity is negatively related to
308 behavior across the sample. Significant edges are isolated to represent a network of edges for which edge

309 strength is related to sustained attention in a given dataset. This results in binary edge “masks” consisting
310 of 0s and 1s for both positive and negative networks. Edge masks are used to calculate network strength
311 in independent datasets by calculating the dot product between the binary mask and each individual’s FC
312 matrix and taking the difference between average connectivity strengths in the positive and negative edge
313 networks. Networks were defined on visual and auditory runs of Dataset 1 separately. We then tested the
314 generalizability of these networks by calculating the partial Spearman’s correlation between modality-
315 specific network strength and performance in the left-out datasets 2 and 3 visual and auditory runs,
316 controlling for in-scanner head motion. For these external validation analyses, the correlation between
317 network strength and observed behavioral scores is again equivalent to the correlation between predicted
318 and observed behavioral scores.

319 To investigate the composition of visual, auditory, and overlapping sustained attention networks,
320 we quantified the relative contribution of canonical brain networks (Finn et al., 2015) to these networks.
321 This functionally-defined canonical network parcellation includes visual networks labeled based on their
322 similarity to resting-state visual networks. There is no comparable auditory network included in this
323 parcellation. However, connections from auditory cortex may be best encompassed by medial frontal and
324 motor networks. We quantified relative contribution to high and low sustained attention networks by
325 calculating the difference between the number of edges identified by high and low networks within and
326 between canonical networks. This relative contribution was normalized by the total number of edges
327 contained in a network. Significance of network contributions was calculated non-parametrically by
328 shuffling edges in the high and low attention networks separately and recalculating the difference in
329 network contribution 1000 times.

330 We quantified the significance of overlap between our new visual and auditory sustained
331 attention networks using a hypergeometric cumulative distribution function, which calculates the
332 probability of observing the number of overlapping edges given a random sampling with no replacement
333 of two networks of the sizes observed (Rosenberg et al., 2016b). Significance values were calculated in
334 MATLAB as $p=1-hygcd(x,M,K,N)$ where x is the number of shared edges between networks of interest,
335 M is the total number of functional edges in the matrix (35,778), and K and N are the number of
336 functional edges the networks of interest.

337 We tested whether model generalization was biased towards the perceptual modality of training
338 by calculating a measure of modality-specificity for each external validation dataset. Modality-specificity
339 of visual and auditory networks was calculated as the prediction (partial Spearman’s rho) of within-
340 modality generalization (e.g., visual performance predicted by the visual CPM) minus cross-modality
341 generalization (e.g., visual performance predicted by the auditory CPM) for each dataset and modality.
342 We determined significance with a permutation test whereby predicted performance values were shuffled
343 and correlated with observed performance, controlling for head motion. Auditory and visual predicted
344 performance values were shuffled independently and the difference between these partial Spearman’s rho
345 values was calculated. This process was repeated across 5000 iterations to obtain a null distribution of
346 permuted difference scores.

347 Finally, we tested the contribution of network components to the generalizability of auditory and
348 visual networks. To do so, we calculated whether network strength in reliably predictive edges, i.e., edges
349 that appeared in both visual and auditory predictive networks, was related to sustained attention
350 performance in independent datasets. We hypothesized that these edges would reflect connectivity
351 involved in supramodal sustained attention and therefore would generalize to predict performance in both
352 modalities. We also tested whether edges that appeared only in the visual network or the auditory network

353 would show specificity to their training modality. To do this we calculated network strength in edges that
354 appeared either in the visual network or the auditory network, but not in both. We calculated the modality
355 specificity of visual-only and auditory-only network edges by comparing predictions within and across
356 modality, as described in the previous paragraph.

357 All preprocessed data and analysis code required to recreate the described analyses are publicly
358 available at <https://osf.io/bt2xy/>.

359

360

361 Results

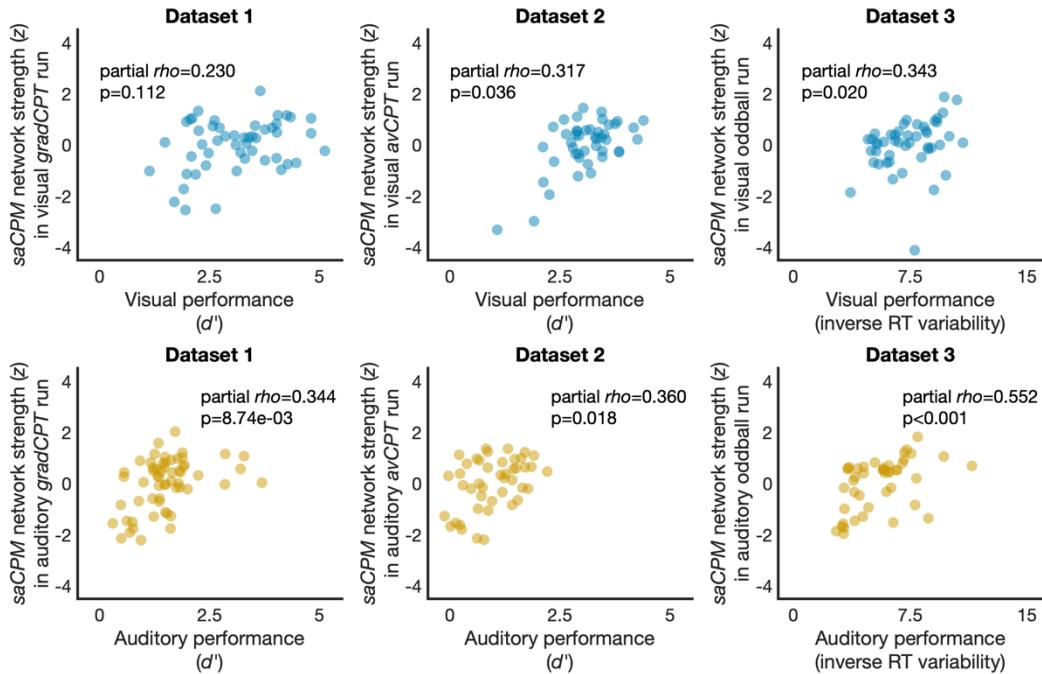
362

363 *A predefined visual network generalizes across datasets and modalities*

364 We first tested whether the *saCPM*, a network trained to predict performance on a visual
365 sustained attention task generalized to the current datasets. Sustained attention performance, measured as
366 sensitivity (d') in Dataset 1, ranged from 1.14 to 5.11 in visual runs ($M=3.11$, $SD=.957$) and .306 to 3.69
367 in auditory runs ($M=1.51$, $SD=.679$). In Dataset 2, visual d' values ranged from 1.08 to 4.40 ($M=3.09$,
368 $SD=.640$) and auditory d' values ranged from -.112 to 2.22 ($M=.968$, $SD=.599$). Inverse RT variability in
369 Dataset 3 ranged from 3.67 to 10.88 ($M=7.39$, $SD=1.76$) in visual runs and from 2.76 to 11.47 ($M=5.53$,
370 $SD=1.98$) in auditory runs. Mean visual and auditory sustained attention measures were positively related
371 across subjects in all datasets (Spearman's $\rho_{11}=.497$, $p_1=9.84*10^{-3}$; Spearman's $\rho_{12}=.537$, $p_2<.001$;
372 Spearman's $\rho_{13}=.589$, $p_3=.021$). However, performance was not perfectly correlated across modalities,
373 such that not all variance in auditory task performance was explained by performance on the visual task.
374 Therefore, successful generalization of the *saCPM* would require that it rely on features which capture the
375 shared, supramodal variance.

376 For visual task runs, network strength in the *saCPM* was positively related to performance in all
377 datasets (partial $\rho_{11}=.230$, $p_1=.112$; partial $\rho_{12}=.317$, $p_2=.036$; partial $\rho_{13}=.343$, $p_1=.020$) and this
378 relationship was significant in Datasets 2 and 3 (**Figure 1**). While the prediction of visual sustained
379 attention was not significant in Dataset 1, the relationship between network strength and observed
380 performance was in the predicted direction and aligns with predictions in other datasets. As a validation
381 that the *saCPM* captures visual sustained attention performance in Dataset 1, we also tested whether
382 network strength in the *saCPM* predicted inverse RT variability in this dataset. RT variability was
383 significantly correlated with sustained attention performance in visual runs of Dataset 1 ($r=.649$, $p<.001$)
384 but may capture more meaningful variance in performance in this dataset. *saCPM* Network strength
385 positively predicted inverse RT variability during the visual task (partial $\rho_{11}=.313$, $p=.028$). Therefore,
386 we concluded that this previously-validated network generalizes to predict visual sustained attention
387 performance in Dataset 1. When applied to auditory task runs, *saCPM* network strength significantly
388 predicted auditory sustained attention performance in all three datasets (partial $\rho_{12}=.344$, $p_1=8.74*10^{-3}$;
389 partial $\rho_{13}=.360$, $p_2=.018$; partial $\rho_{23}=.552$, $p_1<.001$). Successful generalization of the predefined
390 *saCPM* demonstrates that this network captures features of sustained attention that are general across
391 datasets as well as perceptual modalities.

392



393

394 *Figure 1.* Network strength in the saCPM network significantly predicted visual sustained attention
395 performance in Datasets 2 and 3 and auditory sustained attention performance in all datasets.

396

397 *Sustained attention networks are not modality-specific*

398 We next asked whether a model trained on an auditory sustained attention task would generalize
399 to predict performance on other auditory attention tasks better than a model trained on a visual attention
400 task. One option for doing so would be training a new CPM to predict auditory task performance,
401 applying the model to new data, comparing its predictive power to that of the *saCPM*. However, in this
402 scenario any differences in predictive power could be due to differences between training datasets
403 (number of participations, amount and quality of data, etc.) rather than attention modality per se. Thus, to
404 more directly compare the generalizability of auditory and visual attention models, we constructed two
405 new models—an auditory model trained to predict auditory *gradCPT* performance in Dataset 1 and a
406 visual model trained to predict visual *gradCPT* performance in Dataset 1. Dataset 1 was selected as the
407 training dataset because sustained attention performance in this dataset was measured using the *gradCPT*.
408 Thus, networks from this dataset are most comparable to saCPM networks which were trained using the same task.
409 We tested the generalizability of these models within and across perceptual modalities by
410 relating network strength in the visual and auditory networks to visual and auditory sustained attention
411 performance in Datasets 2 and 3, controlling for head motion during task runs. For all results reported
412 below, models were applied to functional connectivity data from an auditory or visual task run and
413 resulting predictions were related to behavioral performance from that same task run.

414 The visual network generalized to predict visual sustained attention in Dataset 2 (partial
415 $\rho = .329$, $p = .029$) and Dataset 3 (partial $\rho = .305$, $p = .039$; **Figure 2A**). The auditory network similarly
416 generalized to predict auditory sustained attention performance in both datasets (partial $\rho_2 = .376$,
417 $p_2 = .013$; partial $\rho_3 = .537$, $p_3 < .001$). Within-modality generalization confirms that CPM successfully
418 identified networks whose strength predicts out-of-sample sustained attention performance.

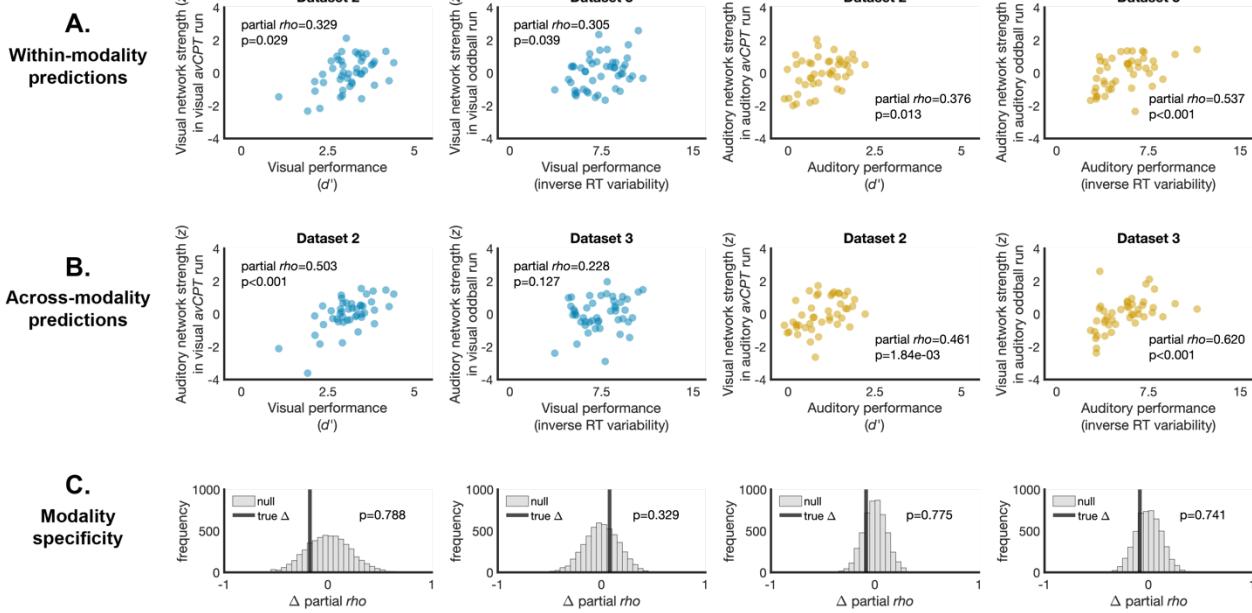
419 We next tested whether these networks predicted sustained attention performance when tasks
420 were performed in a different modality. The visual network significantly predicted auditory sustained
421 attention performance in both Dataset 2 (partial ρ =.461, $p=1.84*10^{-3}$) and Dataset 3 (partial ρ =.620,
422 $p<.001$; **Figure 2B**). The auditory network predicted visual sustained attention performance in Dataset 2
423 (partial ρ =.503, $p<.001$) and was positively but not significantly related to visual sustained attention
424 performance in Dataset 3 (partial ρ =.228, $p=.127$). Successful generalization across dataset and
425 perceptual modality suggests that sustained attention relies on a modality-general mechanism captured, at
426 least to some extent, by the edges identified by CPM.

427 To quantify the extent to which networks were modality specific, we calculated the difference
428 between within-modality prediction and across-modality prediction by subtracting the respective partial
429 Spearman's rho values. We created a null distribution by shuffling model-predicted visual and auditory
430 behavioral performance values independently. The difference between partial Spearman's rho values was
431 permuted and this was repeated 5000 times. A one-tailed test was used to determine whether the observed
432 difference between within- and between-modality predictions was greater than permuted values. Visual
433 performance was not better predicted by a visual network than an auditory network in Dataset 2 ($p=.788$)
434 or in Dataset 3 ($p=.329$; **Figure 2C**). Similarly, auditory performance predictions from the auditory
435 network were not higher than predictions from the visual network in either Dataset 2 ($p=.775$) or Dataset
436 3 ($p=.741$). Across both models, we found no modality-specificity such that the networks identified to
437 predict visual or auditory sustained attention performance did not better predict task performance in the
438 same modality.

439 We note that the number of runs available in Dataset 1 to train these models differs between
440 auditory ($N=58$) and visual ($N=50$) runs. To ensure that training the auditory model on a larger number of
441 runs did not bias the model's generalizability, we subsampled the number of runs used to train the
442 auditory network to be equal to the number of runs used to train the visual network, i.e., 50 runs. We refit
443 1000 auditory models using a random subsampling of 50 auditory runs from Dataset 1 and tested how
444 well these models generalized across datasets and modalities. In all cases, prediction from the model
445 trained on the full $N=58$ sample fell within one standard deviation of the mean prediction from models
446 trained on a smaller sample (Prediction of visual performance: mean partial $\rho_{02}=.478$, $SD_2=.054$; mean
447 partial $\rho_{03}=.220$, $SD_3=.053$; Prediction of auditory performance: mean partial $\rho_{02}=.365$, $SD_2=.026$;
448 mean partial $\rho_{03}=.534$, $SD_3=.040$). Therefore, it is not the case that prediction from the auditory model in
449 the current analyses is biased due to a larger amount of training data.

450
451

452



453

454

455

456

457

458

459

460 *Figure 2. (A) Visual and auditory networks generalized to predict visual and auditory sustained attention*
 461 *performance, respectively, in independent datasets. Network strength is quantified as the difference*
 462 *between the average high and the average low network strength values. (B) The visual network predicted*
 463 *auditory sustained attention in independent datasets and the auditory network predicted visual*
 464 *performance in one dataset. (C) Neither network showed modality-specificity, i.e., generalized better to*
 465 *within-modality prediction than across-modality prediction. The vertical black bar represents the true*
 466 *difference between prediction of task performance from a within-modality model vs. an across-modality*
 467 *model. The gray distribution reflects null differences from predictions of shuffled sustained attention*
 468 *performance. Positive partial rho difference values reflect better prediction within vs. across perceptual*
 469 *modality. Negative partial rho difference values reflect better performance prediction for a task performed*
 470 *in a different perceptual modality than training.*

471

472

473 *Cross-modality generalization is not explained by within-modality performance*

474 Sustained attention performance is reliable across modalities, such that individuals with high
 475 visual sustained attention performance tend to have high auditory sustained attention performance.
 476 Therefore, cross-modality generalization of network predictions could result simply because cross-
 477 modality performance is related to within-modality performance. Another alternative, however, is that
 478 network models capture variance above and beyond sustained attention performance consistency. To test
 479 this, we included within-modality sustained attention performance as an additional variable in the partial
 480 correlation between cross-modality performance and network strength. If models fail to generalize when
 481 supramodal sustained attention performance is captured by the additional variable of within-modality
 482 performance, this suggests that the generalizability of these models across modalities relies heavily on
 483 features related to this shared supramodal ability. If models still generalize after controlling for
 484 supramodal sustained attention performance, this would suggest that networks capture unique variance
 485 beyond what can be explained by similarity in sustained attention performance across runs.

486 The partial correlation between saCPM network strength and auditory sustained attention
487 performance remained significant in both Dataset 1 (partial ρ =.301, p =.024) and Dataset 3 (partial
488 ρ =.540, p <.001), even when controlling for participants' visual sustained attention performance.
489 Prediction in Dataset 2 was positive but not significant after controlling for visual sustained attention
490 performance (partial ρ =.215, p =.183). Therefore, in two of three datasets, generalization of the saCPM
491 to auditory tasks cannot be explained by a correlation between performance across modalities.

492 We further tested whether generalization of visual and auditory networks trained on Dataset 1
493 remained after controlling for within-modality performance. Predictions of auditory sustained attention
494 performance from the visual network remained significant after removing variance explained by visual
495 sustained attention performance in Dataset 2 (partial ρ =.339, p =.033) and Dataset 3 (partial ρ =.605,
496 p <.001). When controlling for auditory sustained attention performance, predictions of visual sustained
497 attention from auditory networks were significant in Dataset 2 (partial ρ =.455, p = 2.81×10^{-3}) and
498 remained non-significant in Dataset 3 (partial ρ =.096, p =.532). Therefore, generalization of sustained
499 attention networks across task modalities is not simply due to performance similarity across modalities,
500 but rather networks capture sustained attention ability beyond what can be explained by shared
501 supramodal variance.

502 As a final test of the extent to which cross-modality generalization relies on shared variance in
503 task performance between modalities, we retrained sustained attention networks to predict auditory and
504 visual performance in Dataset 1, controlling for performance in the other modality. In other words, during
505 the feature selection step of visual sustained attention model training, positive and negative network edges
506 were those that were significantly correlated with visual sustained attention performance across
507 individuals in Dataset 1 partialling out auditory sustained attention performance. Similarly, visual
508 sustained attention performance was included as a partial covariate when identifying auditory sustained
509 attention model features. Therefore, these models should no longer capture variance that can be explained
510 by consistency in performance across individuals. A failure of these models to generalize across datasets
511 and modalities would suggest that previous model generalization relied heavily on the shared variance in
512 sustained attention performance across task modality. However, if these models indeed predict sustained
513 attention performance in a modality different than training, it suggests that model features capture
514 relevant variance beyond what can be explained by consistency in performance across modalities.

515 Cross-modality predictions of visual sustained attention performance from the retrained auditory
516 network were significant in Dataset 2 (partial ρ =.546, p <.001) and remained non-significant in Dataset
517 3 (partial ρ =.092, p =.544). The retrained visual network significantly predicted auditory sustained
518 attention performance in both Dataset 2 (partial ρ =.379, p =.012) and Dataset 3 (partial ρ =.494,
519 p <.001). The strength of prediction, i.e., partial ρ values, were reduced in three of these cross-modal
520 generalizations, suggesting that shared variance at least partially contributed to the generalizability of
521 sustained attention networks. However, models' ability to significantly generalize across task modality
522 after controlling for the shared variance in task performance suggests that these models do not rely only
523 on this supramodal variance.

524

525

526 *Unique features underlie auditory and visual networks*

527 Is successful cross-modal prediction a result of shared network edges between visual and auditory
528 networks? If CPM identified a largely overlapping set of edges related to performance on both visual and
529 auditory tasks, it should follow that predictions would not be modality-specific. However, if auditory and

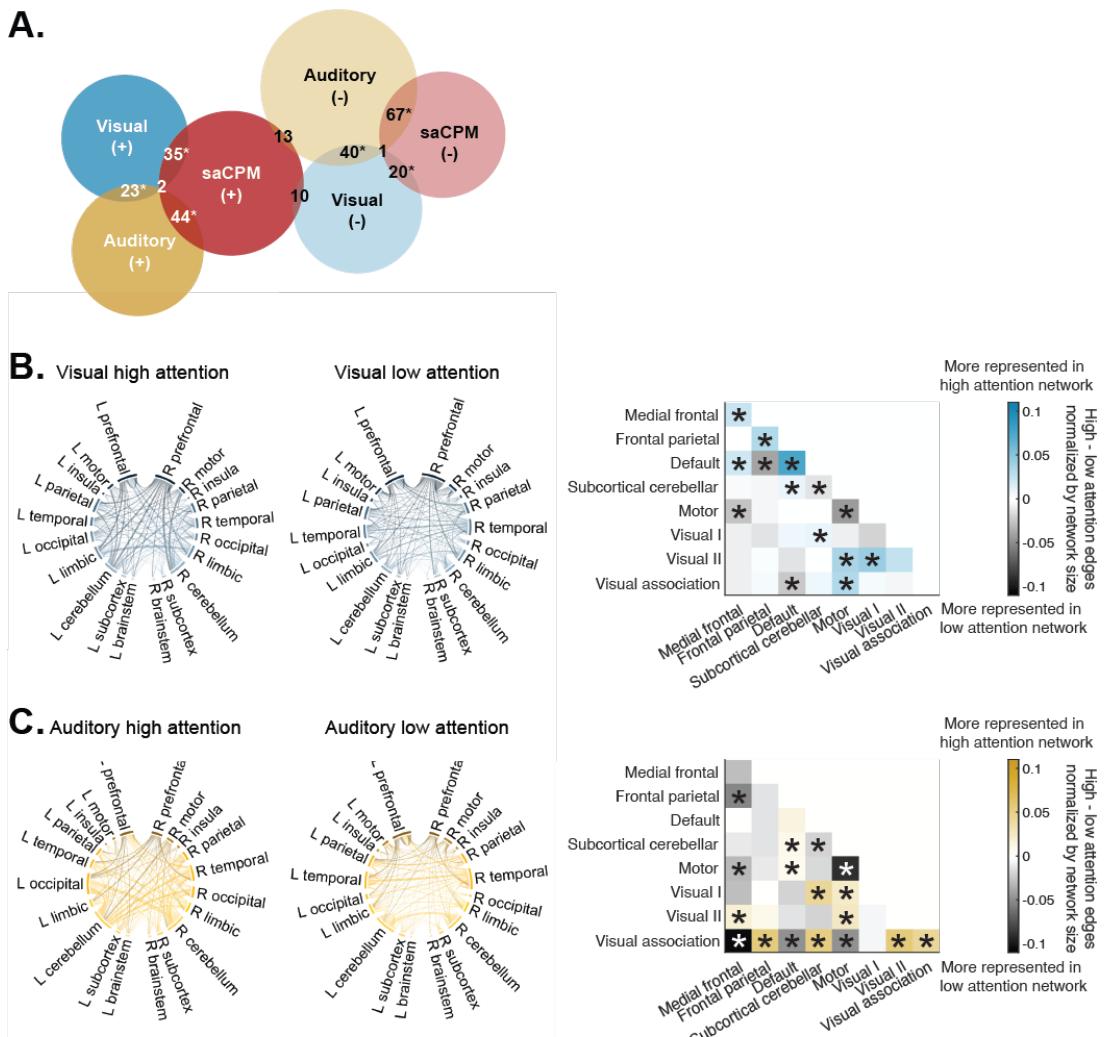
530 visual networks are independent, generalization across modalities might suggest that sustained attention
531 performance can be captured by a diverse set of features.

532 The visual network consisted of 581 positive (high attention) edges and 659 negative (low
533 attention) edges. In the auditory network, 626 edges were positively related to auditory sustained attention
534 performance and 970 edges were negatively related to auditory sustained attention performance.
535 Edgewise contributions to individual networks are grouped into lobe and canonical network groupings
536 (Finn et al., 2015) and visualized in **Figure 3**.

537 Within-network connections in the medial frontal, frontal parietal, and default mode networks
538 contributed to the visual high-attention network (**Figure 3B**). Connections between the motor network
539 and the visual II, and visual association networks also contributed to the high-attention network, as well
540 as connections between the default mode and medial frontal and subcortical-cerebellar networks. Within-
541 network edges in the motor and subcortical-cerebellar networks contributed to the visual low-attention
542 network. Connections between the default mode and frontal parietal and visual association networks were
543 also stronger in the visual low-attention network, as well as connections between motor and medial
544 frontal networks.

545 Connections within the visual association network, as well as connections between the visual
546 association and frontal parietal, subcortical-cerebellar, and visual II networks were represented in the
547 auditory high-attention network (**Figure 3C**). Edges shared between motor networks and visual I, visual
548 II, and default mode networks were also represented in the auditory high-attention network. Connections
549 between the subcortical-cerebellar network and visual I and default mode networks contributed
550 significantly to the auditory high-attention network, as well as connections between the medial frontal and
551 visual II networks. Conversely, connections between the visual association network and medial frontal,
552 default mode, and motor networks were strongly represented in the auditory low-attention network.
553 Connections between the medial frontal network and frontal parietal and motor networks were also found
554 more strongly in the auditory low-attention network. Finally, connections within the subcortical-
555 cerebellar networks and motor networks contributed to the auditory low-attention network.

556 Overlap between visual and auditory networks was significant for both high-attention (25 edges,
557 $p < .001$) and low-attention networks (41 edges; $p < .001$; **Figure 3A**). Networks also overlapped with the
558 predefined *saCPM*. Auditory networks significantly overlapped with the *saCPM*, sharing 46 high-
559 attention ($p < .001$) and 68 low-attention edges ($p < .001$). The visual network also significantly overlapped
560 with the *saCPM*, sharing 37 high- ($p < .001$) and 21 low-attention edges ($p = 3.52 \times 10^{-3}$). Network overlap in
561 unexpected directions was non-significant in all cases (all $p > .826$; **Figure 3A**).
562



563
564
565
566
567
568
569
570
571
572
573
574
575

Figure 3. (A) Networks constructed using connectome-based predictive modeling identified shared edges relevant for brain-behavior predictions in both high (+) and low (-) attention networks. Not all overlap between could be visualized in the Venn diagram but is described fully in the text. Stars reflect $p < .01$. Contributions to network structure grouped by lobe and canonical network differed between (B) visual and (C) auditory networks. Matrices visualize the relative contribution of canonical network edges to high- and low-attention networks. Colors represent the difference between the number of edges in the high and low predictive networks, divided by network size. Stars in the matrix reflect significant contribution to high- or low-attention networks; $p < .05$, uncorrected. Significance was determined by shuffling high- and low-attention networks and recalculating the contribution of edges to each network 1000 times.

576 *Predictions from non-overlapping features generalize across modality*

577 Does removing overlapping edges from visual and auditory networks induce modality
578 specificity? It is possible that the generalizability of networks across modality is driven by the subset of
579 shared edges between networks. To ask this, we tested whether edges that were unique to the auditory or

580 visual network—e.g., edges that positively predicted auditory performance but did not predict visual
581 performance—generalized in a modality-specific manner.

582 Predictions of visual sustained attention performance from visual-unique model edges were
583 significant in Dataset 2 (partial ρ =.326, p =.031) and positive but non-significant in Dataset 3 (partial
584 ρ =.277, p =.063). Edges specific to the visual network remained generalizable across perceptual
585 modality such that they predicted auditory sustained attention performance in both Dataset 2 (partial
586 ρ =.466, p = $1.64*10^{-3}$) and Dataset 3 (partial ρ =.582, p <.001). We observed no evidence for better
587 prediction for visual sustained attention from a model trained on a visual sustained attention task, even
588 after removing modality-general features ($p_2=.805$; $p_3=.365$).

589 Auditory-unique edges significantly predicted auditory sustained attention performance in both
590 Dataset 2 (partial ρ =.371, p =.014) and Dataset 3 (partial ρ =.537, p <.001). For visual performance, the
591 auditory-unique network predictions were significant in Dataset 2 (partial ρ =.511, p <.001) and positive
592 but not significant in Dataset 3 (partial ρ =.212, p =.158). Again, there was no evidence for modality
593 specificity in predictions from auditory-only network edges ($p_2=.783$; $p_3=.606$). Therefore, predictions
594 from non-overlapping edges did not result in modality-specific generalization. Instead, even network
595 edges unique to a network trained on one modality captured sustained attention ability in another
596 modality.

597

598 *Overlapping features are sufficient for prediction*

599 Within-network edges in the default mode network, as well as edges shared between the default
600 mode and medial frontal networks contributed to the overlapping high-attention network (**Figure 4A**).
601 Additionally, connections shared by the frontal parietal and visual II networks, as well as connections
602 shared between the visual association and subcortical-cerebellar networks were strongly represented in
603 the overlapping high-attention network. This suggests that stronger connections between these networks
604 are associated with higher modality-general sustained attention performance. Conversely, within-network
605 edges in the visual association, subcortical-cerebellar, and motor networks contributed strongly to the
606 overlapping low attention network. These results suggest that strong with-network connectivity in these
607 networks is associated with worse sustained attention.

608 We wondered whether the edges shared by both visual and auditory networks defined in Dataset
609 1 were sufficient to predict visual and auditory sustained attention performance in independent datasets.
610 To ask this, we tested whether strength in the edges shared by high visual and auditory attention networks
611 (25 edges) and low visual and auditory attention networks (41 edges) was related to observed behavioral
612 performance. Results are visualized in **Figure 4B-C**.

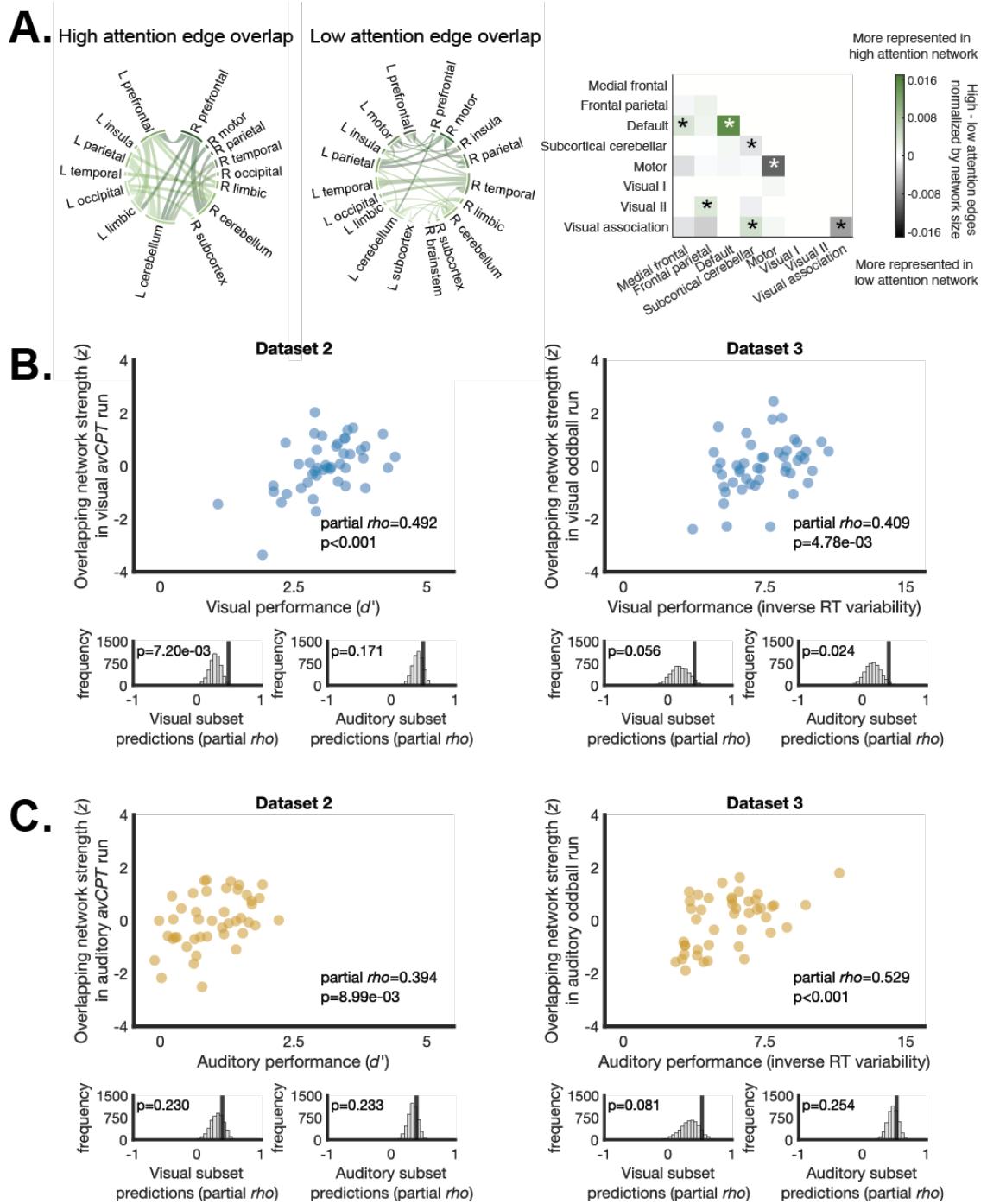
613 We observed robust prediction from these overlapping edges such that network strength in this
614 subset of edges significantly predicted visual performance in Dataset 2 (partial ρ =.492, p <.001) and
615 Dataset 3 (partial ρ =.409, p = $4.78*10^{-3}$), as well as auditory sustained attention performance in Dataset 2
616 (partial ρ =.394, p = $8.99*10^{-3}$) and Dataset 3 (partial ρ =.529, p <.001). Therefore, while the number of
617 shared network features was small between visual and auditory networks, these shared features were
618 sufficient for generalizable prediction of sustained attention performance.

619 Is prediction from a small set of edges specific to the shared edges between visual and auditory
620 networks? To ask this question, we compared the predictive performance from overlapping edges to
621 predictions from equal-sized subsets of visual or auditory network edges. 5000 random subsets were
622 drawn from either the visual or auditory network and network strength from these subsets was related to

623 observed performance. Distributions of partial *rho* values from edge subsets were created for visual and
624 auditory networks separately.

625 In visual runs, edges that overlapped between the visual and auditory networks outperformed
626 visual sustained attention performance prediction from other edge subsets of the same size drawn from
627 the visual network in Dataset 2 ($p=7.20*10^{-3}$) but did not significantly outperform visual network edge
628 subsets in Dataset 3 ($p=.056$). Predictions for visual sustained attention performance from overlapping
629 edges did not outperform edge subsets drawn from the auditory network in Dataset 2 ($p=.171$) but overlap
630 predictions did outperform auditory subset predictions and Dataset 3 ($p=.024$). This suggests that
631 overlapping visual and auditory predictive edges may carry unique predictive ability related to visual
632 sustained attention performance. When predicting auditory sustained attention performance, predictions
633 from overlapping edges were not better than predictions from edge subsets drawn from either the visual
634 ($p_2=.230$; $p_3=.081$) or the auditory network ($p_2=.233$; $p_3=.254$). Therefore, reliable edges provided specific
635 predictive boost in visual runs only.

636



637

638 *Figure 4.* (A) Edges shared by both auditory and visual models trained on Dataset 1 are visualized by
 639 lobe. The matrix depicts relative contribution to high and low overlapping predictive networks, grouped
 640 into 8 canonical networks. Significance stars on the matrix reflect greater representation of network edges
 641 than chance; $p < .05$, uncorrected. Significance was determined by shuffling network edges 1000 times and
 642 recalculating relative contribution to high- and low-attention networks. Network strength in edges shared
 643 by the auditory and visual networks predicts (B) visual and (C) auditory sustained attention performance
 644 in independent datasets. Histograms beneath each plot depict the extent to which prediction from network

645 strength in the overlapping edges outperforms predictions from equally-sized subsets of edges drawn
646 from either the visual or auditory networks alone (5000 permutations).

647

648

649

650 Discussion

651

652 Prior predictions from connectome-based models of sustained attention may have been more
653 limited than previously thought if they were driven by visual task performance specifically. Here, we
654 tested the extent to which functional networks of sustained attention are modality-specific, with two likely
655 outcomes. First, functional networks or a subset of functional networks may have predicted sustained
656 attention in a modality-specific manner, generalizing better to tasks performed in the same perceptual
657 modality as training. Alternatively, functional networks may not show modality-specificity and predict
658 sustained attention performance for tasks performed in different modalities similarly. Results show
659 evidence for the latter, demonstrating wide-spread cross-modality generalization even when predictive
660 model features are largely unique. This suggests that sustained attention performance can be captured by
661 distributed, supramodal connections in the brain. Further, we demonstrate that both shared and unique
662 edges in visual and auditory networks predict sustained attention performance across modality, showing
663 that both reliable (overlapping) and unreliable (unique) model features can capture relevant brain-
664 behavior relationships.

665 Work investigating brain-behavior relationships emphasizes that testing model generalizability,
666 and in particular generalizability to external datasets, is the gold standard for the construction of accurate
667 predictive models (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost et al., 2019). Connectome-
668 based predictive models have previously demonstrated robust generalizability to predict relevant
669 cognitive phenotypes across independent samples (Avery et al., 2020; Fountain-Zaragoza et al., 2019;
670 Gao et al., 2020; Kardan et al., 2022; Rosenberg et al., 2016a, 2018, 2020). Therefore, CPM meets this
671 high benchmark for model validity and holds promise for identifying robust and interpretable predictors
672 of cognitive variation.

673 Here, we test whether CPM-derived functional networks capture variability in sustained attention
674 performance across participants in three independent datasets. All three datasets included fMRI tasks
675 which required sustained attention to stimuli presented either in the visual or auditory domain. However,
676 tasks differed across datasets in several ways, including frequency of responding, selection demands, and
677 inhibitory control. Therefore, successful prediction of performance in these datasets suggests that
678 functional networks successfully capture a signal of sustained attention which is general across all three
679 task contexts rather than a distinct process idiosyncratic to a subset.

680 We first validate that a network of sustained attention previously defined using a CPM approach,
681 the *saCPM*, generalizes to predict sustained attention performance in these datasets. Previous work has
682 demonstrated that the *saCPM* captures patterns of connectivity related to attention by predicting out-of-
683 sample performance on multiple attention tasks (Fountain-Zaragoza et al., 2019; Kardan et al., 2022;
684 Rosenberg et al., 2018, 2020; Yoo et al., 2022) as well as ADHD symptomatology (Rosenberg et al.,
685 2016a) and variability in narrative engagement within individuals (Song & Rosenberg, 2021). A previous
686 study also found that network strength in the *saCPM* during rest predicted performance on an auditory
687 sustained attention task (Wu et al., 2020). Our results show that the *saCPM* also generalizes to predict
688 sustained attention across perceptual modalities from task connectivity, demonstrating that it captures

689 domain-general signatures of attentional ability. Whereas previous work speculated that selective
690 generalization of the *saCPM* to audiovisual movie engagement, but not audio-only story engagement, was
691 due to modality-specificity of the model (Song & Rosenberg, 2021), our results find no modality bias
692 when predicting individual differences in visual and auditory sustained attention. Rather, the differences
693 in prediction observed in previous work may instead reflect other differences between stimuli, for
694 example in the overall engagement with the narratives.

695 We further show that models trained on sustained attention tasks performed in separate visual and
696 auditory modalities generalize to predict sustained attention performance both in external datasets and
697 when tasks were performed in a different perceptual modality than in training. This suggests that
698 connectome-based predictive modeling identifies edges that capture variability in sustained attention
699 performance that is not specific to the perceptual modality of the task. These results support previous
700 findings that the ability to sustain attention to visual and auditory information relies to some extent on
701 shared neural mechanisms. We used a CPM approach to identify a subset of edges that significantly
702 predicted both auditory and visual sustained attention performance across individuals in a dataset. This
703 subset of edges predicted both visual and auditory sustained attention performance in independent
704 datasets. Therefore, this overlapping network of edges provides one mechanism that may support a
705 modality-general ability to sustain attention over time.

706 Importantly, we show that successful generalization across modalities is not simply a
707 mathematical inevitability due to correlations between sustained attention performance across modalities.
708 While performance was reliable across participants regardless of task modality, generalization across
709 modality persisted after controlling for performance in the other task modality during both model training
710 and model testing. Therefore, predictive edges identified by CPM were able to capture relevant variance
711 in sustained attention beyond consistency in performance.

712 Intriguingly, we observed significant prediction both from overlapping visual and auditory edges
713 as well as modality-specific edges identified using a CPM approach. Therefore, feature reliability, or the
714 identification of the same model features across training sets, was not necessary for successful
715 generalization. These results highlight a distinction between model feature reliability and the ability to
716 predict behavioral phenotypes in an external sample. Previous work has noted this difference,
717 demonstrating that predictive accuracy is not necessarily a result of reliable features (Kragel et al., 2021;
718 Noble et al., 2017; Tian and Zalesky, 2021, although see Chen et al., 2022). Researchers have suggested
719 that a lack of reliability may be a function of the scale at which features are identified, leading to high
720 numbers of model features (Srivastava et al., 2022; Tian & Zalesky, 2021). Here, model features were
721 identified from whole-brain patterns of functional connectivity, consisting of >35,000 pairwise
722 connections between regions. Therefore, it is difficult to determine whether the failure of an edge to be
723 significantly related to performance in both visual and auditory networks is the result of the modality-
724 specificity of the edges or a result of the relatively small scale at which features were identified. As a
725 result, edges identified only in one training set may capture modality-general sustained attention, leading
726 to the significant prediction across modalities observed in the current study.

727 Individual edge contributions to auditory and visual networks from canonical functional networks
728 varied. We found that connectivity within the default mode network was represented in the auditory high-
729 attention and overlapping high-attention networks but did not significantly contribute to visual predictive
730 networks. Much previous work has related relative increases in default mode network activation with in-
731 the-zone attentional states (Esterman et al., 2013, 2014; Jones et al., 2024; Kucyi et al., 2016, 2017;
732 Fortenbaugh et al., 2018; Song et al., 2022), although changes in activity are not functionally equivalent

733 to changes in connectivity. Past work has shown links between greater within-default mode network
734 connectivity and higher attention (Gordon et al., 2012; Kucyi & Davis, 2014). Further, attention-related
735 disorders are characterized by decreased connectivity within the default mode network (Castellanos et al.,
736 2008; Fair et al., 2010). However, other work has found an inverse or no relationship (Kucyi et al., 2017;
737 Mittner et al. 2014; Esterman et al., 2013), suggesting associations of within-network connectivity of the
738 default mode network with sustained attention are complex. The current findings suggest that stronger
739 within-default mode network connections are associated with higher modality-general sustained attention
740 performance.

741 We observed a large contribution of within-network edges from the subcortical-cerebellar and
742 motor networks to visual and auditory low-attention networks, as well as the overlapping low-attention
743 network. This is in line with previous work which has implicated greater within-subcortical-cerebellar
744 connectivity in lower sustained attention performance (Fong et al., 2019; Jones et al., 2024; Rosenberg et
745 al., 2016a). Increased within-motor connectivity has similarly been related to poor sustained attention in
746 adolescents, whereas connections between motor and visual regions are increased with better sustained
747 attention (O'Halloran et al., 2018). We observed a similar pattern of results, with connectivity between
748 motor and visual II networks contributing to visual and auditory high-attention networks. We do not see a
749 significant contribution of motor to visual II connectivity to the overlapping high-attention network,
750 suggesting the individual edges may differ between visual and auditory networks. Since the *gradCPT*
751 used to train networks in the current study requires a motor (button press) response, it is possible that
752 connections within and between the motor network are more strongly represented in these networks than
753 would be expected if a different sustained attention task were used for network training. Future work may
754 seek to test the extent to which task demands influence network architecture.

755 We should also note a few limitations of the current study. First, our analyses utilized a
756 connectome-based predictive modeling approach which sought to identify connections between brain
757 regions whose strength captured variability in modality unique or modality general sustained attention.
758 However, it is likely that functional relationships in the brain, beyond those at the edge level, may differ
759 between task-modality. While outside the scope of the current manuscript, future work may aim to more
760 fully characterize functional differences between task, for example, at the level of graph-theoretic
761 differences between whole-brain connectivity patterns. An additional limitation is the precision of the
762 current predicted sustained attention performance values. Significant correlations between predicted and
763 observed sustained attention performance suggest that our sustained attention networks capture reliable
764 differences in performance and are therefore useful in understanding neural mechanisms involved in
765 sustained attention. However, the current models leave much variance unexplained, which may result
766 from a number of individual, task, and dataset differences. Work aimed at precise predictions of sustained
767 attention performance may choose to include additional variables in predictive models that better-capture
768 this remaining variability.

769 While the current analyses focused on the generalization of sustained attention networks, a
770 similar question could be asked of predictive networks trained on any cognitive process that can be
771 performed in separate perceptual modalities. For example, it is an open question whether a network
772 trained to predict visual recognition memory across participants would also generalize to predict auditory
773 recognition memory, which is reliably worse (Cohen et al., 2009). Future work testing the validity of
774 brain-based models of cognition should aim to test model generalizability across perceptual modalities to
775 evaluate the extent to which a cognitive process is fully captured by a given model.

776 Our results demonstrate that functional connectivity-based networks of sustained attention are not
777 specific to the perceptual modality of training, suggesting that these networks capture domain- and
778 modality-general aspects of attention. Both non-overlapping and overlapping, modality-general edges
779 predicted cross-modal sustained attention performance in independent datasets, thereby providing one
780 mechanism by which modality-general sustained attention ability may be supported. These results
781 highlight that the ability to sustain attention to information over time relies on distributed, modality-
782 general connections in the brain and demonstrate the potential for highly-generalizable predictive models
783 constructed from functional connectivity features.

784

785

786 **Funding**

787

788 This research was supported by the National Science Foundation BCS-2043740 to M.D.R., the Japan
789 Society for the Promotion of Science KAKENHI grants 20H01789 and 22K18659 to H.M.K., and
790 resources provided by the University of Chicago Research Computing Center.

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820
821
822

823 References

824 *Auditory and Visual Oddball EEG-fMRI - OpenNeuro*. (n.d.). Retrieved March 26, 2024, from
825 <https://openneuro.org/datasets/ds000116/versions/00003>

826 Avery, E. W., Yoo, K., Rosenberg, M. D., Greene, A. S., Gao, S., Na, D. L., Scheinost, D., Constable, T. R., &
827 Chun, M. M. (2020). Distributed Patterns of Functional Connectivity Predict Working Memory Performance
828 in Novel Healthy and Memory-impaired Individuals. *Journal of Cognitive Neuroscience*, 32(2), 241–255.
829 https://doi.org/10.1162/jocn_a_01487

830 Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., Shaw, D., Shehzad, Z., Di
831 Martino, A., Biswal, B., Sonuga-Barke, E. J. S., Rotrosen, J., Adler, L. A., & Milham, M. P. (2008).
832 Cingulate-Precuneus Interactions: A New Locus of Dysfunction in Adult Attention-Deficit/Hyperactivity
833 Disorder. *Biological Psychiatry*, 63(3), 332–337. <https://doi.org/10.1016/j.biopsych.2007.06.025>

834 Chen, J., Ooi, L. Q. R., Tan, T. W. K., Zhang, S., Li, J., Asplund, C. L., Eickhoff, S. B., Bzdok, D., Holmes, A. J., &
835 Yeo, B. T. T. (2023). Relationship between prediction accuracy and feature importance reliability: An
836 empirical and theoretical study. *NeuroImage*, 274, 120115. <https://doi.org/10.1016/j.neuroimage.2023.120115>

837 Chidharom, M., & Carlisle, N. B. (2023). Neurophysiological Measures of Proactive and Reactive Control in
838 Negative Template Use. *Journal of Cognitive Neuroscience*, 35(7), 1063–1074.
839 https://doi.org/10.1162/jocn_a_01996

840 Cohen, M. A., Horowitz, T. S., & Wolfe, J. M. (2009). Auditory recognition memory is inferior to visual recognition
841 memory. *Proceedings of the National Academy of Sciences*, 106(14), 6008–6010.
842 <https://doi.org/10.1073/pnas.0811884106>

843 Corriveau, A., Jr, A. R. J., deBettencourt, M. T., & Rosenberg, M. D. (2024). *Sustained attentional state is a
844 floodlight not a spotlight*. <https://doi.org/10.31234/osf.io/k9cnm>

845 Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
846 *Computers and Biomedical Research, an International Journal*, 29(3), 162–173.
847 <https://doi.org/10.1006/cbmr.1996.0014>

848 Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the Zone or Zoning Out? Tracking
849 Behavioral and Neural Fluctuations During Sustained Attention. *Cerebral Cortex*, 23(11), 2712–2723.
850 <https://doi.org/10.1093/cercor/bhs261>

851 Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014). Intrinsic Fluctuations in Sustained Attention and
852 Distractor Processing. *Journal of Neuroscience*, 34(5), 1724–1730. <https://doi.org/10.1523/JNEUROSCI.2658-13.2014>

853 Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R.
854 T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity.
855 *Nature Neuroscience*, 18(11), 1664–1671. <https://doi.org/10.1038/nn.4135>

856 Fong, A. H. C., Yoo, K., Rosenberg, M. D., Zhang, S., Li, C.-S. R., Scheinost, D., Constable, R. T., & Chun, M. M.
857 (2019). Dynamic functional connectivity during task performance and rest predicts individual differences in
858 attention across studies. *NeuroImage*, 188, 14–25. <https://doi.org/10.1016/j.neuroimage.2018.11.057>

859 Fortenbaugh, F. C., Rothlein, D., McGlinchey, R., DeGutis, J., & Esterman, M. (2018). Tracking behavioral and
860 neural fluctuations during sustained attention: A robust replication and extension. *NeuroImage*, 171, 148–164.
861 <https://doi.org/10.1016/j.neuroimage.2018.01.002>

862 Fountain-Zaragoza, S., Samimy, S., Rosenberg, M. D., & Prakash, R. S. (2019). Connectome-based models predict
863 attentional control in aging adults. *NeuroImage*, 186, 1–13. <https://doi.org/10.1016/j.neuroimage.2018.10.074>

864 Gao, M., Wong, C. H. Y., Huang, H., Shao, R., Huang, R., Chan, C. C. H., & Lee, T. M. C. (2020). Connectome-
865 based models can predict processing speed in older adults. *NeuroImage*, 223, 117290.
866 <https://doi.org/10.1016/j.neuroimage.2020.117290>

867 García-Pérez, M. A. (2023). Use and misuse of corrections for multiple testing. *Methods in Psychology*, 8, 100120.
868 <https://doi.org/10.1016/j.metip.2023.100120>

869 Gordon, E. M., Breeden, A. L., Bean, S. E., & Vaidya, C. J. (2014). Working memory-related changes in functional
870 connectivity persist beyond task disengagement. *Human Brain Mapping*, 35(3), 1004–1017.
871 <https://doi.org/10.1002/hbm.22230>

872

873 Jones, H. M., Yoo, K., Chun, M. M., & Rosenberg, M. D. (2024). Edge-based general linear models capture
874 moment-to-moment fluctuations in attention. *Journal of Neuroscience*.
875 <https://doi.org/10.1523/JNEUROSCI.1543-23.2024>

876 Karamacoska, D., Barry, R. J., & Steiner, G. Z. (2018). Electrophysiological underpinnings of response variability
877 in the Go/NoGo task. *International Journal of Psychophysiology*, 134, 159–167.
878 <https://doi.org/10.1016/j.ijpsycho.2018.09.008>

879 Kardan, O., Stier, A. J., Cardenas-Iniguez, C., Schertz, K. E., Pruin, J. C., Deng, Y., Chamberlain, T., Meredith, W.
880 J., Zhang, X., Bowman, J. E., Lakhtakia, T., Tindel, L., Avery, E. W., Lin, Q., Yoo, K., Chun, M. M., Berman,
881 M. G., & Rosenberg, M. D. (2022). Differences in the functional brain architecture of sustained attention and
882 working memory in youth and adults. *PLOS Biology*, 20(12), e3001938.
883 <https://doi.org/10.1371/journal.pbio.3001938>

884 Katayama, J., & Polich, J. (1999). Auditory and visual P300 topography from a 3 stimulus paradigm. *Clinical
885 Neurophysiology*, 110(3), 463–468. [https://doi.org/10.1016/S1388-2457\(98\)00035-2](https://doi.org/10.1016/S1388-2457(98)00035-2)

886 Kim, H. (2014). Involvement of the dorsal and ventral attention networks in oddball stimulus processing: A meta-
887 analysis. *Human Brain Mapping*, 35(5), 2265–2284. <https://doi.org/10.1002/hbm.22326>

888 Kondo, H. M., Terashima, H., Ezaki, T., Kochiyama, T., Kihara, K., & Kawahara, J. I. (2022). Dynamic Transitions
889 Between Brain States Predict Auditory Attentional Fluctuations. *Frontiers in Neuroscience*, 16, 816735.
890 <https://www.frontiersin.org/articles/10.3389/fnins.2022.816735>

891 Kondo, H. M., Terashima, H., Kihara, K., Kochiyama, T., Shimada, Y., & Kawahara, J. I. (2023). Prefrontal GABA
892 and glutamate-glutamine levels affect sustained attention. *Cerebral Cortex*, 33, 10441–10452. DOI:
893 [10.1093/cercor/bhad294](https://doi.org/10.1093/cercor/bhad294)

894 Kragel, P. A., Han, X., Kraynak, T. E., Gianaros, P. J., & Wager, T. D. (2021). Functional MRI Can Be Highly
895 Reliable, but It Depends on What You Measure: A Commentary on Elliott et al. (2020). *Psychological
896 Science*, 32(4), 622–626. <https://doi.org/10.1177/0956797621989730>

897 Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks
898 daydreaming. *NeuroImage*, 100, 471–480. <https://doi.org/10.1016/j.neuroimage.2014.06.044>

899 Kucyi, A., Esterman, M., Riley, C. S., & Valera, E. M. (2016). Spontaneous default network activity reflects
900 behavioral variability independent of mind-wandering. *PNAS Proceedings of the National Academy of
901 Sciences of the United States of America*, 113(48), 13899–13904. <https://doi.org/10.1073/pnas.1611743113>

902 Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic Brain Network
903 Correlates of Spontaneous Fluctuations in Attention. *Cerebral Cortex*, 27(3), 1831–1840.
904 <https://doi.org/10.1093/cercor/bhw029>

905 Langner, R., & Eickhoff, S. B. (2013). Sustaining Attention to Simple Tasks: A Meta-Analytic Review of the Neural
906 Mechanisms of Vigilant Attention. *Psychological Bulletin*, 139(4), 870–900. <https://doi.org/10.1037/a0030694>

907 Linden, D. E. J., Prvulovic, D., Formisano, E., Völlinger, M., Zanella, F. E., Goebel, R., & Dierks, T. (1999). The
908 Functional Neuroanatomy of Target Detection: An fMRI Study of Visual and Auditory Oddball Tasks.
909 *Cerebral Cortex*, 9(8), 815–823. <https://doi.org/10.1093/cercor/9.8.815>

910 Mackworth, N. H. (1948). The Breakdown of Vigilance during Prolonged Visual Search. *Quarterly Journal of
911 Experimental Psychology*, 1(1), 6–21. <https://doi.org/10.1080/17470214808416738>

912 Mittner, M., Boekel, W., Tucker, A. M., Turner, B. M., Heathcote, A., & Forstmann, B. U. (2014). When the Brain
913 Takes a Break: A Model-Based Analysis of Mind Wandering. *Journal of Neuroscience*, 34(49), 16286–16295.
914 <https://doi.org/10.1523/JNEUROSCI.2062-14.2014>

915 O'Halloran, L., Cao, Z., Ruddy, K., Jollans, L., Albaugh, M. D., Aleni, A., Potter, A. S., Vahey, N., Banaschewski,
916 T., Hohmann, S., Bokde, A. L. W., Bromberg, U., Büchel, C., Quinlan, E. B., Desrivières, S., Flor, H., Frouin,
917 V., Gowland, P., Heinz, A., ... Whelan, R. (2018). Neural circuitry underlying sustained attention in healthy
918 adolescents and in ADHD symptomatology. *NeuroImage*, 169, 395–406.
919 <https://doi.org/10.1016/j.neuroimage.2017.12.030>

920 Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction:
921 A Review. *JAMA Psychiatry*, 77(5), 534–540. <https://doi.org/10.1001/jamapsychiatry.2019.3671>

922 Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). 'Oops!': Performance correlates of
923 everyday attentional failures in traumatic brain injured and normal subjects. *Neuropsychologia*, 35(6), 747–
924 758. [https://doi.org/10.1016/S0028-3932\(97\)00015-8](https://doi.org/10.1016/S0028-3932(97)00015-8)

925 Rosenberg, M. D., & Finn, E. S. (2022). How to establish robust brain–behavior relationships without thousands of
926 individuals. *Nature Neuroscience*, 25(7), 835–837. <https://doi.org/10.1038/s41593-022-01110-9>

927 Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T., & Chun, M. M. (2016).
928 A neuromarker of sustained attention from whole-brain functional connectivity. *Nature Neuroscience*, 19(1),
929 165–171. <https://doi.org/10.1038/nn.4179>

930 Rosenberg, M. D., Zhang, S., Hsu, W.-T., Scheinost, D., Finn, E. S., Shen, X., Constable, R. T., Li, C.-S. R., &
931 Chun, M. M. (2016). Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.
932 *Journal of Neuroscience*, 36(37), 9547–9557. <https://doi.org/10.1523/JNEUROSCI.1746-16.2016>

933 Rosenberg, M. D., Hsu, W.-T., Scheinost, D., Todd Constable, R., & Chun, M. M. (2018). Connectome-based
934 Models Predict Separable Components of Attention in Novel Individuals. *Journal of Cognitive Neuroscience*,
935 30(2), 160–173. https://doi.org/10.1162/jocn_a_01197

936 Rosenberg, M. D., Scheinost, D., Greene, A. S., Avery, E. W., Kwon, Y. H., Finn, E. S., Ramani, R., Qiu, M.,
937 Constable, R. T., & Chun, M. M. (2020). Functional connectivity predicts changes in attention observed across
938 minutes, days, and months. *Proceedings of the National Academy of Sciences of the United States of America*,
939 117(7), 3797–3807. <https://doi.org/10.1073/pnas.1912226117>

940 Rosenberg, M., Noonan, S., DeGutis, J., & Esterman, M. (2013). Sustaining visual attention in the face of
941 distraction: A novel gradual-onset continuous performance task. *Attention, Perception, & Psychophysics*,
942 75(3), 426–439. <https://doi.org/10.3758/s13414-012-0413-x>

943 Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. MR., Salehi, M., Gao, S., Shen, X., O'Connor, D.,
944 Barron, D. S., Yip, S. W., Rosenberg, M. D., & Constable, R. T. (2019). Ten simple rules for predictive
945 modeling of individual differences in neuroimaging. *NeuroImage*, 193, 35–45.
946 <https://doi.org/10.1016/j.neuroimage.2019.02.057>

947 Seli, P., Cheyne, J. A., Barton, K. R., & Smilek, D. (2012). Consistency of sustained attention across modalities:
948 Comparing visual and auditory versions of the SART. *Canadian Journal of Experimental Psychology/Revue
949 Canadienne de Psychologie Expérimentale*, 66(1), 44–50. <https://doi.org/10.1037/a0025111>

950 Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017).
951 Using connectome-based predictive modeling to predict individual behavior from brain connectivity. *Nature
952 Protocols*, 12(3), Article 3. <https://doi.org/10.1038/nprot.2016.178>

953 Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from
954 resting-state fMRI data for network node identification. *NeuroImage*, 82, 403–415.
955 <https://doi.org/10.1016/j.neuroimage.2013.05.081>

956 Smith, D. V., Davis, B., Niu, K., Healy, E. W., Bonilha, L., Fridriksson, J., Morgan, P. S., & Rorden, C. (2010).
957 Spatial Attention Evokes Similar Activation Patterns for Visual and Auditory Stimuli. *Journal of Cognitive
958 Neuroscience*, 22(2), 347–361. <https://doi.org/10.1162/jocn.2009.21241>

959 Song, H., Shim, W. M., & Rosenberg, M. D. (2023). Large-scale neural dynamics in a shared low-dimensional state
960 space reflect cognitive and attentional dynamics. *eLife*, 12, e85487. <https://doi.org/10.7554/eLife.85487>

961 Srivastava, P., Fotiadis, P., Parkes, L., & Bassett, D. S. (2022). The expanding horizons of network neuroscience:
962 From description to prediction and control. *NeuroImage*, 258, 119250.
963 <https://doi.org/10.1016/j.neuroimage.2022.119250>

964 Stevens, A. A., Skudlarski, P., Gatenby, J. C., & Gore, J. C. (2000). Event-related fMRI of auditory and visual
965 oddball tasks. *Magnetic Resonance Imaging*, 18(5), 495–502. [https://doi.org/10.1016/S0730-725X\(00\)00128-4](https://doi.org/10.1016/S0730-725X(00)00128-4)

966 Tamm, L., Narad, M. E., Antonini, T. N., O'Brien, K. M., Hawk, L. W., & Epstein, J. N. (2012). Reaction Time
967 Variability in ADHD: A Review. *Neurotherapeutics*, 9(3), 500–508. <https://doi.org/10.1007/s13311-012-0138-5>

968 Terashima, H., Kihara, K., Kawahara, J. I., & Kondo, H. M. (2021). Common principles underlie the fluctuation of
969 auditory and visual sustained attention. *Quarterly Journal of Experimental Psychology*, 74(4), 705–715.
970 <https://doi.org/10.1177/1747021820972255>

971 Tian, Y., & Zalesky, A. (2021). Machine learning prediction of cognition from functional connectivity: Are feature
972 weights reliable? *NeuroImage*, 245, 118648. <https://doi.org/10.1016/j.neuroimage.2021.118648>

973 Walz, J. M., Goldman, R. I., Carapezza, M., Muraskin, J., Brown, T. R., & Sajda, P. (2013). Simultaneous EEG-
974 fMRI Reveals Temporal Evolution of Coupling between Supramodal Cortical Attention Networks and the
975 Brainstem. *Journal of Neuroscience*, 33(49), 19212–19222. <https://doi.org/10.1523/JNEUROSCI.2649-13.2013>

976 Wu, E. X. W., Liaw, G. J., Goh, R. Z., Chia, T. T. Y., Chee, A. M. J., Obama, T., Rosenberg, M. D., Yeo, B. T. T., &
977 Asplund, C. L. (2020). Overlapping attentional networks yield divergent behavioral predictions across tasks:
978 Neuromarkers for diffuse and focused attention? *NeuroImage*, 209, 116535.
979 <https://doi.org/10.1016/j.neuroimage.2020.116535>

980

981

982 Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). SUN database: Large-scale scene recognition
983 from abbey to zoo. *2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*,
984 3485–3492. <https://doi.org/10.1109/CVPR.2010.5539970>

985 Yoo, K., Rosenberg, M. D., Kwon, Y. H., Lin, Q., Avery, E. W., Sheinost, D., Constable, R. T., & Chun, M. M.
986 (2022). A brain-based general measure of attention. *Nature Human Behaviour*, 1–14.
987 <https://doi.org/10.1038/s41562-022-01301-1>

988