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Significance statement  28 
While previous work has demonstrated external validity of functional connectivity-based networks for the 29 
prediction of cognitive and attentional performance, testing generalization across visual and auditory 30 
perceptual modalities has been limited. The current study demonstrates robust prediction of sustained 31 
attention performance, regardless of perceptual modality models are trained or tested in. Results 32 
demonstrate that connectivity-based models may generalize broadly capturing variance in sustained 33 
attention performance which is agnostic to the perceptual modality of model training. 34 
 35 
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 46 
Abstract  47 

Sustained attention is essential for daily life and can be directed to information from different 48 
perceptual modalities including audition and vision. Recently, cognitive neuroscience has aimed to 49 
identify neural predictors of behavior that generalize across datasets. Prior work has shown strong 50 
generalization of models trained to predict individual differences in sustained attention performance from 51 
patterns of fMRI functional connectivity. However, it is an open question whether predictions of 52 
sustained attention are specific to the perceptual modality in which they are trained. In the current study 53 
we test whether connectome-based models predict performance on attention tasks performed in different 54 
modalities. We show first that a predefined network trained to predict adults’ visual sustained attention 55 
performance generalizes to predict auditory sustained attention performance in three independent datasets 56 
(N1=29, N2=60, N3=17). Next, we train new network models to predict performance on visual and 57 
auditory attention tasks separately. We find that functional networks are largely modality-general, with 58 
both model-unique and shared model features predicting sustained attention performance in independent 59 
datasets regardless of task modality. Results support the supposition that visual and auditory sustained 60 
attention rely on shared neural mechanisms and demonstrate robust generalizability of whole-brain 61 
functional network models of sustained attention. 62 

 63 
Introduction  64 
 65 
 The maintenance of attention to information over time is essential for daily activities such as 66 
driving to work or conversing with friends. Recent work in cognitive neuroscience has been aimed at 67 
identifying neural signatures of sustained attention ability with the goal of constructing models that 68 
generalize across people and datasets to predict individual differences in attention function. However, 69 
while sustained attention can be deployed to information from multiple perceptual (e.g., visual and 70 
auditory) modalities, it is an open question whether predictive models generalize across modality. For 71 
example, models trained to predict performance on visual sustained attention tasks may contain modality-72 
specific features and therefore fail to generalize or generalize poorly to capture auditory sustained 73 
attention performance. Alternatively, features may capture modality-general aspects of attention and 74 
generalize broadly. Here, we construct and test the generalizability of models trained to predict sustained 75 
attention to visual and auditory stimuli from functional connections. 76 
 Identifying brain-based markers of cognition is beneficial both for understanding associations 77 
between functional brain organization and behavior and for developing predictive models. Network 78 
neuroscience provides a framework for the identification of interpretable neural signatures of cognition 79 
(Srivastava et al., 2022). One method, connectome-based predictive modeling (CPM), identifies 80 
functional connections, or edges, between brain regions whose strength is reliably associated with 81 
phenotypes across individuals (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017). This method 82 
has identified edge networks that predict sustained attention within and across samples of individuals 83 
(Rosenberg et al., 2016a, 2020; Yoo et al., 2022).  84 

The utility of predictive models lies in their external validity, i.e., generalizability across 85 
independent datasets and contexts (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost et al., 2019). 86 
Successful generalizability across datasets ensures a model’s accuracy in the identification of relevant 87 
features as well as robustness to differences between samples. Predictive models of sustained attention 88 
constructed using CPM have demonstrated generalizability across datasets, as well as generalization to 89 
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other attention tasks and attention-related symptoms (Rosenberg et al., 2016a; 2018, 2020; Yoo et al., 90 
2022). Therefore, CPM successfully captures functional networks related to attention across contexts.  91 

Sustained attention is often measured using tasks that require continuous vigilance for the 92 
detection or discrimination of rare stimuli (Mackworth, 1948; Langner and Eickhoff, 2013). While much 93 
work has investigated sustained attention to visual stimuli, attention can be deployed to other perceptual 94 
modalities, such as audition. Previous work has shown that the ability to sustain attention to visual and 95 
auditory information is reliable within individuals, suggesting that these abilities rely on shared cognitive 96 
mechanisms (Corriveau et al., 2024; Seli et al., 2011; Terashima et al., 2021). Work using 97 
electroencephalography and fMRI data has identified neural substrates underlying detection of both visual 98 
and auditory rare targets (Katayama & Polich, 1999; Kondo et al., 2023; Kim, 2014; Linden et al., 1999; 99 
Stevens et al., 2000), further supporting a modality-general neural basis of sustained attention. However, 100 
recent work shows that neurometabolites are differentially related to auditory and visual sustained 101 
attention (Kondo et al., 2023). Further, selective attention to visual or auditory information elicits both 102 
supramodal and modality-specific neural activation patterns (Smith et al., 2010; Stevens et al., 2000), 103 
suggesting that attending these modalities relies on distinct neural mechanisms as well.  Therefore, the 104 
extent to which visual and auditory sustained attention networks are modality-specific may depend on the 105 
extent to which they rely on modality-specific neural mechanisms. 106 

Here, we test the extent to which predictions from functional networks of sustained attention are 107 
biased by the perceptual modality in which they are trained. We find that a network previously defined to 108 
predict visual sustained attention predicts performance across datasets and modalities. Further, we show 109 
that models trained on auditory and visual tasks are highly generalizable across perceptual modalities. 110 
Even after the removal of features identified by both visual and auditory networks, i.e., modality-general 111 
features, models successfully predict cross-modality sustained attention ability. These results demonstrate 112 
that sustained attention relies on distributed patterns of connectivity. Additionally, they suggest that 113 
distributed patterns may be different between perceptual modality but still capture generalizable variance 114 
in sustained attention ability across datasets and modalities. 115 
 116 

 117 
Methods 118 
 119 
Dataset 1 120 
 The first dataset analyzed was described in detail by Kondo et al. (2022; 2023). This study was 121 
reviewed and approved by the Research Ethics and Safety Committees of Chukyo University and ATR-122 
Promotions. Participants provided their written informed consent to participate in this study.  123 

Participants (N=29, ages 20-35) were healthy Japanese adults who completed an fMRI scan 124 
consisting of two visual runs and two auditory runs of a gradual onset continuous performance task 125 
(gradCPT; Esterman et al., 2013; Rosenberg et al., 2013; Terashima et al., 2021). Data were collected 126 
using a 3T Magnetom Prisma MRI scanner (Siemens, Munich, Germany). Task runs were 400 seconds in 127 
length. A multiband echo-planar imaging (EPI) sequence was used to collect 205 volumes per task run 128 
with a repetition time (TR) of 2 seconds. Voxels were 2mm x 2mm x 2mm. The first five volumes of each 129 
run were discarded for data analysis.  130 

The gradCPT was developed to measure sustained attention performance. In the task, stimuli 131 
gradually transition one into the next to avoid abrupt onsets. Visual runs of the gradCPT featured round, 132 
grayscale images of city (90%) and mountain (10%) scenes. Images transitioned from off to fully visible 133 
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over 1.6 seconds such that a stimulus reached maximum visibility every 1.6 s. Images faded from peak 134 
visibility to off as presentation of the next image began. Participants were instructed to press a button for 135 
each city scene and withhold a button press for mountain scenes.  136 

Stimuli for the auditory gradCPT were narrations from a foreign language database, excluding 137 
Japanese narrations to avoid presentation of a participant’s native language. Thus, participants used 138 
acoustic clues of the stimuli, rather than semantic clues, to judge the gender of voice streams. Narrations 139 
were performed by male (90%) and female (10%) voices and gradually transitioned from one to the next 140 
using sinusoidal ramps (Terashima et al., 2021) such that a voice reached maximum presentation every 141 
1.6 seconds. Participants were instructed to press a button for male voices and withhold a button press for 142 
female voices.  143 

Because stimuli faded from one to the next, key presses were assigned to trials in an iterative 144 
manner that first assigned unambiguous presses and then assigned more ambiguous ones. Unambiguous 145 
key presses occurring in a window from 70% presented to 40% disappeared were assigned to the current 146 
trial. Key presses that occurred outside the window were assigned to adjacent trials if no responses to 147 
those trials had been made. If no response was made to either adjacent trial, the key press was attributed 148 
to the closer trial. If either trial was an infrequent trial (mountain scene, female voice), the key press was 149 
assigned to the adjacent frequent trial. Sustained attention performance was quantified using a measure of 150 
sensitivity (d’) which is calculated as the normalized hit rate minus the normalized false alarm rate for 151 
each run.  152 
 153 
 154 
Dataset 2 155 
 The second dataset was collected at the MRI Research Center at the University of Chicago. Study 156 
procedures were approved by the Social and Behavioral Sciences Institutional Review Board at the 157 
University of Chicago. All participants provided their written informed consent prior to participation.  158 

Participants (N=60) participated in at least one session of a two-session fMRI study collected 159 
approximately one week apart (mean time between sessions=10.88 days, SD=9.87 days). During both 160 
sessions, participants performed a 10-minute audio-visual continuous performance task (avCPT; 161 
Corriveau et al., 2024). Functional MRI data were collected on a 3T Philips Ingenia scanner. Volumes 162 
were collected using a multiband sequence with a repetition time of 1 second. Three volumes were 163 
removed from the start of each scan. 164 
 During the avCPT, streams of trial-unique images and sounds were presented simultaneously. 165 
Images were presented continuously for 1.2 seconds each whereas sounds were presented for 1 second 166 
with a 200 ms inter-trial interval to allow participants to distinguish individual sounds. Each task run was 167 
500 trials in length. Images were indoor and outdoor scenes drawn from the SUN image database (Xiao et 168 
al., 2010). Sound stimuli were natural and manmade sounds drawn from online sound databases and 169 
cropped to be 1 s in length. Full details of stimulus curation procedures are described in Corriveau et al. 170 
(2024).  171 

Before the task run, participants were instructed to make a button press to frequent stimuli (90%) 172 
from either the auditory or visual modality and to withhold a button press for infrequent stimuli (10%). 173 
They were told that the stimuli from the other modality were not relevant for the task. Over the two scan 174 
sessions, participants performed both the auditory and visual task and the order of task runs and frequent 175 
stimulus category was counterbalanced across participants.  176 
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For frequent trials, correct responses were trials in which participants responded before the onset 177 
of a new stimulus (within 1200 ms of trial start). However, to allow for the possibility of RTs longer than 178 
1200 ms, we reassigned key presses for frequent trials which met the following criteria: (1) the participant 179 
made more than one key press for a trial with a frequent-category stimulus (2) the first key press was 180 
faster than 100 ms, and (3) no response was made to the previous frequent-category stimulus. In this case, 181 
the first key press was attributed to the previous trial. This reassignment of key presses is meant to more 182 
accurately account for accurate performance with slower response times. Press reassignment was rare in 183 
both visual (mean number of trials with presses reassigned=.548, SD=.861) and auditory sessions (mean 184 
number of trials with presses reassigned=3.81, SD=3.46), affecting less than .8% of the trials in each task. 185 
Therefore, this analytical decision has a negligible effect on results. Performance during the avCPT was 186 
calculated as sensitivity (d’).  187 

 188 
 189 
Dataset 3 190 
 The final fMRI dataset analyzed was described in Walz et al. (2013) and shared on OpenNeuro 191 
(ds000116). This dataset contained runs from 17 adults (6 females, ages 20-40 years) who performed 192 
three auditory and three visual runs of an oddball task. Simultaneous fMRI and electroencephalography 193 
data were collected for the original study but only the fMRI data are analyzed here. Data were collected 194 
on a 3T Philips Achieva scanner. Each run consisted of 170 volumes collected with a 2 s TR. While the 195 
authors note that discarding of extra runs is unnecessary for the shared data, the first three volumes of 196 
each run were removed in keeping with a standard preprocessing pipeline. We do not expect this to affect 197 
the current results. 198 
 Task runs consisted of 125 stimuli presented for 200 ms with a variable inter-trial interval of 2-3 199 
seconds. Participants were instructed to press a button for infrequent targets (20%) and could ignore 200 
standard stimuli (80%). In visual runs, standard trials consisted of a small green circle and target trials 201 
were the presentation of a large red circle. For auditory runs, the standard stimulus was a 390 Hz tone, 202 
whereas the target stimulus was a broadband laser gun sound.  203 
 Because the response pattern for this task was inverted and responses were only required on 204 
target trials, detection of oddball targets in this task is trivial, leading to overall high performance. 205 
Therefore, sustained attention performance in this dataset was quantified using the mean run reaction time 206 
(RT) variability which has previously been shown to be robustly related to sustained attention 207 
performance in both healthy adults and in populations characterized by sustained attention deficits 208 
(Chidharom & Carlisle, 2021; Esterman et al., 2013; Karamacoska et al., 2018; Robertson et al., 1996; 209 
Seli et al., 2011; Tamm et al., 2012). Importantly, this measure provides more variability across 210 
participants than a measure of sensitivity on a task where performance is at ceiling, as in the current 211 
dataset. RT variability is predictive of sustained attention ability such that individuals with more variable 212 
pressing show worse performance on sustained attention tasks. Since RT variability has previously been 213 
shown to be negatively related to sustained attention performance, we report the inverse of RT variability 214 
(mean RT / standard deviation) for ease of comparison with Datasets 1 and 2 in the current study. 215 
 216 
 217 
fMRI preprocessing procedure 218 
 Functional MRI data for the three datasets underwent the same preprocessing steps in AFNI 219 
(Cox, 1996). Preprocessing included the following steps: Removal of leading TRs as previously noted for 220 
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individual datasets; alignment of functional data to MNI space; regression of covariates of no interest, 221 
including a 24-parameter head motion model (6 motion parameters, 6 temporal derivatives, and their 222 
squares), mean signal from subject-level white matter and ventricle masks, and mean whole-brain signal; 223 
and censoring of volumes for which the derivative of motion parameters exceeded .25 mm or for which 224 
more than 10% of the brain were outliers.  225 
 226 
Exclusion criteria 227 
 To ensure high-quality data, individual runs were excluded if they did not meet the following 228 
criteria regarding head motion inside the scanner and behavioral performance. Runs were excluded if 229 
mean framewise head displacement after motion censoring exceeded .15mm, if the maximum head 230 
displacement exceeded 4mm, or if greater than 50% of frames were censored during preprocessing. Runs 231 
in Datasets 1 and 2 were also excluded if hit rates were more than 2.5 standard deviations below the mean 232 
hit rate value. The tasks used in these datasets asked participants to respond to frequent trials (90%), such 233 
that good performance would require presses to the vast majority of trials. Therefore, low hit rates for 234 
these tasks indicate participant non-compliance. Finally, we excluded runs if behavioral performance, 235 
quantified as sensitivity (d’) in Datasets 1 and 2 and inverse RT variability in Dataset 3, was greater than 236 
2.5 standard deviations below the mean across all runs within a dataset. 237 
 In Dataset 1, two visual runs were removed based on head motion criteria and 6 visual runs were 238 
excluded for extremely low hit rates. No auditory runs were removed based on any of the listed criteria. In 239 
Dataset 2, 56 participants completed the visual avCPT and 55 participants completed the auditory avCPT. 240 
9 visual runs and 10 auditory runs were excluded based on head motion criteria. An additional two visual 241 
runs and one auditory run were removed due to low hit rates. In the final sample for Dataset 2, 36 242 
participants completed both a visual and an auditory run. For Dataset 3, 47 visual and 44 auditory runs 243 
were successfully preprocessed. Preprocessing failed for the remaining 4 visual and 7 auditory runs due to 244 
the number of time points censored. No additional runs were removed based on head motion criteria. No 245 
runs in any dataset were excluded on the basis of low sensitivity or RT variability measures. The final 246 
sample sizes for each dataset and run type were as follows: Dataset 1 included 50 visual and 58 auditory 247 
runs, Dataset 2 included 45 visual and 44 auditory runs, and Dataset 3 included 47 visual and 44 auditory 248 
runs.  249 
 250 
External validation of sustained attention CPM  251 

Functional MRI data were parcellated into 268 functionally-defined regions of interest (ROIs, 252 
Shen et al., 2013). Whole-brain functional connectivity matrices were calculated by correlating the blood 253 
oxygen level dependent (BOLD) time courses for a given task run between all pairs of ROIs. Edges in 254 
this 268 by 268 matrix provide an index of coactivation similarity between all pairs of regions in the brain 255 
for each run.  256 
 Our first question of interest was whether a predefined network trained to predict sustained 257 
attention performance in a visual task generalized to the present datasets which include both visual and 258 
auditory sustained attention tasks. The network tested was defined using connectome-based predictive 259 
modeling (CPM; Finn et al., 2015; Rosenberg et al., 2016a; Shen et al., 2017) which identifies a set of 260 
edges whose coactivation strength is related to a performance metric across a set of participants. In CPM, 261 
the strength of every edge in a functional connectivity matrix is correlated with a behavior of interest, in 262 
this case sustained attention performance. The predefined network, referred to in the current manuscript 263 
as the saCPM (sustained attention CPM) consists of a set of edges whose strength was either positively 264 
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(757 edges) or negatively (630 edges) correlated with visual gradCPT performance across an independent 265 
set of participants (N=25). Significant edges were defined as those whose network strength was 266 
significantly correlated (Pearson’s r; p<.01) with visual gradCPT sensitivity (d’) across participants. 267 
Positively correlated edges are connections whose strength increased with higher sustained attention 268 
performance across participants, whereas negatively correlated edges are connections whose strength 269 
increased with worse performance. This network is described in previous work by Rosenberg et al., 270 
(2016a; 2020) and is shared publicly (https://github.com/monicadrosenberg/Rosenberg_PNAS2020).  271 

Here, we tested whether strength in this predefined network also predicted sustained attention 272 
performance in datasets that include novel participants, multiple perceptual modalities, and new 273 
behavioral measures of interest. Network strength is defined as the difference between mean connectivity 274 
in the high-attention and mean connectivity in the low-attention network for each run in the current 275 
datasets. Because strength in the high-attention and low-attention networks will be negatively correlated 276 
by nature of how the networks were identified, taking the difference provides a single summary measure 277 
which is interpretable. CPM-predicted behavior is a linear transformation of network strength (predicted 278 
behavior = m*network strength + b, where m and b are learned during model training). Therefore, for 279 
external model validation as we perform in the current set of analyses, the correlation between network 280 
strength and observed behavior is mathematically equivalent to correlation between predicted and 281 
observed behavioral scores. Network strength values were normalized across participants within dataset 282 
for comparison with other analyses. We then tested whether that network strength was related to 283 
behavioral performance by calculating the partial Spearman’s rho value between network strength and the 284 
behavioral measure of interest for visual and auditory runs separately, controlling for mean head motion 285 
(mean framewise displacement) in the scanner. Spearman’s rho values were used to mitigate any potential 286 
effects of outliers on predictions. However, results are consistent when using Pearson’s correlation. 287 
 As a note, we do not apply multiple comparison correction for the present study because all tests 288 
of model generalization tested a non-omnibus hypothesis, i.e., that network strength in the trained model 289 
will predict sustained attention performance in an independent sample (Garcia-Perez, 2023). Each 290 
external validation of model prediction tests a single outcome (significance of correlation between 291 
network strength and performance) and therefore multiple comparisons corrections would create 292 
unnecessarily large barriers to generalization.  293 
 294 
Modality-specific model construction  295 
 Next, we tested whether a network that is trained on fMRI data collected during a sustained 296 
attention task performed in a given perceptual modality better predicts performance on a task performed 297 
in the same vs. a different modality. To test this, we defined new models on the functional connectivity 298 
matrices and behavior in Dataset 1 using a CPM approach (Finn et al., 2015; Rosenberg et al., 2016a; 299 
Shen et al., 2017). CPM identifies a set of edges that is correlated, either negatively or positively 300 
(Pearson’s r, p<.01) with behavioral performance across the training set. For the current analyses, the 301 
training set was all visual or auditory runs in Dataset 1. For each edge in a functional connectivity matrix, 302 
a Pearson’s correlation is calculated between edge strength and sustained attention performance across the 303 
dataset. This is repeated for all edges in the functional connectivity matrix and significant edges are those 304 
whose correlation with sustained attention is stronger than a given threshold, in this case, p<.01. Positive 305 
network edges are those where connectivity strength is positively related to behavior across an entire 306 
training sample, while negative network edges are those whose connectivity is negatively related to 307 
behavior across the sample. Significant edges are isolated to represent a network of edges for which edge 308 
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strength is related to sustained attention in a given dataset. This results in binary edge “masks” consisting 309 
of 0s and 1s for both positive and negative networks. Edge masks are used to calculate network strength 310 
in independent datasets by calculating the dot product between the binary mask and each individual’s FC 311 
matrix and taking the difference between average connectivity strengths in the positive and negative edge 312 
networks. Networks were defined on visual and auditory runs of Dataset 1 separately. We then tested the 313 
generalizability of these networks by calculating the partial Spearman’s correlation between modality-314 
specific network strength and performance in the left-out datasets 2 and 3 visual and auditory runs, 315 
controlling for in-scanner head motion. For these external validation analyses, the correlation between 316 
network strength and observed behavioral scores is again equivalent to the correlation between predicted 317 
and observed behavioral scores. 318 
 To investigate the composition of visual, auditory, and overlapping sustained attention networks, 319 
we quantified the relative contribution of canonical brain networks (Finn et al., 2015) to these networks. 320 
This functionally-defined canonical network parcellation includes visual networks labeled based on their 321 
similarity to resting-state visual networks. There is no comparable auditory network included in this 322 
parcellation. However, connections from auditory cortex may be best encompassed by medial frontal and 323 
motor networks. We quantified relative contribution to high and low sustained attention networks by 324 
calculating the difference between the number of edges identified by high and low networks within and 325 
between canonical networks. This relative contribution was normalized by the total number of edges 326 
contained in a network. Significance of network contributions was calculated non-parametrically by 327 
shuffling edges in the high and low attention networks separately and recalculating the difference in 328 
network contribution 1000 times.  329 

We quantified the significance of overlap between our new visual and auditory sustained 330 
attention networks using a hypergeometric cumulative distribution function, which calculates the 331 
probability of observing the number of overlapping edges given a random sampling with no replacement 332 
of two networks of the sizes observed (Rosenberg et al., 2016b). Significance values were calculated in 333 
MATLAB as p=1-hygcdf(x,M,K,N) where x is the number of shared edges between networks of interest, 334 
M is the total number of functional edges in the matrix (35,778), and K and N are the number of 335 
functional edges the networks of interest.  336 
 We tested whether model generalization was biased towards the perceptual modality of training 337 
by calculating a measure of modality-specificity for each external validation dataset. Modality-specificity 338 
of visual and auditory networks was calculated as the prediction (partial Spearman’s rho) of within-339 
modality generalization (e.g., visual performance predicted by the visual CPM) minus cross-modality 340 
generalization (e.g., visual performance predicted by the auditory CPM) for each dataset and modality. 341 
We determined significance with a permutation test whereby predicted performance values were shuffled 342 
and correlated with observed performance, controlling for head motion. Auditory and visual predicted 343 
performance values were shuffled independently and the difference between these partial Spearman’s rho 344 
values was calculated. This process was repeated across 5000 iterations to obtain a null distribution of 345 
permuted difference scores.  346 
 Finally, we tested the contribution of network components to the generalizability of auditory and 347 
visual networks. To do so, we calculated whether network strength in reliably predictive edges, i.e., edges 348 
that appeared in both visual and auditory predictive networks, was related to sustained attention 349 
performance in independent datasets. We hypothesized that these edges would reflect connectivity 350 
involved in supramodal sustained attention and therefore would generalize to predict performance in both 351 
modalities. We also tested whether edges that appeared only in the visual network or the auditory network 352 
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would show specificity to their training modality. To do this we calculated network strength in edges that 353 
appeared either in the visual network or the auditory network, but not in both. We calculated the modality 354 
specificity of visual-only and auditory-only network edges by comparing predictions within and across 355 
modality, as described in the previous paragraph. 356 
 All preprocessed data and analysis code required to recreate the described analyses are publicly 357 
available at https://osf.io/bt2xy/.   358 
 359 
 360 
Results 361 
 362 
A predefined visual network generalizes across datasets and modalities 363 
 We first tested whether the saCPM, a network trained to predict performance on a visual 364 
sustained attention task generalized to the current datasets. Sustained attention performance, measured as 365 
sensitivity (d’) in Dataset 1, ranged from 1.14 to 5.11 in visual runs (M=3.11, SD=.957) and .306 to 3.69 366 
in auditory runs (M=1.51, SD=.679). In Dataset 2, visual d’ values ranged from 1.08 to 4.40 (M=3.09, 367 
SD=.640) and auditory d’ values ranged from -.112 to 2.22 (M=.968, SD=.599). Inverse RT variability in 368 
Dataset 3 ranged from 3.67 to 10.88 (M=7.39, SD=1.76) in visual runs and from 2.76 to 11.47 (M=5.53, 369 
SD=1.98) in auditory runs. Mean visual and auditory sustained attention measures were positively related 370 
across subjects in all datasets (Spearman’s rho1=.497, p1=9.84*10-3; Spearman’s rho2=.537, p2<.001; 371 
Spearman’s rho3=.589, p3=.021). However, performance was not perfectly correlated across modalities, 372 
such that not all variance in auditory task performance was explained by performance on the visual task. 373 
Therefore, successful generalization of the saCPM would require that it rely on features which capture the 374 
shared, supramodal variance.  375 

For visual task runs, network strength in the saCPM was positively related to performance in all 376 
datasets (partial rho1=.230, p1=.112; partial rho2=.317, p2=.036; partial rho3=.343, p1=.020) and this 377 
relationship was significant in Datasets 2 and 3 (Figure 1). While the prediction of visual sustained 378 
attention was not significant in Dataset 1, the relationship between network strength and observed 379 
performance was in the predicted direction and aligns with predictions in other datasets. As a validation 380 
that the saCPM captures visual sustained attention performance in Dataset 1, we also tested whether 381 
network strength in the saCPM predicted inverse RT variability in this dataset. RT variability was 382 
significantly correlated with sustained attention performance in visual runs of Dataset 1 (r=.649, p<.001) 383 
but may capture more meaningful variance in performance in this dataset. saCPM Network strength 384 
positively predicted inverse RT variability during the visual task (partial rho=.313, p=.028). Therefore, 385 
we concluded that this previously-validated network generalizes to predict visual sustained attention 386 
performance in Dataset 1. When applied to auditory task runs, saCPM network strength significantly 387 
predicted auditory sustained attention performance in all three datasets (partial rho1=.344, p1=8.74*10-3; 388 
partial rho2=.360, p2=.018; partial rho3=.552, p1<.001). Successful generalization of the predefined 389 
saCPM demonstrates that this network captures features of sustained attention that are general across 390 
datasets as well as perceptual modalities. 391 

 392 
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 393 
Figure 1. Network strength in the saCPM network significantly predicted visual sustained attention 394 
performance in Datasets 2 and 3 and auditory sustained attention performance in all datasets. 395 
  396 
Sustained attention networks are not modality-specific 397 
 We next asked whether a model trained on an auditory sustained attention task would generalize 398 
to predict performance on other auditory attention tasks better than a model trained on a visual attention 399 
task. One option for doing so would be training a new CPM to predict auditory task performance, 400 
applying the model to new data, comparing its predictive power to that of the saCPM. However, in this 401 
scenario any differences in predictive power could be due to differences between training datasets 402 
(number of participations, amount and quality of data, etc.) rather than attention modality per se. Thus, to 403 
more directly compare the generalizability of auditory and visual attention models, we constructed two 404 
new models—an auditory model trained to predict auditory gradCPT performance in Dataset 1 and a 405 
visual model trained to predict visual gradCPT performance in Dataset 1. Dataset 1 was selected as the 406 
training dataset because sustained attention performance in this dataset was measured using the gradCPT. 407 
Thus, networks from this dataset are most comparable to saCPM networks which were trained using the 408 
same task. We tested the generalizability of these models within and across perceptual modalities by 409 
relating network strength in the visual and auditory networks to visual and auditory sustained attention 410 
performance in Datasets 2 and 3, controlling for head motion during task runs. For all results reported 411 
below, models were applied to functional connectivity data from an auditory or visual task run and 412 
resulting predictions were related to behavioral performance from that same task run. 413 

The visual network generalized to predict visual sustained attention in Dataset 2 (partial 414 
rho=.329, p=.029) and Dataset 3 (partial rho=.305, p=.039; Figure 2A). The auditory network similarly 415 
generalized to predict auditory sustained attention performance in both datasets (partial rho2=.376, 416 
p2=.013; partial rho3=.537, p3<.001). Within-modality generalization confirms that CPM successfully 417 
identified networks whose strength predicts out-of-sample sustained attention performance. 418 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2024.05.15.594382doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.594382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

We next tested whether these networks predicted sustained attention performance when tasks 419 
were performed in a different modality. The visual network significantly predicted auditory sustained 420 
attention performance in both Dataset 2 (partial rho=.461, p=1.84*10-3) and Dataset 3 (partial rho=.620, 421 
p<.001; Figure 2B). The auditory network predicted visual sustained attention performance in Dataset 2 422 
(partial rho=.503, p<.001) and was positively but not significantly related to visual sustained attention 423 
performance in Dataset 3 (partial rho=.228, p=.127). Successful generalization across dataset and 424 
perceptual modality suggests that sustained attention relies on a modality-general mechanism captured, at 425 
least to some extent, by the edges identified by CPM.  426 

To quantify the extent to which networks were modality specific, we calculated the difference 427 
between within-modality prediction and across-modality prediction by subtracting the respective partial 428 
Spearman’s rho values. We created a null distribution by shuffling model-predicted visual and auditory 429 
behavioral performance values independently. The difference between partial Spearman’s rho values was 430 
permuted and this was repeated 5000 times. A one-tailed test was used to determine whether the observed 431 
difference between within- and between-modality predictions was greater than permuted values. Visual 432 
performance was not better predicted by a visual network than an auditory network in Dataset 2 (p=.788) 433 
or in Dataset 3 (p=.329; Figure 2C). Similarly, auditory performance predictions from the auditory 434 
network were not higher than predictions from the visual network in either Dataset 2 (p=.775) or Dataset 435 
3 (p=.741). Across both models, we found no modality-specificity such that the networks identified to 436 
predict visual or auditory sustained attention performance did not better predict task performance in the 437 
same modality.  438 

We note that the number of runs available in Dataset 1 to train these models differs between 439 
auditory (N=58) and visual (N=50) runs. To ensure that training the auditory model on a larger number of 440 
runs did not bias the model’s generalizability, we subsampled the number of runs used to train the 441 
auditory network to be equal to the number of runs used to train the visual network, i.e., 50 runs. We refit 442 
1000 auditory models using a random subsampling of 50 auditory runs from Dataset 1 and tested how 443 
well these models generalized across datasets and modalities. In all cases, prediction from the model 444 
trained on the full N=58 sample fell within one standard deviation of the mean prediction from models 445 
trained on a smaller sample (Prediction of visual performance: mean partial rho2=.478, SD2=.054; mean 446 
partial rho3=.220, SD3=.053; Prediction of auditory performance: mean partial rho2=.365, SD2=.026; 447 
mean partial rho3=.534, SD3=.040). Therefore, it is not the case that prediction from the auditory model in 448 
the current analyses is biased due to a larger amount of training data. 449 
 450 

 451 
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 452 

 453 
 454 
 455 

 456 
 457 

 458 
 459 
Figure 2. (A) Visual and auditory networks generalized to predict visual and auditory sustained attention 460 
performance, respectively, in independent datasets. Network strength is quantified as the difference 461 
between the average high and the average low network strength values. (B) The visual network predicted 462 
auditory sustained attention in independent datasets and the auditory network predicted visual 463 
performance in one dataset. (C) Neither network showed modality-specificity, i.e., generalized better to 464 
within-modality prediction than across-modality prediction. The vertical black bar represents the true 465 
difference between prediction of task performance from a within-modality model vs. an across-modality 466 
model. The gray distribution reflects null differences from predictions of shuffled sustained attention 467 
performance. Positive partial rho difference values reflect better prediction within vs. across perceptual 468 
modality. Negative partial rho difference values reflect better performance prediction for a task performed 469 
in a different perceptual modality than training. 470 
 471 
 472 
Cross-modality generalization is not explained by within-modality performance 473 
 Sustained attention performance is reliable across modalities, such that individuals with high 474 
visual sustained attention performance tend to have high auditory sustained attention performance. 475 
Therefore, cross-modality generalization of network predictions could result simply because cross-476 
modality performance is related to within-modality performance. Another alternative, however, is that 477 
network models capture variance above and beyond sustained attention performance consistency. To test 478 
this, we included within-modality sustained attention performance as an additional variable in the partial 479 
correlation between cross-modality performance and network strength. If models fail to generalize when 480 
supramodal sustained attention performance is captured by the additional variable of within-modality 481 
performance, this suggests that the generalizability of these models across modalities relies heavily on 482 
features related to this shared supramodal ability. If models still generalize after controlling for 483 
supramodal sustained attention performance, this would suggest that networks capture unique variance 484 
beyond what can be explained by similarity in sustained attention performance across runs. 485 
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 The partial correlation between saCPM network strength and auditory sustained attention 486 
performance remained significant in both Dataset 1 (partial rho=.301, p=.024) and Dataset 3 (partial 487 
rho=.540, p<.001), even when controlling for participants’ visual sustained attention performance. 488 
Prediction in Dataset 2 was positive but not significant after controlling for visual sustained attention 489 
performance (partial rho=.215, p=.183). Therefore, in two of three datasets, generalization of the saCPM 490 
to auditory tasks cannot be explained by a correlation between performance across modalities.  491 
 We further tested whether generalization of visual and auditory networks trained on Dataset 1 492 
remained after controlling for within-modality performance. Predictions of auditory sustained attention 493 
performance from the visual network remained significant after removing variance explained by visual 494 
sustained attention performance in Dataset 2 (partial rho=.339, p=.033) and Dataset 3 (partial rho=.605, 495 
p<.001). When controlling for auditory sustained attention performance, predictions of visual sustained 496 
attention from auditory networks were significant in Dataset 2 (partial rho=.455, p=2.81*10-3) and 497 
remained non-significant in Dataset 3 (partial rho=.096, p=.532). Therefore, generalization of sustained 498 
attention networks across task modalities is not simply due to performance similarity across modalities, 499 
but rather networks capture sustained attention ability beyond what can be explained by shared 500 
supramodal variance.    501 

As a final test of the extent to which cross-modality generalization relies on shared variance in 502 
task performance between modalities, we retrained sustained attention networks to predict auditory and 503 
visual performance in Dataset 1, controlling for performance in the other modality. In other words, during 504 
the feature selection step of visual sustained attention model training, positive and negative network edges 505 
were those that were significantly correlated with visual sustained attention performance across 506 
individuals in Dataset 1 partialling out auditory sustained attention performance. Similarly, visual 507 
sustained attention performance was included as a partial covariate when identifying auditory sustained 508 
attention model features. Therefore, these models should no longer capture variance that can be explained 509 
by consistency in performance across individuals. A failure of these models to generalize across datasets 510 
and modalities would suggest that previous model generalization relied heavily on the shared variance in 511 
sustained attention performance across task modality. However, if these models indeed predict sustained 512 
attention performance in a modality different than training, it suggests that model features capture 513 
relevant variance beyond what can be explained by consistency in performance across modalities. 514 

Cross-modality predictions of visual sustained attention performance from the retrained auditory 515 
network were significant in Dataset 2 (partial rho=.546, p<.001) and remained non-significant in Dataset 516 
3 (partial rho=.092, p=.544). The retrained visual network significantly predicted auditory sustained 517 
attention performance in both Dataset 2 (partial rho=.379, p=.012) and Dataset 3 (partial rho=.494, 518 
p<.001). The strength of prediction, i.e., partial rho values, were reduced in three of these cross-modal 519 
generalizations, suggesting that shared variance at least partially contributed to the generalizability of 520 
sustained attention networks. However, models’ ability to significantly generalize across task modality 521 
after controlling for the shared variance in task performance suggests that these models do not rely only 522 
on this supramodal variance. 523 

 524 
 525 

Unique features underlie auditory and visual networks  526 
Is successful cross-modal prediction a result of shared network edges between visual and auditory 527 

networks? If CPM identified a largely overlapping set of edges related to performance on both visual and 528 
auditory tasks, it should follow that predictions would not be modality-specific. However, if auditory and 529 
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visual networks are independent, generalization across modalities might suggest that sustained attention 530 
performance can be captured by a diverse set of features.  531 

The visual network consisted of 581 positive (high attention) edges and 659 negative (low 532 
attention) edges. In the auditory network, 626 edges were positively related to auditory sustained attention 533 
performance and 970 edges were negatively related to auditory sustained attention performance. 534 
Edgewise contributions to individual networks are grouped into lobe and canonical network groupings 535 
(Finn et al., 2015) and visualized in Figure 3.  536 

Within-network connections in the medial frontal, frontal parietal, and default mode networks 537 
contributed to the visual high-attention network (Figure 3B). Connections between the motor network 538 
and the visual II, and visual association networks also contributed to the high-attention network, as well 539 
as connections between the default mode and medial frontal and subcortical-cerebellar networks. Within-540 
network edges in the motor and subcortical-cerebellar networks contributed to the visual low-attention 541 
network. Connections between the default mode and frontal parietal and visual association networks were 542 
also stronger in the visual low-attention network, as well as connections between motor and medial 543 
frontal networks. 544 

Connections within the visual association network, as well as connections between the visual 545 
association and frontal parietal, subcortical-cerebellar, and visual II networks were represented in the 546 
auditory high-attention network (Figure 3C). Edges shared between motor networks and visual I, visual 547 
II, and default mode networks were also represented in the auditory high-attention network. Connections 548 
between the subcortical-cerebellar network and visual I and default mode networks contributed 549 
significantly to the auditory high-attention network, as well as connections between the medial frontal and 550 
visual II networks. Conversely, connections between the visual association network and medial frontal, 551 
default mode, and motor networks were strongly represented in the auditory low-attention network. 552 
Connections between the medial frontal network and frontal parietal and motor networks were also found 553 
more strongly in the auditory low-attention network. Finally, connections within the subcortical-554 
cerebellar networks and motor networks contributed to the auditory low-attention network. 555 

Overlap between visual and auditory networks was significant for both high-attention (25 edges, 556 
p<.001) and low-attention networks (41 edges; p<.001; Figure 3A). Networks also overlapped with the 557 
predefined saCPM. Auditory networks significantly overlapped with the saCPM, sharing 46 high-558 
attention (p<.001) and 68 low-attention edges (p<.001). The visual network also significantly overlapped 559 
with the saCPM, sharing 37 high- (p<.001) and 21 low-attention edges (p=3.52*10-3). Network overlap in 560 
unexpected directions was non-significant in all cases (all ps>.826; Figure 3A). 561 
 562 
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 563 
Figure 3. (A) Networks constructed using connectome-based predictive modeling identified shared edges 564 
relevant for brain-behavior predictions in both high (+) and low (-) attention networks. Not all overlap 565 
between could be visualized in the Venn diagram but is described fully in the text. Stars reflect p<.01. 566 
Contributions to network structure grouped by lobe and canonical network differed between (B) visual 567 
and (C) auditory networks. Matrices visualize the relative contribution of canonical network edges to 568 
high- and low-attention networks. Colors represent the difference between the number of edges in the 569 
high and low predictive networks, divided by network size. Stars in the matrix reflect significant 570 
contribution to high- or low-attention networks; p<.05, uncorrected. Significance was determined by 571 
shuffling high- and low-attention networks and recalculating the contribution of edges to each network 572 
1000 times. 573 
 574 
 575 
Predictions from non-overlapping features generalize across modality 576 
 Does removing overlapping edges from visual and auditory networks induce modality 577 
specificity? It is possible that the generalizability of networks across modality is driven by the subset of 578 
shared edges between networks. To ask this, we tested whether edges that were unique to the auditory or 579 
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visual network—e.g., edges that positively predicted auditory performance but did not predict visual 580 
performance—generalized in a modality-specific manner.  581 
 Predictions of visual sustained attention performance from visual-unique model edges were 582 
significant in Dataset 2 (partial rho=.326, p=.031) and positive but non-significant in Dataset 3 (partial 583 
rho=.277, p=.063). Edges specific to the visual network remained generalizable across perceptual 584 
modality such that they predicted auditory sustained attention performance in both Dataset 2 (partial 585 
rho=.466, p=1.64*10-3) and Dataset 3 (partial rho=.582, p<.001). We observed no evidence for better 586 
prediction for visual sustained attention from a model trained on a visual sustained attention task, even 587 
after removing modality-general features (p2=.805; p3=.365).  588 

Auditory-unique edges significantly predicted auditory sustained attention performance in both 589 
Dataset 2 (partial rho=.371, p=.014) and Dataset 3 (partial rho=.537, p<.001). For visual performance, the 590 
auditory-unique network predictions were significant in Dataset 2 (partial rho=.511, p<.001) and positive 591 
but not significant in Dataset 3 (partial rho=.212, p=.158). Again, there was no evidence for modality 592 
specificity in predictions from auditory-only network edges (p2=.783; p3=.606). Therefore, predictions 593 
from non-overlapping edges did not result in modality-specific generalization. Instead, even network 594 
edges unique to a network trained on one modality captured sustained attention ability in another 595 
modality.  596 
 597 
Overlapping features are sufficient for prediction 598 

Within-network edges in the default mode network, as well as edges shared between the default 599 
mode and medial frontal networks contributed to the overlapping high-attention network (Figure 4A). 600 
Additionally, connections shared by the frontal parietal and visual II networks, as well as connections 601 
shared between the visual association and subcortical-cerebellar networks were strongly represented in 602 
the overlapping high-attention network. This suggests that stronger connections between these networks 603 
are associated with higher modality-general sustained attention performance. Conversely, within-network 604 
edges in the visual association, subcortical-cerebellar, and motor networks contributed strongly to the 605 
overlapping low attention network. These results suggest that strong with-network connectivity in these 606 
networks is associated with worse sustained attention. 607 
 We wondered whether the edges shared by both visual and auditory networks defined in Dataset 608 
1 were sufficient to predict visual and auditory sustained attention performance in independent datasets. 609 
To ask this, we tested whether strength in the edges shared by high visual and auditory attention networks 610 
(25 edges) and low visual and auditory attention networks (41 edges) was related to observed behavioral 611 
performance. Results are visualized in Figure 4B-C. 612 
 We observed robust prediction from these overlapping edges such that network strength in this 613 
subset of edges significantly predicted visual performance in Dataset 2 (partial rho=.492, p<.001) and 614 
Dataset 3 (partial rho=.409, p=4.78*10-3), as well as auditory sustained attention performance in Dataset 2 615 
(partial rho=.394, p=8.99*10-3) and Dataset 3 (partial rho=.529, p<.001). Therefore, while the number of 616 
shared network features was small between visual and auditory networks, these shared features were 617 
sufficient for generalizable prediction of sustained attention performance.  618 
 Is prediction from a small set of edges specific to the shared edges between visual and auditory 619 
networks? To ask this question, we compared the predictive performance from overlapping edges to 620 
predictions from equal-sized subsets of visual or auditory network edges. 5000 random subsets were 621 
drawn from either the visual or auditory network and network strength from these subsets was related to 622 
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observed performance. Distributions of partial rho values from edge subsets were created for visual and 623 
auditory networks separately.  624 

In visual runs, edges that overlapped between the visual and auditory networks outperformed 625 
visual sustained attention performance prediction from other edge subsets of the same size drawn from 626 
the visual network in Dataset 2 (p=7.20*10-3) but did not significantly outperform visual network edge 627 
subsets in Dataset 3 (p=.056). Predictions for visual sustained attention performance from overlapping 628 
edges did not outperform edge subsets drawn from the auditory network in Dataset 2 (p=.171) but overlap 629 
predictions did outperform auditory subset predictions and Dataset 3 (p=.024). This suggests that 630 
overlapping visual and auditory predictive edges may carry unique predictive ability related to visual 631 
sustained attention performance. When predicting auditory sustained attention performance, predictions 632 
from overlapping edges were not better than predictions from edge subsets drawn from either the visual 633 
(p2=.230; p3=.081) or the auditory network (p2=.233; p3=.254). Therefore, reliable edges provided specific 634 
predictive boost in visual runs only.  635 
 636 
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 637 
Figure 4. (A) Edges shared by both auditory and visual models trained on Dataset 1 are visualized by 638 
lobe. The matrix depicts relative contribution to high and low overlapping predictive networks, grouped 639 
into 8 canonical networks. Significance stars on the matrix reflect greater representation of network edges 640 
than chance; p<.05, uncorrected. Significance was determined by shuffling network edges 1000 times and 641 
recalculating relative contribution to high- and low-attention networks. Network strength in edges shared 642 
by the auditory and visual networks predicts (B) visual and (C) auditory sustained attention performance 643 
in independent datasets. Histograms beneath each plot depict the extent to which prediction from network 644 
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strength in the overlapping edges outperforms predictions from equally-sized subsets of edges drawn 645 
from either the visual or auditory networks alone (5000 permutations). 646 
 647 
 648 
 649 
Discussion  650 
 651 

Prior predictions from connectome-based models of sustained attention may have been more 652 
limited than previously thought if they were driven by visual task performance specifically. Here, we 653 
tested the extent to which functional networks of sustained attention are modality-specific, with two likely 654 
outcomes. First, functional networks or a subset of functional networks may have predicted sustained 655 
attention in a modality-specific manner, generalizing better to tasks performed in the same perceptual 656 
modality as training. Alternatively, functional networks may not show modality-specificity and predict 657 
sustained attention performance for tasks performed in different modalities similarly. Results show 658 
evidence for the latter, demonstrating wide-spread cross-modality generalization even when predictive 659 
model features are largely unique. This suggests that sustained attention performance can be captured by 660 
distributed, supramodal connections in the brain. Further, we demonstrate that both shared and unique 661 
edges in visual and auditory networks predict sustained attention performance across modality, showing 662 
that both reliable (overlapping) and unreliable (unique) model features can capture relevant brain-663 
behavior relationships. 664 
 Work investigating brain-behavior relationships emphasizes that testing model generalizability, 665 
and in particular generalizability to external datasets, is the gold standard for the construction of accurate 666 
predictive models (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost et al., 2019). Connectome-667 
based predictive models have previously demonstrated robust generalizability to predict relevant 668 
cognitive phenotypes across independent samples (Avery et al., 2020; Fountain-Zaragoza et al., 2019; 669 
Gao et al., 2020; Kardan et al., 2022; Rosenberg et al., 2016a, 2018, 2020). Therefore, CPM meets this 670 
high benchmark for model validity and holds promise for identifying robust and interpretable predictors 671 
of cognitive variation. 672 

Here, we test whether CPM-derived functional networks capture variability in sustained attention 673 
performance across participants in three independent datasets. All three datasets included fMRI tasks 674 
which required sustained attention to stimuli presented either in the visual or auditory domain. However, 675 
tasks differed across datasets in several ways, including frequency of responding, selection demands, and 676 
inhibitory control. Therefore, successful prediction of performance in these datasets suggests that 677 
functional networks successfully capture a signal of sustained attention which is general across all three 678 
task contexts rather than a distinct process idiosyncratic to a subset. 679 

We first validate that a network of sustained attention previously defined using a CPM approach, 680 
the saCPM, generalizes to predict sustained attention performance in these datasets. Previous work has 681 
demonstrated that the saCPM captures patterns of connectivity related to attention by predicting out-of-682 
sample performance on multiple attention tasks (Fountain-Zaragoza et al., 2019; Kardan et al., 2022; 683 
Rosenberg et al., 2018, 2020; Yoo et al., 2022) as well as ADHD symptomatology (Rosenberg et al., 684 
2016a) and variability in narrative engagement within individuals (Song & Rosenberg, 2021). A previous 685 
study also found that network strength in the saCPM during rest predicted performance on an auditory 686 
sustained attention task (Wu et al., 2020). Our results show that the saCPM also generalizes to predict 687 
sustained attention across perceptual modalities from task connectivity, demonstrating that it captures 688 
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domain-general signatures of attentional ability. Whereas previous work speculated that selective 689 
generalization of the saCPM to audiovisual movie engagement, but not audio-only story engagement, was 690 
due to modality-specificity of the model (Song & Rosenberg, 2021), our results find no modality bias 691 
when predicting individual differences in visual and auditory sustained attention. Rather, the differences 692 
in prediction observed in previous work may instead reflect other differences between stimuli, for 693 
example in the overall engagement with the narratives. 694 

We further show that models trained on sustained attention tasks performed in separate visual and 695 
auditory modalities generalize to predict sustained attention performance both in external datasets and 696 
when tasks were performed in a different perceptual modality than in training. This suggests that 697 
connectome-based predictive modeling identifies edges that capture variability in sustained attention 698 
performance that is not specific to the perceptual modality of the task. These results support previous 699 
findings that the ability to sustain attention to visual and auditory information relies to some extent on 700 
shared neural mechanisms. We used a CPM approach to identify a subset of edges that significantly 701 
predicted both auditory and visual sustained attention performance across individuals in a dataset. This 702 
subset of edges predicted both visual and auditory sustained attention performance in independent 703 
datasets. Therefore, this overlapping network of edges provides one mechanism that may support a 704 
modality-general ability to sustain attention over time.  705 

Importantly, we show that successful generalization across modalities is not simply a 706 
mathematical inevitability due to correlations between sustained attention performance across modalities. 707 
While performance was reliable across participants regardless of task modality, generalization across 708 
modality persisted after controlling for performance in the other task modality during both model training 709 
and model testing. Therefore, predictive edges identified by CPM were able to capture relevant variance 710 
in sustained attention beyond consistency in performance. 711 
 Intriguingly, we observed significant prediction both from overlapping visual and auditory edges 712 
as well as modality-specific edges identified using a CPM approach. Therefore, feature reliability, or the 713 
identification of the same model features across training sets, was not necessary for successful 714 
generalization. These results highlight a distinction between model feature reliability and the ability to 715 
predict behavioral phenotypes in an external sample. Previous work has noted this difference, 716 
demonstrating that predictive accuracy is not necessarily a result of reliable features (Kragel et al., 2021; 717 
Noble et al., 2017; Tian and Zalesky, 2021, although see Chen et al., 2022). Researchers have suggested 718 
that a lack of reliability may be a function of the scale at which features are identified, leading to high 719 
numbers of model features (Srivastava et al., 2022; Tian & Zalesky, 2021). Here, model features were 720 
identified from whole-brain patterns of functional connectivity, consisting of >35,000 pairwise 721 
connections between regions. Therefore, it is difficult to determine whether the failure of an edge to be 722 
significantly related to performance in both visual and auditory networks is the result of the modality-723 
specificity of the edges or a result of the relatively small scale at which features were identified. As a 724 
result, edges identified only in one training set may capture modality-general sustained attention, leading 725 
to the significant prediction across modalities observed in the current study. 726 

Individual edge contributions to auditory and visual networks from canonical functional networks 727 
varied. We found that connectivity within the default mode network was represented in the auditory high-728 
attention and overlapping high-attention networks but did not significantly contribute to visual predictive 729 
networks. Much previous work has related relative increases in default mode network activation with in-730 
the-zone attentional states (Esterman et al., 2013, 2014; Jones et al., 2024; Kucyi et al., 2016, 2017; 731 
Fortenbaugh et al., 2018; Song et al., 2022), although changes in activity are not functionally equivalent 732 
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to changes in connectivity. Past work has shown links between greater within-default mode network 733 
connectivity and higher attention (Gordon et al., 2012; Kucyi & Davis, 2014). Further, attention-related 734 
disorders are characterized by decreased connectivity within the default mode network (Castellanos et al., 735 
2008; Fair et al., 2010). However, other work has found an inverse or no relationship (Kucyi et al., 2017; 736 
Mittner et al. 2014; Esterman et al., 2013), suggesting associations of within-network connectivity of the 737 
default mode network with sustained attention are complex. The current findings suggest that stronger 738 
within-default mode network connections are associated with higher modality-general sustained attention 739 
performance. 740 

We observed a large contribution of within-network edges from the subcortical-cerebellar and 741 
motor networks to visual and auditory low-attention networks, as well as the overlapping low-attention 742 
network. This is in line with previous work which has implicated greater within-subcortical-cerebellar 743 
connectivity in lower sustained attention performance (Fong et al., 2019; Jones et al., 2024; Rosenberg et 744 
al., 2016a). Increased within-motor connectivity has similarly been related to poor sustained attention in 745 
adolescents, whereas connections between motor and visual regions are increased with better sustained 746 
attention (O’Halloran et al., 2018). We observed a similar pattern of results, with connectivity between 747 
motor and visual II networks contributing to visual and auditory high-attention networks. We do not see a 748 
significant contribution of motor to visual II connectivity to the overlapping high-attention network, 749 
suggesting the individual edges may differ between visual and auditory networks. Since the gradCPT 750 
used to train networks in the current study requires a motor (button press) response, it is possible that 751 
connections within and between the motor network are more strongly represented in these networks than 752 
would be expected if a different sustained attention task were used for network training. Future work may 753 
seek to test the extent to which task demands influence network architecture.  754 

We should also note a few limitations of the current study. First, our analyses utilized a 755 
connectome-based predictive modeling approach which sought to identify connections between brain 756 
regions whose strength captured variability in modality unique or modality general sustained attention. 757 
However, it is likely that functional relationships in the brain, beyond those at the edge level, may differ 758 
between task-modality. While outside the scope of the current manuscript, future work may aim to more 759 
fully characterize functional differences between task, for example, at the level of graph-theoretic 760 
differences between whole-brain connectivity patterns. An additional limitation is the precision of the 761 
current predicted sustained attention performance values. Significant correlations between predicted and 762 
observed sustained attention performance suggest that our sustained attention networks capture reliable 763 
differences in performance and are therefore useful in understanding neural mechanisms involved in 764 
sustained attention. However, the current models leave much variance unexplained, which may result 765 
from a number of individual, task, and dataset differences. Work aimed at precise predictions of sustained 766 
attention performance may choose to include additional variables in predictive models that better-capture 767 
this remaining variability. 768 

While the current analyses focused on the generalization of sustained attention networks, a 769 
similar question could be asked of predictive networks trained on any cognitive process that can be 770 
performed in separate perceptual modalities. For example, it is an open question whether a network 771 
trained to predict visual recognition memory across participants would also generalize to predict auditory 772 
recognition memory, which is reliably worse (Cohen et al., 2009). Future work testing the validity of 773 
brain-based models of cognition should aim to test model generalizability across perceptual modalities to 774 
evaluate the extent to which a cognitive process is fully captured by a given model. 775 
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Our results demonstrate that functional connectivity-based networks of sustained attention are not 776 
specific to the perceptual modality of training, suggesting that these networks capture domain- and 777 
modality-general aspects of attention. Both non-overlapping and overlapping, modality-general edges 778 
predicted cross-modal sustained attention performance in independent datasets, thereby providing one 779 
mechanism by which modality-general sustained attention ability may be supported. These results 780 
highlight that the ability to sustain attention to information over time relies on distributed, modality-781 
general connections in the brain and demonstrate the potential for highly-generalizable predictive models 782 
constructed from functional connectivity features. 783 
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