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Edge time series decompose functional connections into their fine-scale, framewise contributions.
Previous studies have demonstrated that global high-amplitude “events” in edge time series can
be clustered into distinct patterns. To date, however, it is unknown whether events and their
patterns change or persist throughout the human lifespan. Here, we directly address this question
by clustering event frames using the Nathan Kline Institute-Rockland sample that includes subjects
with ages spanning the human lifespan. We find evidence of two main clusters that appear across
subjects and age groups. We also find that these patterns of clusters systematically change in
magnitude and frequency with age. Our results also demonstrate that such event clusters have
distinct, heterogeneous relationships with structural connectivity-derived communication measures,
which change with age. Finally, event clusters were found to outperform non-events in predicting
phenotypes regarding human intelligence and achievement. Collectively, our findings fill several gaps
in current knowledge about co-fluctuation patterns in edge time series and human aging, setting the
stage for future investigation into the causal origins of changes in functional connectivity throughout
the human lifespan.

INTRODUCTION

Nervous systems are complex networks of anatomically
connected neural elements–cells, populations, and areas
linked by synapses, axonal projections, and myelinated
white-matter tracts, respectively [1, 2]. The organization
of these structural networks shapes brain-wide signaling
patterns, inducing statistical dependencies between ac-
tivity recorded from distant neural elements. Network
science provides a mathematical framework for model-
ing both structural and functional connectivity (SC; FC),
wherein neural elements are treated as nodes and their
pairwise interactions as edges [3].

SC and FC undergo continuous and profound changes
across the human lifespan [4–7]. Understanding this tra-
jectory remains one of the central goals of neuroscience
[8–10], promising insight into age-related changes in cog-
nition and behavior [8, 11–13], neurodevelopmental dis-
orders [14, 15], the progression of neurodegenerative dis-
ease [16], and neuropsychiatric conditions [17, 18]. More
generally, tracking the normative trajectory of brain
structure and function offers an invaluable reference for
healthy brain function across the human lifespan [19].

Functional connectivity between brain regions is of-
ten summarized with measures of statistical dependence
over time –e.g. correlation, coherence, mutual informa-
tion. While static functional connectivity provides a
time-invariant summary of statistical relationships be-
tween brain regions, connectivity is thought to fluctu-
ate across time [20, 21]. Typically, sliding-window [22]
and kernel-based approaches [23] are used to obtain time-
varying estimates of FC. However, both approaches cre-
ate an aggregate measure that spans multiple time points
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which may result in artificially smooth functional connec-
tivity at fine-scale temporal resolution.

Recently, we showed that static FC could be decom-
posed into its framewise contributions, yielding time-
varying estimates of coupling weights for each pair of
nodes – so-called “edge time series.” [24, 25]. This
approach builds upon existing frameworks to track the
temporal dynamics in the brain’s functional connectiv-
ity [26–30]. Using edge time series, we identified brain-
wide “events”–intermittent and brief moments of global
high-amplitude co-fluctuations [24, 25]. These events
contribute disproportionately to static FC [24], can be
predicted from static functional connectivity [31], may
provide biomarkers for disorders (e.g. early mild cogni-
tive impairment) [32], carry subject-specific information
and enhance brain-behavior associations [33–36]. Events
can also be partitioned into recurring “states” [33], whose
topography and relative frequency may be involved with
fluctuations of endogenous hormones [37].

While various studies have applied the “edge-centric”
approach to human and even non-human imaging data
[38, 39], investigations into how such high amplitude co-
fluctuations differ across the human lifespan has not yet
been studied. For instance, it is unclear whether topo-
graphically similar events manifest in older and younger
individuals or whether event topography varies with age.
Furthermore, the relative frequency of events as a func-
tion of age is unclear. Additionally, little is known about
the link between the underlying SC and events [38–41].

Here, we investigate events throughout the human
lifespan using resting-state fMRI data from 537 subjects,
spanning ages 6 to 75, from the Nathan Kline Institute
- Rockland enhanced sample [42]. Using events detected
in edge time series from subjects across age groups, we
aimed to address the following questions. How do events
and their patterns differ across ages throughout the hu-
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FIG. 1. Schematic illustration of creating event clusters created with an equal number of events across age
groups. (a) The age distribution of the NKI dataset (red lines: age bin boarders). (b) Matched number of subjects (n = 20)
sampled per age group (seven age bins). (c) Edge time series calculated as the moment-to-moment multiplication of node time
series. (d) Detection of “event” frames in edge time series by selecting frames above a statistical threshold. (e) Event frames
of all subjects across all age groups on which we applied (f ) k-means clustering to assign events to clusters and the cluster
centroids.

man lifespan? Are event co-fluctuation patterns related
to structural connectivity across development and aging?
How are event co-fluctuation patterns organized and are
they useful for making phenotypic predictions? Progress
towards answering these questions may help clarify the
possible drivers in normative changes in functional con-
nectivity across the human lifespan.

RESULTS

Events can be clustered into distinct patterns

In this paper, we aimed to uncover patterns of events
from data acquired across the human lifespan. Specif-
ically, we used the resting-state fMRI data from the
Nathan Kline Institute-Rockland sample with 537 sub-
jects spanning ages 6 to 75 years [42] after excluding
subjects with high-motion frames or missing imaging or
metadata (detailed exclusion criteria in Methods). In all
analyses, we used the Schaefer-Yeo parcellation [43] with
N = 400 parcels to define the nodes in both functional
and structural networks.

One of the challenges of working with the NKI dataset

is its uneven distribution of participants’ ages. To re-
duce related biases, we aimed to create subsamples of
the dataset in which ages are (approximately) uniform.
To do this, we assigned each participant to one of seven
age groups and sampled an equal number of subjects
from each group (20 subjects per sampling procedure
with replacement; Fig.1a-b). We then transformed the
regional fMRI BOLD time series into edge time series
(ETS) by calculating the element-wise product between
all pairs of z-scored time series (Fig. 1c). An event de-
tection algorithm was applied to the edge time series as
described in previous literature [44, 45]. In brief, these
events are detected by first identifying frames that sur-
pass the co-fluctuation magnitudes of a null model cre-
ated by circularly shifting each region’s activity time se-
ries (Fig. 1d). This null model preserves the mean and
variance of regions’ activity while destroying correlation
structures. We then performed a k-means clustering on
this samples’ events (Fig. 1f ). We repeat this sampling
and clustering process (Fig. 1b-f ) for 100 iterations at
each K. Lastly, since the k-means algorithm produces
slightly different cluster results in each iteration, all re-
ported cluster results were aligned to that of the most
similar centroid across all iterations.
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With the events detected across all subjects and age
groups (width of age bin = 10 years), we identified clus-
ters at K = 2 − 10 using k-means clustering. Here, we
used two distance metrics, the bivariate product-moment
correlation coefficient and Lin’s concordance, to compare
pairwise similarities for detecting clusters of events. The
standard product-moment correlation rescales patterns
(z-score) before computing similarity, whereas Lin’s con-
cordance allows vectors to be distinguished from one an-
other if their magnitudes vary [46]. We note that max-
imum similarity across clustering iterations were found
at K = 2 for both distance metrics when aiming to
minimize a cost function using the Hungarian algorithm
(Fig. 2a). The resulting event clusters at K = 2 are
shown in Fig. 2b-c (mean event cluster patterns across
all subjects, from all age groups, and all iterations post-
alignment). Additionally, similar clusters of events were
also found using a spectral clustering algorithm (Fig. S9).

After detecting clusters, we described the event co-
fluctuation patterns based on their similarity to FC,
within-cluster homogeneity, and principal components.
To do so, we first calculated each subject’s average matrix
of cluster 1, cluster 2, and non-event (NE) frames to com-
pare to the subject’s static FC matrix. Compared to clus-
ter 1, cluster 2 was more strongly correlated with static
FC (paired sample t-test; p < 10−15; Fig. 2d). Neverthe-
less, cluster 1 was more strongly correlated with static
FC than NE frames (paired sample t-test; p < 10−15;
Fig. 2d). Also, using the subject-level averages of cluster
1, cluster 2, and NE patterns, we found that the within-
cluster similarity was greatest for cluster 2 compared to
cluster 1 (p < 10−15) or non-events (p < 10−15; Fig. 2e).

Next, in order to investigate system-level differences in
event co-fluctuation patterns, we applied principal com-
ponent analysis to the subject-level averages of event co-
fluctuation patterns and non-events. Notably, the first
principal component (PC) of cluster 1 explained 41.7%
of variance (Fig. 2f ) compared to 88.0% of variance ex-
plained using PC1 in cluster 2 (Fig. 2g). When compared
against canonical brain systems [43], the PC1 scores of
cluster 1 loaded positively onto the control, dorsal at-
tention, salience/ventral attention, and visual networks
(Fig. 2h). Negative loadings in cluster 1 were found in the
default mode, limbic, somatomotor, and temporopari-
etal networks. In cluster 2 (Fig. 2i), the scores in PC1
mainly revealed positive loadings in higher-order, het-
eromodal networks - control, default mode, limbic, and
temporoparietal networks. In contrast, negative loadings
were found in the unimodal networks in the dorsal atten-
tion, salience ventral attention, somatomotor, and visual
networks.

In sum, cluster 2 better represented static FC, with
greater within-cluster similarity, with significant align-
ment to the S-A axis, and was found to load positively on
higher-order networks and negatively on unimodal net-
works. Cluster 1 was found to be less similar to static
FC, with reduced within-cluster similarity, and was not
aligned with the S-A axis, with mixed loadings on higher-

order and unimodal networks. Together, these results
indicate that events can be grouped into 2 clusters with
distinct relationships to the brain’s functional architec-
ture.

Events patterns change with age

In the previous section we used a data-driven approach
to identify two event co-fluctuation patterns that ap-
pear consistently across the lifespan. It remains unclear,
however, whether these two patterns persist unchanged
across age groups. That is, do these events occur at dif-
ferent frequencies in younger brains compared to older?
Do changes in event co-fluctuation patterns occur het-
erogeneously across functional systems? In this section,
we aim to address these questions.
First, we created the average event co-fluctuation pat-

tern for each age group for both cluster 1 and cluster 2
and created a difference matrix between an age group of
interest minus that of the youngest age group (Fig. 3a).
Next, we used the first principal component of the differ-
ence matrix between the youngest and oldest age groups
for cluster 1 (Fig. 3b) and cluster 2 (Fig. 3c) to visualize
the difference in event co-fluctuation patterns across age
groups on the nodal level.
Next, we tested whether the frequency of event co-

fluctuation patterns changes with age. Due to the vari-
ability in total scan duration and number of events across
subjects, we randomly selected 10 event frames per sub-
ject prior to clustering the events. To calculate the rel-
ative frequency of each event co-fluctuation pattern, the
total number of each event co-fluctuation pattern was
divided by the total number of frames used after re-
moving high-motion frames. We found that the relative
frequency cluster 1 to significantly become less frequent
with age (Fig. 3d ; r = −0.34; p < 10−15) whereas the
occurrences of cluster 2 significantly increased with age
(Fig. 3e; r = 0.59; p < 10−15).
We further investigated whether co-fluctuation pat-

terns differ with age in event co-fluctuation patterns at
the system level. To do so, we first created an aver-
age cluster 1 and cluster 2 matrix for each age group
- averaging across subjects and iterations after aligning
events to the cluster centroids. The edges that fall within
or between particular systems were averaged, yielding a
system-by-system matrix, and the elements of this matrix
correlated with age. We then compared the observed cor-
relations to that of an age-randomized null distribution
which consisted of event clusters by system correlated
with randomly re-assigned age groups (5000 iterations).
Compared to the age-randomized null, we found system
pairs whose mean co-fluctuation amplitude was signifi-
cantly more correlated with age in cluster 1 and cluster
2 (Fig. 3f-g, FDR-adjusted p-values; q = 0.01; cluster
1 padjusted = 0.0037; cluster 2 padjusted = 0.0061). We
found more significant system-level changes with age in
cluster 2 than in cluster 1. Specifically, cluster 2 showed
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FIG. 2. Event clusters 1 and 2 have distinct patterns and characteristics. (a) The maximum similarity across 100
runs of k-means clustering using Pearson correlation and k-means clustering using Lin’s concordance as a measure of similarity
(K = 2 − 10). (b) Event co-fluctuation pattern cluster 1 at K = 2 averaged across all age groups and all runs. (c) Event
co-fluctuation pattern of cluster 2 at K = 2 averaged across all age groups and all runs. (d) Similarity of C1 and C2 to static
FC. (e) Scores of the first principal component of cluster 1. (f ) Scores of the first principal component of cluster 2.

a bipartite pattern in correlations with age that were
largely negative in the control and default mode net-
works versus positive age correlations in the dorsal at-
tention, limbic, salience ventral attention, somatomotor,
temporoparietal, and visual networks (Fig. 3g).
Lastly, we tested whether event co-fluctuation patterns

and their properties generalize across different numbers
of age bins of 5 and 10 years (Fig. S1). When using differ-
ent numbers of age bins, we also found two clusters, which
also showed clusters which were highly correlated with
those of 7 age bins (7 age bins versus 5 age bins cluster 1 :
mean = 0.82±0.12; cluster 2: mean = 0.92±0.076; 7 age
bins versus 10 age bins cluster 1: mean = 0.86±0.11; clus-
ter 2: mean = 0.94± 0.065; Fig. S1c, g). We also found
the within-cluster similarity in cluster 2 to be greater
than cluster 1 in both 5 and 10 age bins (5 age bins
p < 10−15; 10 age bins; p < 10−15) as in the results with
7 age bins. The pattern of age-related changes in relative
frequencies of each cluster also matched the results of 7
age bins (Fig. S2; cluster 1: r = −0.37; p < 10−15; cluster
2: r = 0.62; p < 10−15).
In summary, we found that event co-fluctuation pat-

terns change with age in both their frequency and their
system-level organization. Cluster 1 became less frequent
with age, which revealed a heterogeneous system-level
change with age. Cluster 2 frequencies increased with
age, with decreased co-fluctuation within higher-order
networks and increased co-fluctuation patterns in uni-
modal networks with age. Together, these results suggest
that changes in the organization of functional connectiv-
ity across the human lifespan may be highlighted and
further dissected when focusing on the changes in pat-
terns of events - effects of which may be obscured when
averaging across the entire time series data.

Local SC-based communication measure-event
cluster coupling changes with age

Understanding the relationship between brain struc-
ture and function is a central goal in neuroscience. Typ-
ical SC-FC studies allows one to investigate the as-
sociation between structural and functional connection
weights, which does not allow the researcher to inves-
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FIG. 3. Differences in event clusters with age. (a) Cluster patterns were averaged for each cluster across all events and
runs, and subtracted the youngest age group from the rest of the age groups to compare the average difference in event co-
fluctuation patterns (top row: cluster 1; bottom row: cluster 2). (b) Scores of first principal component between the youngest
and oldest age groups for cluster 1. (c) Scores of the first principal component between the youngest and oldest age groups for
cluster 2. (d) Relative frequency of cluster 1 out of 10 randomly sampled event frames for each subject across age groups. (e)
Relative frequency of cluster 2 out of 10 randomly sampled event frames for each subject across age groups. (f ) System edges
in cluster 1 and their correlation with age (left: correlation coefficients; right: significant systems below padjusted = 10−3).
(g) System edges in cluster 2 and their correlation with age (left: correlation coefficients; right: significant systems below
padjusted = 0.0061).

tigate polysynaptic interactions known to shape brain
function. Network communication models are a frame-
work to quantify the structural capacity for interre-
gional communication in the connectome, which takes
into account not only direct connections but also puta-
tive polysynaptic paths [47]. These models have been
used to investigate SC-FC coupling in static FC [48–51],
across the human lifespan [40, 52], to investigate prop-
agation of electrical stimulation [53]. Here, for the first
time, we use communication models to understand how
the structural basis of event co-fluctuation pattern orga-
nization changes with age.

In brief, these communication models can be largely
organized based on whether the measure’s policy aims
to explain communication as a “centralized” or “decen-
tralized” process. For instance, the measure of shortest
paths is a “centralized” communication measure in that

the signaling process requires the knowledge of the en-
tire network’s topology. On the other hand, diffusive
communication policies such as random walks [54] are
“decentralized” policies since the policy is dependent on
the information available at each node rather than the
topology of the complete network.

Here, we aim to answer the following questions by ap-
plying communication models to the lifespan data. If we
generate communication policies based on structural con-
nectivity, can we explain variation in event co-fluctuation
patterns throughout the human lifespan? Does the rela-
tionship between each event co-fluctuation pattern and
structural connectivity-derived communication measures
change with age? To address these questions, we used
9 different communication measures (and their weighted
variants totaling 34 policies) that embody various poli-
cies of network communication and Euclidean distance
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FIG. 4. Schematic illustration of calculating the explained variance between event clusters and structural
connectivity-derived communication measures. We take a subject’s structural connectivity (SC) matrix (a) to create 34
different measures that incorporate various communication policies. Next, we create the average cluster 1 and cluster 2 events
for each age group (b). Matrices from steps (b-c) were used to calculate the variance explained for each node in cluster 1 and
cluster 2 by each communication measure (d). We calculated the mean event co-fluctuation pattern-to-SC-derived measure
relationship matrix for cluster 1 and cluster 2 across all age groups (e). This can be used to find the maximum variance
explained per node for cluster 1 (f ) and (g) or plot the maximum variance explained by system (h-i).

to link structural connectivity with event co-fluctuation
patterns [40].

Here, we used each subject’s SC matrix to create
34 matrices embodying different communication poli-
cies (Fig. 4a-b). We then used the average event co-
fluctuation pattern for cluster 1 and cluster 2 for each
age group (Fig. 4c) to calculate the variance explained by
the communication measure for each node in the event
co-fluctuation patterns (Fig. 4d). We found the over-
all SC-to-cluster relationship to vary across nodes when
averaging the explained variance across communication

measures (Fig. 4e). To identify which functional sys-
tem is best explained by the communication models, we
calculated the maximum variance explained per node
(Fig. 4f-g) and summarized the variance explained by
functional system (Fig. 4h-i). In cluster 1, the maxi-
mum variance explained across various communication
measures was mainly in the visual, dorsal attention, and
somatomotor networks (Fig. 4f, h). The maximum vari-
ance explained in cluster 2 was in the default A, default
B, control B, control C, limbic, somatomotor A, and vi-
sual systems (Fig. 4g, i). Highlighted systems in Fig. 4h,
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i had significantly greater explained variance than that
of the nodal spin test permutation of 5000 iterations
(padjusted < 0.0002).

After investigating the relationship of event co-
fluctuation patterns with SC-derived communication
measures, we then asked whether these relationships
change with age. To answer this question, we calculated
the variance explained in event co-fluctuation patterns by
communication measures for each age group. Next, we
narrowed the scope of investigation by identifying com-
munication measures that best explained the variance of
cluster centroids across nodes for cluster 1 and cluster
2 (Fig. 5a-b). We also showed the system-level patterns
in subject-level SC-derived communication measures and
how their event co-fluctuation pattern relationships vary
across age groups (Fig. 5c). These results were also
found in distance-dependent, representative SC matri-
ces for each age group and event co-fluctuation patterns
(Fig. S10, [55]).

In both cluster 1 and cluster 2, Euclidean distance was
found as one of the most frequently maximal measures of
explained variance. The explained variance of both clus-
ter 1 and cluster 2 events using Euclidean distance was
highlighted in the visual networks (Fig. 5d, h). When
taking the explained variance of cluster 1 events by Eu-
clidean distance and correlated them across age groups,
we only found negative significant correlations with age
in the control A, control C, default mode, dorsal atten-
tion A, salience ventral attention, and visual networks
(Fig. 5e-f ). Here, we considered the system-level age
correlation significant if the correlation was both signif-
icant compared to a spin-test null model and the mag-
nitude of age correlation greater than that of non-event
frames (Fig. 5f ; padjusted < 10−8). When correlating
the explained variance of cluster 2 events and Euclidean
distance with age, we found significantly positive correla-
tions only in the temporoparietal network, and significant
negative correlations in the control A and B, dorsal at-
tention B, salience ventral attention, and somatomotor
networks (Fig. 5i-j ; padjusted = 10−4).

Another frequent measure of maximum explained vari-
ance in cluster 1 and cluster 2 was communicability -
which gives more weight to shorter walks in a network
that accounts for various paths between two nodes [56].
With communicability, in both clusters 1 and 2, the ex-
plained variance was mainly enriched in the somatomotor
networks (Fig. 5l, p). The explained variance of cluster
1 events and communicability was found to have signif-
icant negative correlations across most systems except
the limbic, salience ventral attention B, and central vi-
sual networks (Fig. 5m, n; padjusted = 0.0088). When
correlating the explained variance of cluster 2 events and
communicability with age, we found significantly nega-
tive correlations in the control A, default mode B, default
mode C, and limbic networks (Fig. 5q, r).

Combined, we find the results in event patterns to align
with previous research that Euclidean distance and com-
municability explain structure-function relations in static

FC [40]. Also, most age correlations between event co-
fluctuation patterns on the system-level with SC-derived
communication measures were negatively correlated. In
other words, previous work has showed that structure-
static FC relations globally decrease with age but vari-
able in canonical brain networks [40], we were also able
to observe a similar phenomena when using patterns of
events with age. However, the extent of different mea-
sures’ and their system-level explained variances were
heterogeneous across the event co-fluctuation patterns.

Modular event co-fluctuation patterns

In this section, we investigated how the event co-
fluctuation patterns are organized - i.e. do events de-
pict modular structure as static FC? If so, how are their
modules organized and do they decrease with age as re-
ported in previous studies using static FC? In this sec-
tion, we aimed to address these questions by using modu-
larity maximization with generalized Louvain heuristics.
We calculated modularity (Q) in the event clusters, non-
event frames, and static functional connectivity.
Here, we show that cluster 1 and cluster 2 events are

significantly more modular than non-events across age
groups, and that the modularity of static FC falls in
between events and non-events (Fig. 6a). Our results
also show that modularity of both event co-fluctuation
patterns decrease with age and that the modularity of
static FC is driven by the modularity of event frames.
These results also align with previous literature demon-
strating how the modularity of static FC decreases with
age. Next, we weighed each event co-fluctuation pat-
tern’s modularity with their frequencies in each age group
(Fig. 3d-e). This allows a more realistic estimate of the
combined impact of changes in event co-fluctuation pat-
tern modularity and how they overall change with age.
Here, we found significant decreases in modularity with
age when weighing events with their frequencies (Fig. 6b;
r = −0.48; p < 1011).
Next, we asked whether there were differences in the

modular organizations between the event co-fluctuation
patterns. When using modularity maximization in clus-
ter 1 events across all age groups and subjects, we de-
tected four modules (Fig. 6c, e). When comparing the
module compositions to that of a nodal spin-test null
of 5000 iterations, we found control, dorsal attention
B, salience ventral attention networks to be represented
above change in module 1, the limbic, somatomotor, tem-
poroparietal networks in module 2, the visual and dor-
sal attention A networks in module 3, and the default
mode, limbic, and temporoparietal networks in module 4
(p < 0.0002).
Using the same approach, we detected two modules

in cluster 2 event co-fluctuation patterns. Compared
to a spin-test null distribution, module 1 was signifi-
cantly overrepresented with nodes in the dorsal attention,
salience ventral attention, somatomotor, visual networks,
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FIG. 5. SC-event relationships and age. (a) Similarity of communication measures for cluster 1 events. Histogram on
top represents the count of each communication measure having the maximum nodal explained variance. (b) Similarity of
communication measures for cluster 2 events. Histogram on top represents the count of each communication measure having
the maximum nodal explained variance. The two measures exhibiting greatest R2 were Euclidean distance and communicability,
highlighted in magenta boxes. (c) System-level correlations of cluster 1 (top) and cluster 2 (bottom) events with various SC-
derived communication measures with age. Panels d, e and f show variance in the cluster 1 centroid explained by Euclidean
distance, its correlation with age, and the breakdown of these correlations by brain system. The remaining panels show similar
information for cluster 2 and Euclidean distance, and clusters 1 and 2 with communicability.

and module 2 overrepresented with control, default mode,
limbic, and temporoparietal networks (p < 0.0002). The
modular organization of the average cluster 1 and cluster
2 event co-fluctuation patterns were visualized in Fig. S5,
after reorganizing nodes by modules. Also, we find that
the modular organization of cluster 2 events largely align
with the sensorimotor-association axis found when using
principal component analysis (Fig. S8).

In sum, we find that event co-fluctuation patterns are
significantly more modular than non-event frames, whose
modularities decrease with age. Our results also show

that the modular organizations also vary across event co-
fluctuation patterns - with four modules detected in clus-
ter 1 events and two modules in cluster 2 events. Given
that event frame contribute disproportionately more to
static FC than non-events, and that their modularity is
significantly greater than both static FC and non-event
frames, their reduction in modularity may be driving
changes in functional modular organization across the
human lifespan which requires further investigation.
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FIG. 6. Event modules (a) Modularity of event co-fluctuation patterns, non-events, and static FC across age groups. (b)
Modularity of event co-fluctuation patterns after weighing each pattern with its frequency in each age group. Modules of (c)
cluster 1 and (d) cluster 2 and their system-level composition (e-f ). Modules highlighted in magenta boxes are modules that
comprise a significantly greater proportion of the functional system than a spin-test null result of 5000 iterations.

Predicting cognitive measures using event
co-fluctuation patterns

To this point, our analyses addressed how we can de-
tect event co-fluctuation patterns and characterized their
features across age and coupling with structural connec-
tivity. In this final section, we addressed whether event
co-fluctuation patterns are useful in predicting cogni-
tive measures using connectome-based predictive mod-
eling or CPM [57]. Here, we used the Wechsler Indi-
vidual Achievement Test (WIAT) and Wechsler Abbre-
viated Scale of Intelligence (WASI) which are various
measures of human intelligence or achievement that were
available to most subjects across all age groups. Overall,
we find that across these different measures, event patt-
terns consistently yielded stronger predictions of behav-
ioral phenotypes (0.351-0.469), compared to non-event
frames (0.335-0.359; Fig. 7). However, we note that the
predictions using events or non-events (which uses only
0.1∼1% of temporal dynamic information) have weaker
correlations than compared to static FC in which these
correlations were between 0.66 up to 0.71 (Fig. S6).

DISCUSSION

In this study, we aimed to uncover how high-amplitude
co-fluctuations – “events” – in resting state functional
MRI varied across the human lifespan using a large,
cross-sectional sample dataset. First, we demonstrated
that events could be partitioned into two clusters based
on their topography. We showed that the relative fre-
quency of each cluster varied systematically with age.
Next, we aimed to understand the structural under-

pinnings of these patterns. We addressed this ques-
tion by using stylized communication models, showing
that event co-fluctuations were best explained by geom-
etry (interregional Euclidean distance) and communica-
bility. Moreover, we found that the explanatory power of
these predictors varied with age in each pattern. Lastly,
we characterized the modular organization of the event
co-fluctuation patterns and demonstrated their utility
in predicting phenotypes. We showed that event co-
fluctuation patterns exhibited dissociable modular orga-
nization and that they enhanced the prediction accu-
racy of scores of WIAT (Wechsler Individual Achieve-
ment Test) and WASI (Wechsler Abbreviated Scale of
Intelligence) compared to the non-event counterparts.

Brain-wide events can be clustered into two distinct
patterns that change with age

FC is known to continuously undergo refinement across
the human life span - from childhood, adolescence, adult-
hood, and aging [8, 10–12, 19]. Also, previous research
has shown that events contribute disproportionately to
static FC [24] and can be partitioned into recurring states
[45]. In this section, we aimed to answer explore what
drives lifespan changes in FC by studying clusters of
events.
We also note that patterns of events in part align with

and in part vary from previous research. Prior stud-
ies that cluster high-amplitude co-fluctuation frames in
resting state fMRI report of a task-negative event co-
fluctuation pattern that highly correlates with static FC
[24, 33, 45], which aligns with the cluster 2 events. In case
of the dissimilarities, there may be various reasons under-
lying the differences in event co-fluctuation patterns.
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FIG. 7. Predicting phenotypes with event and non-event frames using connectome-based predictive modeling
(CPM) (a-c) Prediction results of WIAT scores using non-event, cluster 1, and cluster 2 frames. (d-f ) Prediction results of
WASI VCI scores using non-event, cluster 1, and cluster 2 frames. (g-i) Prediction results of WASI PRI scores using non-event,
cluster 1, and cluster 2 frames. (j-l) Prediction results of WASI FSI scores using non-event, cluster 1, and cluster 2 frames.
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For one, the event co-fluctuation patterns detected in
this investigation were equally sampled across age groups,
which may vary from patterns of events found in datasets
with scopes limited to healthy young adults [58] or a
single densely sampled individual [37]. Also, there were
methodological differences in event co-fluctuation pattern
detection such as modularity maximization in previous
studies [37, 58]. In this study, we used K-means cluster-
ing to detect recurrent patterns or states in high ampli-
tude co-fluctuations. This was a methodological decision
since our dataset, unlike the previous studies, included
over 500 subjects which would have been computation-
ally challenging if we were using modularity maximiza-
tion.

We also note that previous studies that cluster patterns
or states in time-varying, dynamic functional connectiv-
ity using sliding window approaches also report varying
numbers of recurrent states in resting state fMRI [59–63].
This may be due to the differences in the datasets (e.g.
age range), methods to identify states, and MR process-
ing pipelines. Therefore, identifying a consistent set of
recurrent states in resting state fMRI requires further in-
vestigation. Our results also align with previous findings
in dynamic FC which have demonstrated the complex-
ity of dynamic FC decreasing with age by the changes in
state dwell times or the slowing of fluctuations [64, 65].

Cluster frequencies as well as their system-level or-
ganization were found to vary across age groups. The
static FC-resembling, internally similar, S-A axis aligned
cluster 2 events showed significant increase in frequency
amongst events with age whereas the non-FC-resembling,
internally dissimilar, cluster 1 events decreased with age.
We can combine the fact that mathematically, events will
contribute disproportionately more to static FC [24] and
our finding that event co-fluctuation pattern frequencies
vary across age groups. Combining these effects, the oc-
currence of these event co-fluctuation patterns may ex-
plain differences in static FC across age groups through
a systematic refinement of functional connectivity.

In cluster 1, the system-level changes were largely asso-
ciated with the reduced co-fluctuation amplitudes in the
visual networks across age and increased co-fluctuation
amplitudes in somatomotor networks. In cluster 2, there
were mainly reduced co-fluctuation amplitudes in the de-
fault mode network with age and increases in dorsal at-
tention, limbic, salience ventral attention, somatomotor,
temporoparietal, and visual networks with age. These
results suggest that events that disproportionately con-
tribute to static FC have distinctive patterns that het-
erogeneously change with age, effects of which may be
diluted when using the entire time series data as in static
functional connectivity.

Lastly, we note that it was a decision to focus on these
high-amplitude frames since they by definition will con-
tribute more to the time-averaged static FC. Recent stud-
ies have shown that frames of various amplitudes of co-
fluctuation contain different predictive utilities for phe-
notypes [45, 66–68]. Therefore, we consider zooming in

on event frames as a starting point in the analysis of
patterns in time-varying co-fluctuations, rather than as
a complete summary.

Structural connectivity derived communication
policies and their coupling with event co-fluctuation

patterns change with age

Understanding the interplay between structural con-
nections constraining and facilitating synchronized inter-
regional activity, is a central question in neuroscience
[47, 69, 70]. To investigate their relationships, we
used stylized network models of brain communication
to examine the structural underpinnings of event co-
fluctuation patterns. We used various communication
policies [40] by transforming a sparse SC matrix into
fully-weighted matrices. We note that various approaches
have previously been used to study SC-FC relationships
using neural mass models (NMMs) [71–74] and various
heuristics applied to structural connective weights [75–
77]. While these approaches have been useful, each
branch of methodology is also limited by heavy compu-
tation and extensive parameter fitting or being unable to
predict FC that aren’t directly connected structurally.
The SC-derived communication measures allowed us

to more directly compare structure and function matri-
ces through the use of measures that embody different
nuanced policies of communication without the compu-
tational burden of multi-parameter models. First, we
found that the event co-fluctuation patterns couple with
various SC-derived communication measures heteroge-
neously. We note, that the patterns of explained variance
were largely similar across various communication poli-
cies. Cluster 1 events showed greatest levels of explained
variance in visual areas whereas in cluster 2 events the de-
fault mode networks showed greatest levels of explained
variance.
These results align with previous research in structure-

function coupling in dynamic FC which have demon-
strated greater SC-FC coupling in sensorimotor cortices
and weaker coupling in the heteromodal regions [39, 78–
80]. Such effects may in part be attenuated by the in-
creased frequency of cluster 2 patterns in static FC with
increasing age, which were also significantly aligned to
the sensorimotor-association axes [81]. However, it is
left for further investigation on whether repeated events
across the course of the human lifespan affects structure-
function relationships.
Next, our results also demonstrated that structural

connectivity-derived communication measures and their
explained variance for event co-fluctuation patterns
change with age. Overall, our results are in line with
previous studies that report the relationship of spatial,
geometric distance between brain regions [82–84], the
topological organization in SC and its relationship with
FC [48, 49], and their combinations [85]. Previously, Eu-
clidean distance and communicability was emphasized in
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describing SC-FC relationships across the human lifespan
[40]. In this paper, we demonstrate that both the spatial
and topological organization of SC are useful measures
for understanding the SC-event relationships across the
human lifespan.

Thirdly, we showed that SC-event relationships with
age are heterogeneous for event co-fluctuation patterns.
A previous study has shown that global SC-FC coupling
largely decreases with age and that local SC-FC coupling
is heterogeneous across the human lifespan [40]. For both
cluster 1 and cluster 2 events, both Euclidean distance
and communicability generally showed system-level de-
creases in coupling with age. Such results align with pre-
vious studies in that events disproportionately resemble
static FC and therefore are likely to match or even drive
the results found in static FC. When investigating the re-
lationship between the event co-fluctuation patterns and
Euclidean distance or communicability, the somatomotor
networks and visual networks displayed the highest lev-
els of explained variance. However, how these relation-
ships differ across age groups were heterogeneous, and
mostly negatively correlated with age. These observa-
tions pose further questions for research toward the rela-
tionship between structural and functional connectivity
and how their relationships are modulated across the hu-
man lifespan.

Event co-fluctuation patterns have distinct modular
organizations

The functional organization of the human brain is
known to have modular organization, the modularity of
which is known to largely decrease with age [52, 86–90].
Here, we extended our study to investigate whether event
co-fluctuation patterns are modular and to track their
changes in modularity with age. First, we found that as
in previous studies using static FC, modularity of event
frames were found to decrease with age. Also, the mod-
ularity of static FC was found to be driven by that of
events, with event co-fluctuation patterns being more
modular than static FC and non-event frames. We also
found that the event co-fluctuation patterns’ modularity
weighed by their relative frequencies of each age group
also decrease in modularity across the human lifespan.
This result aligns with our expectations since static FC
is calculated by averaging over all time frames, including
both event and non-event frames.

We also found that each event co-fluctuation pattern
has varying modular organizations with different func-
tional brain organizations. The modules in cluster 1
were found to heterogeneously align with canonical func-
tional systems [91] whereas the modules in cluster 2
largely partitioned the brain into higher-order versus
lower-order functioning brain regions [81]. Whether the
functional organization of the brain is attentuated by
the occurrences and organization of high-amplitude co-
fluctuations across the human lifespan requires further

investigation.

Event co-fluctuation patterns contain
disproportionately more information of an

individual than non-events in certain measures

Previous analyses focused on detecting and describing
the two main patterns in high-amplitude co-fluctuations
in fMRI data. To the best of our knowledge, our anal-
yses are the first to investigate these events and their
patterns across the human lifespan. However, our re-
sults still beg a practical question: why should one take
interest in these events and are they useful for mak-
ing meaningful predictions of an individual? To address
these questions, we used an individual’s average event
co-fluctuation pattern as the predictive functional con-
nectome in connectome-based predictive modeling [57]
to determine their utility in predicting one’s cognitive
performance in achievement and intelligence.
When using cluster 1, cluster 2 event co-fluctuation

patterns, and non-events, events were found to out-
perform predicting measures of achievement and intel-
ligence (the Wechsler Individual Achievement Test and
Wechsler Abbreviated Scale of Intelligence scores) com-
pared to non-events. However, we note that when us-
ing static FC most clearly outperformed events or non-
events, which included at least 100 and up to 1000 times
the temporal information as the counterparts. This re-
sult is also in line with more recent studies revealing
that the high-amplitude co-fluctuations include group-
relevant task variance [92] and if removed, can improve
subject identifiability [93]. This does not necessarily
conflict with our findings that event frames are more
identifiable than non-events. When comparing against
various co-fluctuation amplitudes, sub-event frames have
been reported to be the most identifiable than non-
events [66, 68]. Therefore, while event frames are sig-
nificantly more identifiable than non-event frames, they
may also be including group-level variance that does not
contribute to subject identifiability.
Additionally, these results hint at the varying utility

of event co-fluctuation patterns and dynamic functional
connectivity. For predicting achievement and intelligence
scores, cluster 1 events produced phenotype predictions
that were most similar to the observed phenotypes. How-
ever, when determining subject idiosyncrasies, cluster 2
events were found to be more similar within each subject
than cluster 1 or non-events. These findings indicate that
different event co-fluctuation patterns have varying util-
ity and may even have different functionalities in brain
function and throughout the human lifespan. However,
we note that investigating event co-fluctuation patterns
for predicting phenotypes is a much more limited scope
than investigating various moments of co-fluctuation am-
plitudes in time to maximize predictability [66–68]. How
the predictability of various moments of co-fluctuation
amplitudes change across the human lifespan requires
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further investigation.

Limitations and future directions

Finally, we highlight some of the limitations in our
present study. First, our results mainly describe event co-
fluctuation patterns and their changes with age but does
not provide an understanding of their roles in our brains’
activities. Our results revealed that events have dis-
tinct subtypes that change throughout the human lifes-
pan, are heteromodally involved with SC-derived com-
munication measures, are modular, and have predictive
utility of one’s achievement and intelligence. However,
it still remains unclear whether an event co-fluctuation
pattern serves specific functional roles such as develop-
ment, functional diversification, stabilizing and/or sus-
taining the main functions of the human brain. Also,
it is unknown whether event co-fluctuation patterns are
involved in the manifestation of cognitive or behavioral
disorders through their changes. Further investigation
is required to determine the relationship between each
event co-fluctuation pattern with brain function and age.

Another question that has not been resolved in this
paper is what causes or drives these patterns. Previous
studies have shown that high-amplitude co-fluctuations
in fMRI are related to endogenous hormones during a
menstrual cycle [37], may be implicated in arousal dur-
ing movie watching data [94], can be predicted by static
FC [31], and arise in modular in silico activation patterns
[41]. In part, we aimed to answer this question by investi-
gating the relationship between event co-fluctuation pat-
terns and various SC-derived communication measures.
However, a longitudinal investigation is warranted to help
understand the structure-function relationships that sup-
ports the event co-fluctuation patterns.

Another limitation of our study is that we mainly chose
to describe lifespan trajectories of variables of interest
with linear models using linear correlation coefficients.
While linear models have been widely used to observe
age-related changes in brain networks, they have been
known to be prone to some inherent limitations [95, 96].
One which includes that first order polynomial models
may not capture nonlinear changes in the variables over
the lifespan. In future work, other models such as partial
least squares may prove useful for identifying collective
changes in connectivity with age [97].

Also, the number of clusters identified in this study re-
quires further investigation since this may vary depend-
ing on the method of cluster detection and error estima-
tion, dataset, or even due to variance in the data prepro-
cessing pipelines. In this study, our decision to use the K-
means algorithm was practically motivated since meth-
ods used in previous studies with smaller datasets was
computationally challenging to scale to the NKI dataset
including hundreds of subjects.

Lastly, the dataset that we investigate covers a limited
age range (ages 6 to 75), which does not cover the early

postnatal-childhood period (ages 0 to 5) nor healthy ag-
ing subjects beyond the age of 75. It can be expected that
the young brains of infants and children also experience
such high-amplitude co-fluctuations in some form, and
their occurrences may be related to the observed events
in their later years. Also, it is likely that due to the
rapid change in structural and functional connectivity in
the early years, that such event co-fluctuation patterns
also undergo dynamic changes during this period.

Conclusions

In conclusion, our work sought to answer whether
high-amplitude co-fluctuations in the human BOLD sig-
nal has patterns that consistently show up across age
which are also subject to change across the human lifes-
pan. Our findings show that events or peak moments of
high-amplitude co-fluctuations in rsfMRI, which consti-
tute 0.1∼1% of global time series, have distinct patterns
that change throughout the human lifespan. These pat-
terns were also found to change in their coupling pat-
terns with one’s structural connectivity-derived commu-
nication measures and to have distinct modular organi-
zations. Finally, we demonstrate that event frames are
more predictive of an individual’s achievement and in-
telligence scores across age than non-event frames, high-
lighting their potential predictive utilities in future re-
search.

MATERIALS AND METHODS

Dataset

Nathan Kline Institute, Rockland Sample

The Nathan Kline Institute Rockland Sample (NKI-
RS) dataset consisted of resting state functional mag-
netic resonance imaging, structural magnetic resonance
imaging, as well as diffusion magnetic resonance imaging
data from 711 subjects (downloaded December 2016 from
the INDI S3 Bucket) of a community sample of partic-
ipants across the human lifespan. After excluding sub-
jects based on data and metadata completeness and qual-
ity control (see Image Quality Control), the final subset
used included 537 subjects (62.6% female, age range = 6 -
75). The study was approved by the Nathan Kline Insti-
tute Institutional Review Board and Monclair State Uni-
versity Institutional Review Board and informed consent
was obtained from all subjects. Subjects were compen-
sated for their participation. A comprehensive descrip-
tion of the imaging parameters can be found online at the
NKI website. Briefly, images were collected on a Siemens
Magneton Trio with a 12-channel head coil. Subjects
underwent three differently parameterized resting state
scans, but only one acquisition is used in the present
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study. The fMRI data was acquired with a gradient-
echo planar imaging sequence (TR = 645ms, TE = 30ms,
flip angle = 60◦, 3mm isotropic voxel resolution, multi-
band factor = 4). This resting state run lasted approxi-
mately 9:41 seconds, with eyes open and instructions to
fixate on a cross. Subjects underwent one T1-weighted
structural scan (TR = 1900ms, TE = 2.52 ms, flip angle
= 9◦, 1mm isotropic voxel resolution) and one diffusion
MRI scan (TR = 2400ms, TE = 85ms, flip angle = 90◦,
2mm isotropic voxel resolution, 128 diffusion weighted
volumes, b-value = 1500s/mm2, 9 b = 0 volumes).

Image Quality Control

The NKI was downloaded in December of 2016 from
the INDI S3 Bucket. At the time of download, the
dataset consisted of 718 fMRI (“acquisition645”; 634 sub-
jects) 957 T1w (811 subjects), and 914 DWI (771 sub-
jects) images. fMRI images were excluded if greater than
15% of time frames exceeded 0.5mm framewise displace-
ment. Furthermore, fMRI images were excluded if the
scan was marked as an outlier (1.5x the inter-quartile
range in the adverse direction) in 3 or more of the fol-
lowing quality metric distributions: DVARS standard de-
viation, DVARS voxel-wise standard deviation, tempo-
ral signal-to-noise ratio, framewise displacement mean,
AFNI’s outlier ratio, and AFNI’s quality index. This
image quality metric filtering excluded 21 fMRI images,
zero T1w images, and 16 DWI images. Following these
visual and image quality metric filterings, 697 fMRI im-
ages (633 subjects), 809 T1w images (699 subjects), and
728 DWI images (619 subjects) were maintained.

Image Preprocessing

The fMRI images in the NKI dataset were prepro-
cessed using the fMRIPrep version 1.1.8 [98]. The fol-
lowing description of fMRI preprocessing is based on fM-
RIPrep’s documentation. This workflow utilizes ANTs
(2.1.0), FSL (5.0.9), AFNI (16.2.07), FreeSurfer (6.0.1),
nipype [99], and nilearn [100]. T1w images were sub-
mitted to FreeSurfer’s cortical reconstruction workflow
(version 6.0). The FreeSurfer results were used to skull
strip the T1w, which was subsequently aligned to MNI
space with 6 degrees of freedom. Functional data was
slice time corrected using AFNI’s 3dTshift and motion
corrected using FSL’s mcflirt. “Fieldmap-less” distor-
tion was performed by co-registering the functional im-
age to the same-subject T1w with intensity inverted [101]
constrained with an average fieldmap template [102], im-
plemented with antsRegistration. This was fol-
lowed by co-registration to the corresponding T1w us-
ing boundary-based registration [103] with 9 degrees of
freedom, using bbregister. Motion correcting trans-
formation, field distortion correcting warp, and BOLD-
to-T1w transformation warp were concatenated and ap-

plied in a single step using antsApplyTransforms
using Lanczos interpolation. Frame-wise displacement
[104] was calculated for each functional run using Nipype.
The first four frames of the BOLD data in the T1w
space were discarded. Each T1w was corrected us-
ing N4BiasFieldCorrection [105] and skull-stripped
using antsBrainExtraction.sh (using the OASIS
template). The ANTs derived brain mask was refined
with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cor-
tical gray matter of Mindboggle [106]. Brain tissue seg-
mentation of cerebrospinal fluid (CSF), white matter
(WM) and gray matter(GM) was performed on the brain-
extracted T1w using fast [107]. Diffusion images were
preprocessed following the “DESIGNER” pipeline using
MRTrix (3.0) [108, 109], which includes denoising, Gibbs
ringing and Rician bias correction, distortion and eddy
current correction [110] and B1 field correction. DWI
were then aligned to their corresponding T1w and the
MNI space in one interpolation step with B-vectors ro-
tated accordingly. Local models of white matter orien-
tation were estimated in a recursive manner [111] using
constrained spherical deconvolution [112] with a spherical
harmonics order of 8. Tractography was performed using
Dipy’s Local Tracking module [113]. Probabilistic
streamline traactography was seeded five times in each
white matter voxel. Streamlines were propagated with
a 0.5mm step size and a maximum turning angle set to
20◦. Streamlines were retained if longer than 10mm and
with valid endpoints, following Dipy’s implementation of
anatomically contrained tractography [114].

Network definition

Parcellation

For the NKI fMRI and DWI, the Schaefer 400 par-
cellation was rendered as a volumentric parcellation in
each subject’s anatomical space within the gray matter
ribbon. To transfer the parcellation from fsaverage to
subject space, FreeSurfer’s mris ca label function was
used in conjunction with a pre-trained Gaussian classifier
surface atlas [115] to register cortical surfaces based on
individual curvature and sulcal patterns.

Functional connectivity

For the NKI dataset, each preprocessed BOLD im-
age was linearly detrended, band-pass filtered (0.008-
0.08Hz), confound regressed, and standardized using
Nilearn’s signal.clean function, which removes con-
founds orthogonally to the temporal filters. The con-
found regression strategy included six motion estimates,
mean signal from the white matter, cerebrospinal fluid,
and whole brain mask, derivatives of these previous nine
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regressors, and squares of these 18 terms. Spike regres-
sors for frames with motion greater than 0.5mm frame-
wise displacement were applied. The 36 parameter strat-
egy (with and without spike regression) has been shown
to be a relatively effective option to reduce motion-
related artifacts [116]. Following these preprocessing op-
erations, the mean signal was acquired for each node in
the volumetric anatomical space.

Structural connectivity

Structural connectivity was quantified based on the
number of streamlines between cortical regions (nodes).
Since the size of the node is has known effect on the
streamline count [75], the streamline counts were nor-
malized by dividing the count between nodes by the ge-
ometric average volume of the nodes.

Age matched sampling and binning

The intersection of subjects with at least one valid
fMRI, T1w, and DWI images after totaled in 567 sub-
jects. Age metadata was available for 542 of these sub-
jects. Finally, subjects with fMRI images with NAN val-
ues were excluded, resulting in an intersection of 537 sub-
jects (age 6 - 75). The age distribution of the NKI dataset
was not uniformly distributed, which if used directly for
the clustering analysis may bias the cluster results to
characteristics of age groups with larger samples. There-
fore, we first created seven equal sized age bins (bin size
= 10 years) and randomly sampled 20 subjects per age
group. The number of subjects randomly sampled in each
age group was determined to ensure that the age group
with the smallest number of N could be sampled to in-
clude on average less than a 50% overlap in any pair of
random samples. Each subject’s nodal time series were
used to calculate edge time series and detect events. The
process of subject sampling, event detection, and cluster-
ing processes were repeated 100 times.

Edge time series and events

Following the preprocessing and sampling steps for
rsfMRI data described previously, the mean signal was
taken at each time frame for each node, forming the nodal
time series. The FC between brain regions i and j is op-
erationalized as a correlation coefficient summarized as
the Pearson correlation coefficient as follows:

FCij =
1

T − 1

∑
t

zi(t)× zj(t) (1)

where zi = [zi(1), . . . , zi(T )] is the vector or z-scored
nodal activity from region i.

The edge time series for edge i, j is calculated by sim-
ply omitting the summation and normalization step. In
short, edge time series is calculated as follows:

eij(t) = zi(t)× zj(t). (2)

This procedure is repeated for all pairs of nodes re-
sulting in an edge-by-time time series matrix. The el-
ements of this matrix encode the moment-by-moment
co-fluctuation magnitude of nodes i and j. A positive
value in this co-fluctuation would indicate a simultane-
ous increase or decrease in the activity of nodes i and j,
whereas a negative value would reflect their opposite di-
rection of activity. Similarly, a magnitude close to zeros
would indicate that either i or j had very low levels of
activity.
After creating an edge time series matrix (edge-by-

time) for each subject, we calculated the root mean sum
square (RMS) at every given time point resulting in a
single time series representing the global co-fluctuation
amplitude. Next, we identified frames as “events” in the
RMS signal that had a significantly larger RMS than the
circularly shifted null model counterpart.

K-means clustering

We used a k-means clustering algorithm with both
Pearson correlation and Lin’s concordance as the dis-
tance measure to cluster the event co-fluctuation pat-
terns. More specifically, events frames were partitioned
in a non-overlapping fashion so that each frame was la-
beled either as cluster 1 up to cluster K. We acquired
the event frame clusters for each run from k = 2 to
10. The partition labels in k-means are assigned ran-
domly - the identical set of elements can have an identical
partition with alternative labels [C1, C1, C1, C2, C2, C1]
or [C2, C2, C2, C1, C1, C2]. Therefore, we realigned the
cluster labels across runs so that each cluster label repre-
sented the maximally similar cluster label in another run.
To do align the cluster labels, at each K, the cluster labels
were compared across runs and realigned to minimize a
cost function. We used thematchpairs function provided
in MATLAB that minimizes total cost - measured as clus-
ter centroid dissimilarity (1−Correlation coefficient) - of
a linear assignment problem. Cluster centroids from each
run were then re-aligned to match the centroids of the
partition that minimizes the total cost.

SC predictors

A suite of communication measures (predictors) were
applied to each subject’s structural connectivity matri-
ces to help uncover the SC-event co-fluctuation pattern
relationships. A total of 34 predictors (a core set of 10
measures with varying weights in communication policy)
were used. A more detailed description into all 10 mea-
sures can be found in Zamani Esfahlani et al. 2022 [40].
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We focused on two communication measures that were
mainly highlighted in our results - Euclidean distance
and communicability. Euclidean distance was calculated
between regional centers of mass as the square root of
squared difference between center coordinates.

Communicability [56] is the weighted sum of all walks
between pairs of nodes. For a binary network, communi-
cability is calculated as G = eA or

∑∞
p=0

Ap

p! . Walks and

their weights are dependent on the number of steps, and
longer walks are penalized in their contributions. For in-

stance, a single step walks are A1

1! , two-step walks are A2

2! ,

three-step walks are A3

3! , and so on.

For weighted networks, we calculated weighted com-
municability by following Crofts and Higham (2009)
[117]. First, the weighted structural connectivity matrix
is normalized as A′ = D−1/2AD−1/2 (D : degree diago-
nal matrix). The normalized matrix is the exponent used

to calculate weighted communicability Gwei = eA
′
.

Event frame modularity

We used modularity maximization to find modular
structures and calculate the modularity of event co-
fluctuation patterns, non-event frames, and static FC.
Modularity maximization is a computational heuristic
for detecting community structures in a network. The
method defines communities or clusters as groups of ele-
ments in which the internal density of connections maxi-
mally exceed what would be expected. Based on this ap-
proach, we used the expected weight of connections to be
equal to the mean similarity between all pairs of patterns.
Here, we used modularity maximization with the gener-
alized Louvain heuristics which is non-deterministic, and
can yield dissimilar results depending on the initial state.

Therefore, after detecting modules of event co-
fluctuation patterns, the partitions were realigned to
the cluster centroid that minimizes the dissimilarity cost
function after averaging the event co-fluctuation pattern
for each age group. We then calculated the co-assignment
probability of nodes, i.e. the likelihood that the nodes are
assigned to the same community. We repeated the algo-
rithm for 1000 iterations with varying random seeds. The
variability across the iterations were resolved by using a
consensus clustering algorithm in which we iteratively
cluster the module co-assignment matrix until conver-

gence. The resulting consensus partition assigned each
brain region in non-overlapping clusters. The modules
of non-event frames were detected with an identical ap-
proach.

Frame-wise identifiability

We calculate differential identifiability [93] by using
event frames across subjects and first creating a frame-
to-frame similarity matrix. Similarity between frames
were calculated using correlation coefficients, followed
by subtracting the mean within-subject frame similar-
ities minus mean between-subject similarities. Specifi-
cally, differential identifiability (Idiff ) was calculated as
Idiff = (Iself − Iothers) ∗ 100.
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M. A. Lindquist, A. R. McIntosh, et al., Network neu-
roscience 4, 30 (2020).

[22] R. Hindriks, M. H. Adhikari, Y. Murayama,
M. Ganzetti, D. Mantini, N. K. Logothetis, and
G. Deco, Neuroimage 127, 242 (2016).

[23] M. Kudela, J. Harezlak, and M. A. Lindquist, Neu-
roImage 149, 165 (2017).

[24] F. Zamani Esfahlani, Y. Jo, J. Faskowitz, L. Byrge,
D. P. Kennedy, O. Sporns, and R. F. Betzel, Proceed-
ings of the National Academy of Sciences 117, 28393
(2020).

[25] J. Faskowitz, F. Z. Esfahlani, Y. Jo, O. Sporns, and
R. F. Betzel, Nature neuroscience 23, 1644 (2020).

[26] X. Liu and J. H. Duyn, Proceedings of the National
Academy of Sciences 110, 4392 (2013).

[27] X. Liu, C. Chang, and J. H. Duyn, Frontiers in systems
neuroscience 7, 62295 (2013).

[28] J. M. Shine, O. Koyejo, P. T. Bell, K. J. Gorgolewski,
M. Gilat, and R. A. Poldrack, Neuroimage 122, 399
(2015).
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and R. F. Betzel, Nature communications 13, 2053
(2022).

[41] M. Pope, M. Fukushima, R. F. Betzel, and O. Sporns,
Proceedings of the National Academy of Sciences 118,
e2109380118 (2021).

[42] K. B. Nooner, S. J. Colcombe, R. H. Tobe, M. Mennes,
M. M. Benedict, A. L. Moreno, L. J. Panek, S. Brown,
S. T. Zavitz, Q. Li, et al., Frontiers in neuroscience 6,
152 (2012).

[43] A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann,
X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, and B. T. Yeo,
Cerebral cortex 28, 3095 (2018).

[44] R. F. Betzel, E. Chumin, F. Zamani Esfahlani, J. Tan-
ner, and J. Faskowitz, BioRxiv , 2022 (2022).

[45] R. Betzel, S. Cutts, J. Tanner, S. Greenwell, T. Varley,
J. Faskowitz, and O. Sporns, bioRxiv (2022).

[46] I. Lawrence and K. Lin, Biometrics , 255 (1989).
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FIG. S1. Event co-fluctuation patterns using k-means clustering with alternative age bins Event co-fluctuation
patterns across five age bins (age bin = 14 years). (a) Mean C1 and (b) mean C2 across all age bins. Relative frequency of
(c) C1 and (d) C2 across all five age bins. (e) Similarity of C1 and C2 with static FC for five age bins. Event co-fluctuation
patterns across ten age bins (age bin = 7 years). (f ) Mean C1 and (g) mean C2 across all ten age bins. Relative frequency of
(h) C1 and (i) C2 across all ten age bins. (j ) Similarity of C1 and C2 with static FC for ten age bins.

FIG. S2. Event co-fluctuation pattern frequencies with age in alternative age bins Relative frequency of (a) C1 and
(b) C2 across all five age bins. Relative frequency of (c) C1 and (d) C2 across all ten age bins. (j ) Similarity of C1 and C2
with static FC for ten age bins.
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FIG. S3. Standard deviation of event co-fluctuation patterns within each age bin (a) Cluster 1 and their standard
deviations across subject events within each age bin across 100 iterations. Correlation of standard deviations of cluster 1 with
age (R = 0.0486, p < 10−8). (b) Cluster 2 and their standard deviations across subject events within each age bin across 100
iterations. Correlation of standard deviations of cluster 2 with age (R = −0.0491, p < 10−8).

FIG. S4. Non-event frames and their first principal component Brain surface plot and the system-level organization of
the first principal component score of the mean non-event frames across age groups.
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FIG. S5. Mean event co-fluctuation patterns reordered by modules The mean C1 and C2 event co-fluctuation patterns
across age groups after reordering nodes by their modular labels.

FIG. S6. Event co-fluctuation patterns and identifiability Differential identifiability of events (C1, C2) and non-events
(NE). Frame-level Idiff calculated as the difference between within-subject cluster frame similarity and between subject cluster
frame similarity.
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FIG. S7. Static FC and predictability of achievement and intelligence scores using CPM Prediction of WIAT, WASI
VCI, WASI PRI, WASI FSI scores based on static FC of individuals using connectome-based predictive modeling (CPM).

FIG. S8. Event co-fluctuation patterns and the sensorimotor-association axis (a) Z-score of the whole brain ranking
of nodes on the sensorimotor-association (SA) axis. (b) Spearman’s rank correlation between the average event co-fluctuation
patterns’ first principal component (PC) and the z-scored global SA axis (C1: orange line; C2: yellow line). Histograms
represent the Spearman’s rho between average event co-fluctuation patterns’ first PCs after spin-test nodal randomization
(5000 iterations) and the z-scored global SA axis.

FIG. S9. Event co-fluctuation patterns from spectral clustering analysis at K = 2, based on a single sampling
process Event co-fluctuation patterns found using spectral clustering analysis at K = 2 from a single sampling process with
cluster 1 (left), cluster 2 (middle), and their correlation with clusters found using K-means clustering (right).
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FIG. S10. Cluster-SC communication measures relationships with age using age group averages (a) Age correlations
of communication measures and systems using age group average estimates of cluster 1 and structural connectivity. (b) Age
correlations of communication measures and systems using age group average estimates of cluster 2 and structural connectivity.

FIG. S11. Event co-fluctuation patterns after aligning to cluster centroids at K = 2− 10
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