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Abstract

Recurrent neural networks exhibit chaotic dynamics when the variance in their connection strengths
exceed a critical value. Recent work indicates connection variance also modulates learning strategies;
networks learn "rich” representations when initialized with low coupling and ”lazier” solutions with larger
variance. Using Watts-Strogatz networks of varying sparsity, structure, and hidden weight variance, we
find that the critical coupling strength dividing chaotic from ordered dynamics also differentiates rich and
lazy learning strategies. Training moves both stable and chaotic networks closer to the edge of chaos, with
networks learning richer representations before the transition to chaos. In contrast, biologically realistic
connectivity structures foster stability over a wide range of variances. The transition to chaos is also
reflected in a measure that clinically discriminates levels of consciousness, the perturbational complexity
index (PClIst). Networks with high values of PClst exhibit stable dynamics and rich learning, suggesting
a consciousness prior may promote rich learning. The results suggest a clear relationship between critical
dynamics, learning regimes and complexity-based measures of consciousness.

As learning in artificial networks continues to amass practical successes, theorists have been making sig-
nificant strides in rigorously characterizing the behavior of these models and explaining why they perform
so well [1-8]. These theoretical tools present an opportunity to unravel mysteries in biological neural net-
works [9], such as how the learning rule and/or initial priors of a network could alter its learning dynamics
and representations [10-13]. Among various theoretical developments that contribute to this progress, a
popular theme is that networks can be successfully trained to learn a task using two distinct strategies:
rich learning and lazy learning [14-23]. Interpolation between the two learning regimes can be achieved
through adjusting the variance in connection strengths at initialization [14, 15, 24]. This adjustment tunes
the extent to which the network alters its internal representation to fit the task statistics, leading to various
degrees of task-specific representations. Consequently, whether learning occurs in the rich or lazy regime can
have a profound effect on the nature of what the network learns and its performance in unseen situations
post-training [15, 16].

Connection strength in artificial networks has also been studied in the context of dynamical systems
theory, where it has been shown that networks exhibit a transition between ordered and chaotic dynamics
when the variance of their connection strengths exceed a critical value [25]. The transition point between
ordered and chaotic regimes can be identified mathematically using the maximum Lyapunov exponent A,
which when positive, indicates chaotic dynamics. At intermediate connection strengths, at a transition point
in phase space known as the edge of chaos, systems are known to have optimal computational performance,
exhibiting maximal information transfer [26, 27], and memory capacity [28]. Although, more recent work
has suggested that networks can continue to perform well in the weakly chaotic regime, as degradation in
autocorrelation of activity occurs more slowly in the chaotic than non-chaotic regime [29]. Building on
these theoretical insights, we vary initial connection strengths of recurrent neural networks (RNNs) and
characterize their learning properties, finding a direct correspondence between the transition to chaos, when
the largest Lyapunov exponent prior to training becomes positive, and a shift between rich and lazy learning
strategies.
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The brain has long been theorized to operate at the edge of chaos due in part to the aforementioned
optimal properties associated with this dynamical regime. Beyond arguments of optimality, however, it is
reasonable to theorize that the highly recurrent brain operates within this regime, as self-organized criticality
is observed in many natural systems and recent theory shows that suppression of chaos may be inherent
in systems utilizing integrative feedback [30]. In fact, several recent studies have uncovered evidence to
suggest that edge of chaos dynamics may underlie the capacity for consciousness itself [31-34]. Although
consciousness is difficult to define and measure, one recently developed metric called the perturbational
complexity index (PCI) has emerged as a reliable correlate of consciousness where it has been demonstrated
to distinguish between brain states (awake, anesthetized, under the influence of psychedelics), and to reflect
the potential for recovery in patients with disorders of consciousness [35-37]. The PCI metric is predicated
on the theory that the capacity for consciousness relies on the ability to integrate information, and that
this ability is achieved through the complex patterns of causal interactions between neurons. However, the
original PCI metric is only applicable to systems for which one can employ transcranial magnetic stimulation
in combination with electroencephalograpy (EEG). Therefore, in this study, we make use of an estimate of
PCI (PCIst) [38] which is more broadly applicable. The metric similarly quantifies the spatiotemporal
complexity of the propagation of evoked activity in response to an externally driven perturbation above
that of baseline activity. Intuitively, the metric combines spatial principal component analysis (sPCA) with
recurrence quantification analysis (RQA) [31, 39], which quantifies the temporal complexity as the recurrences
of the evoked dynamics. RQA is commonly used in the analysis of dynamical systems [40] to identify state
transitions and has properties that are directly related to Lyapunov exponents [40, 41]. Such methods have
successfully been applied to the analysis of biological systems [42—44] where the direct computation of the
Lyapunov spectrum is impractical. Nevertheless, no previous study has examined the relationship between
PCIst and Lyapunov exponents. We therefore computed PCIst on RNNs and found that it increases as a
function of initial connection strength up to the edge of chaos, where it is maximal, and subsequently sharply
decreases.

Finally, we compare Lyapunov exponents, learning regime and PCIst on network models initialized with
Gaussian weight distributions to those with biologically-realistic connectivity structures at two different
scales: that of a cortical column within mouse primary visual cortex and of the mouse whole-brain mesoscopic
connectivity. We find that biologically realistic connectivity yields non-chaotic dynamics, where PCIst is high
and rich learning is favored, over a wider range of connectivity strengths.

Summary of results and contributions:

Building on three lines of literature — rich versus lazy learning, dynamical systems theory and con-
sciousness — we find and characterize two regimes associated with the initial hidden weight gains below and
above the critical point at which networks begin to exhibit chaotic dynamics. Below the critical point, in the
ordered learning regime, networks learn rich low-dimensional representations. Beyond the critical point, in
the chaotic learning regime, networks gradually transition towards a high-dimensional, lazy learning strategy
that is more sensitive to noise. Importantly, we find that models in the chaotic regime, with gains close to
the transition, still perform the task with high accuracy, and converge more quickly than in the ordered
regime. Further increases in initial connection strength variance results in chaotic dynamics, drastically
reducing learning ability. Connection sparsity allows stable dynamics with larger variances, and training
moves networks closer to the edge of chaos. Intriguingly, we find that PCIst increases as a function of gain
below the transition point, is maximal at the edge of chaos and subsequently sharply decreases. Finally, we
show that several key features of biologically-realistic connectivity strongly bias networks towards ordered
dynamics and rich learning. We focus on RNNs due to their widespread usage in brain modeling [24, 45-64].
Although in artificial learning networks, our results show a strong relationship between critical dynamics,
learning and measures of consciousness.

1 Results

In a series of RNNs with systematically varied sparsity and degree of small-world structure, we characterize
1) their dynamical regime (ordered vs chaotic) 2) their PCIst scores and 3) their learning regime (rich vs
lazy) as a function of an initial scaling parameter (g) on the strength of their hidden weight connectivity
(H). Specifically, we trained a series of RNNs to perform the ten digit (0-9) sequential MNIST task, in
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which the network receives a row of pixels from a digit image at each time step. All networks consisted
of an input layer, a single recurrent layer with 198 neurons, and a linear readout layer. The hidden layer
structure of each network was initialized according to a Watts-Strogatz [65] connectivity rule over a range
of nearest neighbors (nNN: 4, 8, 16, 28, 32, 64, 128, 198 = fully connected), and rewiring probabilities (p:
0.0, 0.2, 0.5, 0.8, 1.0), while self-connections were prohibited. Thus, the resulting networks systematically
varied in both their degree of sparsity with nNN = 4 most sparse; nNN = 198 least sparse and their degree
of small-world structure with p = 0.0 highly structured; p = 1.0 Erdds-Rényi random connectivity (Figure
1). (see Table 1 for number of parameters in each model). Initial hidden layer weights were sampled from
a Gaussian distribution with mean g = 0 and standard deviation o = \/]sz, where gain (g : 0.5, 0.75, 1.0,
1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 5.0) and N, is the number of non-zero elements, such that variance
is scaled in accordance with sparsity. Network sparsity was maintained over training by restricting training

to only the non-zero elements of the hidden weight matrices.
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Figure 1: Summary of Results. (a) A single gain parameter (g) scaling initial hidden weights modulates
ordered and chaotic dynamical regimes, rich and lazy learning strategies as well as a measure associated with
consciousness. (b) Model Construction. Models consist of an input layer of size 28, a single recurrent layer
of 198 hidden units. The hidden layer connectivity matrix (H) is initialized as a Watts Strogatz network
with number of nearest neighbor connections nNN = {4, 8, 16, 28, 32, 64, 128, 198 = fully connected} and
rewiring probability p = {0.0, 0.2, 0.5, 0.8, 1 = Erdos-Rényi}. Initial hidden layer connection strengths are
sampled from a normal distribution N(0, ﬁz), where N,,, is the number of nonzero elements and gain g

= {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 5.0}. The location of zero/non-zero elements are
maintained over training on the sMNIST task.

1.1 Chaotic and Ordered Learning

We computed finite time Lyapunov spectra for each RNN model as the eigenvalues of the product of the
Jacobians along the data-driven network trajectory, averaged over a batch of sSMNIST test data [66] (see
section 2.3.1 Lyapunov Exponents in Methods for details). Chaotic dynamics are indicated when the largest
Lyapunov exponent A > 0. For models at each sparsity level (nNN), we define the transition point between
ordered and chaotic learning regimes in terms of a single multiplicative parameter g, the gain in connection
strength of the initial (pre-training) hidden layer connectivity. Specifically, we define the critical transition
point associated with each model’s degree of sparsity as the gain (g, v, ) at which the initialized (prior to
training) model’s largest Lyapunov exponent A becomes positive. We find that the transition from ordered
to chaotic learning regimes shifts towards lower values of gain (g) as models become less sparse (nNN
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H Model Number of Hidden Layer Parameters H

nNN = 4 792

nNN = 8 1584

nNN = 16 3168

nNN = 28 5544

EM V1 Cortical Column 5573

nNN = 32 6336

nNN = 64 12672

nNN = 128 25344

Mesoscale Connectome (thresholded) 5573

Mesoscale Connectome 38984

nNN = 198 (fully connected) 39006

Table 1: Model Hidden Weight Sparsity and Parameter Count

increases)(Figure 2a,b). Rewiring probability, which shifts network structure away from modular small-
world structures towards Erdés-Rényi random connectivity as it increases, had a much smaller impact on
network dynamics than did the sparsity. In fact, we found that the transition point often did not vary
substantially with rewiring probability (Table S1, Figure 2a). Therefore, unless otherwise noted, throughout
the manuscript we generally report results for rewiring probability of 1.0 = Erdos-Rényi, as it is the most
commonly used network initialization strategy, but see Figure S1 for similar results obtained with rewiring
probabilities p: 0.0, 0.2, 0.5, 0.8. Consistent with prior work [27, 67, 68], we found that networks self-
tuned towards criticality as a result of training with back-propagation, such that the maximum Lyapunov
exponents after training shifts closer to zero for all models (Figure 3a). However, we find that changes in the
magnitude of the maximum Lyapunov exponent over training decreases substantially as the models enter
the chaotic regime (Figure 3b), suggesting that models are less able to tune towards the edge of chaos if the
variance in their initial connectivity strength is too large.

Although models in the weakly chaotic regime are often able to obtain good accuracy (See section 1.2
for model performance), the trained model dynamics in the ordered and chaotic regimes are qualitatively
very different. To illustrate the difference in model solution space, we project the hidden state space of the
trained model responses to SMNIST test samples into 2-dimensions (for ease of visualization) using principle
component analysis (PCA), and find qualitatively different solutions to the task are learned on either side of
Je,nn- In the ordered learning regime, models exhibit a smooth trajectory from initial state (at the origin)
towards a final state located in a cluster associated with digit identity. In contrast, in the chaotic learning
regime, just past the transition, where models nevertheless still learn to perform the task, models exhibit a
jagged trajectory (Figure S2, illustrating the resulting chaotic dynamics).

Finally, we tested for model sensitivity to noise at test time. Models, trained without noise were subjected
to additional Gaussian noise during testing (See Methods for details). Because small perturbations should
be amplified in the chaotic regime, we expected that models in the chaotic learning regime would be more
sensitive to injected noise. Indeed we found that accuracy dropped more substantially for models in the
chaotic than ordered regimes when exposed to additional Gaussian noise N (0,.01) at test time (Figure 4c).

1.2 Model Performance

Model performance was assessed via both the test accuracy achieved as well as speed of learning. Test
accuracy was quantified as the average percent correct over all sSMNIST test samples after 100 epochs of
training, while speed of learning was assessed by the number of epochs required to reach at least 90%
accuracy. For both metrics, the reported values are the mean over 10 model instantiations with the same
model parameters: nNN, rewiring probability (p), gain (g). The least sparse models achieved higher accuracy
after 100 epochs in comparison to sparse ones; while performance on models with equal sparsity, differing
only in connectivity structure, performed nearly identically. After 100 epochs of training, accuracy increased
as a function of gain up to g, , where all models achieved their highest accuracy (Figure 4a). Of critical
interest is the fact that models continued to have high accuracy after the transition into the chaotic learning
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Figure 2: PCIst and Maximum Lyapunov Exponents Before Training (a) Maximum Lyapunov Exponent A
for driven models with rewiring probability p = 1.0 along trajectory. Gain at which each network transitions
from ordered to chaotic regime g, ., is the gain at which A becomes positive for each level of sparsity nNN.
(b) Model Transition points. Transitions to chaos shift to smaller gains as hidden layer sparsity increases.
(c) PCIst in pre-trained networks increases as a function of gain and begins to decrease just before g,y
where it decreases sharply. (d) PClst in pre-trained networks begins to decrease as the maximum Lyapunov
exponent A\ approaches zero.
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Figure 3: PCIst and Maximum Lyapunov Exponents After Training (a) Maximum Lyapunov Exponent A
after training for 100 epochs. Models tune towards the edge of chaos with training. (b) Change in maximum
Lyapunov exponent A with training (100 epochs). Models trained in a highly chaotic regime exhibit smaller
changes in A with training. (¢) Maximum Lyapunov exponent in fully-trained models, trained till 90%
accuracy. (d) Changes in PCIst over training decrease in the chaotic regime.
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regime, while also learning faster in this regime (Figure 4b), with small increases in initial weight gain above
9o, nn - We are not the first to report that models can perform well in the weakly chaotic regime. This result
is consistent with previously reported numerical experiments on the lazy training regime [14, 69] where it was
also found that lazy models converged faster. As we will show in the subsequent sections, however, learning
in this regime occurs using a ”lazier” strategy consistent with previous work indicating that dimensionality
expansion in the weakly chaotic regime allows for linearly separable representations at the readout layer [70].
This is can be seen in Figure 5a,e, where the dimensionality of the trained networks at higher gains increases
and is reflected by greater weight changes in the readout layer in successfully trained chaotic networks.
However, further increases in gain result in sharp decreases in accuracy (Figure 4a). Again, analogously to
the dynamical regime, we found that hidden layer sparsity had a much greater effect on model performance
than connectivity structure varied through rewiring probability.

1.3 Rich vs Lazy Learning Regime

In the following sections, we report several metrics used to characterize the learning regime. First, we com-
puted the Kaplan-Yorke (KY) dimension of the trained models derived from the Lyapunov spectrum. It
has previously been demonstrated that, with random initialization, lazy learning leads to higher dimensional
task-agnostic representation, whereas rich learning results in lower dimensional task-specific representa-
tions [12, 69]. Second, lazier learning results in less modification to the hidden weight parameters [14, 24, 69],
and we report the vector norm of the magnitude weight changes at the input, hidden, and output layers.
Finally, we compute representation alignment, which quantifies the directional change in a representational
similarity matrix before and after training; lazier learning should result in higher representation align-
ment [16]. See also Supplementary Results where we also quantify the directional shift in the neural tangent
kernel (NTK) pre- and post-training (Figure S4). This measure, referred to as tangent kernel alignment,
provides another method for quantifying the richness/laziness of learning [16]. We emphasize that in this
study, laziness and richness are quantified on a continuum rather than categorically, with lazier learning cor-
responding to smaller network changes to achieve learning of a task. In other words, we adopt the notion of
an effective learning regime used in [71], which gauges effective richness or laziness by post-training changes
rather than on initialization.

1.3.1 Dimensionality

We computed the Kaplan-Yorke (KY) dimension of the trained models derived from the Lyapunov spectrum
(see section 2.6 in Methods for details). The KY dimensionality increased as a function of gain, accompanied
by a shift towards lazier learning. Notably, models learned very low-dimensional solutions at the smallest
gains (Figure 5a). Interestingly, as the task consists of 10 classes, the dimensionality of the trained models
exceeded 10 at g,y , for all but the sparsest and most small-world models. KY dimensionality continued
to increase with further increases in gain. We trained an additional series of models for rewiring probability
= 1.0 only, on the 2-digit sMNIST task, using digits [2,5] and found that models exceeded KY dimension of
2 rather than 10 at g, v, (Figure S3).

1.3.2 Weight Changes

We found that the norm of weight changes over training in both the input and hidden layers decrease smoothly
and monotonically as a function of gain for all models (Figure 5c-d). However, in the readout layer, changes
in weights increase as models approach g, after which it gradually begins to decrease. This is consistent
with previous work that found lazy learning can result from expanding the dimensionality of input signals.
Specifically, random projections to the hidden layer create a representation that facilitates linear separability.
Consequently, learning primarily occurs in the readout weights [72]. So as gain increases, learning smoothly
shifts away from rich hidden layer representations, as evidenced by large magnitude changes in the hidden
layer and when models engage in lazy learning, learning is confined to the readout layer. As the gain increases
far into the chaotic regime where models fail to learn the task, presumably due to numeric instability, the
normed weight changes of all layers approach zero.


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

W

a niN =4 NN =8 Rewiring prob
100 4 s 1% v ]
.‘ b ! 0.0
50 LE— —L— " f e —— 0.2
nNN = 16 nNN=28 _4 05
100 f-n‘:ti--ﬂ\. 1% : ~#— 0.8
751 | : i

Accuracy

b
[¥] 103
E %851 !‘“'ii"ll’/j_- 1 !..i';-l-nl'l
© . 1 i i . 1
£ ANN = 32 ANN = 64
@ 1034 : ME i
-(:-5' %8§1 W ) | 'l!.*"“'..
o T T T T T — T T
- ANN = 128 nNN = 198
103+ i 3 H
] e[ e
0 1 2 3 4 50 1 2 3 4 5
Gain
¢ nNN = 4 ANN = 8
40 T T
=
Y i '
nNN = 16 nNN = 28
40 T T n
[ i
2 o Jﬁﬂ..-.q:l’._‘,.—_;,_ﬁ
_E’- nNN = 32 nNN = 64

nNN = 128 nNN = 198

40 T - ]
20 1 H - \ ] : A =
o L . . ol : ; B
12 3 a4 s 1 2 3 4 5
Gain

Figure 4: Model Performance. (a) Accuracy after 100 epochs. Dashed lines indicates g\, where models
achieve their highest accuracy. As sparsity decreases ability to learn the task falls sharply as gain increases
beyond > 3.0. (b) Number of Epochs till 90% accuracy. (c) Difference in accuracy with additional noise

during testing. Networks are more sensitive to noise in the chaotic regime.
8


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

é KY dimension b Representation alignment
NN =4 nNN =8 NN = 4 nNN =8
30 H 1.00 ; = ; "
i 075 . !
20 — t A 3 i $/ 4 *
- 1 0.50 SN / ‘ LA
/ ‘ S8 SNEEEZ . Moy
1 4 1 3/ Rewiring prob 023 H *
0 ek aat’ 1 0.00 ‘ i
NN = 16 nNN = 28 00 . nNN = 16 nNN = 28
30 ' 021] b ; ;
* #- 05| £ o7s — 4 W/_/,
5 20 @ 0.3 EE: 0.50 P .y
= © & 1 i
Zw ) 1 S o025 My 4 ﬁv"f}( HH S
E=RN N ‘g 0.00 | |
NNN = 32 nNN = R4 1= 100 nNN = 32 nNN = 64
30 | = L i i
\Ab‘ 0.75 e "

2 ¢ ‘
0.50 P 3
I o ol et !

nNN = 128 nNN = 198 nNN = 128 nNN =198

07 o /w/"
20 [ & :

0.50 "
o sl Bt b

./// r’/J 0.00 ‘

1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 50 1 2 3 4 5
Gain Gain Gain Gain

Input Layer Hidden Layer Readout Layer

©
e

o
N

w
g
o

=
o

N
Norm Weight Change

Norm Weight Change
S
Norm Weight Change

N
-

o

Figure 5: Rich vs. Lazy Learning (a) Kaplan-Yorke (KY) dimensionality. Dashed lines indicate ge, -
(b) Representation alignment for different sparsity and rewiring probabilities. (c) Norm Weight Change
of input layer weights over training. (d) Norm weight change of hidden layer. (e) Norm weight change of
readout layer. Weight changes in the input and hidden layers decrease smoothly with gain. In the readout
layer, however, weight changes are non-monotonic, increasing as a function of gain up to g.,,, and then
decreasing.


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1.3.3 Representation Alignment

As expected, we find that representation alignment (see Methods section 2.7.2) between trained and un-
trained models largely increases with increased gain, indicating greater laziness as gain increases (Figure
5b). Although the curves are not always monotonic, the representation alignment typically increases just
before the g¢., ., transition.

1.4 PClIst

PCIst was assessed in all networks before and after training on the sMNIST task. PCIst at initialization
increased as a function of gain across all network architectures with g < 1, however initial PCIst begins to
decrease as the gain approaches g.,,, for all models and nears zero when models enter the chaotic regime
(Figure 2c). In section 1.1 we found that the gain at which the maximum Lyapunov exponent becomes
positive shifts to ever smaller gains as sparsity decreases. Consistent with the maximum Lyapunov exponent
itself, the gain at which PCIst begins to decrease also shifts to smaller gains as sparsity decreases. The metric
hits a maximum prior to the critical point, as models near the edge of chaos transition (Figure 2d). Critically,
PCIst reaches its minimum at g, , or, in the sparser models, just beyond the point at which models become
chaotic. Also consistent with the maximum Lyapunov exponent, PCIst decreases with learning in models
initialized in a non-chaotic regime, as the models tune towards towards criticality as a result of training with
back-propagation. For both the maximum Lyapunov exponent and PClst, we do not observe decreases as
a result of training when initialized in the chaotic regime (Figure 3b,d). All models considered here were
of equal size. To test for finite size effects, we created two larger models with 500 and 1000 hidden units
(Figure S12) and found that the point at which PCIst begins to decrease moves closer to the edge of chaos as
networks increase in size. In all cases, we find PCIst is non-zero in the ordered regime where richer learning
strategies are favored and maximal just before the transition to chaos.

1.5 Biologically Realistic Connectivity

Biological brain networks are known to have small-world architectures [65, 73], but differ from the models
previously explored in important ways including the distribution of their weights (Figure 7a, the degree
distribution of each neuron, and adherence to Dale’s law. We therefore trained a series of models with
hidden weight matrices defined by biologically realistic connectivity structures at two different scales. The
first connectivity structure was defined by the normalized whole-brain mesoscopic connectivity density of
the mouse connectome [74, 75] as measured from hundreds of anterograde tracing experiments. Normalized
connection density is defined as the directional inter-regional connection strength divided by the product of
the size of the regions. The mesoscopic connectivity model has a similar number of parameters as the nNN
= 198 (fully connected) model, but the distribution of connection strengths has a longer-tailed distribution
(Figure 7a). As connection strengths are by definition all positive, for these models, an equal number of
positive and negative weights were assigned randomly. The second model, at the scale of a single micro-
column, was derived from electron microscopy of the mouse primary visual cortex (V1)[]. In this model,
the connection strength H;; from neuron j to neuron i was defined as the sum of the volume of synaptic
densities at neuron i coming from neuron j. For comparison, this cortical column model has approximately
the same number of parameters as the nNN = 28 models (See Table 1). The sign of each connection weight
is cell-type specific as dictated by Dale’s Law, such that all post-synaptic connections of excitatory neurons
are positive, and visa-versa. We now describe the differences we observed in model performance, dynamical
and learning regimes in biologically realistic connectivity structures in contrast to models initialized with
Gaussian hidden weight distributions previously described.

1.5.1 Chaotic and Ordered Dynamics

In the case of the mesoscopic connectivity model, we find that the relationship between initial hidden
weight gain and the maximum Lyapunov exponent pre-training has a shallower slope, such that it enters the
chaotic regime at a higher gain than the fully connected Gaussian model (Figure 6a:green dash-dot/cyan).
Additionally, the magnitude of the largest Lyapunov exponent remains below that of the fully connected
model at higher gain values. For comparison to the cortical column model, we also trained a modified

10


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

mesocopic model with a thresholded connectivity structure, such that sparsity was matched to the cortical
column model. Here again, relative to the nNN = 28 Gaussian model, we see that the mesoscopic model has
a shallower slope and the magnitude of the largest Lyapunov exponent remains below that of the Gaussian
model at high gains (Figure 6a:dark blue dashed/brown), suggesting that the long-tailed distribution of the
weights of the mesoscopic connectivity structure affords the model greater stability than a Gaussian model
of equal sparsity. See also Figures S6, S7 for comparison of eigenspectrum and Lypaunov spectrums for
Gaussian and biologically realistic connectivity.

For models based on the cortical column connectivity, the effect of initial gain on dynamical regime is even
more pronounced (Figure 7b (V1 23 4 Dales - purple dash-dot), where the maximum Lyapunov exponent is
less than 1 for all gains except gains of 1 and 1.25. Moreover, as the gain increases, we observe the maximum
Lyapunov exponent decreases rather than increases, deviating substantially from the Gaussian models as
well as that of the mesoscopic model.

We endeavored to explore which of the characteristics of the cortical connectivity structure (weight dis-
tribution, degree distribution, topological structure, Dale’s law, relative balance of excitation and inhibition)
enables such stability. To this end we created a series of models with altered structures and found that
the observed stability required the combination of block structured connectivity, multiple cell types and
adherence to Dale’s law. Below we describe each of the altered structures tested.

1) to test whether Dale’s law alone was sufficient, we created a network in which Dale’s Law was artificially
applied to a connectivity structure with Gaussian weights of equal sparsity (Figure 7b - nNN=28D: cyan
solid). This model did not exhibit stability at high gains, indicating that Dale’s law alone was not sufficient.

2) to test whether the distribution of weights alone was sufficient, we permuted the cortical column
weights such that all topological structure including Dale’s law is disrupted (Figure 7b - V1 2/3 4 permuted:
peach). This model also did not exhibit stability at high gains, indicating that weight distribution alone was
insufficient.

3) to test whether the degree distribution alone could account for the observed stability, we created a
model with Gaussian weights but matched the degree distribution (DD) of the cortical column (Figure S5b
- DD green). Degree-distribution alone was not sufficient to maintain stability.

4) to test whether the specific topology of connections was sufficient to reproduce the stability observed
in the cortical column, we created a model with Gaussian weights, maintaining the topology (location of
non-zero weights) of the cortical column model. Topology alone was also insufficient to maintain stability
(Figure S5b - (V1 T magenta solid).

5) To test whether stability could be explained by the combination of weight distribution and topology,
we created a network in which the weights are fully permuted but the topological structure is maintained,
such that the location of non-zero weights are preserved but Dales law was not preserved (Figure S5b - V1
2/3 4 permuted T, pink dash-dot). This model did result in lower slope as a function of gain, suggesting that
the combination of topological structure and weight distribution contributes to stability. However this model
did not reproduce the shape of the curve we observed in the cortical column model, where the maximum
Lyapunov exponent decreased with increasing gain.

6) To test the possibility that having multiple populations of neurons (E - excitatory, I- inhibitory)
with different distributions could account for our observations, we created a model in which cortical column
weights were permuted within blocks (E-E, I-I, E-I, I-E), such that block structure and Dale’s law were
preserved, but the topological structure was not (Figure 7b - V1 Dales BP: magenta solid). This model did
reproduce the stability of the cortical column and the shape of the curve as a function of gain, suggesting
that block structure contributes importantly to the stability of the cortical column.

7) a model with weights permuted within block while maintaining topological structure and Dales law
(Figure S5b - V1 dales BPT: magenta dash-dot) also maintained stability.

8) Finally, to test whether the overall balance of excitation and inhibition was critical to stability, we
created a model in which the signs of all connections are flipped, such that the topology, block structure and
Dale’s law are all maintained but the balance of excitation and inhibition is reversed (Figure 7c¢ V1 Dales
+-: fuchsia-dotted). Surprisingly, we found that this model was equally as stable as the true connectivity at
high gains.

From these models we can conjecture that none of the weight distribution, topology, degree distribution
nor balance of excitation and inhibition alone is sufficient to reproduce the stability of the cortical column
model. Rather, models that matched the observed pattern of stability in the cortical column model featured
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the combination of a block structured connectivity matrix with multiple cell types and adherence to Dale’s
law. We further explored this possibility through a series of simulations (See Supplementary Section 5.4.1),
which further suggested that the dynamical stability we observed can be achieved whenever the connectivity
contains at least 2 populations of cells, with differing means, such that for each, the population mean is
large enough compared to the variance. The simulations also reveal that strict adherence to Dale’s law is
not required; approximate adherence to Dale’s law is sufficient. In this case, the mean activity drives the
overall system dynamics. Stability is achieved by interaction between excitatory and inhibitory populations
in combination with a saturating non-linearity, such that strong oscillations dominate, effectively quenching
the chaotic dynamics.

1.5.2 Model Performance

The mesoscopic connectivity models performed similarly to the Gaussian nNN = 198 models to which they
are most similar, in that models achieved similar accuracy as a function of gain after 100 epochs (Figure
6¢). This is perhaps unsurprising given the matched degree of sparsity and balance of positive and negative
weights in both sets of models. Models initialized with connectivity of the cortical column, however, did
not perform as well as their nearest Gaussian comparator in terms of sparsity (nNN = 28) (Figure 7d - V1
2/3 4 purple dash-dot trace). Instead, these models only achieved equivalent accuracy to their Gaussian
counterparts at much lower gains (g < 0.5). Note that Dale’s Law was enforced during training such that
the sign of each connection was not allowed to change with back-propagation. Both outcomes are consistent
with previous work on networks with cell-type specific connectivity. Specifically, it is known that networks
that obey Dale’s law perform more poorly [76], presumably because the constraint that each row of the
hidden weight matrix must be either positive or negative, adversely restricts the space of possible solutions.
Furthermore, at least one study found that the effective gain of a network with block connectivity structure
is greater than the average gain, leading to larger learning capacity at lower gains [77].

1.5.3 PClIst

PClIst, when computed on biologically realistic connectivity models, was similar to that of the previously
described Gaussian models. That is, the value increased as a function of initial weight gain, is maximal at
the edge of chaos and decreases sharply as the maximum Lyapunov exponent nears zero. However, unlike
the Gaussian models (Fig 2d), as the gain is further increased, the maximum Lyapunov exponent becomes
negative again for the cortical column model (Figure S13)a. In this case, the PCIst metric reflects the fact
that there are nevertheless outliers beyond the unit circle in the eigenspectrum of the connectivity matrix
at higher gains (See Supplementary Section 5.4.1). The oscillatory dynamics that dominate at larger gains
are amplified enough in the baseline condition as to make the relative response to perturbation negligible.

1.5.4 Learning Regime

In comparison to the Gaussian models, those with mesoscopic connectivity have similar respresentational
alignment curves, transitioning towards lazier learning in the chaotic regime. Accordingly, the pattern of
weight changes as a function of gain were also similar to the Gaussian models (Figure 6e-h). One exception is
the thresholded mesoscopic model, which has larger changes in the hidden weight layer than the other models
and higher representational alignment. The difference for this model is likely due to having thresholded
the smallest weights while leaving the tails of the distribution, with larger weights. The cortical column
models were unique in that they consistently found low-dimensional solutions, despite having notably higher
representational alignment for all gains. The apparently lazier strategy employed to reach the solutions in
this case likely reflects the restricted solution space of biologically unrealistic training with back-propagation
under the constraint of Dale’s law (Figure 7f-i).
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2 Methods

2.1 Model Construction

We trained a series of recurrent neural networks (RNNs) to perform the ten digit (0-9) sequential MNIST
task, in which networks sequentially receive 28 rows of 28 pixels from a handwritten digit. The model’s task
is to learn to correctly identify the digit after receiving the last row of pixels. All models consisted of an
input layer with 28 units (U), a single recurrent layer with 198 hidden units (H = [198, 198] matrix) , and a
linear readout layer with input size 198 and output size (o;) of 10.

O = th +c (2)

The size of the hidden layer was chosen for consistency with the size of the experimentally derived meso-
scopic connectivity of the mouse brain, which reflects the biological connectivity density between 198 major
brain areas [74, 75]. The hidden layers of each network were initialized according to a Watts-Strogatz [65]
connectivity rule over a range of nearest neighbors (nNN: 4, 8, 16, 28, 32, 64, 128, 198 = fully connected),
and rewiring probabilities (p: 0.0, 0.2, 0.5, 0.8, 1.0), while self-connections were prohibited. The resulting
networks systematically varied in both their degree of sparsity (nNNN = 4 most sparse; nNN = 198 least
sparse) and their degree of small-world structure (p = 0.0 highly structured small world architecture; p =
1.0 random Erdds Rényi connectivity). At initialization, non-zero weights of the hidden layer were sampled
from a Gaussian distribution with mean g = 0 and standard deviation o = \/%m, where N,,, is the number of
non-zero elements and gain (g : 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 5.0), thus normalizing
the variance across models at initialization. For each combination (nNN, p, g) we trained 10 randomly
initialized models, 4800 models in total.

2.1.1 Biologically Realistic Connectivity

Mesoscopic Connectivity

We made use of a previously published whole-brain model of inter-regional mesoscopic connectivity of
the mouse brain. The model is based on hundreds of anterograde tracing experiments in C57BL/6J mice
across 12 major brain divisions including isocortex, olfactory areas, hippocampus, cortical subplate, striatum,
pallidum, thalamus, hypothalamus, midbrain, pons, medulla and cerebellum, allowing for the creation of a
whole-brain connectivity model at the scale of 100 pm voxels [74, 75]. Hidden layer connectivity between each
of 198 regions are their connection densities. Connection density is defined as the sum of the connection
strengths from all voxels in a source region to all voxels in the target region divided by the product of
the region sizes, where voxel-wise connection strengths represent the fraction of voxel volume expressing
fluorescence. Connection density values are positive by definition, but the signs of each connection in the
matrix were assigned randomly, making approximately equal number of positive and negative weights. As
above, network connection strengths were scaled at initialization by a range of gain values (g : 0.5, 0.75, 1.0,
1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 5.0). As we are interested in the potential computational advantage of
biologically realistic connectivity structure, we did not explore rewiring these model connections (all models

= 0). A sparse mesoscopic connectivity model was subsequently derived from this connectivity matrix by
removing connections below a value of .0188 in order to match its sparsity to that of the cortical column
model described below.

Synaptic Connectivity of a Cortical Column

The hidden layer connectivity of the cortical column model was generated from a data set containing
reconstructions of the dendritic trees of hundreds of thousands of neurons as well as their local axonal pro-
jections using electron microscopy, giving unprecedentedly accurate information on their 0.5 billion synaptic
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connections []. The synapses are located within the binocular area of the primary visual cortex (V1) of a
single mouse (192 days old). We made use of a subset of this data selecting 198 cells from the set of fully
proofread neurons with the nearest euclidean distance from the center point between layers 2/3 and 4. For
each neuron in the column, the connectivity strength is calculated as the sum over the volume of each post-
synaptic density to each target cell, while noting cell types (excitatory vs inhibitory). For example, if cell
a has 10 synapses on to cell b the connection strength of connection Hy, is the sum of the volume of those
10 synaptic densities at cell b. Connections from inhibitory neurons have sign -1, and those from excitatory
have sign +1, adhering to Dale’s law [78, 79]. The resulting connection matrix included 52 inhibitory cells
and 146 excitatory cells. However, as the inhibitory cells tend to make a larger number of local connections.
the ratio of inhibitory to excitatory weights was 1.60. The cortical column models differ substantially in both
the distribution of their weights (Figure 7a) as well as their degree of sparsity . The sparsity of the cortical
column-derived hidden layer is 85.71%, while the mescoscopic connectivity structure is fully connected, with
the exception of self-connections. It is for this reason we included the nNN = 28 model as it matches the
sparsity of the cortical column model (Table 1). Once again, networks connection strengths were scaled at
initialization by a range of gain values (g : 0.5, 0.75, 1.0, 1.25 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 5.0) and for
these models rewiring probability p = 0.

2.2 Training

All networks were trained using the Adam optimizer for 100 epochs with a learning rate of le-5, a batch
size of 256 and cross-entropy loss. Note that while connection variance across models was normalized at
initialization, it was not controlled over training. Model readout occurred at a single time point immediately
following input of the last row of sSMNIST digit input. Hidden states were initialized as zero. Sparsity was
enforced over learning such that only non-zero weights were updated over the course of training. For cortical
column models with cell-type specific connectivity, Dale’s law was enforced over training, such that sign
changes were prevented by clamping negative weights to a maximum of -.0001 and positive weights to a
minimum of .0001.

2.3 Identifying Chaotic and Ordered Learning Regimes
2.3.1 Lyapunov Exponents

Gradients can explode or vanish exponentially over recurrent steps through a network, especially when the
connection strengths between recurrent processing units are large, making models numerically unstable and
difficult to train. As Lyapunov exponents represent the exponential growth rates of nearby trajectories in
phase space of the model, we compute the finite time Lyapunov spectrum as a measure of model stability.
Following the standard QR~decomposition technique [80] for computing the Lyapunov spectrum, we compute
the average, over input samples, of the eigenvalues of the Jacobian of hidden state dynamics of each model
using the python implementation in [66].

Specifically: A matrix Q is initialized as the identity matrix and hidden states are initialized as zero.
At each of the T = 28 time points through the model, we compute the Jacobian matrix (first-order partial
derivatives of equation 1 with respect to the hidden state dynamics h) and the product of the Jacobian
matrix with the Q matrix. QR decomposition is applied to this product and used to update Q, which tracks
the relative expansion or contraction of the model over time. The Lyapunov exponent of the i*" batch at
timestep t 7! is the expansion of the i*" vector corresponding to the i*" diagonal element of R, and the 7*"
Lyapunov exponent ); is then given by

T
A = ;;log(rf) (3)

The exponents \; are computed in parallel for a batch of input samples (size 100) of sMNIST test data
to drive the networks and are subsequently averaged over the batch. We compute Lyapunov exponents both
at network initialization and after training. In Figure 2a,b, we report the maximum Lyapunov exponent
resulting from this process after averaging over each of 10 model instantiations of a given model parameter
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combination (nNN, p, g) for p = 1.0. (See Figure S1 for similar results obtained for rewiring probabilities
[0, 0.2, 0.5, 0.75] ). Chaotic dynamics are indicated by positive average largest Lyapunov exponent (A > 0).
Though we computed the spectrum both pre and post-training, we define the transition from ordered to
chaotic g,y dynamics as the gain at which the largest Lyapunov exponent A > 0 in the network prior to
training.

2.4 Assessing Sensitivity to Noise

Model sensitivity to noise was assessed by adding Gaussian noise A (0,0.01) to sMNIST test data. We
compare the accuracies of the trained model (trained in the absence of noise) to test data with and without
noise. Models with chaotic dynamics are expected to exhibit greater sensitivity to noise and therefore greater
decreases in accuracy.

2.5 PCIst

PCIst is a measure of the spatio-temporal complexity of the evoked response of a system to perturbation
[35, 38]. It was developed for use with EEG data in response to a perturbation delivered via transcranial
magnetic stimulation (TMS). However, the metric is applicable more generally to any evoked signal composed
of a baseline state and a well-defined response period to a perturbation in a network of causally interacting
units; thus, importantly it can be applied to artificial networks. Computing PCIst involves several steps:
1) Baseline and response periods are defined. 2) Singular value decomposition (SVD) is performed on the
matrix consisting of the response time-series of the hidden states over time 3) Principal components are
selected from the eigenvalues of the decomposed matrix so as to account for a user-specified amount of
variance. 4) components are then selected in terms of their signal-to-noise ratio (SNR), calculated as the
square root of the ratio of average response power 5) recurrence quantification proceeds on the remaining
components by computing a distance matrix between all time points 6) This matrix is thresholded at several
values and transition matrices are computed as the number of times the state crosses each threshold. The
7st” in PClst is derived from quantifying the number of state transitions in this segment of the analysis,
where state transitions are measured. 6) An optimal threshold € is determined such that the number of state
transitions in the response relative to baseline is maximized. 7) The average number of state transitions in
the baseline and response period of the n'® component is the difference in the number of state transitions in
the e-thresholded matrix of the response relative to the baseline scaled by the number of response samples.
8) PCIst is then the sum of these differences over components. Therefore, PCIst is simply a product of the
number of retained components (reflecting the spatial differentiation of the response across the network), and
the average number of state transitions across components (which reflect the temporal complexity present
in each component.) See [38] for more details.

In our study, the time series used to compute PCIst comes from the hidden state space of the model.
We defined the response period as the 28 steps corresponding to the trajectory of the network to a single
sMNIST test digit (the perturbation). Since the network’s response unfolds over 28 time steps, we defined
a baseline period of equal length during which the network receives a small Gaussian noise input sampled
from A(0,.01). The perturbation was a batch (size 256) from the sMNIST test data set of a given digit.
The metric was computed on the mean over batches of the hidden layer states for baseline period and
perturbations. PCIst was computed on all networks both at initialization (IPCIst) and after training on the
sMNIST task.

2.6 Dimensionality

Dimensionality was computed from the Lyapunov spectrum of the trained models, as the attractor dimension
using the Kaplan-Yorke conjecture [81]. First the Lyapunov spectrum was computed as in 2.3.1 on the trained
rather than pre-trained models. The resulting average values for a particular model parameter set (nNN, p,
g) are sorted from largest to smallest. Then let j be the largest index for which the sum of the cumulative
sum of the exponents is greater than zero.
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=1
and
Jj+1
i=1
Then the dimension
Y
D=j+ Lai=17""0 (6)

|Ajt1l

2.7 Characterizing Learning Regime
2.7.1 Weight Change

To assess the magnitude of weight changes at each layer of the network, we computed the L? or euclidean
norm of the difference between the final weights W7 and the initial weights W?0.

W W) = \/Z SO (W, - w) (7)

2.7.2 Representation Alignment

Representation alignment (RA) quantifies the directional change in the representational similarity matrix
(RSM) due to training. Instead of focusing on the dissimilarity as used in representational similarity anal-
ysis [82], RSM focuses on the similarity between how two pairs of input are represented by computing the
Gram matrix of last step hidden activity.

An increased level of representation alignment indicates a higher degree of lazy learning in the network,
and it is obtained by [16]:

Tr(RMRO)

RARM ROy .= ——~—__—_2

( )= TRORO|
R:=H"H, (8)

where H is the hidden activity, and R(®) and R(") are the initial and final RSM, respectively.

2.7.3 Tangent kernel alignment

Tangent kernel alignment provides a measure of the directional change in the neural tangent kernel (NTK).
The NTK is a mathematical tool that calculates the inner product of gradients for each input pair. Like
representational alignment (RA), tangent kernel alignment calculates the Gram matrix between input pairs.
However, unlike RA, it does so based on the gradient rather than the final hidden activity, thereby quantifying
network similarity in terms of the gradients. In more specific terms, the NTK, for any given pair of inputs,
determines the covariance between the gradients of the neural network’s output with respect to its parameters.

A heightened degree of tangent kernel alignment points to a greater extent of lazy learning within the
network. As outlined in [16], this is calculated as follows:

Tr(KMK©)
KAK®D KOy .= —_— __—__~
WL B = kaqro)
K :=Vy'vy (9)

where K and K(T) denote the initial and final NTK, respectively.
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3 Discussion

In this study, we centered our attention on recurrent neural networks (RNNs) and revealed that the manip-
ulation of initial hidden weight gain results in ”lazier” or "richer” learning. In the latter, which is brought
about by smaller initialization gains, we observe more significant network changes (including substantial
weight alteration and rotation of representation) as well as lower-dimensional representation. These findings
are in line with existing literature on feedforward networks [14, 69]. To the best of our knowledge, prior
research specifically characterizing the dichotomy of rich and lazy learning within the context of RNNs is
scant [83]. Expanding on this exploration, we ventured further into the interplay between the rich and lazy
learning transition and its connection to the transition to chaos. Our investigation characterizes solution
attributes and learning behavior on both sides of this transition and suggests that rich representations can
be biased into a network’s learning strategy by tuning the Lyapunov spectrum towards ordered dynamics.

In the context of infinite-depth feedforward networks, the correlation between the rich/lazy transition
and the chaotic/ordered transition has been previously documented [84, 85]. However, this exploration
has yet to be extended to RNNs. Given the divergent behavior at the infinite-depth limit, and if such an
infinite-depth limit in feedforward networks translates to an infinite sequence length limit in RNNs, our
study admittedly has some limitations. Notably, we only considered finite sequence lengths in this work,
leaving the exploration of infinite sequence limits as an area for future inquiry. Additionally, more nuanced
categorization of learning regimes is left for future work [83]. Further, we manipulated the initial weight
scale to tune between the learning regimes, but we recognize there are other parameters — such as network
width, scaling of readout weights (o parameter) [14, 16] and initial weight rank [71] — that could also be
adjusted to affect the transition. Hence, future research will explore these additional dimensions.

Additionally, in this work, we explored differences in network dynamics and learning regime on biologically
realistic connectivity structures at two different scales. These structures differ in their weight distributions,
degree distributions, inclusion of Dale’s law, and the balance of positive/negative weights. In the mesoscale
model, we found that longer-tailed distributions with only a single population did afford greater stability
over a wider range of gains than Gaussian models, while learning equally well. Importantly, using the
cortical column model, we found that having multiple populations from different distributions changed
network dynamics dramatically. Theoretical work has yet to fully describe the expected dynamical transitions
for connectivity matrices with multiple populations drawn from separate distributions, each with different
non-zero means and standard deviations. Our results are nevertheless consistent with previous theoretical
work showing that block connectivity structure with more than one population will have outliers in their
eigenspectrum, when the sum of synaptic weights into each neuron is non-zero, while noting that such
networks can have non-intuitive dynamics [86].

Finally, we computed PCIst, a clinically relevant measure of consciousness, for these models. To our
knowledge, this is the first time that the metric has been characterized in artificial neural networks in
relation to their associated Lyapunov exponents. Interestingly, we found that the metric can be predicted
by the value of the maximum Lyapunov exponent, peaking at the edge of chaos, with larger values in the
non-chaotic regime where we also observed a tendency towards rich learning. It is important to note that
the biological connectivity structures used in our study result from fine-tuning both prenatally and over
the course of the first months of life. As a result, their ordered dynamics may reflect the impact of prior
tuning through biological feedback mechanisms to have this desirable characteristic. The result suggests
that 1. biological systems are biased towards rich learning. 2. consciousness as measured by PClIst may be
an evolutionary consequence of favoring rich learning strategies.

Although beyond the scope of this work, our observation that networks shift towards lazier learning
strategies as dynamical complexity increases, raises interesting questions about brain states associated with
more complex neural activity, such as when under the influence of psychedelics. The use of psychedelics in
the treatment of psychiatric disorders has become increasingly commonplace. Although their therapeutic
mechanism is not understood, recent research has found that psychedelics robustly increase brain complexity
[87-89]. It has been suggested that such treatment may increase brain flexibility [90, 91]. Thus, this work
raises an intriguing, testable hypothesis that presumed increased flexibility may include a shift in learning
strategy under the influence of these drugs.

Overall, our work connects critical network dynamics, learning regimes, and measures of consciousness
and characterizes the influence of network sparsity, structure, and weight variance on network dynamics and
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learning strategy. We show that both learning regime and measures of consciousness undergo a transition at
the coupling strength that delineates chaotic from ordered dynamics. As we continue to investigate, these
findings promise to unlock deeper understanding and more robust applications within the field of artificial
intelligence and neuroscience.

4 Acknowledgements

We wish to thank the Tiny Blue Dot Foundation, the NSF and the NIH for their support as this work
was funded in part by grants from the Tiny Blue Dot Foundation, NSF 2223725, and NIH RO1EB029813
and RF1DA055669. We thank Guillaume Lajoie and Stefano Recanatesi for their valuable discussion and
feedback on this work. We also wish to thank the Allen Institute founder, P. G. Allen, for his vision,
encouragement and support.

References

[1] Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391-423, 2012.

[2] Yiding Jiang, Pierre Foret, Scott Yak, Daniel M Roy, Hossein Mobahi, Gintare Karolina Dziugaite,
Samy Bengio, Suriya Gunasekar, Isabelle Guyon, and Behnam Neyshabur. Neurips 2020 competition:
Predicting generalization in deep learning. arXiv preprint arXiv:2012.07976, 2020.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Can sgd learn recurrent neural networks with provable generaliza-
tion? Advances in Neural Information Processing Systems, 32, 2019.

[4] Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of generalization
error in neural networks. Neural Networks, 132:428-446, 2020.

[5] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and general-
ization in neural networks. Advances in neural information processing systems, 31, 2018.

[6] Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guillaume
Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural Information
Processing Systems, 34, 2021.

[7] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta numerica, 30:87-201, 2021.

[8] Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model alignment
explain generalization in kernel regression and infinitely wide neural networks. Nature communications,
12(1):2914, 2021.

[9] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia
Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al. A deep learning
framework for neuroscience. Nature neuroscience, 22(11):1761-1770, 2019.

[10] Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics in wide
neural networks. arXiv preprint arXiw:2210.02157, 2022.

[11] Yuhan Helena Liu, Arna Ghosh, Blake Richards, Eric Shea-Brown, and Guillaume Lajoie. Beyond
accuracy: generalization properties of bio-plausible temporal credit assignment rules. Advances in
Neural Information Processing Systems, 35:23077-23097, 2022.

[12] Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dynamics
of deep linear networks with prior knowledge. Advances in Neural Information Processing Systems,
35:6615-6629, 2022.

18


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[13] Arna Ghosh, Yuhan Helena Liu, Guillaume Lajoie, Konrad Kording, and Blake Aaron Richards. How
gradient estimator variance and bias impact learning in neural networks. In The FEleventh International
Conference on Learning Representations, 2023.

[14] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

[15] Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe, and Christopher Summerfield.
Rich and lazy learning of task representations in brains and neural networks. BioRxiv, pages 2021-04,
2021.

[16] Thomas George, Guillaume Lajoie, and Aristide Baratin. Lazy vs hasty: linearization in deep networks
impacts learning schedule based on example difficulty. arXiv preprint arXiv:2209.09658, 2022.

[17] Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric compres-
sion of invariant manifolds in neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2021(4):044001, 2021.

[18] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy train-
ing in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020(11):113301,
2020.

[19] Alexander Atanasov, Blake Bordelon, Sabarish Sainathan, and Cengiz Pehlevan. The onset of variance-
limited behavior for networks in the lazy and rich regimes. arXiv preprint arXiv:2212.12147, 2022.

[20] Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width kernel and prediction fluctuations in
mean field neural networks. arXiv preprint arXiv:2304.03408, 2023.

[21] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXi:2011.14522, 2020.

[22] Edward Moroshko, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati Srebro, and Daniel
Soudry. Implicit bias in deep linear classification: Initialization scale vs training accuracy. Advances in
neural information processing systems, 33:22182-22193, 2020.

[23] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Conference
on Learning Theory, pages 3635-3673. PMLR, 2020.

[24] Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri Barak. The
interplay between randomness and structure during learning in rnns. Advances in neural information
processing systems, 33:13352-13362, 2020.

[25] H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in Random Neural Networks. Physical Review
Letters, 61(3):259-262, July 1988.

[26] Chris G. Langton. Computation at the edge of chaos: Phase transitions and emergent computation.
Physica D: Nonlinear Phenomena, 42(1-3):12-37, June 1990.

[27] Ling Feng, Lin Zhang, and Choy Heng Lai. Optimal Machine Intelligence at the Edge of Chaos. arXiv,
October 2020. arXiv:1909.05176 [nlin, stat].

[28] Jannis Schuecker, Sven Goedeke, and Moritz Helias. Optimal Sequence Memory in Driven Random
Networks. Physical Review X, 8(4):041029, November 2018.

[29] T. Toyoizumi and L. F. Abbott. Beyond the edge of chaos: Amplification and temporal integration by
recurrent networks in the chaotic regime. Physical Review E, 84(5):051908, November 2011.

[30] Hiibler Alfred Wotherspoon, Timothy. Adaptation to the edge of chaos with random-wavelet feedback.
J. Phys. Chem A, 113:19-22, 2009.

19


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[31] C.L. Webber and J. P. Zbilut. Dynamical assessment of physiological systems and states using recurrence
plot strategies. Journal of Applied Physiology, 76(2):965-973, February 1994.

[32] N. Pradhan and P.K. Sadasivan. The nature of dominant lyapunov exponent and attractor dimension
curves of eeg in sleep. Computers in Biology and Medicine, 26(5):419-428, September 1996.

[33] Daniel Toker, Ioannis Pappas, Janna D. Lendner, Joel Frohlich, Diego M. Mateos, Suresh Muthuku-
maraswamy, Robin Carhart-Harris, Michelle Paff, Paul M. Vespa, Martin M. Monti, Friedrich T. Som-
mer, Robert T. Knight, and Mark D’Esposito. Consciousness is supported by near-critical slow cortical
electrodynamics. Proceedings of the National Academy of Sciences, 119(7):62024455119, February 2022.

[34] Brandon R. Munn, Eli J. Miiller, Jaan Aru, Christopher J. Whyte, Albert Gidon, Matthew E. Larkum,
and James M. Shine. A thalamocortical substrate for integrated information via critical synchronous
bursting. Proceedings of the National Academy of Sciences, 120(46):¢2308670120, November 2023.

[35] Adenauer G. Casali, Olivia Gosseries, Mario Rosanova, Mélanie Boly, Simone Sarasso, Karina R. Casali,
Silvia Casarotto, Marie-Aurélie Bruno, Steven Laureys, Giulio Tononi, and Marcello Massimini. A
Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior. Science
Translational Medicine, 5(198), August 2013.

[36] Dmitry O. Sinitsyn, Alexandra G. Poydasheva, Ilya S. Bakulin, Liudmila A. Legostaeva, Eliza-
veta G. lazeva, Dmitry V. Sergeev, Anastasia N. Sergeeva, Elena I. Kremneva, Sofya N. Morozova,
Dmitry Yu. Lagoda, Silvia Casarotto, Angela Comanducci, Yulia V. Ryabinkina, Natalia A. Suponeva,
and Michael A. Piradov. Detecting the Potential for Consciousness in Unresponsive Patients Using the
Perturbational Complexity Index. Brain Sciences, 10(12):917, November 2020.

[37] Mario Rosanova, Silvia Casarotto, Camilla Derchi, Gabriel Hassan, Simone Russo, Simone Sarasso,
Alessandro Vigano, Marcello Massimini, and Angela Comanducci. The perturbational complexity index
detects capacity for consciousness earlier than the recovery of behavioral responsiveness in subacute
brain-injured patients. Brain Stimulation, 16(1):371, January 2023.

[38] Renzo Comolatti, Andrea Pigorini, Silvia Casarotto, Matteo Fecchio, Guilherme Faria, Simone Sarasso,
Mario Rosanova, Olivia Gosseries, Mélanie Boly, Olivier Bodart, Didier Ledoux, Jean-Francois Brichant,
Lino Nobili, Steven Laureys, Giulio Tononi, Marcello Massimini, and Adenauer G. Casali. A fast and
general method to empirically estimate the complexity of brain responses to transcranial and intracranial
stimulations. Brain Stimulation, 12(5):1280-1289, September 2019.

[39] Joseph P. Zbilut and Charles L. Webber. Embeddings and delays as derived from quantification of
recurrence plots. Physics Letters A, 171(3-4):199-203, December 1992.

[40] J.-P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle. Recurrence Plots of Dynamical Systems. Euro-
physics Letters, 4(9):973, November 1987.

[41] Joseph P. Zbilut, José-Manuel Zaldivar-Comenges, and Fernanda Strozzi. Recurrence quantification
based Liapunov exponents for monitoring divergence in experimental data. Physics Letters A, 297(3-
4):173-181, May 2002.

[42] Pawel Kaluzny and Remigiusz Tarnecki. Recurrence plots of neuronal spike trains. Biological Cybernet-

ics, 68(6):527-534, April 1993.

[43] Nitza Thomasson, Thomas J. Hoeppner, Charles L. Webber, and Joseph P. Zbilut. Recurrence quan-
tification in epileptic eegs. Physics Letters A, 279(1):94-101, 2001.

[44] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths. Recurrence Plot Based Measures
of Complexity and its Application to Heart Rate Variability Data. Physical Review E, 66(2):026702,
August 2002. arXiv:physics/0201064.

[45] Matthew G Perich, Charlotte Arlt, Sofia Soares, Megan E Young, Clayton P Mosher, Juri Minxha,
Eugene Carter, Ueli Rutishauser, Peter H Rudebeck, Christopher D Harvey, et al. Inferring brain-wide
interactions using data-constrained recurrent neural network models. bioRziv, pages 202012, 2021.

20


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[46] Adrian Valente, Srdjan Ostojic, and Jonathan Pillow. Probing the relationship between linear dynamical
systems and low-rank recurrent neural network models. arXiv preprint arXiv:2110.09804, 2021.

[47

Christoph Stoéckl, Dominik Lang, and Wolfgang Maass. Probabilistic skeletons endow brain-like neural
networks with innate computing capabilities. bioRziv, 2021.

[48] Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through neural
population dynamics. Annual Review of Neuroscience, 43:249-275, 2020.

[49] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing Wang.
Task representations in neural networks trained to perform many cognitive tasks. Nature neuroscience,
22(2):297-306, 2019.

[50] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent com-
putation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78-84, 2013.

[61] Danil Tyulmankov, Guangyu Robert Yang, and LF Abbott. Meta-learning synaptic plasticity and
memory addressing for continual familiarity detection. Neuron, 110(3):544-557, 2022.

[52] Michael Kleinman, Chandramouli Chandrasekaran, and Jonathan Kao. A mechanistic multi-area re-
current network model of decision-making. Advances in Neural Information Processing Systems, 34,
2021.

[63] Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural networks with
jacobian switching linear dynamical systems. Advances in Neural Information Processing Systems, 34,
2021.

[64] Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. Re-
current switching dynamical systems models for multiple interacting neural populations. Advances in
neural information processing systems, 33:14867-14878, 2020.

[65] Jonathan Kadmon, Jonathan Timcheck, and Surya Ganguli. Predictive coding in balanced neural
networks with noise, chaos and delays. Advances in neural information processing systems, 33:16677—
16688, 2020.

[56] Elia Turner, Kabir V Dabholkar, and Omri Barak. Charting and navigating the space of solutions for
recurrent neural networks. Advances in Neural Information Processing Systems, 34:25320-25333, 2021.

[57] Rylan Schaeffer, Mikail Khona, Leenoy Meshulam, Ila Rani Fiete, et al. Reverse-engineering recurrent
neural network solutions to a hierarchical inference task for mice. bioRxziv, 2020.

[58] Luke Y Prince, Ellen Boven, Roy Henha Eyono, Arna Ghosh, Joe Pemberton, Franz Scherr, Claudia
Clopath, Rui Ponte Costa, Wolfgang Maass, Blake A Richards, et al. Ccn gac workshop: Issues with
learning in biological recurrent neural networks. arXiv preprint arXiv:2105.05382, 2021.

[59] Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current opinion
in neurobiology, 55:82-89, 2019.

[60] James M Murray. Local online learning in recurrent networks with random feedback. ELife, 8:€43299,
2019.

[61] Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, and Uygar Stimbil. Cell-type—
specific neuromodulation guides synaptic credit assignment in a spiking neural network. Proceedings of
the National Academy of Sciences, 118(51), 2021.

[62] Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, and Uygar Siimbiil. Biologically-
plausible backpropagation through arbitrary timespans via local neuromodulators. arXiv preprint
arXiv:2206.01358, 2022.

21


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[63] Owen Marschall, Kyunghyun Cho, and Cristina Savin. A unified framework of online learning algorithms
for training recurrent neural networks. Journal of Machine Learning Research, 21(135):1-34, 2020.

[64] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein, and
Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons. Nature
communications, 11(1):3625, 2020.

[65] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:440—
442, 1998.

[66] Ryan Vogt, Maximilian Puelma Touzel, Eli Shlizerman, and Guillaume Lajoie. On Lyapunov Expo-
nents for RNNs: Understanding Information Propagation Using Dynamical Systems Tools. Frontiers
in Applied Mathematics and Statistics, 8:818799, March 2022.

[67] Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient Descent
on Neural Networks Typically Occurs at the Edge of Stability, November 2022. arXiv:2103.00065 [cs,
stat].

[68] Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-Stabilization: The Implicit Bias of Gradient
Descent at the Edge of Stability, April 2023. arXiv:2209.15594 [cs, math, stat].

[69] Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe, and Christopher Summerfield. Or-
thogonal representations for robust context-dependent task performance in brains and neural networks.
Neuron, 110(7):1258-1270.e11, April 2022.

[70] Matthew Farrell, Stefano Recanatesi, Timothy Moore, Guillaume Lajoie, and Eric Shea-Brown.
Gradient-based learning drives robust representations in recurrent neural networks by balancing com-
pression and expansion. Nature Machine Intelligence, 4(6):564-573, June 2022.

[71] Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and Guil-
laume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits. ArXiv,
2023.

[72] Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe, and Christopher Summerfield.
Rich and lazy learning of task representations in brains and neural networks. preprint, Neuroscience,
April 2021.

[73] Danielle Smith Bassett and Ed Bullmore. Small-World Brain Networks. The Neuroscientist, 12(6):512—
523, December 2006.

[74] Joseph E. Knox, Kameron Decker Harris, Nile Graddis, Jennifer D. Whitesell, Hongkui Zeng, Julie A.
Harris, Eric Shea-Brown, and Stefan Mihalas. High-resolution data-driven model of the mouse connec-
tome. Network Neuroscience, 3(1):217-236, January 2019.

[75] Samson Koelle, Dana Mastrovito, Jennifer D Whitesell, Karla E Hirokawa, Hongkui Zeng, Marina Meila,
Julie A Harris, and Stefan Mihalas. Modeling the cell-type specific mesoscale murine connectome with
anterograde tracing experiments. preprint, Neuroscience, May 2023.

[76] Jonathan Cornford, Damjan Kalajdzievski, Marco Leite, Amélie Lamarquette, Dimitri M. Kullmann,
and Blake Richards. Learning to live with Dale’s principle: ANNs with separate excitatory and inhibitory
units. preprint, Neuroscience, November 2020.

[77] Johnatan Aljadeff, Merav Stern, and Tatyana Sharpee. Transition to Chaos in Random Networks with
Cell-Type-Specific Connectivity. Physical Review Letters, 114(8):088101, February 2015.

[78] H. Dale. Pharmacology and nerve-endings (walter ernest dixon memorial lecture). Theraputics and
Pharmacology Section of Proceedings of the Royal Society of Medicine, 28(3):319-332, 1935.

[79] Fat-P. Koketsu K. Eccles, J.C. Cholinergic and inhibitory synapses in a pathway from motor-axon
collaterals to motoneurones. The Journal of Physiolog, 126(3):524-562, 1954.

22


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[80] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strelcyn. Lyapunov Characteristic
Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of
them. Part 2: Numerical application. Meccanica, 15(1):21-30, March 1980.

[81] Nikolay Kuznetsov and Volker Reitmann. Attractor Dimension Estimates for Dynamical Systems: The-
ory and Computation: Dedicated to Gennady Leonov, volume 38 of Emergence, Complexity and Com-
putation. Springer International Publishing, Cham, 2021.

[82] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience, page 4, 2008.

[83] Friedrich Schuessler, Francesca Mastrogiuseppe, Srdjan Ostojic, and Omri Barak. Aligned and oblique
dynamics in recurrent neural networks. arXiv preprint arXiw:2307.07654, 2023.

[84] Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and generalization
in deep neural networks. In International Conference on Machine Learning, pages 10462-10472. PMLR,
2020.

[85] Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects of
depth and initialization. In International Conference on Machine Learning, pages 19522-19560. PMLR,
2022.

[86] Kanaka Rajan and L. F. Abbott. Eigenvalue Spectra of Random Matrices for Neural Networks. Physical
Review Letters, 97(18):188104, November 2006.

[87] A. Viol, Fernanda Palhano-Fontes, Heloisa Onias, Draulio B. de Araujo, and G. M. Viswanathan.
Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca.
Scientific Reports, 7(1):7388, August 2017.

[88] Robin L. Carhart-Harris. The entropic brain - revisited. Psychedelics: New Doors, Altered Perceptions,
142:167-178, November 2018.

[89] Andres Ort, John W. Smallridge, Simone Sarasso, Silvia Casarotto, Robin Von Rotz, Andrea Casanova,
Erich Seifritz, Katrin H. Preller, Giulio Tononi, and Franz X. Vollenweider. TMS-EEG and resting-state
EEG applied to altered states of consciousness: oscillations, complexity, and phenomenology. iScience,
26(5):106589, May 2023.

[90] David Papo. Commentary: The entropic brain: a theory of conscious states informed by neuroimaging
research with psychedelic drugs. Frontiers in Human Neuroscience, 10, 2016.

[91] R. L. Carhart-Harris and K. J. Friston. REBUS and the Anarchic Brain: Toward a Unified Model of
the Brain Action of Psychedelics. Pharmacological Reviews, 71(3):316, July 2019.

[92] Terence Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations. Probability
Theory and Related Fields, 155(1-2):231-263, 2013.

23


https://doi.org/10.1101/2024.05.15.594236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594236; this version posted May 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

I =F- ** Meso **
! —-}- Meso_threshtoEM/2.25
|~ nNN=28/175
> | nNN=198/1.25
g !
2 1
g o :
!
3 B :
o O .
4 1
Z 1
g :
i} 1
- 1
!
!
!
!
!
!
H T
1 2 3 4 5 1 2 3 P 5
Gain Gain
1001 - —
b 80 :
P |
80 P ;
P 260 i
2 P s e
€ o . g :
2 P 2 ;
o i 1 $ 40 i 7,.[?-:u——”=_;=—fl
< i ; g “:.//"" e
£ L o
40 P e
| | 20 Lot
i 1 t
i i L-r"
20 P i
0 1
1 2 3 1 5 1 2 3 a 5
Gain Gain
12 .
\
£10 SN
: .
508 Sa4 N
<< c \
= g h
go6 ; 3
8 )
€ ]
§oa g,
o
go2 1
0.0 0
1 2 3 4 5
Gain
g ho
7
6 5 i
[ 1
@5 = |
2 54 !
Ea o g i
@ ~
: 2 53 Skl
‘%3 g = r
= E2
z 2 5 S
2 F2
1 1
0 0
1 2 3 a 5 1 2 3 4 5
Gain Gain

Figure 6: Mesoscopic Connectivity. (a) Largest lyapunov exponent A of pre-trained models. True mesoscopic
connectivity (indicated as **Meso™* in green dash-dot) has a shallower slope than the Gaussian nNN = 198
model(brown). The same holds true for the thresholded mesoscopic model (dark blue - dashed) with respect
to the sparsity-matched Gaussian nNN = 28 model (brown) (b) Initial PCIst in pre-trained models. (c)
Model accuracy after 100 epochs of training (d) Kaplan-York (KY) dimensionality of trained models (e)
Representational Alignment. (f-h) Norm Weight change in input, hidden and readout layers.
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Figure 7: Cortical Column Connectivity. (a) Initial distributions of hidden layer connectivity with g = 1.0
for models with nNN = 28 drawn from N(0, W) (blue) in comparison to two experimentally derived

biological connectivity structures: mouse mesocopic connectiome and synaptic connections within a cortical
column of mouse V1. (b) Largest lyapunov exponent X of pre-trained models: cortical column connectivity
(indicated as ** V1 2/3 4 Dales ** in purple dash-dot), a permuted version of the cortical column in which
the distribution is the same but the connection patterns are randomly altered, a block-permuted model of
the cortical column where connections are permuted but Dale’s law is preserved, and a sparsity-matched
Gaussian nNN = 28 model with Dale’s Law imposed. Biologically realistic connectivity distributions biases
these models away from highly chaotic dynamics and lazy learning regime even at high gains. (c) PClIst in
pre-trained models. (d) Model accuracy after 100 epochs of training (e) Kaplan-York (KY) dimensionality
of trained models (f) Representational Alignment. (g-i) Norm Weight change in input, hidden and readout
layers.
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5 Supplementary

5.1 Maximum Lyapunov Exponents

We reported the maximum Lyapunov Exponents for models with rewiring probability = 1.0 (Erdos-Rényi)
in the main text. Here we report similar results for all other rewiring probabilities [0.0, 0.2, 0.5, 0.8]. The
overall pattern of transitions into the chaotic regime prior to training, with largest Lyapunov exponent A > 0
are consistent with the Erdos-Rényi connectivity models, such that the sparsest models transition at higher
gains and the least sparse models transition at lower gains (Figure S1 - left column). Additionally, for all
models, A tunes closer to the critical point (A = 0) with training, regardless of whether \ is positive or
negative prior to training (Figure S1 - right column).

5.2 Dimensionality sMINIST 2-digits

We trained an additional series of models for rewiring probability = 1.0 only, on the 2-digit sMNIST task,
using digits [2,5] and found that models exceeded KY dimension of 2 rather than 10 at g._,, (Figure S3).

5.3 Neural Tangent Kernel

The NTK provides another method for quantifying the richness/laziness of learning [15]. The NTK increases
towards a maximum value of one as network models begin to use lazier learning strategies. Consistent with
the other metrics used to quantify the richness/laziness of learning, for most models, the NTK increases as
a function of gain as networks approach the transition to chaos (Figure S4). However, because it is based on
the gradients of the network’s output with respect to its parameters, values can become numerically unstable
as the model dynamics become chaotic. We nevertheless, include them for completeness.

5.4 Biologically Realistic Connectivity

We endeavored to identify the characteristics of the cortical connectivity structure (weight distribution,
degree distribution, topological structure, Dale’s law, relative balance of excitation and inhibition) that led
to negative maximum lyapunov exponents at high gain. As described in the main text, we tested many
altered connectivity structures to see which aspect of connectivity was necessary to achieve this. Here we
show several additional models described but not shown in the main text (Figure S5.)

5.4.1 Generative Model Reproducing Dynamical Stability of Cortical Column Model

Biological neural networks can be divided into various sub-populations of morphologically and functionally
defined cell types. Here, we focus on the two most basic cell types: excitatory and inhibitory. We split neurons
in our experimental data set into two sub-populations ((E)xcitatory and (I)nhibitory). Experimentally
estimated synaptic weights can be rewritten as a block matrix of the form

(10)

EE EI
W — [W w ]

WIE WII

In order to generate random surrogate weights we compute statistics (means and variances) of weights
between each possible pair of populations (F — E, E — I, I — E, I — I). More precisely, for a given
pair of populations (a, 3) of sizes (N, N?), we take the set of non-zero synaptic weights from neurons in

population 3 to neurons in population « and calculate the mean w®# and variance (w®# — w®8)2. We define
uaﬁ as the sum of mean weights that, on average, any neuron from population « receives from neurons
in population 3. If there are C*? non-zero f — « weights, the average number of non-zero weights from
population 8 per neuron in population « is K% = C*8 /N® and we should have

pof = weBCP IN® = B K8 (11)

Similarly, we define 0®? as

o8 = \/(wo‘ﬁ —wB)2 KB (12)
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H nNN p Transition point H

4 0.00 5.0
4 0.20 3.0
4 0.50 2.5
4 0.75 2.5
4 1.00 2.5
8 0.00 2.75
8 0.20 2.25
8 0.50 2.25
8 0.75 2.25
8 1.00 2.25
16 0.00 2.25
16 0.20 2.0
16 0.50 2.0
16 0.75 2.0
16 1.00 2.0
28 0.00 1.75
28  0.20 1.75
28  0.50 1.75
28  0.75 1.75
28 1.00 1.75
32 0.00 1.75
32 0.20 1.75
32 0.50 1.75
32 0.75 1.75
32 1.00 1.75
64  0.00 1.5
64  0.20 1.5
64  0.50 1.5
64  0.75 1.5
64  1.00 1.5
128 0.00 1.25
128  0.20 1.25
128 0.50 1.25
128 0.75 1.25
128  1.00 1.25
198  0.00 1.25
198 0.20 1.25
198  0.50 1.25
198 0.75 1.25
198 1.00 1.25

Table S1: Model Critical Points

The surrogate network is fully connected and is not subject to strict Dale’s law. Its weights form a block
matrix with entries generated randomly from normal distribution with matched experimental statistics. The
numbers of neurons in each population, N¥ and NZ, do not have to match those in experimental data.
Means and variances are rescaled by the number of neurons in the presynaptic population. More precisely,
the random surrogate weight matrix takes the form

5 FEE  YWEI
W:[W W ]

WIE WII (13)
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H af KB weB ueh B H

EE 48 0061 0290 0.117
(0.25)  (0.002)  (0.018)  (0.005)
EI 170 -0.058 -0.992 0.248
(0.56)  (0.0012) (0.038)  (0.009)
IE 279  0.054 151 0.261
(3.09) (0.0013) (0.17)  (0.019)
I 182 -0.083 -152 0467
(1.05) (0.0036) (0.011) (0.033)

Table S2: Connectivity statistics of the subset of EM V1 Cortical Column data set used in our numerical
experiments.

where entries of each block are generated i.i.d. as
We? ~ N (uo? NP, 020 VNP (14)

We simulated networks driven entirely by recurrent connections (i.e., without any inputs) with either ex-
perimental or surrogate weights (Figure S8). Although the eigenvalues of the resulting random matrix
do not match eigenvalues of experimental weights (Figure S8b,f), the qualitative features of its dynam-
ics, including suppression of chaos (Figure S8a,e) and low-dimensional, periodic or quasiperiodic attractors
(Figure S8c,d,g,h) are reproduced. In the surrogate network, the emergence of oscillations is driven by
the presence of a pair of extreme eigenvalues (”outliers”). The position of the outliers can be predicted
(Figure S8f) from the eigenvalues of the 2 x 2 matrix:

EE | EI
W I
M = . 15
[MIE M”} (15)

The effect of chaos suppression disappeared when standard deviations of weight distributions were increased
by a factor of 2 (Figure S8i-1). These results were not finite-size effects as confirmed in simulations of larger
surrogate networks (Figure S9).

Overall, our findings suggest that the main drivers of the chaos-suppressing oscillations in the original
network may be imbalanced excitatory and inhibitory input weights in tandem with relatively low variability
of the weights around the mean. However, the experimental eigenspectrum is markedly more complex than
the eigenspectrum of random surrogate weights (Figure S8b,f), indicating that our simple generative model
does not capture other, potentially crucial features of the original weight matrix. Outliers could for example
appear due to pairwise weight correlations or cell-type-specific connectivity

The estimated mean weights w®? had comparable magnitudes for all four types of connections and the
differences in the values of u®?, although statistically significant, were driven mostly by large differences in
the values of K% (see Table S2). In particular, K¥F was much smaller than K7  leading to p?¥ < |uF1|.
At this point it is worth noting that the EM V1 Cortical Column data is focused on local circuits as it does
not include projections to a given neuron from neurons from outside its near neighborhood. This raises the
possibility that the lack of E/I balance in the original network may only reflect local circuit connectivity
patterns. In this view, statistics at larger (”global”) spatial scales may be significantly different and we may
expect the overall connectivity to be closer to the balanced regime. Importantly, however, the presence of
multiple complex-valued outliers in the mean-balanced regime is still possible, albeit only if mean weights
strongly dominate over their standard deviations (u®® > o®#) [92], see Figure S10. Indeed, due to the
local circuit sampling, the experimental values of K*# in the data set are much lower than the total average
number of presynaptic partners per neuron. Since the ratio u®?/c®# scales like vV K28 (assuming that global
and local connectivity statistics are comparable), this may be the regime the underlying biological networks
are operating in.
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5.4.2 NTK on Biologically Realistic Connectivity

We report on the NTK results of the mesoscopic and cortical column models in the main text. Additionally,
for completeness, we have included the results for all other model variants tested (Figure S11).

5.4.3 Relationship between PCIst and Lyapunov Exponents

In all models we explored, we found a similar relationship between the maximum Lyapunov exponent and
PCIst. However, the size of the models we explored were kept constant. We therefore explored two larger
models with recurrent layers of size 500 and 1000. From these larger models we see that the point at which
PClIst begins to decrease moves closer to the edge of chaos as the size increases (Figure S12).

As we observed for Gaussian networks, for biologically realistic connectivity, PCIst drops off sharply when
the Lyapunov exponent becomes positive (Figure S13). As gain increases further, the maximum Lyapunov
exponent becomes negative again without a corresponding increase in PCIst. In this regime, where (as
described above) chaos is quenched by oscillatory dynamics, the metric reflects the outliers in the eigen-
spectrum beyond the unit circle and the fact that perturbations to such networks do not result in strong
signal beyond the background response to a Gaussian noise input (See Methods).
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Figure S1: Maximum Lyapunov Exponents for rewiring probabilities [0.0, 0.2, 0.5, 0.8]. Pre-trained models

(left column) Post-training (right column).
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Figure S2: Example Trajectories for nNN = 28, p = 1.0 (a) Trajectory associated with ordered learning at
gain = 1.0 < g, vy DProjected onto the first 2 principle components of the hidden states. Colors indicate
MNIST digit class. (b) Trajectory associated with chaotic learning at gain = 2.5 > g \n
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KY Dimension

Figure S3: KY dimensionality for the 2-digit SMNIST task. Dotted red line = two.
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Figure S7: Lyapunov Exponents and EigenValues for Biologically Realistic Connectivity Models
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Figure S8: Random surrogate weights can reproduce qualitative features of neural dynamics driven by
experimental weights. (a) Three largest Lyapunov exponents as functions of gain g using experimental
weights. (b) Eigenvalues of the experimental weight matrix (¢ = 1). Most eigenvalues are contained within
a relatively small circular-shaped core, but the presence of multiple outliers suggest non-random features
of the connectivity. Red crosses correspond to a pair of eigenvalues of a 2 x 2 matrix M constructed from
experimental mean weights. They do not match any of the outliers very well, but are close to the most
extreme pair of complex-valued outliers. (c) Trajectory of the first two principal components for g = 2. (d)
Same as (e) but with ¢ = 5. (e-h) Same as (a-d) but with random surrogate weights with statistics matched
to experimental data. The number of neurons in each population is the same as in the experiments, leading
to a relatively large realization dependence (not shown), but the qualitative features of chaos suppression is
robust. (i-1) Same as (e-h) but with 0 scaled up by a factor of 2. Here weight distributions are wide enough
to diminish the influence of average inter-population structure. Thus, the classical scenario of transition of

chaos is recovered.
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Figure S9: Results obtained with random surrogate weights are qualitatively the same as we increase the
number of simulated neurons. (a-d) Same as Figure S8(b-c) but with larger populations (N¥ = N' = 1000)
and appropriately rescaled moments otherwise matched to experimental data. (e-h) Same as (a-d) but with
%8 scaled down by a factor of 0.5. (i-1) Same as (a-d) but with ¢®# scaled up by a factor of 2.
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Figure S10: Eigenvalues of the weight matrix W depending on the matrix of means M. Here, N¥ =

22 —1.1
I _ af _ _
NT = 1000 and 0% = 0.6. (a) M = {1-1 0

] . There are two real eigenvalues of M but only one lies
outside of the disk defined by the circular law, so matrix W features a single deterministic outlier. (b-c)

M= [gz _0174} . A pair of complex outliers is well-predicted by the eigenvalues of matrix M. (b) and (c)
correspond to two independent realizations of the weight matrix; the locations of the outliers are subject
to small fluctuations that are expected to disappear with N¥ = NI — oco. (d) M = B :ﬂ . In the
balanced regime, M has no non-zero eigenvalues and, as a result, no clear outliers are produced. (e-f)
M = [188 :188] . Although M has no non-zero eigenvalues, clear outliers are produced as a result of

the large magnitude of the low-rank perturbation. The positions of the outliers are not deterministic, as
confirmed by comparing two independent realizations in (e) and (f), and as such cannot be directly predicted
based solely on M.
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Figure S11: Neural tangent kernel alignment in networks with biologically realistic connectivity.
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Figure S12: Relationship between PClst and largest Lyapunov Exponent: Finite Size Effects. The point at
which PClIst begins to decrease moves closer to the edge of chaos as networks increase in size.
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Figure S13: Relationship between PCIst and Lyapunov Exponents in all other model variants tested. Bio-
logically realistic connectivity structure indicated in bold. PClst decreases towards zero in chaotic regime
as well as in models with Dale’s Law with eigenspectrum outliers leading to oscillatory quenched chaos.
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