

A single-cell atlas characterizes dysregulation of the bone marrow immune microenvironment associated with outcomes in multiple myeloma

Authors:

1 William C. Pilcher^{1#}, Lijun Yao^{2#}, Edgar Gonzalez-Kozlova^{3#}, Yered Pita-Juarez^{4,5,6#}, Dimitra
2 Karagkouni^{4,5,6#}, Chaitanya R. Acharya^{7#}, Marina E Michaud^{8%}, Mark Hamilton^{7%}, Shivani Nanda^{4,5,6%},
3 Yizhe Song^{2%}, Kazuhito Sato^{2%}, Julia T. Wang^{2%}, Sarthak Satpathy^{9%}, Yuling Ma^{4,5,6}, Jessica
4 Schulman⁷, Darwin D'Souza³, Reyka G. Jayasinghe², Giulia Cheloni^{4,5}, Mojtaba Bakhtiari⁸, Nick
5 Pabustan⁷, Kai Nie³, Jennifer A. Foltz², Isabella Saldarriaga⁴, Rania Alaaeldin⁸, Eva Lepisto⁷, Rachel
6 Chen³, Mark A. Fiala¹⁰, Beena E Thomas⁸, April Cook⁷, Junia Vieira Dos Santos¹¹, I-ling Chiang², Igor
7 Figueiredo³, Julie Fortier¹⁰, Michael Slade¹⁰, Stephen T. Oh^{12,13,14}, Michael P. Rettig¹⁵, Emilie
8 Anderson¹⁶, Ying Li¹⁶, Surendra Dasari¹⁶, Michael A Strausbauch¹⁶, Vernadette A Simon¹⁶, Immune
9 Atlas Consortium⁷, Adeeb H Rahman³, Zhihong Chen³, Alessandro Lagana¹¹, John F. DiPersio²,
10 Jacalyn Rosenblatt^{4,5,17}, Seunghee Kim-Schulze³, Madhav V Dhodapkar^{18,19}, Sagar Lonial^{8,20}, Shaji
11 Kumar¹⁶, Swati S Bhasin⁸, Taxiarchis Kourelis¹⁶, Ravi Vij^{10,21}, David Avigan^{4,5,17}, Hearn J Cho⁷, George
12 Mulligan^{7\$}, Li Ding^{2,21\$}, Sacha Gnjatic^{3\$}, Ioannis S Vlachos^{4,5,6,22,23\$}, Manoj Bhasin^{8,9,1,24\$}

13

Affiliations:

14 ¹Coultier Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
15 ²Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
16 ³Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and
17 Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
18 ⁴Beth Israel Deaconess Medical Center, Boston, MA, USA
19 ⁵Harvard Medical School, Boston, MA, USA
20 ⁶Broad Institute of MIT and Harvard, Cambridge, MA, USA
21 ⁷MMRF, Norwalk, CT, USA
22 ⁸Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA

23 ⁹Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA
24 ¹⁰Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University
25 School of Medicine, St. Louis, MO, USA
26 ¹¹Tisch Cancer Institute, Department of Immunology and Immunotherapy, Genetics and Genomic
27 Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
28 ¹²Division of Hematology, Department of Medicine, Washington University School of Medicine, St.
29 Louis, MO, USA
30 ¹³Department of Pathology and Immunology, Washington University School of Medicine, St. Louis,
31 MO, USA
32 ¹⁴Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs,
33 Washington University School of Medicine, St. Louis, MO, USA
34 ¹⁵Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
35 ¹⁶Mayo Clinic, Rochester, MN, USA
36 ¹⁷Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA,
37 USA
38 ¹⁸Department of Hematology Oncology, Emory School of Medicine, Atlanta, GA, USA
39 ¹⁹Winship Cancer Institute, Emory School of Medicine, Atlanta, GA, USA
40 ²⁰Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
41 ²¹Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
42 ²²Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
43 ²³Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA
44 ²⁴Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, GA, USA

Author List Footnotes:

45 #: Co-First authors
46 %: Co-Second authors
47 \$: Senior and Co-corresponding authors

Running Title: The Immune Atlas of Multiple Myeloma

Keywords: Multiple Myeloma, Bone Marrow Microenvironment, Single-Cell, Transcriptome, Inflammation, Senescence

48

49 **\$ Senior and Co-corresponding authors:**

Manoj Bhasin, PhD

Health Sciences Research Building, Room N320
1760 Haygood drive Atlanta, GA 30322
phone: 404-712-9849
email: manoj.bhasin@emory.edu

Ioannis Vlachos, PhD

330 Brookline Ave, 519A, Dana Building,
BIDMC, Boston, MA 02115
Phone: (617)-667-4143
Email: ivlachos@bidmc.harvard.edu

Sacha Gnjatic, PhD

1470 Madison Avenue, Hess s5-105, Box 1044A,
New York NY 10029
Phone: 212-824-8438
E-mail: sacha.gnjatic@mssm.edu

Li Ding, PhD

4444 Forest Park Avenue
St. Louis, MO 63108
Phone: 314-286-1848
Email: lding@genome.wustl.edu

George Mulligan, PhD

Multiple Myeloma Research Foundation
383 Main Avenue, 5th Floor.
Norwalk, CT 06851
Phone: 203-652-0458
E-mail: mulligang@themmmrf.org

50

Word Count: 5,124

Figure Count: 7

ABSTRACT

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

Keywords: Multiple Myeloma, Bone Marrow Microenvironment, Single-Cell, Transcriptome, Inflammation, Senescence

51 INTRODUCTION

52 Multiple myeloma (MM) is the second most prevalent hematological cancer, and its incidence continues to rise
53 globally^{1,2}. An estimated 35,780 new diagnoses and 12,540 deaths are projected for 2024 in the United States³.
54 The emergence of myeloma-targeting biologic and immune-based therapies has led to significant improvements
55 in patient outcomes⁴. Nevertheless, curative outcomes are characteristically elusive, and most MM patients
56 eventually succumb to the disease. Disease evolution is associated with progressive immune dysregulation.
57 With the recent FDA approval of immunotherapies, such as CAR-T cells and bispecific T cell engagers,
58 understanding the immune elements in the myeloma microenvironment has become increasingly important for
59 addressing disease emergence and/or response to treatment. Over the past 15 years, multiple studies⁵⁻¹⁰,
60 including the Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profiles (CoMMpass)
61 registry^{8,11}, have investigated the genomic landscape and diversity of MM as well as identified specific tumor
62 subtypes and their underlying associations with clinical outcomes. Further, these studies have demonstrated
63 that, like other cancers, MM tumors are multi-clonal, with their clonal makeup evolving over the course of the
64 disease progression and exposure to treatments. Notably, prognostic models leveraging these genetic
65 determinants are limited in their capacity to identify patients at high risk for early relapse. This suggests that
66 latent, tumor-extrinsic factors contributing to patient prognosis are not captured by current models.

67 The bone marrow microenvironment (BMME) composition in MM has been identified as a factor affecting tumor
68 progression and therapeutic outcomes. Recent studies have pointed to T cell exhaustion^{12,13} and the infiltration
69 of immunomodulatory cell populations contributing to immunoediting and immune evasion in MM, such as
70 myeloid-derived suppressor cells (MDSCs), regulatory T cells (T_{reg}), Th17 cells, dendritic cells (DCs), and
71 dysregulated natural killer (NK) cells, as well as tumor-associated neutrophils (TANs) and macrophages
72 (TAMs)¹⁴⁻¹⁷. We hypothesized that profiling the BMME of newly diagnosed MM (NDMM) patients prior to
73 treatment with standard myeloma therapies could reveal immune populations and signaling pathways associated
74 with disease progression or clinical outcomes. Such insights can be used to refine current patient stratification
75 tools including the revised International Staging System (R-ISS) and, importantly, inform strategies for target
76 identification and rational integration of various immunotherapies in MM.

77 To this end, we generated a BMME Immune Atlas of NDMM patients from the Multiple Myeloma Research
78 Foundation (MMRF) CoMMpass study (NCT01454297), which included corresponding detailed clinical and
79 genomic information. Analyzing over 1.1 million cells from 263 NDMM patients, we identified immune populations
80 and phenotypes associated with relapse risk and PFS.

81 RESULTS

82 A multiple myeloma bone marrow microenvironment cell atlas

83 To decipher the role of the BMME in MM outcomes, we profiled CD138^{neg} cells from 361 bone marrow (BM)
84 aspirate samples (prior to treatment) obtained from 263 NDMM patients recruited in the CoMMpass study
85 (**Figure 1a**). Patients who are either high cytogenetics risk or received doublet/triplet therapy, with or without
86 autologous stem cell transplantation (ASCT), were preferentially selected from the CoMMpass study (n=1,143
87 patients) to be included in the study. This randomly selected sub-cohort was generally reflective of the
88 CoMMpass study with similar (**Supplemental Table 1**) demographic and clinical characteristics, including
89 median age (62.9 v. 64.1), percentage self-identified as African American (16.6 v. 17.5) ISS Stage 3 (27.9 v.
90 26.3) and cytogenetic high-risk¹⁸ (51.6 v. 53.2) (**Figure 1b, Supplemental Table 1**). Therapeutically, 184
91 patients initially received a combination of proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), and
92 steroids, while 135 underwent ASCT as first-line therapy. Overall, the study profiled before-treatment BM
93 samples from 263 NDMM patients along with a subset of post-treatment samples (n = 98) (**Figure 1c**) using our
94 previously standardized single-cell RNA sequencing (scRNA-seq) protocol^{12,19,20} (**Figure 1a**).
95 By integrating single-cell transcriptomic profiles of CD138^{neg} and tumor-enriched genetic profiles of CD138^{pos}
96 fraction of cells, we sought to examine how genetic alterations and the immune landscape correlate with
97 outcomes (**Figure 1a**). Given previous findings from the CoMMpass study^{11,18}, we used six genomics events to
98 categorize patients into high-risk (HR, n = 123), if they met one or more of the following criteria: del17p13,
99 t(14;16)[MAF], t(8;14)[MAFA], t(14;20)[MAFB], t(4;14)[WHSC1/MMSET/NSD2], gain of chromosome 1q; the
100 remaining patients meeting none of these criteria were labeled as standard-risk (SR, n = 108) (**Figure 1d,e**). We
101 additionally stratified patients based on their disease progression kinetics into rapid progressors (RP, n = 67),
102 with progression events occurring within 18 months of diagnosis, and non-progressors (NP, n = 83), with durable
103 remission for at least four years following treatment (**Figure 1e, Supplemental Figure 1**). Interestingly, although
104 high-risk patients are mainly associated with rapid disease progression and vice versa, we identified 32 HR
105 patients as NPs and 19 SR patients as RPs, indicating other factors, such as the immune environment, might
106 play additional critical roles (**Figure 1e**). As expected, patients categorized as standard-risk had improved PFS
107 relative to high-risk patients, suggesting our risk classification strategy was informative for predicting outcomes
108 (**Figure 1f**). Additionally, survival analysis on other clinical variates also demonstrated that patients who either
109 underwent BM transplants, received triplet treatment (PI, IMiD, and steroid), or were classified as ISS stage I
110 presented significantly ($P < 0.05$) improved PFS (**Figure 1f**).

111 **Single-cell transcriptome profiling identifies traditional and rare cell types and subtypes of the myeloma 112 BMME.**

113 Single-cell RNA-seq was performed on 361 samples collected at multiple time points from 263 patients, resulting
114 in 1,149,344 high-quality BM cells (**Figure 2a**). On average, baseline samples consisted of T cells (30.51%
115 CD8⁺, 23.39% CD4⁺), NK cells (6.82%), B cells (8.51%), Myeloid cells (12.20%), erythroblasts and erythrocytes
116 (7.87%), and plasma cells (8.46%), with the remainder comprised of small, independent populations (HSCs,

117 pDCs, Fibroblasts, 1.53%) (**Figure 2b,c**). Canonical lineage markers were used for cell type and subtype
118 annotation with detailed information provided in the Supplemental Cell Population Annotation Dictionary (**Figure**
119 **2b, c, Supplemental Document 1**). For subsequent downstream analysis, we focused primarily on the baseline
120 samples for all patients (n=263), unless otherwise specified.

121 The T and NK cells compartment formed 30 clusters across CD4⁺ (11 clusters), CD8⁺ (15 clusters), and NK (4
122 clusters) cell populations (**Figure 2d, e**). CD4⁺ T cell clusters comprised naïve, central memory, effector memory,
123 regulatory, and helper T cells (**Figure 2f, Supplemental Figure 2a**). This large-scale analysis also enabled the
124 identification of rare cytotoxic CD4⁺ T cells with high expression of *GZMB* and *PRF1* markers. Similarly, the CD8⁺
125 T cell population also comprised multiple clusters of memory, and effector cells as well late activated effector
126 subtypes (i.e., CD8_Teff_HLA) with intermediate-to-low expression of cytotoxic markers, but high expression of
127 HLA-I and HLA-II class markers (**Figure 2g, Supplemental Figure 2b**). The NK cell clusters comprised classical
128 CD56^{bright}, CD56^{dim}, as well as rare adaptive, and BM resident natural killer cell types (**Figure 2h**).

129 The myeloid lineage comprised 18 clusters of classical CD14⁺ and non-classical CD16⁺ monocytes,
130 granulocytes, neutrophils, cDCs, pDCs, and macrophages (**Figure 2i, j**). The B cell compartment contained pro-
131 B cells, immature transitional B cells, naïve, and memory B cells (**Figure 2k**). The compartment also captured
132 immature hematopoietic populations, such as HSCs, mast cells, and erythroblasts. A small distinct population of
133 mature erythrocytes was observed (**Figure 2a, Supplemental Figure 2c**) with nine subclusters exhibiting
134 minimal patient-specific heterogeneity.

135 Additionally, we identified a population of plasma cells representing 9.17% of cells on average in baseline
136 samples (**Supplemental Figure 2d**), likely comprising residual myeloma populations in the CD138^{neg} BM
137 fraction, indicated by driver variants and copy number changes. Plasma cell subpopulations showed some
138 associations with disease progression, with potential implications for patient outcomes (**Supplemental Figure**
139 **3a-c**).

140 **High-risk MM patients exhibit an over-representation of dysfunctional CD8⁺ T effector populations and** 141 **interferon-stimulated myeloid cell diminution.**

142 Previous studies identified the associations of somatic and germline alterations as well as copy number
143 variations with cytogenetics high-risk disease and poor outcomes in MM^{11,18}. The high-risk abnormalities in this
144 sub-cohort were similar to CoMMpass (**Supplemental Table 1**) and other NDMM studies^{11,18}, with 39.0% of
145 patients with 1q gain, 13.9% with t(4;14)[WHSC1/MMSET/NSD2], and 24.4% of patients having two or more
146 lesions (**Figure 3a, Supplemental Table 1, 2**). Based on the Skerget *et al.*¹¹ risk stratification of CoMMpass
147 patients (**Figure 1a,d**), we performed a comparison of the BMME cells between high and standard-risk patients
148 at baseline and observed significant differences in the CD8⁺ T and myeloid cell compartments.

149 Trajectory analysis of the CD8⁺ T cell compartment captured the differentiation trajectory spanning from early-
150 stage naïve T cells to memory and to cytotoxic effector T cells, providing a framework for exploring dynamic
151 changes in gene expression and cellular proportions (**Figure 3b,c**). Specifically, high-risk patients presented
152 significantly elevated proportions ($P = 0.013$, log₂ fold-change = 0.462, **Figure 3c**) of dysfunctional CD8⁺ T cell
153 (i.e., CD8_Teff_HLA) and lower abundances of differentiated, highly activated, and pro-inflammatory cells, also
154 indicated by their position in pseudotime lineage trajectories (**Figure 3b,c**). The higher abundances of these
155 putatively dysfunctional CD8⁺HLA⁺ T effector cells (CD8_Teff_HLA) were significantly associated with poor
156 overall survival (OS) (log-rank test $P = 0.011$, **Figure 3d**) and PFS (log-rank test $P = 0.032$, **Supplemental**
157 **Figure 4a**). The CD8⁺HLA⁺ T effector cells in the high-risk cohort was further associated with a significantly
158 increased CD8 T cell dysfunctional signature score, as captured by the expression of nine key marker genes
159 (*CD57*, *ZEB2*, *KLRG1*, *KLRK1*, *TIGIT*, *LAG3*, *PDCD1*, *CTLA4*, *TIM-3*)²¹⁻²⁴ ($P = 1.27 \times 10^{-11}$, **Figure 3d**,
160 **Supplemental Table 4**).

161 Among myeloid cells, we observed three distinct cell populations depleted in the high-risk group
162 (CD14+Mono_S100A, CD14+Mono_IFN, GMP) (**Figure 3e**). In particular, the interferon-stimulated CD14⁺
163 monocytes with high expression of interferon and HLA-II class genes (CD14+Mono_IFN) exhibited lower
164 abundance in the high-risk group ($P = 0.05$, log₂FC = -0.224, **Figure 3e**), associated with better OS (log-rank
165 test $P = 0.0098$, **Figure 3f**) and PFS (log-rank test $P = 0.042$, **Supplemental Figure 4b**). Differential gene
166 expression analysis (DGEA) identified a down-regulation of 23 interferon type I and HLA class-II activity-related
167 genes in CD14⁺IFN⁺ monocytes of the high-risk group (**Figure 3g**). Gene set enrichment analysis using this
168 signature depicted a significantly lower score in high-risk patients ($P = 5.4 \times 10^{-66}$, **Figure 3g**), suggesting antigen
169 presentation loss and induction of an immunosuppressive microenvironment.

170 After characterizing the myeloma BMME at baseline, we assessed whether the observed patterns also
171 manifested across time in follow-up samples. In our cohort, 39 patients with baseline cytogenetic information (22
172 high-risk, 17 standard-risk) had follow-up samples at either relapse or remission, which also had cytogenetic
173 information. From these 39 patients (87 samples), we selected 34 patients (74 samples), consisting of 19 high-
174 risk (42 samples) and 15 standard-risk (32 samples), who progressed/relapsed (**Supplemental Figure 5a**).
175 Interestingly, the proportion of regulatory T cells (T_{regs}) increased significantly at relapse timepoints relative to
176 baseline in the high-risk group, indicating expansion of an immunosuppressive phenotype ($P = 0.026$,
177 **Supplemental Figure 5b**). A trend of increasing T_{regs} over time was also observed in relapsed standard-risk
178 patients ($R^2 = 0.077$, BH-FDR = 2.6e⁻²⁶, **Supplemental Figure 5c**), with a less prominent abundance than in the
179 high-risk patients ($R^2 = 0.029$, BH-FDR = 3.1e⁻¹⁵). Among CD8⁺ T cells, the dysfunctional CD8_Teff_HLA
180 increased over time in the high-risk group ($R^2 = 0.035$, BH-FDR = 3.7e⁻²², **Supplemental Figure 5d**). On the
181 other end, classical (CD14+Mono_S100A) and non-classical monocytes (CD16+Mono) were significantly
182 depleted in the high-risk group over time (CD14+Mono_S100A: ($R^2 = 0.052$, BH-FDR = 3.2e⁻⁴⁴), CD16+Mono:

183 (R² = 0.014, BH-FDR = 7.1e-08, **Supplemental Figure 5f,g**) with the most pronounced decrease observed in the
184 proinflammatory CD14⁺IFN⁺ monocytes relevant to our observations at baseline (R² = 0.155, BH-FDR = 3.6e-60,
185 **Supplemental Figure 5e**). This analysis provides preliminary insights after the treatment changes in BMME for
186 comparison with baseline NDMM profiles that will be explored deeply in future studies.

187 **Rapid progressors display accumulation of effector and depletion of naïve T cell populations.**

188 We subsequently investigated alterations in the BMME based on disease progression, comparing patients who
189 rapidly progressed within <18 months (RP, n = 67) following initial therapy to those who achieved sustained
190 remission or non-progression for at least 4 years (NP, n = 83) (**Supplemental Figure 1a**). Most of these patients
191 received standard triplet therapy, consisting of a PI, IMiD, and a glucocorticoid as their first line of therapy
192 (**Supplemental Table 3**). Broadly, rapid progressors had lower abundances of CD4⁺ T cells and B cells, and
193 higher levels of myeloid, plasma, and erythroid cells relative to non-progressors (**Figure 4a**). Samples from rapid
194 progressor patients also exhibited significant enrichment of myeloid cells (P < 0.05) and lower levels of B cell
195 populations (P < 0.05, **Figure 4b**), including the immature, transitional, naive and memory B-cell clusters (P < 0.05,
196 **Supplemental Figure 6**). This suggests a shift towards myelopoiesis in patients with rapid progression of the
197 disease, an indicator of stressed BMME²⁵.

198 To delve deeper into this shift towards myeloid versus lymphoid populations in rapid progressors, we performed
199 a trajectory analysis on the myeloid compartment revealing the expected progression from immature CD14⁺ to
200 mature CD16⁺ monocytes transitioning along the path from non-inflammatory to activated CD14⁺ monocytes
201 (**Figure 4c**). The rapid progressors presented significantly elevated proportions of CD14⁺CD163⁺ monocytes
202 (Macro/Mono, p = 0.004) and lower abundance of proinflammatory CD14⁺ monocytes (CD14⁺Mono_IFN, p = 0.04)
203 (**Figure 4c, Supplemental Figure 7**), similar to observations in high-risk patients (**Figure 3e**). DGEA across the
204 CD14⁺ monocyte populations identified significant upregulation of proinflammatory markers in rapid progressors,
205 such as *CCL3*, *CCL4*, *IL1B*, and *CXCL8*, whereas interferon signaling-related genes were increased in non-
206 progressors (i.e., *ISG15*, *IFI6*, *IFI44*, *MX1*) (**Figure 4d**). Pathway analysis further highlighted the enrichment of
207 proinflammatory pathways, including interleukin, TNF, IL-10, and chemokine signaling in the rapid progressors,
208 pointing to a polarization towards an immunosuppressive phenotype. Conversely, significant enrichment of MHC-
209 II antigen presentation and interferon signaling pathways was observed in non-progressors suggesting classical
210 antigen processing and presentation (**Figure 4e**).

211 The focused analysis of the T cell compartment identified a significantly higher proportion (P = 0.01) of CD8⁺ T
212 cells (45.5%) in rapid progressors in comparison to non-progressors (39.9%) (**Supplemental Figure 8**). A
213 significantly higher proportion of early-stage CD8⁺ naïve (T_n, P = 0.006) and CD8⁺ GZMK⁺ central memory
214 (CD8_Tcm_GZMK, P = 0.03) cells were identified in non-progressors, while rapid-progressor patients exhibited
215 higher abundance of differentiated CD8⁺ cytotoxic effector (CD8_Teff, P = 0.003) and HLA⁺ effector
216 (CD8_Teff_HLA, P = 0.01) populations (**Figure 4f, Supplemental Figure 9**). DGEA further confirmed this by

identifying a significant upregulation of cytotoxicity markers (*NKG7*, *GNLY*, *PRF1*, *FGFBP2*, *KLRD1*, *GZMB*, *GZMA*), in the T cells of rapid progressors. The T cells of non-progressors demonstrated significant upregulation of markers genes for early-stage, naïve populations (*LTB*, *TCF7*, *SELL*) (**Figure 4g**). Furthermore, rapid progressors presented a significant enrichment of interleukin and chemokine signaling pathways, while non-progressors were primarily enriched in ribosomal and translational pathways, likely reflecting the high rRNA expression associated with more naïve T cell populations²⁶ (**Figure 4h**). We assessed the differences in cellular abundance and gene expression across the lineage consisting of cytotoxic populations in our CD8⁺ trajectory (**Figure 4i**). The analysis of cellular proportions along the pseudotime of the cytotoxic cell lineage from trajectory analysis (**Figure 4j**) revealed a higher density of cells from rapid-progressors at later pseudotime points, corresponding with the CD8 T effector populations (i.e., CD8_Teff_HLA, CD8_Teff). In contrast, cells from non-progressor patients exhibited relatively higher densities at earlier pseudotime points, corresponding to naïve and memory T cells (i.e., CD8_Tn, CD8_Tcm_GZMK). Further evaluation of gene expression along the trajectory depicted that markers related to cytotoxicity (*NKG7*, *GZMH*, *FGFBP2*) achieved the highest expression toward the end region of the trajectory (later pseudotime) and were majorly enriched in cells from rapidly progressing patients. This end region of the trajectory presented minimal or near zero expression of markers corresponding to early-stage naïve T cell populations (*CCR7*, *SELL*, *TCF7*, *CD27*, *CD28*) that were enriched in non-progressors (**Figure 4k**). This suggests accumulation of terminally differentiated, cytotoxic, CD27^{neg}CD28^{neg} CD8⁺ T effector cells in rapid-progressing patients, accompanied by a corresponding reduction in the healthy naïve and central memory pool necessary for mounting an immunological memory, which might be associated with poor outcomes. To further explore this hypothesis, we evaluated associations of independent cytotoxic and naïve CD8⁺ T cell gene signatures from the pan-cancer T cell atlas²⁷ to predict outcomes in our dataset. The higher abundance of signature positive cytotoxic CD8⁺ T cells was associated with worse PFS (CoxPH $P < 0.012$) (**Figure 4l**, **Supplemental Table 4**). Conversely, patients enriched in a naïve-like signature across their T cell compartment displayed better PFS (CoxPH $P < 0.002$) (**Figure 4m**, **Supplemental Table 4**). Additionally, patients with a higher CD3⁺ T cell exhaustion signature scores also presented poor PFS (CoxPH $P < 0.021$) (**Figure 4n**, **Supplemental Table 4**). However, expression of exhaustion did not correspond to the RP-enriched CD8_Teff population, and seems to primarily originate from CD8_Tem, CD8_Teff_HLA, CD8_Tem_IFN, and CD8_T_adp populations (**Supplemental Figure 10**).

We also repeated the above T cell compartment analysis using only samples from patients treated with triplet therapy. While therapy itself cannot impact the baseline immune composition, it can influence outcomes. These analyses also showed similar results with a significant enrichment of naïve CD8 T cells and B cells in the non-progressors, as well of the enrichment of more differentiated T cell populations, such as CD8_Teff and CD8_Teff_HLA, in rapid-progressors on triplet therapy (**Supplemental Figure 11**).

250 **Enrichment of CD4⁺ cytotoxic T cells in the immune microenvironment distinguishes rapid progressors**
251 **with standard-risk cytogenetics.**

252 Considering the cellular alterations observed across cytogenetic risk- and progression-based groups, we next
253 sought to determine whether there are common changes in the immune microenvironment associated with high-
254 risk and rapid disease progression. Additionally, we sought to gain insights into why patients assigned to the
255 standard-risk group may progress rapidly despite their classification. Both high-risk and rapid progressors
256 exhibited significant enrichment of the CD8_Teff_HLA population and depletion of IFN- α stimulated CD4⁺ and
257 CD8⁺ naïve, memory, and effector populations (i.e., CD8_Tem_IFN, CD4_Tem_IFN, CD4_Tcm_IFN,
258 CD14_Mono_IFN), as well as classical monocytes and immature and naïve B cells (**Figure 5a**). Notably,
259 standard-risk and non-progression-associated T cell populations displayed common enrichment of IFN-
260 stimulation (ISG15) related genes, including *ISG15*, *MX1*, *OAS1*, *IFI6*, and *IFI44L*.

261 Further analysis of standard-risk patients who experienced rapid disease progression (SR-RP, n = 19) compared
262 to those with non-progression (SR-NP, n = 40) showed significant enrichment of myeloid populations paired with
263 depletion of B lymphoid populations and a decreased proportion of CD8⁺ T cells relative to CD4⁺ T cells (**Figure**
264 **5a, Supplemental Figure 12**). Differentiated T cell populations (CD8_Teff, CD8_Teff_HLA) showed a significant
265 association with SR-RP patients ($p < 0.05$, **Figure 5a, Supplemental Figure 13**). Uniquely, the SR-RP cohort
266 showed significant enrichment of rare CD4⁺ cytotoxic T cells ($P = 0.029$), suggesting a putative role in rapid
267 disease progression in standard-risk patients (**Figure 5a**). Additionally, we also observed significant reductions
268 in B cell progenitors in the SR-RP group ($P=0.044$, **Supplemental Figure 13**). Paired with the significant shift
269 from B lymphoid populations enriched in the NP cohort to myeloid populations in the RP cohort (**Figure 4b**), this
270 suggested that changes in the immune composition may be traced back to altered hematopoiesis within the
271 BMME. Therefore, we investigated the differentially expressed genes within the HSC cluster, revealing that the
272 HSC cluster indeed reflected a shift toward myelopoiesis in the rapid progressors, with over-expression of
273 myeloid lineage commitment markers, while the non-progressors exhibited a slight over-expression of lymphoid
274 lineage commitment markers, such as SOX4 (**Figure 5b**).

275 **Cellular communication analysis depicts IFN- γ driven proinflammatory and immunosuppressive**
276 **changes in patients with poor outcomes.**

277 To explore potential BMME signaling changes associated with cytogenetic risk and disease progression, we
278 investigated intercellular communication patterns, revealing several key pathways in outcome-associated
279 subpopulations (**Figure 5c**). MHC-II expression was enriched in antigen-presenting cells (B cells, M2_Macro,
280 cDCs), which was associated with non-progression (**Figure 4e**) and standard-risk (**Figure 3h**) cohorts, pointing
281 towards an improved adaptive immune response in these groups. We also observed increased expression of
282 interferon-gamma (IFN- γ) in CD8⁺ T effector populations (CD8_Teff_TNF, CD8_Teff_HLA, CD8_Tem, **Figure**

283 **5c-d, Figure 2f-g**), in CD4⁺ cytotoxic populations (CD4_CTL), and in CMV adaptive-like NK cells (NK_adp).
284 Higher IFN- γ receptor expression was also found in the rapid progressor-associated classical and inflammatory
285 monocyte clusters (Macro/Mono, CD14+Mono_ProInflam). Markedly, CD8_Teff_HLA cells were significantly
286 associated with rapid progression and high risk (**Figure 4f**, **Figure 3d**), suggesting that IFN- γ signaling in the
287 BME may contribute to the inflammatory alterations in monocytes of rapid progressors. Notably, the RP-
288 associated cluster (Macro/Mono, **Figure 4c**, **Supplemental Figure 7**) was also found to express *BAG6*, an
289 inhibitor of NK-mediated cytotoxicity in its soluble form²⁸, and well-documented molecules in MM oncogenesis
290 and progression, thrombospondin (THBS), and APRIL. In contrast, the interferon-associated monocyte cluster,
291 associated with SR and NP patients (**Figure 3f**, **Figure 4c**), was found to highly express BAFF, an essential
292 promoter of B cell survival and terminal differentiation²⁹. BAFF can bind to TACI expressed on plasma cells,
293 though it has a much higher affinity to BAFF-R expressed on the mature B cell populations, which are more
294 abundant in non-progressors (**Figure 4b**).

295 Given that IFN- γ overexpression in the T cell compartment correlates with rapid disease progression, we further
296 investigated IFN- γ expression in standard-risk patients and its relationship to outcomes. Standard-risk rapid
297 progressors displayed significantly higher average IFN- γ expression across their T cell compartment (**Figure 5e**),
298 which was associated with poor outcomes (**Figure 5f**). Furthermore, CD14⁺ monocytes of standard-risk rapid
299 progressors had significantly higher IFN- γ receptor (i.e., *IFNGR2*) expression (**Figure 5g**), which was associated
300 with poor outcomes in standard-risk patients (**Figure 5h**). These findings appeared to indicate that heightened
301 IFN- γ expression before therapy may be a prognostic indicator of poor outcomes.

302 In a systems biology analysis, we further investigated gene regulatory networks, particularly focusing on myeloid
303 subpopulations associated with high-risk and rapid disease progression (e.g., CD14+Mono_IFN) and identified
304 enrichment of regulatory networks for IRF2, IRF7, IRF9, and STAT1 transcription factors (TFs) (**Figure 5i-k**,
305 **Supplemental Figure 14**, **Supplemental Table 5**). These TFs are regulated by type I interferon (IFN- α) and
306 promote the transcription of IFN- α stimulated genes, including *ISG15*^{30,31}. Examining the survival association of
307 IRF7-regulon activity within the myeloid compartment, we observed that patients with increased IRF7-regulon
308 activity exhibited better outcomes (CoxPH $P < 0.01$) (**Figure 5j**). Additionally, regulatory networks of cell
309 proliferation related *E2F1* and *E2F8* TFs were enriched in the GMP population elevated in patients with rapid
310 progression (**Figure 5i,k**). Increased E2F8-regulon activity was linked with poor survival outcomes within the
311 myeloid compartment, aligning with our previous observation of increased myelopoiesis in patients with rapid
312 progression (CoxPH $P < 0.05$) (**Figure 5j**).

313 **Integrating baseline immune signatures with cytogenetic risk improves our ability to predict outcomes.**
314 Finally, we assessed the ability of immune cell clusters to predict disease progression in a univariate and
315 multivariable framework (age, sex, stage, and cytogenetic risk) by employing a bootstrapping approach and three

316 different statistical methods (**Figure 6a**). The performance of these predictive models was assessed using the
317 area under the receiver operating characteristic curve (AUC).
318 Clinical data alone yielded an AUC value of 0.7 in predicting PFS (**Figure 6b, c**). Incorporating cytogenetic risk
319 with clinical variables (stage and demographics) increased the PFS prediction to 0.73 (**Figure 6b, d**). Similarly,
320 the predictive power of any single immune subcluster (SubC) combined with clinical variables only marginally
321 improved prediction (AUC = 0.75, **Figure 6b,e**). Iterative feature selection combining subsets of BMME immune
322 clusters with clinical covariates and cytogenetics improved the average AUC for predicting disease progression
323 (**Figure 6b, f-g**). Specifically, combining immune atlas clusters, clinical variables, and cytogenetics resulted in
324 AUC values ranging from 0.75 (any given subcluster) to 0.96 (all subclusters), contingent on the number of
325 subclusters considered during modeling (**Figure 6b,g**). This substantial increase in AUC by combining clinical
326 and immune features (**Supplemental Figure 15a, b**) further highlights the importance of the BMME. Although
327 marginal differences in AUC were observed among individual compartments alone, integrative models
328 showcased a significant advantage over simpler models (**Supplemental Figure 15a-d**). Finally, we identified
329 the most relevant 11 subclusters selected using an elbow test on predictive power vs number of clusters,
330 resulting in a high precision/recall model (AUC:0.81, **Figure 6b,f,h**). This model for stratifying patients into
331 progressors and non-progressors (**Figure 6b,f,h**) included differentiated cytotoxic populations (CD8_Teff,
332 CD8_Teff_HLA) along with inflammatory myeloid populations (CD14+Mono_ProInflam) (**Figure 6h**). This
333 exploratory analysis suggests that the integration of BMME information with clinical and genetic variables may
334 enhance risk stratification and outcome prediction, yet it still requires independent validation.

335 DISCUSSION

336 In this study, we have produced a large comprehensive multiple myeloma single-cell Immune Atlas focused on
337 mapping the myeloma BMME. By standardizing and harmonizing a workflow across multiple centers, we
338 successfully profiled 361 myeloma samples, resulting in >1.1 million cells from the BMME, capturing numerous
339 biologically relevant cell states, including rare subtypes harder to detect in smaller studies, such as cytotoxic
340 CD4⁺ T cells, mast cells, HSCs, and fibroblasts. The atlas also enabled deciphering BMME variations among
341 patients with diverse cytogenetic risk profiles and clinical outcomes; notably these patients were not treated with
342 recently approved T-cell immunotherapies, suggesting that immune function has a broad, treatment-independent
343 role in suppressing tumor growth.

344 The T cell compartment of rapid progressors and high-risk patients displayed an accumulation of terminally
345 differentiated CD8⁺ effector T cells, specifically dysfunctional cytotoxic cells, with reduced naïve populations
346 (**Figure 7**). This state is sometimes referred to as immunosenescence, as the expanded effector population
347 expresses low levels of cytotoxicity-related genes along with the inhibitory KIR KLRG1, and lacks costimulatory
348 receptors CD27 and CD28, resulting in poor antigen-mediated proliferation capabilities³²⁻³⁶. Additionally, some

349 studies have indicated that the immunomodulatory effects of drugs such as IMiDs may act through the
350 costimulatory CD28⁺ pathway³⁷, and therefore, this population may show a diminished response to standard
351 first-line therapies, potentially leading to poorer outcomes. Depletion of the naïve pool can be driven both by
352 thymic involution^{38,39} or by antigenic pressure driven from either the myeloma cells or by other chronic infections
353 such as CMV or EBV⁴⁰⁻⁴². Impairment of naïve T cells reduces the TCR repertoire clonality^{36,43}, which typically
354 is associated with worse outcomes in various malignancies^{44,45}. Therapies that stress the immune environment,
355 including many of the immunotherapies used for MM, such as IMiDs and ASCT, can also drive similar
356 alterations^{46,47}, which in the elderly may be slow to recover due to impairment of new naïve T cell
357 reconstitution^{36,38,39}. Cytotoxic cells are critical for clearing the malignant populations; however, the accumulation
358 of these differentiated T cell populations may reflect a less reactive T cell compartment. Determining if this
359 influences response to immunotherapies will require profiling that specific patient cohort. Additionally, these
360 populations contribute to the inflammatory microenvironment through the production of cytokines such as IFN- γ ,
361 which we observed highly expressed in the HLADR⁺, CD28^{neg} population associated with both high-risk and poor
362 outcomes. Unlike exhaustion, it is not well understood if this senescent state can be reversed, though some
363 studies have indicated it may be possible⁴⁸. Given that immune therapies could aggravate the T cell compartment
364 imbalance, it may be better to utilize more targeted therapies, such as bispecific antibodies, and CAR-T cells in
365 the first line of therapy, rather than only for relapsed disease.

366 In addition to T cell alterations, rapid progressors displayed a shift towards myelopoiesis in the bone marrow,
367 reflected by general depletion of the B cell compartment, including the bone marrow native immature populations,
368 compensated by the increased myeloid compartment (**Figure 7**). Myelopoiesis in the bone marrow can be driven
369 by stress or inflammation that drives HSCs to differentiate toward myeloid lineages at a higher frequency⁴⁹.
370 Myeloid cells can be beneficial as non-progressors, and standard risk patients showed enrichment of MHC-II
371 signaling in their CD14⁺ monocytes, which are known to promote antigen-driven activation of T cells⁵⁰. However,
372 these cells can also be a source of inflammatory cytokines promoting tumor survival, immunosuppression, or
373 angiogenesis, as observed in rapid progressors, displaying enrichment of senescent-associated secretory profile
374 factors, including IL-8, CCL3, or IL-1B⁵¹. The enrichment of these inflammatory factors may be related to IFN- γ
375 produced by the expanded CD8⁺ effector T cell populations, as the inflamed myeloid cells both express the
376 receptor *IFNGR2* and the transcription factor *IRF1*, which is associated with IFN- γ activity⁵². Additionally, other
377 studies have demonstrated that IFN- γ can promote an inflammatory myeloid phenotype by inhibiting IL-10⁵³,
378 which would normally act as a negative feedback regulatory mechanism. This is distinct from the ISG15-related
379 interferon activity observed in non-progressors and standard-risk patients, typically driven by type-I IFNs⁵⁴.

380 Cell-cell communication analysis identified both BAFF (*TNFSF13B*) and APRIL (*TNFSF13*) expression in the
381 myeloid compartment. BAFF expression was primarily associated with myeloid populations enriched in non-

382 progressors such as interferon-associated monocytes. BAFF can bind to TACI expressed on plasma cells,
383 though it has a much higher affinity to BAFF-R expressed in mature B cell populations to promote their
384 differentiation and survival. Conversely, APRIL was most strongly associated with the Macro/Mono population
385 enriched in rapid progressors. APRIL is known to bind to TACI (*TNFRSF13B*) on malignant plasma cells,
386 promoting their survival and MM progression^{55,56}.

387 Cytogenetics alone demonstrated positive predictive capabilities, yet integrating information from the BMME
388 could enhance stratification and guide optimal therapeutic selection. We observed that the prevalence of
389 differentiated BMME immune cell populations can predict outcomes with good accuracy in our cohort regardless
390 of cytogenetics. Importantly, combining tumor cytogenetics, and clinical variables with the BMME cellular
391 immune signatures significantly improved the accuracy in stratifying myeloma outcomes. Patients with
392 immunosenescent and inflamed bone marrow microenvironment might have poor overall or event-free survival
393 even with a favorable genetic makeup. Therefore, we posit that future treatments targeting the immune
394 microenvironment could improve outcomes of myeloma. This observation can elevate the significance of
395 capturing the BMME as a prognostic marker for MM. Increasing the studies capturing such information at the
396 cohort scale could enable us to establish a new generation of comprehensive risk scores or the derivation of
397 simplified lower-cost assays that focus only on the most informative populations. Furthermore, these data may
398 identify ancillary therapeutic targets that improve the efficacy of current treatment strategies and may contribute
399 to rationally designed, personalized treatment regimens based on both the tumor and the immune
400 microenvironment.

401 The study creates an extensive and comprehensive resource to map the granular cellular landscape of myeloma
402 from baseline samples. This lays the foundation for future studies to explore how the BMME is altered by various
403 immunostimulatory and targeted treatments. However, the study has multiple limitations, including only studying
404 gene expression, and does not include any proteomic or functional profiling. Additionally, our study covers
405 immune cells comprehensively but with a sparse representation of non-immune BM stromal populations, limiting
406 our capability to evaluate their associations with outcomes. More targeted studies may still be required to
407 understand the role of BM stromal populations in MM outcomes.

408 This single-cell dataset extends upon wealth of patient information in the MMRF CoMMpass study including
409 tumor gene expression, DNA copy number abnormalities translocations and mutations as well as long-term
410 clinical data⁶. This study is ongoing and will continue to generate additional BMME immune data. As we
411 demonstrated in this investigation, combining orthogonal information, in this case genomic and cell abundance
412 profiles can uncover foundational information for the disease with direct translational implications and
413 applicability. This paradigm can enable us to better understand the combinations of factors that influence

414 outcomes in multiple myeloma and move closer to the goal of optimizing therapy for each patient to ensure the
415 best outcomes.

416

417 **Methods:**

418 **Materials Availability**

419 This study did not generate new unique reagents.

420 **Data availability**

421 All the single-cell raw data is available at MMRF's VLAB shared resource. Requests to access these data will
422 be reviewed by data access committee at MMRF and any data shared will be released under a data transfer
423 agreement that will protect the identities of patients involved in the study.

424 **Code availability.**

425 All the code used for data analysis and generation of figures will be available on the MMRF Immune Atlas
426 Consortium GitHub (https://github.com/theMMRF/MMRF_ImmuneAtlas)

427 **Ethics approval and participant consent**

428 All samples for the study were obtained from the MMRF CoMMpass clinical trial (NCT01454297). Procedures
429 involving human participants as part of this trial were performed by the ethical standards of the MMRF research
430 committee. Written informed consent was obtained from patients for the collection and analysis of samples and
431 clinical information by the MMRF. The Institutional Review Board at each participating medical center approved
432 the study protocol. The list of participating institutes that have approved the study protocol is available at
433 ClinicalTrials.gov (NCT01454297).

434 **Experimental model and human subject details**

435 A total of 361 CD138^{neg} MM bone marrow mononuclear cells (BMMC) samples were collected from multiple
436 myeloma patients (n = 263) enrolled in the MMRF CoMMpass study (NCT01454297). Patients enrolled in the
437 study were monitored via quarterly check-ins for up to eight years following initial disease diagnosis. All patients
438 were required to be eligible for either standard triplet therapy (immunomodulatory drug, proteasome inhibitor,
439 glucocorticoid) or doublet therapy. Most patients received triplet therapy in their first line of therapy. The details
440 of patients' information are available in **Supplemental Table 1**. Samples were acquired pre-therapy (baseline)
441 and post-therapy (relapse or remission), and then processed at four institutions: Emory University, Mayo Clinic
442 Rochester, Mount Sinai School of Medicine, and Washington University.

443 **CD138^{neg} cells isolation and cryopreservation of cell samples**

444 Bone marrow aspirates from the Multiple Myeloma Research Consortium (MMRC) tissue bank were separated
445 into CD138^{pos} (myeloma cells) and CD138^{neg} (immune, bone marrow cells) fractions using immunomagnetic cells
446 selection targeting CD138 surface expression (automated RoboSep and manual EasySep from StemCell
447 Technologies Inc.). Following magnetic separation, the CD138^{neg} cell fractions were viably frozen. Briefly, the
448 CD138^{neg} cells were centrifuged at 400 × g for 5 min. The resulting cell pellet was resuspended in freezing media
449 consisting of 90% FCS and 10% DMSO at a concentration of 5–30 million cells per ml in multiple aliquots. Cell
450 concentrations and aliquot locations were documented, before storing in liquid nitrogen for future studies.

451 **Single-cell RNA-seq sample preparation, library construction, and sequencing**

452 To generate high-quality and comparable single-cell data, we developed a highly detailed single-cell protocol
453 based on our pilot studies^{12,19,20} for implementation across centers and performed profiling using Single Cell 3'
454 profiling (10X Genomics Inc). Briefly for single-cell RNA-seq, aliquots of the CD138^{neg} BMME samples were
455 thawed quickly in 37°C water bath. Cells were washed with a warm medium and pelleted by spinning at 370g for
456 5 minutes at 4°C. The cell pellet was resuspended in ice-cold phosphate buffer saline (PBS) with 1% BSA and
457 cell viability was measured. If cell viability was < 90%, dead cell removal was performed using the Dead Cell
458 Removal Kit (Miltenyi Biotec Inc). The cell pellet was resuspended in 100 µL of dead cell removal microbeads
459 solution and incubated at room temperature for 15 minutes. Magnetic removal of labeled dead cells was
460 performed using the MS column or autoMACS® Pro Separator. The eluted supernatant containing the live cells
461 was pelleted by centrifugation at 370g for 5 minutes at 4°C. Cells were finally resuspended in ice-cold PBS
462 containing 1.0% BSA. In some samples, 100-150 cells from murine sarcoma lines (NIH/3T3 – CRL-1658, ATCC)
463 were spiked into the final human single-cell suspension to assess batch effects across centers. The cells were
464 loaded onto the 10x Genomics Chromium Controller according to the manufacturer's instructions, followed by
465 RT-PCR, cDNA amplification, and library preparation using the Chromium Next GEM Single Cell 3' GEM, Library
466 & Gel Bead Kit v2.1. Briefly, approximately 8,000 cells were partitioned into nanoliter droplets to achieve single-
467 cell resolution for a maximum of 5,000 individual cells/sample. The resulting cDNA was tagged with a common
468 16nt cell barcode and 10nt unique molecular identifier (UMI) during the RT reaction. Full-length cDNA from poly-
469 A mRNA transcripts was enzymatically fragmented and size selected to optimize the cDNA amplicon size (~400
470 bp) for library construction as per recommendations from 10X Genomics Inc. The concentration of the single-
471 cell library was accurately determined through qPCR (Kapa Biosystems) to produce cluster counts appropriate
472 for the paired-end sequencing using NovaSeq 6000 platforms (Illumina). The sequencing data was generated
473 by targeting between 25-50K reads/cell, which provided gene expression profiles of 1,000-4,000 transcripts per
474 cell.

475 **Single-cell RNA-seq genome alignment and quality control**

476 For analysis of single-cell RNA-seq samples, Cell Ranger (v6.0.1, 10x Genomics Inc) was used for
477 demultiplexing sequence data into FASTQ files, aligning reads to the human genome (GRCh38), and generating
478 gene-by-cell UMI count matrices. Empty droplets were removed using DropletUtils⁵⁷ (v1.14.2) (FDR <0.001).
479 Ambient RNA was removed using CellBender⁵⁸ (v0.3.0) (FPR = 0.01). For quality control, cells with <1000 UMI
480 reads, <200 unique genes, or > 20% of UMIs mapped to mitochondrial genes were filtered out using Seurat⁵⁹
481 (v4.3). Harmony⁶⁰ (v0.1) was implemented to mitigate batch effects from processing sites and shipment batches
482 in the resulting cell clusters and embeddings. For a small subset of downstream analyses that directly operate
483 on the count matrix and do not support controlling for a batch covariate, such as CellChat or SCENIC, a corrected
484 count matrix was generated as described in the next section.

485 **Batch-corrected count matrices for gene regulatory and cellular communication analysis.**

486 *Batch effect estimation.* First, the Poisson Pearson residuals were computed for each gene across all cells⁶¹.
487 Genes with zero UMI counts across all cells were excluded from further steps. For the remaining genes, the
488 proportion of variance explained by batch in the Pearson residuals was estimated using the R-squared from a
489 linear regression model⁶². Genes where the batch explained less than 1% of the variance were removed to avoid
490 overcorrection.

491 *Batch corrected counts.* The reference count distribution for each gene affected by batch was modeled as either
492 Poisson (when the mean was equal to the variance) or negative binomial. The Poisson parameter was estimated
493 using the maximum likelihood estimator, while the negative binomial mean and dispersion parameters were
494 estimated using a Gamma-Poisson generalized linear model⁶³. The batch correction was performed in two steps.
495 1) Scaling and centering the Pearson residuals using the batch-level means and standard deviations to account
496 for the differences between batches. 2) Transforming the standardized Pearson residuals onto the probability
497 scale using the empirical-distribution function⁶⁴ and then to the batch corrected counts using the quantile function
498 of the reference Poisson or negative binomial distribution. A pseudo-count of 1 and the original zeros observed
499 in the uncorrected UMI counts were restored to preserve the observed sparsity⁶⁵.

500 **Mouse cell removal**

501 To identify mouse cells, we additionally mapped the raw data to the human (GRCh38) and mouse (mm10)
502 combined reference genome. We removed clusters with more than 80% of cells having less than 95% reads
503 mapped to the human reference genome. Two samples with over 65% of cells being identified as mouse cells
504 were removed from further analysis. Cell barcodes corresponding to mouse cells were removed from the all-
505 sample merged object.

506 **Clustering and cell annotation**

507 Following the removal of mouse cells, raw counts were log normalized (scale factor = 10000) using Seurat⁵⁹
508 (v4.3). The first 25 principal components derived from principal component analysis (PCA) were computed from
509 the top 3,000 variable genes to reduce data dimensionality. Harmony was applied to these principal components
510 to generate batch-corrected embeddings, where each combination of processing center and shipment batch was
511 considered an independent variable. To cluster cells of similar transcriptome profile, Louvain clustering was
512 performed on the batch-corrected harmony embeddings using Seurat's 'FindClusters' function⁵⁹. Clusters were
513 visualized using Uniform Manifold Approximation and Projection (UMAP). Clusters were aggregated into five
514 major connected components called compartments based on their separability on the UMAP. To annotate these
515 compartments, a combination of SingleR⁶⁶ and cell type/subtype specific marker expression was used. The
516 identified compartments included 'T/NK' (T cells and Natural Killer cells), 'B-Ery' (B cells, CD34⁺ populations,
517 erythroblasts), 'Myeloid' (Monocytes, Neutrophils, Dendritic cells), 'Plasma' (Plasma cells'), and 'Ery'
518 (Erythrocytes). A small independent cluster of fibroblasts (946 cells) was observed, in the initial UMAP, and was
519 not included in any compartment.

520 More precise annotation of individual cell compartments was performed separately by repeating the above
521 process on each compartment, leveraging variable genes specific to each compartment. Due to the highly
522 patient-specific nature of myeloma populations, batch correction in the plasma compartment was done per
523 aliquot instead of per batch. Each cluster was manually annotated based on the expression of canonical markers
524 or top genes of the clusters. While annotating cells, if a possible subset was identified within a given cluster
525 based on marker expression, further sub clustering was performed specific to that cluster using the same
526 procedure. Multiple resolutions were assessed, with the final sub clustering used being the result that isolated
527 the subpopulation of interest, while minimizing the formation of minor or patient-specific clusters.

528 **Single-cell mutation mapping and CNV inference**

529 To better understand tumor heterogeneity and malignancy of plasma cell populations, we profiled mutations and
530 copy number changes of plasma cells. First, we utilized a mutation mapping strategy to detect mutations within
531 each cell by looking for reads supporting the reference or variant alleles at variant sites in mapped reads from
532 scRNA-seq BAM files. This is achieved by leveraging high-confidence somatic mutations derived from whole-
533 exome sequencing (WES) data from the same patient. The code for mutation mapping is available on GitHub
534 (<https://github.com/ding-lab/10Xmapping>). Furthermore, we used inferCNV (v.0.8.2,
535 <https://github.com/broadinstitute/inferCNV>) (with default parameters) to identify sample-level chromosomal copy
536 number variations (CNVs) of plasma cells, using the immune cells as reference normal set.

537 **Doublet detection**

538 Doublets were identified by flagging clusters with high doublet proportions as predicted via DoubletFinder⁶⁷,
539 Scrublet⁶⁸ (v0.2.3), and Pegasus (<https://github.com/lilab-bcb/pegasus>) (v1.8.1). Scrublet was used to detect

540 doublets with the expected doublet rate set at 0.06 and thresholded at 0.2. Doublet-enriched clusters,
541 characterized by at least two methods (FDR < 0.05, Fisher's exact test), were manually reviewed and marked
542 as doublets accordingly. Characteristics considered when reviewing doublet-enriched clusters include the
543 simultaneous, high expression of canonical markers from unrelated lineages (e.g., T cell markers *CD3*, *CD8A*,
544 *GZMK* and myeloid markers *LYZ*, *CST3*, *CD14*), or UMI counts disproportionately high relative to similar cell
545 types. Seventeen cell clusters (Cells n=74,282) were flagged as doublets and were omitted from downstream
546 differential expression, abundance, and trajectory analysis.

547 **Differential expression among cell types and clinical groups**

548 Differential expression analysis was performed using linear (as implemented in limma⁶⁹) and mixed effect models
549 (as implemented in lme4⁷⁰) R packages to identify markers enriched in each population, or between clinical
550 groups of interest. Our models were adjusted for covariates including clinically relevant age, sex, stage, and
551 technical factors like sequencing site and batch. Significance was determined using moderated t-test statistics
552 on the log-normalized expression. P values are adjusted for multiple comparisons using Benjamini-Hochberg
553 correction. Log fold change was computed by performing a logarithmic transformation on the ratio of the
554 arithmetic mean expression for cells between groups being compared.

555 **Differential abundance of cell types and subtypes**

556 Differential abundance was performed by computing the per-patient cell-type proportion across all cells and
557 within a specified compartment using a Dirichlet regression model⁷¹ and Wilcoxon Rank Sum tests. Dirichlet
558 regression models were used when the observed cell abundances were different across batches with respect to
559 a covariate of interest (e.g. Risk) whereas Wilcoxon Rank Sum tests were used when the association between
560 batch and the covariate of interest was not significant. Dirichlet regression model was implemented using
561 DirichletReg R package⁷¹. Wilcoxon Rank Sum tests were implemented with the rstatix package (<https://cran.r-project.org/web/packages/rstatix/>), with the rank-biserial correlation coefficient estimated using the effectsize
562 package⁷². P values less than 0.05 was considered statistically significant.
563

564 **Patient stratification based on time interval to disease progression.**

565 Patients in the CoMMpass study had regular three-month check-ins in which clinical parameters were evaluated
566 following therapy. The day of disease progression was identified using standard IMWG criteria. Progression data
567 used in this study was derived from the IA22 CoMMpass clinical metadata release. Patients were categorized
568 into discrete progression groups based on their progression-free survival, and the duration of time the patient
569 was enrolled in the study. The extreme categories of rapid progressing (RP) and non-progressing (NP) use cut-
570 offs matching those of our pilot study¹². Rapid-progressing patients are those with a progression event within 18
571 months of therapy (PFS < 18 months). Non-progressing patients include those who had no progression event
572 for at least four years following therapy (PFS > 4 years). Progressing patients are those who have a documented

573 progression event between 18 months and 4 years (PFS > 18 months, PFS < 4 years). Progressing patients are
574 those who experience a documented progression event from 18 months to 4 years. Incomplete patients are
575 individuals who exited the study before four years of disease diagnosis without experiencing a progression event.

576 **Cytogenetic risk-based stratification of patient samples**

577 The cytogenetic risk categorization was defined using translocation data or copy number data derived from
578 CD138^{pos} whole genome sequencing results included in the IA21 CoMMpass metadata release. Thresholds for
579 calling mutation events in the MMRF CoMMpass data are based off of the work by Skerget et al.¹¹ Patients at
580 high risk were defined with one of the six following mutation events: del17p13, t(14;16)[MAF], t(8;14)[MAFA],
581 t(14;20)[MAFB], t(4;14)[WHSC1/MMSET/NSD2], 1q gain. This extends the definition proposed by Skerget et al.,
582 by incorporating 1q gain. Patients with none of these six events were considered standard risk. Patients with
583 partial mutation data, such as having only translocation or only copy number data, can be classified as high-risk
584 if a high-risk mutation is present in the available data but otherwise were excluded from downstream analyses
585 involving risk-based stratification.

586 **Prediction of patient progression based on immune cell abundances, cytogenetics, and demographics.**

587 To assess the progression prediction capability of the immune signatures alone as well as in combination with
588 clinical variables, we developed and evaluated multiple classifiers. We have evaluated the predictive power of
589 clusters containing cells from at least 50% of samples, resulting in the usage of 83 subclusters. Subsequently,
590 the cell frequencies of these subclusters were utilized to construct both univariate and multivariate models
591 employing three distinct methods: Cox regression, logistic linear regression (LRM), and elastic net regression.
592 Internal validation using bootstrap was used to verify the robustness of results.

593 The survival curves based on the CD8 Teff HLA+ and CD14+ IFN+ Monocyte abundances are based on a Cox
594 proportional hazards model regressing the overall survival on the Pearson residuals from a Dirichlet regression
595 model with batch as the covariate. The optimal cut-off to separate the patients at baseline in low and high groups
596 was determined using maximally selected rank statistics^{73,74} implemented in the surv_cutpoint function from the
597 survminer package [<https://CRAN.R-project.org/package=survminer>]. For the elastic net regression models, a
598 sensitivity analysis of the coefficients was performed to facilitate feature selection and the identification of
599 pertinent features. Likewise, features were selected from LRM and Cox models using p-value filtering. Our
600 modeling approach was designed to assess individual or multiple subclusters, integrated with additional variables
601 such as age, sex, disease stage (ISS), and the cytogenetic risk descriptor mentioned earlier.

602 To ensure the robustness of our models, a bootstrap validation approach was implemented, yielding bias-
603 corrected indexes specific to each model type. Model performance metrics, including Somers' index, Dxy, and
604 diagnostic statistics were computed using Harrel's rms R package. The following R packages glmnet, surv,

605 coxph, and rms packages were employed for identifying and testing predictions of disease progression.
606 Visualization was carried out using R packages such as ggplot, tidyverse, pheatmap, survminer, and gtsummary.

607 **Cell transition trajectory analysis**

608 Pseudotemporal ordering of cells was performed using the Slingshot R package⁷⁵. Cells with a known biological
609 lineage were isolated from all other populations (e.g., CD8 T Cells), and doublet and mitochondrial-enriched
610 populations were excluded. New variable features and batch-corrected embedding components were computed
611 as described above in the “Cluster and cell annotations” section. Slingshot was performed on the first 25 batch-
612 corrected harmony embeddings. If an identified progenitor, or less-differentiated population was detected
613 through annotation, this cluster was designated as the ‘start cluster’ for trajectory analysis. Pseudotimes for all
614 clusters, representing the distance along the trajectory from the starting cluster were calculated.

615 **Survival Analysis**

616 The patients were categorized based on clinical characteristics and risk groups. To analyze survival outcomes,
617 we calculated the probabilities of progression-free survival (PFS) and overall survival (OS), and generated
618 Kaplan-Meier curves for both groups, using the survival⁷⁶ (v.3.2.7) and survminer (v.0.4.9) packages in R. The
619 PFS and OS data were derived from the IA22 CoMMpass clinical metadata release. Patients who left the study
620 prior to any follow-up appointments, or patients with large delays in the start of therapy, were excluded from
621 survival analysis. Cox proportional hazard models were used to determine the clinical characteristics that had
622 the most significant and independent impact on patient survival. The significant clinical features identified from
623 the Kaplan-Meier curves were then included in the models to assess their individual contribution to survival while
624 adjusting for factors such as age, sex, and race.

625 **Longitudinal single-cell analysis in relapse patients**

626 Longitudinal analysis of single-cell data was performed on patients with samples taken at relapse or progression
627 of the disease. Fold change differences in cell proportions were calculated by dividing the cell proportions at the
628 last time point by the cell proportions at the baseline or first time point. The significance of fold change (log2
629 scale) was calculated using the paired Wilcoxon-signed rank test. To better understand the temporal changes in
630 cellular composition between cytogenetic groups, linear models were used to estimate the change in cellular
631 proportion over time. Visit intervals were converted to the number of months from diagnosis. A variance-
632 stabilizing arcsin square root transformation was applied to individual cell type proportions to account for the
633 naturally-occurring mean-variance relationship which arises in proportion data bounded between 0 and 1^{77,78}.
634 The lm function in R was used to fit the linear models between the arcsin-transformed proportion and visit month
635 for each cell type split by patients categorized as standard- or high- risk. The slope of the linear model indicates
636 the direction and magnitude of the temporal relationship between cellular abundance and time. P-values
637 regarding the significance of the association across all cell types were adjusted using the BH procedure.

638 **Pathway activity analysis and signature scoring**

639 Gene-set enrichment analysis (GSEA) was performed to identify the pathways enriched across cell types or
640 clinical groups. The GSEA analysis function `gsePathway` from ReactomePA⁷⁹ was used to compute normalized
641 enrichment scores derived from an ordered gene list. Gene lists were ordered by log fold-change computed via
642 limma trend, correcting for processing site and batch among cell types or clinical groups (See, Differential
643 Expression). To evaluate the enrichment of a gene-signature in individual cells, we computed a signature score
644 the `AddModuleScore_UCell` function from the UCell package⁸⁰. A list of genes from each biological signature
645 was provided as an input. Higher scores were given to cells that consistently showed higher expression of genes
646 in the marker list relative to a randomly selected set of background genes. To derive a per-patient signature
647 score, the mean signature score of all cells in the relevant compartment was computed. Wherever necessary,
648 the P values were adjusted using the Benjamini-Hochberg approach.

649 **Cell-cell communication analysis**

650 CellChat⁸¹ (v2.1.0) was used to identify possible cell-cell interactions across the bone marrow microenvironment.
651 The normalized, batch corrected count matrix (See: Batch-corrected count matrices) was used as the input to
652 CellChat. Doublet clusters were excluded from this analysis. For downstream analysis, some clusters
653 representing biologically similar subtypes were aggregated. A table displaying the mapping between the original
654 clusters and their CellChat clusters is provided in Supplemental Table 6.

655 **Gene regulatory network analysis**

656 The gene regulatory networks (GRNs) for selected clusters within our dataset were estimated using pySCENIC⁸²,
657 an implementation of SCENIC (Single-Cell Regulatory Network Inference and Clustering). The analysis was
658 focused on selected clusters of interest from the myeloid compartment (CD14+Mono_IFN, CD14+Mono pro-in-
659 lam, Macro/Mono, GMP). The batch corrected count matrix served as the input to run GRNBoost2⁸³ and generate
660 co-expression modules. GRNs were further inferred using the hg38_refseq-r80 (mc_v10_clust) motif database,
661 hgnc motif annotation (v9) and and pySCENIC's default settings. Due to the stochastic nature of the GRNBoost2
662 algorithm, slightly varying regulons are detected in each run. Hence, high confidence regulons were filtered out
663 if they were present in >80% of runs, while their target genes were considered if they were detected in >90% of
664 runs. Using AUCell from pySCENIC, each cell was assigned a gene signature score (AUC) indicating the degree
665 of transcription factor activity. The AUC values were normalized across each regulon, and their mean was
666 calculated for each cluster to identify regulons that were strongly associated with a specific cluster. AUC values
667 for each cell in the clusters of interest were averaged to get a per patient per regulon score. The cut-point
668 algorithm was used for grouping samples into 'high' and 'low' regulon activity categories⁸⁴. Survival analysis was
669 performed using the Kaplan-Meier method and Cox proportional hazards regression model on the 'high' and

670 'low' activity variables. As AUC values were derived from batch-corrected count matrices, shipment batch was
671 not adjusted for in the Cox model.

672 **Author Contributions:**

673 The following authors helped conceive the manuscript: WP, EGK, CA, MH, STO, MPR, NK, IAC, ZC, SL, SSB,
674 RV, GM, LD, SG, MB.

675 The following authors performed data analysis:

676 WP, LY, EGK, YPJ, DK, MEM, SN, SS, JS, DDS, MAF, JDVS, IC, IFDS, YL, IAC, ZC, AL, SKS, SSB, SG, MB.

677 The following authors contributed to cell annotation:

678 WP, LY, EGK, YPJ, DK, CA, MEM, SS, YM, AC, IAC, SL, SSB, MB.

679 The following authors provided domain expertise:

680 WP, EGK, YPJ, DK, CA, MEM, MH, SS, JS, GC, MBa, NP, IS, RA, EL, BET, AC, MPR, YL, SD, NK, IAC, ZC,
681 AL, JR, SKS, SL, SK, SSB, TK, DA, HJC, GM, LD, SG, ISV, MB.

682 The following authors provided clinical expertise:

683 EL, MAF, IC, MS, IAC, MVD, SK, TK, DA.

684 The following authors performed experiments:

685 YS, KS, MBa, RA, RC, BET, JF, EA, MS, VS, IAC, AHR, SL, MB.

686 The following authors interpreted the data:

687 WP, LY, EGK, YPJ, DK, CA, MEM, MH, SN, YS, JTW, SS, RGJ, JFS, AC, IC, YL, SD, NK, IAC, ZC, AL, SKS,
688 SSB, SG, MB.

689 The following authors contributed to the writing of the manuscript:

690 WP, LY, EGK, YPJ, DK, CA, MEM, MH, SN, SS, MBa, EA, YL, SD, MS, VS, NK, IAC, SL, SK, SSB, TK, GM,
691 MB.

692 The following authors provided oversight of the study:

693 EGK, CA, MH, NK, IAC, ZC, AL, SKS, SL, SK, SSB, RV, DA, GM, LD, SG, ISV, MB.

694

695 **Acknowledgments**

696 SG was partially supported by the National Institutes of Health grants CA224319, DK124165, and CA196521,
697 as well as the Multiple Myeloma Research Foundation (MMRF).

698 JFD: Paula C. and Rodger O. Riney Blood Cancer Research Fund, NCI R35 CA210084;

699 DK acknowledges support from the MMRF Fellowship Program;

700 SN acknowledges support from MMRF;

701 MPR was supported by NCI R50CA211466;

702 JFD was supported by Paula C. and Rodger O. Riney Blood Cancer Research Fund, NCI R35 CA210084;

703 TK was supported by grants 5K12CA090628;

704 RV was supported by Paula C. and Rodger O. Riney Blood Cancer Research Fund;

705 DA acknowledges support from MMRF
706 DL Paula C. and Rodger O. Riney Blood Cancer Research Fund, NCI U24CA211006, U2CCA233303, and
707 PJ000021702;
708 ISV acknowledges support from MMRF. Data analyses were performed on the Ithaca High Performance
709 Computing Cluster (HPC), Spatial Technologies Unit/Precision RNA Medicine Core (RRID:SCR_024905), and
710 the Harvard Medical School O2 HPC Cluster.;
711 MB acknowledges support from the MMRF and support from Emory University
712 This work was supported in part through the computational and data resources and staff expertise provided by
713 Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and
714 Translational Science Award (CTSA) grant UL1TR004419 from the National Center for Advancing Translational
715 Sciences.

716 **Competing Interests:**

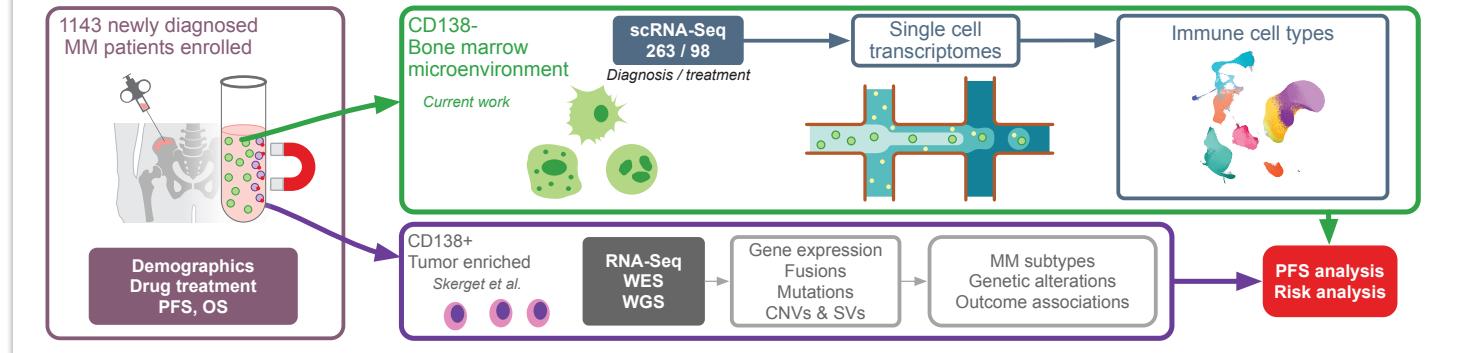
717 S.G. reports other research funding from Boehringer-Ingelheim, Bristol-Myers Squibb, Celgene, Genentech,
718 Regeneron, and Takeda, and consulting from Taiho Pharmaceuticals, not related to this study. JFD is on the
719 consulting/advisory committee for Rivervest, Bioline, Amphivena, Bluebird, Celegene, Incyte, NeolmuneTech,
720 and Macrogenics and has ownership investment in Magenta and Wugen; JR declares consulting with Attivare,
721 Parexel, Clario/Bioclinica, Imaging Endpoint, and Wolters Kluwer Health, Inc. Serves on a DSMB with
722 Karyopharm. Grants and nonfinancial support from Celgene, BMS and Sanofi.; JR has a patent for
723 PCT/US2021059199 pending.; SK declares Research funding for clinical trials to the institution: Abbvie, Amgen,
724 Allogene, BMS, Carsgen, GSK, Janssen, Roche-Genentech, Takeda, Regeneron Consulting/Advisory Board
725 participation: (with no personal payments) Abbvie, BMS, Janssen, Roche-Genentech, Takeda, Pfizer, Loxo
726 Oncology, K36, Sanofi, ArcellX, Beigene; TK declares research funding from Novartis, Pfizer. Advisory Board:
727 BMS DA declares grants from MMRF, CTN (NIHLBI), Celgene, Pharmacyclics and Kite Pharma. Other support
728 from Juno, Partners TX, Karyopharm, BMS, Aviv MedTech Ltd., Takeda, Legend Bio Tech, Chugai, Caribou
729 Biosciences, Janssen, Parexel, Sanofi, and Kowa.; DA has a patent for PCT/US2021/059199 pending.; ISV
730 reports grants from NCI, NHLBI, NIDDK, Harvard Stem Cell Institute, and consulting for Mosaic LLC,
731 AlphaSights, NextRNA, and Guidepoint Global outside of the submitted work; JAF is a consultant for CPRIT and
732 Wugen on work unrelated to the manuscript. Unrelated to this work, J.A.F. has a monoclonal antibody licensed
733 to EMD Millipore and is an inventor on patent/patent applications (WO 2019/152387, US 63/018,108) licensed
734 to Kiadis Inc. and held/submitted by Nationwide Children's Hospital on TGF- β resistant, expanded NK cells.
735 Other authors declare no competing financial or non-financial interests

*** Immune Atlas Consortium:**

Nikolaos Kalavros, Jennifer Rogers, Travis Dawson, Brian H. Lee, Geoffrey Kelly, Laura Walker, Nicolas F. Fernandez, John Leech, Jarod Morgenroth-Rebin, Krista Angeliadis, Matthew A. Wyczalkowski, Song Cao, Omar Ibrahim, Roderick Lin, Todd A. Fehniger, Andrew Houston

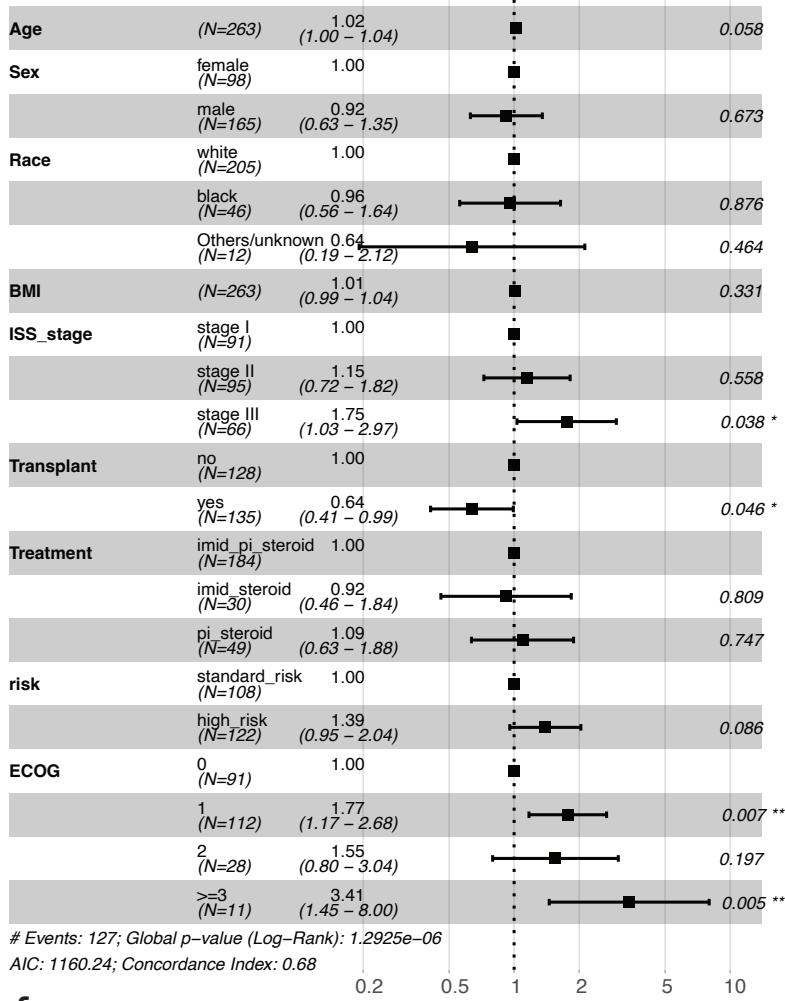
737 **FIGURES AND FIGURE LEGENDS**

CoMMpatability study BIDMC Emory Mayo ISMMS WUSTL

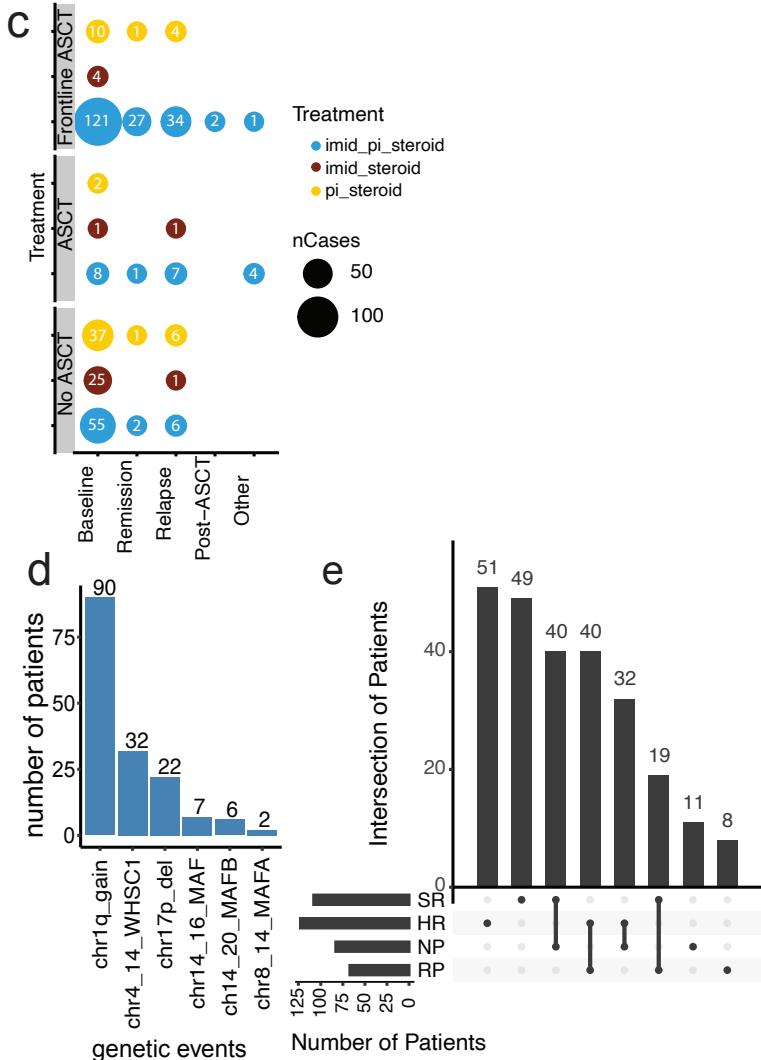


b

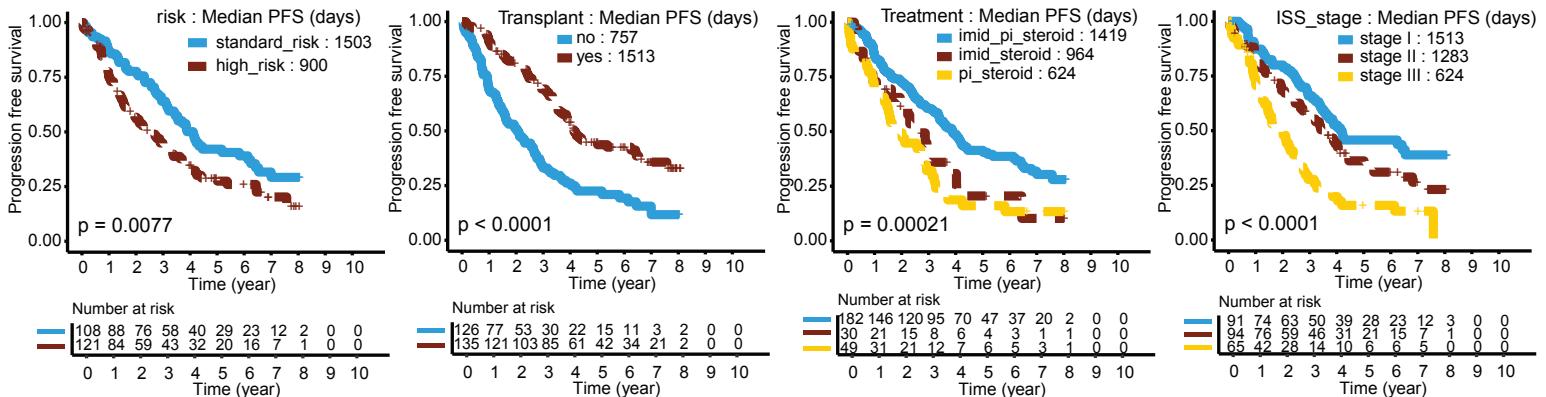
Hazard ratio of progression free survival



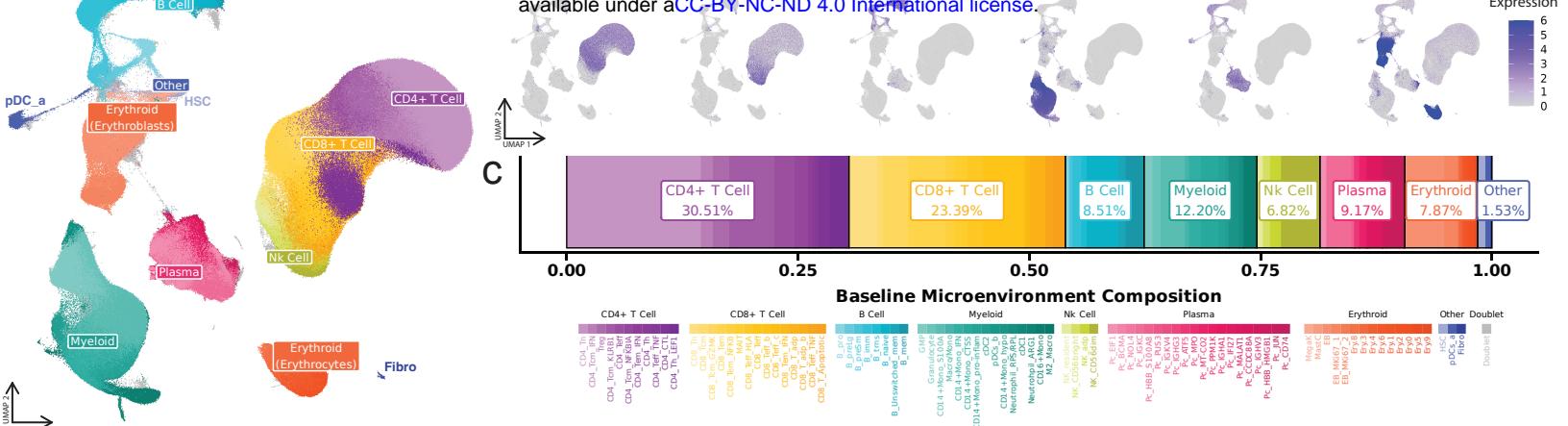
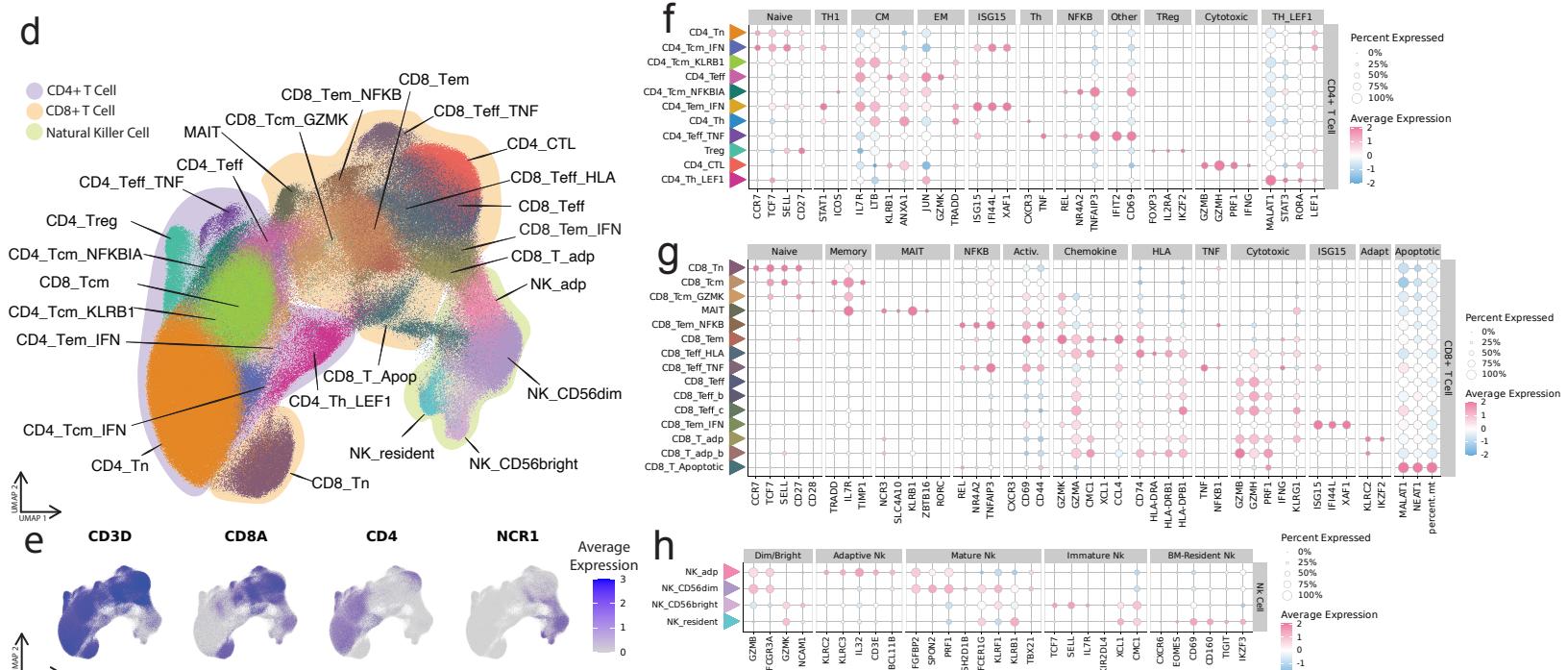
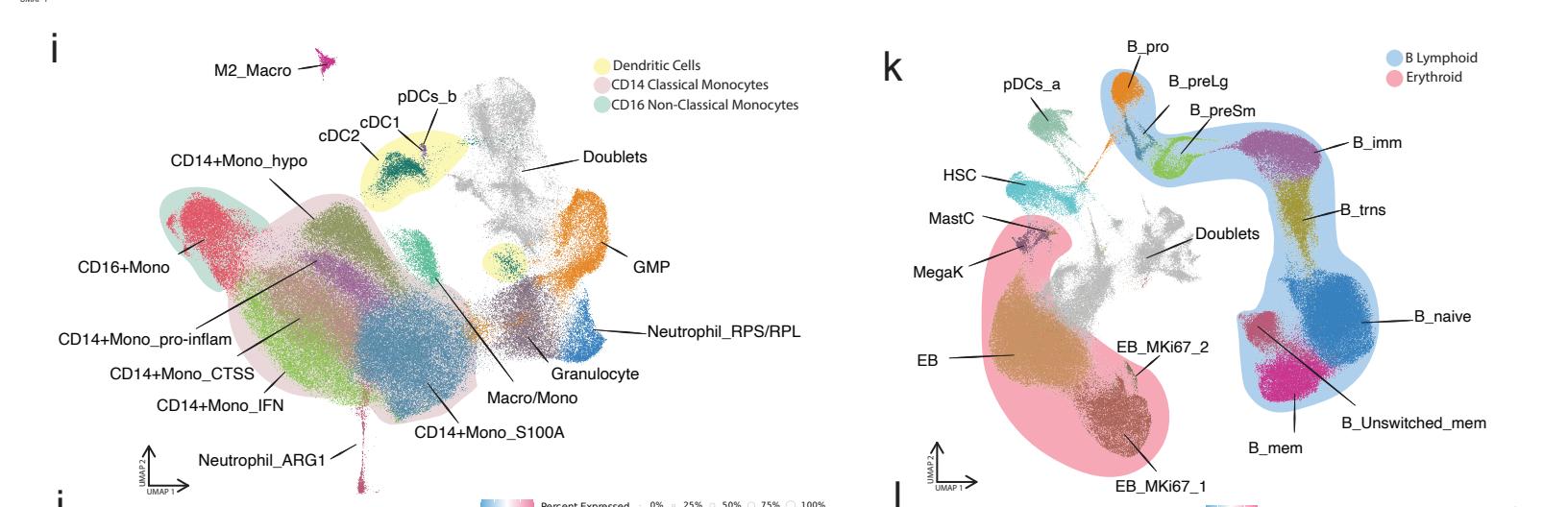
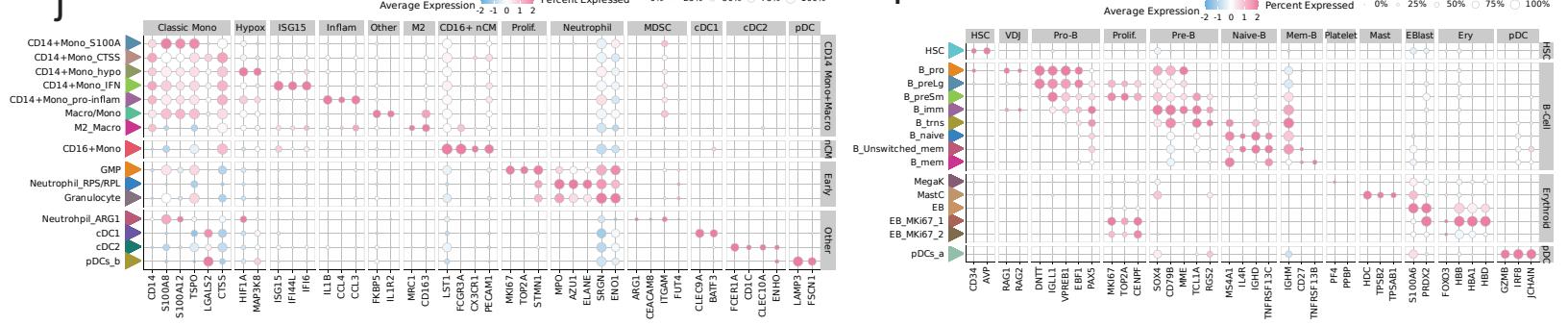
c



f

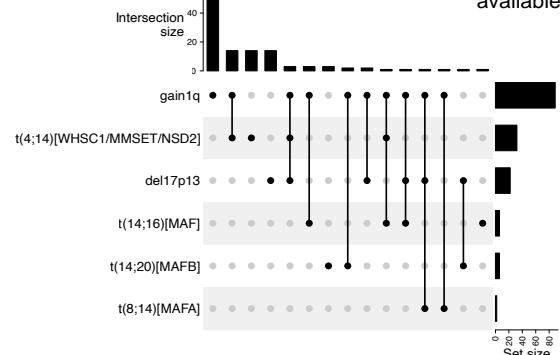
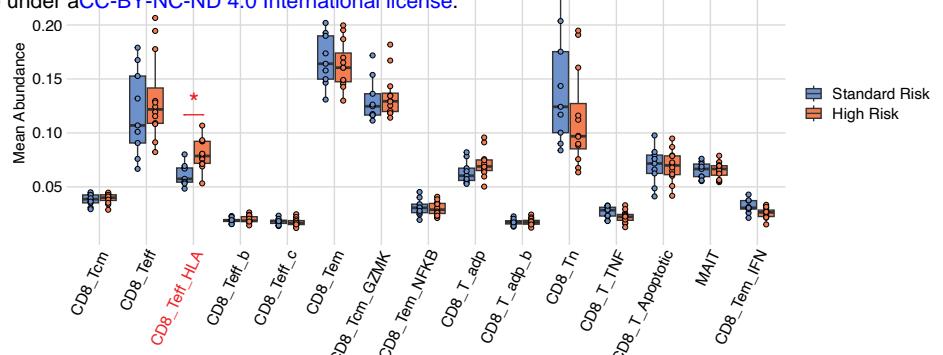
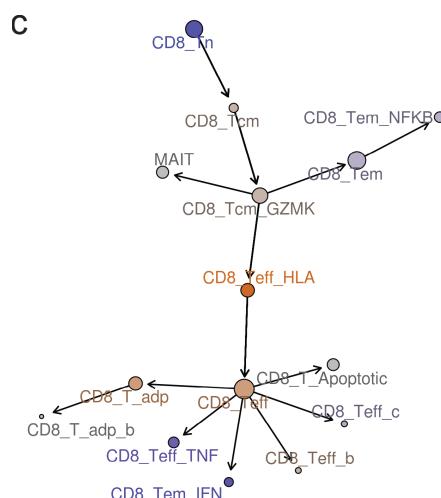
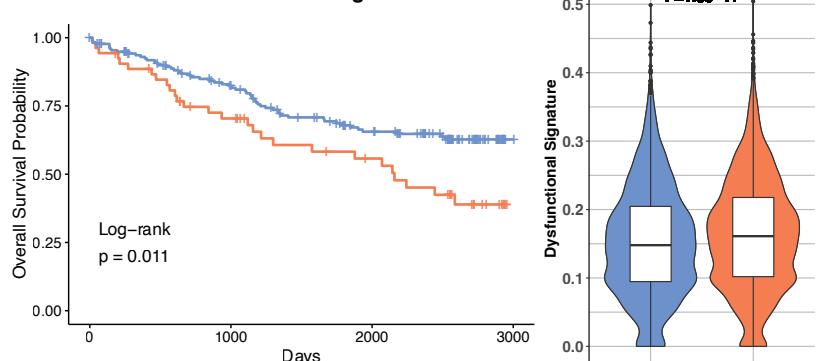
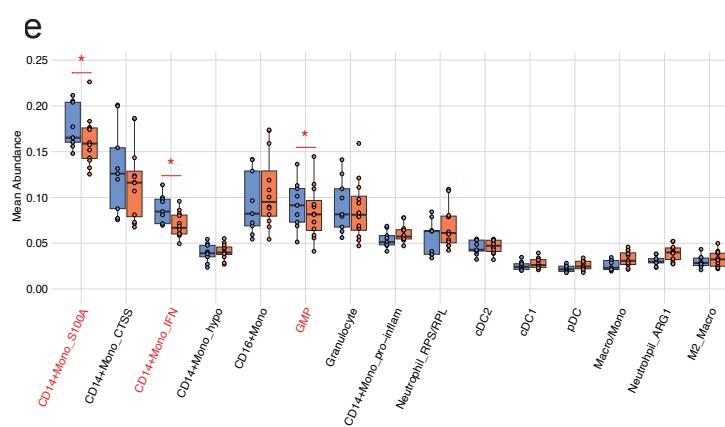
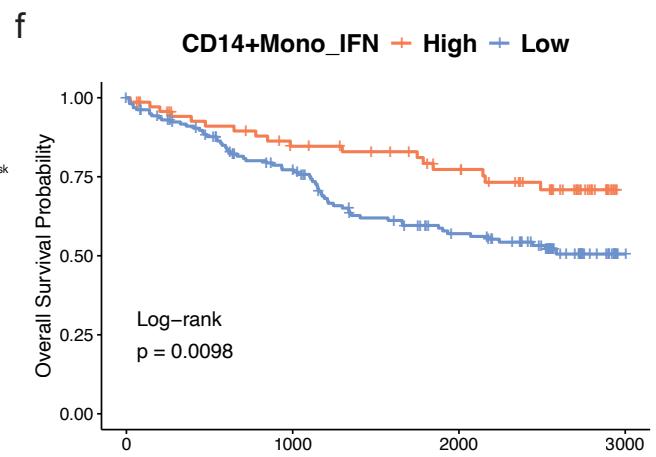
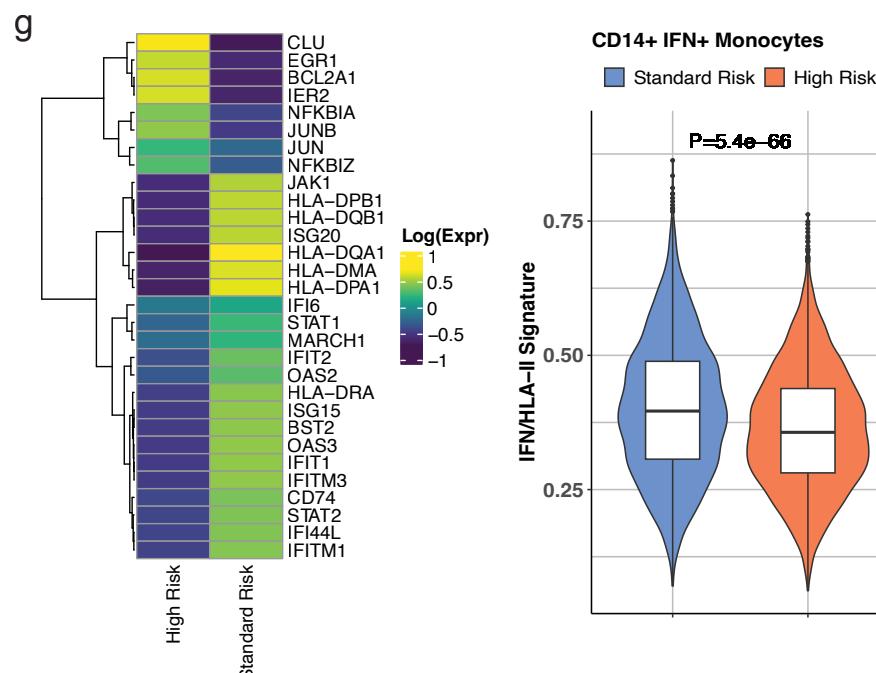


738 **Figure 1. Overview of the immune atlas design, workflow, and patient characteristics.** **(a)** Overview of the
739 immune atlas study design, patient cohort, sample processing, and analysis workflow. **(b)** Clinical characteristics
740 of patients (n = 263) in this study. The Forest plot illustrates the effect of various clinical features on progression-
741 free survival (PFS). **(c)** Dot plot depicting the cross-section of samples based on autologous stem cell transplant
742 (ASCT) and frontline treatment, where dot size indicates the number of patients and dot color indicates the type
743 of treatment regimen. **(d)** Bar chart showing the total number of patients with each of the six genetic events used
744 for risk classification. **(e)** Upset plot showing the intersection of patients categorized as standard-risk (SR) or
745 high-risk (HR) and non-progressor (NP) or rapid progressor (RP) at baseline. **(f)** Kaplan-Meier curves display
746 survival analysis for patients categorized based on risk stratification (HR vs SR), transplant as a frontline
747 treatment, treatment type, and ISS staging.
748



749 **Figure 2. Single-cell immune atlas of multiple myeloma patient samples.**

750 **(a)** Uniform manifold approximation and projection (UMAP) embedding of 1,149,344 CD138^{neg} BMME cells
751 collected from MM patients. A total of 106 clusters were observed, spanning five major compartments defined
752 by canonical markers: T and NK cells, B cells and erythroblasts, myeloid cells, erythrocytes, and plasma cells.
753 Populations identified as doublets are colored grey. **(b)** Feature plots displaying the normalized gene expression
754 for a selection of lineage-specific markers. **(c)** A stacked bar chart, displaying the average per-patient cell type
755 composition at baseline. Clusters are colored by their lineage and shaded by subtype. Doublet populations are
756 omitted. **(d)** UMAP of the T Lymphocyte and Natural Killer compartment. Cells are colored by lineage (*CD4 T*
757 cells: purple; *CD8 T* cells: orange; *NK* cells: yellow) and shaded by individual subtypes. The color legend is
758 included in the corresponding dot plots (f-h). **(e)** Feature plots displaying the normalized gene expression per
759 cell for markers to distinguish, CD4⁺, CD8⁺, and NK cells. **(f-h)** Dot plots displaying the average scaled expression
760 of select marker genes used for precise cluster annotation. Expression is visualized on a red-blue color scale,
761 with the size of each dot corresponding to the percent expression. Dot plots are split by lineage into **(f)** NK cells,
762 **(g)** CD8⁺ T cells, and **(h)** CD4⁺ T cells. The colored triangle next to the cluster name matches the cluster color
763 in the corresponding UMAP **(d)**. **(i)** UMAP of the myeloid compartment. Cells are shaded by their subtype.
764 Doublet populations are colored grey. **(j)** Dot plot displaying the average scaled expression of select marker
765 genes for precise cluster annotation in the myeloid compartment. Expression is visualized on a red-blue color
766 scale, with the size of each dot corresponding to the percent expression. The triangle next to the cluster name
767 matches the cluster color in the corresponding UMAP. **(k)** UMAP of the B cell and erythroblast compartment.
768 Cells are colored by their lineage (*B* cells: cyan; *Erythrocytes*: red; *Other*: dark blue), shaded by subtype. Doublet
769 populations are colored grey **(l)** Dot plot displaying the average scaled expression of select marker genes used
770 for precise cluster annotation in the B cell and erythroblast compartment. Expression is visualized on a red-blue
771 color scale, with the size of each dot corresponding to the percent expression. See **Supplemental Document**
772 **1** for a detailed description of the annotation of all individual clusters. The colored triangle next to the cluster
773 name matches the clusters in the corresponding UMAP **(k)**.



774 **Figure 3. Alterations in the MM bone barrow microenvironment based on cytogenetic risk profile.**

775 **(a)** UpSet plot of the genetic lesions comprising the definition of the high-risk group. **(b)** Boxplots of the CD8+ T
776 cell mean abundance estimates across batches for the high (n = 123) and standard (n = 108) risk groups at
777 baseline from the Dirichlet regression model adjusting for batch. Significantly different proportions between high-
778 and standard-risk patients are denoted with a red asterisk (* p-value < 0.05). **(c)** Pseudotime trajectory of the
779 CD8 T cells, coupled with the mean cell composition fold change differences (log2 scale) between high- and
780 standard-risk patients at baseline, presented in a blue-to-orange color scale. The size of the nodes corresponds
781 to the number of cells per cluster. **(d)** *(Left)* Survival curve from regressing the overall survival on the CD8 Teff
782 HLA+ cell abundances. The cell abundances were corrected for batch by taking the Pearson residuals from a
783 Dirichlet regression model with batch as the covariate. The cut-off was determined using maximally selected
784 rank statistics and set at the 77% quantile (177 low, 53 high). *(Right)* Violin plots of the Ucell signature enrichment
785 of CD8 Teff HLA+ cells based on the expression of dysfunctional genes (*CD57*, *ZEB2*, *KLRG1*, *KLRK1*, *TIGIT*,
786 *LAG3*, *PDCD1*, *CTLA4*, *TIM-3*) between the high- and standard-risk patients at baseline. The p-value denoting
787 the significantly different enrichment is displayed (Wilcoxon rank sum test, two-sided). **(e)** Boxplots of the
788 monocyte cell mean abundance estimates across batches for the high (n = 123) and standard (n = 108) risk
789 groups at baseline from the Dirichlet regression model adjusting for batch. Significantly different proportions
790 between high- and standard-risk patients are denoted with a red asterisk (* p-value < 0.05). **(f)** Survival curve
791 from regressing the overall survival on the CD14+ IFN+ monocytes cell abundances. The cell abundances were
792 corrected for batch by taking the Pearson residuals from a Dirichlet regression model with batch as the covariate.
793 The cut-off was determined using maximally selected rank statistics and set at the 69% quantile (159 low, 71
794 high). **(g)** *(Left)* Heatmap displaying the average expression of HLA-II and IFN-related significantly differentially
795 expressed genes in the CD14+ IFN+ monocytes between the high and standard-risk groups at baseline. *(Right)*
796 Violin plots of the Ucell signature enrichment of CD14+ IFN+ monocytes based on the expression of the 23 IFN
797 and HLA-II induced downregulated genes presented in the heatmap between the high- and standard-risk patients
798 at baseline. The p-value denoting the significantly different enrichment is displayed (Wilcoxon rank sum test,
799 two-sided).
800

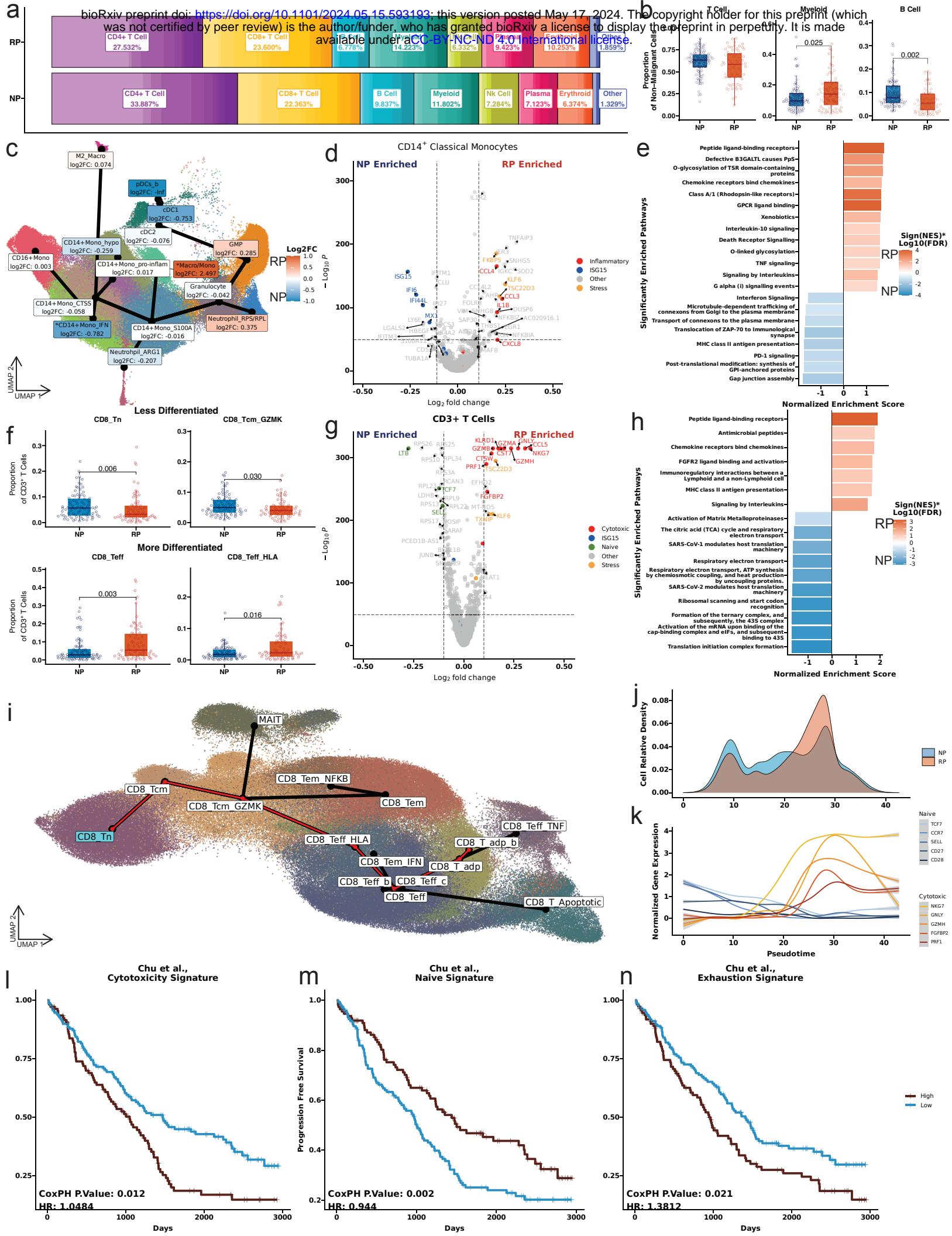
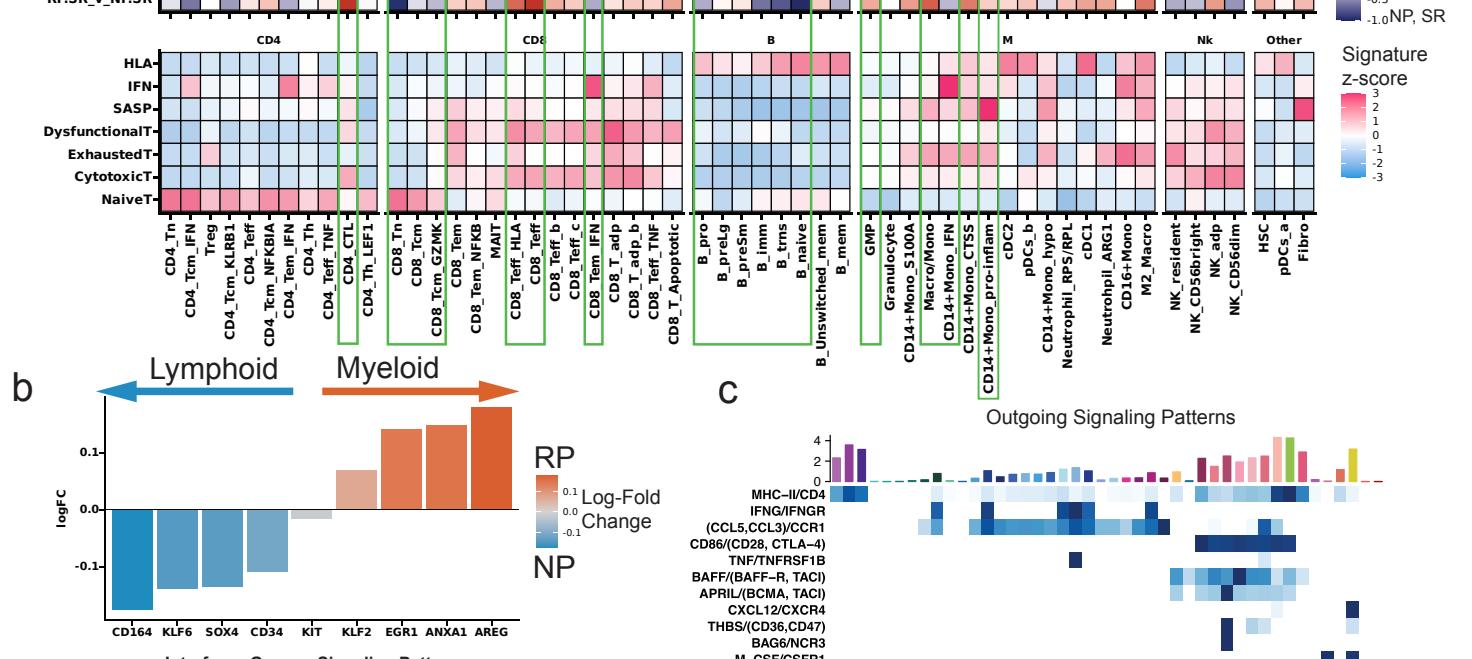
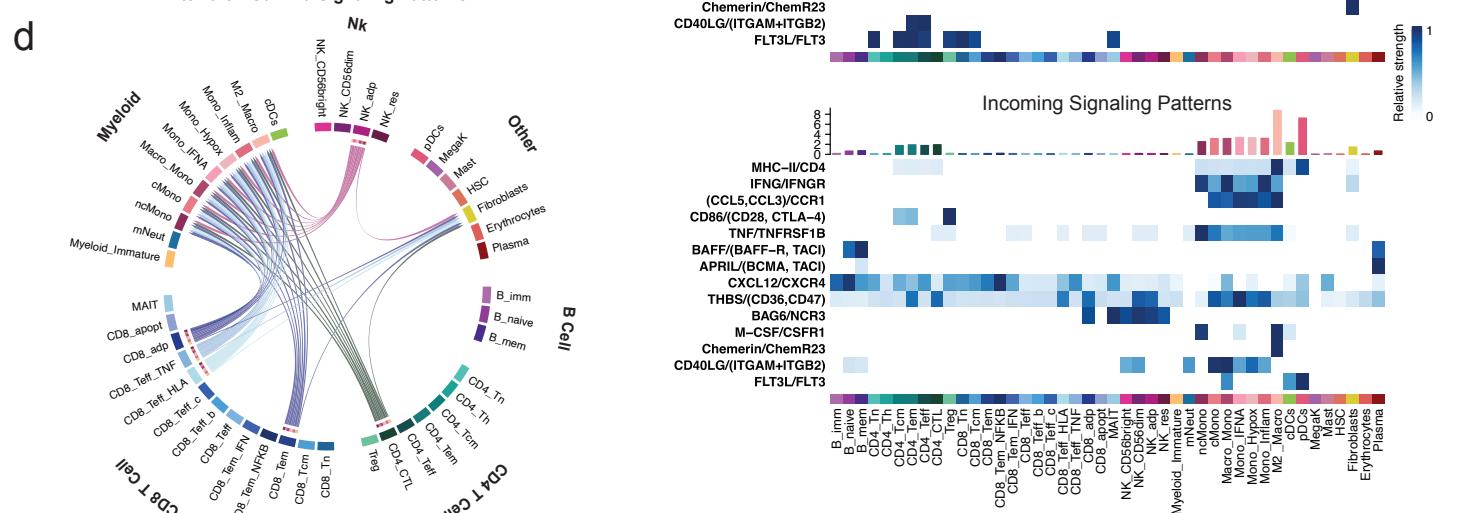
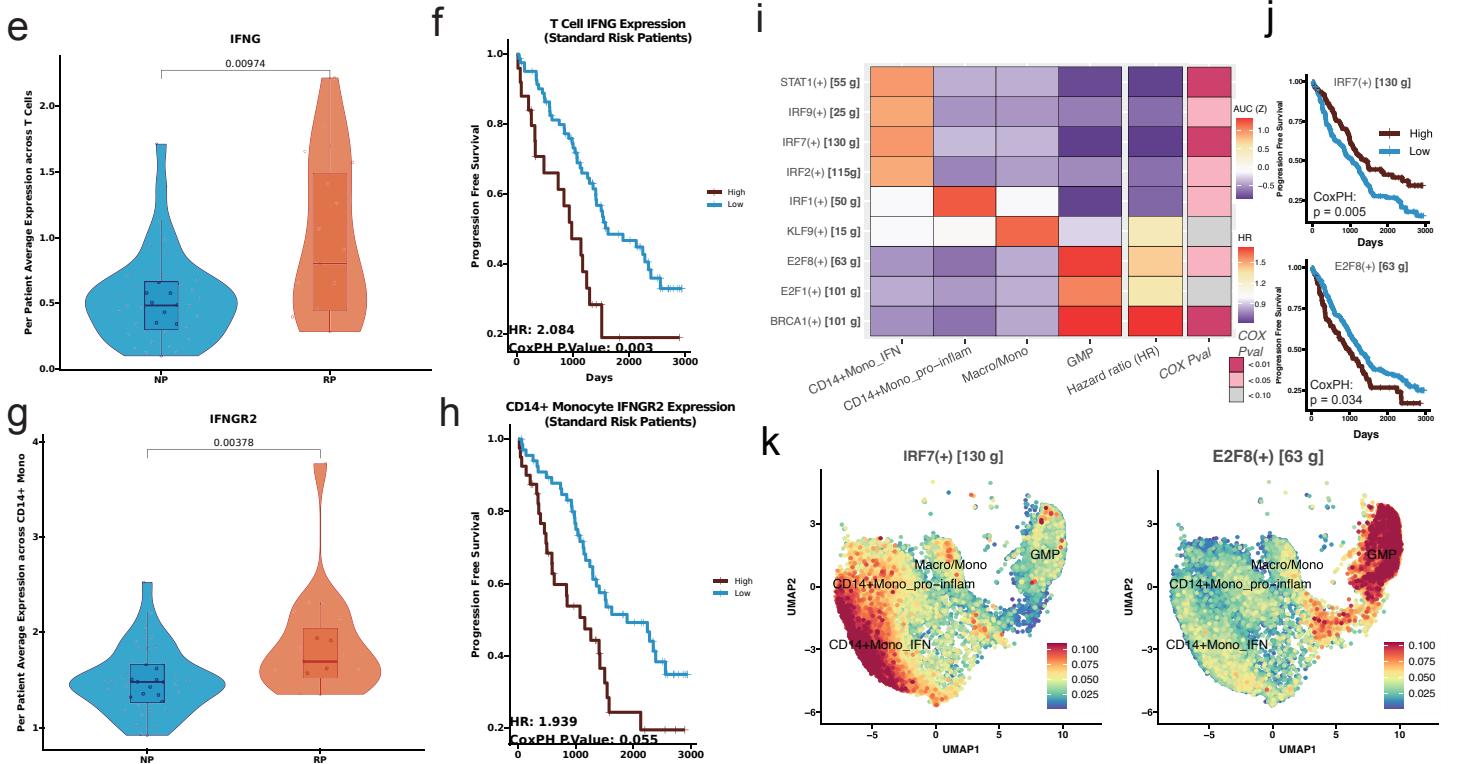
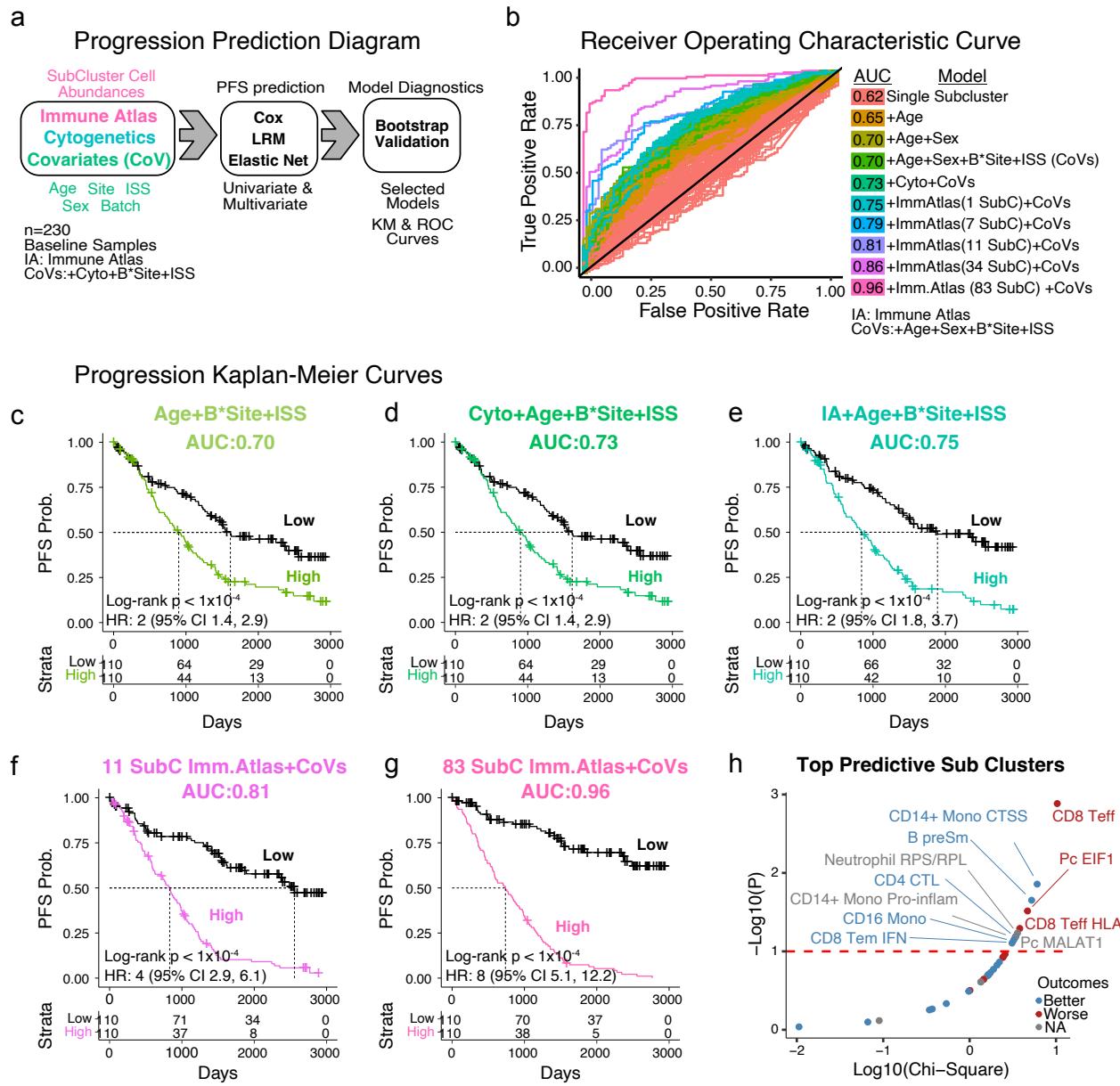


Figure 4. Single-cell level alterations in the bone marrow microenvironment of rapidly progressing MM patients. **(a)** Stacked bar chart displaying the mean per-patient cell type proportions at baseline across the full dataset, split between RP and NP patients. Clusters are colored by their major cell type and shaded by individual clusters. The average proportion of major cell types has been shown on the graph. **(b)** Box plots displaying the distribution of per-patient proportions for T cells, B cells, and myeloid cells as a percentage of non-malignant cells, split by progression categories. Doublet populations are excluded. Open circles represent individual patients. The significance of the difference in proportions between Rapid and Non-progressors has been calculated using the Wilcoxon rank sum test. The non-significant p-values >0.05 are not shown. **(c)** Trajectory of the CD14⁺ monocyte population along with differential abundance results. Lines represent transitions along the trajectories, with circles representing each cluster, and branches representing different lineages. Cluster labels along with fold change (log2) in cluster proportion between NP and RP samples have been shown along the trajectory. Labels are also shaded by fold change (log2) and clusters with significant differences in proportion were marked using an asterisk (* $P < 0.05$; ** $P < 0.01$; Wilcoxon rank sum test). **(d)** A volcano plot displaying the differentially expressed genes between NP and RP patients across the CD14⁺ monocyte compartment. The x-axis displays the log 2-fold change and the y-axis $-\log_{10}$ of the BH-adjusted p-value. The significantly differentially expressed genes associated with inflammation and ISG15 antiviral pathways are shown with red and blue colors respectively. **(e)** A bar plot displaying gene set enrichment analysis results for the differentially expressed genes shown in **(d)**. The x-axis displays the normalized enrichment score for each pathway, where positive values indicate the pathway associated with the NP-enriched markers, and negative values indicate the pathway associated with the RP-enriched markers. Pathways are shaded by $-\log_{10}$ FDR and. The pathways with BH-adjusted p values < 0.1 were considered significant and shown in the plot. **(f)** Box plots displaying the distribution of per-patient proportions of selected significantly enriched CD3⁺ T Cell populations. Doublet populations are excluded. Open circles represent individual patients. The significance of the difference in proportions between Rapid and Non-progressors has been calculated using the Wilcoxon rank sum test. The non-significant p-values >0.05 are not shown. **(g)** A volcano plot displaying the differentially expressed genes between NP and RP patients across all CD3⁺ T cells. The x-axis displays the log 2-fold change and the y-axis $-\log_{10}$ of the BH-adjusted p-value. Select genes are highlighted and colored based on their associated function. **(h)** A bar plot displaying gene set enrichment analysis results for the differentially expressed genes shown in **(g)**. The x-axis displays the normalized enrichment score for each pathway, where positive and negative values indicate the pathways associated with the NP-enriched and RP markers respectively. The pathways are shaded by signed FDR. The pathways with BH-adjusted p values < 0.1 were considered significant and shown in the plot. **(i)** Trajectory analysis of CD8⁺ T cells. Cells are colored by clusters with trajectories connecting clusters drawn in black, with the trajectory strongly associated with cytotoxic populations highlighted in red. The cluster set as the origin for the resulting trajectory is highlighted in cyan color. **(j)** A density plot showing the distribution of cells concerning their pseudotime along the cytotoxicity lineage. Low pseudotime corresponds to cells closer to the origin cluster (CD8_Tn), while later pseudotime corresponds to differentiated cytotoxic clusters. **(k)** The smoothed normalized gene expression along the cytotoxicity lineage's pseudotime for five Naïve associated genes (blue) and five Cytotoxicity associated genes (red). Gene expression for individual cells is weighted by slingshot's lineage assignment weight. **(l-n)** Survival plot displaying the relationship between progression-free survival and the patient's average cytotoxicity signature **(l)**, naïve signature **(m)**, or exhaustion signature **(n)** scores across all CD3⁺ T Cells. The red curve corresponds to patients with a signature score greater than the median, while the blue curve corresponds to patients with a signature score less than the median patient. The p-value for the CoxPH model fitted on the continuous signature score, correcting for processing site and batch, is displayed in the bottom left corner of each panel.



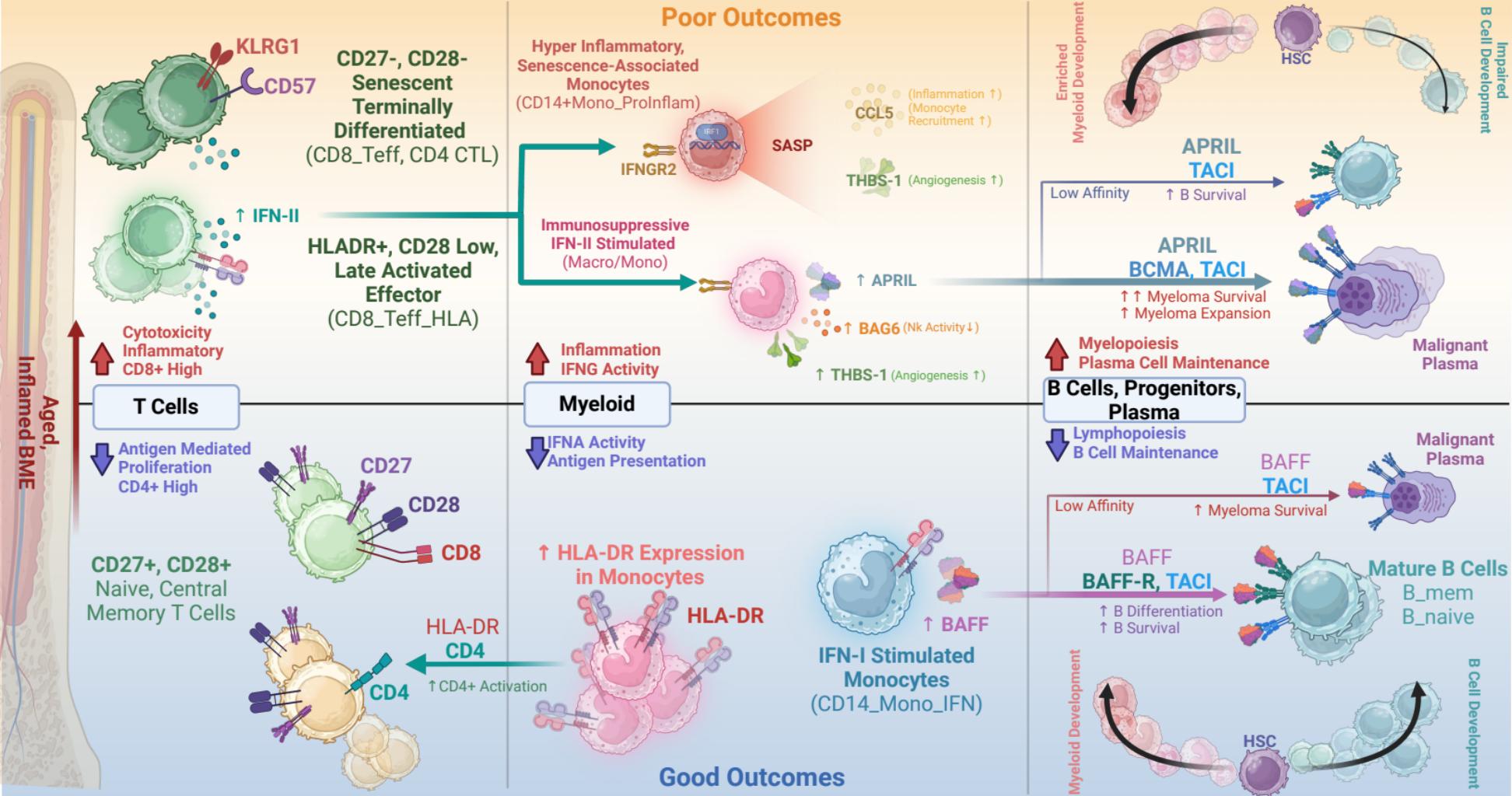
845 **Figure 5. Pathway and systems biology analysis to decipher mechanisms of poor outcomes in MM.**

846 **(a)** (Top) Comparison of differential abundance results by cytogenetic risk (HR_v_SR), progression (RP_v_NP),
847 and progression within standard-risk patients (RP.SR_v_NP.SR). Each box represents the estimated log2-fold
848 change between different risk and progression based comparisons (HR v SR, RP v NP, RP.SR v NP.SR) after
849 adjusting for batch using a Dirichlet model. Rows represent different comparisons; columns represent different
850 cell populations. Orange shades indicate RP, HR, or RP.SR upregulated cell populations, while blue shades
851 indicate SR, NP, or NP.SR upregulated populations. (Bottom) Average normalized signature scores for select
852 immune signatures (Supplemental Table 4) across the various cell populations. **(b)** Bar graph displaying
853 differentially enriched markers between Non and Rapid progressors within the CD34⁺ HSC population. Bars
854 represent the log2-fold change, with positive indicating the gene is enriched in non-progressors, while negative
855 blue bars indicate enrichment in Rapid progressors. **(c)** Heatmap of intercellular communication depicting key
856 patterns of outgoing (top) and incoming (bottom) signaling communication between cell types. Each row of the
857 heatmap represents a ligand-receptor pair, where the relative strength of the outgoing signal (ligand expression)
858 by each cell type is shown on the top heatmap, and the relative strength of the corresponding incoming signal
859 (receptor expression) by each cell type is shown on the bottom heatmap. Key signaling pairs between T cell and
860 myeloid populations are depicted, including cytokine and IFN-g signaling, in addition to BAFF and APRIL
861 signaling patterns implicated in MM. **(d)** Chord diagram indicating the IFN-g signaling network in our dataset.
862 Chords are colored by the 'sender' cell type (population expressing the ligand) and point towards the 'receiver'
863 cell type (population expressing the receptor), illustrating strong outgoing IFN-g signaling from T and NK cell
864 populations, corresponding to increased incoming IFN-g signaling to myeloid and fibroblast populations. **(e-h)**
865 Comparing the average expression of IFN-g across T cells (**e-f**) and IFN-gR2 across CD14+ Monocytes (**g-h**)
866 and their associations with outcome across standard-risk patients. Box and violin plots comparing the per-patient
867 average expression of IFN-g in T cells (**e**) or IFN-gR2 in CD14+ Monocytes (**g**) across standard-risk NP and
868 standard-risk RP patients. Each dot represents individual patient. **(f,h)** Kaplan Meier curves displaying the
869 association between expression of IFN-g in T cells (**f**) or expression of IFN-gR2 in CD14+ Monocytes and
870 progression-free survival within standard-risk patients. "High" group corresponds to patients with an expression
871 of IFN-g above the median, while "Low" corresponds to patients below the median. The hazard ratio and P value
872 of a Cox regression model fitted to the IFN-g expression are also calculated for each analysis. **(i)** Heatmap
873 displaying the normalized average AUC score for various transcriptional regulons on selected myeloid
874 populations. Additional columns include the hazard ratio, along with the p-value, estimated from a Cox
875 proportionality hazard model fit on average patient AUC scores (categorized into high and low activity). **(j)**
876 Survival plots display the corresponding survival associations with the expression of the corresponding ligand
877 within the myeloid compartment of patients, where high E2F8 regulon expression (*bottom*) and low IRF7 (*top*)
878 regulon expression are associated with poor outcomes. **(k)** Feature plots showing the per cell AUC values for
879 the IRF7 (*left*) and E2F8 (*right*) transcription factor regulons derived from SCENIC analysis across key myeloid
880 populations. Blue color indicates low activity (or AUC), while red color indicates high activity.



881 **Figure 6. Prediction of MM progression by integration of cytogenetics risk along with immune signatures**

882 **(a)** Shows a diagram with the type of variables that were tested (immune signatures, cytogenetics, and clinical
883 variables (covariates)) followed by the three regression strategies used (elastic net, logistic regression, and Cox).
884 Finally, bootstrap validation was used for model selection **(b)** Receiver operating characteristic (ROC) curves for
885 progression prediction models based on single clusters, clinical variables, and cytogenetics or immune atlas
886 variables alone and in combination are shown colored based on the specific group of models. The labels indicate
887 SubC = SubClusters, CoV = Covariates and these include age, Batch, Site, ISS and Cytogenetic. Kaplan-Meier
888 curves showing the separation of patients with high or low scores for prediction of PFS are shown for **(c)** Age,
889 ISS stage, and batch **(d)** cytogenetics, age, ISS stage, and batch, **(e)** Immune Atlas Signatures, Age, ISS stage,
890 and batch. Kaplan-Meier curves show the separation of patients when cytogenetic risk scores are combined with
891 the **(f)** best 11 predictive immune atlas subclusters or **(g)** with all 83 subclusters **(h)** importance of immune
892 subclusters for predicting the progression. The clusters with better and poor MM outcomes are shown with blue
893 and red colors respectively.
894



895 **Figure 7: Inflammatory remodeling defines the BMME in rapidly progressing MM.** Summary of the key
896 cellular subtypes and signaling pathways comprising the MM BMME and their association with patient outcomes.
897 Within the aging bone marrow, a state of chronic inflammation, known as 'inflammaging', results in altered
898 lymphoid and myeloid cell populations, enabling immune escape of malignant plasma cells. Within the T cell
899 compartment, MM patients with poor outcomes exhibit a shift toward immunosenescent and late-activated CD8+
900 T cells, producing IFN-II that drives senescence-associated and immunosuppressive phenotypes in myeloid
901 compartment. In contrast, MM patients with better outcomes display highly proliferative naïve and central
902 memory CD8+ T cell subsets, in addition to enriched T helper populations driven by increased MHC-II antigen
903 presentation among myeloid cells. T cell and myeloid populations in these patients appear to be stimulated by
904 type I interferons, in contrast to patients with poor outcomes exhibiting enrichment of IFN-II signaling. This
905 difference in interferon stimulation appears to be linked to patient outcomes, in part, through the differential
906 expression of BAFF by IFN-I-stimulated monocytes and APRIL by IFN-II-stimulated monocytes. Notably, BAFF
907 preferentially binds to mature B cells to promote survival, potentially enhancing B cell-mediated immunity and
908 leading to improved outcomes. Conversely, APRIL has been shown to inhibit memory B cell function and promote
909 malignant plasma cell survival. This dysregulation is further highlighted in the shift from B cell development
910 towards increased myelopoiesis in patients with poor outcomes. Created with Biorender.
911

912 **References:**

- 913 1. Padala, S. A. *et al.* Epidemiology, staging, and management of multiple myeloma. *Med. Sci. (Basel)* **9**, 3 (2021).
- 914 2. Mikhael, J., Bhutani, M. & Cole, C. E. Multiple myeloma for the primary care provider: A practical review to promote earlier diagnosis among diverse populations. *Am. J. Med.* **136**, 33–41 (2023).
- 915 3. Cancer Stat Facts: Myeloma. *National Cancer Institute Surveillance, Epidemiology, and End Results Program* <https://seer.cancer.gov/statfacts/html/mulmy.html>.
- 916 4. Holstein, S. A. & McCarthy, P. L. Immunomodulatory drugs in multiple myeloma: Mechanisms of action and clinical experience. *Drugs* **77**, 505–520 (2017).
- 917 5. Avet-Loiseau, H. *et al.* Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. *Blood* **109**, 3489–3495 (2007).
- 918 6. Avet-Loiseau, H. Role of genetics in prognostication in myeloma. *Best Pract. Res. Clin. Haematol.* **20**, 625–635 (2007).
- 919 7. Chapman, M. A. *et al.* Initial genome sequencing and analysis of multiple myeloma. *Nature* **471**, 467–472 (2011).
- 920 8. Lohr, J. G. *et al.* Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy. *Cancer Cell* **25**, 91–101 (2014).
- 921 9. Morgan, G. J., Walker, B. A. & Davies, F. E. The genetic architecture of multiple myeloma. *Nat. Rev. Cancer* **12**, 335–348 (2012).
- 922 10. Walker, B. A. *et al.* A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. *Leukemia* **33**, 159–170 (2019).
- 923 11. Skerget, S and Penaherrera, D and Chari, A and Jagannath, S and Siegel, D and Vij, R and Orloff, G and Jakubowiak, A and Niesvizky, R and Liles, D and Berdeja, J and Levy, M and Wolk, K and Usmani, S. Z. and MMRF CoMMpass Network and Christofferson, A. W. and Nasser, S and Aldrich, J. L. and Legendre, C and Benard, B and Miller, C and Turner, B and Kurdoglu, A and Washington, M and Yellapantula, V and Adkins, J. R. and Cuyugan, L and Boateng, M and Tassone, E and Blanksi, A and Docter, B and Kirchhoff,

938 M and Rohrer, D. C. and D'Agostino, M and Gamella, M and Collison, K and Stumph, J and Kidd, O and
939 Donnelly, A and Zaugg, B and Toone, M and McBride, K and DeRome, M and Yesil, J and Craig, D and
940 Liang, W and Gutierrez, N. C. and Jewell, S. D. and Carpten, J and Anderson, K. C. and Cho, H. J. and
941 Auclair, D and Lonial, S and Keats, J. J. Genomic Basis for Multiple Myeloma Subtypes from the MMRF
942 CoMMpass Study. *Nature Medicine (In Press)* (2024).

943 12. Pilcher, W. *et al.* Cross center single-cell RNA sequencing study of the immune microenvironment in rapid
944 progressing multiple myeloma. *NPJ Genom. Med.* **8**, (2023).

945 13. Zelle-Rieser, C. *et al.* T cells in multiple myeloma display features of exhaustion and senescence at the
946 tumor site. *J. Hematol. Oncol.* **9**, (2016).

947 14. Lopes, R. *et al.* The immune microenvironment in multiple myeloma: Friend or foe? *Cancers (Basel)* **13**, 625
948 (2021).

949 15. Desantis, V. *et al.* The leading role of the immune microenvironment in multiple myeloma: A new target with
950 a great prognostic and clinical value. *J. Clin. Med.* **11**, 2513 (2022).

951 16. Kawano, Y. *et al.* Targeting the bone marrow microenvironment in multiple myeloma. *Immunol. Rev.* **263**,
952 160–172 (2015).

953 17. Noonan, K. & Borrello, I. The immune microenvironment of myeloma. *Cancer Microenviron.* **4**, 313–323
954 (2011).

955 18. Davies, F. E. *et al.* Perspectives on the risk-stratified treatment of multiple myeloma. *Blood Cancer Discov.*
956 **3**, 273–284 (2022).

957 19. Yao, L. *et al.* Comprehensive characterization of the multiple myeloma immune microenvironment using
958 integrated scRNA-seq, CyTOF, and CITE-seq analysis. *Cancer Res. Commun.* **2**, 1255–1265 (2022).

959 20. Bhasin, M. Multiple Myeloma Immune Atlas Consortium: Gene Expression Profiling of the Bone Marrow
960 Microenvironment. *protocols.io* (2024).

961 21. Chu, Y. *et al.* Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance.
962 *Nat. Med.* **29**, 1550–1562 (2023).

963 22. Lu, J. *et al.* ZEB1: Catalyst of immune escape during tumor metastasis. *Biomed. Pharmacother.* **153**,
964 113490 (2022).

965 23. Tan, J. *et al.* Increasing frequency of T cell immunosuppressive receptor expression in CD4+ and CD8+ T
966 cells may related to T cell exhaustion and immunosuppression in patients with AML. *Blood* **128**, 5166–5166
967 (2016).

968 24. Brenchley, J. M. *et al.* Expression of CD57 defines replicative senescence and antigen-induced apoptotic
969 death of CD8+ T cells. *Blood* **101**, 2711–2720 (2003).

970 25. Mitroulis, I., Kalafati, L., Bornhäuser, M., Hajishengallis, G. & Chavakis, T. Regulation of the bone marrow
971 niche by inflammation. *Front. Immunol.* **11**, (2020).

972 26. Salloum, D. *et al.* A rapid translational immune response program in CD8 memory T lymphocytes. *J.*
973 *Immunol.* **209**, 1189–1199 (2022).

974 27. Zheng, L. *et al.* Pan-cancer single-cell landscape of tumor-infiltrating T cells. *Science* **374**, abe6474 (2021).

975 28. Reiners, K. S. *et al.* Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia
976 cells from NK cell anti-tumor activity. *Blood* **121**, 3658–3665 (2013).

977 29. Vincent, F. B., Morand, E. F., Schneider, P. & Mackay, F. The BAFF/APRIL system in SLE pathogenesis.
978 *Nat. Rev. Rheumatol.* **10**, 365–373 (2014).

979 30. Kalvakolanu, D. V. & Borden, E. C. Interferons: Cellular and molecular biology of their actions. in
980 *Encyclopedia of Cancer* 511–521 (Elsevier, 2002).

981 31. Yuan, Y. *et al.* The functional roles of ISG15/ISGylation in cancer. *Molecules* **28**, 1337 (2023).

982 32. Effros, R. B. Loss of CD28 expression on T lymphocytes: A marker of replicative senescence. *Dev. Comp.*
983 *Immunol.* **21**, 471–478 (1997).

984 33. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. Cd28/b7 system of t cell costimulation. *Annu. Rev.*
985 *Immunol.* **14**, 233–258 (1996).

986 34. Hintzen, R. Q. *et al.* Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation.
987 *J. Immunol.* **154**, 2612–2623 (1995).

988 35. van Baarle, D., Tsegaye, A., Miedema, F. & Akbar, A. Significance of senescence for virus-specific memory
989 T cell responses: rapid ageing during chronic stimulation of the immune system. *Immunol. Lett.* **97**, 19–29
990 (2005).

991 36. Lian, J., Yue, Y., Yu, W. & Zhang, Y. Immunosenescence: a key player in cancer development. *J. Hematol.*
992 *Oncol.* **13**, (2020).

993 37. LeBlanc, R. *et al.* Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. *Blood* **103**, 1787–
994 1790 (2004).

995 38. Palmer, S., Albergante, L., Blackburn, C. C. & Newman, T. J. Thymic involution and rising disease incidence
996 with age. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 1883–1888 (2018).

997 39. Thomas, R., Wang, W. & Su, D.-M. Contributions of age-related thymic involution to immunosenescence
998 and inflammaging. *Immun. Ageing* **17**, (2020).

999 40. McElhaney, J. E. *et al.* The unmet need in the elderly: How immunosenescence, CMV infection, co-
000 morbidities and frailty are a challenge for the development of more effective influenza vaccines. *Vaccine* **30**,
001 2060–2067 (2012).

002 41. Sauce, D. *et al.* Evidence of premature immune aging in patients thymectomized during early childhood. *J.*
003 *Clin. Invest.* **119**, 3070–3078 (2009).

004 42. De Martinis, M., Franceschi, C., Monti, D. & Ginaldi, L. Inflamm-ageing and lifelong antigenic load as major
005 determinants of ageing rate and longevity. *FEBS Lett.* **579**, 2035–2039 (2005).

006 43. Pawelec, G. Does patient age influence anti-cancer immunity? *Semin. Immunopathol.* **41**, 125–131 (2019).

007 44. Valpione, S. *et al.* The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for
008 cancer survival. *Nat. Commun.* **12**, (2021).

009 45. Aran, A., Garrigós, L., Curigliano, G., Cortés, J. & Martí, M. Evaluation of the TCR repertoire as a predictive
010 and prognostic biomarker in cancer: Diversity or clonality? *Cancers (Basel)* **14**, 1771 (2022).

011 46. Barilà, G. *et al.* Treatment induced cytotoxic T-cell modulation in Multiple Myeloma patients. *Front. Oncol.*
012 **11**, (2021).

013 47. Chung, D. J. *et al.* T-cell exhaustion in multiple myeloma relapse after autotransplant: Optimal timing of
014 immunotherapy. *Cancer Immunol. Res.* **4**, 61–71 (2016).

015 48. Di Mitri, D. *et al.* Reversible senescence in human CD4+CD45RA+CD27– memory T cells. *J. Immunol.* **187**,
016 2093–2100 (2011).

017 49. Townsend, L. *et al.* Severe COVID-19 is characterised by inflammation and immature myeloid cells early in
018 disease progression. *Helix* **8**, e09230 (2022).

019 50. Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. *Nat. Rev.
020 Immunol.* **22**, 751–764 (2022).

021 51. Visram, A. & Kourelis, T. V. Aging-associated immune system changes in multiple myeloma: The dark side
022 of the moon. *Cancer Treat. Res. Commun.* **29**, 100494 (2021).

023 52. Ribechini, E. *et al.* Novel GM-CSF signals via IFN- γ R/IRF-1 and AKT/mTOR license monocytes for
024 suppressor function. *Blood Adv.* **1**, 947–960 (2017).

025 53. Donnelly, R. P., Freeman, S. L. & Hayes, M. P. Inhibition of IL-10 expression by IFN-gamma up-regulates
026 transcription of TNF-alpha in human monocytes. *J. Immunol.* **155**, 1420–1427 (1995).

027 54. Perng, Y.-C. & Lenschow, D. J. ISG15 in antiviral immunity and beyond. *Nat. Rev. Microbiol.* **16**, 423–439
028 (2018).

029 55. Moreaux, J. *et al.* APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form
030 an essential survival loop. *Eur. J. Haematol.* **83**, 119–129 (2009).

031 56. Reijmers, R. M., Spaargaren, M. & Pals, S. T. Heparan sulfate proteoglycans in the control of B cell
032 development and the pathogenesis of multiple myeloma. *FEBS J.* **280**, 2180–2193 (2013).

033 57. Lun, A. T. L. *et al.* EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA
034 sequencing data. *Genome Biol.* **20**, 63 (2019).

035 58. Fleming, S. J. *et al.* Unsupervised removal of systematic background noise from droplet-based single-cell
036 experiments using CellBender. *Nat. Methods* **20**, 1323–1335 (2023).

037 59. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587.e29 (2021).

038 60. Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with Harmony. *Nat. Methods*
039 **16**, 1289–1296 (2019).

040 61. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and dimension reduction for
041 single-cell RNA-Seq based on a multinomial model. *Genome Biol.* **20**, (2019).

042 62. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control,
043 normalization and visualization of single-cell RNA-seq data in R. *Bioinformatics* **33**, 1179–1186 (2017).

044 63. Ahlmann-Eltze, C. & Huber, W. glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell
045 count data. *Bioinformatics* **36**, 5701–5702 (2021).

046 64. Ludwig, O. Blom, Gunnar: Statistical estimates and transformed beta-variables. Wiley/New York, Almquist
047 und Wiksell/Stockholm 1958; 176 S., Kr. 20,—. *Biom. Z.* **3**, 285–285 (1961).

048 65. McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S. & Lin, X. Operating characteristics of the rank-based
049 inverse normal transformation for quantitative trait analysis in genome-wide association studies. *Biometrics*
050 **76**, 1262–1272 (2020).

051 66. Aran, D. *et al.* Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic
052 macrophage. *Nat. Immunol.* **20**, 163–172 (2019).

053 67. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet detection in single-cell RNA
054 sequencing data using artificial nearest neighbors. *Cell Syst.* **8**, 329-337.e4 (2019).

055 68. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational identification of cell doublets in single-cell
056 transcriptomic data. *Cell Syst.* **8**, 281-291.e9 (2019).

057 69. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and microarray
058 studies. *Nucleic Acids Res.* **43**, e47–e47 (2015).

059 70. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models Usinglme4. *J. Stat. Softw.*
060 **67**, (2015).

061 71. Maier, M. DirichletReg: Dirichlet Regression for Compositional Data in R. Preprint at
062 <https://doi.org/10.57938/AD3142D3-2FCD-4C37-AEC6-8E0BD7D077E1> (2014).

063 72. Ben-Shachar, M., Lüdecke, D. & Makowski, D. Effectsize: Estimation of effect size indices and standardized
064 parameters. *J. Open Source Softw.* **5**, 2815 (2020).

065 73. Lausen, B. & Schumacher, M. Maximally selected rank statistics. *Biometrics* **48**, 73 (1992).

066 74. Hothorn, T. & Zeileis, A. Generalized maximally selected statistics. *Biometrics* **64**, 1263–1269 (2008).

067 75. Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. *BMC*
068 *Genomics* **19**, (2018).

069 76. Therneau, T. & Grambsch, P. *Modeling Survival Data: Extending the Cox Model*. (Springer, New York, NY,
070 2001).

071 77. Phipson, B. *et al.* Propeller: Testing for differences in cell type proportions in single cell data. *Bioinformatics*
072 **38**, 4720–4726 (2022).

073 78. Lin, L. & Xu, C. Arcsine-based transformations for meta-analysis of proportions: Pros, cons, and alternatives.
074 *Health Sci. Rep.* **3**, e178 (2020).

075 79. Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and
076 visualization. *Mol. Biosyst.* **12**, 477–479 (2016).

077 80. Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature scoring. *Comput.*
078 *Struct. Biotechnol. J.* **19**, 3796–3798 (2021).

079 81. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat. Commun.* **12**, (2021).

080 82. Van de Sande, B. *et al.* A scalable SCENIC workflow for single-cell gene regulatory network analysis. *Nat.*
081 *Protoc.* **15**, 2247–2276 (2020).

082 83. Friedman, J. H. Stochastic gradient boosting. *Comput. Stat. Data Anal.* **38**, 367–378 (2002).

083 84. Contal, C. & O'Quigley, J. An application of changepoint methods in studying the effect of age on survival
084 in breast cancer. *Comput. Stat. Data Anal.* **30**, 253–270 (1999).

085

086