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ABSTRACT

More than a century of research shows that spaced learning improves long-term memory. Yet,
there remains debate concerning why. A major limitation to resolving theoretical debates is the
lack of evidence for how neural representations change as a function of spacing. Here, leveraging
a massive-scale 7T human fMRI dataset, we tracked neural representations and behavioral
expressions of memory as participants viewed thousands of natural scene images that repeated
at lags ranging from seconds to many months. We show that spaced learning increases the
similarity of human ventromedial prefrontal cortex representations across stimulus encounters
and, critically, these increases parallel and predict the behavioral benefits of spacing. Additionally,
we show that these spacing benefits critically depend on remembering and, in turn, ‘re-encoding’
past experience. Collectively, our findings provide fundamental insight into how spaced learning
influences neural representations and why spacing is beneficial.
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One of the most robust and well-documented phenomena in human memory research is that
when repetitions of a stimulus are spaced over time—as opposed to massed—long-term memory
for that stimulus is improved'. This spacing effect operates across a wide variety of memoranda?
and species® and also across impressively long timescales*”. However, despite the ubiquity of
this effect and its significant implications for memory in everyday and educational settings, there
remains debate concerning why spaced learning improves memory. Why is a repeated stimulus
more effectively encoded when more time has elapsed since it was previously encoded?

While a number of theoretical accounts of spacing effects have been advanced3¢8, one of the
most prominent ideas is that spaced learning benefits memory by increasing encoding variability®-
1, By this account, when a stimulus is re-encountered after a long delay, it is encoded differently
than the first time it was encountered. A more variable representation is argued to have more
‘points of access’ and, therefore, to increase the likelihood of later retrieval'2. However, if encoding
variability were the only factor, memory would monotonically increase with greater spacing (the
more spacing, the better). In contrast, studies have shown that as the lag between stimulus
repetitions increases, the benefit of spacing will eventually reverse, producing an ‘inverted U’
shaped relationship between spacing and subsequent memory?486. This non-monotonic pattern is
often only observed when long timescales are considered (spacing on the order of weeks or
months), but it is extremely informative, at a theoretical level, because it suggests a second factor
also contributes to spacing effects—a factor that explains diminished benefits at very long lags.
Perhaps the most commonly-advanced second factor is study-phase retrieval®'4. By this
account, when a stimulus is re-encountered, it triggers retrieval of the original encounter
(benefitting memory), but the benefit of retrieval is negatively related to lag because forgetting of
the first encounter becomes more likely with longer lags. While the combination of encoding
variability and study-phase retrieval has high explanatory power610.1215-17 g fundamental
limitation of almost all leading theoretical accounts of spacing effects is that they are not directly
informed, or constrained, by experimental evidence of how spacing influences neural
representations. This is particularly glaring in the case of encoding variability, which makes
obvious predictions about the variability of neural representations over time and the relationship
of this variability to subsequent memory.

The lack of integration of neural evidence with cognitive theories of spacing effects is partly due
to the surprisingly limited number of neuroimaging / electrophysiological studies that have
characterized neural representations as a function of spacing. Moreover, existing evidence is
largely limited to studies that measure spacing effects over short timescales (a single
experimental session), making it difficult to test ideas from cognitive theories that are specifically
motivated by behavioral spacing effects over long timescales. A primary issue is that it is difficult,
or at least resource intensive, to measure neural representations across days, weeks, or months.
That said, there is recent evidence that, at least at short timescales, neural representations of
repeated events may actually be more similar with greater spacing'®1°*—a finding not predicted or
easily explained by an encoding-variability account. However, it is currently unclear why neural
representations would become more similar with spacing, how neural similarity might change over
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longer timescales, and what neural similarity ultimately tells us about why spaced learning is
beneficial.

Here, we measured neural representations and behavioral expressions of memory for stimuli
repeated over long timescales with the goal of integrating neural and behavioral measures to
inform theories of spacing effects. To this end, we leveraged the Natural Scenes Dataset?*—an
unprecedented dataset that combines behavioral measures of memory and 7T fMRI for human
participants that studied stimuli distributed across 30-40 experimental sessions over an 8-10
month window (Fig. 1a-b). Across these sessions, participants viewed 9,209-10,000 natural
scene images presented up to three times each (E1, E2, E3) and made recognition memory
decisions at each encounter (continuous recognition task). This yielded a remarkably wide range
of lags (spacing) between the first two exposures, from 4 seconds up to 302 days (Fig. 1¢). Of
central interest here was how spacing between the first two exposures with a stimulus (E1-E2
lag) influenced corresponding neural similarity (E1-E2 similarity) and whether neural measures of
similarity parallel and predict behavioral benefits of spacing (recognition memory at E3). We
focused our analyses on ventromedial prefrontal cortex (vmPFC), motivated by the extensive
human neuroimaging literature implicating vmPFC in episodic memory across long timescales?'-
24 and by recent evidence of spacing effects on neural similarity in the rodent medial prefrontal
cortex'. To preview, we show spacing-related increases in vmPFC similarity that (a) parallel and
predict behavioral benefits of spacing, and (b) reflect the re-encoding of memories for prior
encounters.

RESULTS
Spaced learning benefits long-term memory

Our primary prediction for behavior was that spacing between the first two exposures (E1-E2 lag)
would benefit subsequent memory at the third exposure (E3 recognition). However, prior
behavioral work that has considered spacing at long timescales (weeks or months) suggests that
memory performance does not monotonically improve as a function of spacing*. Rather, as
spacing increases, memory benefits first increase, but eventually decrease®25. By some accounts,
this non-monotonic function reflects the fact that the benefits of spacing depend on stimuli being
recognized when they are re-encountered (recognition at E2 in current study)’. From this
perspective, the non-monotonic relationship between spacing and memory reflects two competing
influences: (i) greater spacing is associated with better memory so long as stimuli are recognized
at E2, but (ii) the probability of recognizing a stimulus at E2 decreases with spacing. In the current
study, because memory was measured at each encounter (E1, E2, E3), we were able to directly
test whether the relationship between E1-E2 spacing (hereafter referred to as spacing) and E3
recognition memory (hereafter referred to as subsequent memory) depended on successful
recognition at E2.

An additional nuance to spacing effects is that the optimal amount of spacing (the ‘peak’ in the
non-monotonic function) has been shown to increase as a function of the retention interval (RI;
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here, the Rl is the E2-E3 lag)”2627. For the sake of comparison with this line of work, we report
spacing effects as a function of Rl for our initial behavioral analyses. However, because our fMRI
analyses focus on how E1-E2 spacing influences E1-E2 neural pattern similarity, the Rl is not of
direct relevance.

Using mixed-effects logistic regression models (see Methods for details), we first tested for
relationships between E1-E2 spacing and subsequent memory (hit versus miss at E3), regardless
of whether stimuli were successfully recognized at E2 and regardless of behavioral responses at
E1. Note that all spacing analyses used the logarithm of the E1-E2 lag intervals (see Methods).
Based on prior studies, we predicted a non-monotonic relationship between spacing and
subsequent memory, which we tested for as quadratic trends in the logistic regression models.
For this first set of analyses, we generated six different models corresponding to Rls ranging from
<10 minutes (shortest RI) to > 3 months (longest RI).

Consistent with prior findings”-282°, we found no benefit to spacing for the shortest Rl (<10
minutes)—in fact, subsequent memory linearly decreased as a function of spacing, with no
evidence of a quadratic trend (see Supplementary Table 1 for all statistics). However, for all Rls
greater than 10 minutes (the other five models), we observed significant quadratic trends (ps <
0.001; Supplementary Table 1). Specifically, as spacing increased, subsequent memory first
increased, and then decreased. Qualitatively, the ‘optimal’ amount of spacing (the peak in the
quadratic function) increased as a function of the RI (Fig. 1d and Supplementary Fig. 1), with the
peaks ranging from spacing of ~1 hour to spacing of several days. Most of the models also had
significant negative linear trends (Supplementary Table 1).

We next conducted a separate mixed-effects logistic regression model restricted to stimuli
correctly recognized at E2 (E2 = ‘old’ response; hit) and correctly identified as new at E1 (E1 =
‘new’ response; correct rejection); for this model, Rl was treated as a nuisance variable (covariate
of no interest). We also excluded stimuli for which the Rl was < 24 hours because stimuli that
were successfully recognized at E2 and then tested less than 24 hours later were effectively at
ceiling in terms of E3 memory performance (average hit rate across participants = 0.97). This
model again yielded a significant quadratic trend (quadratic term: 8 = -0.01, p < 0.001), but in
striking contrast to the negative linear trends observed when ignoring E2 recognition
(Supplementary Table 1), there was a robust, positive linear relationship between spacing and
subsequent memory (B = 0.10, p < 0.001, logistic mixed-effects regression; Fig. 1e). We also
directly compared subsequent memory performance (measured as d’) for stimuli that had spacing
> 24 hours versus spacing < 24 hours, again restricting analysis to stimuli that were correctly
recognized at E2. While performance was well above chance for both conditions (<24 h: t=9.21,
p < 0.001; > 24 h: t = 5.80, p < 0.001, one-sample t-tests; Fig. 1f), subsequent memory
performance was significantly higher for > 24 h spacing compared to < 24 h spacing (t=-2.55, p
= 0.038, paired-samples ttest; Fig. 1f).

Finally, we also ran a model that was conditionalized on E2 not being recognized (E2 = miss; E1
= correct rejection). For this model, we did not observe a significant linear relationship between
spacing and subsequent memory (linear trend: p = 0.10, logistic mixed-effects regression; Fig.
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1g). Moreover, the linear relationship between spacing and subsequent memory was significantly
stronger when E2 was recognized versus not recognized (z = 7.89, p < 0.001, ztest; Fig. 19).
Thus, the benefits of spaced learning were highly dependent on successful recognition at E2.
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Fig. 1: Task and behavioral results. a, Trial structure. During fMRI, participants performed a
continuous recognition task in which thousands of natural scene images were presented up to three
times each with a pseudo-random delay interval between repetitions. b, Timeline of 7T fMRI scan
sessions. Each of the eight participants completed 30-40 scan sessions over a 10-month window. The
first scan session for each participant corresponds to day 0. ¢, Smoothed histograms showing, for
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each participant, the relative frequencies of various E1-E2 spacing intervals (from seconds to months),
shown on a log scale. d, Relationships between spacing (E1-E2 lag) and subsequent memory (E3
recognition) for different retention intervals (Rl; E2-E3 lag), using data from all trials (regardless of
behavioral responses at E1 and E2). Lines reflect the fits of quadratic trends. Circles mark the peak in
the fitted lines. (Also see Supplementary Fig. 1). Qualitatively, the optimal amount of spacing increased
as a function of RI. e, Subsequent memory (E3 recognition) improved as a function of E1-E2 spacing
for images that were successfully recognized at E2 (8 = 0.10, p < 0.001, logistic mixed-effects
regression). f, Subsequent memory performance (E3 recognition) for images with < 24 h spacing and
images with > 24 h spacing (conditional on E2 recognition). Memory was above-chance for both
groups (ps < 0.001, one-sample ttests) but was significantly greater for images with > 24 h spacing
compared to < 24 h spacing (t = -2.55, p = 0.038, paired t-test). g, The relationship between spacing
and subsequent memory (E3 recognition) was significantly stronger for images successfully
recognized at E2 (hit) compared to images not recognized at E2 (miss) (hit: 8= 0.10, p < 0.001; miss:
p = 0.10, logistic mixed-effects regression; hit compared to miss: z = 7.89, p < 0.001, z-test).
Throughout the figure, error bars depict mean + s.e.m.; dots depict independent participants (n=8);
*p<0.05; ***p < 0.001.

Spaced learning strengthens stimulus-specific representations in vmPFC

Having found behavioral evidence that spaced learning benefits subsequent memory, we next
assessed whether and how E1-E2 spacing influenced representational similarity across
encounters (E1-E2 fMRI pattern similarity). We did this using linear mixed-effects models in which
pattern similarity was the dependent measure (see Methods). For these analyses, we did not
exclude any trials based on RI. Importantly, however, we did restrict analyses to E1 and E2 trials
that were each associated with correct behavioral responses (E1 = correct rejection, E2 = hit) so
that any potential relationships between spacing and fMRI pattern similarity were not confounded
with behavioral responses. Additionally, to ensure that pattern similarity did not reflect generic
cognitive processes, all pattern similarity analyses used a measure of stimulus-specific similarity.
That is, for each image we compared ‘within-image’ pattern similarity (E1 and E2 = same stimulus)
to ‘across-image' pattern similarity (E1 and E2’ = different stimuli; Fig. 2a). Notably, E2' images
were selected such that they shared behavioral responses with and were presented in the same
sessions as E2 (thus approximately matching for spacing; see Methods for details). Stimulus-
specific similarity values greater than zero provide positive evidence for a representation of a
specific stimulus.

We focused our analyses on three regions of interest (ROIs): (1) vmPFC, given our a priori
prediction that vmPFC representations would be influenced by spacing'®?!, (2) early visual cortex
(EVC) as a control region that would be sensitive to low-level visual information but would not be
expected to contribute to or reflect memory-related effects, and (3) motor cortex (M1) as a control
region that would not be expected to be sensitive to visual information or memory-related effects.

Given the positive linear relationship between spacing and subsequent memory that we observed
in our behavioral analysis of stimuli that were recognized at E2 (Fig. 1e), here we tested for similar
linear relationships between spacing and (stimulus-specific) pattern similarity. Intuitively, it might
be predicted that greater spacing would be associated with lower pattern similarity (more
variability). Indeed, EVC exhibited a strong negative relationship between spacing and pattern
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similarity (8 = -0.002, p < 0.001, linear mixed-effects regression; Fig. 2e). In other words, EVC
similarity decreased as a function of spacing. In sharp contrast, spacing was positively related to
pattern similarity in vmPFC (8 = 0.001, p = 0.003, linear mixed-effects regression; Fig. 2b). That
is, the vmPFC representation at E2 exhibited greater similarity to E1 when the E1-E2 lag was
longer. Binning stimuli with < 24 h versus > 24 h spacing confirmed that vmPFC pattern similarity
did not differ from zero for < 24 h spacing (f = 1.71, p = 0.13, one-sample ttest), but was
significantly greater than zero for > 24 h spacing (t = 3.23, p = 0.014, one-sample t-test; Fig. 2c).
Thus, stimulus-specific representations in vmPFC only emerged when spacing was relatively high
(> 24 h). In contrast, EVC exhibited significant pattern similarity for both < 24 h spacing (t = 8.55,
p<0.001, one-sample t-test) and for > 24 h spacing (t=7.99, p<0.001, one-sample t-test). Thus,
EVC did consistently code for stimulus-specific information, even if these representations were
weaker with greater spacing. As expected, we did not observe any evidence that pattern similarity
in M1 was influenced by spacing (p = 0.27, linear mixed-effects regression; Fig. 2f), nor did M1
exhibit stimulus-specific representations for stimuli with < 24 h spacing (f = 0.61, p = 0.56, one-
sample ttest) or > 24 h spacing (t=-0.18, p = 0.86, one-sample t-test).

Importantly, we also confirmed that there was no significant linear relationship between spacing
and stimulus-specific similarity in vmPFC when images were not recognized at E2 (p = 0.90, linear
mixed-effects regression; Fig. 2d). Moreover, the linear relationship between spacing and vmPFC
pattern similarity was significantly stronger when stimuli were successfully recognized at E2
compared to when they were not recognized at E2 (z = 2.07, p = 0.038, z-test). Together, these
results demonstrate that spaced learning strengthened stimulus-specific representations in
vmPFC, but only when stimuli were successfully recognized at E2. These data strongly parallel
our behavioral findings: that subsequent memory linearly increased as a function of spacing when
stimuli were successfully recognized at E2 (compare Fig. 2b to Fig. 1e).

It is important to emphasize that conditionalizing the fMRI analyses on successful recognition at
E2 avoided potential confounds between spacing and behavioral responses at E2 (namely, as
spacing increases there is a lower probability that E2 = hit). Moreover, establishing the relevance
of E2 recognition in spacing effects is also of theoretical importance. That said, we also assessed
stimulus-specific pattern similarity in vmPFC as a function of spacing for all trials (regardless of
behavioral response at E2 or E1). This revealed a significant quadratic trend (quadratic term: 8 =
-0.001, p = 0.04; Supplementary Fig. 2), qualitatively similar to the non-monotonic relationship
between spacing and subsequent memory that we observed in the behavioral analyses that
included all trials (Fig. 1d). Thus, in multiple respects, we observed a strong parallel between
pattern similarity in vmPFC and behavioral effects of spaced learning. Importantly, these parallels
were particularly evident—or uniquely observable —because we considered a very wide range of
timescales (spacing from seconds to months).
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Fig. 2: Spaced learning strengthens stimulus-specific representations in vmPFC. a, Schematic
illustration of stimulus-specific pattern similarity analysis. For each image, we computed pattern
similarity scores (z-transformed Pearson correlations) reflecting within-image similarity (E1 and E2 =
same stimulus) and across-image similarity (E1 and E2’ = different stimuli). Stimuli used to compute
the across-image similarity (E2’ images) were associated with (1) the same behavioral responses as
E2 images and (2) the same session as E2 images (E2 session = E2’ session; see Methods for
details). For each image, we then computed the difference between within- and across-image
similarity, which we refer to as ‘stimulus-specific’ pattern similarity. Under this difference measure,
values greater than zero indicate positive evidence for a representation of a specific stimulus in a given
brain region. b, Stimulus-specific similarity in vmPFC increased as a function of spacing (8= 0.001, p
= 0.003, linear mixed-effects regression). ¢, Stimulus-specific similarity values in vmPFC were
significantly greater for stimuli with > 24 h spacing compared to < 24 h spacing (f = -2.82, p = 0.026,
paired ttest). Stimulus-specific similarity in vmPFC did not differ from zero for stimuli with < 24 h
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spacing (t=1.71, p=0.13, one-sample t-test) but was significantly greater than zero for > 24 h spacing
(t=3.23, p=0.014, one-sample t-test). Dots depict individual participants (n=8). d, The relationship
between spacing and vmPFC pattern similarity was stronger (more positive) for images successfully
recognized (hit) compared to images not recognized (miss) at E2 (hit: 8=0.001, p = 0.003; miss: p=
0.90, linear mixed-effects regression; hit compared to miss: z=2.07, p = 0.038, z-test). e, Stimulus-
specific similarity in EVC decreased as a function of spacing (8 = -0.002, p < 0.001, linear mixed-
effects regression). f, Spacing had no effect on stimulus-specific similarity in M1 (p = 0.27, linear
mixed-effects regression). Throughout the figure, error bars depict mean +s.e.m.; *p<0.05; **p<0.01,
***p < 0.001.

Stimulus-specific similarity in vmPFC predicts behavioral benefits of spacing

We have so far shown that spaced learning (E1-E2 spacing) induced parallel increases in both
subsequent memory performance (E3 memory) and stimulus-specific pattern similarity in vmPFC
(E1-E2 similarity). We next sought to directly link these behavioral and neural expressions, at the
level of individual stimuli. To this end, we used logistic mixed-effects regression models (see
Methods), with the dependent variable being subsequent memory and independent variables of
pattern similarity and spacing. Rl was again included as a covariate and stimuli with Rl less than
24 hours were excluded due to ceiling effects in subsequent memory (see Spaced learning
benefits long-term memory, above). Primary analyses were restricted to stimuli that were
successfully recognized at E2, as in the preceding section.

We first tested for a relationship between pattern similarity in vmPFC and subsequent memory
and then tested whether this relationship interacted with spacing. The overall relationship between
vmPFC pattern similarity and subsequent memory was not significant (p = 0.12, logistic mixed-
effects model). However, adding an interaction term to the model revealed that the relationship
between vmPFC similarity and subsequent memory strongly depended on spacing (8=0.14, p<
0.001, logistic mixed-effects regression; Fig. 3a). Specifically, the strength of the relationship
between vmPFC similarity and subsequent memory increased as a function of spacing. Follow-
up tests confirmed a robust positive relationship between vmPFC pattern similarity and
subsequent memory when spacing was > 24 h (8 = 0.81, p = 0.002), but not when spacing was
<24 h (B=-0.21, p=0.18). This complements findings described above (Fig. 2b, ¢) showing that
stimulus-specific representations in vmPFC only emerged as spacing increased. Therefore, the
increase in stimulus-specific pattern similarity in vmPFC that emerged with greater spacing was
clearly linked to subsequent memory.

We next tested whether pattern similarity in the control ROls—EVC and M1—was related to
subsequent memory. Neither region exhibited an overall relationship between pattern similarity
and subsequent memory (ps > 0.26), nor did they exhibit an interaction with spacing (ps > 0.64).
Thus, despite the presence of strong, stimulus-specific pattern similarity in EVC and a significant
change in this pattern similarity with spacing (Fig. 2e), EVC representations were not predictive
of subsequent memory. To further characterize the selectivity of the relationship, we conducted
an exploratory whole-brain analysis (including 360 ROls based on a cortical atlas®) to identify
regions in which the relationship between pattern similarity and subsequent memory interacted
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with spacing. Using an arbitrary threshold of p=0.001, this analysis revealed a single region: left
vmPFC (Fig. 3d). However, as this exploratory analysis only included cortical areas, we also
directly interrogated several medial temporal lobe (MTL) regions that are known to be involved in
episodic memory?'-32: hippocampal subfields CA1 and CA2/3/dentate gyrus, entorhinal cortex,
perirhinal cortex, and parahippocampal cortex. The relationship between pattern similarity and
subsequent memory did not interact with spacing for any of the MTL regions (ps > 0.05).

Finally, we tested whether the observed interaction in vmPFC depended on images being
successfully recognized at E2, as with the behavioral spacing effects (Fig. 1g) and the spacing-
dependent increase in vmPFC pattern similarity (Fig. 2d). Indeed, the interaction in vmPFC was
not significant when the regression analysis was restricted to images that were not recognized at
E2 (p = 0.55 for interaction term of pattern similarity x spacing on subsequent memory; logistic
mixed-effects regression). Thus, at the behavioral and neural levels, the effects of spaced learning
depended on successful recognition at E2.
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Fig. 3: Stimulus-specific similarity in vmPFC predicts behavioral benefits of spacing. a, The
relationship between vmPFC similarity (E1-E2 similarity) and subsequent memory (E3 recognition)
depended on (significantly interacted with) spacing (8 = 0.14, p< 0.001, logistic mixed-effects
regression). b, The relationship between EVC similarity and subsequent memory did not depend on
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spacing (p = 0.64, logistic mixed-effects regression). ¢, The relationship between M1 similarity and
subsequent memory did not depend on spacing (p = 0.73, logistic mixed-effects regression). d,
Exploratory whole-brain analysis to identify cortical regions in which there was a significant interaction
between E1-E2 similarity and spacing in predicting subsequent memory. Z values refer to the z-scores
calculated for the interaction term in a logistic mixed-effects regression model. Using an arbitrary
threshold of p < 0.001, the only region to show a significant interaction was a region in left vmPFC.
LH, left hemisphere; RH, right hemisphere. Throughout the figure, error bars depict mean + s.e.m.;
***p < 0.001;  indicates spacing x pattern similarity interaction.

Stimulus-specific similarity in vmPFC reflects encoding-related processes

Thus far, our findings demonstrate a parallel and direct link between the behavioral benefits of
spaced learning and spacing-dependent increases in vmPFC pattern similarity. However, these
findings raise the obvious question: why does greater spacing increase pattern similarity in
vmPFC? The fact that increases in vmPFC similarity depended on E2 recognition might suggest
that vmPFC tracked successful retrieval of the original encounter. However, retrieval strength
should not increase with greater spacing—it should decrease. Alternatively, many theoretical
accounts of spacing effects emphasize the importance of encoding processes when a stimulus is
repeateds334. Moreover, to the extent that encoding and retrieval are opposing memory statesss-
39, decreases in retrieval strength may, in fact, directly support stronger encoding processes.
Thus, an interesting possibility is that vmPFC similarity reflected the (re)encoding of retrieved E1
representations. To address this idea, we tested whether vmPFC similarity was correlated with
encoding-related neural processes (and, for comparison, with retrieval-related processes).
Leveraging the extensive neuroimaging literature on episodic memory encoding and retrieval, we
identified, from independent meta-analyses, an ROI strongly associated with successful memory
encoding and an ROI strongly associated with successful recollection (memory retrieval
accompanied by contextual information) (see Methods). We then tested, on a stimulus-by-
stimulus basis, whether univariate activation in these ROls at E2 correlated with the degree of
stimulus-specific E1-E2 pattern similarity in vmPFC. This was tested using linear mixed-effects
regression models with vmPFC similarity as the dependent variable and independent variables
including univariate activation (either in the encoding or retrieval ROI) and spacing. These
analyses were again restricted to stimuli associated with correct recognition at E2.

Strikingly, higher E1-E2 pattern similarity in vmPFC was predicted by greater E2 activation in the
encoding-related ROI (left inferior frontal gyrus; B = 0.006, p < 0.001, linear mixed-effects
regression; Fig. 4a) and by lower E2 activation in the retrieval-related ROI (left angular gyrus; 8
=-0.003, p = 0.040, linear mixed-effects regression; Fig. 4b). Importantly, because these models
included spacing as a factor, these results indicate that univariate activation in the encoding and
retrieval ROIs explained variance in vmPFC pattern similarity above and beyond that explained
by spacing alone.

Exploratory, whole-brain analyses (Supplementary Fig. 3) did not reveal additional ROIs (beyond
left inferior frontal gyrus) in which activity positively correlated with vmPFC pattern similarity.
However, activity in several additional ROls (beyond left angular gyrus) was negatively correlated
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with vmPFC similarity. These regions largely overlapped with the network of brain regions that
has been implicated in the recollection of episodic memories*%4!. Together, these results provide
compelling evidence that, for stimuli correctly recognized at E2, greater E1-E2 pattern similarity
in vmPFC was related to stronger engagement of encoding-related processes.
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Fig. 4: Stimulus-specific similarity in vmPFC reflects encoding-related processes. a, There was
a positive relationship between stimulus-specific E1-E2 pattern similarity in vmPFC and E2 activation
in the encoding ROI (B = 0.007, p < 0.001, linear mixed-effects regression). b, There was a negative
relationship between pattern similarity in vmPFC and E2 activation in the retrieval ROI (8 = -0.003, p
= 0.04, linear mixed-effects regression). Throughout the figure, gray dashed lines depict independent
participants (n=8); color lines depict group-level relationship; *p < 0.05; ***p < 0.001.

DISCUSSION

Despite over a century of research related to spacing effects in memory, there remains debate
about the underlying explanation for why spacing benefits memory. A major limitation to most
current theories of spacing effects is that they have not been directly informed by—or constrained
by —evidence from neural measures. Relevant neural evidence is limited, at least in part, because
it is difficult to continuously measure neural representations over the timescales across which
spacing effects operate (hours, days, weeks, or months). Here, we leveraged a unique human
fMRI dataset that allowed us to measure neural representations and behavioral effects of spacing
at lags that ranged from seconds to many months. By jointly considering these neural and
behavioral expressions—and using each measure to understand the other—we were able to gain
fundamental new insight into why spacing benefits memory.

An important finding from behavioral studies of spacing effects is that the relationship between
spacing and memory is non-monotonic*. Based on this finding, leading theories of spacing effects
involve two-factor accounts'®121642—opne factor to explain the ‘rise’ in the spacing function
(benefits of spacing) and another factor to explain the ‘fall’ in the spacing function (costs of
spacing). Here, we first replicated the classic non-monotonic relationship between spacing and
memory when considering data from all trials (without conditionalizing on E2 memory; Fig. 1d).
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The peak in the observed functions (the optimal amount of spacing) fell somewhere between 1
hour and 1 week, depending on the retention interval (Fig. 1d and Supplementary Fig. 1). We
then observed a qualitatively similar non-monotonic relationship between spacing and vmPFC
pattern similarity (E1-E2 similarity; Supplementary Fig. 2), again with a peak that fell between 1
hour and 1 week. At a broad level, these behavioral and fMRI data establish that the current
dataset was extremely well suited to studying spacing effects and highlight the value of
considering spacing effects over long timescales.

One of the most prominent explanations for the benefits of spaced learning (the ‘rise’ in the
spacing function) is based on the idea of encoding variability®-11.11.152543.44 By this account,
greater spacing between stimulus exposures leads to more variable encoding of that stimulus
(owing to greater change in the encoding context). In turn, a more variably-encoded stimulus has
more points of access and, thereby, is more likely to be remembered. Interestingly, we did find
that, in early visual cortex (EVC), stimulus-specific representations became markedly less similar
(more variable) as a function of spacing (Fig. 2e)—a finding that complements other recent
evidence*47. However, these EVC effects did not parallel or predict the behavioral benefits of
spacing (Fig. 3b). In contrast, we found that vmPFC similarity increased (became less variable)
with greater spacing and, critically, greater vmPFC similarity positively predicted subsequent
memory—particularly at long timescales (Fig. 3a). Our finding of spacing-related increases in
vmPFC similarity is consistent with recent evidence in humans'® and rodents'® of increases in
neural similarity with spacing at short timescales. Our finding that these increases predicted
memory aligns with other empirical evidence that neural similarity across stimulus repetitions is
positively related to memory*8-5° and challenges leading theories of spacing effects that
emphasize the role of encoding variability. Thus, we were able to identify opposing effects of
spacing on representational similarity (increases and decreases in similarity), but we specifically
linked the behavioral benefits of spacing to increases in neural similarity.

Why would vmPFC similarity (or similarity in any brain region) increase as a function of spacing?
One factor that was clearly relevant to the increase in vmPFC similarity was whether events were
recognized when they were re-encountered (i.e., at E2). Indeed, we observed a strong linear
increase in vmPFC similarity when analyses were conditionalized on successful recognition at E2
(Fig. 2b-d), but no evidence of a linear increase in similarity when analyses were conditionalized
on failed recognition at E2 (Fig. 2d). Importantly, this dissociation parallels what we observed in
behavior (Fig. 1e-g). Thus, our data strongly support the prominent idea that spacing effects
depend on study-phase retrieval'®'4. That said, while study-phase retrieval was necessary for the
benefits of spacing to occur, study-phase retrieval does not, on its own, explain why greater
spacing would produce better memory—in fact, the probability of study-phase retrieval should
monotonically decrease with greater spacing.

Motivated by theoretical perspectives arguing that encoding and retrieval are opposing neural
states®65!, we reasoned that decreases in memory retrieval might be beneficial precisely because
they allow for greater memory encoding—or, more specifically, re-encoding of a retrieved
representation. We tested this by correlating, in a stimulus-by-stimulus manner, E1-E2 similarity
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in vmPFC with the degree of E2 univariate activation in regions of interest that have independently
been firmly established as being involved in memory encoding and memory retrieval. Indeed, we
found that vmPFC similarity was not only positively correlated with encoding activation, but
negatively correlated with retrieval activation. Thus, even though vmPFC similarity critically
depended on successful retrieval of the original encounter, it was correlated with encoding
processes. While this combination may seem contradictory, this is precisely the type of trade-off
between opposing influences that is required to explain non-monotonic effects of spacing (in the
brain and behavior). Put another way, our findings suggest that memory is likely to benefit when
the original experience is successfully retrieved and re-encoded. At very short lags, retrieval may
be ‘too strong,” thereby preventing successful re-encoding; at very long lags, even though an
encoding state may be ‘strong,’ failure to retrieve the original experience prevents re-encoding.
Thus, intermediate lags may be optimal because they allow for a balance between retrieval (of
the original exposure) and encoding (of the retrieved memory).

While a re-encoding account provides a parsimonious explanation for our findings—and of
spacing effects more generally—a recent computational model suggests a slightly different
interpretation that also aligns well with our findings. Namely, Antony et al. argue that variability
triggers the abstraction of similarities across stimulus exposures?6. That is, when a stimulus is re-
encountered after a relatively long delay, the encoding context is more likely to be different and
this difference triggers error-driven learning that strengthens common elements across
encounters at the expense of unique elements (i.e., abstraction of similarities). The key point is
that this account explains spacing effects in terms of increased neural similarity when events are
spaced across time. However, an abstraction account does make a unique prediction about
memory for contextual information—including memory for when in time each encounter occurred
(temporal memory). Specifically, an abstraction account predicts that, with relatively long spacing,
retrieval of the original encounter should actively weaken temporal memory for individual
encounters. On the one hand, this prediction is challenged by existing behavioral'® and fMRI
evidence®° indicating that retrieval of past encounters actually enhances temporal memory. On
the other hand, it is notable that temporal memory does not necessarily benefit from spaced
learning®. Thus, in future work it will be of interest to further characterize the relationship between
spaced learning and contextual memory (including temporal memory) as understanding this
relationship will help refine theoretical accounts.

The fact that our findings specifically implicate vmPFC in representing event similarity over time
is notable in light of the extensive literature demonstrating vmPFC involvement in the integration
of information across encoding events525 and in the formation of schemas®+%5. In particular,
vmPFC is thought to support the encoding of new events into existing schematic
representations®3:54—a function which resembles the re-encoding account proposed above. Other
studies have also implicated vmPFC in the retrieval of remote memories?'-2456:57 and in memory
consolidation2+%859, Notably, some of this evidence specifically relates to vmPFC activation
increasing as a function of the age of a retrieved memories®85°—with the idea being that memories
‘move’ to (or emerge within) vmPFC over time. In contrast, we show that when a stimulus is re-
encountered after a relatively long lag, this can actually increase the similarity to the original
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experience. Thus, our findings are not readily consistent with an account where vmPFC
representations only emerge over long timescales. That said, other theories of consolidation allow
for the possibility that vmPFC representations are formed immediately, but the reliance on these
representations changes over time?4.

In summary, by considering learning events that were spaced from seconds to many months
apart, we show that the behavioral benefits of spaced learning are strongly paralleled—and
predicted by —the similarity with which vmPFC represented stimuli across exposures. Moreover,
through a number of complementary analyses, we show that the benefits of spaced learning—in
brain and behavior—reflect a balance between retrieval and encoding processes. Namely,
whereas retrieval of an original encounter is a necessary condition for the benefits of spaced
learning, it is also important that retrieved information is re-encoded. From this perspective, non-
monotonic relationships between spacing and memory can be explained by trade-offs between
these two computations.
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METHODS
Overview

This  study reports findings using the Natural Scenes Dataset (NSD;
http:/naturalscenesdataset.org). The NSD is a large-scale fMRI dataset in which participants
performed a continuous recognition task on thousands of color natural scenes over the course of
30—40 high-resolution fMRI (7T) scan sessions. The results in this study are based on data from
all of these sessions, from all participants who took part in the NSD study. For a detailed
description of the dataset, including methods involved in preprocessing the fMRI data, please see
the original data publication®. Below we outline the specific methods relevant to the current study.

Natural Scenes Dataset
Participants

Eight participants from the University of Minnesota community participated in the NSD study (two
self-identified males and six self-identified females; age range 19-32 years). All participants were
right-handed with no known cognitive deficits nor color blindness and with normal or corrected-
to-normal vision. Participants were naive to the design of the NSD experiment and were not
involved in the design or planning of the study. Informed written consent was obtained from all
participants before the start of the study, and the experimental protocol was approved by the
University of Minnesota Institutional Review Board.

Design and procedure

A detailed description of the experimental design has been reported in the original data
publication?°. Briefly, participants performed a continuous recognition task in which they reported
whether the current image had been seen at any previous point in the experiment (‘old’) or if they
had not encountered it before (‘new’). For each participant, the experiment was split across 40
scan sessions in which 10,000 distinct color natural scenes would be presented three times
spaced pseudo-randomly over the course of the entire experiment. Each scanning session
consisted of 12 runs (750 trials per session). Each trial lasted 4 s and consisted of the presentation
of an image for 3 s and a following 1-s gap (Fig. 1a). Participants were able to respond during the
entire 4-s period and were also permitted to make multiple responses per trial in cases where
they changed their mind. As trials with multiple responses potentially captured more complex
cognitive operations related to decision making, we opted to exclude those trials from all analyses.

Participants completed up to 40 scan sessions each and were scanned approximately once a
week over the course of 10 months (Fig. 1b; the first scan session for each participant
corresponds to Day 0). Four of the participants completed the full set of 40 NSD scan sessions.
Due to constraints on participant and scanner availability, two participants completed 30 sessions
and two participants completed 32 sessions. Accordingly, each participant viewed a total of 9,209-
10,000 unique images across 22,500-30,000 trials.
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Stimuli

Images used in NSD were taken from the Microsoft Common Objects in Context (COCO)
database®. A total of 73,000 unique images were prepared with the intention that each participant
would be exposed to 10,000 distinct images (9,000 unique images and 1,000 shared images
across participants) three times each across the 40 scan sessions. Image exposures were
pseudo-randomly distributed across sessions over the course of almost a year. The presentation
structure was determined in advance and fixed across participants so that difficulty of the
recognition task was roughly similar across participants. Distribution of image presentations was
controlled to ensure that both short-term and long-term re-exposures were probed. To provide a
sense of the overall experimental design, the mean number of distinct images shown once, twice,
and all three times within a typical session is 437, 106, and 34, respectively.

As the current study focused on how the spacing between the first two exposures to an image
influenced recognition at the third exposure, we only considered images that were presented all
three times across the entire experiment. Here, we labeled each exposure based on its
presentation order (i.e., the first exposure is E1, the second exposure is E2, and the third exposure
is E3). Of critical interest, the spacing between the first two exposures (E1-E2 lag) ranged from 4
seconds to 302 days (see Fig. 1c for distribution of the E1-E2 spacing for each participant).

fMRI data acquisition and preprocessing

MRI data was collected at the Center for Magnetic Resonance Research at the University of
Minnesota. Imaging was performed on a 7T Siemens Magnetom passively-shielded scanner with
a single-channel-transmit, 32-channel-receive RF head coil. Functional images were acquired
using whole-brain gradient-echo echo-planar imaging (EPI) at 1.8-mm resolution and 1.6-s
repetition time.

Details of the preprocessing of anatomical and functional data are provided in the original data
publication?°. Briefly, functional data were preprocessed by performing one temporal resampling
to correct for slice time differences and one spatial resampling to correct for head motion within
and across scan sessions, EPI distortion, and gradient non-linearities. Informed by the original
publication, the current study used the 1.0-mm volume preparation of the functional time-series
data and “version 2” of the NSD single-trial betas.

Data Analysis

Based on the observation that stimuli that were successfully recognized at E2 and then tested
less than 24 hours later (E2-E3 lag < 24 hours) were effectively at ceiling in terms of E3 memory
performance (average hit rate across participants: 0.97), all analyses in the current study related
to E3 memory only excluded stimuli for which the E2-E3 lag was > 24 hours.

Behavioral data analyses
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We first separately tested for relationships between spacing (E1-E2 lag) and subsequent memory
(E3 memory) for different retention intervals (Rl; E2-E3 lag), regardless of whether stimuli were
successfully recognized at E2 (and regardless of behavioral responses at E1). To do so, we
generated six different models corresponding to Rls ranging from <10 minutes (shortest retention
interval) to > 3 months (longest retention interval). For each RI, we performed the mixed-effects
logistic regression analyses that predicted subsequent memory from spacing using both linear
and quadratic fits. Specifically, we used a mixed-effects logistic regression model that predicted
subsequent memory (hit = ‘old’ response, miss = ‘new’ response) from spacing while including
(controlling for) several additional factors. These added factors of no interest included the lag
between the beginning of the first trial in the experiment and the first exposure (i.e., E1 onset),
the retention interval (i.e., E2-E3 lag), and false alarm rates of sessions in which each exposure
occurred. All models were constructed with random intercepts for each participant. Because
memory is observed to abide by an exponential rule rather than linear time®?, all temporal lag
information (i.e., E1 onset, E1-E2 lag, and E2-E3 lag) was quantified by expressing time intervals
in seconds and transforming these intervals with the natural logarithm.

To directly test whether the relationship between spacing and subsequent memory (and fMRI
pattern similarity) depended on successful recognition at E2, we first ran analyses restricted to
stimuli correctly recognized at E2 (E2 = hit) and correctly rejected at E1 (E1 = ‘new’ response;
correct rejection) and then ran analyses conditionalized on E2 not being successful recognition
at E2 (E2 = miss; E1 = correct rejection).

Regions of interest (ROIs) definition

To probe whether the spacing showed a modulation of stimulus-specific representations, a region-
of-interest (ROI) analysis was performed. Motivated by prior evidence implicating vmPFC in
episodic memory across long timescales?'-24 and by recent evidence of spacing effects on neural
similarity in the rodent medial prefrontal cortex'®, this analysis was focused on the bilateral
ventromedial prefrontal cortex (vmPFC), along with two control ROls: bilateral early visual cortex
(EVC) and bilateral motor cortex (M1). All cortical ROls were drawn from the surface-based
Human Connectome Project multimodal parcellation (HCP-MMP) atlas of human cortical areas®°.
An additional exploratory analysis was conducted throughout the whole brain using all parcels
available in the HCP-MMP atlas. Based on the established role of the medial temporal lobe (MTL)
in human memory, we also repeated certain analyses in a set of subregions there. These MTL
ROls included bilateral CA1, CA2/3/dentate gyrus, entorhinal cortex, perirhinal cortex, and
parahippocampal cortex, all manually drawn on the high-resolution T2 images obtained for each
participant.

To probe specific hypotheses concerning encoding/retrieval-related processes, a priori ROls were
chosen based on past work. Specifically, an ROI representative of encoding-related effects was
identified using the global peak coordinates supporting encoding success from an independent
meta-analysis on the subsequent memory effect®2. We then projected the coordinates to the HCP-
MMP atlas and used the delimiting parcel as the encoding ROI. Similarly, for an ROI
representative of retrieval-related effects, we used the peak coordinates supporting recollection
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success from another independent meta-analysis of episodic memory retrieval®® and identified
the delimiting parcel in the HCP-MMP atlas as the retrieval ROI.

Pattern similarity analyses

Pattern similarity was calculated as the Pearson correlation between activity patterns evoked
during different image exposures for each ROI. Correlations were z-transformed (Fisher's z)
before further analyses were performed. To avoid potential contamination from BOLD signal
autocorrelation, all pattern similarity analyses were performed by correlating activity patterns for
stimuli across run (i.e., correlations were never performed within the same scanning run).

For our primary analyses related to pattern similarity between E1 and E2, of critical interest was
the stimulus-specific pattern similarity. Specifically, for each image (‘target’), we compared ‘within-
image’ pattern similarity (E1 and E2 = same stimulus) to ‘across-image' pattern similarity (E1 and
E2’ = different stimuli; Fig. 2a). The E2’ images used to compute across-image similarity were
chosen from the same set of sessions (but different scanning runs) as the target image’s E1 and
E2, thus controlling for differences in spacing. Further, E2’ images were chosen such that they
had the same memory outcomes at the first two exposures as the target image. For target images
with multiple possible E2’ images based on the criteria above, the median value of the across-
image similarity scores was used. The across-image similarity was then subtracted from within-
image similarity to yield a stimulus-specific similarity measure of E1-E2 similarity for each image.

Unless indicated otherwise, our main fMRI analyses were restricted to stimuli that were
associated with correct behavioral responses at both E1 and E2 (i.e., E1 = ‘new’ responses, E2
= ‘old’ responses) so that any potential relationships between spacing and neural pattern similarity
were not confounded with behavioral responses.

Statistical analyses

Behavioral and fMRI data were analyzed using a combination of paired t tests and mixed-effects
regression models. Relationships between spacing, stimulus-specific pattern similarity and
subsequent memory were tested with mixed-effects regression models. For all mixed-effects
regression models, we used the participant as a random effect and other variables as fixed effects.
All t-tests were two-tailed. A threshold of p < 0.05 was used to establish statistical significance for
all analyses unless otherwise specified. fMRI analyses were corrected for multiple comparisons
when applicable.
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Supplementary Information

Supplementary Table 1. Statistics for relationships between E1-E2 spacing and subsequent E3
memory for different retention intervals (E2-E3 lag) using both linear and quadratic trend analyses for
all trials (i.e., regardless of behavioral responses at E1 and E2). To compare the fits of models for
each RI, we used ANOVA to test whether adding the quadratic term of spacing led to significantly
better prediction of subsequent memory relative to models without the quadratic term.

Retention interval Linear fits Quadratic fits Model comparison
(RI) (quadratic term)
Rl<10min B=-0.130 B=-0.004 x?=0.623
p<0.001*** p=0.425 p=0.430
10min<Ri<1d B=-0.157 B=-0.017 x?=25.146
p<0.001*** p<0.001*** p<0.001***
1d<RI<1wk B=-0.113 B=-0.023 x? =53.789
p<0.001*** p<0.001*** p<0.001***
1wk<RI<1mo B=-0.045 B =-0.022 x*=70.151
p<0.001*** p<0.001*** p<0.001***
1mo<RI<3mo B=-0.012 B=-0.013 x? =25.021
p=0.079 p<0.001*** p<0.001***
3mo<R1<iyr B=0.016 B =-0.009 x?=13.965
p=0.007** p<0.001*** p<0.001***
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Supplementary Fig. 1. Relationships between spacing and subsequent memory (recognition
accuracy) for different retention intervals (Rls) for all trials (regardless of whether stimuli were
successfully recognized at E2, and regardless of responses at E1).
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Supplementary Fig. 2. Relationship between spacing and stimulus-specific pattern similarity in
vmPFC for all trials (regardless of whether stimuli were successfully recognized at E2, and regardless
of responses at E1).
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Supplementary Fig. 3. Exploratory whole-brain analysis. Linear mixed-effects regression analyses
were performed across the whole brain to test for relationships between E2 univariate activation in
cortical regions and E1-E2 pattern similarity in vmPFC. Warm colors reflect regions in which E2
univariate activation positively correlated with E1-E2 similarity in vmPFC. Cool colors reflect regions
in which E2 univariate activation negatively correlated with E1-E2 similarity in vmPFC.
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