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Abstract 

Single-cell sequencing technologies provide us with information at the level of individual cells. 

The combination of single-cell RNA-seq and single-cell TCR-seq profiling enables the 

exploration of cell heterogeneity and T-cell receptor repertoires simultaneously. The integration 

of both types of data can play a crucial role in enhancing our understanding of T-cell-mediated 

immunity and, in turn, facilitate the advancement of immunotherapy. Here, we present 

immunopipe, a comprehensive and flexible pipeline to perform integrated analysis of scRNA-seq 

and scTCR-seq data. In addition to the command line tool, we provide a user-friendly web 

interface for pipeline configuration and execution monitoring, benefiting researchers without 

extensive programming experience. With its comprehensive functionality and ease of use, 

immunopipe empowers researchers to uncover valuable insights from scRNA-seq and scTCR-

seq data, ultimately advancing the understanding of immune responses and immunotherapy 

development. 

Introduction 

T cells play an essential role in the adaptive immune system and are critical for the success of 

immunotherapy. The immune system safeguards our bodies from a range of illnesses, including 

cancer, by generating a wide variety of T-cell receptors (TCRs) through V(D)J recombination. 

These TCRs enable T cells to recognize and target specific antigens [1]. To study the diversity 

and clonality of TCR repertoire at the single-cell level, single-cell TCR-sequencing (scTCR-seq) 

has emerged as a powerful technique [2-4]. Additionally, single-cell RNA sequencing (scRNA-

seq) allows for the analysis of gene expression in individual cells, providing insights into cellular 

heterogeneity and functional states [5-9]. By integrating scRNA-seq and scTCR-seq data, 

researchers can gain a comprehensive understanding of T-cell-mediated immunity and its 

potential applications in immunotherapy [10-19].  

Analyzing scRNA-seq and scTCR-seq data can be complicated due to the diverse nature of the 

data. These types of data often include substantial amounts of high-dimensional information, 
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which requires advanced computational methods for processing and analysis [20]. Additionally, 

the integration of diverse types of data, such as gene expression and T-cell receptor information, 

adds another layer of complexity [19]. Furthermore, analyzing immune cell populations involves 

identifying and characterizing various cell types, which can be challenging due to the 

heterogeneity and plasticity of these cells [19]. Moreover, downstream analysis after integration 

of scRNA-seq and scTCR-seq data is strenuous since the data encompasses gene expression 

profiles, TCR repertoire, and clinical phenotypes, and requires careful consideration in arranging 

the results to ensure clarity and coherence. Therefore, meticulous planning and organization are 

crucial to present the results in a manner that facilitates comprehension and enhances the overall 

impact of the analysis. 

In this work, we have developed a flexible pipeline named immunopipe that facilitates the 

analysis of scRNA-seq and scTCR-seq data, empowering researchers to unlock valuable insights 

and accelerate the development of immunotherapeutic strategies. With its user-friendly web 

interface and comprehensive functionality, immunopipe is accessible to researchers with varying 

levels of programming experience. 

Immunopipe is designed as a one-stop solution for scRNA-seq and scTCR-seq data analysis 

starting with read count and clonotype information. It offers a range of analyses for quality 

control, clustering, cell type annotation, TCR repertoire analysis, and integrative analysis of both 

types of data. Advanced models have been developed to better understand the relationships 

between TCR sequence and gene expression profiles [21-23]. However, these studies primarily 

focus on the development of integration models, which can be used as modules in immunopipe. 

Alongside other analyses, immunopipe provides a more comprehensive view of the entire 

dataset. Some packages can perform thorough analysis for scRNA-seq data [24, 25] or scTCR-

seq data [26-29]. It's also possible to perform integrative analysis with these tools. For example, 

Seurat [25] can perform scRNA-seq data analysis and then integrate scTCR-seq data with the 

Seurat object. However, the analysis requires granular control of each step, which can be 

challenging for researchers without extensive programming experience. Furthermore, extra effort 

may also be necessary to analyze the integrated data along with clinical phenotypes. Immunopipe 

streamlines these analyses to offer a comprehensive solution and provides a user-friendly 

interface for researchers to perform the analysis with ease. 

Results 

Abstraction of the analysis for scRNA-seq and scTCR-seq data 

The abstraction of the analysis enhances the robustness and flexibility of the pipeline. In general, 

as shown in Figure 1 (also Figure S1 and Figure S2), the common practices for analyzing 

scRNA-seq and scTCR-seq data are included in the pipeline. T cell selection is performed to 

avoid bias introduced by non-T cells. The selected T cells are then re-clustered and integrated 

with the clonal information. Various downstream analyses, including differential gene expression 

and gene set enrichment analysis, are performed for the integrated data. In addition, the pipeline 

includes innovative approaches from recent methodological advancements in literature. 
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Figure 1. Illustration of analysis by immunopipe 

Common practices for scRNA-seq data analysis. The scRNA-seq data analysis starts with 

quality control to assess the overall data quality and identify potential outliers or technical 

artifacts. A few metrics commonly used by the community are available [30, 31], including the 

number of cells with expressions for a gene, and for a cell, the number of features [32, 33] and 

the proportion of mitochondrial, ribosomal, hemoglobin and platelet genes [30, 34]. Following 

this, normalization, sample integration, dimension reduction, and clustering are performed to 

group cells with similar expression profiles, facilitating the identification of distinct cell types or 

populations. The clustering process is followed by the identification of markers for each cluster 

and enrichment analysis using the significant markers based on their gene expression profiles. 

The markers themselves and the enriched pathways can provide valuable insights into the 

functional states and potential roles of different cell subsets, thus facilitating cell population 

identification. The visualization of gene expression patterns allows researchers to explore the 

expression of specific genes within cell populations. Furthermore, several packages are 
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employed to automate the cell type annotation procedure. Alternatively, cell type annotation can 

also be achieved using supervised clustering by mapping the cells to well-annotated reference 

datasets. 

Common practices for scTCR-seq data analysis. The scTCR-seq data analysis starts with 

basic analysis and statistics of TCR clones, such as the number of unique TCRs, clonality, and 

diversity metrics. Advanced analysis, such as gene usage, clonotype change tracking, expanded 

or enriched TCR clone identification, and repertoire overlap detection between different samples 

or conditions, can also be performed subsequently [35]. The clone residency analysis is useful to 

examine the presence and persistence of T-cell clones across different samples or time points 

[17]. V-J usage plots investigate the V-J gene conjunction patterns within the TCR sequences, 

shedding light on the repertoire diversity and potential antigen specificity [28]. Moreover, 

clustering based on the TCR sequences allows for the identification of T-cell clusters or 

refinement of clonotypes, aiding in the characterization of specific T-cell populations [36, 37]. 

T cell selection. To integrate scTCR-seq data with scRNA-seq data and avoid the bias introduced 

by non-T cells, we provide a T-cell selection process that allows for the seamless integration of 

T-cell populations with scRNA-seq data. All cells are first clustered and T cells are selected 

based on the clonotype percentage in each cluster from scTCR-seq data and the expression of 

marker genes, including positive markers like CD3E, CD3D, and CD3G [38], and negative 

markers, or exclusive markers for other cell types, such as CD14, CD19, and CD68 [39, 40]. The 

selected T cells are then re-clustered and analyzed with the remaining common practices for 

scRNA-seq data analysis. 

Integration of scRNA-seq and scTCR-seq data. The integration of scRNA-seq and scTCR-seq 

data in immunopipe directly links the two types of data and derived results from them by cell 

IDs, so that clonal information and TCR clusters can be used in the downstream analysis, such as 

finding markers for specific TCR clones or TCR clusters. With the cell type annotation based on 

scRNA-seq data, we can investigate the TCR repertoire of different cell types. For example, we 

can compare the diversity of TCR clones between different cell types or identify the TCR clones 

that are specific to a given cell type. In addition, it is possible to perform further analysis that 

involves clinical phenotypes, such as immunotherapy response. This type of analysis can help 

identify clones that are associated with specific clinical phenotypes, which is valuable in the 

development of therapeutic strategies. 

Differential gene expression (DGE) analysis and gene set enrichment analysis (GSEA). 

DGE analysis is a common practice in scRNA-seq data analysis. It allows for the identification 

of genes that are differentially expressed between two groups of cells, providing insights into the 

functional differences between these groups [41]. It is generally used to identify markers for 

specific cell types or groups. GSEA is a computational method that determines whether a priori-

defined set of genes, such as pathways, shows statistically significant and concordant differences 

between two biological states. It is widely used to gain deeper insights into the functional states 

of cells and the underlying biological mechanisms [42]. Both DGE analysis and GSEA are 

available in immunopipe, allowing researchers to gain a more comprehensive understanding of 

the functional states of cells. 
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Incorporation of innovative approaches. In addition to the common practices for scRNA-seq 

and scTCR-seq data analysis, immunopipe incorporates innovative approaches that were 

introduced in recent publications. Metabolic landscape analysis at single-cell resolution [43] is 

designed to study metabolic programs in single cells. Physiochemical attribute analysis of the 

CDR3 amino acid sequences can be performed by comparing two groups of cells, typically 

regulatory T cells and resting conventional T cells. It quantifies hydrophobicity, isoelectric point 

and volume of the amino acids in the CDR3, which are associated with self-reactivity of the TCR 

[44-47]. TESSA [23] characterizes TCR repertoire by embedding TCR sequences and integrating 

them with scRNA-seq data, which has shown superiority over methods using TCR sequences 

only, in terms of the association of TCR clones with clinical phenotypes. 

Flexible configuration and execution options 

The flexibility of Immunopipe is reflected at different levels, from the overall workflow based on 

input data to the detailed configuration of specific analyses. Although designed to analyze both 

scRNA-seq and scTCR-seq data (Figure S1), immunopipe can be used for scRNA-seq data 

analysis alone (Figure S2). The essential analyses that adhere to common practices are 

mandatory; while most of the other analyses are optional. This provides users with an elevated 

flexibility to suit their individual needs. T cell selection, for example, is not necessary if pure T 

cells are sorted in scRNA-seq data. Immunopipe also offers granular control of each analysis, 

allowing users to adjust the parameters to suit their specific design. Many of these parameters are 

pre-configured with carefully selected values, thereby facilitating the analysis process adaptable 

and straightforward. 

In addition to gene expression profiling by scRNA-seq data, the analysis performed by 

immunopipe heavily relies on the cell grouping information within the data that could be 

retrieved from scTCR-seq and clinical data. Users have the option to directly reference the 

relevant variable from the metadata in the configuration, aligning with their specific research 

requirements. Additionally, it is also possible to derive new variables in the configuration from 

existing ones by modifying the metadata, which can subsequently serve as grouping information 

for the analysis, adding another layer of flexibility. Moreover, data can be filtered through 

configuration, which enables focusing on a subset of cells that are of interest. It is frequently 

necessary to conduct similar analyses multiple times. For instance, multiple variables may need 

to be overlayed on a dimension reduction plot or sub-clustering is desired to perform on multiple 

subsets of cells. The configuration scheme is designed to accommodate such scenarios, enabling 

users to effectively perform these analyses and explore data from various perspectives with ease 

and efficiency. 

The pipeline is executed on a local machine by default, while also offering the possibility of 

running it on alternative scheduler platforms. Immunopipe is equipped with built-in support for 

executing the pipeline via Sun Grid Engine, Slurm Workload Manager, and SSH. The entire 

pipeline, along with its dependent packages, is compiled into a docker image (see Code 

availability), enabling seamless deployment across diverse computing environments. This 

ensures flexibility and compatibility, allowing users to execute immunopipe on their preferred 
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platforms. Furthermore, the use of a docker image simplifies the installation procedure and 

mitigates the potential for dependency conflicts which can be a big hurdle for less experienced 

users. 

The results generated by immunopipe are organized and presented comprehensively and 

intuitively. The pipeline generates reports in HTML format, which can be easily delivered or 

hosted on a server for easy access and interpretation. The report is structured by modules, and the 

results of each module are presented in a variety of formats, including tables and plots. 

Immunopipe is also accompanied by a web interface, which facilitates effortless configuration 

file generation, and initiation and monitoring of the execution. This interface streamlines the 

analysis process and provides convenient access to log files, intermediate results, and final 

reports. The web interface offers detailed descriptions of each configuration option, allowing 

users to make informed decisions and adjust the parameters to suit their specific needs. It also 

allows researchers with limited programming experience to perform the analysis with ease. 

Reanalysis of publicly available datasets 

To demonstrate the capabilities of immunopipe, we have reanalyzed 9 publicly available datasets 

[10-18] (see Data availability). The datasets are provided with both scRNA-seq and scTCR-seq 

data. However, it is noteworthy that [15] contains an additional dataset with scRNA-seq data 

only (CD45+ cells), which can also be analyzed by immunopipe. The datasets cover not only 

cancer and cancer with therapy but also COVID-19 cases. The number of samples in each dataset 

ranges from 2 to 47 and individuals from 1 to 38; the number of cells varies from 6,438 to 

194,519 and the number of matched TCR sequences from 5,642 to 77,030 (Table 1). 

GEO Condition # individuals # samples # cells 

# matched 

TCR 

sequences 

Reference 

GSE144469 Colitis and therapy 22 22 75,569 68,760 [15] 

GSE176201 COVID-19 lung tissue 5 6 34,781 23,081 [11] 

GSE180268 
HPV and Head and 

Neck cancer 
6 19 53,303 26,844 [12] 

GSE114724 Breast cancer 3 5 28,341 24,039 [10] 

GSE161192 LB dementia 2 4 6,438 5,642 [13] 

GSE179994 
Anti-PD-1 therapy in 

lung cancer 
38 47 150,849 77,030 [14] 

GSE148190 Skin cancer 1 2 8,794 4,904 [16] 

GSE139555 Anti-PD1 therapy 14 32 194,519 67,700 [17] 

GSE145370 Esophageal cancer 7 14 108,226 35,449 [18] 

Table 1. Publicly available datasets reanalyzed by immunopipe 

The primary aim of the reanalysis is to demonstrate the capabilities of immunopipe, provide a 

reference for researchers to adjust the parameters, visualize the corresponding results, and 

facilitate the interpretation of the results. The reanalysis is not a reproduction of the analysis in 
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the original publications, and the results may not be directly comparable. This is because the pre-

processing steps are not fully revealed in some of the publications, and the analysis is not 

performed with the same parameters. Moreover, the tools used in the original analysis may have 

been updated since the publication, which can also lead to differences in the results (see also 

Discussion). The reanalysis is performed with the configuration files fed to immunopipe. Some 

studies use data other than scRNA-seq and scTCR-seq for their discoveries. In these cases, a 

minimal configuration file is provided to perform the analysis with only the necessary analyses 

enabled. If a study focuses on scRNA-seq and scTCR-seq analysis, the pipeline is configured to 

attempt to regenerate the figures in the publications. Configuration files, results, and reports are 

available in each repository (see Data availability). 

Discussion 

Immunopipe uses data processed by 10X Genomics (https://www.10xgenomics.com/)  

CellRanger [48] by default. It can also take 10X-compatible scRNA-seq data, and scTCR-seq 

data from other platforms that can be loaded by immunarch [35]. In addition to the raw count and 

annotated contig files, a file with a serialized object, such as a Seurat object in RDS 

(https://rdrr.io/r/base/readRDS.html), h5Seurat (https://mojaveazure.github.io/seurat-

disk/articles/h5Seurat-load.html) or AnnData [49], can be used as the input of immunopipe to 

adopt data from other platforms, even though it may take extra effort to load the data into Seurat 

objects. Moreover, it is beneficial to take the Seurat object as input for reproducibility. The 

reproducibility issue can be caused by inconsistent process steps and their parameters, and 

package versions. Regardless of the efforts, the reproducibility is still not guaranteed. For 

example, the irlba package [50] used in Seurat for dimension reduction is not deterministic, due 

to the numerical precision for manipulation on sparse matrix (discussed at 

https://github.com/bwlewis/irlba/issues/61). Incorporating packages such as rCASC [51], 

designed specifically for reproducibility, could be an option to consider; while adopting a Seurat 

object as input could be another enhancement for immunopipe in the future. 

Currently, immunopipe only supports scTCR-seq data of αβ T cells. The γδ T cells are also a 

subset of T cells that express γδ TCRs instead of αβ TCRs [52, 53]. Even with less abundance 

(0.5–5% of all T-lymphocytes) than αβ T cells (65–70%), γδ T cells play a significant role in the 

immune system [54, 55]. Supporting γδ TCRs is an additional feature that can be added to 

immunopipe. The analytical methods employed for scTCR-seq data may be extrapolated for the 

analysis of single-cell B-cell receptor sequencing (scBCR-seq) data. The complexity of BCR 

data analysis is heightened by the occurrence of somatic hypermutation in B-cell receptors [56, 

57], which can be addressed by distance-based clonotype analysis [58]. ScBCR-seq data analysis 

is supported by immunarch [35], which is used by immunopipe for scTCR-seq data analysis. 

However, a B-cell selection process could be necessary to facilitate integrative analysis for 

scRNA-seq and scBCR-seq data. 

In recent research studies, there has been an increase in the usage of additional downstream 

analysis based on scRNA-seq. This includes RNA velocity [59, 60], cell-cell communication 

[61], and gene regulatory networks [62]. These tools provide more detailed information on the 

biological processes happening at the single-cell level and can help researchers gain deeper 
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insights into the mechanisms that underlie cellular behavior. The incorporation of these 

additional analysis modules into the immunopipe for scRNA-seq further empowers users to 

conduct comprehensive and insightful investigations, thereby facilitating a more comprehensive 

exploration of the data. 

Methods 

Immunopipe is implemented on top of pipen (https://github.com/pwwang/pipen), a flexible and 

extensible pipeline framework written in Python (https://python.org). Its architecture facilitates 

the building of complex pipelines by breaking them down into smaller and reusable processes. 

The extensibility of pipen enables a variety of plugins that add to its already comprehensive 

capabilities. Immunopipe benefits from two particularly essential plugins, including pipen-report 

(https://github.com/pwwang/pipen-report) which streamlines the process of organizing and 

generating reports for pipelines, and pipen-board (https://github.com/pwwang/pipen-board) 

which supplies a user-friendly web interface for configuring the pipeline, starting and monitoring 

the execution. 

The implementation of each process is not restricted by programming languages, allowing for the 

incorporation of existing tools and packages. Immunopipe wraps both existing tools and in-house 

scripts to perform the analysis. Seurat [25] is the core tool for the pipeline, not only for the 

common practices of scRNA-seq data analysis but also for the integration of scRNA-seq and 

scTCR-seq data. The TCR clonal information is loaded into the Seurat object as metadata at the 

cell level and passed down to the downstream analysis. Enrichr [63] is used for enrichment 

analysis, and fgsea [64] is employed for GSEA. Automated cell type annotation is performed 

using scCATCH [65], sctype [66], celltypist [67], or hitype (https://github.com/pwwang/hitype), 

an enhanced version of sctype by introducing weights for markers. The scTCR-seq data is loaded 

into the pipeline by immunarch [35], which also performs basic analysis, including statistics on 

TCR clones, diversity metrics, gene usage, repertoire overlap, and clonotype tracking. Clustering 

by TCR sequences is conducted by GIANA [36] or clusTCR [37]. Metabolic landscape analysis 

is performed by the pipeline provided by [43], which is modified to fit into immunopipe. The 

physiochemical attribute analysis of the CDR3 amino acid sequences is performed using TiRP 

[47]. TESSA [23] is incorporated to identify phenotype-associated TCR repertoire. The rest of 

the analyses and visualizations are implemented by in-house scripts, including the T cell 

selection, visualization of gene expression patterns and other features, and exploration of cell 

distribution in different cell types, etc. 

We provide the documentation for immunopipe online as a manual and a web interface to 

generate the configuration file, where the description of the options is shown immediately upon 

focus. To illustrate the utilization of immunopipe in the analysis of scRNA-seq and scTCR-seq 

data, we provide an illustrative example employing a publicly available dataset [17] (see Data 

availability). The example includes a minimal configuration file with only the necessary 

configuration for running the pipeline, which is ideal for a quick start, and other configuration 

files with different options enabled, which can be used as a reference for users to adjust the 

parameters to suit their specific needs. It also contains the results and report generated by the 

pipeline, which can be viewed online (see Data availability). We have also compiled a gallery of 
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repositories containing the configuration files for the pipeline and the results of the reanalysis of 

9 publicly available datasets (see Data availability). The gallery can be a useful resource and 

reference for the users with their analysis requirements. 

Data availability 

The details about the example can be found at https://github.com/pwwang/immunopipe-example. 

The data used in the example is hosted at GEO (GSE139555). The report for the example 

generated by the minimal configuration file can be viewed at 

http://imp.pwwang.com/minimal/REPORTS/ and the report by the configuration file with all 

processes enabled is available at https://imp.pwwang.com/output/REPROTS/. The gallery of 

repositories for the reanalysis of the publicly available datasets can be found at 

https://pwwang.github.io/immunopipe/gallery/.  

Code availability 

The most recent source code for immunopipe is publicly available on GitHub 

(https://github.com/pwwang/immunopipe) and the documentation can be found at 

https://pwwang.github.io/immunopipe/. The docker image for immunopipe is also available on 

DockerHub (https://hub.docker.com/r/justold/immunopipe).  
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Figure S1. The flowchart of full analyses by immunopipe 
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Figure S2. The flowchart of analyses with scRNA-seq data only by immunopipe 
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