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Abstract  
Cancer-associated fibroblast (CAF) subpopulations in pancreatic ductal adenocarcinoma 
(PDAC) have been identified using single-cell RNA sequencing (scRNAseq) with divergent 
characteristics, but their clinical relevance remains unclear. We translate scRNAseq-derived 
CAF cell-subpopulation-specific marker genes to bulk RNAseq data, and develop a single-
sample classifier, DeCAF, for the classification of clinically restraining and permissive CAF 
subtypes. We validate DeCAF in 19 independent bulk transcriptomic datasets across four tumor 
types (PDAC, mesothelioma, bladder and renal cell carcinoma). DeCAF subtypes have distinct 
histology features, immune landscapes, and are prognostic and predict response to therapy 
across cancer types. We demonstrate that DeCAF is clinically replicable and robust for the 
classification of CAF subtypes in patients for multiple tumor types, providing a better framework 
for the future development and translation of therapies against permissive CAF subtypes and 
preservation of restraining CAF subtypes. 

Significance 
We introduce a replicable and robust classifier, DeCAF, that delineates the significance of the 
role of permissive and restraining CAF subtypes in cancer patients. DeCAF is clinically 
tractable, prognostic and predictive of treatment response in multiple cancer types and lays the 
translational groundwork for the preclinical and clinical development of CAF subtype specific 
therapies.  
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INTRODUCTION 
It is widely recognized that the PDAC tumor microenvironment (TME) plays an important role, 
and can be both tumor restraining and tumor permissive1–4. PDAC is characterized by an 
extremely dense desmoplasia, represented as a complex mixture of extracellular matrix (ECM), 
blood vessels, immune cells, as well as cancer-associated fibroblasts (CAF)5–10 . CAFs are key 
regulators in the TME. Clinical trials attempting to target the PDAC TME have been 
disappointing11–14. These results may be partially explained by the loss of tumor restraint with 
genetic depletion of CAFs in genetically engineered mouse models2,3,15. 
We previously reported two PDAC stroma groups, “activated” and “normal”, where patients with 
“activated stroma” had decreased survival relative to normal stroma16. Maurer et al. used 
microdissected patient samples to derive two TME groups called “ECM-rich” and “immune-rich” 
stroma, with “ECM-rich” showing shorter survival17. With recent advances in single cell RNA 
sequencing (scRNAseq) technology, studies on the PDAC stroma have rapidly shifted to the 
study of individual CAF and immune cell populations. In a landmark study, Elyada et. al 
identified “myCAF” and “iCAF” cell clusters described initially in preclinical murine studies and 
validated in a human scRNAseq dataset (Elyada-sc) that enriched for CAF cells using 
fluorescence-activated cell sorting (FACS)18,19. More recently, additional CAF subpopulations 
(e.g. “csCAF”, “meCAF”, etc.) have been described20–22, as well as CAF subtypes with 
differential histology features23,24, and CAF related gene programs25. However, the clinical 
significance of previously described CAF subpopulations remains unproven, despite interest in 
targeting iCAFs due to their tumor promoting behavior in preclinical studies. 
Using SCISSORS, a method that we previously developed to sensitively cluster rare cells and 
identify highly cell-subpopulation-specific marker genes in scRNAseq, we identify uniquely 
expressed marker genes for CAF clusters that robustly translate to bulk RNAseq26. We show 
that these marker genes are specific to fibroblasts and are not confounded by expression in 
immune cells. We successfully translate these CAF marker genes to develop and validate a 
single sample classifier (SSC), DeCAF (Determination of permissive and restraining cancer-
associated fibroblast subtypes), that robustly and replicably classifies permissive (permCAF) 
and restraining CAF (restCAF) subtypes in 19 independent bulk transcriptomic datasets of 
patient samples across four tumor types. We find that DeCAF subtypes are independently 
prognostic and associated with distinct histologic features. Furthermore, DeCAF subtype tumors 
are associated with different immune landscapes and are associated with treatment response in 
a PDAC phase Ib trial of FOLFIRINOX and CCR2 inhibition27. In mesothelioma, urothelial and 
clear cell renal cell carcinoma (cRCC), DeCAF subtypes are prognostic and in urothelial and 
cRCC associated with response to anti-PD-L1 therapy. Here, we show that DeCAF subtypes 
are robust, replicable and elucidate the relationship between CAF subtypes, prognosis, and 
treatment response in patients with mesothelioma, cRCC, bladder and pancreatic cancers.  
 

RESULTS 
Development and external validation of DeCAF 
The clinical relevance of CAF subpopulations derived from scRNAseq remains unclear largely 
due to the paucity of samples scRNAseq from patients. Therefore, we set out to translate 
exemplar or marker genes derived from scRNAseq for use in bulk transcriptomics data. We 
previously showed that the basal-like and classical cell-subpopulation-specific marker genes 
derived from scRNAseq may be translated to cluster bulk RNAseq of PDAC samples, and highly 
recapitulated the clinically validated PDAC tumor subtypes26. These marker genes were 
identified using a previously developed tool, SCISSORS, which sensitively identifies rare cell 
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subpopulations as low as 0.092% of the cell population and accurately identifies marker genes 
of high specificity. Because of this, we hypothesized that the CAF cell-subpopulation-specific 
marker genes derived by SCISSORS may also be translated to bulk RNAseq for the 
classification of CAF subtypes in patient samples (Supplementary Table 1). First, we evaluated 
11 publicly available bulk RNAseq and microarray datasets containing 1,432 primary PDAC 
patients using consensus clustering (CC) (Methods, Supplementary Table 2, 3). In all datasets, 
the SCISSORS CAF genes separate patient samples into two clusters (Supplementary Fig. 1). 
In a meta-analysis, we found two divergent clusters: one patient cluster had tumor permissive 
CAF (permCAF) with a significantly shorter median OS (mOS) of 20.33 months (mos), while the 
other patient cluster had tumor restraining CAF (restCAF) with a longer mOS of 30.19 mos (p = 
0.0036, HR = 1.40 [95% CI 1.317-1.725], Supplementary Table 4). The naming of permCAF 
and restCAF describes the clinical implications of our results and avoids conflict with the 
existing preclinical nomenclature. 
However, clustering techniques have many real-world limitations, such as their inability to 
assign subtypes to individual patients and the lack of stability in existing subtype assignments 
due to the re-clustering required for the addition of new samples to existing data and can be 
inherently deceptive when evaluating samples of limited numbers and diversity. Thus, we 
developed a robust SSC, DeCAF (Fig. 1a, Supplementary Table 5), to predict permCAF and 
restCAF subtypes in individual patients, using CC based training labels derived in four large 
bulk gene expression datasets (Methods, training datasets: CPTAC, Dijk, Moffitt GSE71729, 
TCGA PAAD, Supplementary Table 2, 3, Supplementary Fig. 2). A key element of our method 
includes the utilization of our CAF marker genes derived by SCISSORS to avoid the 
confounding of the expression of these genes in tumor and other tissue types such as immune 
cells. The final DeCAF classifier uses rank-derived predictors through the k Top Scoring Pair 
(kTSP) (https://github.com/jjyeh-unc/decaf) (Methods); the same approach that we employed for 
the PurIST PDAC tumor classifier28. This approach avoids using raw expression values which 
reduced its dependence on between sample/study normalization, simplifying data integration 
over different studies28–31 and during prediction on new samples. 
To assess the quality of our prediction model, we first evaluate the cross-validation error of the 
final model in our Training Group samples. We find that the internal leave-one-out cross 
validation error for DeCAF in the Training Group is low (4.0%). To evaluate the overall 
classification performance of DeCAF across additional studies, we compare the DeCAF subtype 
calls to the SCISSORS subtype calls in an independent validation dataset of seven patient 
cohorts (Supplementary Table 2, 3). First, we applied a nonparametric meta-analysis approach 
to obtain a consensus ROC curve based on the individual ROC curves from each validation 
study. We found that the overall consensus Area Under the Curve (AUC) is high, with a value of 
0.961 (Fig. 1b). The estimated interstudy variability of these ROC curves with respect to 
predicted permCAF score threshold t is very low at our standard threshold of t = 0.5 or greater 
(Fig. 1c). Furthermore, sensitivities and specificities were often high at this threshold, and AUC 
values were similarly strong (> 0.8) (Fig. 1d). Across validation datasets, we find that the pooled 
samples strongly segregate by CC subtype when sorted by their DeCAF score (i.e. permCAF 
probability), despite diverse studies of origin (Fig. 1e). This suggests that our methodology 
avoids potential study-level effects. As expected, the relative expression of classifier genes 
within each classifier TSP (paired rows) strongly discriminates between subtypes in each 
sample, forming the basis of our robust TSP-oriented approach for subtype prediction (Fig. 1e). 
Our results support that DeCAF is robust and replicable, supporting our comprehensive 
investigation to evaluate the biological, pathological and clinical relevance of permCAF vs 
restCAF in patient samples. 

Cell specificity of DeCAF in scRNAseq 
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Elyada et al. has previously described two PDAC CAF subtypes, namely myCAF and iCAF18,19. 
Using the scRNAseq dataset generated by Elyada et al. (Elyada-sc), we found that within the 
fibroblast cell clusters, our permCAF genes showed overlapping expressions with Elyada 
myCAF genes, and our restCAF genes showed overlapping expressions with Elyada iCAF 
genes (Fig. 2a,b). However, we found that our DeCAF and SCISSORS genes are uniquely 
expressed within only CAF cells and not confounded by other cell types, e.g. epithelial cells and 
immune cells, demonstrating the high specificity of our CAF marker genes (Fig. 2b). In addition, 
DeCAF permCAF and restCAF genes were distinctively expressed by different clusters of CAF 
subpopulations, illustrating the high CAF cell-subpopulation specificity of the genes (Fig. 2c). As 
expected, DeCAF and SCISSORS genes showed very limited overlap with the CAF marker 
genes identified in other scRNAseq-based studies16–18,20–25 (Supplementary Fig. 3).  
To further validate the DeCAF genes, we evaluated an independent scRNAseq dataset with six 
primary PDAC samples (UNC-sc, Supplementary Table 6). Analyzing the UNC-sc data by 
SCISSORS, we identified fibroblast cells, along with other known cell types in PDAC samples, 
including epithelial cells, endothelial cells, as well as different types of immune cells (Fig. 2d). 
Here, we again found that the DeCAF genes are more uniquely expressed within fibroblast 
cells, compared to Elyada genes (Fig. 2e). As part of SCISSORS, fibroblast cells are then 
reclustered, where we find that permCAF and restCAF genes are distinct to different fibroblast 
subclusters (Fig. 2f,g). Therefore, we show that at the single-cell level, the DeCAF genes are 
unique and specific markers for human PDAC CAF cell subpopulations.  

Benchmarking prognostic impact of DeCAF with existing subtypes 
To benchmark the prognostic impact of DeCAF against other comparable methods, we 
performed a meta-analysis of the pooled datasets with OS data available (Supplementary Table 
4). We found that the patients with permCAF subtype tumors (mOS 17.70 mos) have 
significantly shorter OS than patients with restCAF subtype tumors (mOS 29.04 mos) (Fig. 2h, p 
< 0.0001, stratified HR = 1.634, [95% CI 1.375-1.943]). Next, we used published CAF subtyping 
gene signatures from Elyada et al.18, Moffitt et al.16, and Maurer et al.17 to derive subtype calls in 
each of the 11 datasets for comparison (Supplementary Table 3). In contrast to DeCAF, we 
found that the Elyada myCAF and iCAF gene sets were not prognostic (Fig. 2i, mOS: 21.32 vs 
25.20 mos, p = 0.339, HR = 1.203 [95% CI 1.532-0.945]). The Moffitt stroma schema 
demonstrated shorter survival for patients with tumors with activated stroma relative to normal 
stroma but did not reach significance in our pooled datasets (Fig. 2j, mOS: 21.45 vs 30.0 mos, p 
= 0.082, HR = 1.279 [95% CI 0.991-1.651]). Similar to SCISSORS (Fig. 2k), we found that 
Maurer ECM-rich and Immune-rich bulk RNAseq gene signatures are associated with 
differences in survival (Fig. 2l, mOS: 20.53 vs 30.03 mos, p = 0.005, HR = 1.33 [95% CI 1.047-
1.69]). However, DeCAF subtypes showed the largest and most significant difference in 
outcome (Fig. 2h). 

DeCAF and tumor-intrinsic subtypes are independently prognostic 

It is well validated that PDAC patients with basal-like and classical tumors have significantly 
different OS16,28,32,33. We hypothesize that CAF subtypes will also impact tumor behavior. First, 
we compared the association of DeCAF subtypes with basal-like and classical tumor-intrinsic 
subtypes as defined by PurIST28. We found that 64.5% (N=167) of basal-like tumors had a 
permCAF subtype, but only 35.5% of basal-like tumors had a restCAF subtype (N=92). No 
difference was seen in CAF subtypes within classical tumors: 49.7% permCAF (N=529) vs 
50.3% restCAF (N = 536), suggesting an affinity for basal-like tumors to be a permCAF subtype 
(p < 0.001, Fisher’s exact test, Fig. 3a,b). Basal-like tumors also have higher permCAF 
probability scores, suggesting an increase permissive CAF subtype (Fig. 3c). Patients with 
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PurIST basal-like and DeCAF permCAF subtype tumors had the shortest OS, while patients 
with PurIST classical and DeCAF restCAF subtype tumors had the longest OS (11.01 mos vs 
30.43 mos, p < 0.001, Fig. 3d).To determine the relationship between DeCAF and PDAC tumor 
subtypes16,28,32, we performed a multivariable stratified cox proportional hazard model for the 
pooled public datasets including DeCAF and PurIST subtypes as variables. We found that both 
PurIST tumor subtype and the DeCAF subtype were independently associated with survival (p < 
0.001 for both, stratified Cox proportional hazards model, Fig. 3e).  
Next, we applied DeCAF to another independent patient cohort of primary PDAC at UNC where 
clinical and pathology variables were available (UNC-bulk, N = 129, Supplementary Table 7) 
and find that DeCAF subtypes are again associated with OS (HR = 2.255, 95% CI 1.423-3.574, 
p < 0.001, log-rank test) (Fig. 3f). We saw similar additive effects of DeCAF and PurIST 
subtypes and their relationship to OS (p < 0.001, log-rank test, Fig. 3g). In an univariable 
analysis, we found that the restCAF subtype was associated with chronic pancreatitis on 
pathology (p=0.008, Fisher’s exact test), although chronic pancreatitis had no association with 
OS (p=0.3, Supplementary Table 8). In a multivariable analysis of patients who had complete 
(R0) resections, DeCAF and PurIST subtypes remained independently prognostic when 
including the variables stage, differentiation and lymphovascular invasion (LVI) (DeCAF p < 
0.001 and PurIST p = 0.005, Cox proportional hazards model, Fig. 3h). 

Pathology differences in DeCAF subtypes 
Differential pathology features of PDAC CAF subtypes have been described, where the stroma 
of a subgroup of patients were described as collagen-enriched23,24. To investigate the 
association of DeCAF subtypes with pathological features, hematoxylin and eosin stained slides 
(n = 106) were reviewed by a pathologist blinded to the subtype calls in the UNC-bulk dataset 
(Supplementary Table 7). Samples were annotated as either myxoid, fibrous or fibromyxoid with 
the fibromyxoid subtypes delineating a mixed appearance with the dominant histology noted34	
(Fig. 4a). We found that the restCAF subtype tumors were associated with a fibrous (51/74, 
68.9%) compared to a myxoid stroma histology (23/74, 31.1%) (p = 0.018, Fisher’s exact test). 
Samples with myxoid dominant histology showed significantly more permCAFness (i.e. higher 
permCAF probability) compared to fibrous histology samples (p = 0.007, Wilcoxon rank-sum 
test, Fig. 4b). The mixed histology type, fibromyxoid, showed intermediate permCAF probability, 
supporting that the DeCAF score is associated with a histologic continuum (p = 0.002, Kruskal-
Wallis test, Fig. 4c). Interestingly, stroma histology alone was prognostic, with myxoid histology 
associated with the shortest OS, fibromyxoid with intermediate OS, and fibrous the longest (p = 
0.0043, log-rank test, Fig. 4d,e). In the TCGA_PAAD dataset, as Grünwald et al. previously 
described subTME types based on pathology features, we sought to examine the relationship 
between DeCAF and the subTME types. We found that 89.6% (60/67) of permCAF subtype 
tumors had a reactive/intermediate subTME, compared to 10.4% (7/67) of them had a deserted 
subTME (Fig. 4f), while 43.5% (40/92) of restCAF subtype tumors had a reactive/intermediate 
subTME compared to 56.5% (52/92) that had a deserted subTME (Fig. 4f, p = 9.582e-10, 
Fisher’s exact test). In contrast to Grünwald et al. where patients with reactive or deserted 
subTME did not show prognostic differences23, we found that patients with fibrous stroma had 
longer mOS 20.6 mos compared to mOS 18.4 mos in patients with myxoid features (p = 0.004, 
Fig. 4d,e). However, the DeCAF subtypes show the largest and most significant prognostic 
separation (Fig. 2h, Fig. 3f). 

DeCAF subtypes in mesothelioma, cRCC and urothelial bladder carcinoma. 
Similarities in CAFs across cancer types have been reported35,36. To determine if DeCAF 
subtypes are seen other cancer types, we evaluated the TCGA Pan-Cancer datasets and found 
that DeCAF subtypes are similarly prognostic in malignant pleural mesothelioma (MESO, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.14.594197doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.14.594197
http://creativecommons.org/licenses/by-nc-nd/4.0/


HR=2.056, 95% CI 1.1, 3.84 , p = 0.021), cRCC (KIRC, HR=2.138, 95% CI 1.342, 3.407, p = 
0.0011) and urothelial bladder (BLCA, HR 1.6, 95% CI 1, 2.6, p = 0.043) carcinomas (Fig. 5a-c).  
Given the clinical similarities of fibrosis that characterizes both MESO37 and PDAC, we 
hypothesized that there may also be similar pathology findings that explain the relevance of 
DeCAF subtypes in MESO. We found that DeCAF subtypes were associated with histological 
type (p = 0.001) with 93% (53/57) of epithelioid type tumors having a restCAF subtype 
(Fig.5d,e). Pathologist review of the stroma showed similar findings as PDAC, where a myxoid 
stroma was associated with higher permCAF probability (i.e. permCAFness) compared to a 
fibrous histology (Wilcoxon, p = 0.001, Fig.5f). 
In bladder cancer where consensus subtypes have been described including a basal bladder 
subtype (Ba/Sq) with similar gene expression to basal-like PDAC, we found that similar to 
PDAC, the Ba/Sq bladder consensus subtype was enriched in the permCAF subtype, with 
52.0% (80/152, p = 1.22e-13, Fisher’s exact test, Fig.5g) of Ba/Sq subtype patients having a 
permCAF subtype and highest permCAF probability (Fig. 5h) in the TCGA BLCA dataset. In 
addition, we also see a relationship between Ba/Sq tumor subtype and DeCAF subtype (p = 
0.011, log-rank test, Fig. 5i). In a dataset of non-muscle invasive bladder cancer (NMIBC), 
UROMOL38, we find that patients with permCAF subtype tumors have a shorter progression free 
survival to developing MIBC (PFS, p=0.00082, log-rank test) (Fig. 5j). Using the BLCA 
consensus subtyping schema, 75% (3/4, p= 0.00166, Fisher’s exact test) of Ba/Sq tumors had a 
permCAF subtype and had the highest permCAF probability scores (Fig. 5k,l). Using standard 
clinical groupings of NMIBC, we found that permCAF prevalence and higher permCAF 
probability scores (i.e. permCAFness) was associated with higher grade (p = 8.7e-06, Kruskal-
Wallis test, Fig. 5m,n) and most enriched in Class 2a NMIBC [18% (25/142), p = 0.000301, 
Fisher’s exact test], the most aggressive class of NMIBC (Fig. 5o,p). 
Taken together, our results show that the presence of the permCAF subtype is associated with 
poor prognosis in multiple cancer types with similar histology and tumor subtype associations 
that we find in PDAC. 

Immune landscape of permCAF and restCAF subtype tumors  
We showed that DeCAF genes have minimal expression in immune cells in two scRNAseq 
datasets (Fig. 2b,e). However, we hypothesize that CAF subtypes may provide different TMEs 
that support different immune landscapes.  Therefore, we used CIBERSORT39 with LM22 as the 
reference to deconvolve the fractions of 22 types of immune cells in each of our 12 datasets 
(Fig. 6a, Supplementary Table 9). We found that the immune landscape was more 
immunosuppressive in permCAF, with an average enrichment of 1.3-fold in Tregs in 6 datasets, 
1.9-fold neutrophils in 5 datasets, 1.8-fold in M0 macrophages in 10 datasets, 1.1-fold in M2 
macrophages in 6 datasets (Fig. 6a). In contrast, restCAF subtype tumors had an average 
enrichment of 1.3-fold in M0 macrophages in 4 datasets, 1.5-fold in CD8+ T cells in 7 datasets, 
and 1.8-fold in naïve B cells in 6 datasets (Fig. 6a). In addition, restCAF subtype tumors showed 
significantly higher CD8/Treg ratios in 8 datasets (Fig. 6b), suggesting that patients with 
different DeCAF subtype tumors may show more favorable response to certain 
immunotherapies compared to  patients with permCAF subtype tumors40,41. 
To investigate if DeCAF subtypes are predictive of immunotherapy response in PDAC patients, 
we examined the Phase 1b trial of FOLFIRINOX in combination with PF-04136309, a CCR2 
inhibitor (FFX+PF) which has both pre- and post-treatment samples (Linehan dataset)27. Within 
each subtype, we found that increasing permCAF probability (i.e. increasing permCAFness) in 
the pre-treatment sample was correlated with a greater percent decrease in tumor size in 
patients with permCAF (rho = -0.581, p = 0.048, Spearman correlation, Fig. 6c) and restCAF 
(rho = -0.796, p = 0.002, Spearman correlation, Fig. 6d) subtype tumors. We hypothesized that 
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as CCR2 inhibition targets the recruitment of inflammatory monocytes, our findings may be 
explained by the enrichment of monocytes in the permCAF subtype samples (Fig. 6a). As this 
trial had pre- and post-treatment samples, we next looked at the change in neutrophil and M2 
macrophages after treatment. We found that decreases in the neutrophil fraction (rho = 0.487, p 
= 0.016, Spearman correlation) and increases in the M2 macrophage fraction (rho = -0.479, p = 
0.018, Spearman correlation) was correlated with tumor response (Fig. 6e,f). In the original trial, 
CD14+CCR2+ tumor associated macrophages were found to be significantly decreased in 
FFX+PF treated tumors of 6 patients, but association with response was not avaialble27.  
We next looked at the relationship between DeCAF subtypes and immune cell population 
changes in the FFX+PF trial. We found that the decrease in neutrophil and increase in M2 
macrophage fractions were specific to permCAF subtype tumors and not found in restCAF 
subtype tumors (Fig. 6g,h). There was overall correlation of DeCAF score between pre- and 
post-treatment samples (r = 0.772, p < 0.001, Pearson correlation, Fig. 6i), suggesting that the 
changes may be less in the CAF subtype, but rather the immune microenvironment associated 
with the DeCAF subtype. Our results suggest that DeCAF subtypes associate with specific 
immune microenvironments that may predict immunotherapy response. 

DeCAF subtypes and immunotherapy response in BLCA and cRCC 
Clinical trials of immunotherapy in PDAC are limited. As DeCAF subtypes were prognostic in 
BLCA and cRCC, we evaluated the IMvigor210 trial (NCT02108652) in BLCA42 and the 
IMmotion150 trial (NCT01984242) in cRCC43 where patients were treated with the anti-PD-L1 
antibody, atezolizumab. In the IMmotion150 trial of metastatic RCC patients, in the 
atezolizumab only arm, lower DeCAF score or permCAF probability (i.e. increased 
restCAFness) was numerically, but not significantly associated with having a complete (CR) or 
partial response (PR) (p = 0.077, t-test, Fig. 7a). In the IMvigor210 trial for metastatic urothelial 
cancers, we found that patients who had either a CR or PR had significantly lower permCAF 
probability (i.e. increased restCAFness) (p = 0.014, t-test, Fig. 7b). In addition, patients with 
permCAF subtype tumors had a mOS of 6.7 months compared to 9.9 months for patients with 
restCAF tumors (p = 0.043, HR 1.4 [95% CI 1.01, 1.95], Fig. 7c). Finally, similar to PDAC and 
the TCGA BLCA dataset, in IMvigor210, we found that Ba/Sq subtype tumors were most 
enriched in the permCAF subtype with 33% (36/109) of Ba/Sq subtype harboring a permCAF 
subtype (p = 3.81e-05, Fisher’s exact test, Fig. 7d). As expected, higher DeCAF probability was 
associated with a Ba/Sq tumor subtype as well (p = 5.5e-13, Kruskal-Wallis test, Fig. 7e). 
Therefore, cRCC and bladder cancer patients with restCAF subtype tumors may have an 
increased overall response rate (ORR) to immune checkpoint inhibition.   
 

DISCUSSION 
Several CAF classifications have been described, but their clinical relevance has been more 
challenging to translate. Here we leverage the wealth of sc and bulk transcriptomic studies in 
PDAC to identify the most clinically relevant and robust CAF subtypes. As clustering tends to 
introduce problems of instability during between-sample normalization when a new sample is 
added, it cannot be used to call patient subtypes in the clinical setting. For CAF subtype 
classification, we developed DeCAF, which uses nine pairs of TSP genes to call permCAF vs 
restCAF subtypes that is robust and replicable. This considerably increases the flexibility and 
practicality of integrating and studying CAF subtypes in clinical contexts.  
A key element of our method includes the utilization of CAF-intrinsic subpopulation marker 
genes identified using our novel method SCISSORS that precisely identifies CAF clusters and 
marker genes in scRNAseq data without contamination of other cell types16–18,20–26. We show in 
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an independent scRNAseq dataset (UNC-sc) of six PDAC samples that SCISSORS CAF 
marker genes more precisely discriminate between the respective CAF cell subpopulations 
without confounding expression in other cell types, compared to previously described CAF 
subpopulations gene sets16–18,20–26. The discriminatory ability of SCISSORS CAF marker genes 
was critical to successfully deriving and translating CAF-intrinsic subtypes to bulk RNAseq data. 
myCAFs were initially described and are thought to be more quiescent with iCAFs as 
inflammatory and tumor promoting19. However, our findings suggest that, in patients, the CAF 
subpopulations have opposite phenotypes compared to the majority of preclinical studies, with 
permCAF (myCAF) subtypes with worse prognosis compared to restCAF (iCAF) subtypes. This 
is in agreement with a recent study that found that myCAFs may be pro-metastatic44. Thus, we 
use the terms permissive and restraining. We find that the histologic features of the stroma in 
PDAC and mesothelioma have direct associations with the DeCAF subtypes with permCAF 
subtype tumors having myxoid stroma, and restCAF subtype tumors having fibrous stroma. The 
DeCAF score allows us to look at mixtures where fibromyxoid (mixed) stroma have intermediate 
DeCAF scores. Our findings of fibrous histology are consistent with the previously described 
“deserted subTME” by Grünwald et al. and a “collagen-rich stroma” or “C-stroma” by Ogawa et 
al. In contrast to prior studies, we do find that the myxoid and fibrous features found on histology 
also associate with outcome. 
Using CIBERSORT, we found the immune landscape of the restCAF subtype to have higher 
naïve B cell fractions. This is in agreement with previous findings by Grünwald et al., that the 
deserted subTME trended toward higher B cell marker (CD20) expression in their deep-
phenotyping platform for human PDAC tissues23. Our findings that permCAF subtype tumors 
have higher CD8+ T cell percentages is in agreement with prior findings that FAP-stroma is 
characterized by restricted CD8+ cell infiltrates24. The precision of perm-/rest-CAF subtypes in 
scRNAseq not confounded by immune cells suggests that the CAF subtypes may provide 
distinct TMEs for different immune cell infiltration. 
In agreement with prior studies of CAFs across cancers35,36, we found that DeCAF subtypes are 
prognostic in mesothelioma, cRCC and bladder carcinomas. In bladder cancer, where the 
PDAC basal-like gene signature can be used to accurately recall the Ba/Sq bladder consensus 
subtype16, both of which have an enrichment of cytokeratins, we find that the permCAF subtype 
is enriched in both basal bladder Ba/Sq and PDAC basal-like subtype tumors. Furthermore, 
both tumor and CAF subtype affect prognosis in an additive fashion in bladder cancer patients. 
Finally, our findings of differential immune microenvironments associated with the permCAF vs 
restCAF subtype has implications for immunotherapy response in cRCC, bladder and 
pancreatic cancers. These findings suggest that the biological and therapeutic implications of 
DeCAF may be extrapolated across these cancer types. 
In summary, we find that DeCAF subtypes are histologically distinct, prognostic and predictive 
of treatment response in multiple cancer types. In pancreatic, cRCC and bladder cancers, the 
immune microenvironment specific to the subtypes may help predict response to different 
immunotherapy approaches. Our findings that the biology of previously described iCAF and 
myCAF subgroups, where iCAFs were thought to be pro-tumorigenic, in patients, is completely 
reversed, suggests that the interest in targeting iCAF populations may not be as beneficial as 
originally thought18, and may explain some of the disappointing trials to date. We present a 
clinically tractable CAF subtype SSC, DeCAF, that determines permCAF and restCAF subtypes 
in patients that may be incorporated into clinical trials, provides a framework for the 
understanding of CAF subtypes for the development of effective CAF subtype specific 
therapies, and will facilitate the translation of preclinical studies to patients.  
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METHODS 
Marker gene identification in Elyada-sc 
SCISSORS includes a carefully designed function, which is a two-step method for the 
identification of highly cell subpopulation specific genes26. Briefly, SCISSORS first derives a 
candidate gene set by comparing the cell subpopulation of interest to the most related cell 
subpopulation; then the highly expressed genes from other unrelated cell types are removed 
from this candidate gene set. In this study using the Elyada-sc dataset, permCAF (myCAF) cells 
were compared to restCAF (iCAF) and apCAF cells, and the restCAF (iCAF) cells were 
compared permCAF (myCAF) and apCAF-like cells, to derive a candidate gene set for the cell 
subpopulation of permCAF (myCAF) and restCAF (iCAF) separately (Wilcoxon rank-sum test, 
p<0.05, log2 fold change > 0). Then, the permCAF (myCAF) and restCAF (iCAF) candidate 
gene sets were subjected to a filtering step, in which the highly expressed genes of the non-
CAF cells were removed. The highly expressed genes were defined as the top 10% expressed 
by averaging all the cells within each broad cell cluster. As a result, final gene sets were 
identified for permCAF (myCAF) and restCAF (iCAF) respectively (Supplementary Table S1).  

Tumor dissociation and library preparation for UNC-sc 
Six de-identified primary PDAC samples (UNC-sc, Supplementary Table S2) were collected 
from the IRB-approved University of North Carolina Lineberger Comprehensive Cancer Center 
Tissue Procurement Core Facility after IRB exemption in accordance with the U.S. Common 
Rule. Fresh tissue was dissociated into single cells using Miltenyi human dissociation kits 
(Miltenyi, 130-095-929) and red blood cells were removed using red blood cell lysis solution 
(Miltenyi, 130-094-183). Cell counts were performed using an automated cell counter and live 
cell counts were determined using trypan blue staining. Up to 10,000 cells were encapsulated 
into droplets for droplet-based 3’ end single-cell RNAseq using Chromium 3’ v3 reagents (10X 
Genomics). cDNA libraries were quantified using the Qubit dsDNA Assay Kit (Thermo, Q32851) 
and library quality was assessed with the 4150 Tapestation System (Agilent) and D5000 screen 
tapes (Agilent, 5067-5588). cDNA libraries were sequenced on a NextSeq500 (Illumina) using 
NextSeq 500/550 High Output Kit v2.5 (150 Cycles) (Illumina, 20024907) at 200M reads per 
sample. 

Sample collection and processing for UNC-bulk 
129 de-identified primary PDAC patient samples of which 117 have been previously reported 
(UNC-bulk, Supplementary Table S8) were collected from the IRB-approved University of North 
Carolina Lineberger Comprehensive Cancer Center Tissue Procurement Core Facility after IRB 
exemption in accordance with the U.S. Common Rule and were flash frozen in liquid nitrogen. 
FFPE samples were prepared, hematoxylin and eosin stained. RNA expression libraries were 
generated for flash frozen samples or FFPE samples, with TruSeq Stranded mRNA kits or with 
KAPA RNA HyperPrep Kit with RiboErase (HMR) according to the manufacturer’s instructions. 
Sequencing was performed on the NextSeq500 and NovaSeq6000 Sequencing Systems 
(Illumina).  

UNC-sc processing 
Cell Ranger 6.1.2 was used. BCL files was converted into fastq files using cellranger mkfastq 
based on bcl2fastq2 (v2.20.0). Fastq files for each sample was then processed by cellranger 
count to derive unique molecular identifier (UMI) count for each gene, using the human GRCh38 
genome. Samples were then aggregated by cellranger aggr. 
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Aggregated data (filtered_feature_bc_matrix) were analyzed by SCISSORS, which is wrapped 
around Seurat (v4), for cell clustering. The Quality control steps include 1) the inclusion of 
genes expressed in more than 2 cells, 2) the inclusion of cells that have the number of genes 
captured within 200~2500 (200 < nFeatures < 2500), and 3) the inclusion of cells with 
mitochondrial reads accounting for less than 5% (percent_MT < 5). The filtered data underwent 
processing through the PrepareData() function in SCISSORS to obtain the initial clusters with 
the following parameter settings: n.HVG = 3000, regress.mt = TRUE, n.PC = 20, random.seed = 
629, with other parameters using default values. The first-round clusters were annotated using 
SingleR. Clusters identified as "activated_stellate" were categorized as CAFs. A second-round 
clustering analysis was performed on the CAF related clusters (0,4,6) using the ReclusterCells 
function in SCISSORS, with the following parameter settings: merge.clusters = TRUE, use.sct = 
TRUE, n.HVG = 3000, regress.mt = TRUE, n.PC = 20, resolution.vals = 0.2, k.vals = 57, with 
other parameters using default values.  

UNC-bulk processing 
Raw base call (BCL) files were converted to fastq files using bcl2fastq2 (v2.19.0). RefSeq 
assembly (GCF_000001405.40) of the human reference genome GRCh38.p14 was used as the 
reference for gene quantification by Salmon 1.9.045 ("-- gcBias -- seqBias"). The total expected 
read counts per gene were normalized to transcripts per million (TPM). 

Public bulk datasets and sample inclusion 
Eleven bulk transcriptomics datasets were obtained from public sources (Supplementary Table 
S4). Gene expression quantifications was used ‘as-is’ with respect to the original publications 
when possible, i.e. data were not re-aligned or re-quantified; gene-level expression estimates 
were used either in the unit of TPM (transcripts per million) or FPKM (fragments per kilobase 
per million reads), depending on the study. When preprocessed gene expression data were not 
available, for training datasets, the most similar methods were used to process the data; for 
validation and independent datasets, Salmon 1.9.045 using RefSeq assembly 
(GCF_000001405.40) of the human reference genome GRCh38.p14 was used to derive gene 
expression levels (Supplementary Table S4). Samples from the public datasets were filtered to 
include only non-metastatic primary PDAC samples (Supplementary Table S5). For the 
Grünwald and Olive datasets, which are microdissected, only stroma samples were included.  
Bladder cancer subtyping calls were made on log2 transformed upper-quartile normalized 
expression data using the BLCA subtyping and consensusMIBC R package46. Within the 
UROMOL and IMvigor210 datasets, all samples with gene expression data were used in the 
analysis. For the TCGA_BLCA cohort, only tumors from patients with stage M0 disease were 
included in the analysis.  

Consensus clustering (CC) 
SCISSORS permCAF and restCAF genes were derived as described above and ranked by fold 
enrichment to generate the top25 genes for each subtype. Gene sets of the Moffitt stroma, 
Elyada and Maurer schemas were collected from each study respectively. For each of the 
subtyping schemas in each of the 11 public transcriptomics datasets, unsupervised CC was 
applied using the ConsensusClusterPlus (version 1.56.0) package in R for genes (rows) and 
samples (columns) separately. Data matrices were subjected to log2 transformation and 
column-wise quantile normalization. Note that the data were not normalized row-wise, as that 
may force the clusters to have similar sizes, instead of deriving the reflective number of patients 
in each cluster. For clustering of samples, a distance matrix was derived based on Pearson 
correlation. Then CC was applied to this distance matrix to derive two sample clusters (K = 2), 
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which consisted of 1,000 iterations of k-means clustering using Euclidean distance, with 80% 
items hold-out at each iteration. The number of K was determined empirically by visual 
inspection to derive clusters of samples that were most representative of the CAF subtypes. For 
clustering of genes, a distance matrix was derived based on Pearson correlation. Then CC was 
applied to this distance matrix derive two gene clusters (K = 2), which consisted of 200 
iterations of k-means clustering using Euclidean distance, with 80% items hold-out at each 
iteration.  

Generation of CC labels for classifier training and validation 
To derive confident labels for classifier training and validation, the CC method mentioned above 
were adapted. Specifically, the CC starts at sample-wise K=2, with Ks increasing step by step 
for inspection of clustering performance and sample-gene associations. The resultant clusters 
were then labeled as “permCAF”, “Mixed permCAF”, “Mixed”, “Mixed restCAF”, “restCAF” and 
“Absent” based on gene expressions (Supplementary Figure S3). A dataset does not 
necessarily have every one of the 6 cluster categories. “Mixed permCAF” was then merged with 
”permCAF”, and “Mixed restCAF” merged with “restCAF”. These merged “permCAF” and 
“restCAF” labels were used for training and validation of DeCAF.  

DeCAF classifier training 
Candidate gene ranking 
SCISSORS CAF genes were ranked based on the consistency of their differential expression 
(DE) statistics between CC-based subtypes in each individual training dataset (Supplementary 
Table S5). A cross-study DE consistency score was obtained by summing the -log10 p-values 
(Wilcoxon rank-sum test) and ranking them from high to low. The top 25% of this set (consistent 
DE genes) were considered for model training and the genes where the direction of up-
regulation or down-regulation of them were not consistent in the subtypes were removed. The 
remaining genes then formed our final candidate gene set for downstream steps. 
Rationale of using kTSP for binary classification 
Let us define a gene pair (𝑔!"#, 𝑔!"$), where 𝑔!"# is the expression of gene 𝑠	for subject 𝑖	in study 
𝑑	, and 𝑔!"$ is the expression of gene 𝑡	for the same subject and study. A TSP is an indicator 
variable based on this gene pair, 𝐼(𝑔!"# > 𝑔!"$) −

%
&
 , where the value represents which gene in 

the pair has higher expression in subject 𝑖	from study 𝑑	, ( %
&
 if 𝑔!"# > 𝑔!"$, and − %

&
 if 𝑔!"# < 𝑔!"$ 

otherwise). The TSP method was originally proposed in the context of binary classification 
[cite]In traditional applications, a single TSP (k = 1) is selected out of the set of all possible gene 
pairs, in which case,  𝐼(𝑔!"# > 𝑔!"$) −

%
&
> 0 implies subtype A with high probability, otherwise 

subtype B is implied [cite]. We view such binary variables as “biological switches" indicating how 
pairs of genes are expressed relative to clinical outcome.  
In the kTSP setting, class prediction reduces to verifying whether the sum across k selected 
TSPs is greater than 0: 

.𝐼/𝑔!"#,( > 𝑔!"$,(0
)

(*%

−
1
2
> 0 

This reduces to a majority vote across the selected k TSPs, where the contribution of each of 
the k TSPs are equally weighted to select subtype A if the above sum is greater than 0, and 
subtype B otherwise. However, some TSPs may be more informative than others, so we utilized 
penalized logistic regression [cite] to jointly estimate the effect of each of the k selected TSPs in 
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predicting binary subtype, and to further remove TSPs with weak or redundant effects. 
Predicted probabilities of permCAF subtype membership (DeCAF score) may then be obtained 
from the fitted logistic regression model on our training samples, where values greater than 0.5 
indicate predicted membership to the permCAF subtype and restCAF otherwise. 
Horizontal data integration and kTSP selection via switchBox 
To apply the top scoring pairs transformation, we utilize the switchBox R package (version 
1.28.0) [cite] to enumerate all possible gene pairs based on our final candidate gene list and 
training samples (function SWAP.KTSP.Train, with optimal parameters featureNo=100, krange 
= 50, FilterFunc = NULL). Given the large number of potential gene pairs based on this list, in 
addition to the strong correlation between gene pairs sharing the same genes, the switchBox 
package utilizes a greedy algorithm to select from this list a subset of gene pairs that are helpful 
for prediction, given the set of training labels. We merge data from each training dataset without 
normalization prior to applying switchBox, as the method only looks at the relative gene 
expression ranking within each sample from each study. The method then selects a subset of k 
TSPs, where k is determined through a greedy optimization procedure. 
Model training based on selected kTSPs 
To remove redundant TSPs and to jointly estimate their contribution in predicting subtype in our 
training samples, we utilize the ncvreg R package (version 3.13.0) to fit a penalized logistic 
regression model based upon the selected TSPs from switchBox. Our design matrix is an N x 
(k+1) matrix, where the first column pertains to the intercept and the remaining k columns 
pertains to the k selected TSPs from switchBox. Here N is the total number of training samples 
(Supplementary Table S4). Each TSP in the design matrix is represented as a binary vector, 
taking on the value of 1 if gene A’s expression is greater than gene B’s expression. Our 
outcome variable here is binary subtype (1 = permCAF, 0 otherwise). We utilize optional 
parameters alpha = 0.05 and nfolds = N. We allow for correlation between TSPs by setting the 
ncvreg alpha parameter to 0.05 in order to shrink the coefficients of highly correlated TSPs and 
also remove correlated uninformative TSPs from the model. We set nfolds = N to apply leave 
one out cross validation in order to choose the optimal MCP penalty tuning parameter for 
variable selection, where the optimal tuning parameter is the one that minimizes the cross-
validation error of the fitted model. Our final model then reports the set of coefficients estimated 
for each of the kTSPs, where each coefficient may be interpreted as the change in log odds of a 
patient being part of the permCAF subtype when the lth TSP is equal to 1, given the others in 
the model. TSPs with coefficient of 0 are those that have been removed from the model for 
either weak effect or redundancy with other TSPs. 

Final kTSP model 
As illustrated in Figure 3A, 9 pairs of kTSP genes were evaluated for their relative ranking in a 
new patient. A value of 1 is assigned if the permCAF gene in a TSP has greater expression than 
the restCAF gene in that patient (and 0 assigned other wise) creating 𝑋",+,-, a 1 x (k +1) TSP 
predictor vector. These values are then multiplied by the corresponding set of estimated TSP 
model coefficients, 𝛽5 , obtained from the fitted penalized logistic regression model. The intercept 
term is included to correct for estimated baseline effects. These values are summed to get the 
patient “DeCAF Score” 𝑋",+,-	𝛽5 . This score is then converted to a predicted probability of 
belonging to the permCAF subtype by computing its inverse logit: 

𝑝̂",+,- = exp/𝑋",+,-𝛽50 /(1 + exp/𝑋",+,-𝛽50) 

Values greater than or equal to 0.5 indicated predicted permCAF subtype membership, and 
those less than 0.5 are predicted to be of the restCAF subtype. This is equivalent to determining 
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whether 𝑋",+,-𝛽5 > 0	(permCAF subtype) vs 𝑋",+,-𝛽5 < 0 (restCAF subtype). Thus, the DeCAF 
score, 𝑋",+,-𝛽5, may also be utilized as a continuous score for classification. Therefore, 
prediction in new samples, such as from our validation datasets, reduces to simply checking the 
relative expression of each gene within the set of TSPs.  
For all discussions regarding classifier performance, we obtain the predicted subtypes in the 
manner described above. The level of confidence in the prediction can be determined based 
upon the distance of 𝑋",+,-𝛽5  from 0.5, where values closer to 0.5 indicate lower confidence in 
the predicted subtype and higher confidence otherwise.  

Validation of DeCAF  
The performance of the final DeCAF model in the training set was measured using leave-one-
out cross validation. This was implemented using the cv.ncvreg function from the ncvreg 
(version 3.13.0). Since the outcome is binary, the cross-validation error is measured via the 
leave-one-out cross-validated deviance of the logistic regression model.  
Next, the performance of the DeCAF model was evaluated in the validation sets. The validation 
set is composed of seven separate studies. To account for the variability between studies, a 
fully non-parametric ROC curve was used for this meta-analysis. The ROC curve was 
constructed and the inter-study variability was measured using the study random-effects 
model47 and implemented in the metaROC function from the nsROC R package (version 1.1). 
All validation metrics compared the DeCAF classifier to the combined "Mixed permCAF” and 
“permCAF” calls and combined “Mixed restCAF” and “restCAF” clustering calls. 

Survival analysis 
For pooled survival analysis, patients with subtype calls, OS time and event were involved. For 
the Linehan dataset, where patients received treatments, only pre-treatment samples were 
included when both pre-treatment and post-treatment samples were available. For samples that 
are duplicated in the PACA_AU_seq and PACA_AU_array datasets, only the sample from 
PACA_AU_seq was used for survival analysis.  
Overall survival estimates were calculated using the Kaplan-Meier method. Association between 
overall survival and individual covariates such as subtype were evaluated via the cox 
proportional hazards models using the coxph function from the ‘survival’ R package (version 
3.2-13), where a given subtyping schema was considered as a multi-level categorical predictor. 
The log-rank test was used to evaluate overall association of a subtyping schema with overall 
survival and derive the p-values. In the pooled analyses, a stratified cox proportional hazards 
model was utilized, where dataset of origin was used as a stratification factor to account for 
variation in baseline hazard across studies. 

CIBERSORT 
The analytical tool CIBERSORT48 was employed to estimate the percentage of cell types for 
each sample of 12 bulk transcriptomics data. This estimation was performed using the LM22 
signature matrix, which encompasses 547 genes that distinguish 22 human hematopoietic cell 
phenotypes. With the percentage results obtained from CIBERSORT, we compared the results 
across two types of DeCAF calls for the samples in each dataset. The Wilcoxon rank-sum test 
was employed to assess whether there were significant differences. The log2 fold change of the 
median was utilized to quantify the magnitude of the observed differences. 
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Data Availability 
Bulk public datasets downloaded and involved in this study were summarized in Supplementary 
Table S4. UNC-sc and UNC-bulk data will be uploaded to public repository upon acceptance of 
the manuscript and are currently available upon request by the reviewers. 

Code Availability 
The DeCAF classifier was deposited as a GitHub repository at: https://github.com/jjyeh-
unc/decaf. All scripts involved in generating results and figures are available upon request. 
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Fig. 3: DeCAF independently predicting OS. a, Intersection of DeCAF with PurIST subtypes 
(p < 0.001, Fisher’s exact test). b, Proportion of patients in PurIST basal-like and classical tumor 
subtypes with permCAF or restCAF subtypes (p<0.001, Fisher’s exact test). c, Comparison of 
permCAF probability with PurIST tumor subtypes (p < 0.001, Wilcoxon rank-sum test). d, patients 
with combination of DeCAF and PurIST tumor subtypes in pooled public datasets (p < 0.001, 
log-rank test, stratified datasets). e, Multivariable Cox proportional hazards model in the pooled 
public datasets stratified by datasets. f, Kaplan-Meier plot showing OS of patients with permCAF 
vs restCAF subtypes (p = 0.00038, log-rank test) and g, of patients in the context of combined 
DeCAF and PurIST tumor subtypes in the UNC-bulk dataset (p < 0.0001, log-rank test). h, 
Multivariable Cox proportional hazards model in the UNC-bulk dataset. 
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Fig. 4: Pathology differences in DeCAF subtypes. a, Representative hematoxylin and eosin 
stained slides showing a permCAF subtype sample with myxoid stroma and a restCAF subtype 
sample with fibrous stroma. b, c, Boxplots comparing DeCAF probability in samples described 
as having a predominant myxoid vs fibrous stroma (p = 0.007, Wilcoxon rank-sum test); or 
having a myxoid, fibromyxoid and fibrous stroma (p = 0.002, Kruskal-Wallis test). d, e, 
Kaplan-Meier plot showing OS of patients with the different stroma histologies in the UNC-bulk 
dataset using a predominant classification of myxoid and fibrous stroma (p = 0.004, log-rank test), 
or including a fibromyxoid classification (p < 0.001, log-rank test). f, Proportion of patients in 
Grünwald reactive/intermediate and deserted tumors in TCGA_PAAD with permCAF and 
restCAF subtypes (p < 0.001, Fisher’s exact test).  
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Fig 6: Immune landscape of permCAF and restCAF subtype PDAC tumors. a, Comparison of 
immune cell fractions deconvolved using CIBERSORT (reference: LM22) across 12 datasets. The 
color of the dots represents the log2 fold change (FC) of the fractions between permCAF and restCAF 
subtype. The size of the dots represents the p-value tested by Wilcoxon rank-sum test. b, Violin plots 
comparing the log2 FC of the ratio between the CD8 T cell and Treg fractions in permCAF vs restCAF 
subtype tumors. Wilcoxon rank-sum test. Correlation of DeCAF permCAF probability in pre-treatment 
samples with the tumor size change in c, permCAF subtype and d, restCAF subtype. Spearman 
correlation. e, f, Correlation of the change in neutrophil fraction and M2 macrophages fraction between 
pre- and post-treatment tumor samples with the percent change in tumor size. Spearman correlation. 
g, h, Boxplot showing the neutrophil and M2 macrophage fractions in pre- and post-treatment samples 
of permCAF and restCAF subtype tumors, Wilcoxon rank-sum test. i, Correlation of permCAF 
probability between pre- and post-treatment samples (Pearson correlation).
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Fig. 7: DeCAF subtypes and immunotherapy 
response in BLCA and RCC. a, b, Boxplot 
comparing permCAF probability in the patients 
stratified by ORR in the IMmotion150 (a) and 
IMvigor 210 trials (b), t-test (CR: complete response, 
PR: partial response, SD: stable disease, PD: 
progressive disease). c, Kaplan-Meier plot showing 
OS of patients by DeCAF subtypes in the IMvigor210 
trial. d, Proportion of patients with permCAF and 
restCAF subtype tumors within each bladder 
consensus subtype in IMvigor210, Fisher’s exact 
test (p <0.001). e, Boxplots comparing permCAF 
probability in patients with different bladder 
consensus subtype tumors in IMvigor210, Fisher’s 
exact test (p <0.001, Kruskal-Wallis test).
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