

1 ADAPT: Analysis of Microbiome Differential Abundance by 2 Pooling Tobit Models

3 Mukai Wang^{1*}, Simon Fontaine², Hui Jiang¹, Gen Li^{1*}

4 ¹Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA.

5 ²Department of Statistics, University of Michigan, Ann Arbor, 48109, MI, USA.

6 *Corresponding author(s). E-mail(s): wangmk@umich.edu; ligen@umich.edu;

7 **Abstract**

8 Microbiome differential abundance analysis remains a challenging problem despite multiple methods pro-
9 posed in the literature. The excessive zeros and compositionality of metagenomics data are two main
10 challenges for differential abundance analysis. We propose a novel method called “analysis of differential
11 abundance by pooling Tobit models” (ADAPT) to overcome these two challenges. ADAPT uniquely treats
12 zero counts as left-censored observations to facilitate computation and enhance interpretation. ADAPT
13 also encompasses a theoretically justified way of selecting non-differentially abundant microbiome taxa as
14 a reference for hypothesis testing. We generate synthetic data using independent simulation frameworks
15 to show that ADAPT has more consistent false discovery rate control and higher statistical power than
16 competitors. We use ADAPT to analyze 16S rRNA sequencing of saliva samples and shotgun metage-
17 nomics sequencing of plaque samples collected from infants in the COHRA2 study. The results provide
18 novel insights into the association between the oral microbiome and early childhood dental caries.

19 **1 Introduction**

20 The microbiome plays an essential role in human health and disease. Extensive research has been conducted
21 into the human microbiome using high-throughput metagenomic sequencing technologies [1–3]. The metage-
22 nomics data are count tables that represent each sample’s abundance profiles of microbiome taxa. Differential
23 abundance analysis (DAA) identifies taxa whose abundances differ between conditions. This is one of the
24 fundamental analyses of microbiome data [4]. Many methods have been proposed to tackle statistical chal-
25 lenges in identifying differentially abundant (DA) taxa. However, there is not a universally preferred solution
26 yet [5, 6].

27 Metagenomics count data have excessive zeros [7, 8]. As illustrated in the toy example in Figure 1a,
28 zeros might reflect the actual absence of taxa in one condition (biological zeros) or indicate rare taxa that
29 the sequencing instrument can not detect (sampling zeros). Some DAA methods impute the zeros with a
30 small positive constant [9–13]. The imputations pave the way for applying standard statistical models to log
31 counts. However, these imputations assume that all zeros are sampling zeros and ignore that library sizes
32 vary among samples, which may lead to inflated false discovery rates [5, 6]. Other methods fit statistical
33 distributions to the counts or count proportions, then draw from the fitted distributions to retrieve smoothed
34 counts and count proportions for downstream analysis [6, 14, 15]. These methods have better control of false
35 discovery rates [6], but their distribution choices lack justification. A third group of methods adopt zero-
36 inflated distributions [16, 17]. Zero-inflated distributions agree with the sparsity patterns in metagenomics
37 data. However, fitting a zero-inflated distribution involves estimating both the probability of true zeros and

38 the distribution parameters for nonzero values. Combining two hypothesis tests for differential abundance
39 analysis reduces power and inflates false discovery rates.

40 Metagenomics data are also compositional [18]. As illustrated in Figure 1a, the metagenomics sequencing
41 read counts are not directly comparable between samples because of different sequencing depths. The counts
42 can be interpretable after they are scaled by the library sizes and transformed into relative abundances.
43 However, taxa may have different relative abundances between conditions while their absolute abundances
44 remain stable. The key to DAA is to find an appropriate scaling factor to bridge the gap between relative
45 and absolute abundances. Some methods normalize the counts with centered log-ratio (CLR) transformation
46 [14]. The CLR transformation uses the geometric mean of all taxa counts as the scaling factor. The geometric
47 mean calculation involves DA taxa, which could yield false positives. Other methods derive bias correction
48 factors and have them multiplied with relative abundances or added to CLR transformed counts [10–12, 16].
49 The estimation procedures of these bias correction factors are derived based on distribution assumptions
50 of absolute abundance fold changes among all the taxa. This strategy is effective when the distribution
51 assumptions are close to the truth. Otherwise, it will lead to high false discovery rates. A third group of
52 methods normalize counts with one or multiple reference taxa [6, 15, 17]. The reference taxa are assumed to
53 be not differentially abundant. This idea is simple and effective [19]. However, existing reference taxa selection
54 procedures rely on calculating log count ratios between taxa pairs, which is computationally expensive and
55 inaccurate given the excessive zero values.

56 We have developed a new DAA method called “Analysis of Microbiome Differential Abundance by Pooling
57 Tobit Models” (ADAPT). ADAPT has two innovations. First, we treat the zero counts as left-censored at the
58 detection limit of the sequencing instruments. A censored observation unifies different zero mechanisms and
59 accurately reflects the information contained in the observation. Second, we introduce an innovative way of
60 finding non-differentially abundant (non-DA) reference taxa and using reference taxa to identify differentially
61 abundant ones. Under the common assumption that DA taxa are the minority [6], we provide solid theoretical
62 justification that selecting reference taxa is feasible based on all taxa’s relative abundances. We implement
63 these two ideas by incorporating the Tobit model [20] from econometrics and survival analysis. We generate
64 synthetic microbiome count data from independent simulation frameworks and show that ADAPT has better
65 control of false discovery rates and higher power than competitor methods. We also demonstrate our method
66 on the saliva and plaque samples of infants in the COHRA2 [21] study to reveal differentially abundant taxa
67 between kids who developed early childhood dental caries and those who did not.

68 2 Results

69 2.1 ADAPT Workflow

70 We illustrate the workflow of ADAPT using a toy example (Figure 1). There are seven taxa, and three of
71 them are differentially abundant between two ecosystems. We aim to identify the three DA taxa based on the
72 observed counts in the two metagenomics samples. We denote the counts of undetected taxa 6 and 7 in sample
73 one as left-censored at one (the detection limit, which is assumed to be known). Therefore, their relative
74 abundances are left-censored at 1/21. Similarly, we denote the count of taxon 4 in sample two as left-censored
75 at one and its relative abundance to be left-censored at 1/35. We calculate the relative abundance fold change
76 between two samples for all the taxa. According to the assumption that a minority of taxa are differentially
77 abundant, we can be confident that taxa with median relative abundance fold changes are not differentially
78 abundant (see [Methods](#) and Section S1 of Supplementary Materials for theoretical justifications). We choose
79 these taxa as reference taxa. The reference taxa are taxon 2, 3, and 5 in this example. We normalize the
80 individual taxa counts with the sum of reference taxa. By comparing the normalized counts between the
81 two samples, we can correctly identify taxon 1, 4, and 7 as differentially abundant without including false
82 positives.

83 When analyzing real-life microbiome data with more samples and taxa, we introduce Tobit models for
84 modeling potentially left-censored relative abundances and normalized counts. We pool the effect size esti-
85 mates and the hypothesis test p -values of Tobit models to find reference taxa and identify DA taxa. The
86 detailed procedures of ADAPT are described in [Methods](#).

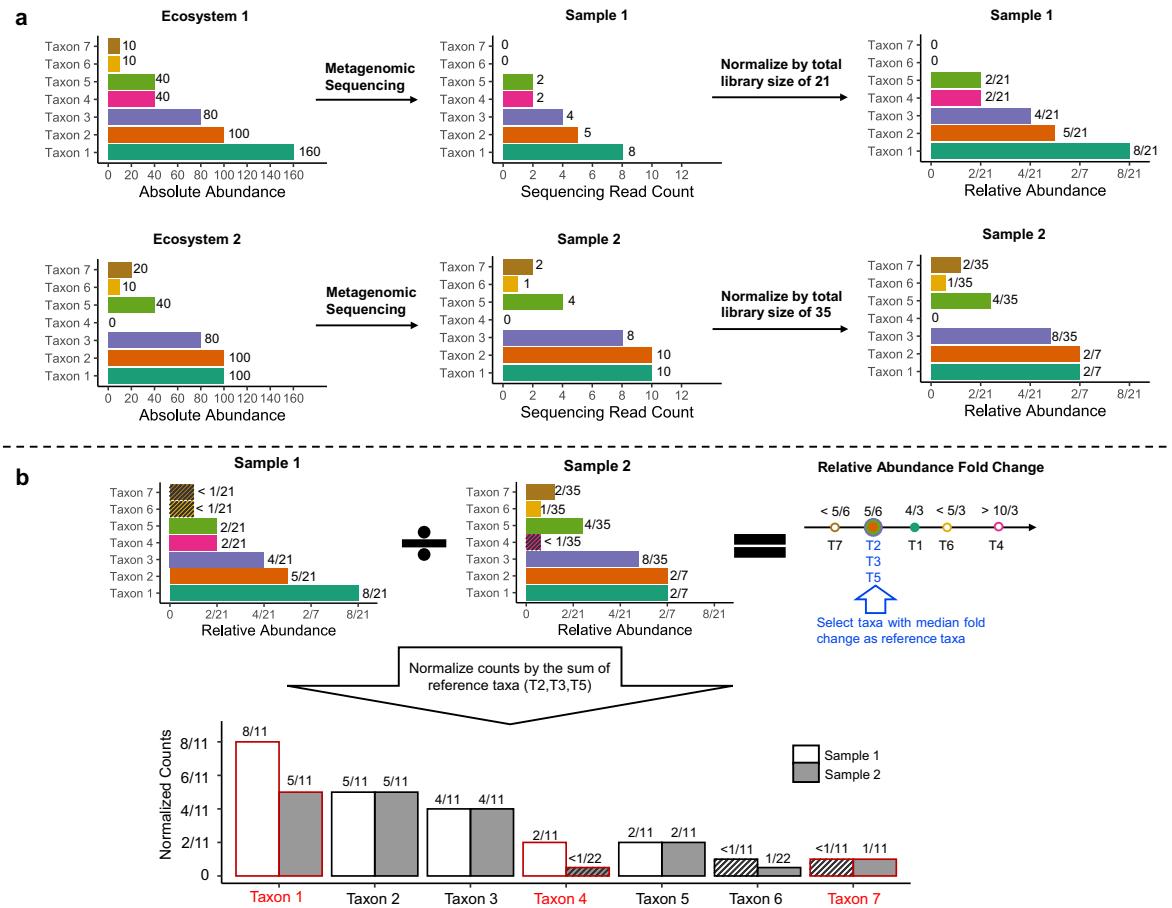


Fig. 1 Illustration of ADAPT with a toy example. (a) Three microbiome taxa (taxon 1, taxon 4, and taxon 7) are differentially abundant between two ecosystems. Neither the observed counts nor the relative abundances can be directly compared for differential abundance analysis. **(b)** ADAPT treats zero counts as left-censored at the detection limit (one in this case). ADAPT first calculates the fold change of relative abundances. It then selects a subset of taxa (taxon 2, 3, and 5) whose fold changes equal the median as reference taxa. After scaling the counts by the sum of three reference taxa, ADAPT can recover the DA taxa without false positives by comparing the normalized counts.

87 2.2 Performance Evaluation with Simulation Studies

88 We evaluate the false positive rate control, false discovery rate control, and statistical power of ADAPT with
 89 synthetic data. We generate synthetic data using the simulation framework SparseDOSSA [22]. SparseDOSSA
 90 framework draws absolute abundances of taxa from zero-inflated log-normal distributions and draws library
 91 sizes of all samples from log-normal distributions. The metagenomics sequencing counts are drawn from
 92 multinomial distributions based on the simulated library sizes and absolute abundances. The parameters
 93 for the simulations are estimated from 16S rRNA sequencing of stool samples in the Human Microbiome
 94 Project [23]. We prepare accompanying metadata with a binary covariate and a continuous covariate. The
 95 binary covariate represents two contrasting conditions. The zero inflation probabilities and the means of log-
 96 normal distribution correlate with this binary covariate for DA taxa. The continuous covariate is a potentially
 97 confounding variable. It may be correlated with the metadata's binary variable of interest and some taxa's
 98 absolute abundances. The details of the simulation setup are described in [Methods](#).

99 We compare the performance of ADAPT with eight other DAA methods. The competitors are ALDEx2
 100 [14], MaAsLin2 [13], metagenomeSeq [16], ANCOM [9], ZicoSeq [6], DACOMP [15], ANCOMBC [10] and
 101 LinDA [12]. These competitors represent a variety of solutions to the excessive zeros and compositionality
 102 of metagenomics data (Supplementary Table S1). The proportion of DA taxa, sample sizes, fold changes
 103 of absolute abundances, library sizes, and confounding covariates could impact the performance of DAA
 104 methods. Therefore, we prepare various scenarios to study their influence. When investigating the influence

105 of one factor, all other factors are fixed. We prepare 500 replicates for each simulation setting and report the
106 average of performance metrics.

107 We first evaluate the false positive rates (type I errors) of all the DAA methods when there are no
108 differentially abundant taxa between the two conditions (Figure 2a). Because ANCOM does not report raw
109 p-values for DAA, it is excluded from this comparison. When the average library sizes are the same between
110 the two conditions, all the DAA methods can control the FPRs at or below the nominal level of 0.05.
111 When the library sizes are unbalanced, the proportion of sampling zeros and biological zeros differ between
112 conditions. Competitors such as ANCOMBC and LinDA, which replace all the zeros with constant pseudo
113 counts, have the most inflated FPRs. The zero-inflated model by metagenomeSeq also struggles to decipher
114 the zero mechanisms that are confounded by library sizes. DAA methods detect more DA taxa when the
115 sample sizes are larger, which leads to more severely inflated FPRs for some of the competitor methods.
116 ADAPT can maintain FPRs around the nominal level regardless of the unbalanced average library sizes
117 between conditions. This experiment shows that left censoring by ADAPT is more robust than ad hoc zero
118 replacement strategies at handling excessive zeros in metagenomics data.

119 We then evaluate the false discovery rate control and power of all DAA methods when we experiment
120 with different proportions of DA taxa (Figure 2b). In simulation settings with balanced changes, most DAA
121 methods can control FDR regardless of the proportion of DA taxa. The power of most DAA methods except
122 for ANCOM increases as the proportion of DA taxa increases. Many competitor DAA methods cannot control
123 FDRs in simulation settings with unbalanced changes, especially when DA taxa proportions are high. This
124 is because many normalization strategies by competitor methods assume that the number of taxa whose
125 absolute abundances are enriched is similar to those whose absolute abundances are depleted between two
126 conditions. This assumption is violated when the changes of all DA taxa are in the same direction. ADAPT
127 does not make assumptions about the distributions of absolute abundance fold changes and consistently
128 selects non-DA taxa as reference taxa. The robust selection scheme of reference taxa guarantees false discovery
rate control. ADAPT also has the highest average detection power.

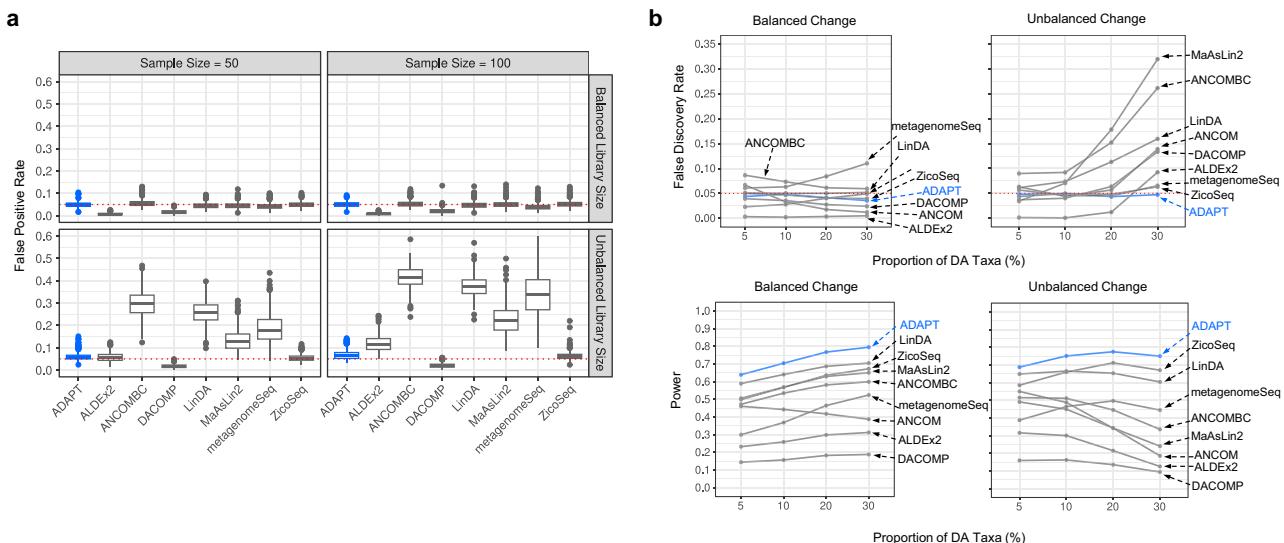


Fig. 2 Simulation studies for comparing ADAPT with eight other differential abundance analysis methods. We simulate synthetic metagenomics sequencing count data under two contrasting conditions using the SparseDOSSA framework. The number of samples is the same between the two conditions. We generate 500 replicates for each simulation setting and report the mean of performance metrics. **(a)** False positive rates (type I errors) of all methods except for ANCOM under simulation settings with no DA taxa. The total number of taxa is 500. The total sample size is 50 or 100. The average library size is the same (balanced) for two conditions at 10^4 or different (unbalanced) between two conditions (10^4 for one condition and 10^5 for the other). **(b)** False discovery rates and power under simulation settings with different proportions of DA taxa. The sample size is 100. The total number of taxa is 500. The proportion of DA taxa is 5%, 10%, 20%, or 30%. The average library size is 2×10^4 for both conditions. The average absolute abundance fold change of DA taxa is 5. The directions of absolute abundance changes of DA taxa may be balanced or unbalanced.

130 Other factors affect the FDR control and power besides the proportion of DA taxa. The detection power
131 of all DAA methods decreases drastically as the sample sizes decrease (Supplementary Figure S1). Several
132 competitor methods, such as metagenomeSeq and ANCOMBC, have inflated FDRs when the sample size is
133 as small as 50. The detection power of all methods increases as the average absolute abundance fold changes
134 of DA taxa increase (Supplementary Figure S2). Increasing the average library sizes of samples boosts
135 the detection power (Supplementary Figure S3). If the absolute abundances are affected by confounding
136 covariates, DAA methods must adjust for the confounders to control FDRs (Supplementary Figure S4).
137 ADAPT has the most consistent control of FDRs and the highest average power across all the simulation
138 scenarios. The computation times of all the DAA methods are mainly determined by the total number of
139 taxa. ADAPT has the best computational efficiency among all the competitors (Supplementary Figure S5).
140 It only takes ADAPT 0.176 seconds to analyze a count table with 1000 taxa and 100 samples. ZicoSeq, which
141 has the best balance of FDR control and power among all competitors, needs 80 seconds.

142 2.3 Oral Microbiome and Early Childhood Dental Caries

143 Dental caries is the most common chronic disease for US children aged 5 to 17 [24]. Supragingival microbial
144 communities are associated with early childhood dental caries (ECC) [25]. We can use DAA to identify
145 microbiome taxa whose abundances differ between children who developed ECC by five years old and those
146 who did not. We use 16S rRNA sequencing data from saliva samples and shotgun metagenomics sequencing
147 (WGS) data from plaque samples of the Center for Oral Health Research in Appalachia 2 (COHRA2) cohort
148 [26]. There are 161 saliva samples collected at 12 months old. None of the 161 children had dental caries
149 during sample collection. Among these children, 84 later developed ECC, and 77 did not. There are 30
150 plaque samples collected between 36 and 60 months old. Half of the 30 samples were collected from children
151 with dental caries, and the other half were caries-free. The plaque samples of the cases were collected at the
152 onset of ECC. We remove taxa with prevalence lower than 5%, leading to 155 amplicon sequence variants
153 (ASVs) in the count table of the saliva samples and 590 taxa in the count table of the plaque samples. We
154 apply all the nine methods compared in the simulation studies and carry out DAA for the saliva samples
155 and plaque samples separately. We apply the Benjamini-Hochberg correction to the raw p-values for all the
156 DAA methods and use 0.05 as the cutoff level for DA taxa identification.

157 Among the 155 ASVs in the saliva samples, 38 are identified as differentially abundant by at least one
158 DAA method (Figure 3a). ADAPT identifies 27 differentially abundant ASVs. Several ASVs discovered by
159 ADAPT were mentioned in multiple previous studies according to a recent review [27], including *Haemophilus*
160 *parainfluenzae*, *Fusobacterium periodonticum*, *Prevotella histicola*, *Veillonella parvula*, *Lachnanaerobaculum*
161 *umeaense* and *Porphyromonas pasteri*. Among these six species, *H. parainfluenzae*, *F. periodonticum*, *L.*
162 *umeaense*, and *P. pasteri* are enriched in children free of dental caries. *P. histicola* and *V. parvula* are enriched
163 in children who later developed dental caries. These trends align with findings in previous literature as well.

164 Among the 590 taxa in the plaque samples, 14 are identified as differentially abundant by at least one DAA
165 method (Figure 3b). ADAPT identifies 12 DA taxa. The discoveries of ADAPT include *Scardovia wiggiae*,
166 *Streptococcus mutans*, and *Streptococcus sanguinis*, which were mentioned in previous reviews [27]. According
167 to ADAPT, *S. sanguinis* is enriched in controls. *S. mutans* and *S. wiggiae* are enriched in cases. These
168 trends agree with previous findings as well. The DA taxa in the plaque samples collected after 36 months
169 old differ from the DA taxa in the pre-incident saliva samples collected at 12 months old. This phenomenon
170 echoes the idea that microbiome species associated with dental caries vary with age [26, 27].

171 ADAPT estimates the absolute abundance fold changes besides identifying DA taxa. Most taxa's estimated
172 log10 fold changes are between -2 and 2 for both the saliva and the plaque samples (Figures 3c and 3d). For
173 some rare taxa that only exist in samples from one condition, the absolute values of their estimated effect
174 sizes are much larger than the others. For example, *Veillonella parvula* has the largest estimated log10 fold
175 change of 5.50 among all the ASVs in the saliva samples. This species was detected in 10 of the 161 saliva
176 samples, and all these ten samples were from children who eventually developed dental caries. The count
177 proportions of *Veillonella parvula* in these ten samples range from 6×10^{-4} to 0.06. Still, complete separation
178 does not necessarily indicate DA taxa. For example, *Fusobacterium naviforme* is detected only in three of
179 the 30 plaque samples, all from children without dental caries. The estimated log10 fold change is -3.687,
180 the lowest among all the taxa. However, the corresponding p-value is 0.09, so *Fusobacterium naviforme* is
181 not considered differentially abundant. The count proportions of *Fusobacterium naviforme* among the three
182 samples are only 5.8×10^{-6} , 1.0×10^{-6} , and 3.1×10^{-7} . The computational heuristics in ADAPT prevent

183 infinite log abundance fold change estimates and enable valid statistical tests when complete separation
 184 occurs (Section S2 of Supplementary Materials). Analyses of real-life data show that ADAPT is robust and
 185 numerically stable for evaluating differential abundance patterns of rare taxa.

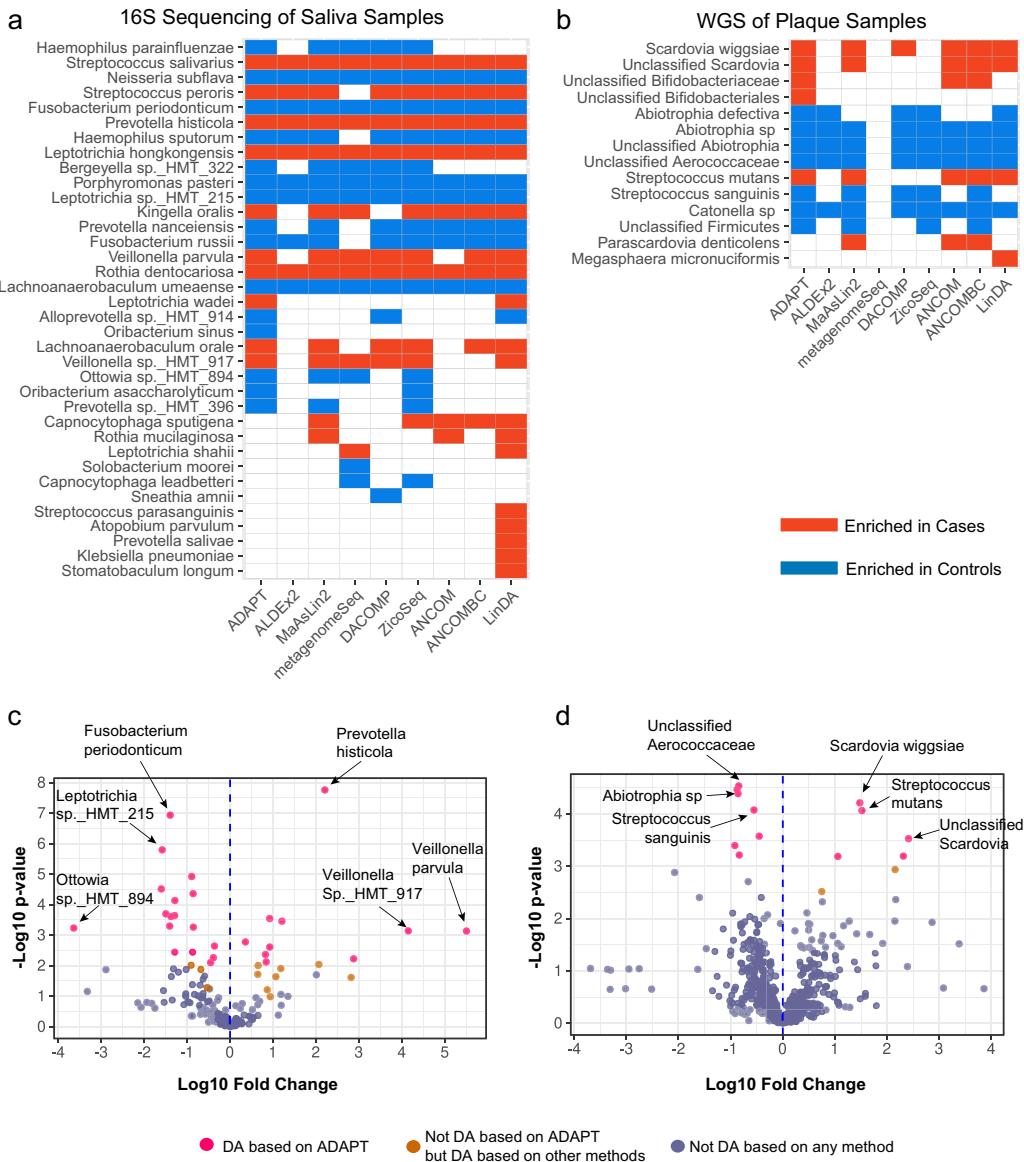


Fig. 3 Microbiome differential abundance analysis between children who developed early childhood dental caries and those who did not. (a) 38 out of 155 total amplicon sequence variants in the saliva samples collected at 12 months old are differentially abundant based on at least one method. ADAPT detects 27 DA ASVs. (b) 14 out of 590 taxa in the plaque samples collected between 36 and 60 months old are differentially abundant based on at least one method. ADAPT detects 12 DA taxa. (c) Volcano plot for DAA of saliva samples (d) Volcano plot for DAA of plaque samples

186 3 Discussion

187 The excessive zeros in metagenomics data come from multiple sources, and it is challenging to classify and
 188 preprocess them for differential abundance analysis [7, 8, 28]. Left censoring can circumvent any controversial
 189 zero preprocessing steps. This idea has only seen limited use in another work that compares relative abun-
 190 dances between conditions [29]. ADAPT is the first method to demonstrate the ingenuity of censoring when
 191 comparing absolute abundances. The simulation studies and real data analyses prove that censoring can

192 control false discovery rates and maintain competitive detection power. We choose to censor all the observed
193 zero counts at one (the smallest nonzero value) for all the simulations and real data analyses. This proxy is
194 a natural choice, given that metagenomics counts are discrete. Nevertheless, other choices are worth exploring.
195 For example, we may censor the zeros at the smallest positive value in the count table if the smallest
196 positive value does not equal one. We may also customize sample-specific proxies given the library size and
197 the smallest positive count in each sample. The prevalence of each taxon is another factor worth considering.

198 The assumption that differentially abundant taxa are the minority is sufficient for our reference taxa selec-
199 tion scheme to be admissible. Nevertheless, our selection of reference taxa can still hold when more than
200 half of all the taxa are differentially abundant as long as the directions of changes are balanced (Supplemen-
201 tary Figure S6). In all simulations and real data analyses, reference taxa account for half or one-fourth of
202 all taxa (Supplementary Figure S7). We notice that the selected reference taxa may contain several differen-
203 tially abundant ones. The criteria for a qualified reference taxa set is that the hypothesis test *p*-values form
204 a uniform or left-skewed distribution (see [Methods](#) for details). Because the decision is based on the distri-
205 bution of *p*-values instead of thresholds for individual *p*-values, a handful of DA taxa is expected to remain
206 in the reference taxa set. A sizable number of taxa are selected as reference, so minor contamination of DA
207 taxa does not affect the performance of ADAPT. Adding up the counts of multiple reference taxa ensures
208 nonzero normalizing when calculating count ratios. It also decreases the variance of the normalizing factor
209 in comparison to using a single reference taxon, leading to increased power.

210 The Tobit model is similar to the accelerated failure time model in survival analysis except that it models
211 left-censored data. It is a parametric censored quantile regression. The simulation studies and real data anal-
212 yses demonstrate microbiome differential abundance between two conditions, but ADAPT can also handle
213 continuous conditions and adjust for multiple covariates. In future work, we will accommodate multigroup
214 comparisons and include random effects for longitudinal study designs. Nonparametric censored quantile
215 regressions [30, 31] are viable alternatives to the Tobit model. They could be more robust than the Tobit
216 model when the distribution of log count ratios is very different from a normal distribution or for small sam-
217 ple sizes. Potential downsides of nonparametric models include computational complexity and lower power.
218 The successful implementation of ADAPT offers new perspectives on handling excessive zeros and composi-
219 tional data for microbiome differential abundance analysis. It is a valuable addition to the field of ecological
220 data analysis.

221 4 Methods

222 4.1 Mathematical Properties of Relative Abundance

223 The intuition of ADAPT is supported by mathematical properties of relative abundance. We first present
 224 four propositions about relative abundance, which set the stage for deriving ADAPT analysis procedures.
 225 The proofs for these four propositions are in Section S1 of Supplementary Materials.

226 Let $A_j^{(g)}$ and $R_j^{(g)}$ represent the absolute abundance and relative abundance of taxon j ($j = 1, 2, \dots, P$)
 227 in condition g ($g = 1, 2$). The goal of DAA is to decide if $A_j^{(2)}$ is different from $A_j^{(1)}$ for each taxon j .
 228 The absolute abundances cannot be directly measured but the relative abundances can be estimated from
 229 observed sequencing counts. According to definition, $R_j^{(g)} = A_j^{(g)} / \sum_{j'=1}^P A_{j'}^{(g)}$.
 230 **Proposition 1 (Reference taxa).** *Let $\mathcal{T}_0 \subseteq \mathcal{T} = \{1, 2, \dots, P\}$ be a set of non-DA taxa. Then, the rela-*
 231 *tionship between the relative abundance fold changes and the absolute abundance fold changes of any taxon*
 232 *j ($j = 1, 2, \dots, P$) satisfies*

$$\frac{R_j^{(2)} / \sum_{k \in \mathcal{T}_0} R_k^{(2)}}{R_j^{(1)} / \sum_{k \in \mathcal{T}_0} R_k^{(1)}} = \frac{A_j^{(2)}}{A_j^{(1)}} \quad \forall j \in \{1, 2, \dots, P\}$$

233 We can calculate the absolute abundance fold change for any taxa from their relative abundances if we find
 234 a subset of non-DA taxa as reference taxa. The calculation involves the relative abundance ratio between
 235 the taxon of interest and the sum of reference taxa.

236 **Proposition 2 (Null Case).** *If none of the taxa $\mathcal{T} = \{1, 2, \dots, P\}$ are differentially abundant, then the*
 237 *relative abundances of all the taxa remain the same across conditions. On the other hand, if the relative*
 238 *abundances of all the taxa remain the same between conditions, then the absolute abundance fold changes of*
 239 *all the taxa are the same. Namely,*

$$\begin{aligned} A_j^{(2)} = A_j^{(1)} \quad \forall j \in \{1, 2, \dots, P\} &\Rightarrow R_j^{(2)} = R_j^{(1)} \quad \forall j \in \{1, 2, \dots, P\} \\ R_j^{(2)} = R_j^{(1)} \quad \forall j \in \{1, 2, \dots, P\} &\Rightarrow \frac{A_1^{(2)}}{A_1^{(1)}} = \frac{A_2^{(2)}}{A_2^{(1)}} = \dots = \frac{A_P^{(2)}}{A_P^{(1)}} \end{aligned}$$

240 Suppose the relative abundances of all the taxa remain the same between conditions. In that case, all taxa's
 241 absolute abundance fold changes may equal a constant other than one. However, most taxa are assumed
 242 to be non-DA [6, 32]. Based on this assumption, we can decide that there are no DA taxa if no relative
 243 abundances change between conditions for any taxa.

244 **Proposition 3 (Order preservation for abundance fold changes).** *Between any two taxa j and k*
 245 *($1 \leq j < k \leq P$), their order of relative abundance fold changes is the same as their order of absolute*
 246 *abundance fold changes. Namely*

$$\frac{R_j^{(2)}}{R_j^{(1)}} \leq \frac{R_k^{(2)}}{R_k^{(1)}} \Leftrightarrow \frac{A_j^{(2)}}{A_j^{(1)}} \leq \frac{A_k^{(2)}}{A_k^{(1)}}$$

247 Relative abundance fold change is different from absolute abundance fold change. Still, relative abundance
 248 fold change is ranked the same among all taxa as absolute abundance fold change.

249 **Proposition 4 (Relative abundance fold change of non-DA taxa).** *Under the assumption that a*
 250 *minority of taxa are DA, the relative abundance fold change of a non-DA taxon j ($j = 1, 2, \dots, P$) equals*
 251 *the median of the relative abundance fold changes of all taxa. Namely*

$$R_j^{(2)} / R_j^{(1)} = \text{Median}\{R_{j'}^{(2)} / R_{j'}^{(1)}\}_{j'=1,2,\dots,P} \Leftrightarrow A_j^{(2)} = A_j^{(1)}$$

252 The relative abundances of non-DA taxa differ between two conditions when DA taxa exist. Nevertheless,
 253 we can rank the relative abundance fold changes and select taxa with median fold changes as reference taxa.

254 4.2 ADAPT Procedures

255 ADAPT consists of three main procedures. The first step estimates the relative abundance fold changes of
 256 all the taxa with Tobit models and decides if any DA taxa exist. The second step selects a subset of non-DA

257 taxa as reference taxa. This step is needed if the first step confirms the existence of at least one DA taxa.
 258 The third step identifies DA taxa by fitting Tobit models to the log count ratios between each taxon and
 259 the reference taxa. Supplementary Figure S8 provides a flowchart of ADAPT procedures.

260 **4.2.1 Relative Abundance Fold Change Estimation with Tobit Models**

261 The metagenomics count table Y has N samples and P taxa. The count of taxon j ($j = 1, 2, \dots, P$) in sample
 262 i ($i = 1, 2, \dots, N$) is denoted as y_{ij} . Each sample i has its vector of covariates \mathbf{x}_i including the intercept.
 263 The main variable of interest x_{i1} is binary for DAA between two conditions. If y_{ij} is zero, we represent it as
 264 being left-censored at a positive value d

$$y_{ij}^* = \begin{cases} d & \text{if } y_{ij} = 0 \\ y_{ij} & \text{if } y_{ij} > 0 \end{cases} \quad \delta_{ij} = \begin{cases} 0 & \text{if } y_{ij} = 0 \\ 1 & \text{if } y_{ij} > 0 \end{cases}$$

265 The default value of d is one because metagenomic sequencing counts are integers and the detection
 266 limit of the sequencing instrument is one. The relative abundance of taxon j in sample i is denoted $z_{ij} =$
 267 $y_{ij}^* / \sum_{j'=1}^P y_{ij'}$. We fit a Tobit model [20] to the log relative abundances $\{\log z_{ij}\}_{i=1,2,\dots,N}$ of each taxon
 268 $j \in \{1, 2, \dots, P\}$ by calculating the maximum likelihood estimate of

$$L(\boldsymbol{\beta}_j, \sigma_j) = \prod_{i=1}^N \left[\phi \left(\frac{\log z_{ij} - \mathbf{x}_i^\top \boldsymbol{\beta}_j}{\sigma_j} \right) \right]^{\delta_{ij}} \left[\Phi \left(\frac{\log z_{ij} - \mathbf{x}_i^\top \boldsymbol{\beta}_j}{\sigma_j} \right) \right]^{1-\delta_{ij}}$$

269 where $\phi(\cdot)$ and $\Phi(\cdot)$ represent the probability density function and cumulative distribution of the standard
 270 normal distribution. $\boldsymbol{\beta}_j$ includes the effect sizes of all the covariates. σ is the scale parameter that accounts
 271 for the variance of log relative abundances. To guarantee the numerical stability of model fitting for rare
 272 taxa, we estimate the MLE of the Firth penalized likelihood [33]. Section S2 of Supplementary Materials
 273 describes the details of computational heuristics.

274 We report the effect size estimate $\hat{\beta}_{j1}$ which represents the log relative abundance fold change of taxon j
 275 between conditions. We also carry out likelihood ratio test $H_0 : \beta_{j1} = 0$ against $H_1 : \beta_{j1} \neq 0$ and report the
 276 p -value. We pool the p -values of all the Tobit models to find DA taxa in the following steps.

277 **4.2.2 Reference Taxa Selection**

278 If there are no DA taxa, the p -values of hypothesis tests for relative abundance fold changes in the first
 279 step $\{w_j\}_{j=1,2,\dots,P}$ should display a uniform distribution according to Proposition 2. We fit a beta-uniform
 280 mixture [34]

$$w \sim \pi U(0, 1) + (1 - \pi) \text{Beta}(\alpha, 1) \quad 0 < \pi \leq 1, 0 < \alpha < 1$$

281 and apply likelihood ratio tests for $H_0 : \pi = 1$ against $H_1 : \pi < 1$. If H_0 cannot be rejected, the distribution
 282 of $\{w_j\}_{j=1,2,\dots,P}$ follows a uniform or left-skewed distribution, indicating that there are no differentially
 283 abundant taxa.

284 If H_0 is rejected, the distribution of p -values is right-skewed and there are DA taxa. We must search for
 285 a subset of reference taxa before identifying DA taxa. According to Proposition 3 and 4, a taxon j is likely
 286 non-DA if its relative abundance fold change estimate $\hat{\beta}_{j1}$ is close to $\text{median}\{\hat{\beta}_{j'1}\}_{j'=1,2,\dots,P}$. Therefore, we
 287 select a subset \mathcal{T}' with half of all the taxa whose relative abundance fold change estimates are closest to the
 288 median.

$$d_j = \left| \hat{\beta}_{j1} - \text{median}\{\hat{\beta}_{j'1}\}_{j'=1,2,\dots,P} \right|$$

$$\mathcal{T}' = \{ k \mid d_k < \text{median}\{d_j\}_{j=1,2,\dots,P} \}$$

289 We verify if there are any DA taxa in \mathcal{T}' in a way similar to the first step. For each taxon $k \in \mathcal{T}'$, we fit Tobit
 290 models to the count proportion within this subset $z'_{ik} = y_{ik}^* / \sum_{k' \in \mathcal{T}'} y_{ik'}$. We then check if the distribution
 291 of p -values from these Tobit models is still right-skewed. If the p -value distribution is uniform or left-skewed,
 292 \mathcal{T}' is a qualified set of reference taxa. Otherwise, we repeat this second step until we obtain a subset of
 293 non-DA taxa \mathcal{T}_0 as reference taxa.

294 **4.2.3 Identification of Differentially Abundant Taxa**

295 Once we identify a subset of non-DA taxa as the reference set, we calculate the count ratio between each
 296 taxon j and the summed counts of the reference taxa $u_{ij} = y_{ij}^* / \sum_{j' \in \mathcal{T}_0} y_{ij'}$ for all samples $i = 1, 2, \dots, N$.
 297 We fit a Tobit model to $\{\log u_{ij}\}_{i=1,2,\dots,N}$ by calculating the maximum likelihood estimate of

$$L(\boldsymbol{\gamma}_j, \psi_j) = \prod_{i=1}^N \left[\phi \left(\frac{\log u_{ij} - \mathbf{x}_i^\top \boldsymbol{\gamma}_j}{\psi_j} \right) \right]^{\delta_{ij}} \left[\Phi \left(\frac{\log u_{ij} - \mathbf{x}_i^\top \boldsymbol{\gamma}_j}{\psi_j} \right) \right]^{1-\delta_{ij}}$$

298 The effect size estimate $\hat{\gamma}_{j1}$ represents the log fold change of absolute abundance for taxon j according to
 299 Proposition 1. The hypothesis test $H_0 : \gamma_{j1} = 0$ against $H_1 : \gamma_{j1} \neq 0$ indicates whether taxon j is differentially
 300 abundant. We apply multiple testing corrections to all the p -values to control false discovery rates and call
 301 a taxon differentially abundant if its adjusted p -value is below a certain level (e.g., 0.05). The simulation
 302 studies indicate that the Benjamini-Hochberg method is suitable for multiple corrections.

303 **4.3 Simulation Framework**

304 **4.3.1 Metadata Generation**

305 The metadata has two variables \mathbf{X} and \mathbf{C} . Variable $X_i (i = 1, 2, \dots, N)$ is a binary variable representing
 306 two contrasting conditions. It is the variable of interest. Variable C_i is a potentially confounding continuous
 307 covariate. For each sample i , X_i and C_i are generated in the following way

$$\begin{aligned} h_i &\sim \mathcal{N}(0, 1) \\ X_i &= \mathbb{I}(h_i > 0) \\ C_i &= \eta h_i + \sqrt{1 - \eta^2} \mathcal{N}(0, 1) \end{aligned}$$

308 where η is the correlation parameter that controls the severity of confounding.

309 **4.3.2 Count Table Generation**

310 SparseDOSSA [22] generates the count table \mathbf{Y} based on the metadata. The simulation scheme of Sparse-
 311 DOSSA first generates the absolute abundances of each taxon from a zero-inflated log-normal distribution.
 312 For taxon $j (j = 1, 2, \dots, P)$ in sample $i (i = 1, 2, \dots, N)$,

$$\begin{aligned} m_{ij} &\sim \mathcal{N}(0, 1) \\ A_{ij} &= \begin{cases} 0 & \Phi(m_{ij}) < \theta_{ij} \\ \text{Lognormal}(\mu_{ij}, \tau_j^2) & \Phi(m_{ij}) > \theta_{ij} \end{cases} \end{aligned}$$

313 where m_{ij} is a latent variable for deciding if $A_{ij} > 0$. The zero inflation probability θ_{ij} and the log-normal
 314 distribution parameter μ_{ij} depend on X_i and C_i

$$\begin{aligned} \log \left(\frac{1 - \theta_{ij}}{\theta_{ij}} \right) &= \log \left(\frac{1 - \theta_{0j}}{\theta_{0j}} \right) + X_i \gamma_{j1} + C_i \gamma_{j2} \\ \mu_{ij} &= \mu_{0j} + X_i \gamma_{j1} + C_i \gamma_{j2} \end{aligned}$$

315 Taxon j is differentially abundant if $\gamma_{j1} \neq 0$. Its abundance is correlated with the potential confounder
 316 if $\gamma_{j2} \neq 0$. The parameters $\{(\mu_{0j}, \theta_{0j}, \tau_j^2)\}_{j=1,2,\dots,P}$ are drawn from the pre-trained template in the Sparse-
 317 DOSSA package. The pre-trained template was calculated based on 16S rRNA sequencing of stool samples
 318 in the Human Microbiome Project [1, 23]. There are 332 sets of zero-inflated log-normal distribution param-
 319 eters in the pre-trained template. DAA performance is indistinguishable among different methods if the
 320 simulated count table contains too many rare taxa. Therefore, we only draw (with replacement) from 54
 321 sets of parameters whose zero inflation probabilities are below 50% to set up absolute abundance distri-
 322 butions for all taxa. The relative abundances can be derived based on the generated absolute abundances

323 $R_{ij} = A_{ij} / \sum_{j'=1}^P A_{ij'}$. We draw the library sizes from another log-normal distribution and generate the
324 taxon counts from a multinomial distribution

$$D_i \sim \text{Lognormal}(\mu_D, \tau_D^2)$$
$$(y_{i1}, y_{i2}, \dots, y_{iP}) \sim \text{Multinom}(D_i, R_{i1}, R_{i2}, \dots, R_{iP})$$

325 4.4 Real Data Preprocessing

326 The raw sequencing data can be downloaded from NCBI. For the 16S rRNA sequencing data, we filter and
327 trim the reads with low quality. After that, we use the DADA2 [35] package to denoise the reads and assign
328 taxonomy to them based on the HOMD database [36]. For the shotgun metagenomics sequencing data, we
329 use the SqueezeMeta [37] pipeline to carry out genome assembly and taxonomy assignment.

330 5 Data Availability

331 The 16S rRNA sequencing data and shotgun metagenomics sequencing data of the COHRA2 study [26] are
332 available under project number PRJNA752888 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA752888>).
333 The metadata can be requested from the dbGaP database under study accession number phs001591.v1.p1.
334 The preprocessed count tables and de-identified metadata for the metagenomics data in the early childhood
335 dental caries study are available through the ADAPT R package (<https://github.com/mkbwang/ADAPT>).

336 6 Code Availability

337 ADAPT is available as an R package on GitHub (<https://github.com/mkbwang/ADAPT>). The codes for
338 simulation studies, sequencing data preprocessing, and real data differential abundance analysis are also
339 available on GitHub (https://github.com/mkbwang/ADAPT_example).

340 References

- 341 [1] Human Microbiome Project Consortium. Structure, function and diversity of the healthy human
342 microbiome. *Nature* **486**, 207–214 (2012).
- 343 [2] Yatsunenko, T. *et al.* Human gut microbiome viewed across age and geography. *Nature* **486**, 222–227
344 (2012).
- 345 [3] McDonald, D. *et al.* American Gut: an Open Platform for Citizen Science Microbiome Research.
346 *mSystems* **3** (2018).
- 347 [4] Li, H. Microbiome, Metagenomics, and High-Dimensional Compositional Data Analysis. *Annual Review
348 of Statistics and Its Application* **2**, 73–94 (2015).
- 349 [5] Nearing, J. T. *et al.* Microbiome differential abundance methods produce different results across 38
350 datasets. *Nature Communications* **13**, 342 (2022).
- 351 [6] Yang, L. & Chen, J. A comprehensive evaluation of microbial differential abundance analysis methods:
352 current status and potential solutions. *Microbiome* **10**, 130 (2022).
- 353 [7] Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of Microbiome Data in the Presence of
354 Excess Zeros. *Frontiers in Microbiology* **8** (2017).
- 355 [8] Silverman, J. D., Roche, K., Mukherjee, S. & David, L. A. Naught all zeros in sequence count data are
356 the same. *Computational and Structural Biotechnology Journal* **18**, 2789–2798 (2020).
- 357 [9] Mandal, S. *et al.* Analysis of composition of microbiomes: a novel method for studying microbial
358 composition. *Microbial Ecology in Health & Disease* **26** (2015).

359 [10] Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. *Nature Communications* **11**, 3514 (2020).

360

361 [11] Lin, H. & Peddada, S. D. Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures. *Nature Methods* **21**, 83–91 (2024).

362

363 [12] Zhou, H., He, K., Chen, J. & Zhang, X. LinDA: linear models for differential abundance analysis of microbiome compositional data. *Genome Biology* **23**, 95 (2022).

364

365 [13] Mallick, H. *et al.* Multivariable association discovery in population-scale meta-omics studies. *PLOS Computational Biology* **17** (2021).

366

367 [14] Fernandes, A. D. *et al.* Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. *Microbiome* **2**, 15 (2014).

368

369

370 [15] Brill, B., Amir, A. & Heller, R. Testing for differential abundance in compositional counts data, with application to microbiome studies. *The Annals of Applied Statistics* **16** (2022).

371

372 [16] Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. *Nature Methods* **10**, 1200–1202 (2013).

373

374 [17] Sohn, M. B., Du, R. & An, L. A robust approach for identifying differentially abundant features in metagenomic samples. *Bioinformatics* **31**, 2269–2275 (2015).

375

376 [18] Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome Datasets Are Compositional: And This Is Not Optional. *Frontiers in Microbiology* **8** (2017).

377

378 [19] Morton, J. T. *et al.* Establishing microbial composition measurement standards with reference frames. *Nature Communications* **10**, 2719 (2019).

379

380 [20] Tobin, J. Estimation of Relationships for Limited Dependent Variables. *Econometrica* **26**, 24 (1958).

381

382 [21] Neiswanger, K. *et al.* Oral Health in a Sample of Pregnant Women from Northern Appalachia (2011–2015). *International Journal of Dentistry* **2015**, 1–12 (2015).

383

384 [22] Ma, S. *et al.* A statistical model for describing and simulating microbial community profiles. *PLOS Computational Biology* **17**, e1008913 (2021).

385

386 [23] Schiffer, L. *et al.* HMP16SData: Efficient Access to the Human Microbiome Project Through Bioconductor. *American Journal of Epidemiology* **188**, 1023–1026 (2019).

387

388 [24] Ribeiro, A. A. & Paster, B. J. Dental caries and their microbiomes in children: what do we do now? *Journal of Oral Microbiology* **15** (2023).

389

390 [25] Xu, H. *et al.* Plaque Bacterial Microbiome Diversity in Children Younger than 30 Months with or without Caries Prior to Eruption of Second Primary Molars. *PLoS ONE* **9**, e89269 (2014).

391

392 [26] Blostein, F. *et al.* Evaluating the ecological hypothesis: early life salivary microbiome assembly predicts dental caries in a longitudinal case-control study. *Microbiome* **10**, 240 (2022).

393

394 [27] Bhaumik, D., Manikandan, D. & Foxman, B. Cariogenic and oral health taxa in the oral cavity among children and adults: A scoping review. *Archives of Oral Biology* **129**, 105204 (2021).

395

396 [28] Jiang, R., Sun, T., Song, D. & Li, J. J. Statistics or biology: the zero-inflation controversy about scRNA-seq data. *Genome Biology* **23**, 31 (2022).

397 [29] Chan, L. S. & Li, G. Zero is not absence: censoring-based differential abundance analysis for microbiome
398 data. *Bioinformatics* **40** (2024).

399 [30] Portnoy, S. Censored Regression Quantiles. *Journal of the American Statistical Association* **98**, 1001–12
400 (2003).

401 [31] Peng, L. & Huang, Y. Survival Analysis with Quantile Regression Models. *Journal of the American
402 Statistical Association* **103**, 637–49 (2008).

403 [32] Kumar, M. S. *et al.* Analysis and correction of compositional bias in sparse sequencing count data.
404 *BMC Genomics* **19**, 799 (2018).

405 [33] Alam, T. F., Rahman, M. S. & Bari, W. On estimation for accelerated failure time models with small
406 or rare event survival data. *BMC Medical Research Methodology* **22**, 169 (2022).

407 [34] Pounds, S. & Morris, S. W. Estimating the occurrence of false positives and false negatives in microarray
408 studies by approximating and partitioning the empirical distribution of p-values. *Bioinformatics* **19**,
409 1236–1242 (2003).

410 [35] Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data. *Nature
411 Methods* **13**, 581–583 (2016).

412 [36] Chen, T. *et al.* The Human Oral Microbiome Database: a web accessible resource for investigating oral
413 microbe taxonomic and genomic information. *Database* **2010**, baq013–baq013 (2010).

414 [37] Tamames, J. & Puente-Sánchez, F. SqueezeMeta, A Highly Portable, Fully Automatic Metagenomic
415 Analysis Pipeline. *Frontiers in Microbiology* **9** (2019).

416 7 Acknowledgements

417 The authors thank Betsy Foxman and Freida Blostein for providing the metagenomics data and offering
418 guidance on data preprocessing. This research was supported in part through computational resources and
419 services provided by Advanced Research Computing at the University of Michigan, Ann Arbor. M.W. and
420 G.L. were supported by funding from the National Institute of Health under grant number R03DE027773.

421 8 Author Contributions

422 M.W. and G.L. contributed equally to the methodology development. M.W. was responsible for the
423 method implementation, simulation studies, real data analysis, and manuscript writing. S.F., H.J., and G.L.
424 contributed to the editing of the manuscript.

425 9 Competing Interests

426 The authors declare no competing interests.