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Abstract7

Microbiome differential abundance analysis remains a challenging problem despite multiple methods pro-8
posed in the literature. The excessive zeros and compositionality of metagenomics data are two main9
challenges for differential abundance analysis. We propose a novel method called “analysis of differential10
abundance by pooling Tobit models” (ADAPT) to overcome these two challenges. ADAPT uniquely treats11
zero counts as left-censored observations to facilitate computation and enhance interpretation. ADAPT12
also encompasses a theoretically justified way of selecting non-differentially abundant microbiome taxa as13
a reference for hypothesis testing. We generate synthetic data using independent simulation frameworks14
to show that ADAPT has more consistent false discovery rate control and higher statistical power than15
competitors. We use ADAPT to analyze 16S rRNA sequencing of saliva samples and shotgun metage-16
nomics sequencing of plaque samples collected from infants in the COHRA2 study. The results provide17
novel insights into the association between the oral microbiome and early childhood dental caries.18

1 Introduction19

The microbiome plays an essential role in human health and disease. Extensive research has been conducted20

into the human microbiome using high-throughput metagenomic sequencing technologies [1–3]. The metage-21

nomics data are count tables that represent each sample’s abundance profiles of microbiome taxa. Differential22

abundance analysis (DAA) identifies taxa whose abundances differ between conditions. This is one of the23

fundamental analyses of microbiome data [4]. Many methods have been proposed to tackle statistical chal-24

lenges in identifying differentially abundant (DA) taxa. However, there is not a universally preferred solution25

yet [5, 6].26

Metagenomics count data have excessive zeros [7, 8]. As illustrated in the toy example in Figure 1a,27

zeros might reflect the actual absence of taxa in one condition (biological zeros) or indicate rare taxa that28

the sequencing instrument can not detect (sampling zeros). Some DAA methods impute the zeros with a29

small positive constant [9–13]. The imputations pave the way for applying standard statistical models to log30

counts. However, these imputations assume that all zeros are sampling zeros and ignore that library sizes31

vary among samples, which may lead to inflated false discovery rates [5, 6]. Other methods fit statistical32

distributions to the counts or count proportions, then draw from the fitted distributions to retrieve smoothed33

counts and count proportions for downstream analysis [6, 14, 15]. These methods have better control of false34

discovery rates [6], but their distribution choices lack justification. A third group of methods adopt zero-35

inflated distributions [16, 17]. Zero-inflated distributions agree with the sparsity patterns in metagenomics36

data. However, fitting a zero-inflated distribution involves estimating both the probability of true zeros and37
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the distribution parameters for nonzero values. Combining two hypothesis tests for differential abundance38

analysis reduces power and inflates false discovery rates.39

Metagenomics data are also compositional [18]. As illustrated in Figure 1a, the metagenomics sequencing40

read counts are not directly comparable between samples because of different sequencing depths. The counts41

can be interpretable after they are scaled by the library sizes and transformed into relative abundances.42

However, taxa may have different relative abundances between conditions while their absolute abundances43

remain stable. The key to DAA is to find an appropriate scaling factor to bridge the gap between relative44

and absolute abundances. Some methods normalize the counts with centered log-ratio (CLR) transformation45

[14]. The CLR transformation uses the geometric mean of all taxa counts as the scaling factor. The geometric46

mean calculation involves DA taxa, which could yield false positives. Other methods derive bias correction47

factors and have them multiplied with relative abundances or added to CLR transformed counts [10–12, 16].48

The estimation procedures of these bias correction factors are derived based on distribution assumptions49

of absolute abundance fold changes among all the taxa. This strategy is effective when the distribution50

assumptions are close to the truth. Otherwise, it will lead to high false discovery rates. A third group of51

methods normalize counts with one or multiple reference taxa [6, 15, 17]. The reference taxa are assumed to52

be not differentially abundant. This idea is simple and effective [19]. However, existing reference taxa selection53

procedures rely on calculating log count ratios between taxa pairs, which is computationally expensive and54

inaccurate given the excessive zero values.55

We have developed a new DAA method called “Analysis of Microbiome Differential Abundance by Pooling56

Tobit Models” (ADAPT). ADAPT has two innovations. First, we treat the zero counts as left-censored at the57

detection limit of the sequencing instruments. A censored observation unifies different zero mechanisms and58

accurately reflects the information contained in the observation. Second, we introduce an innovative way of59

finding non-differentially abundant (non-DA) reference taxa and using reference taxa to identify differentially60

abundant ones. Under the common assumption that DA taxa are the minority [6], we provide solid theoretical61

justification that selecting reference taxa is feasible based on all taxa’s relative abundances. We implement62

these two ideas by incorporating the Tobit model [20] from econometrics and survival analysis. We generate63

synthetic microbiome count data from independent simulation frameworks and show that ADAPT has better64

control of false discovery rates and higher power than competitor methods. We also demonstrate our method65

on the saliva and plaque samples of infants in the COHRA2 [21] study to reveal differentially abundant taxa66

between kids who developed early childhood dental caries and those who did not.67

2 Results68

2.1 ADAPT Workflow69

We illustrate the workflow of ADAPT using a toy example (Figure 1). There are seven taxa, and three of70

them are differentially abundant between two ecosystems. We aim to identify the three DA taxa based on the71

observed counts in the two metagenomics samples. We denote the counts of undetected taxa 6 and 7 in sample72

one as left-censored at one (the detection limit, which is assumed to be known). Therefore, their relative73

abundances are left-censored at 1/21. Similarly, we denote the count of taxon 4 in sample two as left-censored74

at one and its relative abundance to be left-censored at 1/35. We calculate the relative abundance fold change75

between two samples for all the taxa. According to the assumption that a minority of taxa are differentially76

abundant, we can be confident that taxa with median relative abundance fold changes are not differentially77

abundant (see Methods and Section S1 of Supplementary Materials for theoretical justifications). We choose78

these taxa as reference taxa. The reference taxa are taxon 2, 3, and 5 in this example. We normalize the79

individual taxa counts with the sum of reference taxa. By comparing the normalized counts between the80

two samples, we can correctly identify taxon 1, 4, and 7 as differentially abundant without including false81

positives.82

When analyzing real-life microbiome data with more samples and taxa, we introduce Tobit models for83

modeling potentially left-censored relative abundances and normalized counts. We pool the effect size esti-84

mates and the hypothesis test p-values of Tobit models to find reference taxa and identify DA taxa. The85

detailed procedures of ADAPT are described in Methods.86
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Fig. 1 Illustration of ADAPT with a toy example. (a) Three microbiome taxa (taxon 1, taxon 4, and taxon 7) are
differentially abundant between two ecosystems. Neither the observed counts nor the relative abundances can be directly
compared for differential abundance analysis. (b) ADAPT treats zero counts as left-censored at the detection limit (one in
this case). ADAPT first calculates the fold change of relative abundances. It then selects a subset of taxa (taxon 2, 3, and 5)
whose fold changes equal the median as reference taxa. After scaling the counts by the sum of three reference taxa, ADAPT
can recover the DA taxa without false positives by comparing the normalized counts.

2.2 Performance Evaluation with Simulation Studies87

We evaluate the false positive rate control, false discovery rate control, and statistical power of ADAPT with88

synthetic data. We generate synthetic data using the simulation framework SparseDOSSA [22]. SparseDOSSA89

framework draws absolute abundances of taxa from zero-inflated log-normal distributions and draws library90

sizes of all samples from log-normal distributions. The metagenomics sequencing counts are drawn from91

multinomial distributions based on the simulated library sizes and absolute abundances. The parameters92

for the simulations are estimated from 16S rRNA sequencing of stool samples in the Human Microbiome93

Project [23]. We prepare accompanying metadata with a binary covariate and a continuous covariate. The94

binary covariate represents two contrasting conditions. The zero inflation probabilities and the means of log-95

normal distribution correlate with this binary covariate for DA taxa. The continuous covariate is a potentially96

confounding variable. It may be correlated with the metadata’s binary variable of interest and some taxa’s97

absolute abundances. The details of the simulation setup are described in Methods.98

We compare the performance of ADAPT with eight other DAA methods. The competitors are ALDEx299

[14], MaAsLin2 [13], metagenomeSeq [16], ANCOM [9], ZicoSeq [6], DACOMP [15], ANCOMBC [10] and100

LinDA [12]. These competitors represent a variety of solutions to the excessive zeros and compositionality101

of metagenomics data (Supplementary Table S1). The proportion of DA taxa, sample sizes, fold changes102

of absolute abundances, library sizes, and confounding covariates could impact the performance of DAA103

methods. Therefore, we prepare various scenarios to study their influence. When investigating the influence104
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of one factor, all other factors are fixed. We prepare 500 replicates for each simulation setting and report the105

average of performance metrics.106

We first evaluate the false positive rates (type I errors) of all the DAA methods when there are no107

differentially abundant taxa between the two conditions (Figure 2a). Because ANCOM does not report raw108

p-values for DAA, it is excluded from this comparison. When the average library sizes are the same between109

the two conditions, all the DAA methods can control the FPRs at or below the nominal level of 0.05.110

When the library sizes are unbalanced, the proportion of sampling zeros and biological zeros differ between111

conditions. Competitors such as ANCOMBC and LinDA, which replace all the zeros with constant pseudo112

counts, have the most inflated FPRs. The zero-inflated model by metagenomeSeq also struggles to decipher113

the zero mechanisms that are confounded by library sizes. DAA methods detect more DA taxa when the114

sample sizes are larger, which leads to more severely inflated FPRs for some of the competitor methods.115

ADAPT can maintain FPRs around the nominal level regardless of the unbalanced average library sizes116

between conditions. This experiment shows that left censoring by ADAPT is more robust than ad hoc zero117

replacement strategies at handling excessive zeros in metagenomics data.118

We then evaluate the false discovery rate control and power of all DAA methods when we experiment119

with different proportions of DA taxa (Figure 2b). In simulation settings with balanced changes, most DAA120

methods can control FDR regardless of the proportion of DA taxa. The power of most DAA methods except121

for ANCOM increases as the proportion of DA taxa increases. Many competitor DAA methods cannot control122

FDRs in simulation settings with unbalanced changes, especially when DA taxa proportions are high. This123

is because many normalization strategies by competitor methods assume that the number of taxa whose124

absolute abundances are enriched is similar to those whose absolute abundances are depleted between two125

conditions. This assumption is violated when the changes of all DA taxa are in the same direction. ADAPT126

does not make assumptions about the distributions of absolute abundance fold changes and consistently127

selects non-DA taxa as reference taxa. The robust selection scheme of reference taxa guarantees false discovery128

rate control. ADAPT also has the highest average detection power.
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Fig. 2 Simulation studies for comparing ADAPT with eight other differential abundance analysis methods. We
simulate synthetic metagenomics sequencing count data under two contrasting conditions using the SparseDOSSA framework.
The number of samples is the same between the two conditions. We generate 500 replicates for each simulation setting and report
the mean of performance metrics. (a) False positive rates (type I errors) of all methods except for ANCOM under simulation
settings with no DA taxa. The total number of taxa is 500. The total sample size is 50 or 100. The average library size is the
same (balanced) for two conditions at 104 or different (unbalanced) between two conditions (104 for one condition and 105 for
the other). (b) False discovery rates and power under simulation settings with different proportions of DA taxa. The sample
size is 100. The total number of taxa is 500. The proportion of DA taxa is 5%, 10%, 20%, or 30%. The average library size is
2× 104 for both conditions. The average absolute abundance fold change of DA taxa is 5. The directions of absolute abundance
changes of DA taxa may be balanced or unbalanced.
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Other factors affect the FDR control and power besides the proportion of DA taxa. The detection power130

of all DAA methods decreases drastically as the sample sizes decrease (Supplementary Figure S1). Several131

competitor methods, such as metagenomeSeq and ANCOMBC, have inflated FDRs when the sample size is132

as small as 50. The detection power of all methods increases as the average absolute abundance fold changes133

of DA taxa increase (Supplementary Figure S2). Increasing the average library sizes of samples boosts134

the detection power (Supplementary Figure S3). If the absolute abundances are affected by confounding135

covariates, DAA methods must adjust for the confounders to control FDRs (Supplementary Figure S4).136

ADAPT has the most consistent control of FDRs and the highest average power across all the simulation137

scenarios. The computation times of all the DAA methods are mainly determined by the total number of138

taxa. ADAPT has the best computational efficiency among all the competitors (Supplementary Figure S5).139

It only takes ADAPT 0.176 seconds to analyze a count table with 1000 taxa and 100 samples. ZicoSeq, which140

has the best balance of FDR control and power among all competitors, needs 80 seconds.141

2.3 Oral Microbiome and Early Childhood Dental Caries142

Dental caries is the most common chronic disease for US children aged 5 to 17 [24]. Supragingival microbial143

communities are associated with early childhood dental caries (ECC) [25]. We can use DAA to identify144

microbiome taxa whose abundances differ between children who developed ECC by five years old and those145

who did not. We use 16S rRNA sequencing data from saliva samples and shotgun metagenomics sequencing146

(WGS) data from plaque samples of the Center for Oral Health Research in Appalachia 2 (COHRA2) cohort147

[26]. There are 161 saliva samples collected at 12 months old. None of the 161 children had dental caries148

during sample collection. Among these children, 84 later developed ECC, and 77 did not. There are 30149

plaque samples collected between 36 and 60 months old. Half of the 30 samples were collected from children150

with dental caries, and the other half were caries-free. The plaque samples of the cases were collected at the151

onset of ECC. We remove taxa with prevalence lower than 5%, leading to 155 amplicon sequence variants152

(ASVs) in the count table of the saliva samples and 590 taxa in the count table of the plaque samples. We153

apply all the nine methods compared in the simulation studies and carry out DAA for the saliva samples154

and plaque samples separately. We apply the Benjamini-Hochberg correction to the raw p-values for all the155

DAA methods and use 0.05 as the cutoff level for DA taxa identification.156

Among the 155 ASVs in the saliva samples, 38 are identified as differentially abundant by at least one157

DAA method (Figure 3a). ADAPT identifies 27 differentially abundant ASVs. Several ASVs discovered by158

ADAPT were mentioned in multiple previous studies according to a recent review [27], including Haemophilus159

parainfluenzae, Fusobacterium periodonticum, Prevotella histicola, Veillonella parvula, Lachnoanaerobaculum160

umeaense and Porphyromonas pasteri. Among these six species, H. parainfluenzae, F. periodonticum, L.161

umeaense, and P. pasteri are enriched in children free of dental caries. P. histicola and V. parvula are enriched162

in children who later developed dental caries. These trends align with findings in previous literature as well.163

Among the 590 taxa in the plaque samples, 14 are identified as differentially abundant by at least one DAA164

method (Figure 3b). ADAPT identifies 12 DA taxa. The discoveries of ADAPT include Scardovia wiggsiae,165

Streptococcus mutans, and Streptococcus sanguinis, which were mentioned in previous reviews [27]. According166

to ADAPT, S. sanguinis is enriched in controls. S. mutans and S. wiggsiae are enriched in cases. These167

trends agree with previous findings as well. The DA taxa in the plaque samples collected after 36 months168

old differ from the DA taxa in the pre-incident saliva samples collected at 12 months old. This phenomenon169

echoes the idea that microbiome species associated with dental caries vary with age [26, 27].170

ADAPT estimates the absolute abundance fold changes besides identifying DA taxa. Most taxa’s estimated171

log10 fold changes are between -2 and 2 for both the saliva and the plaque samples (Figures 3c and 3d). For172

some rare taxa that only exist in samples from one condition, the absolute values of their estimated effect173

sizes are much larger than the others. For example, Veillonella parvula has the largest estimated log10 fold174

change of 5.50 among all the ASVs in the saliva samples. This species was detected in 10 of the 161 saliva175

samples, and all these ten samples were from children who eventually developed dental caries. The count176

proportions of Veillonella parvula in these ten samples range from 6×10−4 to 0.06. Still, complete separation177

does not necessarily indicate DA taxa. For example, Fusobacterium naviforme is detected only in three of178

the 30 plaque samples, all from children without dental caries. The estimated log10 fold change is -3.687,179

the lowest among all the taxa. However, the corresponding p-value is 0.09, so Fusobacterium naviforme is180

not considered differentially abundant. The count proportions of Fusobacterium naviforme among the three181

samples are only 5.8 × 10−6, 1.0 × 10−6, and 3.1 × 10−7. The computational heuristics in ADAPT prevent182

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.14.594186doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.14.594186
http://creativecommons.org/licenses/by-nc-nd/4.0/


infinite log abundance fold change estimates and enable valid statistical tests when complete separation183

occurs (Section S2 of Supplementary Materials). Analyses of real-life data show that ADAPT is robust and184

numerically stable for evaluating differential abundance patterns of rare taxa.185
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Fig. 3 Microbiome differential abundance analysis between children who developed early childhood dental
caries and those who did not. (a) 38 out of 155 total amplicon sequence variants in the saliva samples collected at 12
months old are differentially abundant based on at least one method. ADAPT detects 27 DA ASVs. (b) 14 out of 590 taxa in
the plaque samples collected between 36 and 60 months old are differentially abundant based on at least one method. ADAPT
detects 12 DA taxa. (c) Volcano plot for DAA of saliva samples (d) Volcano plot for DAA of plaque samples

3 Discussion186

The excessive zeros in metagenomics data come from multiple sources, and it is challenging to classify and187

preprocess them for differential abundance analysis [7, 8, 28]. Left censoring can circumvent any controversial188

zero preprocessing steps. This idea has only seen limited use in another work that compares relative abun-189

dances between conditions [29]. ADAPT is the first method to demonstrate the ingenuity of censoring when190

comparing absolute abundances. The simulation studies and real data analyses prove that censoring can191
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control false discovery rates and maintain competitive detection power. We choose to censor all the observed192

zero counts at one (the smallest nonzero value) for all the simulations and real data analyses. This proxy is193

a natural choice, given that metagenomics counts are discrete. Nevertheless, other choices are worth explor-194

ing. For example, we may censor the zeros at the smallest positive value in the count table if the smallest195

positive value does not equal one. We may also customize sample-specific proxies given the library size and196

the smallest positive count in each sample. The prevalence of each taxon is another factor worth considering.197

The assumption that differentially abundant taxa are the minority is sufficient for our reference taxa selec-198

tion scheme to be admissible. Nevertheless, our selection of reference taxa can still hold when more than199

half of all the taxa are differentially abundant as long as the directions of changes are balanced (Supplemen-200

tary Figure S6). In all simulations and real data analyses, reference taxa account for half or one-fourth of201

all taxa (Supplementary Figure S7). We notice that the selected reference taxa may contain several differen-202

tially abundant ones. The criteria for a qualified reference taxa set is that the hypothesis test p-values form203

a uniform or left-skewed distribution (see Methods for details). Because the decision is based on the distri-204

bution of p-values instead of thresholds for individual p-values, a handful of DA taxa is expected to remain205

in the reference taxa set. A sizable number of taxa are selected as reference, so minor contamination of DA206

taxa does not affect the performance of ADAPT. Adding up the counts of multiple reference taxa ensures207

nonzero normalizing when calculating count ratios. It also decreases the variance of the normalizing factor208

in comparison to using a single reference taxon, leading to increased power.209

The Tobit model is similar to the accelerated failure time model in survival analysis except that it models210

left-censored data. It is a parametric censored quantile regression. The simulation studies and real data anal-211

yses demonstrate microbiome differential abundance between two conditions, but ADAPT can also handle212

continuous conditions and adjust for multiple covariates. In future work, we will accommodate multigroup213

comparisons and include random effects for longitudinal study designs. Nonparametric censored quantile214

regressions [30, 31] are viable alternatives to the Tobit model. They could be more robust than the Tobit215

model when the distribution of log count ratios is very different from a normal distribution or for small sam-216

ple sizes. Potential downsides of nonparametric models include computational complexity and lower power.217

The successful implementation of ADAPT offers new perspectives on handling excessive zeros and composi-218

tional data for microbiome differential abundance analysis. It is a valuable addition to the field of ecological219

data analysis.220
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4 Methods221

4.1 Mathematical Properties of Relative Abundance222

The intuition of ADAPT is supported by mathematical properties of relative abundance. We first present223

four propositions about relative abundance, which set the stage for deriving ADAPT analysis procedures.224

The proofs for these four propositions are in Section S1 of Supplementary Materials.225

Let A
(g)
j and R

(g)
j represent the absolute abundance and relative abundance of taxon j (j = 1, 2, . . . , P )226

in condition g (g = 1, 2). The goal of DAA is to decide if A
(2)
j is different from A

(1)
j for each taxon j.227

The absolute abundances cannot be directly measured but the relative abundances can be estimated from228

observed sequencing counts. According to definition, R
(g)
j = A

(g)
j /

∑P

j′=1A
(g)
j′ .229

Proposition 1 (Reference taxa). Let T0 ⊆ T = {1, 2, · · · , P} be a set of non-DA taxa. Then, the rela-230

tionship between the relative abundance fold changes and the absolute abundance fold changes of any taxon231

j (j = 1, 2, · · · , P ) satisfies232

R
(2)
j /

∑

k∈T0
R

(2)
k

R
(1)
j /

∑

k∈T0
R

(1)
k

=
A

(2)
j

A
(1)
j

∀j ∈ {1, 2, · · · , P}

We can calculate the absolute abundance fold change for any taxa from their relative abundances if we find233

a subset of non-DA taxa as reference taxa. The calculation involves the relative abundance ratio between234

the taxon of interest and the sum of reference taxa.235

Proposition 2 (Null Case). If none of the taxa T = {1, 2, · · · , P} are differentially abundant, then the236

relative abundances of all the taxa remain the same across conditions. On the other hand, if the relative237

abundances of all the taxa remain the same between conditions, then the absolute abundance fold changes of238

all the taxa are the same. Namely,239

A
(2)
j = A

(1)
j ∀j ∈ {1, 2, · · · , P} ⇒ R

(2)
j = R

(1)
j ∀j ∈ {1, 2, · · · , P}

R
(2)
j = R

(1)
j ∀j ∈ {1, 2, · · · , P} ⇒

A
(2)
1

A
(1)
1

=
A

(2)
2

A
(1)
2

= · · · =
A

(2)
P

A
(1)
P

Suppose the relative abundances of all the taxa remain the same between conditions. In that case, all taxa’s240

absolute abundance fold changes may equal a constant other than one. However, most taxa are assumed241

to be non-DA [6, 32]. Based on this assumption, we can decide that there are no DA taxa if no relative242

abundances change between conditions for any taxa.243

Proposition 3 (Order preservation for abundance fold changes). Between any two taxa j and k244

(1 ≤ j < k ≤ P ), their order of relative abundance fold changes is the same as their order of absolute245

abundance fold changes. Namely246

R
(2)
j

R
(1)
j

≤
R

(2)
k

R
(1)
k

⇔
A

(2)
j

A
(1)
j

≤
A

(2)
k

A
(1)
k

Relative abundance fold change is different from absolute abundance fold change. Still, relative abundance247

fold change is ranked the same among all taxa as absolute abundance fold change.248

Proposition 4 (Relative abundance fold change of non-DA taxa). Under the assumption that a249

minority of taxa are DA, the relative abundance fold change of a non-DA taxon j (j = 1, 2, · · · , P ) equals250

the median of the relative abundance fold changes of all taxa. Namely251

R
(2)
j /R

(1)
j = Median{R

(2)
j′ /R

(1)
j′ }j′=1,2,··· ,P ⇔ A

(2)
j = A

(1)
j

The relative abundances of non-DA taxa differ between two conditions when DA taxa exist. Nevertheless,252

we can rank the relative abundance fold changes and select taxa with median fold changes as reference taxa.253

4.2 ADAPT Procedures254

ADAPT consists of three main procedures. The first step estimates the relative abundance fold changes of255

all the taxa with Tobit models and decides if any DA taxa exist. The second step selects a subset of non-DA256
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taxa as reference taxa. This step is needed if the first step confirms the existence of at least one DA taxa.257

The third step identifies DA taxa by fitting Tobit models to the log count ratios between each taxon and258

the reference taxa. Supplementary Figure S8 provides a flowchart of ADAPT procedures.259

4.2.1 Relative Abundance Fold Change Estimation with Tobit Models260

The metagenomics count table Y has N samples and P taxa. The count of taxon j (j = 1, 2, · · · , P ) in sample261

i (i = 1, 2, · · · , N) is denoted as yij . Each sample i has its vector of covariates xi including the intercept.262

The main variable of interest xi1 is binary for DAA between two conditions. If yij is zero, we represent it as263

being left-censored at a positive value d264

y∗ij =

{

d if yij = 0

yij if yij > 0
δij =

{

0 if yij = 0

1 if yij > 0

The default value of d is one because metagenomic sequencing counts are integers and the detection265

limit of the sequencing instrument is one. The relative abundance of taxon j in sample i is denoted zij =266

y∗ij/
∑P

j′=1 yij′ . We fit a Tobit model [20] to the log relative abundances {log zij}i=1,2,··· ,N of each taxon267

j ∈ {1, 2, · · · , P} by calculating the maximum likelihood estimate of268

L(βj , σj) =

N
∏

i=1

[

φ

(

log zij − x⊤
i βj

σj

)]δij [

Φ

(

log zij − x⊤
i βj

σj

)]1−δij

where φ(·) and Φ(·) represent the probability density function and cumulative distribution of the standard269

normal distribution. βj includes the effect sizes of all the covariates. σ is the scale parameter that accounts270

for the variance of log relative abundances. To guarantee the numerical stability of model fitting for rare271

taxa, we estimate the MLE of the Firth penalized likelihood [33]. Section S2 of Supplementary Materials272

describes the details of computational heuristics.273

We report the effect size estimate β̂j1 which represents the log relative abundance fold change of taxon j274

between conditions. We also carry out likelihood ratio test H0 : βj1 = 0 against H1 : βj1 6= 0 and report the275

p-value. We pool the p-values of all the Tobit models to find DA taxa in the following steps.276

4.2.2 Reference Taxa Selection277

If there are no DA taxa, the p-values of hypothesis tests for relative abundance fold changes in the first278

step {wj}j=1,2,··· ,P should display a uniform distribution according to Proposition 2. We fit a beta-uniform279

mixture [34]280

w ∼ πU(0, 1) + (1− π)Beta(α, 1) 0 < π ≤ 1, 0 < α < 1

and apply likelihood ratio tests for H0 : π = 1 against H1 : π < 1. If H0 cannot be rejected, the distribution281

of {wj}j=1,2,··· ,P follows a uniform or left-skewed distribution, indicating that there are no differentially282

abundant taxa.283

If H0 is rejected, the distribution of p-values is right-skewed and there are DA taxa. We must search for284

a subset of reference taxa before identifying DA taxa. According to Proposition 3 and 4, a taxon j is likely285

non-DA if its relative abundance fold change estimate β̂j1 is close to median{β̂j′1}j′=1,2,··· ,P . Therefore, we286

select a subset T ′ with half of all the taxa whose relative abundance fold change estimates are closest to the287

median.288

dj =
∣

∣

∣
β̂j1 −median{β̂j′1}j′=1,2,··· ,P

∣

∣

∣

T ′ = {k| dk < median{dj}j=1,2,··· ,P }

We verify if there are any DA taxa in T ′ in a way similar to the first step. For each taxon k ∈ T ′, we fit Tobit289

models to the count proportion within this subset z′ik = y∗ik/
∑

k′∈T ′ yik′ . We then check if the distribution290

of p-values from these Tobit models is still right-skewed. If the p-value distribution is uniform or left-skewed,291

T ′ is a qualified set of reference taxa. Otherwise, we repeat this second step until we obtain a subset of292

non-DA taxa T0 as reference taxa.293
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4.2.3 Identification of Differentially Abundant Taxa294

Once we identify a subset of non-DA taxa as the reference set, we calculate the count ratio between each295

taxon j and the summed counts of the reference taxa uij = y∗ij/
∑

j′∈T0
yij′ for all samples i = 1, 2, · · · , N .296

We fit a Tobit model to {log uij}i=1,2,··· ,N by calculating the maximum likelihood estimate of297

L(γj , ψj) =

N
∏

i=1

[

φ

(

log uij − x⊤
i γj

ψj

)]δij [

Φ

(

log uij − x⊤
i γj

ψj

)]1−δij

The effect size estimate γ̂j1 represents the log fold change of absolute abundance for taxon j according to298

Proposition 1. The hypothesis testH0 : γj1 = 0 againstH1 : γj1 6= 0 indicates whether taxon j is differentially299

abundant. We apply multiple testing corrections to all the p-values to control false discovery rates and call300

a taxon differentially abundant if its adjusted p-value is below a certain level (e.g., 0.05). The simulation301

studies indicate that the Benjamini-Hochberg method is suitable for multiple corrections.302

4.3 Simulation Framework303

4.3.1 Metadata Generation304

The metadata has two variables X and C. Variable Xi(i = 1, 2, · · · , N) is a binary variable representing305

two contrasting conditions. It is the variable of interest. Variable Ci is a potentially confounding continuous306

covariate. For each sample i, Xi and Ci are generated in the following way307

hi ∼ N (0, 1)

Xi = I(hi > 0)

Ci = ηhi +
√

1− η2N (0, 1)

where η is the correlation parameter that controls the severity of confounding.308

4.3.2 Count Table Generation309

SparseDOSSA [22] generates the count table Y based on the metadata. The simulation scheme of Sparse-310

DOSSA first generates the absolute abundances of each taxon from a zero-inflated log-normal distribution.311

For taxon j(j = 1, 2, · · · , P ) in sample i(i = 1, 2, · · · , N),312

mij ∼ N (0, 1)

Aij =

{

0 Φ(mij) < θij

Lognormal(µij , τ
2
j ) Φ(mij) > θij

where mij is a latent variable for deciding if Aij > 0. The zero inflation probability θij and the log-normal313

distribution parameter µij depend on Xi and Ci314

log

(

1− θij
θij

)

= log

(

1− θ0j
θ0j

)

+Xiγj1 + Ciγj2

µij = µ0j +Xiγj1 + Ciγj2

Taxon j is differentially abundant if γj1 6= 0. Its abundance is correlated with the potential confounder315

if γj2 6= 0. The parameters
{

(µ0j , θ0j , τ
2
j )
}

j=1,2,··· ,P
are drawn from the pre-trained template in the Sparse-316

DOSSA package. The pre-trained template was calculated based on 16S rRNA sequencing of stool samples317

in the Human Microbiome Project [1, 23]. There are 332 sets of zero-inflated log-normal distribution param-318

eters in the pre-trained template. DAA performance is indistinguishable among different methods if the319

simulated count table contains too many rare taxa. Therefore, we only draw (with replacement) from 54320

sets of parameters whose zero inflation probabilities are below 50% to set up absolute abundance distri-321

butions for all taxa. The relative abundances can be derived based on the generated absolute abundances322
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Rij = Aij/
∑P

j′=1Aij′ . We draw the library sizes from another log-normal distribution and generate the323

taxon counts from a multinomial distribution324

Di ∼ Lognormal(µD, τ
2
D)

(yi1, yi2, · · · , yiP ) ∼ Multinom(Di, Ri1, Ri2, · · · , RiP )

4.4 Real Data Preprocessing325

The raw sequencing data can be downloaded from NCBI. For the 16S rRNA sequencing data, we filter and326

trim the reads with low quality. After that, we use the DADA2 [35] package to denoise the reads and assign327

taxonomy to them based on the HOMD database [36]. For the shotgun metagenomics sequencing data, we328

use the SqueezeMeta [37] pipeline to carry out genome assembly and taxonomy assignment.329

5 Data Availability330

The 16S rRNA sequencing data and shotgun metagenomics sequencing data of the COHRA2 study [26] are331

available under project number PRJNA752888 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA752888).332

The metadata can be requested from the dbGaP database under study accession number phs001591.v1.p1.333

The preprocessed count tables and de-identified metadata for the metagenomics data in the early childhood334

dental caries study are available through the ADAPT R package (https://github.com/mkbwang/ADAPT).335

6 Code Availability336

ADAPT is available as an R package on GitHub (https://github.com/mkbwang/ADAPT). The codes for337

simulation studies, sequencing data preprocessing, and real data differential abundance analysis are also338

available on GitHub (https://github.com/mkbwang/ADAPT example).339
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