

1 **For submission to FEMS Microbiology Ecology**

2

3 **Time of day of infection shapes development of a eukaryotic algal-**

4 ***Nucleocytoviricota* virocell**

5

6 Emily E. Chase^{1†}, Alexander R. Truchon^{1†}, Brooke A. Creasey¹, Steven W.
7 Wilhelm^{1*}

8

9 ¹Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States

10

11 **Key Words:** virus-host system, harmful algal bloom, virocell, photosynthesis

12

13 [†]These authors contributed equally.

14 ^{*}Corresponding author.

15

16

17

18 Running title: Infection timing shapes virocell development.

19 **ABSTRACT**

20 *Aureococcus anophagefferens* represents one component of a model host-virus system (with
21 the “giant virus” *Kratosvirus quantuckense*). Studies to define its ribocell (uninfected cells)
22 and virocell (virus-infected cells) forms are needed, as both are abundant during algal
23 blooms. A linkage between light-derived energy, virus particle production and virocell
24 formation has been noted. We explored how the time of day (morning, afternoon, late day) of
25 virus-host contact shaped virocell ontogeny. In parallel, we explored the need for light
26 derived energy in this mixotrophic plankter by inhibiting photosystem II (PSII). Using flow
27 cytometry and photochemical assessments, we examined the physiology of infected cells and
28 controls, and estimated virus particle production by virocells. We observed distinct
29 differences between ribocell and virocell response to treatments, including reductions in virus
30 particle production during reduced light (*i.e.*, duration) and PSII inhibition. Collectively this
31 work demonstrates the importance of light in shaping the fate of infected cells and provides
32 insight into the factors that constrain *in situ* blooms. Most significantly, we show that time of
33 day when a virus and host come into contact influences viral particle production, and
34 therefore bloom dynamics; a factor that needs to be considered in future bloom modeling
35 work.

36

37

38 **INTRODUCTION**

39

40 The pelagophyte *Aureococcus anophagefferens* was first identified as a harmful algal bloom
41 agent during the formation of brown-tide in Narragansett Bay, Rhode Island in 1985 and
42 described using transmission electron microscopy (Sieburth et al., 1988). As part of that
43 initial study (their Figures 12-16), researchers documented the potential role of infectious
44 virus particles in shaping the fate of cells within the bloom. Subsequent work has commonly
45 focused on the algae in isolation: researchers sequenced the genome of *A. anophagefferens* to
46 provide insight into this phytoplankton's bloom success through a lens of physiology and
47 environmental interactions (Gobler et al., 2011). More recently, resequencing of the original
48 strain and two additional strains, as well as the assembly of another through publicly
49 available data, offered further insights (Gann et al., 2022). Since then an additional strain has
50 also been made publicly available (Chase et al., 2024). In parallel, a giant virus
51 (*Nucleocytophycota*) that infects *A. anophagefferens* CCMP1984 and is consistent with the
52 images originally collected by Sieburth and colleagues (1988) has been characterized (Rowe
53 et al., 2008; Brown and Bidle, 2014). Originally known as *Aureococcus anophagefferens*
54 Virus (AaV), this virus was renamed *Kratosvirus quantuckense* and placed in the family
55 *Schizomimiviridae* by the *International Committee on the Taxonomy of Viruses* (Lefkowitz et
56 al., 2018; Aylward et al., 2023). Recently the genome of *K. quantuckense* has also been re-
57 sequenced and is publicly available (Truchon et al., 2022). The host-virus infection cycle has
58 been explored using transcriptomics following temporal changes from early to late-stage
59 infection in parallel to gene expression of uninfected cells (Moniruzzaman et al., 2018).
60 Cumulatively, the existing characterisation of this system promotes its uses for studying
61 virological concepts in general (Truchon et al., 2023): of particular interest is the virocell
62 concept and the role of cellular energy in virus production.

63

64 In the mid-2000s, it was acknowledged that virology disproportionately focused on virus
65 particles without full consideration of infected-cell state; the “virocell” (Forterre, 2011). The
66 importance of the virocell concept was embodied by the ability of a “Mimivirus” (Raoult et
67 al., 2004) to produce viral factories within its host (*i.e.*, functional metabolism and
68 reproduction). Subsequently infected cells were shown to be susceptible to “sickness”,
69 resulting in a reduction of fitness (*e.g.*, reduction of infectious particles) after co-infection of
70 the Sputnik ssDNA virus (La Scola et al., 2008; Desnues et al., 2012). These distinctions
71 (*e.g.*, metabolism and reproduction) are absent in most free-floating virions with some

72 exceptions (Moniruzzaman et al., 2018; Gann et al., 2020c). Broadly, when infected cells are
73 transformed to dedicate their metabolic activity to the requirements of the viral genome
74 (Forterre, 2011; Zimmerman et al., 2020) –it has been argued that an infected cell is a cell no
75 more, but instead simply the reproductive phase of the virus (Forterre, 2016). Regardless,
76 virocells require studies separate from their uninfected counterparts and the virion. The viral
77 genome may also introduce auxiliary metabolic genes (AMGs) into these transformed cells,
78 altering the metabolic capabilities of the original cell (Mann et al., 2003; Hurwitz et al., 2013;
79 Vincent and Vardi, 2023). In contrast to the virocell, uninfected cells which rely on encoded
80 ribosomes and focus on the replication of strictly cellular material can be termed “ribocells”.
81 This distinction acknowledges that during early infection both phases are inhabiting the same
82 physical space as the transition from ribocell to virocell occurs (this in between phase has
83 been termed the “ribovirocell” (Forterre, 2011)). This transition has been observed through
84 transcriptional changes during infection (e.g., *Emiliania huxleyi* with *Emiliania huxleyi* Virus
85 (EhV), and *A. anophagefferens* with *K. quantuckense* (Moniruzzaman et al., 2018; Ku et al.,
86 2020)) and dsRNA-immunofluorescence detection of RNA virus (HcRNAV) infected cells
87 within a population of dinoflagellates (*Heterocapsa circularisquama*) (Coy et al., 2023).
88 Deeper studies have focused on cell physiology during this continuum, primarily looking at
89 cell metabolism.

90

91 Cellular metabolism during viral infection takes energy and indeed metabolism is also novel
92 in members of the *Nucleocytoviricota*. As summarised in a recent review (Brahim Belhaouari
93 et al., 2022), *Nucleocytoviricota* collectively encode genes for glycolysis and
94 gluconeogenesis (Moniruzzaman et al., 2020; Ha et al., 2021), fermentation (Schvarcz and
95 Steward, 2018), the Krebs cycle (Moniruzzaman et al., 2020; Ha et al., 2021), lipid
96 metabolism (Nissimov et al., 2019), energy harvesting from inorganic compounds (Schulz et
97 al., 2020), photosynthesis (Moniruzzaman et al., 2017), and reactive oxygen species
98 regulation (Sheyn et al., 2016). Given our limited knowledge of the energetic costs of these
99 metabolic changes during infection by *Nucleocytoviricota*, we sought to characterize light
100 drive energy processes in the virocell of an ecologically important microalgae and its virus,
101 *A. anophagefferens* and *K. quantuckense*.

102

103 Here we conducted a series of experiments focused on quantifying photosynthesis in the *K.*
104 *quantuckense* virocell. It has been acknowledged that, at any given time, an ecologically
105 significant number of cells in marine environments are in an infected state (i.e., virocell)

106 (Suttle and Wilhelm, 1999; Gastrich et al., 2004; Roux et al., 2016; Middelboe and
107 Brussaard, 2017; Carlson et al., 2022). Variations in cellular energetics caused by infection
108 processes would contribute to alterations in ecosystem functions (Middelboe and Brussaard,
109 2017). Previous work has already shown the importance of light availability during infection
110 of *A. anophagefferens*, where lower light levels led to a reduced burst sizes (Gann et al.,
111 2020); providing insight into bloom dynamics given the occurrence of self-shading in *A.*
112 *anophagefferens* blooms as well as mixing through the water column. We furthered these
113 studies by focusing on the time of infection (*i.e.*, when a ribocells transitions to a virocell) in
114 relation to virus particle production, and the reliance of the development of viral infection of
115 *A. anophagefferens* on continued photosynthesis by the virocell. This is completed by (1)
116 staggering virocell initiation during a standard light cycle and profiling, and (2) gauging the
117 reaction of ribocells and virocells to a photosynthesis blocker (3-(3,4-dichlorophenyl)-1,1-
118 dimethylurea; DCMU).

119

120 MATERIALS AND METHODS

121

122 *Cell culturing and virus propagation*

123

124 *Aureococcus anophagefferens* (CCMP 1984, Bigelow NCMA) cells were grown on a 12/12
125 light:dark ($\sim 100 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$) cycle at 19° C in ASP12A growth medium (Gann,
126 2016) as xenic cultures. Additional cultures for virus propagation were grown ($\sim 1 \text{ L}$) as
127 described and inoculated with viral lysate. Upon full lysis (\sim one week) infected cultures were
128 filtered through 47-mm diameter, 1.0- μm nominal pore-size Whatman™ Nucleopore Track
129 Etch Membrane (Whatman, Inc.) followed by 47-mm diameter, 0.45- μm pore-size Millipore
130 Isopore PC Membrane (MilliporeSigma) to remove cells. The resulting lysate was
131 concentrated on a Tangential Flow Filtration System (Fisher Scientific) with a Durapore 30
132 kDa Pellicon XL Filter (MiliporeSigma) to a final volume of $\sim 50 \text{ mL}$ for experimental use.

133

134 *Procedures for enumerating viral particles and host cells*

135

136 Viral particle abundance within concentrated lysate (Chase et al., 2022c) and host cell density
137 (Chase et al., 2022d) were both determined by flow cytometry. Briefly, a Cytoflex Flow
138 Cytometer system (Beckman Coulter) equipped with a violet laser (Zhao et al., 2023) was

139 used to enumerate viral particles stained with SYBR Gold Nucleic Acid Stain (Invitrogen). *A.*
140 *anophagefferens* cells were enumerated based on autofluorescence. The flow cytometer
141 provided additional data for the host cells including relative cell size (violet side scatter;
142 Violet SSC) and relative per-cell autofluorescence (peridinin-chlorophyll protein complex;
143 PerCP). Cell and virus cytometry gating were confirmed with negative controls (media; see
144 **Supplemental Figure 1**). Cell (*i.e.*, ribocells and virocells) photosynthesis (*i.e.*,
145 photochemistry) was defined by pulse amplitude modulation using a Walz Phyto-PAM
146 analyzer Compact Version (Heinz Walz GmbH) as previously described (Chase et al., 2022b)
147 to record F_v/F_m , which provides insight into the overall function of photosystem II (*i.e.*,
148 “stress”) (Campbell et al., 1998).

149

150 *Virocell formation at different times during the solar day*

151

152 Experiments on the timing of infection within the solar day were completed in batch cultures
153 with starting cell densities of $\sim 1.0 \times 10^6 \text{ mL}^{-1}$. Treatments included no-virus negative controls
154 (*i.e.*, ribocells) and treatments inoculated with viruses at three different times in the solar day:
155 infections occurred with 12 h (EARLY-V), 6 h (MID-V), and 20 min (LATE-V) time
156 remaining exposure to light. All experiments were conducted in true biological triplicate.

157

158 Cultures were infected at a multiplicity of infection (MOI) of approximately 75 particles per
159 cell. We note that MOI here reflects the total abundance of viral particles administered and
160 not number of infectious units. Samples for flow cytometry (*i.e.*, cell population, relative size,
161 and PerCP) were collected for 74 h across 14 timepoints. For each of infection treatments
162 virus abundance was also measured. Virus sampling occurred at 0, 6, 12, 24, 24.5, 30, 48, and
163 72 hours post infection (hpi) relative to the initial time point of the EARLY-V infection. See
164 **Supplemental Figure 2** for an experiment schematic. For virus enumeration at 24, 48, and
165 72 hpi (start of light cycle), cultures were permitted approximately 20 min in light before
166 samples were taken for virus staining, this maximises the number of produced viruses being
167 captured in our counts by giving time for lysis to occur (this practice was carried out for all
168 experiments).

169

170 *Inhibition of photosystem II by DCMU*

171

172 DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea; *aka* diuron) (40 μ M final concentration)
173 was applied to cells to inhibit PSII at the start of their light cycle. For this component batch
174 cultures at cell concentrations of $\sim 3.0 \times 10^6$ mL⁻¹ were prepared: treatments included a no
175 DCMU/no virus control (*i.e.*, ribocells), a no virus control (with DCMU), a virus treatment
176 (no DCMU, *i.e.*, virocells), and a DCMU plus viral inoculated treatment. All experiments
177 were completed in triplicate. Virus inoculated treatments were infected at a MOI of
178 approximately 42 particles per cell. DCMU and virus treatments were permitted to acclimate
179 to DCMU ~ 10 min in light before the administering of the viral inoculant. This application
180 time coincides with the time required for the PSII to be inhibited by DCMU in the algae
181 *Tetraselmis spp.* (Kristoffersen et al., 2016). DCMU concentration was determined by a
182 preliminary experimentation observing both cells counts (**Supplemental Figure 3**) and F_v/F_m
183 (**Supplemental Figure 4**). Flow cytometry measurements were collected at ten times across
184 49 hours post infection (hpi) and post-DCMU application. Viral particles were enumerated at
185 0, 2, 24, 26, 49 hpi. Samples for photochemical measurements occurred at 0, 2, 11.5, 24, 26,
186 28, and 48 hpi and were dark-adapted for 30 min before analysis at a low light level (gain =
187 13, photosynthetically active radiation (PAR) = 1, λ = 440 nm). The experiment took place
188 over two light cycles.

189

190 *Statistical Analyses*

191

192 Data management, analyses, and visualisation were carried out using R Statistical Software
193 (v22.12.0; (R Core Team, 2021)) by packages *tidyverse* (Wickham et al., 2023), *tidyverse*
194 (Wickham et al., 2019), *dplyr* (Wickham et al., 2022), *stringr* (Wickham, 2023), *ggplot2*
195 (Wickham, 2011). Statistical tests (Welch's t-tests) were run using base R for comparisons
196 within experiments. For all tests we assumed used a threshold of p < 0.05 for significance,
197 but we provide these numbers so the reader can decide. Growth rates were calculated as the
198 change in net cell population counts (as measured by cytometry) over two day/night cycles
199 (48 h).

200

201 **RESULTS**

202

203 ***Virus particle production increases with a longer light exposure***

204

205 After two day:night cycles (48 hpi), the abundances of virus particles produced were lower in
206 virocells exposed to shorter light periods (**Figure 1A, Supplemental Figure 5**). Virus lysate
207 addition late in the solar day (*i.e.*, LATE-V) produced fewer viral particles than those
208 infected at the beginning (12 h exposure; EARLY-V) and middle of the light cycle (6 h
209 exposure; MID-V) ($p = 0.072$ (early *vs* mid) and $p = 0.008$ (early *vs* late), **Supplemental**
210 **Table 1**). After three light cycles (72 h), there was a difference between the abundance of
211 viral particles produced between the mid to late samples ($p = 0.048$), but no longer between
212 late and early ($p = 0.108$), seemingly the effect of virocells being formed later in a light cycle
213 is reduced over additional light cycles using a relatively high MOI (75). Cell lysis was also
214 occurring after 24, 48, and 72 hpi (**Supplemental Figure 6, Supplemental Table 2**).
215 Relative cell size (by violet side scatter) incrementally increased in all treatments except for
216 the control where cell division throughout the night “reset” the population’s mean cell size,
217 conversely virocells continued to enlarge (although we recognise that populations exposed to
218 lysate would still include some ribocells—which may harbour infection resistance, we
219 assume it is primarily made up of virocells given these changes in cytometry measurements)
220 (**Figure 1B, Supplemental Figure 7, Supplemental Table 2**). A similar pattern as relative
221 cell size occurs with PerCP (**Supplemental Figure 8**). At 24, 48, and 72 hpi (*i.e.*, one, two,
222 and three complete light cycles) the effects of even the late viral lysate application were
223 apparent in relative size of *A. anophagefferens*, where cells infected ~20 min before the dark
224 cycle were smaller than both the “early” and “mid” infections (early *vs.* mid for 24, 48, and
225 72 hpi respectively: p -values: 0.017 and 0.024, < 0.001 and 0.022, < 0.001 and 0.016).
226

227 ***Interruption of PSII electron transport inhibits population growth and virus production***

228
229 For *A. anophagefferens* cultures acclimated to a 12/12h light/dark cycle the application of
230 DCMU halted photosynthesis within 40 min (when the first photochemistry analyses
231 occurred) (**Figure 2A, Supplemental Figure 9**) as indicated by a statistically significant
232 difference between F_v/F_m of the ribocells without DCMU (*i.e.*, control) and DCMU applied
233 ribocells ($p = < 0.000$, **Supplemental Table 3**), a trend that continued at each sampling point.
234 These results are unsurprising given the use of DCMU to block photosynthesis in other
235 eukaryotic algae (*e.g.*, (Gonen-Zurgil et al., 1996; Samuel et al., 2017)) and for an alternate
236 photosynthetic efficiency calculation in *A. anophagefferens* (Gobler et al., 2007).
237 Additionally there was also a “DCMU enhanced fluorescence” response in photochemistry
238 inferred relative chlorophyll content as previously shown in *A. anophagefferens* (Keller and

239 Rice, 1990), but only for two hours post infection as it was no longer present at 11.5 h into
240 the DCMU application (**Figure 2B, Supplemental Figure 10, Supplemental Table 4**; at 0
241 hpi, $p = 0.000$; at 2 hpi, $p = 0.000$, at 11.5 hpi $p = 0.860$). We note we did not see this pattern
242 in our cytometry PerCP (peridinin-chlorophyll protein complex) data (**Supplemental Figure**
243 **10**).

244

245 Cytometry based cell counts between control ribocells and DCMU exposed ribocells (no
246 virus) were different at 24, and 29 hpi ($p = 0.016$, and 0.006, respectively), and a similar
247 pattern was shown at 26 and 48 hpi ($p = 0.052$ and 0.052; **Supplemental Figure 11**,
248 **Supplemental Table 5**). As expected, at 48 hpi there was a significant difference between
249 the control and virus-infected populations (both with and without DCMU; $p = 0.038$ and
250 0.047). There were more cells in DCMU treated control cultures than the virus infected (*i.e.*,
251 virocells) non-DCMU cultures ($p = 0.019$). There was no difference between cultures treated
252 only with DCMU and cultures treated with DCMU and viral lysate ($p = 0.169$,
253 **Supplementary Table 5**).

254

255 There was a difference (albeit non-significant) in growth rate at 48 h of the control and the
256 DCMU treated ribocells (**Supplemental Figure 12; Supplemental Table 6**, $p = 0.056$).
257 Given the growth rate for the DCMU-treated cells was negative, it is possible the DCMU
258 population would collapse if given additional light cycles as DCMU causes a non-reversible
259 block of electron transfer (Kirilovsky et al., 1994). Previous work has shown that DCMU
260 protects the D1 protein from degradation and removal (Chung and Jung, 1995) and only
261 under “high light” conditions will DCMU fail to protect against photodamage—this “high
262 light” level required in our system is yet to be known and outside the scope of this study.
263 Nonetheless, DCMU was effective at blocking PSII. Growth rate was also not different ($p =$
264 0.184) between cultures with virus lysate applied independent of the presence of DCMU.
265 Cultures acclimated to DCMU and with viral lysate had fewer free viral particles recorded
266 after two light cycles (48 hpi) than infected cultures without DCMU (**Supplemental Table 7**,
267 $p = 0.027$) (**Figure 2C, Supplemental Figure 13**). Finally, relative size (by violet side
268 scatter) showed the same pattern as discussed for the “light exposure” experiment
269 (**Supplemental Figure 14**).

270

271 **DISCUSSION**

272

273 We applied treatments to the *A. anophagefferens* and *K. quantuckense* host-virus system to
274 assess responses to light derived energy during virus infection and production. Our results
275 present a unique perspective in that the duration of light exposure to the host-virus pair after
276 infection has implications for the abundance of viral particles being released at the time of
277 lysis. This suggests that the time of day that a virus contacts and infects a host may be critical
278 to the outcome of that encounter. Additionally, we provide insight into the complete
279 disruption of photosynthetic energy production by inhibition of the PSII D1 protein using
280 DCMU, showcasing that infection in absence of photosynthesis (akin to no daylight) also
281 produces few to no viral particles.

282

283 *The infection cycle of A. anophagefferens by K. quantuckense is constrained by the length of*
284 *light exposure and occurrence of a “dark period”, not by time since virus contact/infection*
285

286 A major observation of these studies is that the “standard” infection cycle of *A.*
287 *anophagefferens* with *K. quantuckense* (reported as ~24 h during previous experiments,
288 (Brown and Bidle, 2014; Moniruzzaman et al., 2018; Gann et al., 2020b)) is reflective of the
289 light/dark cycles used during experiments in laboratories. Our results demonstrate that the
290 time from infection to lysis is influenced by cumulative light and dark periods, rather than
291 time since infection, although some theoretical maximum likely occurs based on cell space
292 for viral particles within the host cell, *etc.* For cultures exposed to the same irradiance time
293 and on the same light cycle (*i.e.*, acclimated to the same growing conditions), we
294 demonstrated that the length of the light period after virus contact had consequences for the
295 abundance of viral particles produced—even after several light/dark cycles. This observation
296 demonstrates important lasting consequences (at least over three “days”) of timing of the
297 virus-host contact (relative to the dark cycle) on infection dynamics. Previous work has found
298 that infection cycle length can change among cells exposed to differing light intensity (see
299 (Gann et al., 2020a; Gobler et al., 2007). Consequently, there is an interplay between light
300 availability (intensity) and exposure period with virus production in this system. In natural
301 systems where *A. anophagefferens* blooms (like Quantuck Bay, NY) the difference in solar
302 day length can be as much as 2 h per day (June (15h) relative to late August (13h)) during the
303 summer bloom season. While we did not test these specific times in the current study, based
304 on our observations the reduction in day length of ~13% during the bloom season may
305 potentially have effects on virus-host interactions.

306

307 The combined roles of light and time of viral contact are likely an important factor in bloom
308 termination/collapse among *in situ* *A. anophagefferens* and any *K. quantuckense* or *K.*
309 *quantuckense*-related viruses (Moniruzzaman et al., 2017), especially as irradiance is not
310 homogenous among the population—which is specifically relevant to the turbid bays where
311 *A. anophagefferens* blooms. Daylength (alongside nutrients, temperature, *etc.*) may also
312 contribute to the duration of *A. anophagefferens* blooms, which can “peak” for a span of 20
313 days (Wazniak and Glibert, 2004) or produce multiple bloom peaks in a season
314 (Moniruzzaman et al., 2016). At this point we note this is a study of just one virus-host
315 system alone, and that *in situ* other *K. quantuckense*-related viruses may exhibit different
316 energetics (*e.g.*, physiology, burst sizes, viral particle production in relation to light, *etc.*). In
317 terms of evolution, we relate this to the so-called “quasigenus” effect, where giant viruses
318 diversify into a closely related group capable of different infection strategies to match
319 different strains of a bloom species (*e.g.*, *A. anophagefferens*) and environmental (including
320 light) conditions (Highfield et al., 2014, 2017; Chase et al., 2022a). Seemingly, the
321 mixotrophic capabilities of *A. anophagefferens* should help the host persist in a bloom state
322 during light-limitation, with the consequence of reducing viral production. This does lead to
323 an interesting survival strategy for the host: switching to heterotrophic growth may provide
324 an extended period for host-defense mechanisms to purge an infectious virus.
325

326 ***Viral particle production within PSII blocked cells: questioning mixotrophy***

327

328 *A. anophagefferens* cultures acclimated to DCMU produced significantly fewer virus
329 particles compared to cultures not treated with DCMU, implying light is necessary for viral
330 particle production. This is also evident in some cyanobacterium-bacteriophage systems (Ni
331 and Zeng, 2016; Liu et al., 2019). We note that cell acclimation to DCMU was carried out
332 during the light cycle (*i.e.*, treatment was applied near the start of the light cycle but not in the
333 complete absence of light). Despite our cells’ response to DCMU (*e.g.*, reduced growth
334 rates), it is not definite that DCMU application would necessarily increase the progression of
335 photodamage in the presence of light and consequently cell death (Kirilovsky et al., 1994;
336 Allakhverdiev et al., 2005). In fact, algae capable of mixotrophy are potentially resistant to
337 DCMU as an algaecide (and “herbicides” in general (Xie et al., 2023)). *A. anophagefferens* is
338 capable of mixotrophy (Cosper et al., 1989; Dzurica et al., 1989; Gobler and Sañudo-
339 Wilhelmy, 2001), so this disconnect requires further exploration given that cells grown under
340 mixotrophic conditions could respond differently. In theory, blocking PSII of *A.*

341 *anophagefferens* and forcing them into a heterotrophic lifestyle should give insights into viral
342 production driven by heterotrophic energy production: as noted above that there is little virus
343 production this may be part of a larger resistance mechanism in these cells. In the present
344 case, where PSII was inhibited at the start of the light cycle, cells produced fewer viral
345 particles than cells which did not have PSII interrupted. These results provide further
346 evidence of the importance of light to virus infection.

347

348 *Initial light period and exposure shapes infection dynamics*

349

350 Incorporation of light history and irradiance along with the timing of virus-host contact
351 within the light cycle should be considered in studies of *A. anophagefferens* and *K.*
352 *quantuckense*. In the present study we attempted to mimic a “time of day” infection model –
353 contrasting virus-host infections that would happen early in the solar day *vs* later. This is
354 perhaps most relevant (and complicating) for *in situ* studies where cells in a population are
355 metabolically heterogenous (*e.g.*, employing photosynthesis *vs.* heterotrophic strategies to
356 acquire energy) due to varying light availabilities and histories. Based on our conclusions,
357 infection dynamics should differ based on when a virus encounters a cell during the solar day
358 (relative to nightfall), the amount of light attenuation in the water column, bloom
359 heterogeneity and mixing, bloom density (self-shading), and how photosynthesis in general is
360 proceeding in individual cells throughout the population (as demonstrated by our DCMU
361 experiment) (see Featured Figure, **Figure 3**), and additionally the sinking rate of cells which
362 we know differs between infected and uninfected cells (Truchon et al., 2024). Going forward,
363 these factors need to be considered for *in situ* bloom models.

364

365 In the context of *A. anophagefferens*, which is known to bloom in coastal bays (Mulholland
366 et al., 2004; Sieracki et al., 2004; Simjouw et al., 2004; Probyn et al., 2010; Yao et al., 2019),
367 the effects of climate change (*e.g.*, temperature, nutrient composition, mixing and water
368 column structure) can shape light availability. An indirect consequence of these changes may
369 be altered bloom duration due to light constraints on virus-mediated bloom termination.
370 Decreasing virus production and cell lysis could lead to enhanced light attenuation and a
371 positive feedback loop that could increase bloom duration and affect the local ecosystem.
372 Consequently, light histories become important metrics (similar to nutrients, temperature,
373 *etc.*) that need to be considered and if possible, hindcast for environment-based experiments.

374

375 **CONCLUSION**

376

377 We explored the effects of “time of day” of virus-host contact, and inhibition of
378 photosynthesis on virus production in an ecologically important HAB-giant virus system. Our
379 results also showcase how within the same algal species ribocells and virocells (both
380 important and significant components of a population) differ, and that bloom heterogeneity
381 needs to be considered. A better understanding of the role of viruses in the ecology of blooms
382 of this brown tide causative agent will require an understanding of light history (intensity and
383 time), and heterogeneity (ribocell vs virocell) to provide both a better mechanistic
384 understanding of the potential role of viruses and cell state in bloom demise.

385

386

387 **AUTHOR CONTRIBUTIONS**

388

389 **EEC:** conceptualization, formal analysis, investigation, methodology, visualization, writing –
390 original draft preparation, project administration. **ART:** writing – review & editing. **BAC:**
391 methodology. **SWW:** Conceptualisation, funding acquisition, project administration,
392 supervision, validation, writing – review & editing

393

394 **FUNDING**

395 This work was supported by grants from the Simons Foundation (735007) as well as the
396 National Science Foundation (IOS1922958).

397

398 **ACKNOWLEDGEMENTS**

399 The authors wish to thank Brittany N. Zepernick, Katelyn A. Houghton, and Gwen F. Stark
400 for their feedback and discussion on these methods and conclusions.

401

402 **REFERENCES**

403 Allakhverdiev, S. I., Nishiyama, Y., Takahashi, S., Miyairi, S., Suzuki, I., and Murata, N.
404 (2005). Systematic analysis of the relation of electron transport and ATP Synthesis to
405 the photodamage and repair of photosystem II in *Synechocystis*. *Plant Physiology*
406 137, 263–273. doi: 10.1104/pp.104.054478

407 Aylward, F. O., Abrahão, J. S., Brussaard, C. P. D., Fischer, M. G., Moniruzzaman, M.,
408 Ogata, H., et al. (2023). Taxonomic update for giant viruses in the order Imitervirales
409 (phylum Nucleocytoviricota). *Archives of Virology* 168, 283. doi: 10.1007/s00705-
410 023-05906-3

411 Brahim Belhaouari, D., Pires De Souza, G. A., Lamb, D. C., Kelly, S. L., Goldstone, J. V.,
412 Stegeman, J. J., et al. (2022). Metabolic arsenal of giant viruses: Host hijack or self-
413 use? *eLife* 11, e78674. doi: 10.7554/eLife.78674

414 Brown, C. M., and Bidle, K. D. (2014). Attenuation of virus production at high multiplicities
415 of infection in *Aureococcus anophagefferens*. *Virology* 466–467, 71–81. doi:
416 10.1016/j.virol.2014.07.023

417 Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., and Öquist, G. (1998). Chlorophyll
418 fluorescence analysis of cyanobacterial photosynthesis and acclimation. *Microbiology
419 and Molecular Biology Reviews* 62, 667–683. doi: 10.1128/mmbr.62.3.667-683.1998

420 Samuel, A., Guieysse, B., Alcántara, C., and Béchet, Q. (2017). Fast algal eco-toxicity
421 assessment: Influence of light intensity and exposure time on *Chlorella vulgaris*
422 inhibition by atrazine and DCMU. *Ecotoxicology and Environmental Safety* 140, 141–
423 147. doi: 10.1016/j.ecoenv.2017.02.013

424 Carlson, M. C. G., Ribalet, F., Maidanik, I., Durham, B. P., Hulata, Y., Ferrón, S., et al.
425 (2022). Viruses affect picocyanobacterial abundance and biogeography in the North
426 Pacific Ocean. *Nature Microbiology* 7, 570–580. doi: 10.1038/s41564-022-01088-x

427 Chase, E. E., Pitot, T. M., Monteil-Bouchard, S., Desnues, C., and Blanc, G. (2022a).
428 “Quasigenus” among *Phycodnaviridae*: A diversity of chlorophyte-infecting viruses
429 in response to a dense algal culture in a high-rate algal pond. 2022.12.26.521929. doi:
430 10.1101/2022.12.26.521929

431 Chase, E. E., Stark, G., Truchon, A., and Wilhelm, S. W. (2022b). Application of PHYTO-
432 PAM-II (Compact Version) on *Aureococcus anophagefferens* cultures for
433 photosynthetic efficiency and quantum yield of PSII. Available at:
434 [https://www.protocols.io/view/application-of-phyto-pam-ii-compact-version-on-aur-
435 cgt4twqw](https://www.protocols.io/view/application-of-phyto-pam-ii-compact-version-on-aur-cgt4twqw) (Accessed April 25, 2023).

436 Chase, E. E., Truchon, A., Coy, S. R., and Wilhelm, S. W. (2022c). *Aureococcus
437 anophagefferens* Virus (AaV)/*Kratosvirus quantuckense* viral particle count by SYBR
438 Green staining and flow cytometry (CytoFLEX S Flow Cytometer Beckman Coulter)
439 Available at: [https://www.protocols.io/view/aureococcus-anophagefferens-virus-aav-
440 florevirus-ci99uh96](https://www.protocols.io/view/aureococcus-anophagefferens-virus-aav-florevirus-ci99uh96) (Accessed April 25, 2023).

441 Chase, E. E., Truchon, A. R., Schepens, W. W., and Wilhelm, S. W. (2024). *Aureococcus
442 anophagefferens* strain CCMP1851: Draft genome of a second *Kratosvirus*

443 *quantuckense* susceptible host strain for this host-giant virus model system. *Microbiol*
444 *Resour Announc.* doi:10.1128/mra.00292-24

445 Chase, E. E., Truchon, A., and Wilhelm, S. W. (2022d). *Aureococcus anophagefferens*
446 population count, and relative size (Violet SSC) by flow cytometry (CytoFLEX S
447 Flow Cytometer Beckman Coulter). Available at:
448 <https://www.protocols.io/view/aureococcus-anophagefferens-population-count-and-r-cgzftx3n> (Accessed April 25, 2023).

449 Chung, S. K., and Jung, J. (1995). Inactivation of the acceptor side and degradation of the D1
450 protein of photosystem II by singlet oxygen photogenerated from the outside.
451 *Photochemistry and Photobiology* 61, 383–389. doi: 10.1111/j.1751-
452 1097.1995.tb08627.x

453 Cosper, E. M., Dennison, W., Milligan, A., Carpenter, E. J., Lee, C., Holzapfel, J., et al.
454 (1989). An examination of the environmental factors important to initiating and
455 sustaining “brown tide” blooms., in *Novel Phytoplankton Blooms*, eds. E. M. Cosper,
456 V. M. Bricelj, and E. J. Carpenter (Berlin, Heidelberg: Springer), 317–340. doi:
457 10.1007/978-3-642-75280-3_18

458 Coy, S. R., Utama, B., Spurlin, J. W., Kim, J. G., Deshmukh, H., Lwigale, P., et al. (2023).
459 Visualization of RNA virus infection in a marine protist with a universal biomarker.
460 *Sci Rep* 13, 5813. doi: 10.1038/s41598-023-31507-w

461 Desnues, C., Boyer, M., and Raoult, D. (2012). “Chapter 3 - Sputnik, a virophage infecting
462 the viral domain of life,” in *Advances in Virus Research*, eds. M. Łobocka and W. T.
463 Szybalski (Academic Press), 63–89. doi: 10.1016/B978-0-12-394621-8.00013-3

464 Dzurica, S., Lee, C., Cosper, E. M., and Carpenter, E. J. (1989). Role of environmental
465 variables, specifically organic compounds and micronutrients, in the growth of the
466 Chrysophyte *Aureococcus anophagefferens*. In *Novel Phytoplankton Blooms*, eds. E.
467 M. Cosper, V. M. Bricelj, and E. J. Carpenter (Berlin, Heidelberg: Springer), 229–
468 252. doi: 10.1007/978-3-642-75280-3_13

469 Forterre, P. (2011). Manipulation of cellular syntheses and the nature of viruses: The virocell
470 concept. *Comptes Rendus Chimie* 14, 392–399. doi: 10.1016/j.crci.2010.06.007

471 Forterre, P. (2016). To be or not to be alive: How recent discoveries challenge the traditional
472 definitions of viruses and life. *Studies in History and Philosophy of Science Part C:*
473 *Studies in History and Philosophy of Biological and Biomedical Sciences* 59, 100–
474 108. doi: 10.1016/j.shpsc.2016.02.013

475 Gann, E. R. (2016). ASP12A Recipe for culturing *Aureococcus anophagefferens*.
476 *protocols.io*. doi: dx.doi.org/10.17504/protocols.io.f3ybqpw

477 Gann, E. R., Gainer, P. J., Reynolds, T. B., and Wilhelm, S. W. (2020a). Influence of light on
478 the infection of *Aureococcus anophagefferens* CCMP 1984 by a “giant virus.” *PLOS*
479 *ONE* 15, e0226758. doi: 10.1371/journal.pone.0226758

480 Gann, E. R., Hughes, B. J., Reynolds, T. B., and Wilhelm, S. W. (2020b). Internal Nitrogen
481 Pools Shape the Infection of *Aureococcus anophagefferens* CCMP 1984 by a Giant
482 Virus. *Frontiers in Microbiology* 11. Available at:
483

484 https://www.frontiersin.org/articles/10.3389/fmicb.2020.00492 (Accessed July 11,
485 2023).

486 Gann, E. R., Truchon, A. R., Papoulis, S. E., Dyhrman, S. T., Gobler, C. J., and Wilhelm, S.
487 W. (2022). *Aureococcus anophagefferens* (Pelagophyceae) genomes improve
488 evaluation of nutrient acquisition strategies involved in brown tide dynamics. *Journal
489 of Phycology* 58, 146–160. doi: 10.1111/jpy.13221

490 Gann, E. R., Xian, Y., Abraham, P. E., Hettich, R. L., Reynolds, T. B., Xiao, C., et al.
491 (2020c). Structural and proteomic studies of the *Aureococcus anophagefferens* Virus
492 demonstrate a global distribution of virus-encoded carbohydrate processing. *Frontiers
493 in Microbiology* 11. doi: 10.3389/fmicb.2020.02047

494 Gastrich, M. D., Leigh-Bell, J. A., Gobler, C. J., Roger Anderson, O., Wilhelm, S. W., and
495 Bryan, M. (2004). Viruses as potential regulators of regional brown tide blooms
496 caused by the alga, *Aureococcus anophagefferens*. *Estuaries* 27, 112–119. doi:
497 10.1007/BF02803565

498 Gobler, C. J., Anderson, O.R. , Gastrich, M., and Wilhelm, S. W. (2007). Ecological aspects
499 of viral infection and lysis in the harmful brown tide alga *Aureococcus
500 anophagefferens*. *Aquatic Microbial Ecology* 47, 25–36. doi: 10.3354/ame047025

501 Gobler, C. J., Berry, D. L., Dyhrman, S. T., Wilhelm, S. W., Salamov, A., Lobanov, A. V., et
502 al. (2011). Niche of harmful alga *Aureococcus anophagefferens* revealed through
503 ecogenomics. *Proceedings of the National Academy of Sciences* 108, 4352–4357. doi:
504 10.1073/pnas.1016106108

505 Gobler, C., and Sañudo-Wilhelmy, S. (2001). Effects of organic carbon, organic nitrogen,
506 inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria
507 during a brown tide bloom. *Marine Ecology-progress Series - MAR ECOL-PROGR
508 SER* 209, 19–34. doi: 10.3354/meps209019

509 Gonen-Zurgil, Y., Carmeli-Schwartz, Y., and Sukenik, A. (1996). Selective effect of the
510 herbicide DCMU on unicellular algae — a potential tool to maintain monoalgal mass
511 culture of *Nannochloropsis*. *J Appl Phycol* 8, 415–419. doi: 10.1007/BF02178586

512 Ha, A. D., Moniruzzaman, M., and Aylward, F. O. (2021). High transcriptional activity and
513 diverse functional repertoires of hundreds of giant viruses in a coastal marine system.
514 *mSystems* 6, e00293-21. doi: 10.1128/mSystems.00293-21

515 Highfield, A., Evans, C., Walne, A., Miller, P. I., and Schroeder, D. C. (2014). How many
516 *Coccolithovirus* genotypes does it take to terminate an *Emiliania huxleyi* bloom?
517 *Virology* 466–467, 138–145. doi: 10.1016/j.virol.2014.07.017

518 Highfield, A., Joint, I., Gilbert, J. A., Crawfurd, K. J., and Schroeder, D. C. (2017). Change in
519 *Emiliania huxleyi* virus assemblage diversity but not in host genetic composition
520 during an ocean acidification mesocosm experiment. *Viruses* 9, 41. doi:
521 10.3390/v9030041

522 Hurwitz, B. L., Hallam, S. J., and Sullivan, M. B. (2013). Metabolic reprogramming by
523 viruses in the sunlit and dark ocean. *Genome Biology* 14, R123. doi: 10.1186/gb-
524 2013-14-11-r123

525 Keller, A. A., and Rice, R. L. (1990). Variation in DCMU-enhanced fluorescence relative to
526 chlorophyll a: Correlation with the brown tide bloom. *Journal of Phycology* 26, 202–
527 205. doi: 10.1111/j.0022-3646.1990.00202.x

528 Kirilovsky, D., Rutherford, A. W., and Etienne, A. L. (1994). Influence of DCMU and
529 ferricyanide on photodamage in photosystem II. *Biochemistry* 33, 3087–3095. doi:
530 10.1021/bi00176a043

531 Kristoffersen, A. S., Hamre, B., Frette, Ø., and Erga, S. R. (2016). Chlorophyll a fluorescence
532 lifetime reveals reversible UV-induced photosynthetic activity in the green algae
533 *Tetraselmis*. *European Biophysics Journal* 45, 259–268. doi: 10.1007/s00249-015-
534 1092-z

535 Ku, C., Sheyn, U., Sebé-Pedrós, A., Ben-Dor, S., Schatz, D., Tanay, A., et al. (2020). A
536 single-cell view on alga-virus interactions reveals sequential transcriptional programs
537 and infection states. *Science Advances* 6, eaba4137. doi: 10.1126/sciadv.aba4137

538 La Scola, B., Desnues, C., Pagnier, I., Robert, C., Barrassi, L., Fournous, G., et al. (2008).
539 The virophage as a unique parasite of the giant mimivirus. *Nature* 455, 100–104. doi:
540 10.1038/nature07218

541 Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., and Smith,
542 D. B. (2018). Virus taxonomy: the database of the International Committee on
543 Taxonomy of Viruses (ICTV). *Nucleic Acids Research* 46, D708–D717. doi:
544 10.1093/nar/gkx932

545 Liu, R., Liu, Y., Chen, Y., Zhan, Y., and Zeng, Q. (2019). Cyanobacterial viruses exhibit
546 diurnal rhythms during infection. *Proceedings of the National Academy of Sciences*
547 116, 14077–14082. doi: 10.1073/pnas.1819689116

548 Mann, N. H., Cook, A., Millard, A., Bailey, S., and Clokie, M. (2003). Bacterial
549 photosynthesis genes in a virus. *Nature* 424, 741–741. doi: 10.1038/424741a

550 Middelboe, M., and Brussaard, C. P. D. (2017). Marine viruses: Key players in marine
551 ecosystems. *Viruses* 9, 302. doi: 10.3390/v9100302

552 Moniruzzaman, M., Gann, E. R., LeCleir, G. R., Kang, Y., Gobler, C. J., and Wilhelm, S. W.
553 (2016). Diversity and dynamics of algal Megaviridae members during a harmful
554 brown tide caused by the pelagophyte, *Aureococcus anophagefferens*. *FEMS*
555 *Microbiology Ecology* 92, fiw058. doi: 10.1093/femsec/fiw058

556 Moniruzzaman, M., Gann, E. R., and Wilhelm, S. W. (2018). Infection by a Giant Virus
557 (AaV) Induces widespread physiological reprogramming in *Aureococcus*
558 *anophagefferens* CCMP1984 - A harmful bloom algae. *Frontier in Microbiology* 9,
559 752. doi: 10.3389/fmicb.2018.00752

560 Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R., and Aylward, F. O.
561 (2020). Dynamic genome evolution and complex virocell metabolism of globally-
562 distributed giant viruses. *Nature Communications* 11, 1710. doi: 10.1038/s41467-020-
563 15507-2

564 Moniruzzaman, M., Wurch, L. L., Alexander, H., Dyhrman, S. T., Gobler, C. J., and
565 Wilhelm, S. W. (2017). Virus-host relationships of marine single-celled eukaryotes
566 resolved from metatranscriptomics. *Nature Communications* 8, 16054. doi:
567 10.1038/ncomms16054

568 Mulholland, M. R., Boneillo, G., and Minor, E. C. (2004). A comparison of N and C uptake
569 during brown tide (*Aureococcus anophagefferens*) blooms from two coastal bays on
570 the east coast of the USA. *Harmful Algae* 3, 361–376. doi: 10.1016/j.hal.2004.06.007

571 Ni, T., and Zeng, Q. (2016). Diel infection of cyanobacteria by cyanophages. *Frontiers in*
572 *Marine Science*, 2, 123. doi: 10.3389/fmars.2015.00123

573 Nissimov, J. I., Talmy, D., Haramaty, L., Fredricks, H. F., Zelzion, E., Knowles, B., et al.
574 (2019). Biochemical diversity of glycosphingolipid biosynthesis as a driver of
575 *Coccolithovirus* competitive ecology. *Environmental Microbiology* 21, 2182–2197.
576 doi: 10.1111/1462-2920.14633

577 Probyn, T. A., Bernard, S., Pitcher, G. C., and Pienaar, R. N. (2010). Ecophysiological
578 studies on *Aureococcus anophagefferens* blooms in Saldanha Bay, South Africa.
579 *Harmful Algae* 9, 123–133. doi: 10.1016/j.hal.2009.08.008

580 R Core Team (2021). R: A language and environment for statistical computing. Available at:
581 <https://www.R-project.org/>.

582 Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., et al. (2004). The 1.2-
583 megabase genome sequence of Mimivirus. *Science* 306, 1344–1350. doi:
584 10.1126/science.1101485

585 Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., et al. (2016).
586 Ecogenomics and potential biogeochemical impacts of globally abundant ocean
587 viruses. *Nature* 537, 689–693. doi: 10.1038/nature19366

588 Rowe, J. M., Dunlap, J. R., Gobler, C. J., Anderson, O. R., Gastrich, M. D., and Wilhelm, S.
589 W. (2008). Isolation of a non-phage-like lytic virus infecting *Aureococcus*
590 *Anophagefferens*. *Journal of Phycology* 44, 71–76. doi: 10.1111/j.1529-
591 8817.2007.00453.x

592 Schulz, F., Roux, S., Paez-Espino, D., Jungbluth, S., Walsh, D. A., Denef, V. J., et al. (2020).
593 Giant virus diversity and host interactions through global metagenomics. *Nature* 578,
594 432–436. doi: 10.1038/s41586-020-1957-x

595 Schvarcz, C. R., and Steward, G. F. (2018). A giant virus infecting green algae encodes key
596 fermentation genes. *Virology* 518, 423–433. doi: 10.1016/j.virol.2018.03.010

597 Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z., and Vardi, A. (2016). Modulation of host
598 ROS metabolism is essential for viral infection of a bloom-forming coccolithophore
599 in the ocean. *ISME J* 10, 1742–1754. doi: 10.1038/ismej.2015.228

600 Sieburth, J. McN., Johnson, P. W., and Hargraves, P. E. (1988). Ultrastructure and ecology of
601 *Aureococcus anophagefferens* Gen. Et Sp. Nov. (Chrysophyceae): The dominant
602 picoplankter during a bloom in Narragansett Bay, Rhode Island, Summer 1985.
603 *Journal of Phycology* 24, 416–425. doi: 10.1111/j.1529-8817.1988.tb04485.x

604 Sieracki, M. E., Gobler, C. J., Cucci, T. L., Thier, E. C., Gilg, I. C., and Keller, M. D. (2004).
605 Pico- and nanoplankton dynamics during bloom initiation of *Aureococcus* in a Long
606 Island, NY bay. *Harmful Algae* 3, 459–470. doi: 10.1016/j.hal.2004.06.012

607 Simjouw, J.-P., Mulholland, M. R., and Minor, E. C. (2004). Changes in dissolved organic
608 matter characteristics in Chincoteague Bay during a bloom of the pelagophyte
609 *Aureococcus anophagefferens*. *Estuaries* 27, 986–998. doi: 10.1007/BF02803425

610 Suttle, C. A., and Wilhelm, S. W. (1999). Viruses and nutrient cycles in the sea. *BioScience*
611 49. doi: 10.2307/1313569

612 Truchon, A. R., Chase, E. E., Gann, E. R., Moniruzzaman, M., Creasey, B. A., Aylward, F.
613 O., et al. (2023). *Kratosvirus quantuckense*: The history and novelty of an algal bloom
614 disrupting virus and a model for giant virus research. *Frontiers in Microbiology* 14.

615 Truchon, A. R., Chase, E. E., Stark, A. R., and Wilhelm, S. W. (2024). The diel disconnect
616 between cell growth and division in *Aureococcus* is interrupted by giant virus
617 infection. *bioRxiv* 2024.05.01.592014. doi: 10.1101/2024.05.01.592014

618 Truchon, A. R., Gann, E. R., and Wilhelm, S. W. (2022). Closed, circular genome sequence
619 of *Aureococcus anophagefferens* Virus, a lytic virus of a brown tide-forming alga.
620 *Microbiology Resource Announcements* 11, e00282-22. doi: 10.1128/mra.00282-22

621 Vincent, F., and Vardi, A. (2023). Viral infection in the ocean—A journey across scales.
622 *PLOS Biology* 21, e3001966. doi: 10.1371/journal.pbio.3001966

623 Wazniak, C. E., and Glibert, P. M. (2004). Potential impacts of brown tide, *Aureococcus*
624 *anophagefferens*, on juvenile hard clams, *Mercenaria mercenaria*, in the coastal bays
625 of Maryland, USA. *Harmful Algae* 3, 321–329. doi: 10.1016/j.hal.2004.06.004

626 Wickham, H. (2011). ggpplot2. *WIREs Computational Statistics* 3, 180–185. doi:
627 10.1002/wics.147

628 Wickham, H. (2023). stringr: Simple, Consistent Wrappers for Common String Operations.
629 Available at: <https://stringr.tidyverse.org>

630 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al.
631 (2019). Welcome to the Tidyverse. *Journal of Open Source Software* 4, 1686. doi:
632 10.21105/joss.01686

633 Wickham, H., François, R., Henry, L., and Müller, K. (2022). dplyr: A Grammar of Data
634 Manipulation. Available at: <https://github.com/tidyverse/dplyr>

635 Wickham, H., Vaughan, D., and Girlich, M. (2023). Tidyr: Easily tidy data with ‘spread()’
636 and ‘gather()’ functions. Available at: <https://github.com/tidyverse/tidyr>,
637 <https://tidyr.tidyverse.org>

638 Xie, Z., Wu, Z., Wang, O., and Liu, F. (2023). Unexpected growth promotion of *Chlorella*
639 *saccharophila* triggered by herbicides DCMU. *Journal of Hazardous Materials* 452,
640 131216. doi: 10.1016/j.jhazmat.2023.131216

641 Yao, P., Lei, L., Zhao, B., Wang, J., and Chen, L. (2019). Spatial-temporal variation of
642 *Aureococcus anophagefferens* blooms in relation to environmental factors in the
643 coastal waters of Qinhuangdao, China. *Harmful Algae* 86, 106–118. doi:
644 10.1016/j.hal.2019.05.011

645 Zhao, Y., Zhao, Y., Zheng, S., Zhao, L., Zhang, W., Xiao, T., et al. (2023). Enhanced
646 resolution of marine viruses with violet side scatter. *Cytometry Part A* 103, 260–268.
647 doi: 10.1002/cyto.a.24674

648 Zimmerman, A. E., Howard-Varona, C., Needham, D. M., John, S. G., Worden, A. Z.,
649 Sullivan, M. B., et al. (2020). Metabolic and biogeochemical consequences of viral
650 infection in aquatic ecosystems. *Nature Reviews Microbiology* 18, 21–34. doi:
651 10.1038/s41579-019-0270-x

652

653 **FIGURE CAPTIONS**

654 **Figure 1.** Virocell formation (*i.e.*, virus lysate application) at different time points within a
655 12/12 light/dark cycle in *Aureococcus anophagefferens* with the virus *Kratosvirus*
656 *quantuckense*. **(A)** Mean viral particle counts (within culture media) at different time points
657 (all relative to the early infection start time). **(B)** Mean relative size of *A. anophagefferens*
658 population cells throughout three light cycles (plus two hours after the third light cycle) as
659 measured via cytometry. Abbreviations: LATE-V; lysate applied ~20 min before the end of
660 the 12 h light cycle, MID-V; lysate applied midway through the light cycle (6 h), EARLY-V;
661 lysate applied at the start of the light cycle (12 h exposure), CON; ribocell control (no viral
662 lysate); SSC: side scatter.

663

664 **Alt text:** A boxplot shows that the number of viral particles produced after forty-eight
665 experimental hours and seventy-two experimental hours is more in cell infected early in the
666 day than late in the day. A second boxplot shows that the average cell size of a population at
667 seventy-two hours is larger in cells infected early in the day than later in the day.

668

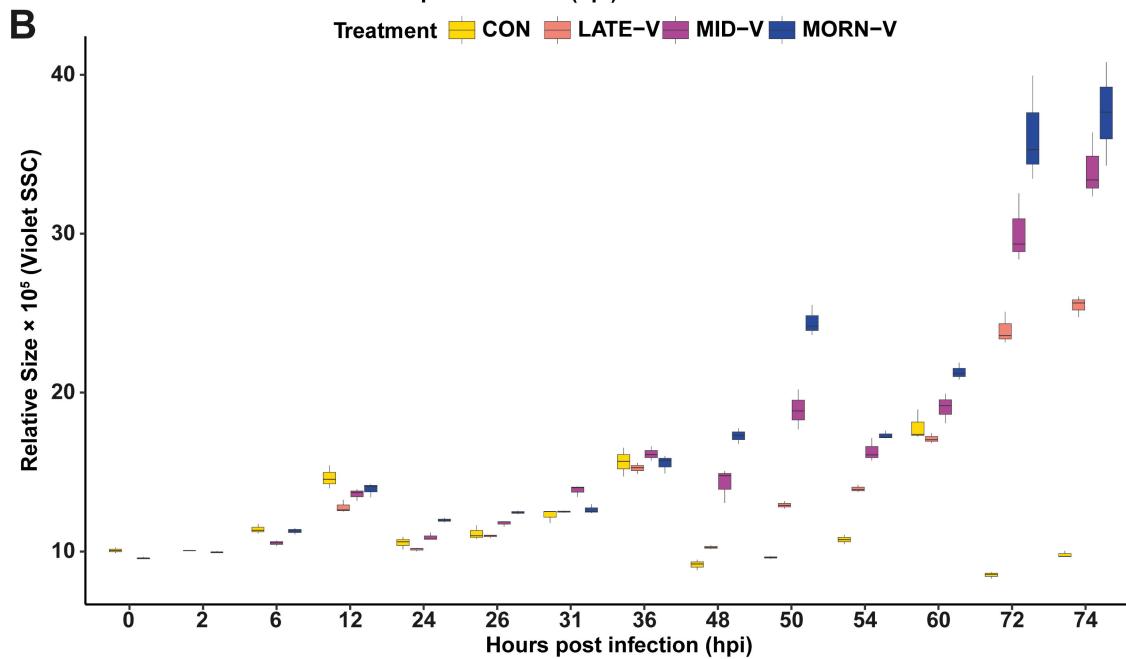
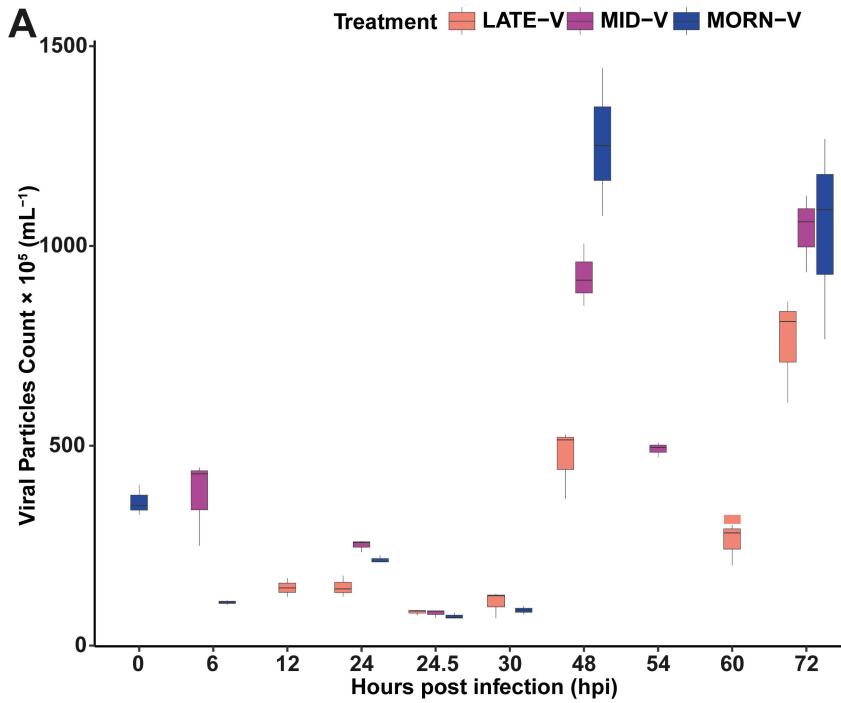
669 **Figure 2.** *Aureococcus anophagefferens* response to application of 40 μ M DCMU (3-(3,4-
670 dichlorophenyl)-1,1-dimethylurea; diuron) and infection by *Kratosvirus quantuckense*. **(A)**
671 Mean maximum quantum yield of PSII at a low light level (PAR = 1) over two light cycles.
672 **(B)** Relative chlorophyll (photochemistry) over two light cycles. **(C)** In media viral particle
673 count throughout the infection. Abbreviations: CON; control (ribocells), CON-V; virocells
674 without DCMU applied, DCMU; ribocells with DCMU applied, DCMU-V; virocells with
675 DCMU applied.

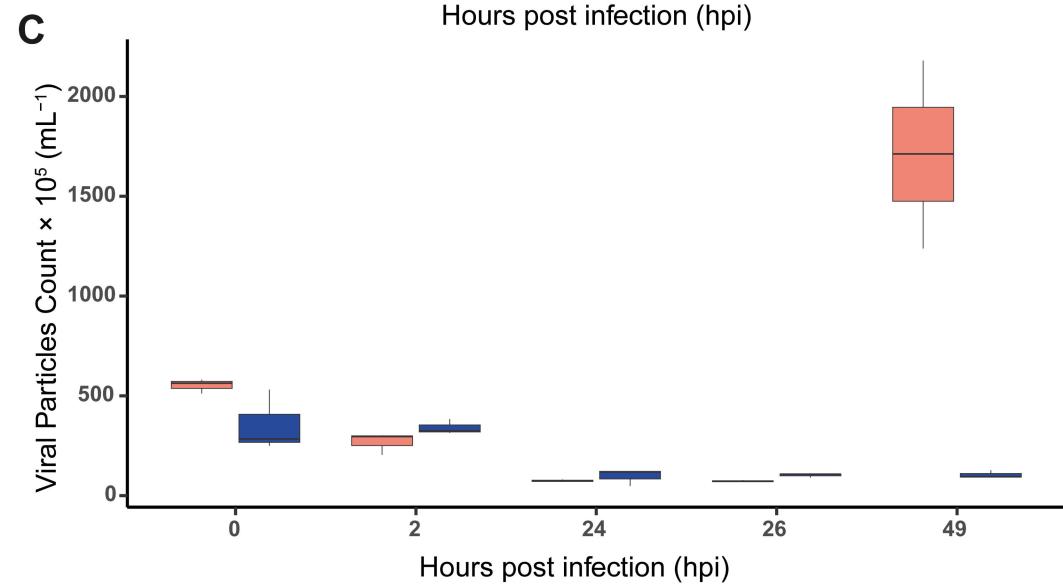
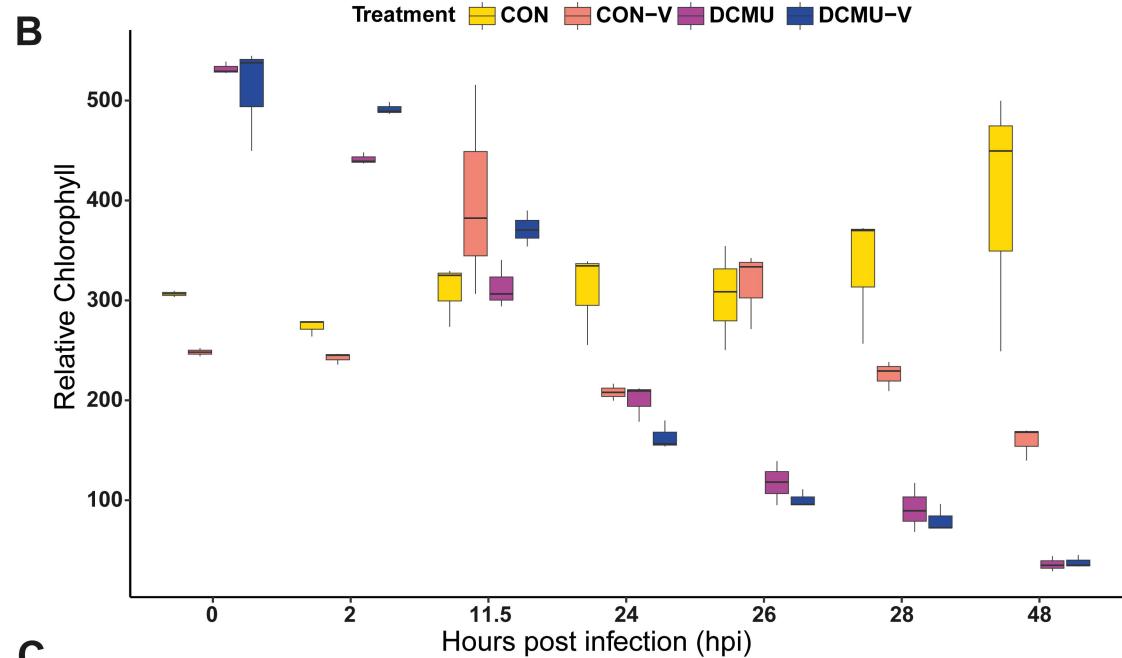
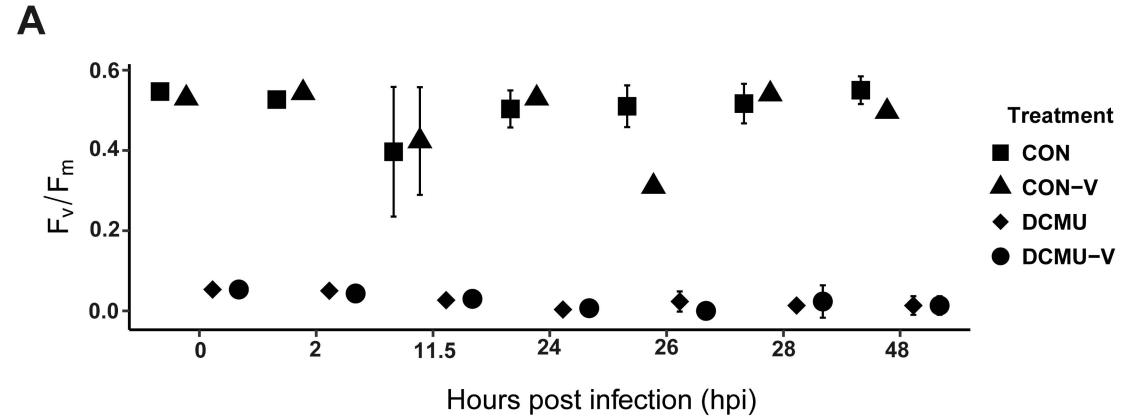
676

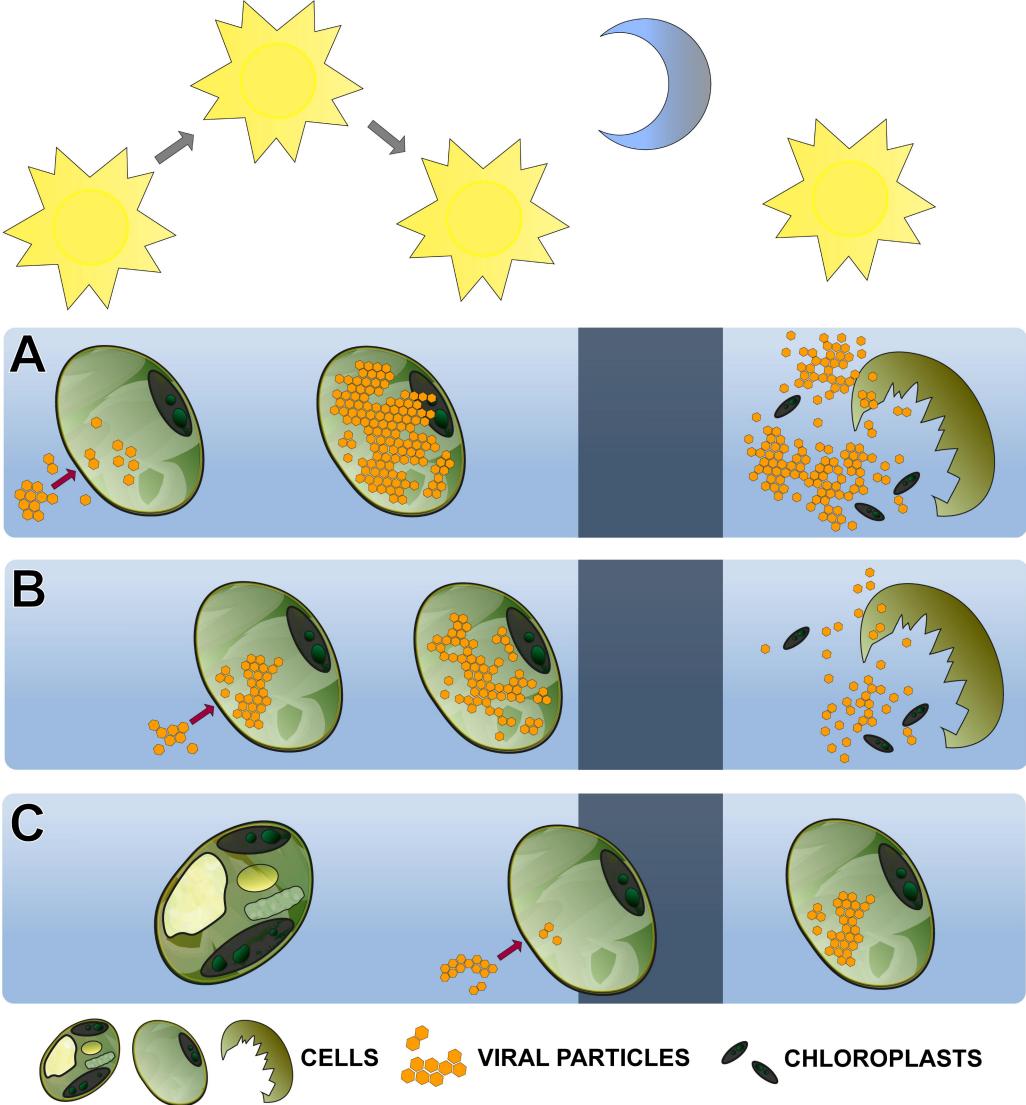
677 **Alt text:** A boxplot shows that the photosynthetic efficiency of infected and uninfected cells
678 exposed to DCMU is virtually zero while the photosynthetic efficiency of cells not exposed
679 to DCMU is at about 60%. A boxplot shows that the relative chlorophyll content after forty-
680 eight experimental hours is much higher in uninfected cells with DCMU exposure than both
681 infected and uninfected cells with DCMU exposure, and then infected cells without DCMU
682 exposure. A boxplot showing that after forty-nine experimental hours the number of viral
683 particles produced is virtually zero in infected cells exposed to DCMU and high in infected
684 cells without DCMU exposure.

685

686 **Figure 3.** Conclusive schematic of the collective results of these studies. **(A)** Cell populations
687 infected early in the day (longest light exposure) produce many viral particles at the time of
688 lysis early the next day, while **(B)** populations infected middle of the day produce fewer viral
689 particles, and **(C)** populations infected near the end of the day produce the least number of
690 viral particles. Chloroplasts remain intact during the infection cycle in situations **A-B**.
691



692 **Alt text:** A cartoon depicting *Aureococcus anophagefferens* and the production of its virus,
693 *Kratosvirus quantuckense*. The image shows infection at different times of day and how
694 infection later in the day produces fewer viral particles than early in the day.
695




696 **Supplemental File 1.** Composition of additional figures showing methodology, experimental
697 schematic, and cytometry and photochemistry results. Also includes tables presenting
698 statistical analyses.
699


700

701

702

