bioRxiv preprint doi: https://doi.org/10.1101/2024.05.14.594094; this version posted May 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

O 00 N O U1 B W N

W W W W W W W WwWwWNDNNNNNRNNNNIRRRPRRLRRP R R R
0 N O B W NP O OWOKMNO U D WNIRPO OOWONOOO U BMWN PR O

made available under aCC-BY-NC 4.0 International license.

Gene regulatory dynamics during the development of a paleopteran insect, the
mayfly Cloeon dipterum

Joan Pallarés-Albanell* 1,2, Laia Ortega-Flores* 1, Tot Senar-Serra 1,2, Antoni Ruiz 1,2,
Josep F. Abril 1,3, Maria Rossello# 1,2, Isabel Aimudi# 1,2

1 Department of Genetics, Microbiology and Statistics, Universitat de Barcelona,
Diagonal 643, 08028, Barcelona, Spain

2 Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal,
643, 08028, Barcelona, Spain

3 Institute of Biomedicine of Universitat de Barcelona (IBUB), Universitat de Barcelona,
Diagonal, 643, 08028, Barcelona, Spain

*Equally contributed
#correspondence to ialmudi@ub.edu, mariarossello@ub.edu

KEY WORDS: Gene regulation, Paleoptera, mayflies, insects, embryogenesis, ATAC-

seg.

Abstract

The evolution of insects has been marked by the appearance of key body plan
innovations and novel organs that promoted the outstanding ability of this lineage to
adapt to new habitats, boosting the most successful radiation in animals. To understand
the origin and evolution of these new structures, it is essential to investigate which are
the genes and gene regulatory networks participating during the embryonic development
of insects. Great efforts have been made to fully understand, from a gene expression
and gene regulation point of view, the development of holometabolous insects, in
particular Drosophila melanogaster, with the generation of numerous functional
genomics resources and databases. Conversely, how hemimetabolous insects develop,
and which are the dynamics of gene expression and gene regulation that control their
embryogenesis, are still poorly characterized. Therefore, to provide a new platform to
study gene regulation in insects, we generated ATAC-seq (Assay for transposase-
Accessible Chromatin using sequencing) for the first time during the development of the
mayfly Cloeon dipterum. This new available resource will allow to better understand the
dynamics of gene regulation during hemimetabolan embryogenesis, since C. dipterum
belongs to the paleopteran order of Ephemeroptera, the sister group to all other winged
insects. These new datasets include six different time points of its embryonic
development and identify accessible chromatin regions corresponding to both general
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39 and stage-specific promoters and enhancers. With these comprehensive datasets, we
40 characterised pronounced changes in accessible chromatin between stages 8 and 10 of
41  embryonic development, which correspond to the transition from the last stages of
42  segmentation to organogenesis and appendage differentiation. The application of ATAC-
43  seq in mayflies has contributed to identify the epigenetic mechanisms responsible for
44  embryonic development in hemimetabolous insects and it will provide a fundamental
45  resource to understand the evolution of gene regulation in winged insects.
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46 INTRODUCTION

47  Insects are the most numerous and diverse lineage of animals on the planet (Misof et al.
48  2014). This huge radiation has been possible due to their extraordinary capabilities to
49  adapt to distinct environments and the myriad of life history traits evolved within this
50 animal class, which resulted in more than thirty extant orders distributed worldwide (Misof
51 etal. 2014; D. Grimaldi & M. S. Engel 2007).

52 This diversity of forms and lifestyles is the result of changes in the gene regulatory
53  networks (GRNs) controlling the embryonic and postembryonic development of this
54  clade (Carroll 1998; Molina-Gil et al. 2023). In recent decades, the importance of
55 regulatory information responsible for the location and time in which genes and GRNs
56  arefunctioning, has been widely recognised (Furlong and Levine 2018; Leyhr et al. 2022;
57  Gompel et al. 2005; Andrikou and Arnone 2015). These so called cis regulatory elements
58 (CREs) are maijor players of morphological evolution not only in insects, but also in other
59 animal lineages (Guerreiro et al. 2013; Leyhr et al. 2022). Still, some changes in trans, -
60 inthe coding sequences of transcription factors (TFs) and/or signalling molecules- have
61 been also shown to participate in the diversity of phenotypes observed in animals (Galant
62 and Carroll 2002; Santos et al. 2017). Thus, both changes in coding regions and CREs
63 are key to explain the wide range of insect (and animal) morphologies. Comparative
64  genomics projects (Crowley et al. 2023; Formenti et al. 2022; Molik 2022) promoted a
65  better understanding of changes in trans elements, due to their higher degree of
66  conservation between species. By contrast, CREs are more difficult to identify by
67 homology, since they are usually less pleiotropic and for this, they tend to accumulate
68 more changes in their sequences that impede their proper characterisation by sequence
69  similarity. This is even more manifest in insects, with increased rates of genome evolution
70  when comparing with vertebrate lineages (Zdobnov and Bork 2007). In addition,
71  comparative transcriptomics provide information about the spatio-temporal dynamics of
72 gene expression between different lineages (Mantica et al. 2024; Rodriguez-Montes et
73  al. 2023; Levin et al. 2016), which may reflect to some degree differences in GRNs. The
74  advent of new functional genomics approaches based on chromatin accessibility, such
75  as, first, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq (J. M. Simon
76  etal. 2012)) and the more recent Assay for Transposase-Accessible Chromatin (ATAC-
77  seq (Buenrostro et al. 2013)), allow the identification of open chromatin regions that can
78  be assigned as CREs, such as enhancers, promoters and insulators. The advantages of
79 these methods, in comparison to other functional genomics assays used before (e.g.
80 ChlP-seq), are the low input of starting material, the high-throughput protocol without
81 expensive reagents or antibodies and that they are not excessively laborious, among
82  others. Therefore, much more detailed and comprehensive characterisations of CREs
83 have been possible and several FAIRE-seq and ATAC-seq datasets have been
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84  generated during the last decade to address distinct questions related to insect
85 development and evolution. Nonetheless, these works have been mostly done using few
86  established model species, such as the fruitfly Drosophila melanogaster (Diptera), the
87 red flour beetle Tribolium castaneum (Coleoptera), some butterfly and moth species
88  (Lepidoptera) or certain species of ants and bees (Hymenoptera) (Lowe et al. 2022;
89  Wang et al. 2020; Zhao et al. 2020), all of which belong to a single monophyletic group
90 of insects, the Holometabola (Fig. 1A)(Schmidt-Ott and Lynch 2016). By contrast, the
91 remaining seventeen orders of winged insects, the Hemimetabola (Fig. 1A), continue
92  unexplored, with only adults and one embryonic FAIRE-seq datasets available
93  (Fernandez et al. 2020; Richard et al. 2017) to our knowledge.
94 Both hemimetabolous and hemimetabolous orders shared common phases
95  during their development (Sander 1976; Patel 1994). Indeed, these main events during
96 embryogenesis are also present in non-insect arthropods (Zrzavy and Stys 1997). The
97 early stages of insect development initiate with several rounds of nuclear divisions that
98 migrate to the periphery to form the blastoderm. The blastoderm gives rise to different
99 types of germ band (short, intermediate or long) which are subsequently segmented
100 during the following embryonic stages (Davis and Patel 2002). Then, the segmented
101 embryo undergoes a process of differentiation in which organogenesis and the final
102  development of the juvenile structures take place (Sander 1976).
103 The mayfly Cloeon dipterum, a recently established laboratory system (Almudi et
104  al. 2020; 2019), is in a privileged position to improve the phylogenetic diversity of insect
105 functional genomics resources. Mayflies or Ephemeroptera belong to the Paleoptera
106  group of winged insects, together with Odonata (dragonflies and damselflies)(Fig. 1A)
107 (S. Simon, Blanke, and Meusemann 2018). They are the sister group to all other winged
108 insects and thus, due to this position in the insect phylogenetic tree, they are key to
109 address fundamental questions related to insect physiology, ecology, development and
110  evolution.
111 Here, we performed ATAC-seq experiments at six different developmental
112  stages, -including some of the hallmark stages of insect embryogenesis mentioned
113 above-, in C. dipterum embryos. Our identified accessible chromatin regions provide an
114  exhaustive collection of putative promoters and enhancers along embryogenesis of this
115 hemimetabolan insect. Moreover, by studying the temporal dynamics of these elements,
116  we showed wholesale changes in chromatin accessibility during the transition between
117 the last stages of segmentation and the start of organogenesis and appendage
118  differentiation. Finally, we facilitate the access to these comprehensive datasets through

119  adedicated web browser (https://genome-euro.ucsc.edu/s/mayfly/Clodip), providing

120 a key resource available for the entire community to understand the evolution of gene
121  regulation during the development of winged insects.
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122

123  RESULTS AND DISCUSSION

124  Open Chromatin profiles in C. dipterum embryogenesis

125 To investigate dynamics of gene regulation during the embryogenesis of mayflies, we
126  performed ATAC-seq assays for six different developmental stages: stage (st) 4 (germ
127  band elongation, Fig 1B, B'), st 6 (S-shaped embryo: anatrepsis Il Fig. 1C, C'), st 8
128 (segmentation of the embryo, Fig. 1D, D"), st 10 (revolution: katatrepsis, Fig. 1E, E'), st
129 12 (start of dorsal closure, Fig. 1F, F'), st 14 (dorsal closure complete, Fig. 1G, G")(Tojo
130 and Machida 1997). Sequences resulting from these experiments were mapped against
131 the C. dipterum reference genome assembly (CLODIP2 (Almudi et al. 2020), see
132  methods and Fig. S1) to obtain a non-redundant collection of open chromatin regions
133 throughout the genome that we termed APREs (Accessible Putative Regulatory
134  Elements) (Fig. 1H). After normalization (see methods) we identified a total of 54,547
135 APREs across the six developmental stages. Of them, 45,649 APREs did not show
136 changes in accessibility in our clustering analyses of the different developmental
137 samples we assayed (i.e. they remained constitutively open or close across these
138 stages) while 8,898 APREs were dynamic and changed their accessibility across
139  developmental stages (Fig. S2 and Table S1).

140 We next aimed at defining the genomic distributions of the APREs relative to
141  genes and gene annotations. For this, we calculated the proportions of APREs at the
142 "promoter" (i. e. APREs in the immediate vicinity of the annotated transcription start sites
143 (TSSs)), at "proximal regions", spanning up to 5 Kb upstream the TSSs, at "gene bodies"
144  (located between the end of the promoter and the termination site of the gene) and
145  "distal" regions, which comprised genomic regions that do not fall in the previous
146  categories (Fig. 11, Table S2). We found that both non-dynamic and dynamic APREs
147  were distributed in similar proportions (Fig. S3) and only detected a slight increase in
148 non-dynamic APREs located in promoters with respect to dynamic APREs in promoters
149  (~18% versus ~13%) and an even slighter difference between non-dynamic and dynamic
150 APREs in gene bodies (26% and 29%, respectively, Fig. S3). This proportion of APRE
151  distribution was similar to the distribution of APRESs in other invertebrate genomes, such
152  as the chordate amphioxus (Branchiostoma lanceolatum) (Marlétaz et al. 2018). These
153  two invertebrate species, C. dipterum and B. lanceolatum, notably diverged from the
154  distribution found in some vertebrate species, which showed much larger proportion of
155 distal APREs due to the relevance of distal regulation in these vertebrate genomes and
156 the impact of the different rounds of whole genome duplications (Marlétaz et al. 2018).
157 By contrast, when we compared the APRE distribution of C. dipterum with the distribution
158  of accessible chromatin in D. melanogaster, we observed that fruitflies had a much lower
159  proportion of distal APREs (i.e. a third of the corresponding fractions in C. dipterum and
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160 B. lanceolatum), with a higher proportion of APREs located in gene bodies and proximal
161 regions (Fig. 11)(Bozek et al. 2019). These differences between C. dipterum and D.
162  melanogaster were most likely due to the higher compaction of the 120 Mb D.
163  melanogaster euchromatic genome (Adams et al. 2000), where most of the genomic
164 regulatory blocks ancestral to animals and their associated long range regulatory
165 interactions have been dismantled (Irimia et al. 2012).
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167 Figure 1. Open Chromatin profiles in C. dipterum embryogenesis. (A) Simplified

168 insect phylogeny. Grey squares highlight the availability of ATAC-seq datasets. Asterisk
169 shows lineages in which there is no ATAC-seq information but FAIRE-seq material has
170 been generated. (B-G) Embryonic stages used in this study stained with Phalloidin-
171  AlexaFlour-488 (Red) and DAPI (cyan). (B-B’) Stage 4 embryo (St 4): germ band initial
172  elongation. (C-C’) St 6: S-shaped embryo: anatrepsis Il. (D-D’) St 8: Segmentation of the
173  embryo. (E-E’) St 10 embryo: revolution or katatrepsis. (F-F’) St 12: initial dorsalization.
174 (G-G’) St 14 embryo: dorsal closure completed. (H) Snapshot of the UCSC genome
175  browser showing wnt1, wnt6, wnt10 cluster and the ATAC-seq tracks in this study and
176  and RNA-seq tracks generated in this study and in (Almudi et al. 2020). (I) Percentage
177  of ATAC-seq APREs distributed across C. dipterum, D. melanogaster, B. lanceolatum

178 and D. rerio genomes. Scale bars: 50 um.
179
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180 ATAC-seq revealed a temporally regulated chromatin profile in the mayfly

181 genome

182 In order to study changes in chromatin accessibility throughout different samples (i.e.
183  developmental timepoints), we analysed differential APRE activity between consecutive
184  developmental stages. These results showed relatively modest changes between
185  successive timepoints (i.e. 164 APREs at the St 4 to St 6 transition or 365 at St 10 to St
186 12, Fig. S4, Table S3), with the notable exception of the transition between St 8 and St
187 10, when more than four thousand APREs (4568) changed their accessibility, from 7,5
188 to 27 times more than at the other timepoints (Fig. S4). From these, the vast majority
189  (3118) corresponded to APREs that increase accessibility during this St 8-St 10 phase.
190 Thislarge amount of differentially active APREs between these two stages may indicated
191 a major regulatory turnover between an early and late regulatory state during mayfly
192  embryogenesis. In fact, this major shift was also evident when we performed a PCA
193 analysis and clustering of the ATAC-seq datasets, which formed two very distinctive
194  clusters: samples from stages 4, 6 and 8 and samples from 10, 12 and 14 (Fig. S4).
195 To further explore the dynamics of chromatin accessibility across the selected
196 developmental timepoints, we performed a temporal soft-clustering analysis using Mfuzz
197  (Kumar and Futschik 2007)(see methods and Table S4). Among the different temporal
198 clusters obtained (Fig. S5), we focused on clusters of APREs whose accessibility peaked
199 at a single embryonic stages (e.g. cluster 8 and 16 for st 4, cluster 29 and 21 for st 6,
200 cluster 28, 5, 6, 11, 13, 14 and 26 for st 8, cluster 25, 15 and 18 for st 10, cluster 27 for
201 st12 andcluster 4 and 2 for st 14; Fig 2A and Fig. S5). We then associated these APREs
202  to their putative target genes and analysed the Gene Ontology (GO) enriched terms for
203  each of these stage-specific clusters, using D. melanogaster orthologs (Almudi et al.
204  2020), since it is the closest organism with functional annotation available (see methods
205 and Table S5). This GO term enrichment analysis exhibited categories highly connected
206  with each of the embryonic stages in which the accessibility of the chromatin was higher
207 (Fig. 2A and Table S5). For instance, cluster 8 (st 4) and cluster 29 (st 6) contained
208 APREs that were associated to genes involved in cell adhesion, planar cell polarity, DNA
209 biosynthetic process and negative regulation of cell differentiation, which are
210 characteristic processes of early embryogenesis in insects (Minster et al. 2019; Brantley
211 and Di Talia 2021). On the other hand, GO terms enriched in clusters corresponding to
212  later stages of embryogenesis (e.g. ¢l 25, ¢l 27 and cl 4, Fig 2A and Table S5) revealed
213  processes related to organogenesis, such as axon guidance or regulation of
214  developmental process (Gillott 2005).

215 Besides these stage-specific clusters, we also found several clusters that showed
216  more prolonged activity patterns. In this manner, we identified clusters that recapitulated
217  the major developmental shift we had previously observed between st 8 and st 10, with
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218 aset of "early embryogenesis" clusters (e.g. clusters 7, 9, 17, 19, 21 or 26) and another
219 of "late embryogenesis"ones (clusters 3, 22, 23 or 3; Fig. 2B and Fig. S5). Accordingly,
220 we identified enriched GO terms related to early development (e.g. establishment and
221  maintenance of cell polarity or cell adhesion processes) and terms related to late
222  embryogenesis (e.g. visual perception and animal organ morphogenesis), respectively
223 (Fig. 2B and Table S5).

224 In addition, we also performed k-means hard clustering (see methods, Table S6)
225 using the same set of dynamic APREs (Fig. 2C). This analysis was able to recover six
226  clusters with differential dynamics of accessibility, although none of these clusters
227  corresponded to APREs showing stage-specific accessibility. By contrast, we identified
228  two groups of clusters, - cluster 1 and cluster 3, on one hand, and cluster 2 and cluster
229 4, on the other hand-, that contained APREs accessible during early stages of
230 embryogenesis and late stages of embryogenesis, respectively (Fig. 2C and Table S6),
231  mirroring the st 8-st 10 shift observed in the previous analyses. In order to better
232 characterise these clusters, we carried out TF motif enrichment analysis using Homer
233  software (see methods, Fig. 2D and Table S7). In agreement with previous work in other
234  insects and the results of the GO term enrichment analysis from the Mfuzz clusters (Fig.
235  2A, B), for APREs in cluster 1 and cluster 3, we identified motifs whose best match were
236  TFs involved in early embryogenesis. These include Hunchback (Hb), a gap gene
237 involved in antero-posterior axis specification (Qian, Capovilla, and Pirrotta 1991),
238  Caudal (Cad), which functions in germ band elongation (Schulz and Tautz 1995; Wu and
239  Lengyel 1998), or Zelda (Zld), a zygotic genome activator that acts during early
240 blastoderm development (Brennan et al. 2023; Liang et al. 2008) (Fig. 2D). By contrast,
241  clusters 2 and 4, whose APREs were open in later stages of development, showed
242  enrichment in motifs that correspond to TFs involved in different processes of
243 organogenesis, such as Nubbin (Nub), a regulator of appendage morphogenesis
244  (Turchynetal. 2011), Six4, involved in the development of mesodermal structures (Clark
245 et al. 2006), or Mothers against dpp (Mad), that mediates the response to the BMP
246  pathway during the development of diverse insect organs (Sekelsky et al. 1995).

247 Overall, these analyses revealed two main phases during the embryogenesis of
248 mayflies in which distinct set of regulatory regions are active (Fig. 2B, C) to control
249  different sets of genes and regulatory networks involved in such early or late embryonic
250 processes. These results were consistent with the mid-developmental transition
251  previously described at transcriptomic level for some phyla, including insects (Levin et
252  al. 2016).

253
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256  Figure 2. ATAC-seq revealed a temporally regulated chromatin profile in the mayfly
257 genome. (A) Mfuzz clusters obtained for the 8,898 dynamic APREs obtained through
258 ATAC-seq experiments in the six selected developmental stages representing stage-
259  specific APRE activity and their associated GO enriched terms. (B) Mfuzz clusters
260 representing “early embryogenesis” and “late embryogenesis” APRE activity and their
261  associated GO enriched terms. (C) Heatmaps of the 8,898 dynamic APREs clustered
262  using k-means clustering. Six clusters were obtained, with four of them showing a clear
263  dynamic behavior: cluster 1 (n=125) and cluster 3 (n=632) or early activity, cluster 2
264  (n=428) and cluster 4 (n = 1698) or late activity. (D) Motif enrichment analysis of the early
265  (cluster 1, cluster 3) and late (cluster 2, cluster 4) active clusters. Five or four
266  representative motifs of the top-10 were chosen. Motif logos are represented with their
267  position in the top-10, the TF names, the enrichment p-values and the percentage of
268  sites showing the motif.

269

270 Chromatin accessibility to understand gene expression dynamics

271  Since ATAC-seq has been proven to be a powerful method to investigate the regulation
272 of gene expression, we next addressed the relationship between chromatin accessibility
273  and levels of gene expression (Starks et al. 2019). To do this, we measured the levels of
274  gene expression at the same developmental stages of our ATAC-seq datasets (see
275 methods Fig. S6 and Table S8). When focusing on genes associated to the 8,898
276  dynamic APREs, we first observed that the six stages clustered accordingly to the “early”
277 and “late” embryonic phases that we identified in the ATAC-seq data. Transcriptomes
278  from stages 4, 6 and 8 formed a cluster while transcriptomes from stages 10, 12 and 14
279  grouped together (Fig. 3A). Moreover, we detected some genes whose expression varied
280 alongthe developmental timepoints we characterised: cluster 11 and cluster 7 decreased
281  their expression as embryogenesis progressed, while genes from cluster 3, 5 or 9
282  increased their expression during embryonic development (Fig. 3A).

283 To further illustrate our results, we investigated the expression pattern of
284  embryonic lethal abnormal vision (elav) that showed differential APRE accessibility and
285  differential gene expression along embryonic stages (Fig. 3B). Elav is a RNA binding
286  protein involved in axon guidance, synapse formation and development and
287  maintenance of neurons (Robinow and White 1988). We performed Hybridization Chain
288 Reaction (HCRs) assays (Bruce et al. 2021) in st 6, st 8 and st 10 embryos to
289 characterise the spatial expression of this gene in these stages in which we observed
290 shifts in chromatin accessibility and expression levels. While embryos at st 6 showed
291 reduced expression of elav in some cells in the cephalic region (Fig. 3C), at st 8 elav
292  exhibited a broader expression domain in head domains and in the most anterior thoracic
293  segments. At st 10, these neural territories of elav expression expanded and elongated
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294  to the abdominal segments (Fig. 3C). As expected, we also observed an increase in the
295  accessibility of chromatin in the locus, especially upstream of the Transcription Start Site
296 (TSS, Fig. 3B).

297 Previous analysis of co-regulated gene expression across several tissues, using
298 Weighted Gene Correlation Network Analysis (WGCNA), revealed modules of genes
299  specifically expressed in particular adult and nymphal tissues (Almudi et al. 2020). We
300 examined whether chromatin accessibility information from embryos correlated with
301 these modules. We characterised enriched motifs in APREs associated to the genes
302 contained in each of these WGCNA modules and found distinctive enriched binding
303 motifs for some of them (see methods and Table S9). For example, the brain module
304 was enriched in neural motifs, such as Suppressor of Hairy (Su(H)), retained (retn) or
305 Cut (Ct), which are TFs involved in neural or glial development (Grueber and Jan 2004;
306 Shandala et al. 1999), the muscle module had motifs for bagpipe (bap) or twist (twi),
307 required for mesodermal development (Castanon et al. 2001; Cripps and Olson 2002)
308 and specification or the gills module with enrichment in motifs such as defective
309 proventriculus (dve) involved in epithelium patterning or glial cells missing (gmc), which
310 could have a role in the determination of some of the numerous neural cells that we
311  previously identified in these abdominal structures (Almudi et al. 2020; Hosoya et al.
312  1995) (Fig. 3D, and Table S9). These results suggest that some of the Gene Regulatory
313  Networks involved in the development of nymphal tissues and organs are already
314  functioning during embryogenesis and their regulatory signatures can be detected in our
315 ATAC-seq datasets. Thus, our results can also provide important insights into the
316 regulatory logic of the adult body plan, and therefore also constitute a valuable resource
317  for adult insect biology.

318 Overall, our ATAC-seq datasets provide a comprehensive resource to help
319 uncovering developmental diversity of insects, since it represents the first publicly
320 available genome-wide collection of putative regulatory elements across embryogenesis
321 in a hemimetabolous lineage using ATAC-seq approaches. Thus, the key phylogenetic
322 position of Ephemeroptera, together with the extensive chromatin accessibility
323 information made available here, will open new venues to address longstanding
324 questions in the fields of developmental and evolutionary biology and comparative
325 genomics.
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327 Figure 3. Chromatin accessibility to understand gene expression dynamics. (A)
328 Heatmap showing expression levels of genes associated to dynamic ATAC-seq APRE in
329 the selected embryonic stages. RNA-seq samples clustered according to embryonic
330 stage progression. Secondary clustering showed 12 different gene clusters. (B) elav
331 genomic regulatory landscape. APRE activity and gene expression increase as
332 embryogenesis progresses. (C) HCR hybridization against the gene elav at st 6, st 8 and
333 st 10 of embryogenesis. Nuclei were stained with DAPI (dark blue) and elav expression
334  pattern is shown in yellow. Scale bars: 50 um. (C) Motif enrichment analysis of APREs
335 associated to genes from some tissue-specific WGCNA modules identified in (Almudi et
336 al. 2020). Four representative motifs of the top-10 were chosen. Motif logos are
337 represented with their position in the top-10, the TF names and the enrichment p-values.
338

339 MATERIALS & METHODS

340 Culture maintenance, embryo collection and fixation

341 Samples were obtained from a Cloeon dipterum culture maintained in the laboratory as
342  previously described in (Almudi et al. 2019). Gravid females fertilised different days were
343  collected and dissected to obtain embryos at selected developmental stages: st 4, st 6,
344 st 8, st 10, st 12, st 14. After opening the abdomen of these gravid females, embryos
345 were collected to perform ATAC-seq or RNA-seq procedures and a small subset was
346 collected apart and fixed with 4% Formaldehyde for 1 hour at r.t. to confirm the
347 developmental stage. After 3 x 5’ washes with PBS, these fixed embryos were stained
348 with Phalloidin Alexa Fluor™ 488 (A12379) and DAPI to visualise actin filaments and
349 nuclei, respectively. Images were acquired using a Zeiss LSM 880 confocal and were
350 processed with Fiji (Schindelin et al. 2012).

351

352 HCR hybridization
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353 HCR hybridization followed a modified version of the Molecular Instruments (Los Angeles,
354 CA, USA) HCR v.3 protocol (Bruce et al. 2021). HCR probe was designed to evade non-
355 specific binding using an open-source probe design program (Kuehn et al. 2022). Briefly,
356 embryos stored in ethanol were rehydrated in stepwise 75/50/25% ethanol in PBTw 0.1%.
357 After 3 x 5" washes in PBTw 0.1%, embryos were permeabilized in Detergent Solution
358 (1.0% SDS, 0.5% Tween, 50.0 mM Tris-HCI (pH 7.5), 1.0 mM EDTA (pH 8.0), and 150.0
359 mM NaCl) for 30" at room temperature (RT), kept in pre-warmed Probe Hybridization
360 Buffer (Molecular Instruments) for 30’ at 37 °C, and incubated in Probe Solution (4 nM of
361 probe in Probe Hybridation Buffer) overnight at 37 °C. After 4 x 15’ washes in pre-heated
362 wash buffer (Molecular Instruments) at 37 °C and 2 x 5’ washes in 5x SSCTw 0.1% at
363 RT, they were kept in pre-equilibrated Amplification Buffer (Molecular Instruments) for 30'
364 at RT and incubated in hairpin solution (60 nM of each hairpin hl and h2 (Molecular
365 Instruments) separately in pre-equilibrated Amplification Buffer, heated at 95 °C for 90 s
366 and cooled down for 30’ overnight in the dark at RT. Following 5 x 20’ washes in 5x
367 SSCTw 0.1% and 1 x 10’ wash in PBTw 0.1 % pH 7.4 in dark at RT, embryos were
368 mounted in Prolongue™ Gold with DAPI (P36941, Invitrogen). Images were acquired
369 using a Zeiss LSM 880 confocal and were processed with Fiji (Schindelin et al. 2012).
370

371 RNA-seq sequencing and assembly

372 Three RNA-seq datasets (including replicates) of st 8 and st 12 embryos were generated
373 using the lllumina technology. Samples were processed immediately after dissection and
374 RNA was extracted using RNeasy Mini Kit (Qiagen) following manufacturers’ instructions.
375 Paired-end libraries were generated using lllumina (Novaseq6000) 2x50bp. After quality
376  control, the obtained reads were aligned using the STAR aligner. Initially, a genome index
377 was created using the CLODIP2 reference genome (GCA 902829235.1) with the
378 genomeGenerate mode of STAR. Subsequent alignment of reads to this index was
379 performed using the alignReads mode. Gene expression levels were quantified utilizing
380 the quantMode GeneCounts option within STAR.

381

382 ATAC-seq and library preparation

383 ATAC-seq or assay for transposase-accessible chromatin by sequencing protocol was
384 optimised during these experiments to use on mayflies from (Buenrostro et al. 2015).
385 Briefly, embryos were homogenised in lysis buffer (10 mM Tris—HCI pH 7.4, 10 mM NacCl,
386 3 mM MgCI2, 0.1% NP-40) to obtain approximately 70000 individual nuclei. After
387 removing lysis buffer, transposition reaction (1.25 ul of Tn5 enzyme in 10 mM Tris—HCI
388 pH 8.0, 5 mM MgCl,, 10% w/v dimethylformamide) was performed for 30 min at 37 °C
389 and the resulting fragments are purified using MinElute PCR Purification Kit (Qiagen).
390 gPCR was performed to determine the optimal number of cycles necessary for each
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391 library. A unique pair of primers were assigned to each sample (Table S10) and 12
392 libraries were prepared corresponding to two biological replicates of the six selected
393 developmental time points using a PCR. Libraries were purified using the MinElute PCR
394  Purification Kit (Qiagen). DNA concentration in each sample was calculated with
395 Invitrogen™ Qubit™ 4 Fluorometer using The Qubit 1X dsDNA HS Assay Kit.

396

397 ATAC-seq mapping and peak (APRE) calling

3908 For peak (APRE) calling, we followed the pipeline outlined in
399 https://github.com/alexgilgal/Thesis_methods/tree/main/ATAC-seq%?20analysis,

400 implementing minor modifications as detailed in our project's GitHub repository
401  (https://github.com/mayflylab/Cdip-RegEmb/tree/main). We employed the ATAC_pipe.pl
402  script for mapping reads, utilizing Bowtie2 (Langmead and Salzberg 2012) to align the
403 reads to the CLODIP2 reference genome (GCA 902829235.1). Following alignment, the
404 resulting BAM files were filtered based on a quality threshold of 10 and a minimum
405 fragment length of 130 bp (Fig. S1).

406 The processed files were then subjected to peak analysis using the
407 idr_ATAC_script.sh script, which executes peak calling with MACS2 (Zhang et al. 2008)
408 to generate two sets of peaks: conservative peaks, indicating high-confidence regions
409 across biological replicates, and optimal peaks, denoting reproducible events that
410 consider read sampling variability, derived from pseudo-replicates. Subsequent IDR (Li
411 et al. 2011) analysis was performed on both peak sets. Peak statistics—including the
412  number of peaks and rescue ratios—were calculated and documented in a summary file.
413

414  APRE classification and gene assignment

415 APREs are classified and associated with genes based on their proximity to the
416 transcription start sites (TSS). TSSs are defined using the get TSS.py script
417  (https://github.com/m-rossello/GeneRegLocator/). To classify APREs and link them to
418 genes, we use a custom-made script named make_table from_zones.py
419  (https://github.com/m-rossello/GeneReglocator/). This script is designed to delineate

420 regulatory zones around TSSs and associate these zones with APREs from ATAC-seq
421 data. It defines three types of regulatory zones: Promoters, located near the TSS,
422 spanning 1000 bases upstream and 500 bases downstream. Proximal regions,
423  positioned further from the TSS, extending 4000 bases upstream but not overlapping with
424  promoters. Gene bodies, encompassing regions within the gene but excluding the
425 promoter areas (Fig. 11). Zones are non-overlapping on the same strand, although the
426 same genomic position can exhibit different zones on each strand. Each APRE is
427 associated with one or more genes if it overlaps by more than 70% with a gene zone.
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428 APREs not falling within promoter, proximal, or gene body regions are classified as distal
429 and remain unassociated with any gene (Table S2).

430

431 Open chromatin analysis

432  The counts obtained from consensus APREs were used for all subsequent analyses,
433  following normalization. This normalization involves adjusting the count data using the
434 TMM method (Robinson and Oshlack 2010) to account for differences in library size and
435  composition. To further explore trends and variations across different biological stages,
436  we aggregate the normalized counts by these stages, calculating mean values. Global
437  APRE analysis categorizes APRE as either "open" or "closed" based on a threshold of
438 10 counts. APREs registering fewer than 10 counts are deemed closed. We define non-
439 dynamic APREs as those that remain consistently open or closed across all examined
440 stages. Conversely, dynamic APREs are characterized by their variability, changing
441 between open and closed states across different stages or samples.

442

443  Differential Chromatin Accessibility Analysis

444  After counts normalization by TMM (Robinson and Oshlack 2010) and sample exploration
445 by PCA and clustering, differential chromatin accessibility analysis was performed in
446  dynamic APREs. For this analysis, we utilize the limma-trend method (Law et al. 2014;
447  Phipson et al. 2016). This approach is applied to the normalized count data of dynamic
448 APREs to identify significant differences in chromatin accessibility between conditions.
449  To visualize the results, we generate volcano plots using the EnhancedVolcano package
450 (Blighe, Rana, and Lewis 2023).

451

452  Mfuzz analysis

453  We conducted the Mfuzz cluster analysis using the mfuzz function from the R package
454  Mfuzz (Kumar and Futschik 2007). Dynamic APREs with mean values computed by
455 developmental stage were analysed. The optimal parameters were systematically
456  determined, setting the fuzzifier value at m=1.5 and the number of clusters at 30.

457

458 k-means analysis

459  We performed k-means hard clustering using the DeepTools package (Ramirez et al.
460 2016) to analyze dynamic APRE enrichments from ATAC-seq data. This analysis
461 included computing genome region scores with the computeMatrix function. The
462 generated matrices enabled the visualization of heatmaps, which provided insights into
463  the distribution of dynamic APRES across various developmental stages. Additionally, we
464  created profile plots to further explore the chromatin accessibility dynamics.

465
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466 Gene Ontology Enrichment Analysis

467  For our Gene Ontology (GO) enrichment analysis, GO annotations are transferred from
468 the UniProt proteome (UP000494165) to the genes associated with the APREs. We
469 perform statistical analysis using the topGO package (Alexa and Rahnenfuhrer 2023),
470  which utilizes the elimination algorithm to identify significantly enriched GO terms within
471 gene clusters. The BH false discovery rate correction method (Benjamini and Hochberg
472  1995) is employed to control multiple testing. The results are visualized using GO
473  enrichment plots, created with the ggplot2 package.

474

475 TFBM enrichment analysis

476  Transcription factor binding motif (TFBM) enrichment analysis is conducted using the
477  findMotifsGenome.pl tool from the HOMER suite (Heinz et al. 2010). We designate the
478 APREs of interest as the foreground and utilize the remainder of the consensus APREs
479 as the background. The fragment size selected for motif discovery corresponds precisely
480 to the regions of the APRESs (-size given). This analysis includes a comparison against
481 collected motifs specific to insects.
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The datasets generated and analysed during the current study are available in the

Sequence Read Archive (SRA) repository. The ATAC-seq dataset, which includes

samples from six developmental stages, can be accessed via SRA accession numbers
SAMN40277609 through SAMN40277620. Additionally, RNA-seq data for three
developmental stages are stored under SRA accession numbers SAMN40990690,
SAMN40990692, and SAMN40990693. All datasets are grouped under the project
accession number PRJNA1084266. Datasets are also available as a UCSC track hub:

https://genome-euro.ucsc.edu/s/mayfly/Clodip. All code used for analysis is available

on GitHub at https://github.com/mayflylab/Cdip-RegEmb/
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Figure S1. Read size distribution in ATAC-seq libraries.
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Figure S3. Distribution of APREs per developmental timepoint. (A) Number of
APREs in each genomic zone distributed across each developmental stage. (B) Non-
dynamic APREs per genomic zone distributed across each stage. (C) Dynamic APREs
per genomic zone distributed across each stage.
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813
814  Figure S4. PCA analysis of ATAC libraries and differential APRE accessibility. (A)

815 PCA showing the distribution of samples across the first two principal components. (B)
816  Hierarchical clustering of each sample. (C) Number of differentially accessible chromatin
817 regions between the different stage transitions. (D) Volcano plot of all differentially

818 accessible regions for each stage transition.
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819

820 Figure S5. Mfuzz clustering. Patterns of chromatin accessibility across different
821  developmental stages.

822
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PC2: 94% variancs

e i ]
823

824  Figure S6. PCA analysis of RNA-seq Libraries. (A) PCA displaying the distribution of
825 RNA samples across the first two principal components. (B) Hierarchical clustering of
826  RNA samples.
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