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Abstract 20 

The evolution of insects has been marked by the appearance of key body plan 21 

innovations and novel organs that promoted the outstanding ability of this lineage to 22 

adapt to new habitats, boosting the most successful radiation in animals. To understand 23 

the origin and evolution of these new structures, it is essential to investigate which are 24 

the genes and gene regulatory networks participating during the embryonic development 25 

of insects. Great efforts have been made to fully understand, from a gene expression 26 

and gene regulation point of view, the development of holometabolous insects, in 27 

particular Drosophila melanogaster, with the generation of numerous functional 28 

genomics resources and databases. Conversely, how hemimetabolous insects develop, 29 

and which are the dynamics of gene expression and gene regulation that control their 30 

embryogenesis, are still poorly characterized. Therefore, to provide a new platform to 31 

study gene regulation in insects, we generated ATAC-seq (Assay for transposase-32 

Accessible Chromatin using sequencing) for the first time during the development of the 33 

mayfly Cloeon dipterum. This new available resource will allow to better understand the 34 

dynamics of gene regulation during hemimetabolan embryogenesis, since C. dipterum 35 

belongs to the paleopteran order of Ephemeroptera, the sister group to all other winged 36 

insects. These new datasets include six different time points of its embryonic 37 

development and identify accessible chromatin regions corresponding to both general 38 
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and stage-specific promoters and enhancers. With these comprehensive datasets, we 39 

characterised pronounced changes in accessible chromatin between stages 8 and 10 of 40 

embryonic development, which correspond to the transition from the last stages of 41 

segmentation to organogenesis and appendage differentiation. The application of ATAC-42 

seq in mayflies has contributed to identify the epigenetic mechanisms responsible for 43 

embryonic development in hemimetabolous insects and it will provide a fundamental 44 

resource to understand the evolution of gene regulation in winged insects.   45 
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INTRODUCTION 46 

Insects are the most numerous and diverse lineage of animals on the planet (Misof et al. 47 

2014). This huge radiation has been possible due to their extraordinary capabilities to 48 

adapt to distinct environments and the myriad of life history traits evolved within this 49 

animal class, which resulted in more than thirty extant orders distributed worldwide (Misof 50 

et al. 2014; D. Grimaldi & M. S. Engel 2007).  51 

This diversity of forms and lifestyles is the result of changes in the gene regulatory 52 

networks (GRNs) controlling the embryonic and postembryonic development of this 53 

clade (Carroll 1998; Molina-Gil et al. 2023). In recent decades, the importance of 54 

regulatory information responsible for the location and time in which genes and GRNs 55 

are functioning, has been widely recognised (Furlong and Levine 2018; Leyhr et al. 2022; 56 

Gompel et al. 2005; Andrikou and Arnone 2015). These so called cis regulatory elements 57 

(CREs) are major players of morphological evolution not only in insects, but also in other 58 

animal lineages (Guerreiro et al. 2013; Leyhr et al. 2022). Still, some changes in trans, -59 

in the coding sequences of transcription factors (TFs) and/or signalling molecules- have 60 

been also shown to participate in the diversity of phenotypes observed in animals (Galant 61 

and Carroll 2002; Santos et al. 2017). Thus, both changes in coding regions and CREs 62 

are key to explain the wide range of insect (and animal) morphologies. Comparative 63 

genomics projects (Crowley et al. 2023; Formenti et al. 2022; Molik 2022) promoted a 64 

better understanding of changes in trans elements, due to their higher degree of 65 

conservation between species. By contrast, CREs are more difficult to identify by 66 

homology, since they are usually less pleiotropic and for this, they tend to accumulate 67 

more changes in their sequences that impede their proper characterisation by sequence 68 

similarity. This is even more manifest in insects, with increased rates of genome evolution 69 

when comparing with vertebrate lineages (Zdobnov and Bork 2007). In addition, 70 

comparative transcriptomics provide information about the spatio-temporal dynamics of 71 

gene expression between different lineages (Mantica et al. 2024; Rodríguez-Montes et 72 

al. 2023; Levin et al. 2016), which may reflect to some degree differences in GRNs. The 73 

advent of new functional genomics approaches based on chromatin accessibility, such 74 

as, first, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq (J. M. Simon 75 

et al. 2012)) and the more recent Assay for Transposase-Accessible Chromatin (ATAC-76 

seq (Buenrostro et al. 2013)), allow the identification of open chromatin regions that can 77 

be assigned as CREs, such as enhancers, promoters and insulators. The advantages of 78 

these methods, in comparison to other functional genomics assays used before (e.g. 79 

ChIP-seq), are the low input of starting material, the high-throughput protocol without 80 

expensive reagents or antibodies and that they are not excessively laborious, among 81 

others. Therefore, much more detailed and comprehensive characterisations of CREs 82 

have been possible and several FAIRE-seq and ATAC-seq datasets have been 83 
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generated during the last decade to address distinct questions related to insect 84 

development and evolution. Nonetheless, these works have been mostly done using few 85 

established model species, such as the fruitfly Drosophila melanogaster (Diptera), the 86 

red flour beetle Tribolium castaneum (Coleoptera), some butterfly and moth species 87 

(Lepidoptera) or certain species of ants and bees (Hymenoptera) (Lowe et al. 2022; 88 

Wang et al. 2020; Zhao et al. 2020), all of which belong to a single monophyletic group 89 

of insects, the Holometabola (Fig. 1A)(Schmidt-Ott and Lynch 2016). By contrast, the 90 

remaining seventeen orders of winged insects, the Hemimetabola (Fig. 1A), continue 91 

unexplored, with only adults and one embryonic FAIRE-seq datasets available 92 

(Fernández et al. 2020; Richard et al. 2017) to our knowledge.  93 

Both hemimetabolous and hemimetabolous orders shared common phases 94 

during their development (Sander 1976; Patel 1994). Indeed, these main events during 95 

embryogenesis are also present in non-insect arthropods (Zrzavý and Štys 1997). The 96 

early stages of insect development initiate with several rounds of nuclear divisions that 97 

migrate to the periphery to form the blastoderm. The blastoderm gives rise to different 98 

types of germ band (short, intermediate or long) which are subsequently segmented 99 

during the following embryonic stages (Davis and Patel 2002). Then, the segmented 100 

embryo undergoes a process of differentiation in which organogenesis and the final 101 

development of the juvenile structures take place (Sander 1976). 102 

The mayfly Cloeon dipterum, a recently established laboratory system (Almudi et 103 

al. 2020; 2019), is in a privileged position to improve the phylogenetic diversity of insect 104 

functional genomics resources. Mayflies or Ephemeroptera belong to the Paleoptera 105 

group of winged insects, together with Odonata (dragonflies and damselflies)(Fig. 1A) 106 

(S. Simon, Blanke, and Meusemann 2018). They are the sister group to all other winged 107 

insects and thus, due to this position in the insect phylogenetic tree, they are key to 108 

address fundamental questions related to insect physiology, ecology, development and 109 

evolution.  110 

Here, we performed ATAC-seq experiments at six different developmental 111 

stages, -including some of the hallmark stages of insect embryogenesis mentioned 112 

above-, in C. dipterum embryos. Our identified accessible chromatin regions provide an 113 

exhaustive collection of putative promoters and enhancers along embryogenesis of this 114 

hemimetabolan insect. Moreover, by studying the temporal dynamics of these elements, 115 

we showed wholesale changes in chromatin accessibility during the transition between 116 

the last stages of segmentation and the start of organogenesis and appendage 117 

differentiation. Finally, we facilitate the access to these comprehensive datasets through 118 

a dedicated web browser (https://genome-euro.ucsc.edu/s/mayfly/Clodip), providing 119 

a key resource available for the entire community to understand the evolution of gene 120 

regulation during the development of winged insects.     121 
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 122 

RESULTS AND DISCUSSION 123 

Open Chromatin profiles in C. dipterum embryogenesis 124 

To investigate dynamics of gene regulation during the embryogenesis of mayflies, we 125 

performed ATAC-seq assays for six different developmental stages: stage (st) 4 (germ 126 

band elongation, Fig 1B, B'), st 6 (S-shaped embryo: anatrepsis II Fig. 1C, C'), st 8 127 

(segmentation of the embryo, Fig. 1D, D'), st 10 (revolution: katatrepsis, Fig. 1E, E'), st 128 

12 (start of dorsal closure, Fig. 1F, F'), st 14 (dorsal closure complete, Fig. 1G, G')(Tojo 129 

and Machida 1997). Sequences resulting from these experiments were mapped against 130 

the C. dipterum reference genome assembly (CLODIP2 (Almudi et al. 2020), see 131 

methods and Fig. S1) to obtain a non-redundant collection of open chromatin regions 132 

throughout the genome that we termed APREs (Accessible Putative Regulatory 133 

Elements) (Fig. 1H). After normalization (see methods) we identified a total of 54,547 134 

APREs across the six developmental stages. Of them, 45,649 APREs did not show 135 

changes in accessibility in our clustering analyses of the different developmental 136 

samples we assayed (i.e. they remained constitutively open or close across these 137 

stages) while 8,898 APREs were dynamic and changed their accessibility across 138 

developmental stages (Fig. S2 and Table S1). 139 

 We next aimed at defining the genomic distributions of the APREs relative to 140 

genes and gene annotations. For this, we calculated the proportions of APREs at the 141 

"promoter" (i. e. APREs in the immediate vicinity of the annotated transcription start sites 142 

(TSSs)), at "proximal regions", spanning up to 5 Kb upstream the TSSs, at "gene bodies" 143 

(located between the end of the promoter and the termination site of the gene) and 144 

"distal" regions, which comprised genomic regions that do not fall in the previous 145 

categories (Fig. 1I, Table S2). We found that both non-dynamic and dynamic APREs 146 

were distributed in similar proportions (Fig. S3) and only detected a slight increase in 147 

non-dynamic APREs located in promoters with respect to dynamic APREs in promoters 148 

(~18% versus ~13%) and an even slighter difference between non-dynamic and dynamic 149 

APREs in gene bodies (26% and 29%, respectively, Fig. S3). This proportion of APRE 150 

distribution was similar to the distribution of APREs in other invertebrate genomes, such 151 

as the chordate amphioxus (Branchiostoma lanceolatum) (Marlétaz et al. 2018). These 152 

two invertebrate species, C. dipterum and B. lanceolatum, notably diverged from the 153 

distribution found in some vertebrate species, which showed much larger proportion of 154 

distal APREs due to the relevance of distal regulation in these vertebrate genomes and 155 

the impact of the different rounds of whole genome duplications (Marlétaz et al. 2018). 156 

By contrast, when we compared the APRE distribution of C. dipterum with the distribution 157 

of accessible chromatin in D. melanogaster, we observed that fruitflies had a much lower 158 

proportion of distal APREs (i.e. a third of the corresponding fractions in C. dipterum and 159 
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B. lanceolatum), with a higher proportion of APREs located in gene bodies and proximal 160 

regions (Fig. 1I)(Bozek et al. 2019). These differences between C. dipterum and D. 161 

melanogaster were most likely due to the higher compaction of the 120 Mb D. 162 

melanogaster euchromatic genome (Adams et al. 2000), where most of the genomic 163 

regulatory blocks ancestral to animals and their associated long range regulatory 164 

interactions have been dismantled (Irimia et al. 2012). 165 

 166 
Figure 1. Open Chromatin profiles in C. dipterum embryogenesis. (A) Simplified 167 

insect phylogeny. Grey squares highlight the availability of ATAC-seq datasets. Asterisk 168 

shows lineages in which there is no ATAC-seq information but FAIRE-seq material has 169 

been generated. (B-G) Embryonic stages used in this study stained with Phalloidin-170 

AlexaFlour-488 (Red) and DAPI (cyan). (B-B’) Stage 4 embryo (St 4): germ band initial 171 

elongation. (C-C’) St 6: S-shaped embryo: anatrepsis II. (D-D’) St 8: Segmentation of the 172 

embryo. (E-E’) St 10 embryo: revolution or katatrepsis. (F-F’) St 12: initial dorsalization. 173 

(G-G’) St 14 embryo: dorsal closure completed. (H) Snapshot of the UCSC genome 174 

browser showing wnt1, wnt6, wnt10 cluster and the ATAC-seq tracks in this study and 175 

and RNA-seq tracks generated in this study and in (Almudi et al. 2020). (I) Percentage 176 

of ATAC-seq APREs distributed across C. dipterum, D. melanogaster, B. lanceolatum 177 

and D. rerio genomes. Scale bars: 50 um. 178 

179 
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ATAC-seq revealed a temporally regulated chromatin profile in the mayfly 180 

genome 181 

In order to study changes in chromatin accessibility throughout different samples (i.e. 182 

developmental timepoints), we analysed differential APRE activity between consecutive 183 

developmental stages. These results showed relatively modest changes between 184 

successive timepoints (i.e. 164 APREs at the St 4 to St 6 transition or 365 at St 10 to St 185 

12, Fig. S4, Table S3), with the notable exception of the transition between St 8 and St 186 

10, when more than four thousand APREs (4568) changed their accessibility, from 7,5 187 

to 27 times more than at the other timepoints (Fig. S4). From these, the vast majority 188 

(3118) corresponded to APREs that increase accessibility during this St 8-St 10 phase. 189 

This large amount of differentially active APREs between these two stages may indicated 190 

a major regulatory turnover between an early and late regulatory state during mayfly 191 

embryogenesis. In fact, this major shift was also evident when we performed a PCA 192 

analysis and clustering of the ATAC-seq datasets, which formed two very distinctive 193 

clusters: samples from stages 4, 6 and 8 and samples from 10, 12 and 14 (Fig. S4).  194 

 To further explore the dynamics of chromatin accessibility across the selected 195 

developmental timepoints, we performed a temporal soft-clustering analysis using Mfuzz 196 

(Kumar and Futschik 2007)(see methods and Table S4). Among the different temporal 197 

clusters obtained (Fig. S5), we focused on clusters of APREs whose accessibility peaked  198 

at a single embryonic stages (e.g. cluster 8 and 16 for st 4, cluster 29 and 21 for st 6, 199 

cluster 28, 5, 6, 11, 13, 14 and 26 for st 8, cluster 25, 15 and 18 for st 10, cluster 27 for 200 

st 12 and cluster 4 and 2 for st 14; Fig 2A and Fig. S5). We then associated these APREs 201 

to their putative target genes and analysed the Gene Ontology (GO) enriched terms for 202 

each of these stage-specific clusters, using D. melanogaster orthologs (Almudi et al. 203 

2020), since it is the closest organism with functional annotation available (see methods 204 

and Table S5). This GO term enrichment analysis exhibited categories highly connected 205 

with each of the embryonic stages in which the accessibility of the chromatin was higher 206 

(Fig. 2A and Table S5). For instance, cluster 8 (st 4) and cluster 29 (st 6) contained 207 

APREs that were associated to genes involved in cell adhesion, planar cell polarity, DNA 208 

biosynthetic process and negative regulation of cell differentiation, which are 209 

characteristic processes of early embryogenesis in insects (Münster et al. 2019; Brantley 210 

and Di Talia 2021). On the other hand, GO terms enriched in clusters corresponding to 211 

later stages of embryogenesis (e.g. cl 25, cl 27 and cl 4, Fig 2A and Table S5) revealed 212 

processes related to organogenesis, such as axon guidance or regulation of 213 

developmental process (Gillott 2005).  214 

 Besides these stage-specific clusters, we also found several clusters that showed 215 

more prolonged activity patterns. In this manner, we identified clusters that recapitulated 216 

the major developmental shift we had previously observed between st 8 and st 10, with 217 
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a set of "early embryogenesis" clusters (e.g. clusters 7, 9, 17, 19, 21 or 26) and another 218 

of "late embryogenesis"ones (clusters 3, 22, 23 or 3; Fig. 2B and Fig. S5). Accordingly, 219 

we identified enriched GO terms related to early development (e.g. establishment and 220 

maintenance of cell polarity or cell adhesion processes) and terms related to late 221 

embryogenesis (e.g. visual perception and animal organ morphogenesis), respectively 222 

(Fig. 2B and Table S5).  223 

 In addition, we also performed k-means hard clustering (see methods, Table S6) 224 

using the same set of dynamic APREs (Fig. 2C). This analysis was able to recover six 225 

clusters with differential dynamics of accessibility, although none of these clusters 226 

corresponded to APREs showing stage-specific accessibility. By contrast, we identified 227 

two groups of clusters, - cluster 1 and cluster 3, on one hand, and cluster 2 and cluster 228 

4, on the other hand-, that contained APREs accessible during early stages of 229 

embryogenesis and late stages of embryogenesis, respectively (Fig. 2C and Table S6), 230 

mirroring the st 8-st 10 shift observed in the previous analyses. In order to better 231 

characterise these clusters, we carried out TF motif enrichment analysis using Homer 232 

software (see methods, Fig. 2D and Table S7). In agreement with previous work in other 233 

insects and the results of the GO term enrichment analysis from the Mfuzz clusters (Fig. 234 

2A, B), for APREs in cluster 1 and cluster 3, we identified motifs whose best match were 235 

TFs involved in early embryogenesis. These include Hunchback (Hb), a gap gene 236 

involved in antero-posterior axis specification (Qian, Capovilla, and Pirrotta 1991), 237 

Caudal (Cad), which functions in germ band elongation (Schulz and Tautz 1995; Wu and 238 

Lengyel 1998), or Zelda (Zld), a zygotic genome activator that acts during early 239 

blastoderm development (Brennan et al. 2023; Liang et al. 2008) (Fig. 2D). By contrast, 240 

clusters 2 and 4, whose APREs were open in later stages of development, showed 241 

enrichment in motifs that correspond to TFs involved in different processes of 242 

organogenesis, such as Nubbin (Nub), a regulator of appendage morphogenesis 243 

(Turchyn et al. 2011), Six4, involved in the development of mesodermal structures (Clark 244 

et al. 2006), or Mothers against dpp (Mad), that mediates the response to the BMP 245 

pathway during the development of diverse insect organs (Sekelsky et al. 1995).  246 

Overall, these analyses revealed two main phases during the embryogenesis of 247 

mayflies in which distinct set of regulatory regions are active (Fig. 2B, C) to control 248 

different sets of genes and regulatory networks involved in such early or late embryonic 249 

processes. These results were consistent with the mid-developmental transition 250 

previously described at transcriptomic level for some phyla, including insects (Levin et 251 

al. 2016). 252 

 253 
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Figure 2. ATAC-seq revealed a temporally regulated chromatin profile in the mayfly 256 

genome. (A) Mfuzz clusters obtained for the 8,898 dynamic APREs obtained through 257 

ATAC-seq experiments in the six selected developmental stages representing stage-258 

specific APRE activity and their associated GO enriched terms. (B) Mfuzz clusters 259 

representing “early embryogenesis” and “late embryogenesis” APRE activity and their 260 

associated GO enriched terms. (C) Heatmaps of the 8,898 dynamic APREs clustered 261 

using k-means clustering. Six clusters were obtained, with four of them showing a clear 262 

dynamic behavior: cluster 1 (n=125) and cluster 3 (n=632) or early activity, cluster 2 263 

(n=428) and cluster 4 (n = 1698) or late activity. (D) Motif enrichment analysis of the early 264 

(cluster 1, cluster 3) and late (cluster 2, cluster 4) active clusters. Five or four 265 

representative motifs of the top-10 were chosen. Motif logos are represented with their 266 

position in the top-10, the TF names, the enrichment p-values and the percentage of 267 

sites showing the motif. 268 

 269 

Chromatin accessibility to understand gene expression dynamics 270 

Since ATAC-seq has been proven to be a powerful method to investigate the regulation 271 

of gene expression, we next addressed the relationship between chromatin accessibility 272 

and levels of gene expression (Starks et al. 2019). To do this, we measured the levels of 273 

gene expression at the same developmental stages of our ATAC-seq datasets (see 274 

methods Fig. S6 and Table S8). When focusing on genes associated to the 8,898 275 

dynamic APREs, we first observed that the six stages clustered accordingly to the “early” 276 

and “late” embryonic phases that we identified in the ATAC-seq data. Transcriptomes 277 

from stages 4, 6 and 8 formed a cluster while transcriptomes from stages 10, 12 and 14 278 

grouped together (Fig. 3A). Moreover, we detected some genes whose expression varied 279 

along the developmental timepoints we characterised: cluster 11 and cluster 7 decreased 280 

their expression as embryogenesis progressed, while genes from cluster 3, 5 or 9 281 

increased their expression during embryonic development (Fig. 3A).  282 

To further illustrate our results, we investigated the expression pattern of 283 

embryonic lethal abnormal vision (elav) that showed differential APRE accessibility and 284 

differential gene expression along embryonic stages (Fig. 3B). Elav is a RNA binding 285 

protein involved in axon guidance, synapse formation and development and 286 

maintenance of neurons (Robinow and White 1988). We performed Hybridization Chain 287 

Reaction (HCRs) assays (Bruce et al. 2021) in st 6, st 8 and st 10 embryos to 288 

characterise the spatial expression of this gene in these stages in which we observed 289 

shifts in chromatin accessibility and expression levels. While embryos at st 6 showed 290 

reduced expression of elav in some cells in the cephalic region (Fig. 3C), at st 8 elav 291 

exhibited a broader expression domain in head domains and in the most anterior thoracic 292 

segments. At st 10, these neural territories of elav expression expanded and elongated 293 
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to the abdominal segments (Fig. 3C). As expected, we also observed an increase in the 294 

accessibility of chromatin in the locus, especially upstream of the Transcription Start Site 295 

(TSS, Fig. 3B). 296 

 Previous analysis of co-regulated gene expression across several tissues, using 297 

Weighted Gene Correlation Network Analysis (WGCNA), revealed modules of genes 298 

specifically expressed in particular adult and nymphal tissues (Almudi et al. 2020). We 299 

examined whether chromatin accessibility information from embryos correlated with 300 

these modules. We characterised enriched motifs in APREs associated to the genes 301 

contained in each of these WGCNA modules and found distinctive enriched binding 302 

motifs for some of them (see methods and Table S9). For example, the brain module 303 

was enriched in neural motifs, such as Suppressor of Hairy (Su(H)), retained (retn) or 304 

Cut (Ct), which are TFs involved in neural or glial development (Grueber and Jan 2004; 305 

Shandala et al. 1999), the muscle module had motifs for bagpipe (bap) or twist (twi), 306 

required for mesodermal development (Castanon et al. 2001; Cripps and Olson 2002) 307 

and specification or the gills module with enrichment in motifs such as defective 308 

proventriculus (dve) involved in epithelium patterning or glial cells missing (gmc), which 309 

could have a role in the determination of some of the numerous neural cells that we 310 

previously identified in these abdominal structures (Almudi et al. 2020; Hosoya et al. 311 

1995) (Fig. 3D, and Table S9). These results suggest that some of the Gene Regulatory 312 

Networks involved in the development of nymphal tissues and organs are already 313 

functioning during embryogenesis and their regulatory signatures can be detected in our 314 

ATAC-seq datasets. Thus, our results can also provide important insights into the 315 

regulatory logic of the adult body plan, and therefore also constitute a valuable resource 316 

for adult insect biology. 317 

 Overall, our ATAC-seq datasets provide a comprehensive resource to help 318 

uncovering developmental diversity of insects, since it represents the first publicly 319 

available genome-wide collection of putative regulatory elements across embryogenesis 320 

in a hemimetabolous lineage using ATAC-seq approaches. Thus, the key phylogenetic 321 

position of Ephemeroptera, together with the extensive chromatin accessibility 322 

information made available here, will open new venues to address longstanding 323 

questions in the fields of developmental and evolutionary biology and comparative 324 

genomics. 325 
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 326 

Figure 3. Chromatin accessibility to understand gene expression dynamics. (A) 327 

Heatmap showing expression levels of genes associated to dynamic ATAC-seq APRE in 328 

the selected embryonic stages. RNA-seq samples clustered according to embryonic 329 

stage progression. Secondary clustering showed 12 different gene clusters. (B) elav 330 

genomic regulatory landscape. APRE activity and gene expression increase as 331 

embryogenesis progresses. (C) HCR hybridization against the gene elav at st 6, st 8 and 332 

st 10 of embryogenesis. Nuclei were stained with DAPI (dark blue) and elav expression 333 

pattern is shown in yellow. Scale bars: 50 um. (C) Motif enrichment analysis of APREs 334 

associated to genes from some tissue-specific WGCNA modules identified in (Almudi et 335 

al. 2020). Four representative motifs of the top-10 were chosen. Motif logos are 336 

represented with their position in the top-10, the TF names and the enrichment p-values. 337 

 338 

MATERIALS & METHODS 339 

Culture maintenance, embryo collection and fixation  340 

Samples were obtained from a Cloeon dipterum culture maintained in the laboratory as 341 

previously described in (Almudi et al. 2019). Gravid females fertilised different days were 342 

collected and dissected to obtain embryos at selected developmental stages: st 4, st 6, 343 

st 8, st 10, st 12, st 14. After opening the abdomen of these gravid females, embryos 344 

were collected to perform ATAC-seq or RNA-seq procedures and a small subset was 345 

collected apart and fixed with 4% Formaldehyde for 1 hour at r.t. to confirm the 346 

developmental stage. After 3 x 5’ washes with PBS, these fixed embryos were stained 347 

with Phalloidin Alexa Fluor™ 488 (A12379) and DAPI to visualise actin filaments and 348 

nuclei, respectively. Images were acquired using a Zeiss LSM 880 confocal and were 349 

processed with Fiji (Schindelin et al. 2012).  350 

 351 

HCR hybridization  352 
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HCR hybridization followed a modified version of the Molecular Instruments (Los Angeles, 353 

CA, USA) HCR v.3 protocol (Bruce et al. 2021). HCR probe was designed to evade non-354 

specific binding using an open-source probe design program (Kuehn et al. 2022). Briefly, 355 

embryos stored in ethanol were rehydrated in stepwise 75/50/25% ethanol in PBTw 0.1%. 356 

After 3 x 5’ washes in PBTw 0.1%, embryos were permeabilized in Detergent Solution 357 

(1.0% SDS, 0.5% Tween, 50.0 mM Tris-HCl (pH 7.5), 1.0 mM EDTA (pH 8.0), and 150.0 358 

mM NaCl) for 30’ at room temperature (RT), kept in pre-warmed Probe Hybridization 359 

Buffer (Molecular Instruments) for 30’ at 37 ºC, and incubated in Probe Solution (4 nM of 360 

probe in Probe Hybridation Buffer) overnight at 37 ºC. After 4 x 15’ washes in pre-heated 361 

wash buffer (Molecular Instruments) at 37 ºC and 2 x 5’ washes in 5x SSCTw 0.1% at 362 

RT, they were kept in pre-equilibrated Amplification Buffer (Molecular Instruments) for 30' 363 

at RT and incubated in hairpin solution (60 nM of each hairpin h1 and h2 (Molecular 364 

Instruments) separately in pre-equilibrated Amplification Buffer, heated at 95 ºC for 90 s 365 

and cooled down for 30’ overnight in the dark at RT. Following 5 x 20’ washes in 5x 366 

SSCTw 0.1% and 1 x 10’ wash in PBTw 0.1 % pH 7.4 in dark at RT, embryos were 367 

mounted in Prolongue™ Gold with DAPI (P36941, Invitrogen). Images were acquired 368 

using a Zeiss LSM 880 confocal and were processed with Fiji (Schindelin et al. 2012). 369 

 370 

RNA-seq sequencing and assembly 371 

Three RNA-seq datasets (including replicates) of st 8 and st 12 embryos were generated 372 

using the Illumina technology. Samples were processed immediately after dissection and 373 

RNA was extracted using RNeasy Mini Kit (Qiagen) following manufacturers’ instructions. 374 

Paired-end libraries were generated using Illumina (Novaseq6000) 2x50bp. After quality 375 

control, the obtained reads were aligned using the STAR aligner. Initially, a genome index 376 

was created using the CLODIP2 reference genome (GCA_902829235.1) with the 377 

genomeGenerate mode of STAR. Subsequent alignment of reads to this index was 378 

performed using the alignReads mode. Gene expression levels were quantified utilizing 379 

the quantMode GeneCounts option within STAR.  380 

 381 

ATAC-seq and library preparation  382 

ATAC-seq or assay for transposase-accessible chromatin by sequencing protocol was 383 

optimised during these experiments to use on mayflies from (Buenrostro et al. 2015). 384 

Briefly, embryos were homogenised in lysis buffer (10 mM Tris–HCl pH 7.4, 10 mM NaCl, 385 

3 mM MgCl2, 0.1% NP-40) to obtain approximately 70000 individual nuclei. After 386 

removing lysis buffer, transposition reaction (1.25 μl of Tn5 enzyme in 10 mM Tris–HCl 387 

pH 8.0, 5 mM MgCl2, 10% w/v dimethylformamide) was performed for 30 min at 37 ºC 388 

and the resulting fragments are purified using MinElute PCR Purification Kit (Qiagen). 389 

qPCR was performed to determine the optimal number of cycles necessary for each 390 
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library. A unique pair of primers were assigned to each sample (Table S10) and 12 391 

libraries were prepared corresponding to two biological replicates of the six selected 392 

developmental time points using a PCR. Libraries were purified using the MinElute PCR 393 

Purification Kit (Qiagen). DNA concentration in each sample was calculated with 394 

Invitrogen™ Qubit™ 4 Fluorometer using The Qubit 1X dsDNA HS Assay Kit.  395 

 396 

ATAC-seq mapping and peak (APRE) calling  397 

For peak (APRE) calling, we followed the pipeline outlined in 398 

https://github.com/alexgilgal/Thesis_methods/tree/main/ATAC-seq%20analysis, 399 

implementing minor modifications as detailed in our project's GitHub repository 400 

(https://github.com/mayflylab/Cdip-RegEmb/tree/main). We employed the ATAC_pipe.pl 401 

script for mapping reads, utilizing Bowtie2 (Langmead and Salzberg 2012) to align the 402 

reads to the CLODIP2 reference genome (GCA_902829235.1). Following alignment, the 403 

resulting BAM files were filtered based on a quality threshold of 10 and a minimum 404 

fragment length of 130 bp (Fig. S1).   405 

The processed files were then subjected to peak analysis using the 406 

idr_ATAC_script.sh script, which executes peak calling with MACS2 (Zhang et al. 2008) 407 

to generate two sets of peaks: conservative peaks, indicating high-confidence regions 408 

across biological replicates, and optimal peaks, denoting reproducible events that 409 

consider read sampling variability, derived from pseudo-replicates. Subsequent IDR (Li 410 

et al. 2011) analysis was performed on both peak sets. Peak statistics—including the 411 

number of peaks and rescue ratios—were calculated and documented in a summary file.  412 

 413 

APRE classification and gene assignment  414 

APREs are classified and associated with genes based on their proximity to the 415 

transcription start sites (TSS). TSSs are defined using the get_TSS.py script 416 

(https://github.com/m-rossello/GeneRegLocator/). To classify APREs and link them to 417 

genes, we use a custom-made script named make_table_from_zones.py 418 

(https://github.com/m-rossello/GeneRegLocator/). This script is designed to delineate 419 

regulatory zones around TSSs and associate these zones with APREs from ATAC-seq 420 

data. It defines three types of regulatory zones:  Promoters, located near the TSS, 421 

spanning 1000 bases upstream and 500 bases downstream. Proximal regions, 422 

positioned further from the TSS, extending 4000 bases upstream but not overlapping with 423 

promoters. Gene bodies, encompassing regions within the gene but excluding the 424 

promoter areas (Fig. 1I). Zones are non-overlapping on the same strand, although the 425 

same genomic position can exhibit different zones on each strand. Each APRE is 426 

associated with one or more genes if it overlaps by more than 70% with a gene zone. 427 
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APREs not falling within promoter, proximal, or gene body regions are classified as distal 428 

and remain unassociated with any gene (Table S2).  429 

 430 

Open chromatin analysis  431 

The counts obtained from consensus APREs were used for all subsequent analyses, 432 

following normalization. This normalization involves adjusting the count data using the 433 

TMM method (Robinson and Oshlack 2010) to account for differences in library size and 434 

composition. To further explore trends and variations across different biological stages, 435 

we aggregate the normalized counts by these stages, calculating mean values. Global 436 

APRE analysis categorizes APRE as either "open" or "closed" based on a threshold of 437 

10 counts. APREs registering fewer than 10 counts are deemed closed. We define non-438 

dynamic APREs as those that remain consistently open or closed across all examined 439 

stages. Conversely, dynamic APREs are characterized by their variability, changing 440 

between open and closed states across different stages or samples.  441 

 442 

Differential Chromatin Accessibility Analysis  443 

After counts normalization by TMM (Robinson and Oshlack 2010) and sample exploration 444 

by PCA and clustering, differential chromatin accessibility analysis was performed in 445 

dynamic APREs. For this analysis, we utilize the limma-trend method (Law et al. 2014; 446 

Phipson et al. 2016). This approach is applied to the normalized count data of dynamic 447 

APREs to identify significant differences in chromatin accessibility between conditions. 448 

To visualize the results, we generate volcano plots using the EnhancedVolcano package 449 

(Blighe, Rana, and Lewis 2023).  450 

 451 

Mfuzz analysis  452 

We conducted the Mfuzz cluster analysis using the mfuzz function from the R package 453 

Mfuzz (Kumar and Futschik 2007). Dynamic APREs with mean values computed by 454 

developmental stage were analysed. The optimal parameters were systematically 455 

determined, setting the fuzzifier value at m=1.5 and the number of clusters at 30.   456 

 457 

k-means analysis 458 

We performed k-means hard clustering using the DeepTools package (Ramírez et al. 459 

2016) to analyze dynamic APRE enrichments from ATAC-seq data. This analysis 460 

included computing genome region scores with the computeMatrix function. The 461 

generated matrices enabled the visualization of heatmaps, which provided insights into 462 

the distribution of dynamic APREs across various developmental stages. Additionally, we 463 

created profile plots to further explore the chromatin accessibility dynamics.   464 

 465 
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Gene Ontology Enrichment Analysis  466 

For our Gene Ontology (GO) enrichment analysis, GO annotations are transferred from 467 

the UniProt proteome (UP000494165) to the genes associated with the APREs. We 468 

perform statistical analysis using the topGO package (Alexa and Rahnenfuhrer 2023), 469 

which utilizes the elimination algorithm to identify significantly enriched GO terms within 470 

gene clusters. The BH false discovery rate correction method (Benjamini and Hochberg 471 

1995) is employed to control multiple testing. The results are visualized using GO 472 

enrichment plots, created with the ggplot2 package.  473 

 474 

TFBM enrichment analysis  475 

Transcription factor binding motif (TFBM) enrichment analysis is conducted using the 476 

findMotifsGenome.pl tool from the HOMER suite (Heinz et al. 2010). We designate the 477 

APREs of interest as the foreground and utilize the remainder of the consensus APREs 478 

as the background. The fragment size selected for motif discovery corresponds precisely 479 

to the regions of the APREs (-size given). This analysis includes a comparison against 480 

collected motifs specific to insects.  481 
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SUPPLEMENTARY FIGURES 798 

 799 

 800 

 801 

Figure S1. Read size distribution in ATAC-seq libraries. 802 
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 803 

Figure S2. Chromatin state across different developmental stages. (A) Total number 804 

of APREs identified as open at each developmental stage. (B) Chromatin APREs that 805 

dynamically opening and closing across the stages.  806 

 807 

 808 

Figure S3. Distribution of APREs per developmental timepoint. (A) Number of 809 

APREs in each genomic zone distributed across each developmental stage. (B) Non-810 

dynamic APREs per genomic zone distributed across each stage. (C) Dynamic APREs 811 

per genomic zone distributed across each stage.  812 
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 813 

Figure S4. PCA analysis of ATAC libraries and differential APRE accessibility. (A) 814 

PCA showing the distribution of samples across the first two principal components. (B) 815 

Hierarchical clustering of each sample. (C) Number of differentially accessible chromatin 816 

regions between the different stage transitions. (D) Volcano plot of all differentially 817 

accessible regions for each stage transition.  818 
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 819 

Figure S5. Mfuzz clustering. Patterns of chromatin accessibility across different 820 

developmental stages.  821 

 822 

 823 

Figure S6. PCA analysis of RNA-seq Libraries. (A) PCA displaying the distribution of 824 

RNA samples across the first two principal components. (B) Hierarchical clustering of 825 

RNA samples.  826 
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