

1 **Gene regulatory dynamics during the development of a paleopteran insect, the**
2 **mayfly *Cloeon dipterum***

3

4 Joan Pallarès-Albanell* 1,2, Laia Ortega-Flores* 1, Tòt Senar-Serra 1,2, Antoni Ruiz 1,2,
5 Josep F. Abril 1,3, Maria Rossello# 1,2, Isabel Almudi# 1,2

6

7 1 Department of Genetics, Microbiology and Statistics, Universitat de Barcelona,
8 Diagonal 643, 08028, Barcelona, Spain

9 2 Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal,
10 643, 08028, Barcelona, Spain

11 3 Institute of Biomedicine of Universitat de Barcelona (IBUB), Universitat de Barcelona,
12 Diagonal, 643, 08028, Barcelona, Spain

13

14 *Equally contributed

15 #correspondence to ialmudi@ub.edu, mariarossello@ub.edu

16

17 KEY WORDS: Gene regulation, Paleoptera, mayflies, insects, embryogenesis, ATAC-
18 seq.

19

20 **Abstract**

21 The evolution of insects has been marked by the appearance of key body plan
22 innovations and novel organs that promoted the outstanding ability of this lineage to
23 adapt to new habitats, boosting the most successful radiation in animals. To understand
24 the origin and evolution of these new structures, it is essential to investigate which are
25 the genes and gene regulatory networks participating during the embryonic development
26 of insects. Great efforts have been made to fully understand, from a gene expression
27 and gene regulation point of view, the development of holometabolous insects, in
28 particular *Drosophila melanogaster*, with the generation of numerous functional
29 genomics resources and databases. Conversely, how hemimetabolous insects develop,
30 and which are the dynamics of gene expression and gene regulation that control their
31 embryogenesis, are still poorly characterized. Therefore, to provide a new platform to
32 study gene regulation in insects, we generated ATAC-seq (Assay for transposase-
33 Accessible Chromatin using sequencing) for the first time during the development of the
34 mayfly *Cloeon dipterum*. This new available resource will allow to better understand the
35 dynamics of gene regulation during hemimetabolous embryogenesis, since *C. dipterum*
36 belongs to the paleopteran order of Ephemeroptera, the sister group to all other winged
37 insects. These new datasets include six different time points of its embryonic
38 development and identify accessible chromatin regions corresponding to both general

39 and stage-specific promoters and enhancers. With these comprehensive datasets, we
40 characterised pronounced changes in accessible chromatin between stages 8 and 10 of
41 embryonic development, which correspond to the transition from the last stages of
42 segmentation to organogenesis and appendage differentiation. The application of ATAC-
43 seq in mayflies has contributed to identify the epigenetic mechanisms responsible for
44 embryonic development in hemimetabolous insects and it will provide a fundamental
45 resource to understand the evolution of gene regulation in winged insects.

46 **INTRODUCTION**

47 Insects are the most numerous and diverse lineage of animals on the planet (Misof et al.
48 2014). This huge radiation has been possible due to their extraordinary capabilities to
49 adapt to distinct environments and the myriad of life history traits evolved within this
50 animal class, which resulted in more than thirty extant orders distributed worldwide (Misof
51 et al. 2014; D. Grimaldi & M. S. Engel 2007).

52 This diversity of forms and lifestyles is the result of changes in the gene regulatory
53 networks (GRNs) controlling the embryonic and postembryonic development of this
54 clade (Carroll 1998; Molina-Gil et al. 2023). In recent decades, the importance of
55 regulatory information responsible for the location and time in which genes and GRNs
56 are functioning, has been widely recognised (Furlong and Levine 2018; Leyhr et al. 2022;
57 Gompel et al. 2005; Andrikou and Arnone 2015). These so called *cis* regulatory elements
58 (CREs) are major players of morphological evolution not only in insects, but also in other
59 animal lineages (Guerreiro et al. 2013; Leyhr et al. 2022). Still, some changes in trans, -
60 in the coding sequences of transcription factors (TFs) and/or signalling molecules- have
61 been also shown to participate in the diversity of phenotypes observed in animals (Galant
62 and Carroll 2002; Santos et al. 2017). Thus, both changes in coding regions and CREs
63 are key to explain the wide range of insect (and animal) morphologies. Comparative
64 genomics projects (Crowley et al. 2023; Formenti et al. 2022; Molik 2022) promoted a
65 better understanding of changes in trans elements, due to their higher degree of
66 conservation between species. By contrast, CREs are more difficult to identify by
67 homology, since they are usually less pleiotropic and for this, they tend to accumulate
68 more changes in their sequences that impede their proper characterisation by sequence
69 similarity. This is even more manifest in insects, with increased rates of genome evolution
70 when comparing with vertebrate lineages (Zdobnov and Bork 2007). In addition,
71 comparative transcriptomics provide information about the spatio-temporal dynamics of
72 gene expression between different lineages (Mantica et al. 2024; Rodríguez-Montes et
73 al. 2023; Levin et al. 2016), which may reflect to some degree differences in GRNs. The
74 advent of new functional genomics approaches based on chromatin accessibility, such
75 as, first, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq (J. M. Simon
76 et al. 2012)) and the more recent Assay for Transposase-Accessible Chromatin (ATAC-
77 seq (Buenrostro et al. 2013)), allow the identification of open chromatin regions that can
78 be assigned as CREs, such as enhancers, promoters and insulators. The advantages of
79 these methods, in comparison to other functional genomics assays used before (e.g.
80 ChIP-seq), are the low input of starting material, the high-throughput protocol without
81 expensive reagents or antibodies and that they are not excessively laborious, among
82 others. Therefore, much more detailed and comprehensive characterisations of CREs
83 have been possible and several FAIRE-seq and ATAC-seq datasets have been

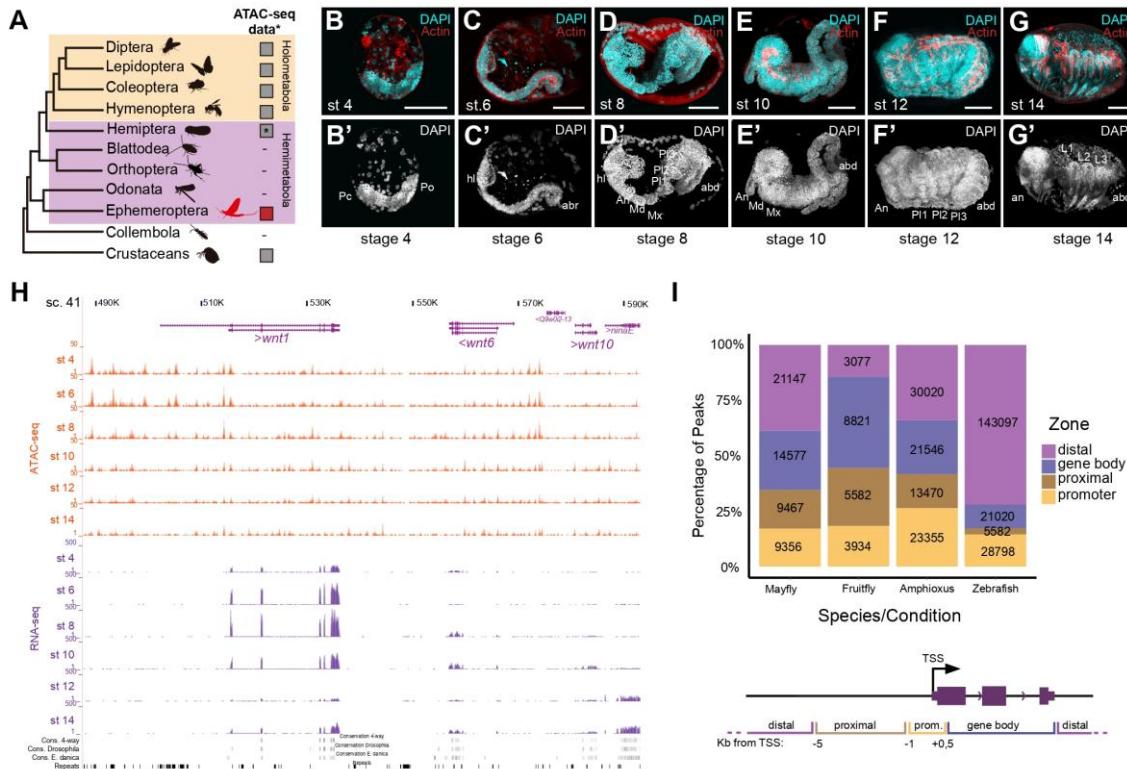
84 generated during the last decade to address distinct questions related to insect
85 development and evolution. Nonetheless, these works have been mostly done using few
86 established model species, such as the fruitfly *Drosophila melanogaster* (Diptera), the
87 red flour beetle *Tribolium castaneum* (Coleoptera), some butterfly and moth species
88 (Lepidoptera) or certain species of ants and bees (Hymenoptera) (Lowe et al. 2022;
89 Wang et al. 2020; Zhao et al. 2020), all of which belong to a single monophyletic group
90 of insects, the Holometabola (Fig. 1A)(Schmidt-Ott and Lynch 2016). By contrast, the
91 remaining seventeen orders of winged insects, the Hemimetabola (Fig. 1A), continue
92 unexplored, with only adults and one embryonic FAIRE-seq datasets available
93 (Fernández et al. 2020; Richard et al. 2017) to our knowledge.

94 Both hemimetabolous and hemimetabolous orders shared common phases
95 during their development (Sander 1976; Patel 1994). Indeed, these main events during
96 embryogenesis are also present in non-insect arthropods (Zrzavý and Štys 1997). The
97 early stages of insect development initiate with several rounds of nuclear divisions that
98 migrate to the periphery to form the blastoderm. The blastoderm gives rise to different
99 types of germ band (short, intermediate or long) which are subsequently segmented
100 during the following embryonic stages (Davis and Patel 2002). Then, the segmented
101 embryo undergoes a process of differentiation in which organogenesis and the final
102 development of the juvenile structures take place (Sander 1976).

103 The mayfly *Cloeon dipterum*, a recently established laboratory system (Almudi et
104 al. 2020; 2019), is in a privileged position to improve the phylogenetic diversity of insect
105 functional genomics resources. Mayflies or Ephemeroptera belong to the Paleoptera
106 group of winged insects, together with Odonata (dragonflies and damselflies)(Fig. 1A)
107 (S. Simon, Blanke, and Meusemann 2018). They are the sister group to all other winged
108 insects and thus, due to this position in the insect phylogenetic tree, they are key to
109 address fundamental questions related to insect physiology, ecology, development and
110 evolution.

111 Here, we performed ATAC-seq experiments at six different developmental
112 stages, -including some of the hallmark stages of insect embryogenesis mentioned
113 above-, in *C. dipterum* embryos. Our identified accessible chromatin regions provide an
114 exhaustive collection of putative promoters and enhancers along embryogenesis of this
115 hemimetabolous insect. Moreover, by studying the temporal dynamics of these elements,
116 we showed wholesale changes in chromatin accessibility during the transition between
117 the last stages of segmentation and the start of organogenesis and appendage
118 differentiation. Finally, we facilitate the access to these comprehensive datasets through
119 a dedicated web browser (<https://genome-euro.ucsc.edu/s/mayfly/Clodip>), providing
120 a key resource available for the entire community to understand the evolution of gene
121 regulation during the development of winged insects.

122


123 **RESULTS AND DISCUSSION**

124 **Open Chromatin profiles in *C. dipterum* embryogenesis**

125 To investigate dynamics of gene regulation during the embryogenesis of mayflies, we
126 performed ATAC-seq assays for six different developmental stages: stage (st) 4 (germ
127 band elongation, [Fig. 1B, B'](#)), st 6 (S-shaped embryo: anatrepsis II [Fig. 1C, C'](#)), st 8
128 (segmentation of the embryo, [Fig. 1D, D'](#)), st 10 (revolution: katatrepsis, [Fig. 1E, E'](#)), st
129 12 (start of dorsal closure, [Fig. 1F, F'](#)), st 14 (dorsal closure complete, [Fig. 1G, G'](#)) (Tojo
130 and Machida 1997). Sequences resulting from these experiments were mapped against
131 the *C. dipterum* reference genome assembly (CLODIP2 (Almudi et al. 2020), see
132 methods and [Fig. S1](#)) to obtain a non-redundant collection of open chromatin regions
133 throughout the genome that we termed APREs (Accessible Putative Regulatory
134 Elements) ([Fig. 1H](#)). After normalization (see methods) we identified a total of 54,547
135 APREs across the six developmental stages. Of them, 45,649 APREs did not show
136 changes in accessibility in our clustering analyses of the different developmental
137 samples we assayed (i.e. they remained constitutively open or close across these
138 stages) while 8,898 APREs were dynamic and changed their accessibility across
139 developmental stages ([Fig. S2](#) and [Table S1](#)).

140 We next aimed at defining the genomic distributions of the APREs relative to
141 genes and gene annotations. For this, we calculated the proportions of APREs at the
142 "promoter" (i. e. APREs in the immediate vicinity of the annotated transcription start sites
143 (TSSs)), at "proximal regions", spanning up to 5 Kb upstream the TSSs, at "gene bodies"
144 (located between the end of the promoter and the termination site of the gene) and
145 "distal" regions, which comprised genomic regions that do not fall in the previous
146 categories ([Fig. 1I](#), [Table S2](#)). We found that both non-dynamic and dynamic APREs
147 were distributed in similar proportions ([Fig. S3](#)) and only detected a slight increase in
148 non-dynamic APREs located in promoters with respect to dynamic APREs in promoters
149 (~18% versus ~13%) and an even slighter difference between non-dynamic and dynamic
150 APREs in gene bodies (26% and 29%, respectively, [Fig. S3](#)). This proportion of APRE
151 distribution was similar to the distribution of APREs in other invertebrate genomes, such
152 as the chordate amphioxus (*Branchiostoma lanceolatum*) (Marlétaz et al. 2018). These
153 two invertebrate species, *C. dipterum* and *B. lanceolatum*, notably diverged from the
154 distribution found in some vertebrate species, which showed much larger proportion of
155 distal APREs due to the relevance of distal regulation in these vertebrate genomes and
156 the impact of the different rounds of whole genome duplications (Marlétaz et al. 2018).
157 By contrast, when we compared the APRE distribution of *C. dipterum* with the distribution
158 of accessible chromatin in *D. melanogaster*, we observed that fruitflies had a much lower
159 proportion of distal APREs (i.e. a third of the corresponding fractions in *C. dipterum* and

160 *B. lanceolatum*), with a higher proportion of APREs located in gene bodies and proximal
 161 regions (Fig. 1I)(Bozek et al. 2019). These differences between *C. dipterum* and *D.*
 162 *melanogaster* were most likely due to the higher compaction of the 120 Mb *D.*
 163 *melanogaster* euchromatic genome (Adams et al. 2000), where most of the genomic
 164 regulatory blocks ancestral to animals and their associated long range regulatory
 165 interactions have been dismantled (Irimia et al. 2012).

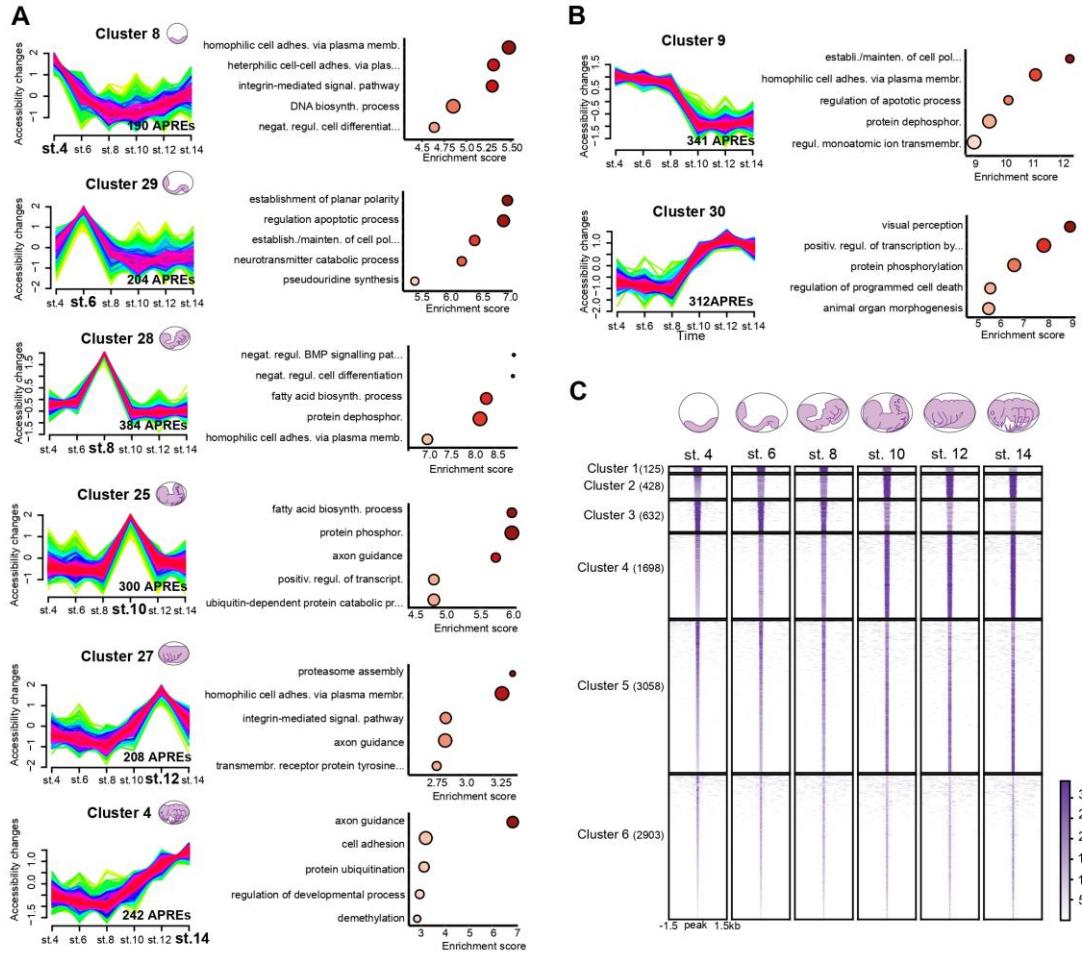
166 **Figure 1. Open Chromatin profiles in *C. dipterum* embryogenesis.** (A) Simplified
 167 insect phylogeny. Grey squares highlight the availability of ATAC-seq datasets. Asterisk
 168 shows lineages in which there is no ATAC-seq information but FAIRE-seq material has
 169 been generated. (B-G) Embryonic stages used in this study stained with Phalloidin-
 170 AlexaFlour-488 (Red) and DAPI (cyan). (B-B') Stage 4 embryo (St 4): germ band initial
 171 elongation. (C-C') St 6: S-shaped embryo: anatrepsis II. (D-D') St 8: Segmentation of the
 172 embryo. (E-E') St 10 embryo: revolution or katabrepsis. (F-F') St 12: initial dorsalization.
 173 (G-G') St 14 embryo: dorsal closure completed. (H) Snapshot of the UCSC genome
 174 browser showing *wnt1*, *wnt6*, *wnt10* cluster and the ATAC-seq tracks in this study and
 175 and RNA-seq tracks generated in this study and in (Almudi et al. 2020). (I) Percentage
 176 of ATAC-seq APREs distributed across *C. dipterum*, *D. melanogaster*, *B. lanceolatum*
 177 and *D. rerio* genomes. Scale bars: 50 um.

179

180 **ATAC-seq revealed a temporally regulated chromatin profile in the mayfly
181 genome**

182 In order to study changes in chromatin accessibility throughout different samples (i.e.
183 developmental timepoints), we analysed differential APRE activity between consecutive
184 developmental stages. These results showed relatively modest changes between
185 successive timepoints (i.e. 164 APREs at the St 4 to St 6 transition or 365 at St 10 to St
186 12, [Fig. S4](#), [Table S3](#)), with the notable exception of the transition between St 8 and St
187 10, when more than four thousand APREs (4568) changed their accessibility, from 7,5
188 to 27 times more than at the other timepoints ([Fig. S4](#)). From these, the vast majority
189 (3118) corresponded to APREs that increase accessibility during this St 8-St 10 phase.
190 This large amount of differentially active APREs between these two stages may indicated
191 a major regulatory turnover between an early and late regulatory state during mayfly
192 embryogenesis. In fact, this major shift was also evident when we performed a PCA
193 analysis and clustering of the ATAC-seq datasets, which formed two very distinctive
194 clusters: samples from stages 4, 6 and 8 and samples from 10, 12 and 14 ([Fig. S4](#)).

195 To further explore the dynamics of chromatin accessibility across the selected
196 developmental timepoints, we performed a temporal soft-clustering analysis using Mfuzz
197 (Kumar and Futschik 2007)(see methods and [Table S4](#)). Among the different temporal
198 clusters obtained ([Fig. S5](#)), we focused on clusters of APREs whose accessibility peaked
199 at a single embryonic stages (e.g. cluster 8 and 16 for st 4, cluster 29 and 21 for st 6,
200 cluster 28, 5, 6, 11, 13, 14 and 26 for st 8, cluster 25, 15 and 18 for st 10, cluster 27 for
201 st 12 and cluster 4 and 2 for st 14; [Fig 2A](#) and [Fig. S5](#)). We then associated these APREs
202 to their putative target genes and analysed the Gene Ontology (GO) enriched terms for
203 each of these stage-specific clusters, using *D. melanogaster* orthologs (Almudi et al.
204 2020), since it is the closest organism with functional annotation available (see methods
205 and [Table S5](#)). This GO term enrichment analysis exhibited categories highly connected
206 with each of the embryonic stages in which the accessibility of the chromatin was higher
207 ([Fig. 2A](#) and [Table S5](#)). For instance, cluster 8 (st 4) and cluster 29 (st 6) contained
208 APREs that were associated to genes involved in cell adhesion, planar cell polarity, DNA
209 biosynthetic process and negative regulation of cell differentiation, which are
210 characteristic processes of early embryogenesis in insects (Münster et al. 2019; Brantley
211 and Di Talia 2021). On the other hand, GO terms enriched in clusters corresponding to
212 later stages of embryogenesis (e.g. cl 25, cl 27 and cl 4, [Fig 2A](#) and [Table S5](#)) revealed
213 processes related to organogenesis, such as axon guidance or regulation of
214 developmental process (Gillott 2005).


215 Besides these stage-specific clusters, we also found several clusters that showed
216 more prolonged activity patterns. In this manner, we identified clusters that recapitulated
217 the major developmental shift we had previously observed between st 8 and st 10, with

218 a set of "early embryogenesis" clusters (e.g. clusters 7, 9, 17, 19, 21 or 26) and another
219 of "late embryogenesis" ones (clusters 3, 22, 23 or 3; [Fig. 2B](#) and [Fig. S5](#)). Accordingly,
220 we identified enriched GO terms related to early development (e.g. establishment and
221 maintenance of cell polarity or cell adhesion processes) and terms related to late
222 embryogenesis (e.g. visual perception and animal organ morphogenesis), respectively
223 ([Fig. 2B](#) and [Table S5](#)).

224 In addition, we also performed *k-means* hard clustering (see methods, [Table S6](#))
225 using the same set of dynamic APREs ([Fig. 2C](#)). This analysis was able to recover six
226 clusters with differential dynamics of accessibility, although none of these clusters
227 corresponded to APREs showing stage-specific accessibility. By contrast, we identified
228 two groups of clusters, - cluster 1 and cluster 3, on one hand, and cluster 2 and cluster
229 4, on the other hand-, that contained APREs accessible during early stages of
230 embryogenesis and late stages of embryogenesis, respectively ([Fig. 2C](#) and [Table S6](#)),
231 mirroring the st 8-st 10 shift observed in the previous analyses. In order to better
232 characterise these clusters, we carried out TF motif enrichment analysis using Homer
233 software (see methods, [Fig. 2D](#) and [Table S7](#)). In agreement with previous work in other
234 insects and the results of the GO term enrichment analysis from the Mfuzz clusters ([Fig.](#)
235 [2A, B](#)), for APREs in cluster 1 and cluster 3, we identified motifs whose best match were
236 TFs involved in early embryogenesis. These include Hunchback (Hb), a gap gene
237 involved in antero-posterior axis specification (Qian, Capovilla, and Pirrotta 1991),
238 Caudal (Cad), which functions in germ band elongation (Schulz and Tautz 1995; Wu and
239 Lengyel 1998), or Zelda (Zld), a zygotic genome activator that acts during early
240 blastoderm development (Brennan et al. 2023; Liang et al. 2008) ([Fig. 2D](#)). By contrast,
241 clusters 2 and 4, whose APREs were open in later stages of development, showed
242 enrichment in motifs that correspond to TFs involved in different processes of
243 organogenesis, such as Nubbin (Nub), a regulator of appendage morphogenesis
244 (Turchyn et al. 2011), Six4, involved in the development of mesodermal structures (Clark
245 et al. 2006), or Mothers against dpp (Mad), that mediates the response to the BMP
246 pathway during the development of diverse insect organs (Sekelsky et al. 1995).

247 Overall, these analyses revealed two main phases during the embryogenesis of
248 mayflies in which distinct set of regulatory regions are active ([Fig. 2B, C](#)) to control
249 different sets of genes and regulatory networks involved in such early or late embryonic
250 processes. These results were consistent with the mid-developmental transition
251 previously described at transcriptomic level for some phyla, including insects (Levin et
252 al. 2016).

253

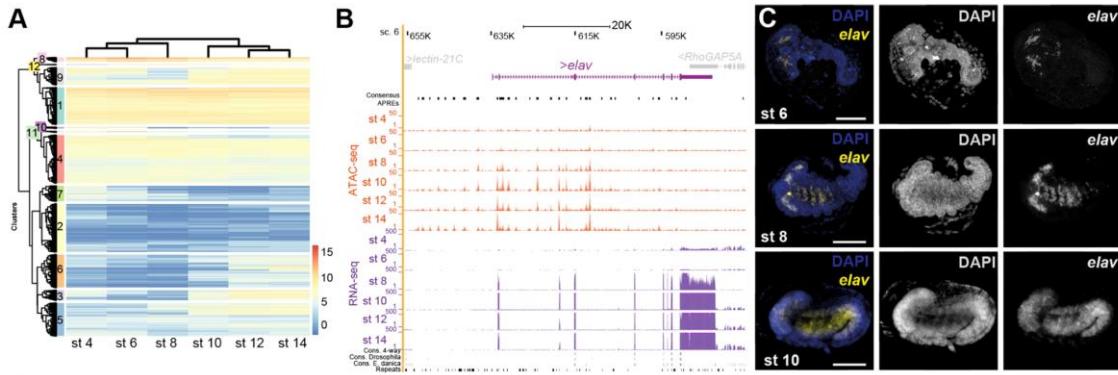
D

Early clusters					Late clusters				
	Enriched motifs	Best match TF	p-values	% sites		Enriched motifs	Best match TF	p-values	% sites
Cluster 1	#2 AGATTCCTT	Sibo	1e-25	77.60 %	Cluster 2	#1 ATATGCAAA	Nub	1e-51	92.12 %
	#3 TCAAAATAA	Hb	1e-22	79.20 %		#2 TTGGGCAAG	Six4	1e-46	86.51 %
	#4 TTTAACCTC	Zelda	1e-21	69.60 %		#3 CTCGCTCT	Trl	1e-45	60.58 %
	#5 TTTCCTCA	Deaf1	1e-20	34.40 %		#5 ATATCCAT	Dref	1e-40	59.75 %
	#6 CGCAAAATTT	Caudal	1e-18	96.80 %		#6 AATGAGAAAG	Su(H)	1e-39	82.37 %
	#1 AGGTACAG	Zelda	1e-60	67.56 %					
Cluster 3	#2 ACAATAGA	Dichaete	1e-56	62.97 %	#4 TCAATTATTCAAG	Abd-A	1e-69	73.97 %	
	#3 ACAATGCG	Pleiohomeotic	1e-49	78.80 %	#5 CACCATCAA	Pangolin	1e-66	95.29 %	
	#4 TTTCAGGT	Vismay	1e-49	77.53 %	#6 CAACCCCTTC	Kruppel	1e-65	89.16 %	
	#5 AGCTCT	Runt	1e-43	47.94 %	#7 TGAGGAGGAGGA	Mad	1e-64	80.15 %	

256 **Figure 2. ATAC-seq revealed a temporally regulated chromatin profile in the mayfly**
257 **genome. (A)** Mfuzz clusters obtained for the 8,898 dynamic APREs obtained through
258 ATAC-seq experiments in the six selected developmental stages representing stage-
259 specific APRE activity and their associated GO enriched terms. **(B)** Mfuzz clusters
260 representing “early embryogenesis” and “late embryogenesis” APRE activity and their
261 associated GO enriched terms. **(C)** Heatmaps of the 8,898 dynamic APREs clustered
262 using k-means clustering. Six clusters were obtained, with four of them showing a clear
263 dynamic behavior: cluster 1 (n=125) and cluster 3 (n=632) or early activity, cluster 2
264 (n=428) and cluster 4 (n = 1698) or late activity. **(D)** Motif enrichment analysis of the early
265 (cluster 1, cluster 3) and late (cluster 2, cluster 4) active clusters. Five or four
266 representative motifs of the top-10 were chosen. Motif logos are represented with their
267 position in the top-10, the TF names, the enrichment p-values and the percentage of
268 sites showing the motif.

269

270 **Chromatin accessibility to understand gene expression dynamics**


271 Since ATAC-seq has been proven to be a powerful method to investigate the regulation
272 of gene expression, we next addressed the relationship between chromatin accessibility
273 and levels of gene expression (Starks et al. 2019). To do this, we measured the levels of
274 gene expression at the same developmental stages of our ATAC-seq datasets (see
275 methods [Fig. S6](#) and [Table S8](#)). When focusing on genes associated to the 8,898
276 dynamic APREs, we first observed that the six stages clustered accordingly to the “early”
277 and “late” embryonic phases that we identified in the ATAC-seq data. Transcriptomes
278 from stages 4, 6 and 8 formed a cluster while transcriptomes from stages 10, 12 and 14
279 grouped together ([Fig. 3A](#)). Moreover, we detected some genes whose expression varied
280 along the developmental timepoints we characterised: cluster 11 and cluster 7 decreased
281 their expression as embryogenesis progressed, while genes from cluster 3, 5 or 9
282 increased their expression during embryonic development ([Fig. 3A](#)).

283 To further illustrate our results, we investigated the expression pattern of
284 *embryonic lethal abnormal vision (elav)* that showed differential APRE accessibility and
285 differential gene expression along embryonic stages ([Fig. 3B](#)). *Elav* is a RNA binding
286 protein involved in axon guidance, synapse formation and development and
287 maintenance of neurons (Robinow and White 1988). We performed Hybridization Chain
288 Reaction (HCRs) assays (Bruce et al. 2021) in st 6, st 8 and st 10 embryos to
289 characterise the spatial expression of this gene in these stages in which we observed
290 shifts in chromatin accessibility and expression levels. While embryos at st 6 showed
291 reduced expression of *elav* in some cells in the cephalic region ([Fig. 3C](#)), at st 8 *elav*
292 exhibited a broader expression domain in head domains and in the most anterior thoracic
293 segments. At st 10, these neural territories of *elav* expression expanded and elongated

294 to the abdominal segments (Fig. 3C). As expected, we also observed an increase in the
295 accessibility of chromatin in the locus, especially upstream of the Transcription Start Site
296 (TSS, Fig. 3B).

297 Previous analysis of co-regulated gene expression across several tissues, using
298 Weighted Gene Correlation Network Analysis (WGCNA), revealed modules of genes
299 specifically expressed in particular adult and nymphal tissues (Almudi et al. 2020). We
300 examined whether chromatin accessibility information from embryos correlated with
301 these modules. We characterised enriched motifs in APREs associated to the genes
302 contained in each of these WGCNA modules and found distinctive enriched binding
303 motifs for some of them (see methods and Table S9). For example, the brain module
304 was enriched in neural motifs, such as Suppressor of Hairy (Su(H)), retained (retn) or
305 Cut (Ct), which are TFs involved in neural or glial development (Grueber and Jan 2004;
306 Shandala et al. 1999), the muscle module had motifs for bagpipe (bap) or twist (twi),
307 required for mesodermal development (Castanon et al. 2001; Cripps and Olson 2002)
308 and specification or the gills module with enrichment in motifs such as defective
309 proventriculus (dve) involved in epithelium patterning or glial cells missing (gmc), which
310 could have a role in the determination of some of the numerous neural cells that we
311 previously identified in these abdominal structures (Almudi et al. 2020; Hosoya et al.
312 1995) (Fig. 3D, and Table S9). These results suggest that some of the Gene Regulatory
313 Networks involved in the development of nymphal tissues and organs are already
314 functioning during embryogenesis and their regulatory signatures can be detected in our
315 ATAC-seq datasets. Thus, our results can also provide important insights into the
316 regulatory logic of the adult body plan, and therefore also constitute a valuable resource
317 for adult insect biology.

318 Overall, our ATAC-seq datasets provide a comprehensive resource to help
319 uncovering developmental diversity of insects, since it represents the first publicly
320 available genome-wide collection of putative regulatory elements across embryogenesis
321 in a hemimetabolous lineage using ATAC-seq approaches. Thus, the key phylogenetic
322 position of Ephemeroptera, together with the extensive chromatin accessibility
323 information made available here, will open new venues to address longstanding
324 questions in the fields of developmental and evolutionary biology and comparative
325 genomics.

326

327 **Figure 3. Chromatin accessibility to understand gene expression dynamics. (A)**
328 Heatmap showing expression levels of genes associated to dynamic ATAC-seq APRE in
329 the selected embryonic stages. RNA-seq samples clustered according to embryonic
330 stage progression. Secondary clustering showed 12 different gene clusters. **(B)** *elav*
331 genomic regulatory landscape. APRE activity and gene expression increase as
332 embryogenesis progresses. **(C)** HCR hybridization against the gene *elav* at st 6, st 8 and
333 st 10 of embryogenesis. Nuclei were stained with DAPI (dark blue) and *elav* expression
334 pattern is shown in yellow. Scale bars: 50 μ m. **(C)** Motif enrichment analysis of APREs
335 associated to genes from some tissue-specific WGCNA modules identified in (Almudi et
336 al. 2020). Four representative motifs of the top-10 were chosen. Motif logos are
337 represented with their position in the top-10, the TF names and the enrichment p-values.
338

339 MATERIALS & METHODS

340 Culture maintenance, embryo collection and fixation

341 Samples were obtained from a *Cloeon dipterum* culture maintained in the laboratory as
342 previously described in (Almudi et al. 2019). Gravid females fertilised different days were
343 collected and dissected to obtain embryos at selected developmental stages: st 4, st 6,
344 st 8, st 10, st 12, st 14. After opening the abdomen of these gravid females, embryos
345 were collected to perform ATAC-seq or RNA-seq procedures and a small subset was
346 collected apart and fixed with 4% Formaldehyde for 1 hour at r.t. to confirm the
347 developmental stage. After 3 x 5' washes with PBS, these fixed embryos were stained
348 with Phalloidin Alexa Fluor™ 488 (A12379) and DAPI to visualise actin filaments and
349 nuclei, respectively. Images were acquired using a Zeiss LSM 880 confocal and were
350 processed with Fiji (Schindelin et al. 2012).

351

352 HCR hybridization

353 HCR hybridization followed a modified version of the Molecular Instruments (Los Angeles,
354 CA, USA) HCR v.3 protocol (Bruce et al. 2021). HCR probe was designed to evade non-
355 specific binding using an open-source probe design program (Kuehn et al. 2022). Briefly,
356 embryos stored in ethanol were rehydrated in stepwise 75/50/25% ethanol in PBTw 0.1%.
357 After 3 x 5' washes in PBTw 0.1%, embryos were permeabilized in Detergent Solution
358 (1.0% SDS, 0.5% Tween, 50.0 mM Tris-HCl (pH 7.5), 1.0 mM EDTA (pH 8.0), and 150.0
359 mM NaCl) for 30' at room temperature (RT), kept in pre-warmed Probe Hybridization
360 Buffer (Molecular Instruments) for 30' at 37 °C, and incubated in Probe Solution (4 nM of
361 probe in Probe Hybridization Buffer) overnight at 37 °C. After 4 x 15' washes in pre-heated
362 wash buffer (Molecular Instruments) at 37 °C and 2 x 5' washes in 5x SSCTw 0.1% at
363 RT, they were kept in pre-equilibrated Amplification Buffer (Molecular Instruments) for 30'
364 at RT and incubated in hairpin solution (60 nM of each hairpin h1 and h2 (Molecular
365 Instruments) separately in pre-equilibrated Amplification Buffer, heated at 95 °C for 90 s
366 and cooled down for 30' overnight in the dark at RT. Following 5 x 20' washes in 5x
367 SSCTw 0.1% and 1 x 10' wash in PBTw 0.1 % pH 7.4 in dark at RT, embryos were
368 mounted in Prolong™ Gold with DAPI (P36941, Invitrogen). Images were acquired
369 using a Zeiss LSM 880 confocal and were processed with Fiji (Schindelin et al. 2012).
370

371 **RNA-seq sequencing and assembly**

372 Three RNA-seq datasets (including replicates) of st 8 and st 12 embryos were generated
373 using the Illumina technology. Samples were processed immediately after dissection and
374 RNA was extracted using RNeasy Mini Kit (Qiagen) following manufacturers' instructions.
375 Paired-end libraries were generated using Illumina (Novaseq6000) 2x50bp. After quality
376 control, the obtained reads were aligned using the STAR aligner. Initially, a genome index
377 was created using the CLODIP2 reference genome (GCA_902829235.1) with the
378 genomeGenerate mode of STAR. Subsequent alignment of reads to this index was
379 performed using the alignReads mode. Gene expression levels were quantified utilizing
380 the quantMode GeneCounts option within STAR.
381

382 **ATAC-seq and library preparation**

383 ATAC-seq or assay for transposase-accessible chromatin by sequencing protocol was
384 optimised during these experiments to use on mayflies from (Buenrostro et al. 2015).
385 Briefly, embryos were homogenised in lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl,
386 3 mM MgCl₂, 0.1% NP-40) to obtain approximately 70000 individual nuclei. After
387 removing lysis buffer, transposition reaction (1.25 µl of Tn5 enzyme in 10 mM Tris-HCl
388 pH 8.0, 5 mM MgCl₂, 10% w/v dimethylformamide) was performed for 30 min at 37 °C
389 and the resulting fragments are purified using MinElute PCR Purification Kit (Qiagen).
390 qPCR was performed to determine the optimal number of cycles necessary for each

391 library. A unique pair of primers were assigned to each sample (Table S10) and 12
392 libraries were prepared corresponding to two biological replicates of the six selected
393 developmental time points using a PCR. Libraries were purified using the MinElute PCR
394 Purification Kit (Qiagen). DNA concentration in each sample was calculated with
395 Invitrogen™ Qubit™ 4 Fluorometer using The Qubit 1X dsDNA HS Assay Kit.

396

397 **ATAC-seq mapping and peak (APRE) calling**

398 For peak (APRE) calling, we followed the pipeline outlined in
399 https://github.com/alexgilgal/Thesis_methods/tree/main/ATAC-seq%20analysis,
400 implementing minor modifications as detailed in our project's GitHub repository
401 (<https://github.com/mayflylab/Cdip-RegEmb/tree/main>). We employed the ATAC_pipe.pl
402 script for mapping reads, utilizing Bowtie2 (Langmead and Salzberg 2012) to align the
403 reads to the CLODIP2 reference genome (GCA_902829235.1). Following alignment, the
404 resulting BAM files were filtered based on a quality threshold of 10 and a minimum
405 fragment length of 130 bp (Fig. S1).

406 The processed files were then subjected to peak analysis using the
407 idr_ATAC_script.sh script, which executes peak calling with MACS2 (Zhang et al. 2008)
408 to generate two sets of peaks: conservative peaks, indicating high-confidence regions
409 across biological replicates, and optimal peaks, denoting reproducible events that
410 consider read sampling variability, derived from pseudo-replicates. Subsequent IDR (Li
411 et al. 2011) analysis was performed on both peak sets. Peak statistics—including the
412 number of peaks and rescue ratios—were calculated and documented in a summary file.

413

414 **APRE classification and gene assignment**

415 APREs are classified and associated with genes based on their proximity to the
416 transcription start sites (TSS). TSSs are defined using the get_TSS.py script
417 (<https://github.com/m-rossello/GeneRegLocator/>). To classify APREs and link them to
418 genes, we use a custom-made script named make_table_from_zones.py
419 (<https://github.com/m-rossello/GeneRegLocator/>). This script is designed to delineate
420 regulatory zones around TSSs and associate these zones with APREs from ATAC-seq
421 data. It defines three types of regulatory zones: Promoters, located near the TSS,
422 spanning 1000 bases upstream and 500 bases downstream. Proximal regions,
423 positioned further from the TSS, extending 4000 bases upstream but not overlapping with
424 promoters. Gene bodies, encompassing regions within the gene but excluding the
425 promoter areas (Fig. 1I). Zones are non-overlapping on the same strand, although the
426 same genomic position can exhibit different zones on each strand. Each APRE is
427 associated with one or more genes if it overlaps by more than 70% with a gene zone.

428 APREs not falling within promoter, proximal, or gene body regions are classified as distal
429 and remain unassociated with any gene (Table S2).

430

431 **Open chromatin analysis**

432 The counts obtained from consensus APREs were used for all subsequent analyses,
433 following normalization. This normalization involves adjusting the count data using the
434 TMM method (Robinson and Oshlack 2010) to account for differences in library size and
435 composition. To further explore trends and variations across different biological stages,
436 we aggregate the normalized counts by these stages, calculating mean values. Global
437 APRE analysis categorizes APRE as either "open" or "closed" based on a threshold of
438 10 counts. APREs registering fewer than 10 counts are deemed closed. We define non-
439 dynamic APREs as those that remain consistently open or closed across all examined
440 stages. Conversely, dynamic APREs are characterized by their variability, changing
441 between open and closed states across different stages or samples.

442

443 **Differential Chromatin Accessibility Analysis**

444 After counts normalization by TMM (Robinson and Oshlack 2010) and sample exploration
445 by PCA and clustering, differential chromatin accessibility analysis was performed in
446 dynamic APREs. For this analysis, we utilize the limma-trend method (Law et al. 2014;
447 Phipson et al. 2016). This approach is applied to the normalized count data of dynamic
448 APREs to identify significant differences in chromatin accessibility between conditions.
449 To visualize the results, we generate volcano plots using the EnhancedVolcano package
450 (Blighe, Rana, and Lewis 2023).

451

452 **Mfuzz analysis**

453 We conducted the Mfuzz cluster analysis using the mfuzz function from the R package
454 Mfuzz (Kumar and Futschik 2007). Dynamic APREs with mean values computed by
455 developmental stage were analysed. The optimal parameters were systematically
456 determined, setting the fuzzifier value at $m=1.5$ and the number of clusters at 30.

457

458 **k-means analysis**

459 We performed k-means hard clustering using the DeepTools package (Ramírez et al.
460 2016) to analyze dynamic APRE enrichments from ATAC-seq data. This analysis
461 included computing genome region scores with the computeMatrix function. The
462 generated matrices enabled the visualization of heatmaps, which provided insights into
463 the distribution of dynamic APREs across various developmental stages. Additionally, we
464 created profile plots to further explore the chromatin accessibility dynamics.

465

466 **Gene Ontology Enrichment Analysis**

467 For our Gene Ontology (GO) enrichment analysis, GO annotations are transferred from
468 the UniProt proteome (UP000494165) to the genes associated with the APREs. We
469 perform statistical analysis using the topGO package (Alexa and Rahnenfuhrer 2023),
470 which utilizes the elimination algorithm to identify significantly enriched GO terms within
471 gene clusters. The BH false discovery rate correction method (Benjamini and Hochberg
472 1995) is employed to control multiple testing. The results are visualized using GO
473 enrichment plots, created with the ggplot2 package.

474

475 **TFBM enrichment analysis**

476 Transcription factor binding motif (TFBM) enrichment analysis is conducted using the
477 findMotifsGenome.pl tool from the HOMER suite (Heinz et al. 2010). We designate the
478 APREs of interest as the foreground and utilize the remainder of the consensus APREs
479 as the background. The fragment size selected for motif discovery corresponds precisely
480 to the regions of the APREs (-size given). This analysis includes a comparison against
481 collected motifs specific to insects.

482

483 **Acknowledgements**

484 We thank María José López Fernández, Juan J. Tena, Alejandro Gil and Alberto Pérez-
485 Posada for advice on bioinformatics analyses and Ignacio Maeso and the rest of the
486 members of the Almudi lab for fruitful discussions. This research was funded by the
487 European Research Council (ERC) under the European Union's Horizon Europe
488 research and innovation programme (ERC-CoG2021-101043751 to I.A), by the Spanish
489 Ministry of Science and Innovation (PID2020-116041GB-I00 to IA) and by Ministry of
490 Science, Innovation and Universities and by "European Union NextGeneration
491 EU/PRTR" (CNS2023-145403). M. R. holds a Margarita Salas fellowship, from Spanish
492 Ministry of Science and Innovation and I.A. is the recipient of the "Subprograma Estatal
493 de Incorporación 2017-2020: Beatriz Galindo" (BG20-- 00115) from the Spanish Ministry
494 of Universities.

495

496 **Competing interests**

497 The authors declare no competing or financial interests.

498

499 **Author contributions**

500 J.P., L.O-F and M.R. performed most analyses and generated most figures and tables.
501 T.S and A.R performed spatial embryo fixations and HCR assays. L.O-F performed
502 ATAC-seq experiments and generated the libraries. J.F.A and J.P. set up UCSC browser.

503 I.A. and M.R. coordinated the project. I.A. obtained funding and wrote the main text with
504 inputs from all authors.

505

506 **Data availability**

507 The datasets generated and analysed during the current study are available in the
508 Sequence Read Archive (SRA) repository. The ATAC-seq dataset, which includes
509 samples from six developmental stages, can be accessed via SRA accession numbers
510 SAMN40277609 through SAMN40277620. Additionally, RNA-seq data for three
511 developmental stages are stored under SRA accession numbers SAMN40990690,
512 SAMN40990692, and SAMN40990693. All datasets are grouped under the project
513 accession number PRJNA1084266. Datasets are also available as a UCSC track hub:
514 <https://genome-euro.ucsc.edu/s/mayfly/Clodip>. All code used for analysis is available
515 on GitHub at <https://github.com/mayflylab/Cdip-RegEmb/>

516

517 **Supplementary information**

518 **Figure S1.** Read size ATAC-seq libraries

519 **Figure S2.** Chromatin state across different developmental stages.

520 **Figure S3.** Distribution of APREs per developmental timepoint

521 **Figure S4.** PCA analysis ATAC libraries and differential APRE accessibility

522 **Figure S5.** Mfuzz clusters

523 **Figure S6.** PCA analysis RNA-seq libraries

524

525 **Table S1.** Counts to all the identified consensus APREs before and after normalization
526 and mean aggregation per stage.

527 **Table S2.** APREs associated to each gene and genomic zone.

528 **Table S3.** Differential APRE activity data

529 **Table S4.** Mfuzz output values.

530 **Table S5.** Gene ontology enrichment for each Mfuzz cluster.

531 **Table S6.** APREs in each cluster in the kmeans clustering.

532 **Table S7.** Homer motive enrichment results for each kmeans cluster.

533 **Table S8.** RNA counts before and after normalization.

534 **Table S9.** Homer motive enrichment results for each WGCNA module.

535 **Table S10.** List of primers used for library preparation.

536

537 **References**

538 Adams, Mark D., Susan E. Celniker, Robert A. Holt, Cheryl A. Evans, Jeannine D.
539 Gocayne, Peter G. Amanatides, Steven E. Scherer, et al. 2000. 'The Genome Sequence
540 of *Drosophila Melanogaster*'. *Science* 287 (5461): 2185–95.
541 <https://doi.org/10.1126/science.287.5461.2185>.

542 Alexa, Adrian, and Jorg Rahnenfuhrer. 2023. 'topGO: Enrichment Analysis for Gene
543 Ontology'. [object Object]. <https://doi.org/10.18129/B9.BIOC.TOPGO>.

544 Almudi, Isabel, Carlos A. Martín-Blanco, Isabel M. García-Fernandez, Adrián López-
545 Catalina, Kristofer Davie, Stein Aerts, and Fernando Casares. 2019. 'Establishment of
546 the Mayfly *Cloeon Dipteron* as a New Model System to Investigate Insect Evolution'.
547 *EvoDevo* 10 (1): 6. <https://doi.org/10.1186/s13227-019-0120-y>.

548 Almudi, Isabel, Joel Vizueta, Christopher D. R. Wyatt, Alex de Mendoza, Ferdinand
549 Marlétaz, Panos N. Firbas, Roberto Feuda, et al. 2020. 'Genomic Adaptations to Aquatic
550 and Aerial Life in Mayflies and the Origin of Insect Wings'. *Nature Communications* 11
551 (1): 2631. <https://doi.org/10.1038/s41467-020-16284-8>.

552 Andrikou, Carmen, and Maria Ina Arnone. 2015. 'Too Many Ways to Make a Muscle:
553 Evolution of GRNs Governing Myogenesis'. *Zoologischer Anzeiger - A Journal of
554 Comparative Zoology* 256 (May): 2–13. <https://doi.org/10.1016/j.jcz.2015.03.005>.

555 Benjamini, Yoav, and Yosef Hochberg. 1995. 'Controlling the False Discovery Rate: A
556 Practical and Powerful Approach to Multiple Testing'. *Journal of the Royal Statistical
557 Society Series B: Statistical Methodology* 57 (1): 289–300.
558 <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>.

559 Blighe, Kevin, S. Rana, and M. Lewis. 2023. 'EnhancedVolcano: Publication-Ready
560 Volcano Plots with Enhanced Colouring and Labeling.', 2023.
561 <https://doi.org/10.18129/B9.BIOC.ENHANCEDVOLCANO>.

562 Bozek, Marta, Roberto Cortini, Andrea Ennio Storti, Ulrich Unnerstall, Ulrike Gaul, and
563 Nicolas Gompel. 2019. 'ATAC-Seq Reveals Regional Differences in Enhancer
564 Accessibility during the Establishment of Spatial Coordinates in the *Drosophila*
565 Blastoderm'. *Genome Research* 29 (5): 771–83. <https://doi.org/10.1101/gr.242362.118>.

566 Brantley, Susanna E., and Stefano Di Talia. 2021. 'Cell Cycle Control during Early
567 Embryogenesis'. *Development* 148 (13): dev193128.
568 <https://doi.org/10.1242/dev.193128>.

569 Brennan, Kaelan J., Melanie Weilert, Sabrina Krueger, Anusri Pampari, Hsiao-yun Liu,
570 Ally W.H. Yang, Jason A. Morrison, et al. 2023. 'Chromatin Accessibility in the Drosophila
571 Embryo Is Determined by Transcription Factor Pioneering and Enhancer Activation'.
572 *Developmental Cell* 58 (19): 1898-1916.e9.
573 <https://doi.org/10.1016/j.devcel.2023.07.007>.

574 Bruce, Heather S, Gabby Jerz, Sophia R Kelly, Jenny McCarthy, Aaron Pomerantz,
575 Gayani Senevirathne, Alice Sherrard, Dennis A Sun, Carsten Wolff, and Nipam H. Patel.
576 2021. 'Hybridization Chain Reaction (HCR) In Situ Protocol'. *Protocols.io*, July.

577 Buenrostro, Jason D, Paul G Giresi, Lisa C Zaba, Howard Y Chang, and William J
578 Greenleaf. 2013. 'Transposition of Native Chromatin for Fast and Sensitive Epigenomic
579 Profiling of Open Chromatin, DNA-Binding Proteins and Nucleosome Position'. *Nature
580 Methods* 10 (12): 1213–18. <https://doi.org/10.1038/nmeth.2688>.

581 Buenrostro, Jason D., Beijing Wu, Howard Y. Chang, and William J. Greenleaf. 2015.
582 'ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide'. *Current
583 Protocols in Molecular Biology* 109 (1).
584 <https://doi.org/10.1002/0471142727.mb2129s109>.

585 Carroll, S. B. 1998. 'From Pattern to Gene, from Gene to Pattern'. *The International
586 Journal of Developmental Biology* 42 (3): 305–9.

587 Castanon, Irinka, Stephen Von Stetina, Jason Kass, and Mary K. Baylies. 2001.
588 'Dimerization Partners Determine the Activity of the Twist bHLH Protein during
589 *Drosophila* Mesoderm Development'. *Development* 128 (16): 3145–59.
590 <https://doi.org/10.1242/dev.128.16.3145>.

591 Clark, Ivan B.N., Joanna Boyd, Graham Hamilton, David J. Finnegan, and Andrew P.
592 Jarman. 2006. 'D-Six4 Plays a Key Role in Patterning Cell Identities Deriving from the
593 *Drosophila* Mesoderm'. *Developmental Biology* 294 (1): 220–31.
594 <https://doi.org/10.1016/j.ydbio.2006.02.044>.

595 Cripps, Richard M., and Eric N. Olson. 2002. 'Control of Cardiac Development by an
596 Evolutionarily Conserved Transcriptional Network'. *Developmental Biology* 246 (1): 14–
597 28. <https://doi.org/10.1006/dbio.2002.0666>.

598 Crowley, Liam, Heather Allen, Ian Barnes, Douglas Boyes, Gavin R. Broad, Christopher
599 Fletcher, Peter W.H. Holland, et al. 2023. 'A Sampling Strategy for Genome Sequencing
600 the British Terrestrial Arthropod Fauna'. *Wellcome Open Research* 8 (March): 123.
601 <https://doi.org/10.12688/wellcomeopenres.18925.1>.

602 D. Grimaldi & M. S. Engel. 2007. 'D. Grimaldi & M. S. Engel 2005. Evolution of the
603 Insects. Xv + 755 Pp. Cambridge, New York, Melbourne: Cambridge University Press.
604 Price £45.00, US \$75.00 (Hard Covers). ISBN 0 521 82149 5.' *Geological Magazine* 144
605 (6): 1035–36. <https://doi.org/10.1017/S001675680700372X>.

606 Davis, Gregory K., and Nipam H. Patel. 2002. 'Short, Long, and Beyond: Molecular and
607 Embryological Approaches to Insect Segmentation'. *Annual Review of Entomology* 47
608 (1): 669–99. <https://doi.org/10.1146/annurev.ento.47.091201.145251>.

609 Fernández, Rosa, Marina Marcet-Houben, Fabrice Legeai, Gautier Richard, Stéphanie
610 Robin, Valentin Wucher, Cinta Pegueroles, Toni Gabaldón, and Denis Tagu. 2020.
611 'Selection Following Gene Duplication Shapes Recent Genome Evolution in the Pea
612 Aphid Acyrtosiphon Pisum'. Edited by Rebekah Rogers. *Molecular Biology and*
613 *Evolution* 37 (9): 2601–15. <https://doi.org/10.1093/molbev/msaa110>.

614 Formenti, Giulio, Kathrin Theissinger, Carlos Fernandes, Iliana Bista, Aureliano
615 Bombarely, Christoph Bleidorn, Claudio Ciofi, et al. 2022. 'The Era of Reference
616 Genomes in Conservation Genomics'. *Trends in Ecology & Evolution* 37 (3): 197–202.
617 <https://doi.org/10.1016/j.tree.2021.11.008>.

618 Furlong, Eileen E. M., and Michael Levine. 2018. 'Developmental Enhancers and
619 Chromosome Topology'. *Science* 361 (6409): 1341–45.
620 <https://doi.org/10.1126/science.aau0320>.

621 Galant, Ron, and Sean B. Carroll. 2002. 'Evolution of a Transcriptional Repression
622 Domain in an Insect Hox Protein'. *Nature* 415 (6874): 910–13.
623 <https://doi.org/10.1038/nature717>.

624 Gillott, Cedric. 2005. 'Embryonic Development'. In *Entomology*, 597–622.
625 Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/1-4020-3183-1_20.

626 Gompel, Nicolas, Benjamin Prud'homme, Patricia J. Wittkopp, Victoria A. Kassner, and
627 Sean B. Carroll. 2005. 'Chance Caught on the Wing: Cis-Regulatory Evolution and the
628 Origin of Pigment Patterns in Drosophila'. *Nature* 433 (7025): 481–87.
629 <https://doi.org/10.1038/nature03235>.

630 Grueber, Wesley B, and Yuh Nung Jan. 2004. 'Dendritic Development: Lessons from
631 Drosophila and Related Branches'. *Current Opinion in Neurobiology* 14 (1): 74–82.
632 <https://doi.org/10.1016/j.conb.2004.01.001>.

633 Guerreiro, Isabel, Andreia Nunes, Joost M. Woltering, Ana Casaca, Ana Nóvoa, Tânia
634 Vinagre, Margaret E. Hunter, Denis Duboule, and Moisés Mallo. 2013. 'Role of a
635 Polymorphism in a Hox/Pax-Responsive Enhancer in the Evolution of the Vertebrate
636 Spine'. *Proceedings of the National Academy of Sciences* 110 (26): 10682–86.
637 <https://doi.org/10.1073/pnas.1300592110>.

638 Heinz, Sven, Christopher Benner, Nathanael Spann, Eric Bertolino, Yin C. Lin, Peter
639 Laslo, Jason X. Cheng, Cornelis Murre, Harinder Singh, and Christopher K. Glass. 2010.
640 'Simple Combinations of Lineage-Determining Transcription Factors Prime Cis-
641 Regulatory Elements Required for Macrophage and B Cell Identities'. *Molecular Cell* 38
642 (4): 576–89. <https://doi.org/10.1016/j.molcel.2010.05.004>.

643 Hosoya, Toshihiko, Kazunaga Takizawa, Koushi Nitta, and Yoshiki Hotta. 1995. 'Glial
644 Cells Missing: A Binary Switch between Neuronal and Glial Determination in Drosophila'.
645 *Cell* 82 (6): 1025–36. [https://doi.org/10.1016/0092-8674\(95\)90281-3](https://doi.org/10.1016/0092-8674(95)90281-3).

646 Irimia, Manuel, Juan J. Tena, María S. Alexis, Ana Fernandez-Miñan, Ignacio Maeso,
647 Ozren Bogdanović, Elisa De La Calle-Mustienes, Scott W. Roy, José L. Gómez-
648 Skarmeta, and Hunter B. Fraser. 2012. 'Extensive Conservation of Ancient Microsynteny
649 across Metazoans Due to Cis -Regulatory Constraints'. *Genome Research* 22 (12):
650 2356–67. <https://doi.org/10.1101/gr.139725.112>.

651 Kuehn, Emily, David S. Clausen, Ryan W. Null, Bria M. Metzger, Amy D. Willis, and B.
652 Duygu Özpolat. 2022. 'Segment Number Threshold Determines Juvenile Onset of
653 Germline Cluster Expansion in *Platynereis Dumerilii*'. *Journal of Experimental Zoology*
654 *Part B: Molecular and Developmental Evolution* 338 (4): 225–40.
655 <https://doi.org/10.1002/jez.b.23100>.

656 Kumar, Lokesh, and Matthias E. Futschik. 2007. 'Mfuzz: A Software Package for Soft
657 Clustering of Microarray Data'. *Bioinformation* 2 (1): 5–7.
658 <https://doi.org/10.6026/97320630002005>.

659 Langmead, Ben, and Steven L Salzberg. 2012. 'Fast Gapped-Read Alignment with
660 Bowtie 2'. *Nature Methods* 9 (4): 357–59. <https://doi.org/10.1038/nmeth.1923>.

661 Law, Charity W, Yunshun Chen, Wei Shi, and Gordon K Smyth. 2014. 'Voom: Precision
662 Weights Unlock Linear Model Analysis Tools for RNA-Seq Read Counts'. *Genome
663 Biology* 15 (2): R29. <https://doi.org/10.1186/gb-2014-15-2-r29>.

664 Levin, Michal, Leon Anavy, Alison G. Cole, Eitan Winter, Natalia Mostov, Sally Khair,
665 Naftalie Senderovich, et al. 2016. 'The Mid-Developmental Transition and the Evolution
666 of Animal Body Plans'. *Nature* 531 (7596): 637–41. <https://doi.org/10.1038/nature16994>.

667 Leyhr, Jake, Laura Waldmann, Beata Filipek-Górniok, Hanqing Zhang, Amin Allalou, and
668 Tatjana Haitina. 2022. 'A Novel Cis-Regulatory Element Drives Early Expression of
669 Nkx3.2 in the Gnathostome Primary Jaw Joint'. *eLife* 11 (November): e75749.
670 <https://doi.org/10.7554/eLife.75749>.

671 Li, Qunhua, James B. Brown, Haiyan Huang, and Peter J. Bickel. 2011. 'Measuring
672 Reproducibility of High-Throughput Experiments'. *The Annals of Applied Statistics* 5 (3).
673 <https://doi.org/10.1214/11-AOAS466>.

674 Liang, Hsiao-Lan, Chung-Yi Nien, Hsiao-Yun Liu, Mark M. Metzstein, Nikolai Kirov, and
675 Christine Rushlow. 2008. 'The Zinc-Finger Protein Zelda Is a Key Activator of the Early
676 Zygotic Genome in Drosophila'. *Nature* 456 (7220): 400–403.
677 <https://doi.org/10.1038/nature07388>.

678 Lowe, Robert, Marek Wojciechowski, Nancy Ellis, and Paul J Hurd. 2022. 'Chromatin
679 Accessibility-Based Characterisation of Brain Gene Regulatory Networks in Three
680 Distinct Honey Bee Polyphenisms'. *Nucleic Acids Research* 50 (20): 11550–62.
681 <https://doi.org/10.1093/nar/gkac992>.

682 Mantica, Federica, Luis P. Iñiguez, Yamile Marquez, Jon Permanyer, Antonio Torres-
683 Mendez, Josefa Cruz, Xavier Franch-Marro, et al. 2024. 'Evolution of Tissue-Specific
684 Expression of Ancestral Genes across Vertebrates and Insects'. *Nature Ecology &*
685 *Evolution*, April. <https://doi.org/10.1038/s41559-024-02398-5>.

686 Marlétaz, Ferdinand, Panos N. Firbas, Ignacio Maeso, Juan J. Tena, Ozren Bogdanovic,
687 Malcolm Perry, Christopher D. R. Wyatt, et al. 2018. 'Amphioxus Functional Genomics
688 and the Origins of Vertebrate Gene Regulation'. *Nature* 564 (7734): 64–70.
689 <https://doi.org/10.1038/s41586-018-0734-6>.

690 Misof, Bernhard, Shanlin Liu, Karen Meusemann, Ralph S. Peters, Alexander Donath,
691 Christoph Mayer, Paul B. Frandsen, et al. 2014. 'Phylogenomics Resolves the Timing
692 and Pattern of Insect Evolution'. *Science* 346 (6210): 763–67.
693 <https://doi.org/10.1126/science.1257570>.

694 Molik, David C. 2022. 'An Outsider's Perspective on Why We Climb Mountains and Why
695 Projects Like the 15k Matter'. Edited by Phyllis Weintraub. *Journal of Insect Science* 22
696 (4): 2. <https://doi.org/10.1093/jisesa/ieac038>.

697 Molina-Gil, Sara, Sol Sotillos, José Manuel Espinosa-Vázquez, Isabel Almudi, and
698 James C.-G. Hombría. 2023. 'Interlocking of Co-Opted Developmental Gene Networks
699 in *Drosophila* and the Evolution of Pre-Adaptive Novelty'. *Nature Communications* 14
700 (1): 5730. <https://doi.org/10.1038/s41467-023-41414-3>.

701 Münster, Stefan, Akanksha Jain, Alexander Mietke, Anastasios Pavlopoulos, Stephan
702 W. Grill, and Pavel Tomancak. 2019. 'Attachment of the Blastoderm to the Vitelline
703 Envelope Affects Gastrulation of Insects'. *Nature* 568 (7752): 395–99.
704 <https://doi.org/10.1038/s41586-019-1044-3>.

705 Patel, Nipam H. 1994. 'Developmental Evolution: Insights from Studies of Insect
706 Segmentation'. *Science* 266 (5185): 581–90. <https://doi.org/10.1126/science.7939712>.

707 Phipson, Belinda, Stanley Lee, Ian J. Majewski, Warren S. Alexander, and Gordon K.
708 Smyth. 2016. 'Robust Hyperparameter Estimation Protects against Hypervariable Genes
709 and Improves Power to Detect Differential Expression'. *The Annals of Applied Statistics*
710 10 (2). <https://doi.org/10.1214/16-AOAS920>.

711 Qian, S., M. Capovilla, and V. Pirrotta. 1991. 'The Bx Region Enhancer, a Distant Cis-
712 Control Element of the *Drosophila* *Ubx* Gene and Its Regulation by Hunchback and Other
713 Segmentation Genes.' *The EMBO Journal* 10 (6): 1415–25.
714 <https://doi.org/10.1002/j.1460-2075.1991.tb07662.x>.

715 Ramírez, Fidel, Devon P Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas
716 S Richter, Steffen Heyne, Friederike Dündar, and Thomas Manke. 2016. 'deepTools2: A
717 next Generation Web Server for Deep-Sequencing Data Analysis'. *Nucleic Acids
718 Research* 44 (W1): W160–65. <https://doi.org/10.1093/nar/gkw257>.

719 Richard, Gautier, Fabrice Legeai, Nathalie Prunier-Leterme, Anthony Bretaudeau, Denis
720 Tagu, Julie Jaquiéry, and Gaël Le Trionnaire. 2017. 'Dosage Compensation and Sex-
721 Specific Epigenetic Landscape of the X Chromosome in the Pea Aphid'. *Epigenetics &
722 Chromatin* 10 (1): 30. <https://doi.org/10.1186/s13072-017-0137-1>.

723 Robinow, Steven, and Kalpana White. 1988. 'The Locus Elav of *Drosophila*
724 *Melanogaster* Is Expressed in Neurons at All Developmental Stages'. *Developmental
725 Biology* 126 (2): 294–303. [https://doi.org/10.1016/0012-1606\(88\)90139-X](https://doi.org/10.1016/0012-1606(88)90139-X).

726 Robinson, Mark D, and Alicia Oshlack. 2010. 'A Scaling Normalization Method for
727 Differential Expression Analysis of RNA-Seq Data'. *Genome Biology* 11 (3): R25.
728 <https://doi.org/10.1186/gb-2010-11-3-r25>.

729 Rodríguez-Montes, Leticia, Svetlana Ovchinnikova, Xuefei Yuan, Tania Studer, Ioannis
730 Sarropoulos, Simon Anders, Henrik Kaessmann, and Margarida Cardoso-Moreira. 2023.
731 'Sex-Biased Gene Expression across Mammalian Organ Development and Evolution'.
732 *Science* 382 (6670): eadf1046. <https://doi.org/10.1126/science.adf1046>.

733 Sander, Klaus. 1976. 'Specification of the Basic Body Pattern in Insect Embryogenesis'.
734 In *Advances in Insect Physiology*, 12:125–238. Elsevier. [https://doi.org/10.1016/S0065-2806\(08\)60255-6](https://doi.org/10.1016/S0065-2806(08)60255-6).

735 Santos, M. Emília, Augustin Le Bouquin, Antonin J. J. Crumièr, and Abderrahman Khila.
736 2017. 'Taxon-Restricted Genes at the Origin of a Novel Trait Allowing Access to a New
737 Environment'. *Science*.

738 Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark
739 Longair, Tobias Pietzsch, Stephan Preibisch, et al. 2012. 'Fiji: An Open-Source Platform
740 for Biological-Image Analysis'. *Nature Methods* 9 (7): 676–82.
741 <https://doi.org/10.1038/nmeth.2019>.

742 Schmidt-Ott, Urs, and Jeremy A Lynch. 2016. 'Emerging Developmental Genetic Model
743 Systems in Holometabolous Insects'. *Developmental Mechanisms, Patterning and
744 Evolution* 39 (August): 116–28. <https://doi.org/10.1016/j.gde.2016.06.004>.

745 Schulz, Cordula, and Diethard Tautz. 1995. 'Zygotic *Caudal* Regulation by *Hunchback*
746 and Its Role in Abdominal Segment Formation of the *Drosophila* Embryo'. *Development*
747 121 (4): 1023–28. <https://doi.org/10.1242/dev.121.4.1023>.

748 Sekelsky, J J, S J Newfeld, L A Raftery, E H Chartoff, and W M Gelbart. 1995. 'Genetic
749 Characterization and Cloning of Mothers against Dpp, a Gene Required for
750 Decapentaplegic Function in *Drosophila Melanogaster*'. *Genetics* 139 (3): 1347–58.
751 <https://doi.org/10.1093/genetics/139.3.1347>.

752 Shandala, Tatiana, R. Daniel Kortschak, Stephen Gregory, and Robert Saint. 1999. 'The
753 *Drosophila Dead Ringer* Gene Is Required for Early Embryonic Patterning through
754 Regulation of *Argos* and *Buttonhead* Expression'. *Development* 126 (19): 4341–49.
755 <https://doi.org/10.1242/dev.126.19.4341>.

756 Simon, Jeremy M, Paul G Giresi, Ian J Davis, and Jason D Lieb. 2012. 'Using
757 Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) to Isolate Active
758 Regulatory DNA'. *Nature Protocols* 7 (2): 256–67.
759 <https://doi.org/10.1038/nprot.2011.444>.

761 Simon, Sabrina, Alexander Blanke, and Karen Meusemann. 2018. 'Reanalyzing the
762 Palaeoptera Problem – The Origin of Insect Flight Remains Obscure'. *Wings and*
763 *Powered Flight: Core Novelties in Insect Evolution* 47 (4): 328–38.
764 <https://doi.org/10.1016/j.asd.2018.05.002>.

765 Starks, Rebekah R., Anilisa Biswas, Ashish Jain, and Geetu Tuteja. 2019. 'Combined
766 Analysis of Dissimilar Promoter Accessibility and Gene Expression Profiles Identifies
767 Tissue-Specific Genes and Actively Repressed Networks'. *Epigenetics & Chromatin* 12
768 (1): 16. <https://doi.org/10.1186/s13072-019-0260-2>.

769 Tojo, Koji, and Ryuichiro Machida. 1997. 'Embryogenesis of the mayfly Ephemera
770 Japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae), with Special Reference
771 to Abdominal Formation'. *Journal of Morphology* 234 (1): 97–107.
772 [https://doi.org/10.1002/\(SICI\)1097-4687\(199710\)234:1<97::AID-JMOR9>3.0.CO;2-K](https://doi.org/10.1002/(SICI)1097-4687(199710)234:1<97::AID-JMOR9>3.0.CO;2-K).

773 Turchyn, Nataliya, John Chesebro, Steven Hrycay, Juan P. Couso, and Aleksandar
774 Popadić. 2011. 'Evolution of Nubbin Function in Hemimetabolous and Holometabolous
775 Insect Appendages'. *Developmental Biology* 357 (1): 83–95.
776 <https://doi.org/10.1016/j.ydbio.2011.06.014>.

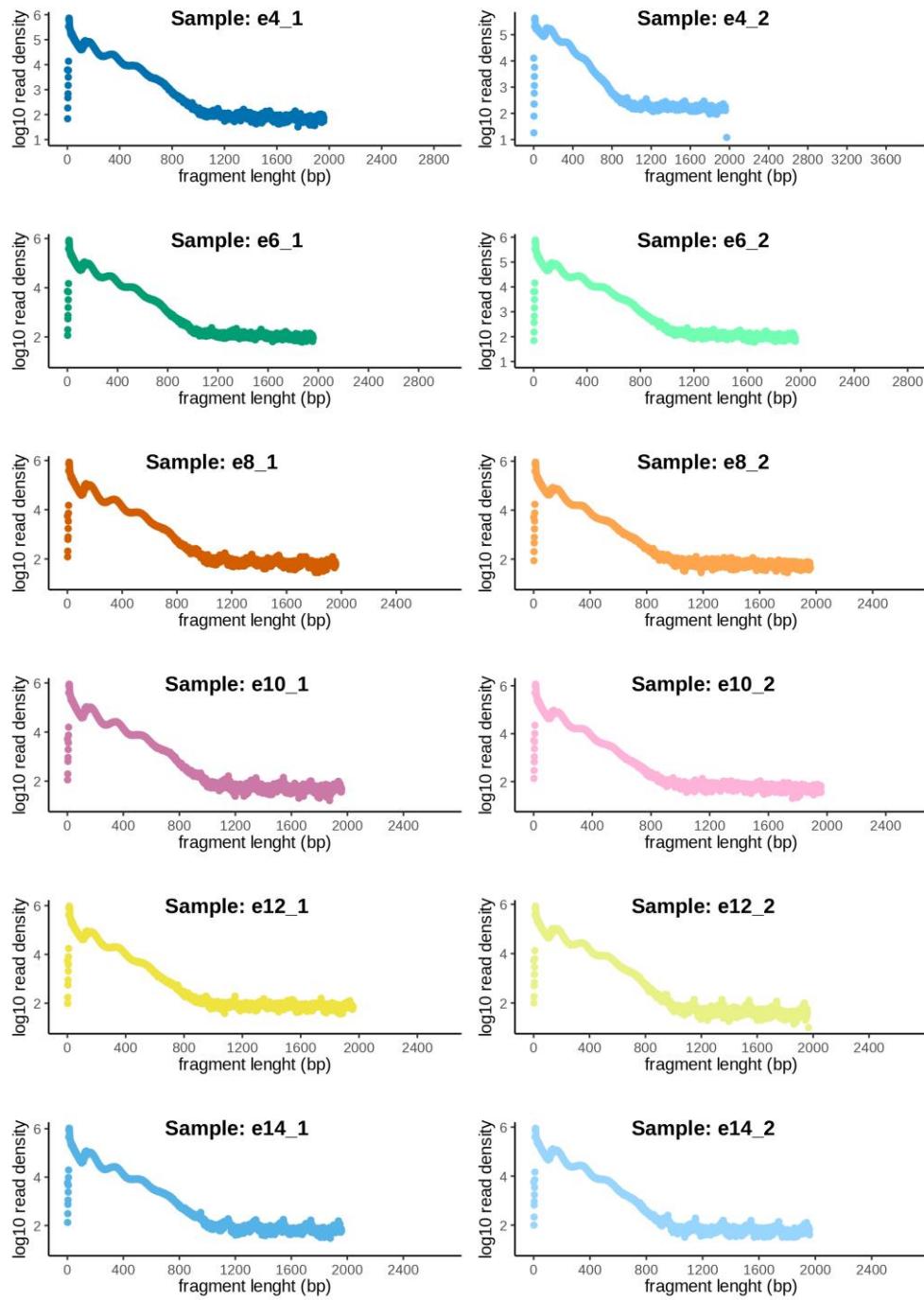
777 Wang, Mingyue, Yang Liu, Tinggang Wen, Weiwei Liu, Qionghua Gao, Jie Zhao, Zijun
778 Xiong, et al. 2020. 'Chromatin Accessibility and Transcriptome Landscapes of
779 Monomorium Pharaonis Brain'. *Scientific Data* 7 (1): 217.
780 <https://doi.org/10.1038/s41597-020-0556-x>.

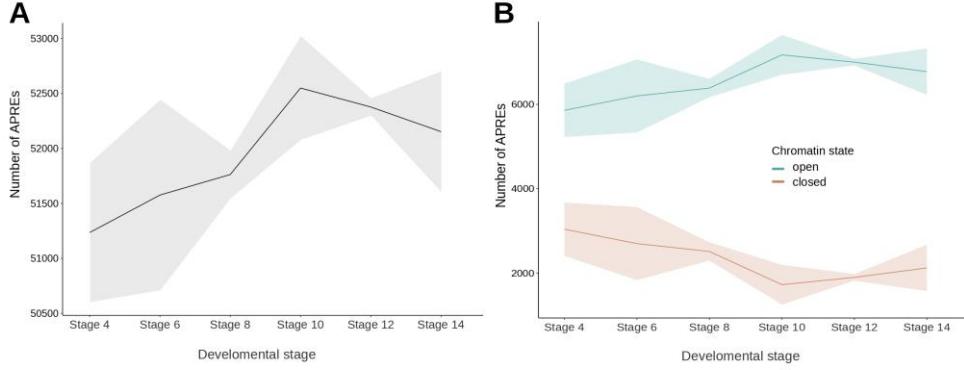
781 Wu, Linda H., and Judith A. Lengyel. 1998. 'Role of *Caudal* in Hindgut Specification and
782 Gastrulation Suggests Homology between *Drosophila* Amnioproctodeal Invagination and
783 Vertebrate Blastopore'. *Development* 125 (13): 2433–42.
784 <https://doi.org/10.1242/dev.125.13.2433>.

785 Zdobnov, Evgeny M., and Peer Bork. 2007. 'Quantification of Insect Genome
786 Divergence'. *Trends in Genetics* 23 (1): 16–20. <https://doi.org/10.1016/j.tig.2006.10.004>.

787 Zhang, Yong, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley
788 E Bernstein, Chad Nusbaum, et al. 2008. 'Model-Based Analysis of ChIP-Seq (MACS)'.
789 *Genome Biology* 9 (9): R137. <https://doi.org/10.1186/gb-2008-9-9-r137>.

790 Zhao, Xiaomeng, Long Su, Weilin Xu, Sarah Schaack, and Cheng Sun. 2020. 'Genome-
791 Wide Identification of Accessible Chromatin Regions in Bumblebee by ATAC-Seq'.
792 *Scientific Data* 7 (1): 367. <https://doi.org/10.1038/s41597-020-00713-w>.

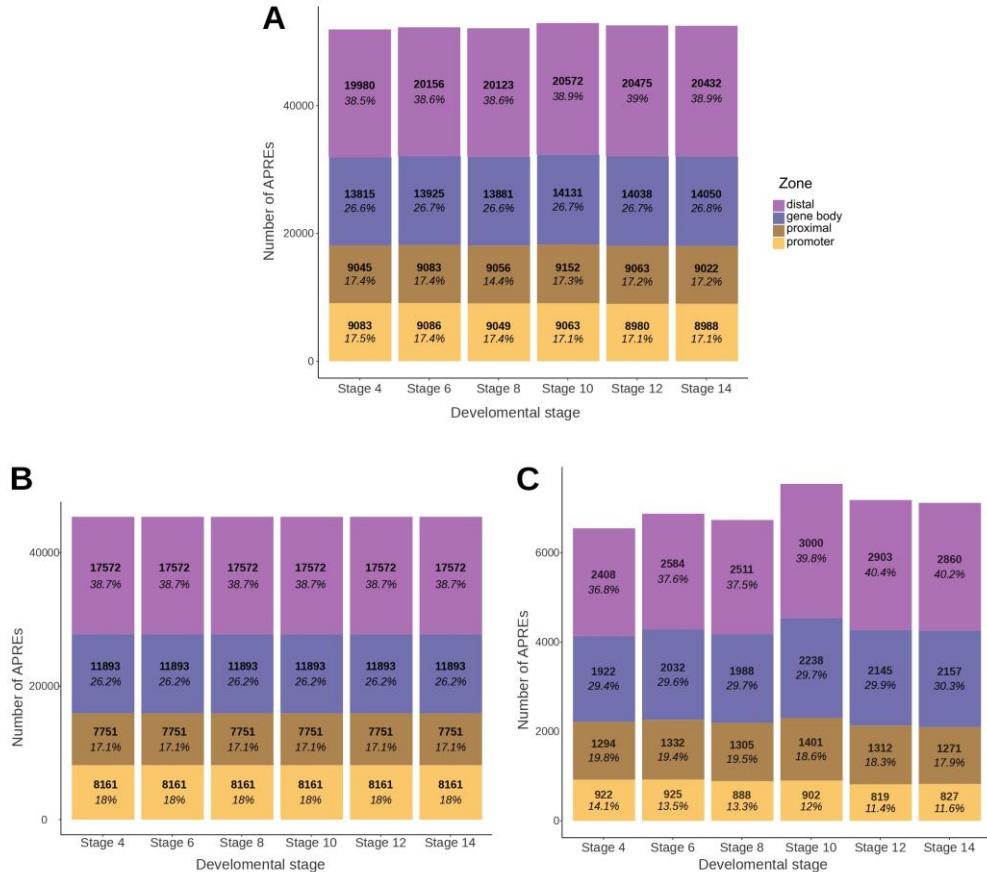

793 Zrzavý, J., and P. Štys. 1997. 'The Basic Body Plan of Arthropods: Insights from
794 Evolutionary Morphology and Developmental Biology'. *Journal of Evolutionary Biology*
795 10 (3): 353–67. <https://doi.org/10.1046/j.1420-9101.1997.10030353.x>.


796

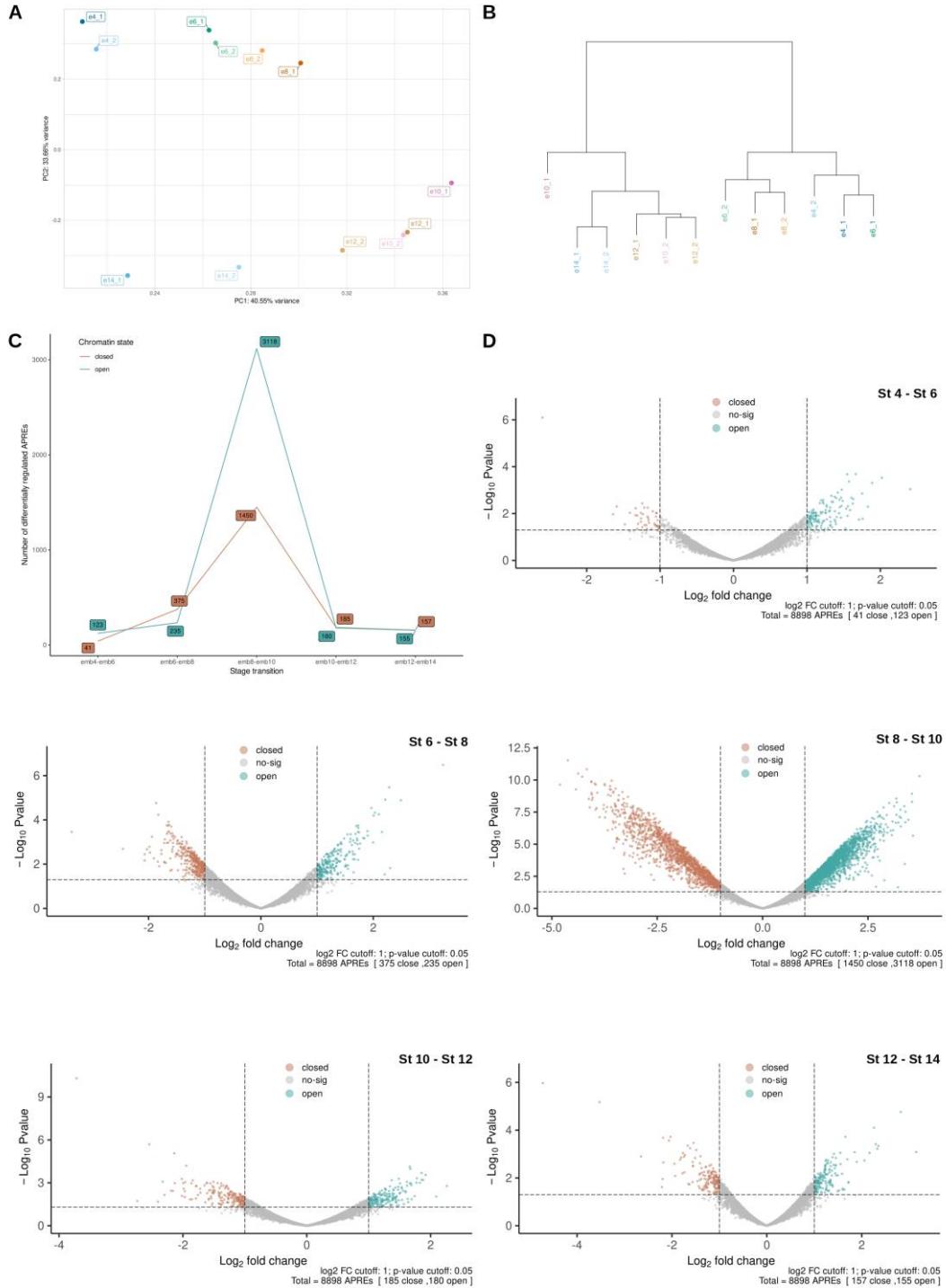
797

798 **SUPPLEMENTARY FIGURES**

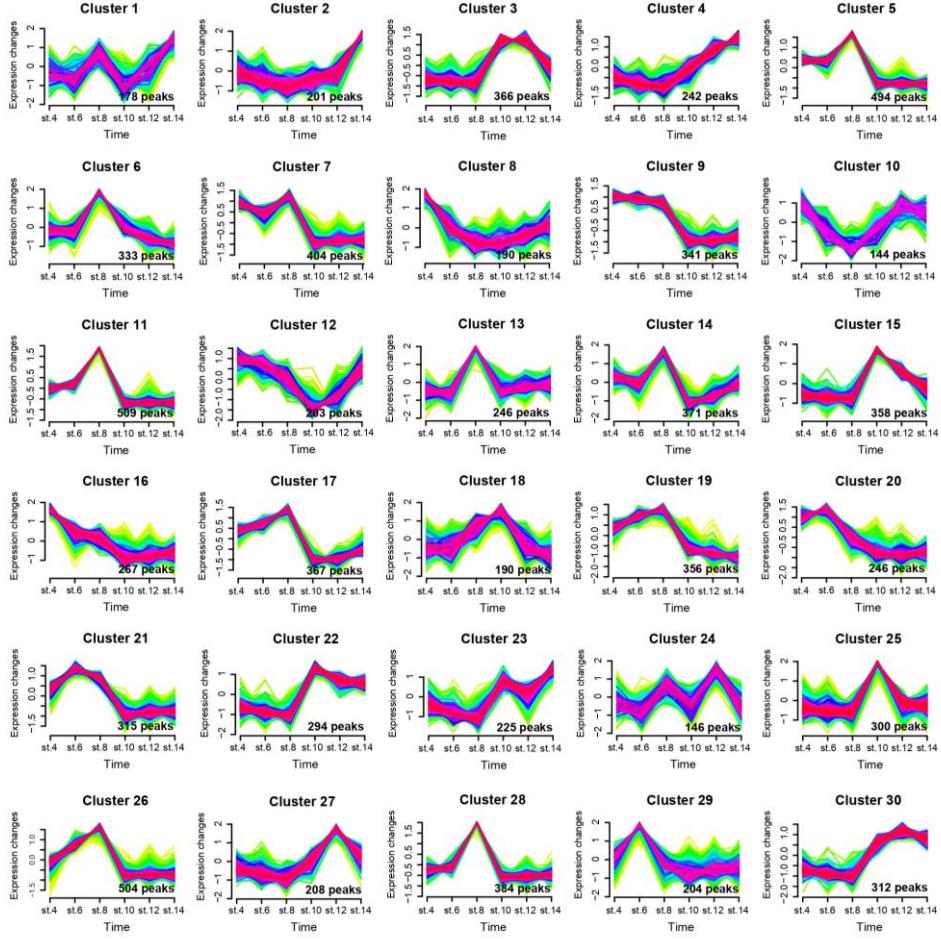
799



803

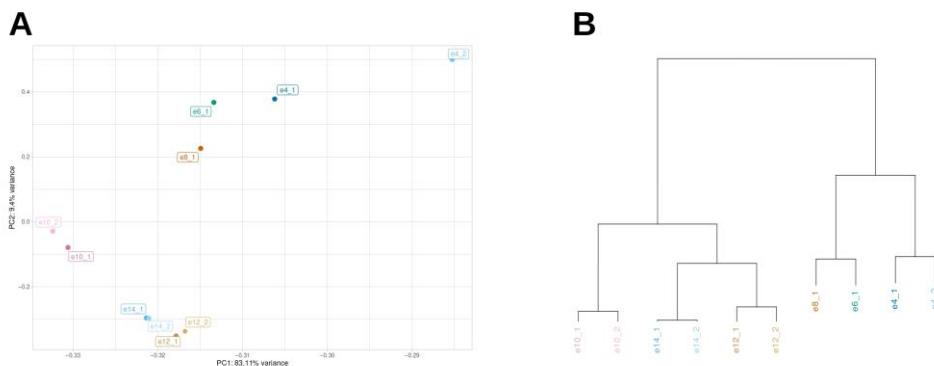

804 **Figure S2. Chromatin state across different developmental stages. (A)** Total number
805 of APREs identified as open at each developmental stage. **(B)** Chromatin APREs that
806 dynamically opening and closing across the stages.

807

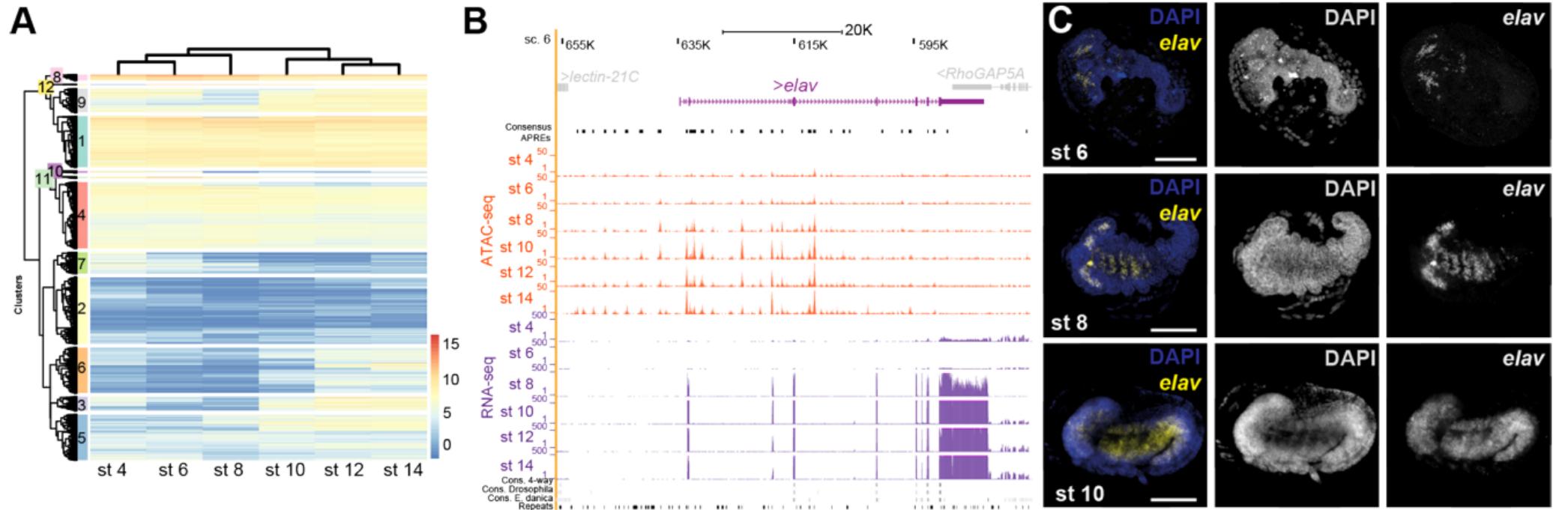

808

809 **Figure S3. Distribution of APREs per developmental timepoint. (A)** Number of
810 APREs in each genomic zone distributed across each developmental stage. **(B)** Non-
811 dynamic APREs per genomic zone distributed across each stage. **(C)** Dynamic APREs
812 per genomic zone distributed across each stage.

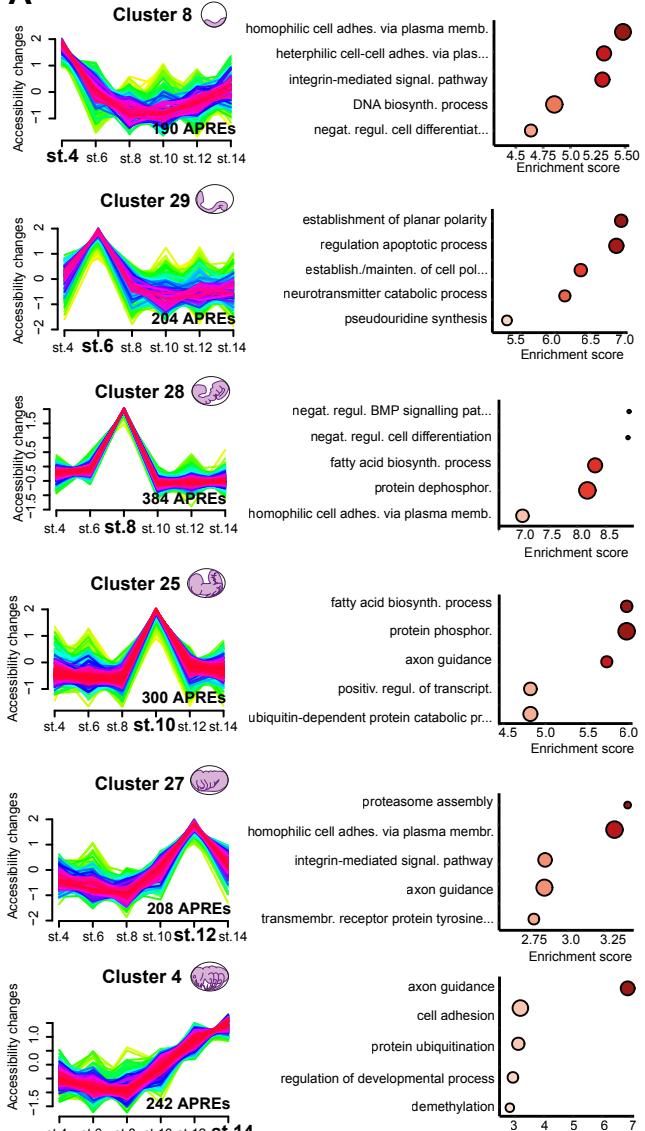
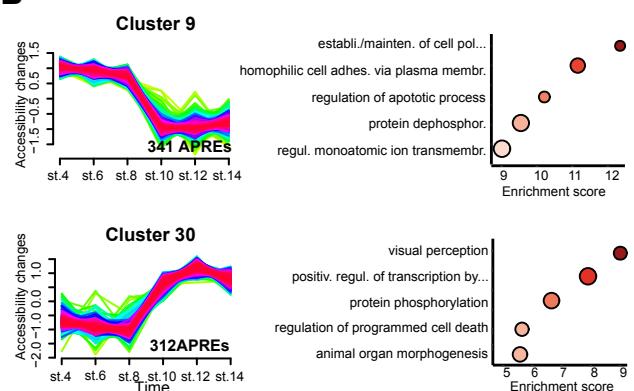
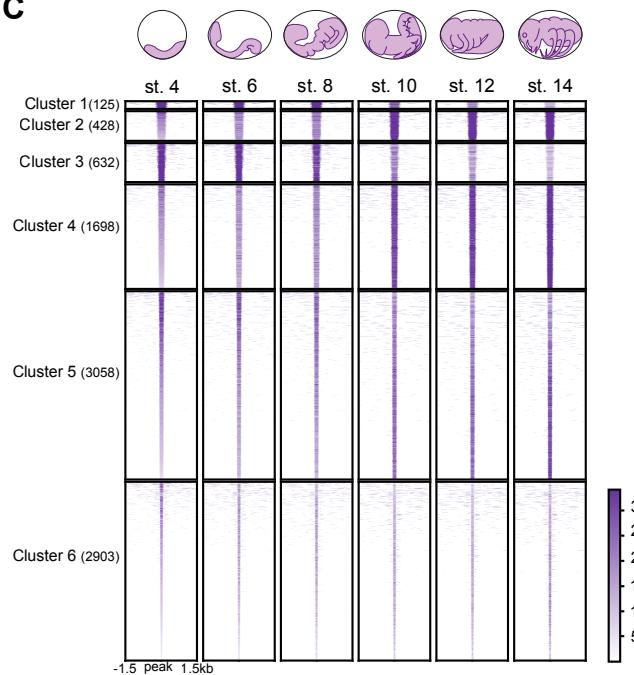
813


814 **Figure S4. PCA analysis of ATAC libraries and differential APRE accessibility. (A)**
 815 PCA showing the distribution of samples across the first two principal components. **(B)**
 816 Hierarchical clustering of each sample. **(C)** Number of differentially accessible chromatin
 817 regions between the different stage transitions. **(D)** Volcano plot of all differentially
 818 accessible regions for each stage transition.

819

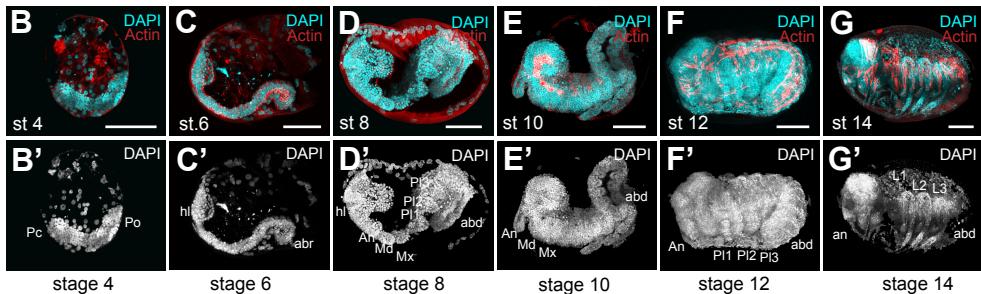
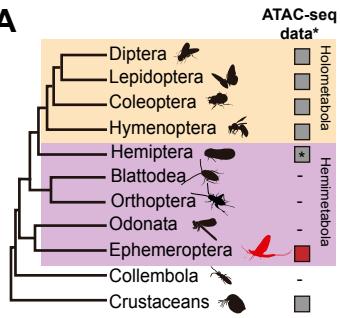
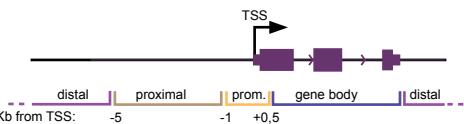
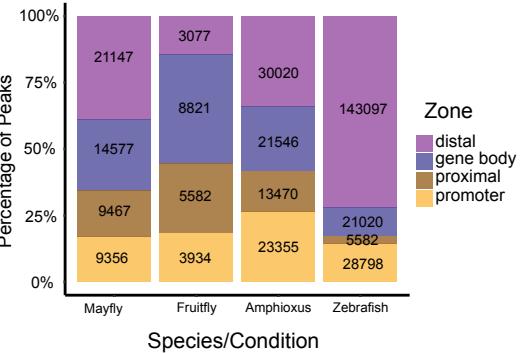
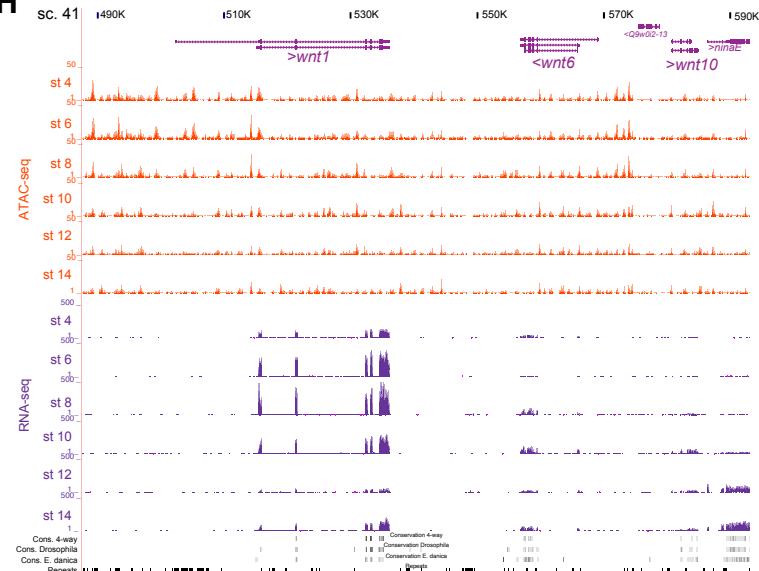

820 **Figure S5. Mfuzz clustering.** Patterns of chromatin accessibility across different
821 developmental stages.

822




823

824 **Figure S6. PCA analysis of RNA-seq Libraries. (A)** PCA displaying the distribution of
825 RNA samples across the first two principal components. **(B)** Hierarchical clustering of
826 RNA samples.

D






Brain			Muscle			Gills		
Enriched motifs	Best match TF	p-values	Enriched motifs	Best match TF	p-values	Enriched motifs	Best match TF	p-values
#2	Su(H)	1e-19	#1	Hsf	1e-20	#1	dve	1e-15
#4	dl	1e-15	#2	bap	1e-20	#2	gcm	1e-15
#6	retn	1e-13	#4	twi	1e-18	#3	Ap-1	1e-14
#8	Cut	1e-12	#5	Deaf1	1e-18	#4	dl	1e-13

A**B****C****D****Early clusters**

	Enriched motifs	Best match TF	p-values	% sites
Cluster 1	#2 AGATTCCTT	Slbo	1e-25	77.60 %
	#3 TCAACAAATAA	Hb	1e-22	79.20 %
	#4 TTTACCTG	Zelda	1e-21	69.60 %
	#5 TTTCCTCA	Deaf1	1e-20	34.40 %
	#6 AGGAAATAATT	Caudal	1e-18	96.80 %
Cluster 3	#1 AGGTACAG	Zelda	1e-60	67.56 %
	#2 ACAATAGA	Dichaete	1e-56	62.97 %
	#3 ACAAATG	Pleiohomeotic	1e-49	78.80 %
	#4 TTGTCTAGGT	Vismay	1e-49	77.53 %
	#5 AGGTTGTT	Runt	1e-43	47.94 %

Late clusters

	Enriched motifs	Best match TF	p-values	% sites
Cluster 2	#1 ATATGCAAA	Nub	1e-51	92.12 %
	#2 TTGGTACAAAG	Six4	1e-46	86.51 %
	#3 CTCCTCT	Trl	1e-45	60.58 %
	#4 ATATCGAT	Dref	1e-40	59.75 %
	#6 AATGAGAAAG	Su(H)	1e-39	82.37 %
Cluster 4	#4 TCAATTATTCAG	Abd-A	1e-69	73.97 %
	#5 CAGCATCAA	Pangolin	1e-66	95.29 %
	#6 CAACCCCTTC	Kruppel	1e-65	89.16 %
	#7 TGAGCACGAGA	Mad	1e-64	80.15 %

A**H**