

1 **Title:** Processing of auditory feedback in perisylvian and insular cortex

2
3 **Authors:** Garret Lynn Kurteff ¹, Alyssa M. Field ¹, Saman Asghar ^{1,5}, Elizabeth C. Tyler-
4 Kabara ^{2,3}, Dave Clarke ^{2,3,4}, Howard L. Weiner ⁵, Anne E. Anderson ⁶, Andrew J.
5 Watrous ⁵, Robert J. Buchanan ², Pradeep N. Modur ⁴, Liberty S. Hamilton ^{1,4,7,*}

6
7 **Affiliations:**

8 ¹ Department of Speech, Language, and Hearing Sciences, Moody College of
9 Communication, The University of Texas at Austin, Austin, TX, USA

10 ² Department of Neurosurgery, Dell Medical School, The University of Texas at Austin,
11 Austin, TX, USA

12 ³ Department of Pediatrics, Dell Medical School, The University of Texas at Austin,
13 Austin, TX, USA

14 ⁴ Department of Neurology, Dell Medical School, The University of Texas at Austin,
15 Austin, TX, USA

16 ⁵ Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA

17 ⁶ Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

18 ⁷ Lead contact

19 * Correspondence: liberty.hamilton@austin.utexas.edu

20
21 **Summary**

22 When we speak, we not only make movements with our mouth, lips, and tongue, but we
23 also hear the sound of our own voice. Thus, speech production in the brain involves not
24 only controlling the movements we make, but also auditory and sensory feedback.
25 Auditory responses are typically suppressed during speech production compared to
26 perception, but how this manifests across space and time is unclear. Here we recorded
27 intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-
28 resistant epilepsy who performed a reading/listening task to investigate how other
29 auditory responses are modulated during speech production. We identified onset and
30 sustained responses to speech in bilateral auditory cortex, with a selective suppression
31 of onset responses during speech production. Onset responses provide a temporal
32 landmark during speech perception that is redundant with forward prediction during
33 speech production. Phonological feature tuning in these “onset suppression” electrodes
34 remained stable between perception and production. Notably, the posterior insula
35 responded at sentence onset for both perception and production, suggesting a role in
36 multisensory integration during feedback control.

37
38 **Keywords:** speech, language, auditory perception, speech production, intracranial
39 electrophysiology, speech motor control

40 **Introduction**

41 A key component of speaking is the integration of ongoing sensory information from the
42 auditory, tactile, and proprioceptive domains (Hickok, 2014; Tourville et al., 2008).
43 When we read a sentence out loud, our brain must convert visual information into a
44 motor program for moving our articulators (lips, jaw, tongue, larynx) to create sounds.
45 The brain then processes these sounds as they are uttered, so the talker can hear if
46 they sound how they expect or have made a mistake. Auditory information is processed
47 differently during speaking compared to listening (Cogan et al., 2014; Creutzfeldt et al.,
48 1989; Houde et al., 2002; Nourski et al., 2021; Towle et al., 2008). A prime example is
49 speaker-induced suppression (SIS), a phenomenon in which self-generated speech
50 generates a lower amplitude neural response than externally generated speech
51 (Behroozmand & Larson, 2011; Flinker et al., 2010; Martikainen et al., 2005). SIS and
52 related phenomena are components of the speech motor control system, the purpose of
53 which is to ensure ongoing sensory feedback is in line with feedforward expectations
54 generated prior to articulation (Guenther, 2016; Houde & Nagarajan, 2011; Tourville &
55 Guenther, 2011). This link is established by studies that correlate the extent of cortical
56 suppression with the accuracy of the utterance: both speech errors and subphonemic
57 changes in utterance acoustics can result in decreased cortical suppression, indicative
58 of a feedback control system ready to adjust the motor program in real time (Niziolek et
59 al., 2013; Ozker et al., 2022, 2024). While feedback control has primarily been studied
60 using noninvasive techniques with a lower signal-to-noise ratio (Chang, 2015; Houde et
61 al., 2002; Okada et al., 2018), intracranial recordings allow for more precise
62 investigation of this process (Chang, 2015; Hamilton, 2024; Lachaux et al., 2012;
63 Mercier et al., 2022). This can potentially illuminate the spatiotemporal specificity of
64 feedback suppression mechanisms like SIS. In addition, we can investigate how speech
65 production affects other aspects of the perceptual system, such as linguistic abstraction
66 and neural response timing.

67

68 ***Organization of speech cortex during listening and speaking***

69 Transformation of low-level acoustics into some form of intermediate linguistic
70 representation is a necessary component of speech perception (Appelbaum, 1996). In
71 several studies, this abstraction is organized according to place and manner of
72 articulation, motivated by linguistic feature theory. Place of articulation describes the
73 location of constriction in the vocal tract (e.g., a bilabial /b/ sound is produced by closing
74 the lips). Manner of articulation, on the other hand, describes the degree of constriction
75 and airflow through the vocal tract. Mesgarani and colleagues observed tuning of
76 electrode populations within the superior temporal gyrus (STG) that preferentially
77 responded to specific classes of phonological features (namely manner of speech)
78 during passive listening (Mesgarani et al., 2014). For example, the same intracranial
79 electrode might respond selectively to plosive phonemes such as /b/, /d/, /g/, /p/, /t/, and
80 /k/, while not responding to fricatives such as /f/, /v/, /s/, /sh/. In more recent work, the
81 same level of representation was observed at the single neuron level (Lakretz et al.,
82 2021; Leonard et al., 2023). The same group later expanded on this result using a
83 speech production task to demonstrate feature tuning changes during speech
84 production in the motor cortex (Cheung et al., 2016). Notably, they observed that motor
85 cortex was organized according to place of articulation during speech production, as

86 would be expected from somatotopic representations (Bouchard et al., 2013), but
87 organized according to manner of articulation during passive listening. However, this
88 manuscript did not report on responses in superior temporal gyrus during speech
89 production, nor was a direct comparison of phonological tuning made between
90 perception and production.

91 A more recent insight about how the auditory system is organized comes from
92 research on temporal response profiles in the STG (Hamilton et al., 2018). The STG
93 contains two such profiles: first, an “onset” response region localized to posterior STG
94 with high temporal modulation selectivity (Hullett et al., 2016) that transiently responds
95 to the acoustic onset of a stimulus. These onset responses are useful for segmenting
96 continuous acoustic information into discrete linguistic units, such as phrases and
97 sentences. Second, a “sustained” response region localized to middle STG with a
98 longer temporal integration window that does not show the same strongly adapting
99 responses following sentence onset. Onset and sustained response profiles are a
100 globally organizing feature of speech-responsive cortex, and responses to all
101 phonological features are seen across both (Hamilton et al., 2018). If responses to
102 phonological information can be modified by the acoustic context of a sound, it is
103 possible they could also be modulated by feedback suppression during speech
104 production. Other top-down cognitive processes can affect speech perception as well,
105 such as expectations about upcoming stimuli evidenced in both speech production
106 (Goregliad Fjaellingsdal et al., 2020; Lester-Smith et al., 2020; Scheerer & Jones, 2014)
107 and speech perception (Astheimer & Sanders, 2011; Bendixen et al., 2014; Caucheteux
108 et al., 2023). In general, auditory stimuli that are consistent with the listener’s
109 expectations generate less of a response than inconsistent stimuli (Chao et al., 2018;
110 Forseth et al., 2020). While consistency effects are also a component of the motor
111 system (Gonzalez Castro et al., 2014; Shadmehr & Krakauer, 2008), the link between
112 speaker-induced suppression and more general top-down expectation is not well
113 established.

114 115 ***Speaker induced suppression in noninvasive recordings***

116 Recent research from our group used scalp EEG recordings to demonstrate that
117 responses to continuous sentences are suppressed during production compared to
118 perception of those same sentences while phonological tuning remains unchanged
119 (Kurteff et al., 2023). However, such conclusions may be tempered by the low spatial
120 resolution of scalp recordings, motivating the use of high-resolution intracranial stereo
121 EEG (sEEG) recordings. When we plan to speak, the motor efference copy contains
122 expectations about upcoming auditory feedback and may contain information about
123 temporal/linguistic landmarks in that feedback (Levelt, 1993; Niziolek et al., 2013;
124 Schneider et al., 2014). Onset responses, which encode the temporal landmarks of
125 speech, may then be suppressed as a redundant processing component during speech
126 production. This is corroborated by scalp EEG/MEG research showing that SIS occurs
127 primarily within the N100/M100 components. That is, the N100 and M100 neural
128 responses are suppressed during speaking as compared to playback. The N100/M100
129 component is an early-onset neural response that is observed at acoustic edges with
130 high temporal modulation (Luck, 2014), making these components share characteristics
131 with onset responses observed using invasive recordings.

132

133 ***The role of the insula in speech perception and production***

134 The use of sEEG as a recording methodology affords an additional advantage to
135 the current study: the ability to record from deeper structures in the cortex. One such
136 structure is the insula, a multifunctional region that is theorized to be involved in
137 sensory, motor, and cognitive aspects of speech (Kurth et al., 2010). Recent work using
138 sEEG reported the insula to be more active for self-generated speech when compared
139 to externally generated speech, an opposite trend to the cortical suppression of self-
140 generated speech observed in auditory cortex (Woolnough et al., 2019). The insula is
141 difficult to record from using several popular neuroimaging techniques due to its
142 placement deep in the Sylvian fissure (Chang, 2015; Remedios et al., 2009). In speech,
143 the insula conventionally plays a role in pre-articulatory motor coordination (Dronkers,
144 1996). Because of the proximity of the insula to the temporal plane and hippocampus,
145 insular coverage is rather common in sEEG epilepsy monitoring cases (Nguyen et al.,
146 2022). We aim to expand upon the functional role of the insula in speech perception and
147 production by directly comparing auditory feedback processing and phonological feature
148 encoding during speaking and listening while recording from the region in high
149 resolution.

150

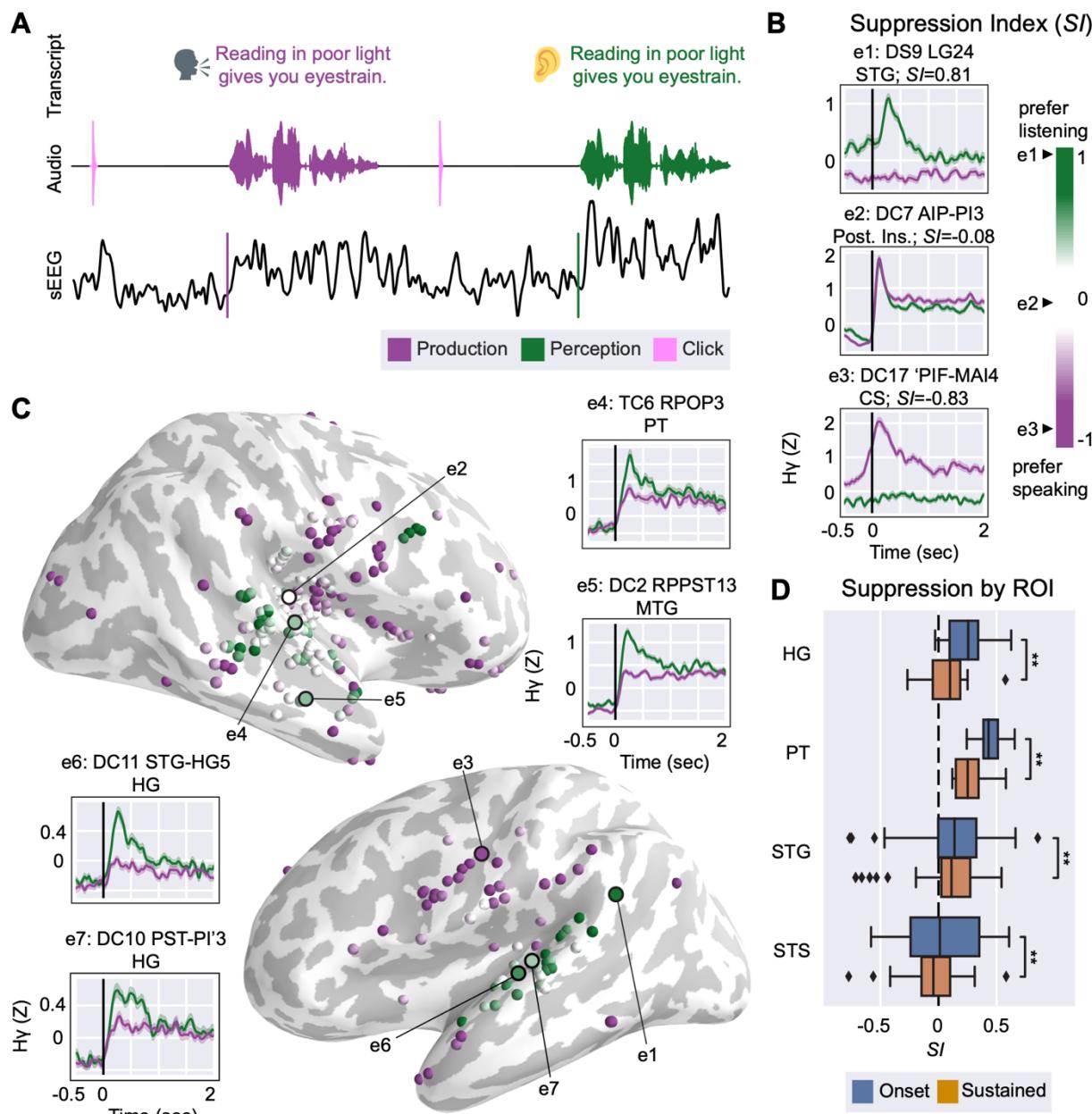
151 ***How do acoustic and linguistic representations change during self-produced 152 speech?***

153 To address how cortical suppression during speech production interacts with
154 documented organizational phenomena during speech perception such as linguistic
155 abstraction and onset/sustained response profiles, we used high-resolution sEEG
156 recordings of neural activity from electrodes implanted in the cortex as part of surgical
157 epilepsy monitoring (Guenot et al., 2001). These participants completed a dual speech
158 production-perception task where they first read sentences aloud, then passively
159 listened to playback of their reading to identify potential changes in local field potential
160 recorded by the implanted electrodes. Our first goal was to identify if previously
161 identified onset and sustained response profiles in auditory cortex (Hamilton et al.,
162 2018) were also present during speech production. Additionally, we varied the playback
163 condition between a consistent playback of the preceding production trial and a
164 randomly selected playback inconsistent with the preceding trial to assess the spatial
165 and temporal similarity of a more general perceptual expectancy effect with feedback
166 suppression during speech production. Lastly, we investigated how linguistic feature
167 tuning changes at individual electrodes during speech production vs. perception and
168 how this is modulated by expectation. Our results have implications for understanding
169 important auditory-motor interactions during natural human communication.

170

171 **Results**

172 Onset responses are selectively suppressed during speech production


173 To examine potential differences in neural processing during speech production and
174 perception, we acquired data from 17 pediatric, adolescent, and adult participants (9F,
175 age 16.6 ± 6.4 , range 8 to 37 years; Table S1) surgically implanted with intracranial
176 sEEG depth electrodes and pial electrocorticography (ECoG) grids for epilepsy
177 monitoring. These patients performed a task where they read aloud naturalistic

178 sentence stimuli then passively listened to playback of their reading (Figure 1A). For all
179 analyses, we extracted the high gamma analytic amplitude of the local field potentials
180 (Lachaux et al., 2012), which has been shown to correlate with single- and multi-unit
181 neuronal firing (Ray & Maunsell, 2011) and tracks both acoustic and phonological
182 characteristics of speech (Mesgarani et al., 2014; Oganian et al., 2023). Based on prior
183 work, we expected to observe strong onset and sustained responses during sentence
184 playback (Hamilton et al., 2018, 2021), as well as sensorimotor responses during the
185 production portions of the task that would reflect articulatory control (Bouchard &
186 Chang, 2014; Chartier et al., 2018). Additionally, our task design allowed us to
187 investigate the role of auditory-motor feedback during speech production by comparing
188 neural responses to auditory feedback in real time to passive listening to an acoustically
189 matched playback of each trial.

190 We recorded from a total of 2044 sEEG depth electrodes implanted in perisylvian
191 cortex and insula. This included coverage of speech responsive areas of the lateral
192 superior temporal gyrus, but also within the depths of the superior temporal sulcus,
193 primary auditory cortex, and surrounding regions of the temporal plane. Within- and
194 across-subject visualizations of electrode coverage are available as supplemental
195 figures (Figure S1, S2). To examine differences between speech perception and
196 production on individual electrodes, we plotted event-related high gamma responses for
197 speech perception and production trials relative to the beginning of the acoustic onset of
198 the sentence. We identified 144 electrodes with significant responses to perceptual
199 stimuli, 350 electrodes with significant responses to production stimuli, and 110
200 electrodes with significant responses to both perceptual and production stimuli (Figure
201 1B; bootstrap t-test, $p < 0.05$). We quantified individual electrodes' selectivity to speech
202 production or perception by calculating a suppression index (*SI*, see STAR Methods).
203 An $SI > 0$ reflects higher activity during listening compared to speaking, and $SI < 0$ reflects
204 higher activity during speaking compared to listening (Figure 1C).

205 Single-electrode responses can be visualized on a 3D brain in an interactive
206 webviewer at <https://hamiltonlabut.github.io/kurteff2024/>. We observed single electrodes
207 with selective responses to speech perception in bilateral Heschl's gyrus and STG
208 (Figure 1D). 51.4% of electrodes in STG ($n = 70$) and 100% of electrodes in Heschl's
209 gyrus ($n = 13$) responded significantly to speech perception stimuli. Response profiles of
210 electrodes in this region consisted of a mixture of transient onset responses and lower-
211 amplitude sustained responses during passive listening, consistent with previous
212 research (Hamilton et al., 2018, 2021). In primary and non-primary auditory cortex,
213 onset responses were notably absent during speech production, while sustained
214 responses remained relatively un-suppressed (Estimated marginal mean_{onset-sustained} $SI =$
215 0.153 ; $p < .001$). Electrodes in primary sensorimotor cortex were typically more
216 production-selective, in line with conventional localization of sensorimotor control of
217 speech (Bouchard et al., 2013; Guenther, 2016; Penfield & Roberts, 1959). This pattern
218 of responses demonstrates selective suppression of onset responses during speech
219 production in primary and secondary auditory regions of the human brain. This result
220 supports prior research that posits onset responses play a role in temporal parcellation
221 of speech, a process unnecessary during speech production due to the speaker's
222 knowledge of upcoming auditory information (Houde & Nagarajan, 2011; Tourville &
223 Guenther, 2011).

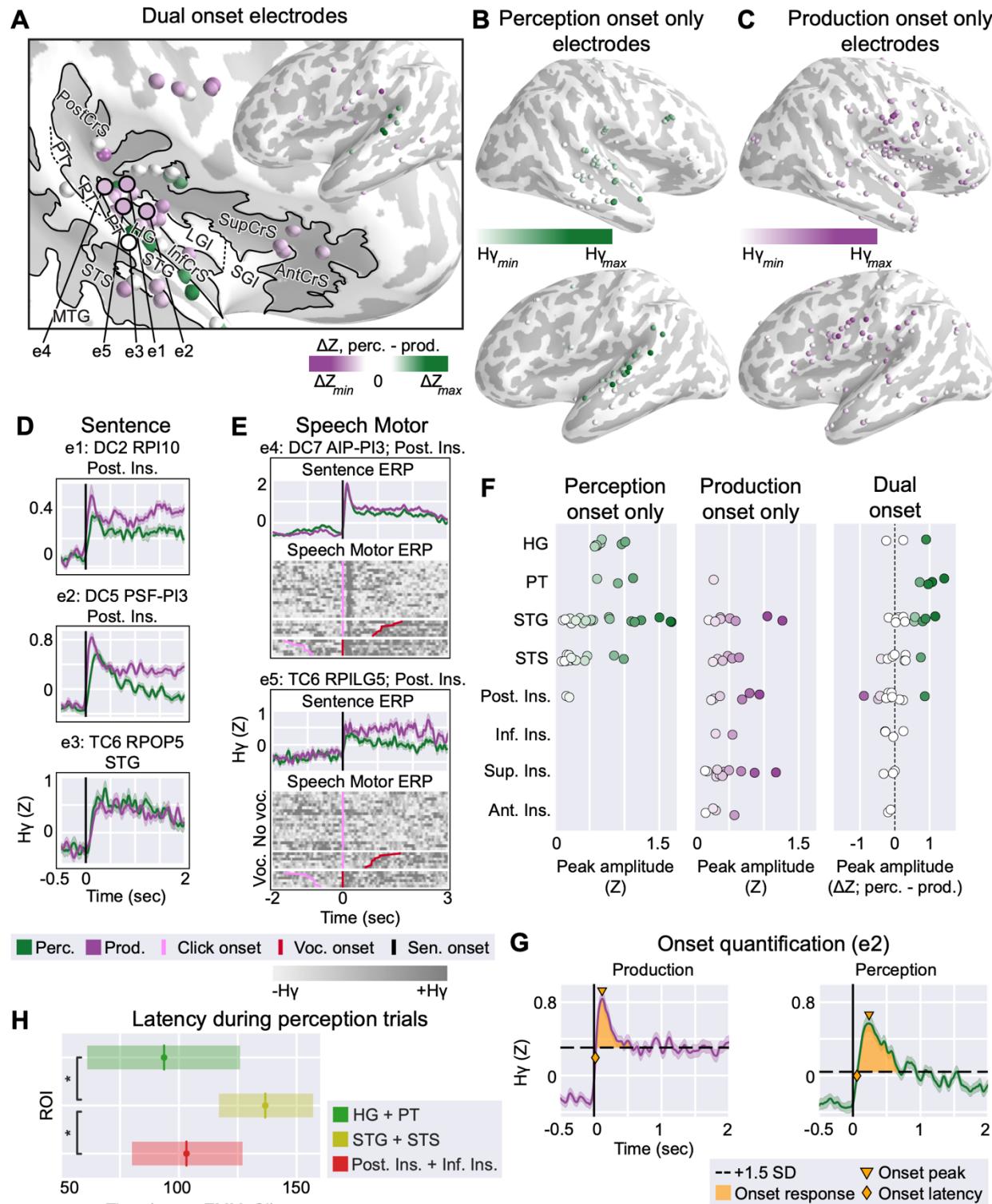
224

225

Figure 1: Auditory onset responses are suppressed during speech production.

226 (A) Schematic of reading and listening task. Participants read a sentence aloud (purple) then passively
 227 listened to playback of themselves reading the sentence (green). Pink spikes in the beginning and middle
 228 of the audio waveform indicate inter-trial click tones, used as a cue and an auditory control.
 229 (B) Single-electrode plots showing different profiles of response selectivity across the cortex. Color
 230 gradient represents normalized SI values. A more positive SI indicates an electrode is more responsive to
 231 speech perception stimuli (e1) while a more negative SI means an electrode is more responsive to
 232 production stimuli (e3). e2 and e3 are examples of response profiles described in subsequent figures
 233 (Figures 2 and 3, respectively). Subplot titles reflect the participant ID and electrode name from the
 234 clinical montage.
 235 (C) Whole-brain and single-electrode visualizations of perception and production selectivity (SI).
 236 Electodes are plotted on a template brain with an inflated cortical surface; dark gray indicates sulci while
 237 light gray indicates gyri. Single-electrode plots of high-gamma activity demonstrate suppression of onset
 238 response relative to the acoustic onset of the sentence (vertical black line).
 239

240 (D) Box plot of suppression index during onset (blue) and sustained (orange) time windows separated by
241 anatomical region of interest in primary and non-primary auditory cortex. Brackets indicate significance (*
242 = $p < 0.05$; ** = $p < 0.01$).


243 Abbreviations: HG: Heschl's gyrus; PT: planum temporale; STG: superior temporal gyrus; STS: superior
244 temporal sulcus; MTG: middle temporal gyrus; CS: central sulcus; Post. Ins.: posterior insula.
245

246 The posterior insula uniquely exhibits onset responses to speaking and listening

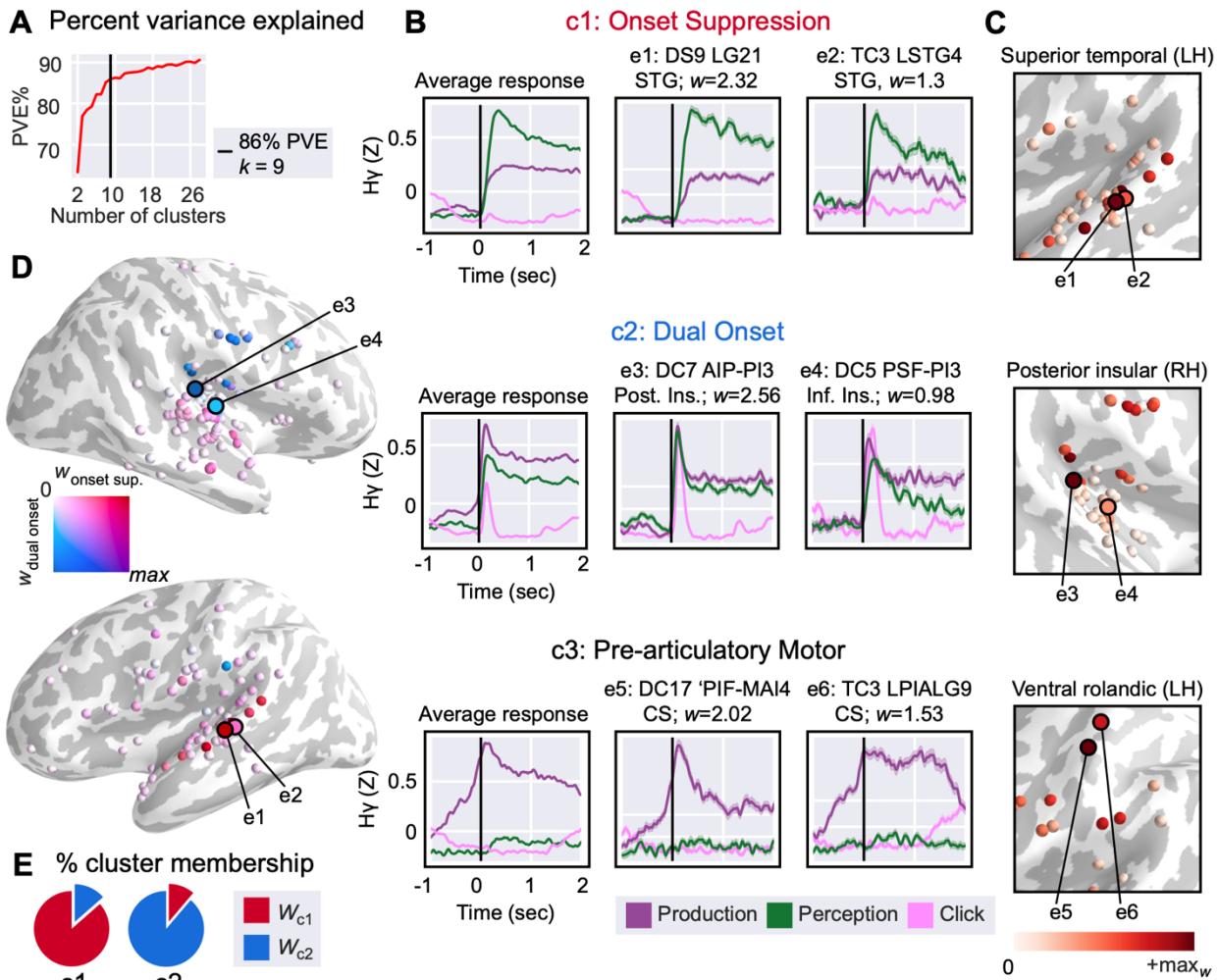
247 The ability of sEEG to obtain high-resolution recordings of human insula is a unique
248 strength, as other intracranial approaches such as ECoG grids and electrocortical
249 stimulation cannot be applied to the insula without prior dissection of the Sylvian fissure,
250 an involved and rarely performed surgical procedure (Remedios et al., 2009; Zhang et
251 al., 2018). Similarly, hemodynamic and lesion-based analyses may suffer from
252 vasculature-related confounds in isolating insular responses (Hillis et al., 2004). Here
253 we present high spatiotemporal resolution recordings from human insula and identify a
254 functional response profile localized to this region.

255 While onset responses to speech perception were mostly confined to auditory
256 cortex, a functional region of interest in the posterior insula demonstrated a different
257 morphology of onset responses. Across participants, electrodes in the posterior insula
258 showed robust onset responses to perceptual stimuli in similar fashion to auditory
259 electrodes. Unlike auditory electrodes, however, posterior insular electrodes also
260 showed robust onset responses during speech production (Figure 2D). Out of all
261 posterior insula electrodes ($n = 47$), 23.4% responded significantly to speech perception
262 and 31.9% responded significantly to speech production. These posterior insula onset
263 electrodes responded similarly to stimuli regardless of whether they were spoken or
264 heard (Figure 2). We hypothesized that such responses might reflect a relationship to
265 articulatory motor control or somatosensory processes, which prompted us to trial a
266 nonspeech motor control task in a subset of our participants ($n = 6$; Table S1). The
267 purpose of this task was to determine if such “dual onset” responses were speech-
268 specific or whether they could be elicited by simpler, speech-related movements. In this
269 task, participants were instructed to follow instructions displayed on screen when a “go”
270 signal was given; the instructions consisted of a variety of nonspeech oral-motor tasks
271 taken from a typical battery used by speech-language pathologists during oral
272 mechanism evaluations (St. Louis & Ruscello, 1981). The “go” signal contained both a
273 visual (green circle) and an auditory cue (click), after which the participant would
274 perform the task. Some tasks required vocalization (e.g., “say ‘aaaa’”) while others did
275 not (e.g., “stick your tongue out”). While a few insular electrodes did exhibit responses
276 during the speech motor control task, they were not consistently responsive to the
277 speech motor control task except for trials that involved auditory feedback (Figure 2E).
278 We interpret these as responses to the click sound when instructions are displayed to
279 the participant or to the subjects’ own vocalizations rather than an index of sensorimotor
280 activity related to the motor movements. When significance is calculated in a time
281 window that excludes the click sound (500-100 msec post-click), only 2% of insula
282 electrodes ($n = 49$) significantly respond to the speech motor control task. By
283 comparison, 25.7% of sensorimotor cortex electrodes ($n = 35$) significantly responded,
284 demonstrating that the speech motor control task was sensitive to sensorimotor activity.
285 Additionally, posterior insular electrodes that were responsive to the speech motor
286 control task and all dual onset insular electrodes in the main task were only active after

287 the onset of articulation. This later response suggests that these electrodes were
288 involved in sensory feedback processing and not direct motor control. The posterior
289 insula region of interest was the only anatomical area in our dataset that was equally
290 responsive to acoustic onsets during both production and perception. While electrodes
291 with dual onset responses during speaking and listening were seen in both
292 primary/secondary auditory areas (22.7% of dual onset electrodes) and the insula
293 (28.8% of dual onset electrodes), electrodes with similar amplitudes for speaking and
294 listening were most common in posterior insula (Figure 2F). In other words, while
295 temporal electrodes did sometimes demonstrate dual onset responses, the amplitudes
296 of these responses were larger for speech perception compared to production. We
297 quantified this restriction of “dual onset” electrodes to posterior insula by taking the peak
298 amplitude in the first 300 milliseconds of activity prior to sentence onset greater than 1.5
299 SD above the epoch mean as a measure of the onset response (Figure 2G).
300

Figure 2: A functional region of interest in posterior insula shows onset responses to both speaking and listening.

(A) Whole-brain and visualization of dual onset electrodes. Electrodes are plotted on a template brain with an inflated cortical surface; dark gray indicates sulci while light gray indicates gyri. Black outline on template brain highlights functional region of interest in posterior insula with anatomical structures labeled. Electrode color indicates the difference in Z-scored high gamma peaks during the speaking and


308 listening conditions (ΔZ). Right hemisphere is cropped to emphasize insula ROI, while left hemisphere is
309 shown in entirety due to lower number of electrodes.
310 (B) Whole-brain visualization of electrodes with onset responses only during speech perception.
311 Electrode color indicates the peak high gamma amplitude during the onset response.
312 (C) Whole-brain visualization of electrodes with onset responses only during speech production.
313 Electrode color indicates the peak high gamma amplitude during the onset response.
314 (D) Single electrode activity from posterior insular electrodes highlighting dual onset responses during
315 speech production and perception. Vertical black line indicates acoustic onset of sentence. Subplot titles
316 reflect the participant ID, electrode name from the clinical montage, and anatomical ROI.
317 (E) Grayscale heatmaps of single-trial electrode activity during a nonspeech motor control task, separated
318 by no vocalization (e.g., “stick your tongue out”) and vocalization (e.g., “say ‘aaaa’”). For vocalization
319 trials, onset of acoustic activity is visualized relative to the click accompanying the presentation of
320 instructions (pink) and the onset of vocalization (red).
321 (F) Strip plot showing the distribution of channel-by-channel onset response peak amplitudes separated
322 by anatomical region of interest and whether onset responses occur only during perception (left), only
323 during production (center), or occur during perception and production (right). Electrodes are colored
324 according to the colormaps of (A), (B), and (C).
325 (G) Schematic of quantification of onset response for an example electrode (e2, DC5 PSF-PI3). The first
326 contiguous peak of activity >1.5 SD above the mean response constitutes the onset response and is
327 shaded in orange. Peak amplitude values displayed in (B), (C) and (G) are indicated.
328 (H) Bar plot showing the estimated marginal mean latency of the onset response in three regions of
329 interest: auditory primary (HG + PT), auditory non-primary (STG + STS), and posterior + inferior insular.
330 Insular onset latency is comparable to primary auditory latency. Brackets indicate significance (* = $p <$
331 0.05; ** = $p < 0.01$).
332 Abbreviations: HG: Heschl’s gyrus; STG: superior temporal gyrus; STS: superior temporal sulcus; MTG:
333 middle temporal gyrus; Inf/Sup/Ant/Post/ CrS: inferior/superior/anterior/posterior circular sulcus of the
334 insula; LGI: long gyrus of the insula; SGI: short gyrus of the insula; PT: planum temporale.
335

336 The response latencies of different anatomical regions can provide a proxy for
337 understanding how information flows from one region to another, or where in the
338 pathway a certain response may occur. For example, our prior work showed similar
339 latencies between the pSTG and posteromedial Heschl’s gyrus, indicating a potential
340 parallel pathway (Hamilton et al., 2021). Here, the dual onset electrodes in posterior
341 insula responded with comparable latency to the speech perception onset response
342 electrodes observed in primary (HG & PT) and non-primary auditory cortex (STG &
343 STS), in some cases responding earlier relative to sentence onset than the auditory
344 cortex electrodes (EMM_{A1} peak latency = 93.7 ± 16.2 msec; EMM_{Aud. non-primary} peak
345 latency = 136.7 ± 9.4 msec; EMM_{insular} peak latency = 103.2 ± 11.7 msec; A1-Aud. non-
346 primary $p = 0.03$; A1-insular $p = 0.85$; Aud. non-primary-insular $p = 0.03$; Figure 2H).
347 This does not suggest a conventionally proposed serial cascade of information from
348 primary auditory cortex and is instead indicative of a parallel information flow to primary
349 auditory cortex and the posterior insula, potentially from the terminus of the ascending
350 auditory pathway. The similar latency of posterior insular dual onset electrodes and
351 primary auditory onset suppression electrodes alongside the tendency of posterior
352 insular electrodes to also show low-latency onset responses during speech production
353 leads us to speculate that the posterior insula receives a parallel thalamic input and
354 serves as a sensory integration hub for the purposes of feedback processing during
355 speech.
356

357 Unsupervised identification of “onset suppression” and “dual onset” functional response
358 profiles

359 Visualization of individual electrodes' responses to the onset of perceived and produced
360 sentences allows for manual identification of response profiles in the data but is subject
361 to *a priori* bias by the investigators. Data driven methods such as convex non-negative
362 matrix factorization (cNMF) allow identification of patterns in the data without access to
363 spatial information or the acoustic content of the stimuli (Ding et al., 2010). This method
364 was used to identify onset and sustained responses in STG (Hamilton et al., 2018).
365 Here, we used cNMF to identify response profiles in our data in an unsupervised
366 fashion using average evoked responses as the input to the factorization. A solution
367 with $k = 9$ clusters explained 86% of the variance in the data (Figure 3A). We chose this
368 threshold as increasing the number of clusters in the factorization beyond $k = 9$ resulted
369 in redundant clusters. Similar response profiles were seen using other numbers of
370 clusters (STAR Methods). Single-electrode responses to spoken sentences, perceived
371 sentences, and an inter-trial click tone were used as inputs to the factorization such that
372 responses to each of these conditions were jointly considered for defining a "cluster."
373 The average responses of all top-weighted electrodes within cluster for the $k = 9$
374 factorization is available as a supplemental figure (Figure S3). Visualization of the
375 average response across sentences of the top-weighted electrodes within each cluster
376 identifies two primary response profiles in correspondence with manually identified
377 response profiles: (c1) an "onset suppression" cluster localized to bilateral STG and
378 Heschl's gyrus characterized by evoked responses to speech production and speech
379 perception but an absence of onset responses during speech production; and (c2) a
380 "dual onset" cluster localized to the posterior insula/circular sulcus characterized by
381 evoked responses to the onset of perceived and produced sentences (Figure 3B, C). An
382 additional cluster (c3) was localized to ventral sensorimotor cortex and showed
383 selectivity to speech production trials, particularly prior to articulation. This cluster is
384 located in ventral sensorimotor cortex, and likely reflects motor control of speech
385 articulators (Bouchard et al., 2013; Breshears et al., 2015; Dichter et al., 2018).
386

387 Because the onset suppression and dual onset clusters are relatively close to
388 each other anatomically, we quantified their functional separation by examining whether
389 individual electrodes contributed strong weighting to both clusters. We observed that
390 despite the spatial proximity of the clusters (which cNMF's clustering technique would
391 not have access to), the majority of electrodes in both onset suppression and dual onset
392 clusters were only strongly weighted within a single cluster (Figure 3D). The top 50
393 electrodes of the onset suppression contributed 86.5% of their weighting to the onset
394 suppression cluster and 13.5% to the dual onset cluster, while the top 50 electrodes of
395 the dual onset cluster contributed 88.8% to the dual onset cluster and 11.2% to the
396 onset suppression cluster (Figure 3E). This suggests that despite anatomical proximity,
397 the onset responses in posterior insular electrodes are not the result of spatial spread of
398 activity from nearby primary auditory electrodes in Heschl's gyrus and planum
399 temporale. Taken together, the supervised and unsupervised analyses suggest auditory
400 feedback is processed differently by two regions in temporal and insular cortex. Auditory
401 cortex suppresses responses to self-generated speech through attenuation of the onset
402 response, while the posterior insula uniquely responds to onsets of auditory feedback
403 regardless of whether the stimulus was self-generated or passively perceived.

Figure 3. Anatomically distinct onset suppression and dual onset clusters represent a subclass of response profiles to continuous speech production and perception.

(A) Percent variance explained by cNMF as a function of total number of clusters in factorization.

Threshold of $k = 9$ factorization plotted as vertical black line.

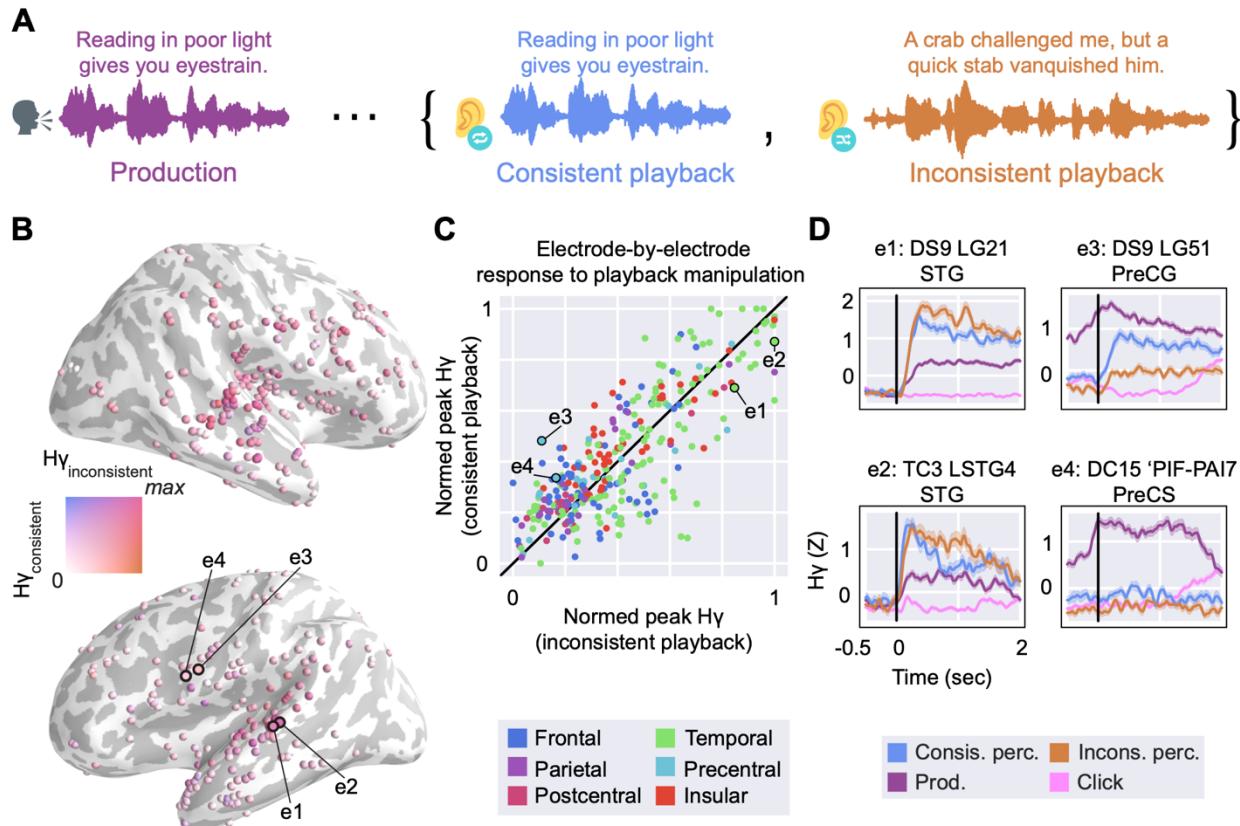
(B) cNMF identifies three response profiles of interest: (c1) onset suppression electrodes, characterized by a suppression of onset responses during speech production and localized to STG/HG; (c2) dual onset electrodes, characterized by the presence of onset responses during perception and production and localized to posterior insula; (c3) pre-articulatory motor electrodes, characterized by activity prior to acoustic onset of stimulus during speech production and localized to ventral sensorimotor cortex. Left: Cluster basis functions for speaking sentences (purple), listening to sentences (green), and inter-trial click (pink) for c1, c2, and c3. Center, right: Two example electrodes from the top 16 weighted electrodes. Subplot titles reflect the participant ID and electrode name from the clinical montage.

(C) Cropped template brain showing top 50 weighted electrodes for individual clusters (c1, c2, c3). A darker red electrode indicates higher within-cluster weight.

(D) Individual electrode contribution to dual onset and onset suppression cNMF clusters in both hemispheres. Top 50 weighted electrodes for each cluster are plotted on a template brain with an inflated cortical surface; dark gray indicates sulci while light gray indicates gyri. Red electrodes contribute more weight to the “onset suppression” cluster while blue electrodes contribute more to the “dual onset” cluster; purple electrodes contribute equally to both clusters while white electrodes contribute to neither.

(E) Percent similarity of onset suppression (c1) and dual onset (c2) clusters’ top 50 electrodes. The majority of the electrode weighting across these two clusters is non-overlapping.

426 Abbreviations: STG: superior temporal gyrus; CS: central sulcus. Inf. Ins. = inferior insula, Post. Ins =
427 posterior insula.


428

429 Response to playback consistency is a separate mechanism from suppression of onset
430 responses

431 Speaker-induced suppression of self-generated auditory feedback is one example of
432 how top-down information can influence auditory processing. In rodent studies, animals
433 can learn to associate a particular tone frequency with self-generated movements, and
434 motor-related auditory suppression will occur specifically for that frequency rather than
435 unexpected frequencies that were not paired with movement (Schneider et al., 2018).
436 Expectations about upcoming auditory feedback can also influence the outcomes of
437 feedback perturbation tasks in humans (Lester-Smith et al., 2020; Scheerer & Jones,
438 2014). We were interested if other top-down expectations about the task could affect the
439 responses of electrodes in our data and if these populations overlapped with speaker-
440 induced suppression. To accomplish this, we separated the playback condition into
441 blocks of consistent and inconsistent playback (Figure 4A). In the consistent playback
442 block, participants were always played back the sentence they had just produced in the
443 prior speaking trial. In the inconsistent playback block, participants instead were played
444 back a randomly selected recording of a previous speaking trial. In both cases, the
445 playback stimulus was a recording of their own voice.

446 The majority of electrodes did not differentially respond to consistent or
447 inconsistent playback conditions (pink-red electrodes in Figure 4B; electrodes along
448 unity line in Figure 4C). While 45.5% of STG electrodes ($n = 55$) were significantly
449 responsive to both consistent and inconsistent playback, only 5.5% were responsive
450 solely during consistent playback and 0% were responsive solely during inconsistent
451 playback. Other auditory areas showed a similar trend, including STS (both = 20.3%;
452 consistent only = 4.3%; inconsistent only = 2.9%; $n = 69$ electrodes), posterior insula
453 (both = 15.4%; Consistent only = 2.6%; Inconsistent only = 0%; $n = 39$ electrodes), and
454 HG (both = 100%; Consistent only = 0%; inconsistent only = 0%; $n = 8$ electrodes). For
455 the subset of electrodes that did differentially respond, most demonstrated a slight
456 amplitude increase during the inconsistent playback condition that started at the time of
457 the onset response and persisted throughout stimulus presentation (Figure 4D).
458 Electrodes that selectively responded to inconsistent stimuli did not have an identifiable
459 general response profile. Most electrodes that showed a preference for inconsistent
460 playback also demonstrated onset suppression during speech production trials (e3 &
461 e4, Figure 4D), but this suppression was far stronger than any difference between
462 consistent and inconsistent playback. A contrast between consistent and inconsistent
463 playback was most commonly observed in superior temporal gyrus and superior
464 temporal sulcus. Curiously, a subset of electrodes localized to ventral sensorimotor
465 cortex (similarly to cluster c3 presented in Figure 3B) showed an overall preference for
466 speech production trials with pre-articulatory activity, but within the playback contrast
467 demonstrated a preference for consistent playback (e5 & e6, Figure 4D). We interpret
468 this finding as a speech motor region that indexes predictions of upcoming sensory
469 content for a role in feedback control.

470

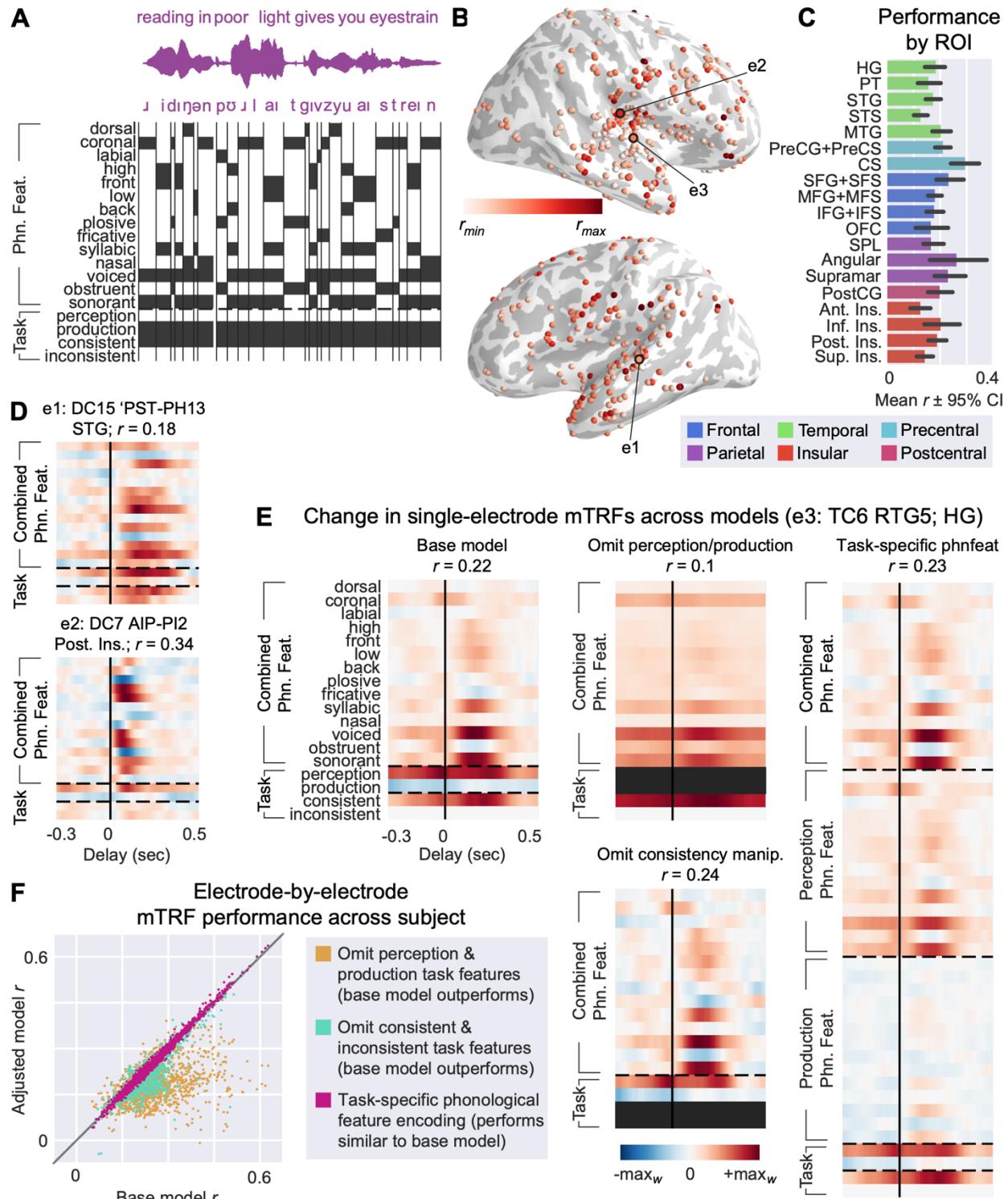
471
472
473

Figure 4. Playback consistency manipulation yields separate, weaker effects than onset suppression.

474 (A) Task schematic showing playback consistency manipulation. Participants read a sentence aloud
475 (purple) then passively listened to playback of that sentence (blue) or randomly selected playback of a
476 previous trial (orange).
477 (B) Whole-brain visualization of responsiveness to playback consistency. Electrodes are plotted on an
478 inflated template brain; dark gray indicates sulci while light gray indicates gyri. Electrodes are colored
479 using a 2D colormap that represents high gamma amplitude during consistent and inconsistent playback;
480 blue indicates a response during consistent playback but not during inconsistent, orange indicates a
481 response during inconsistent playback but not during consistent playback, pink indicates a response to
482 both playback conditions, white indicates a response to neither. Most electrodes are pink, indicating
483 strong responses to both conditions. Example electrodes from (D) are indicated.
484 (C) Scatter plot of channel-by-channel peak high-gamma activity during consistent playback (Y-axis) and
485 inconsistent playback (X-axis). Vertical black line indicates unity. Color corresponds to gross anatomical
486 region. Example electrodes from (D) are indicated.
487 (D) Single-electrode plots of high-gamma activity relative to sentence onset (vertical black line). Left
488 column (e1 and e2): Electrodes in temporal cortex demonstrating a slight preference for inconsistent
489 playback. Right column (e3 and e4): Electrodes in frontal/parietal cortex demonstrating a slight
490 preference for consistent playback and a larger preference for speech production trials.
491 Abbreviations: HG: Heschl's gyrus; STG: superior temporal gyrus; PreCS: precentral sulcus; Supramar:
492 supramarginal gyrus.

493

Despite suppression of onset responses, phonological feature representation is suppressed but stable between perception and production


494 Prior work shows that circuits within the STG represent phonological feature information
495 that is invariant to other acoustic characteristics such as pitch (Appelbaum, 1996;

498 Mesgarani et al., 2014; Tang et al., 2017). Tuning for these phonological features is
499 observed within both posterior onset selective areas of STG and anterior sustained
500 regions (Hamilton et al. 2018). Here, we observed that onset responses are suppressed
501 during speech production, which motivates investigating whether phonological feature
502 tuning is also modulated as part of the auditory system's differential processing of
503 auditory information while speaking. To investigate this, we fit multivariate temporal
504 receptive fields (mTRF) for each electrode to describe the relationship between the
505 neural response at that electrode and selected phonological and task-level features of
506 the stimulus (Figure 5A). We report the effectiveness of an mTRF model in predicting
507 the neural response as the linear correlation coefficient (r) between a held-out validation
508 response and the predicted response based on the model (Figure 5B, C).

509 Onset suppression electrodes in auditory cortex and dual onset electrodes in the
510 posterior insula were both well modeled using this approach ($\bar{x}r_{\text{onset suppression electrodes}} =$
511 0.17 ± 0.08 ; $\bar{x}r_{\text{dual onset electrodes}} = 0.16 \pm 0.11$, range -0.25 to 0.64; Figure 5D). Within both
512 response profiles, single electrodes exhibited a diversity of preferences to various
513 combinations of phonological features, mirroring previous results showing distributed
514 phonological feature tuning in auditory cortex (Berezutskaya et al., 2017; Hamilton et
515 al., 2018, 2021; Mesgarani et al., 2014; Oganian & Chang, 2019). Of note, posterior and
516 inferior insula electrodes were strongly phonologically tuned, with a short temporal
517 response profile as was seen in our prior latency analysis. Dual onset and onset
518 suppression electrodes differed from purely production-selective electrodes in this way,
519 as most production-selective electrodes qualitatively did not demonstrate robust
520 phonological feature tuning. Instead, most of the variance in the mTRF instead was
521 explainable by global task-related stimulus features (i.e., whether a sound occurred
522 during a production or a perception trial).

523 To directly compare phonological feature representations during perception and
524 production, we used variance partitioning techniques to omit or include specific stimulus
525 features in our model. In this way, the stimulus matrix serves as a hypothesis about
526 what stimulus characteristics will be important in modeling the neural response. Adding
527 or removing individual stimulus characteristics and observing differences (or lack
528 thereof) in model performance serves as a causal technique for assessing the
529 importance of a stimulus characteristic to the variance of an electrode's response
530 (Ivanova et al., 2021). In the base model, we included 14 phonological features and 4
531 task-related features. We first expanded the specificity of phonological feature tuning in
532 our stimulus matrix by separating the phonological feature space into whether the
533 phonemes in question occurred during perception or production (called the "task-
534 specific" model). If phonological feature tuning differed during speech production, model
535 performance should increase when modeling perceived vs. produced phonological
536 features separately. However, we saw no significant increase in model performance
537 when expanding the model in this way (Figure 5F, pink points). Despite no gross
538 difference in model performance, inspection of individual electrodes' receptive fields
539 shows a suppression in the weights for production-specific phonological feature tuning
540 (Figure 5E, far right). Still, this difference was not statistically significant, thus favoring
541 the simpler "base" model ($\text{EMM}_{\text{base}} - \text{task-specific phnfeat } \Delta r = -0.002, p = 0.12, d = -0.05$).
542 Removal of the playback consistency information from the task-specific portion of the
543 stimulus matrix similarly does affect model performance; however, the effect is

544 quantitatively weak (EMM_{base} - omit consistent/inconsistent $\Delta r = 0.01$, $p < .001$, $d = 0.02$). On the
545 other hand, removing information about the contrast of perception and production trials
546 entirely from the model more drastically impairs model performance (EMM_{base} - omit
547 perception/production $\Delta r = 0.07$, $p < .001$, $d = .93$). Upon inspection, the regions exhibiting the
548 largest decline in encoding performance with the omission of the perception-production
549 contrast are frontal production-responsive regions and temporal onset suppression
550 regions, whereas insular electrodes did not see as steep a decline in performance. This
551 suggests that differences in encoding during speech production and perception are the
552 primary explanation of variance in our models. Ultimately, despite onset suppression
553 seen during speech production, higher-order linguistic representations such as
554 phonological features appear to be stable during speech perception and production.
555

556
557
558
559
560
561
562

Figure 5. Phonological feature tuning is stable during speaking and listening across brain regions.
 (A) Regression schematic. Fourteen phonological features corresponding to place of articulation, manner of articulation, and presence of voicing alongside four features encoding task-specific information (i.e., whether a phoneme took place during a speaking or listening trial, the playback condition during the phoneme) were binarized sample-by-sample to form a stimulus matrix for use in temporal receptive field modeling.

563 (B) Model performance as measured by the linear correlation coefficient (r) between the model's
564 prediction of the held-out sEEG and the actual response plotted at an individual electrode level on an
565 inflated template brain; dark gray indicates sulci while light gray indicates gyri. Example electrodes from
566 (D) and (E) are indicated.
567 (C) Model performance by region of interest. Color corresponds to gross anatomical region.
568 (D) Temporal receptive fields of two example electrodes in temporal and insular cortex.
569 (E) Temporal receptive fields of an example electrode for the four models presented in (F).
570 (F) Scatter plot of channel-by-channel linear correlation coefficients (r) colored by model comparison. The
571 X-axis shows performance for the "base" model whose schematic is presented in (A). The Y-axis for each
572 scatterplot shows performance for a modified version of the base model: task features encoding
573 production and perception were removed from the model (yellow); task features encoding consistent and
574 inconsistent playback conditions were removed from the model (cyan); phonological features were
575 separated into production-specific, perception-specific, and combined spaces (magenta).
576 Abbreviations: HG: Heschl's gyrus; PT: planum temporale; STG/S: superior temporal gyrus/sulcus;
577 MTG/S: middle temporal gyrus/sulcus; PreCG/S: precentral gyrus/sulcus; CS: central sulcus; SFG/S:
578 superior frontal gyrus/sulcus; MFG/S: middle frontal gyrus/sulcus; IFG/S: inferior frontal gyrus/sulcus;
579 OFC: orbitofrontal cortex; SPL: superior parietal lobule; PostCG: postcentral gyrus; Ant./Post./Sup./Inf.
580 Ins.: anterior/posterior/superior/inferior insula.

581
582 Taken together, these results provide an expanded perspective on how auditory
583 areas of the brain differentially process sensory information during speech production
584 and perception. Transient responses to acoustic onsets in primary and higher order
585 auditory areas are suppressed during speech production, whereas responses of these
586 regions not at acoustic onset remain relatively stable between perception and
587 production. This onset suppression can be seen in the neural time series and is also
588 reflected in the encoding of linguistic information in temporal receptive field models. It is
589 thus possible that the onset response functions as a stimulus orientation mechanism
590 rather than a higher-order aspect of the perceptual system such as phonological
591 encoding. While expectations about the linguistic content of upcoming auditory playback
592 can influence response profiles, the mechanism appears separate from the suppression
593 of onset responses and is a relatively weak effect by comparison. Lastly, these results
594 provide a unique perspective on the role of the posterior insula during speaking and
595 listening, characterized by its rapid responses to speech production and perception
596 stimuli and phonological tuning without the suppression observed during speech
597 production in nearby temporal areas.

598

599 Discussion

600 We used a sentence reading and playback task that allowed us to compare
601 mechanisms of auditory perception and production while controlling for stimulus
602 acoustics. The primary objective was to assess spatiotemporal differences in previously
603 identified onset and sustained response profiles in the auditory cortex (Hamilton et al.,
604 2018) and phonological feature encoding (Mesgarani et al., 2014) during speech
605 production. Using sEEG has the distinct advantage of penetrating into deeper structures
606 inside the Sylvian fissure, such as the insula and Heschl's gyrus (Chang, 2015). In
607 temporal cortex, proximal to where onset responses have been previously identified
608 using surface electrocorticography (Hamilton et al., 2018), we observed a selective
609 suppression of transient responses to sentence onset during speech production,
610 whereas sustained responses remained relatively unchanged between speech
611 perception and production. The timing of the suppressed onset responses is roughly

aligned with scalp-based studies of speaker-induced suppression that posit early components (N1 for EEG, M1 for MEG) as biomarkers of speaker-induced suppression (Hawco et al., 2009; Heinks-Maldonado et al., 2006; Kurteff et al., 2023; Martikainen et al., 2005). While we do not claim the onset responses observed in our study and others to be equivalent to N/M100, there is a parallel to be drawn between the temporal characteristics of our suppressed cortical activity and the deep literature on suppression of these components during speech production in noninvasive studies. In the original onset and sustained response profile paper (Hamilton et al., 2018), the authors theorized that onset responses may serve a role as an auditory cue detection mechanism based on their utility to detect phrase and sentence boundaries in a decoder framework. Novel stimulus orienting responses have been localized to middle and superior temporal gyrus, which overlaps with the functional region of interest for onset responses (Friedman et al., 2009). These findings are in line with the absence of onset responses during speech production, as auditory orientation mechanisms during speech perception are not necessary to the same extent during speech production due to the presence of a robust forward model of upcoming sensory information (i.e., efference copy) generated as part of the speech planning process (Houde & Chang, 2015; Tourville & Guenther, 2011). A notable difference between the original reporting of onset and sustained response profiles in Hamilton et al., 2018 and the current study is that many of the electrodes reported in our analysis showed a mixture of onset and sustained response profiles, whereas the original paper posits a more stark contrast in the response profiles. This could be due to differences in coverage between the sEEG depth electrodes used here and the pial ECoG grids used in the original study, as the onset response profile was reported to be localized to a relatively small portion of dorsal-posterior STG. Many of onset electrodes were recorded from within STS or other parts of STG; therefore, the activity recorded at those electrodes may represent a mixture of onset and sustained response, which explains why both would show up in the averaged waveform. Mixed onset-and-sustained responses have been previously reported primarily in HG/PT in a study using ECoG grids covering the temporal plane (Hamilton et al., 2021); our use of sEEG depths may be providing greater coverage of these intra-Sylvian structures. Alternatively, the mixed onset-sustained responses we see in our data may be a mixture of the onset region with the posterior subset of sustained electrodes reported in the original paper. We did observe solely onset-responsive and solely sustained-responsive electrodes (in line with the original paper), but a majority of the onset suppression response profile described in this study consisted of a mixture of onset and sustained responses at the single electrode level. Responses to the inter-trial click tone observed at some electrodes are another example of pure onset response electrodes in these data.

The suppression of onset responses in temporal cortex did not impact the structure of phonological feature representations for these electrodes. Phonological feature tuning has been demonstrated previously during speech production, but the analysis focused primarily on motor cortex and not a direct comparison to the representations present in temporal cortex during speech perception (Cheung et al., 2016). In the present study, an encoding model capable of differentially encoding phonological features during speech perception and production did not outperform a model only capable of encoding phonological features identically during perception and

658 production, demonstrating that differences in encoding performance during speech
659 production are not due to changes in the phonological feature tuning of individual
660 electrodes. In other words, an electrode that encodes plosive voiced obstruents (like /b/,
661 /g/, /d/) during speech perception will still encode plosive voiced obstruents during
662 speaker-induced suppression, but the amplitude of the response is reduced during
663 speaking. This is consistent with similar research in scalp EEG conducted by our group
664 (Kurteff et al., 2023) and supports the confinement of cortical suppression during
665 speech production strictly to lower-level sensory components of the auditory system.
666 This is also in line with previous literature showing the degree of suppression observed
667 at an individual utterance is dependent on that utterance's adherence to a sensory goal
668 (Nizolek et al., 2013).

669 In our analysis, the posterior insula served as a unique functional region in
670 processing auditory feedback during speech production and perception. Unlike temporal
671 cortex, onset responses were not suppressed during speech production in posterior
672 insula; the region instead exhibited “dual onset” responses during speech production
673 and perception. A large portion of the research on the human insula’s involvement in
674 speech and language comes from lesion and functional imaging studies that posit a
675 preparatory motor role for the insula in speech (Ackermann & Riecker, 2004; Dronkers,
676 1996; Mandelli et al., 2014). However, these studies prescribe this role to the anterior
677 insula, whereas our findings are constrained to posterior insula, and the insula is far
678 from anatomically or functionally homogenous (Kurth et al., 2010; Quabs et al., 2022;
679 Zhang et al., 2018). A meta-analysis of the functional role of human insula parcellated
680 the lobe into four primary zones: social-emotional, cognitive, sensorimotor, and
681 olfactory-gustatory (Kurth et al., 2010). As speech production involves sensorimotor and
682 cognitive processes, even speech cannot be constrained to one functional region of the
683 insula. Cytoarchitectonically, the human insula consists of eleven distinct regions which
684 can be grossly clustered into three zones: a dorsal-posterior granular-dysgranular zone,
685 a ventral-middle-posterior agranular-dysgranular zone, and a dorsal-anterior granular
686 zone (Quabs et al., 2022). Based on the general organizational principles of these
687 articles, the dual onset responses we observed in the posterior insula overlap with
688 functional regions of interest for somatosensory, motor, speech, and interoceptive
689 function, and with the dorsal-posterior and ventral-middle-posterior cytoarchitectonic
690 zones. The posterior insula responses we report in this study are purely post-
691 articulatory, indicating a role in auditory feedback monitoring rather than a preparatory
692 motor role. This is corroborated by a recent study that identified an auditory region in
693 dorsal-posterior insula through intraoperative electrocortical stimulation (Zhang et al.,
694 2018), whereby stimulation to posterior insula resulted in auditory hallucinations.
695 Several studies using animal models, including nonhuman primates, have also identified
696 an auditory field in the posterior insula (Linke & Schwegler, 2000; Remedios et al.,
697 2009; Rodgers et al., 2008). While this insular auditory field does receive input from
698 primary and secondary auditory areas, it also receives direct parallel input from the
699 auditory thalamus, evidenced in part by pure-tone responses in the insular auditory field
700 sometimes having a lower response latency than the primary auditory cortex (Jankowski
701 et al., 2023; Sawatari et al., 2011; Takemoto et al., 2014). Our own results parallel
702 animal models, as we observed faster (or equivalently fast) responses to auditory
703 playback stimuli in the posterior insula compared to primary (HG, PT) and higher order

704 (STG, STS) auditory areas. Thus, this study corroborates parallel auditory pathways
705 between auditory cortex and posterior insula but in the human brain and with more
706 complex auditory stimuli than pure tones. We also expand upon animal models by
707 showing responses to auditory feedback in insula are also present during speech
708 production.

709 While posterior insula and HG are neighboring anatomical structures, we do not
710 believe our posterior insula responses to be simply miscategorized HG activity due to
711 the distinction between how HG and posterior insula respectively suppress or do not
712 suppress auditory feedback during speech production. This is corroborated by the
713 functional separation of cluster weights in our cNMF analysis between “onset
714 suppression” and “dual onset” electrodes, alongside the fact that the high gamma LFP
715 we report on has lower spatial spread than other frequency bands (Muller et al., 2016).
716 Our data are by no means the first to report *in vivo* recordings of the human insula’s
717 responses to speech perception and production: Woolnough et al., 2019 also reported
718 post-articulatory activity in the human insula during speech production and perception.
719 Our insular results are distinct from this study in several ways. First, the authors
720 dichotomize the posterior insula with STG, reporting that posterior insula is more active
721 for self-generated speech “opposite of STG.” However, our dual onset response
722 electrodes in the posterior insula are equivalently responsive to speech perception and
723 production stimuli, with only a small non-significant preference for speech production.
724 Second, the responses reported in this paper differ in magnitude between STG and the
725 posterior insula, with task-evoked activity in STG increasing ~200% in broadband
726 gamma activity from baseline, while posterior insula showed only ~50% increase in
727 activity from baseline. In our results, temporal and insular evoked activity are similar in
728 magnitude. Third, the authors used separate tasks with distinct stimuli to compare
729 perception and production, while we generated perceptual stimuli from individual
730 participants’ own utterances, allowing us to control for temporal and spectral
731 characteristics of the stimuli and more directly compare speech perception with
732 production within the posterior insula for the same stimulus. We interpret the posterior
733 insula’s role in speech production as a hub for integrating the multiple modalities of
734 sensory feedback (e.g., auditory, tactile, proprioceptive) available during speech
735 production for the purposes of speech monitoring, based in part on previous work
736 establishing the insula’s role in multisensory integration (Kurth et al., 2010). Diffusion
737 tensor imaging reveals that the posterior insula in particular is characterized by strong
738 connectivity to auditory, sensorimotor, and visual cortices, supporting such a role
739 (Zhang et al., 2018). Our research motivates further investigation of the role of the
740 posterior insula in feedback control of speech production.

741 While the primary focus of this study was to describe differences in auditory
742 feedback processing during perception and production, we were motivated to include a
743 consistency manipulation within our speech perception condition by several findings.
744 Behaviorally, participants’ habituation to the task can affect results: inconsistent
745 perturbations of feedback during a feedback perturbation task elicit larger corrective
746 responses than consistent, expected perturbations (Lester-Smith et al., 2020). The
747 importance of predicting upcoming sensory consequences is visible in the neural data
748 as well: unpredicted auditory stimuli result in suppression of scalp EEG components for
749 self-generated speech in pitch perturbation studies (Scheerer & Jones, 2014) as well as

750 the speech of others in a turn-taking sentence production task (Goregliad Fjaellingsdal
751 et al., 2020). We sought to delineate whether onset responses were an important
752 component of specifically speech perception or involved in a more general predictive
753 processing system. While we did observe that presenting auditory playback in a
754 randomized, inconsistent fashion resulted in a greater response amplitude for some
755 onset suppression electrodes in auditory cortex, this finding did not hold true for most
756 onset suppression electrodes in our data. This leads us to believe that the suppression
757 of onset responses is not a byproduct of general expectancy mechanisms modulating
758 the speech perception system, but rather a dedicated component of auditory processing
759 for orienting to novel stimuli. Cortical suppression of self-generated sounds is likely a
760 fundamental component of the sensorimotor system, as neural responses to tones
761 paired with non-speech movements are attenuated relative to unpaired tones in mice
762 and in humans (Martikainen et al., 2005; Schneider et al., 2018). With cNMF, we
763 identified a cluster in ventral sensorimotor cortex that was more active for speech
764 production, but within the consistent/inconsistent playback split, preferred consistent
765 playback. We interpret this response profile as indicative of feedback enhancement for
766 the purposes of speech motor control during speech production. This playback
767 consistency manipulation was also included in a recently published EEG version of this
768 task (Kurteff et al., 2023), but the results of the manipulation were inconclusive. In that
769 EEG study, however, we did see cortical suppression at sentence onset, so perhaps the
770 lack of a result for the consistency manipulation is a mixture of the relatively smaller
771 effect size of the consistency manipulation and the lower signal-to-noise ratio of scalp
772 EEG recordings in comparison to intracranial EEG.

773 Because our dataset uses sEEG depth electrodes, we were able to record from a
774 wide array of cortical and subcortical areas impractical to cover with ECoG grids. As a
775 result, there were several interesting trends observed within single subjects that were
776 not robust enough to report upon earlier but do warrant a more speculative discussion.
777 Occipital coverage was generally limited for this study, but one subject (DC7) had three
778 electrodes in the right lateral occipital cortex that strongly preferentially responded to
779 speech production trials and to click responses (DC7 PT-MT15 $p_{\text{production}} = 0.01$; $p_{\text{perception}} = 0.9$). We identified this area using our unsupervised clustering analysis: cNMF
780 identified a cluster selective to clicks and speech production localized to the occipital
781 lobe (Figure S3, cluster 6). We interpret this as a byproduct of our task design, as text
782 was displayed during speech production trials (the sentence to be read aloud) but not
783 during perception trials. The between-peak duration of the bimodal click response
784 observed in the cNMF cluster is ~1000 msec, which corresponds with the amount of
785 time a fixation cross was displayed at the beginning of each trial (see STAR Methods).
786 Based on this information, we conclude these occipital electrodes for DC7 are encoding
787 visual scene changes between fixation cross and text display, but we advise caution in
788 generalizing this to a functional localization as we only observed this trend in a single
789 subject. In a separate single subject (DC5), we observed electrodes in the right inferior
790 frontal sulcus (just dorsal of pars triangularis of the inferior frontal gyrus) that responded
791 selectively to speech perception and inter-trial click tones (DC5 AMF-AI4 $p_{\text{production}} = 0.31$; $p_{\text{perception}} < .001$). Unlike onset suppression electrodes in auditory cortex, these
792 electrodes were silent during speech production for onset and sustained responses.
793 The amplitude of production responses increased as the depth progressed laterally
794

796 towards pars triangularis, but the final electrode of the depth still had a (barely) non-
797 significant response to speech production trials (DC5 AMF-A18 $p_{\text{production}} = 0.06$; $p_{\text{perception}} = 0.45$). Unlike the occipital electrodes described above, the inferior frontal perception-selective electrodes of DC5 did not emerge as a functional region in our unsupervised clustering analysis and were interspersed with other perception-selective electrodes from other subjects localized to PT and HG (Figure S3, cluster 7). While the convention of inferior frontal cortex being monolithically a speech production region is increasingly being challenged in contemporary research (Fedorenko & Blank, 2020; Flinker et al., 2015; Hickok et al., 2023; Tremblay & Dick, 2016), the confinement of our perception-selective electrodes in this region to a single subject gives us hesitation to weigh in on this topic.

807 Overall, this project gives clarity to both the differential processing of the auditory system during speech production and the functional role of onset responses as a temporal landmark detection mechanism through high-resolution intracranial recordings of a naturalistic speech production and perception task. To be specific, the suppression of onset responses during speech production lends to the hypothesis that onset responses are an orientational mechanism. Feedforward expectations about upcoming sensory feedback during speech production would nullify the need for temporal landmark detection to the same extent necessary during speech perception, where expectations about incoming sensory content are much less precise. This raises questions about the function of onset responses in populations with disordered feedforward/feedback control systems, such as apraxia of speech (Jacks & Haley, 2015), schizophrenia (Heinks-Maldonado et al., 2007), and stuttering (Max & Daliri, 2019; Toyomura et al., 2020). The presence or absence of onset responses having no effect on the structure of phonological feature representations also supports this hypothesis, as linguistic abstraction is a higher-level perceptual mechanism that need not be implicated in lower-level processing of the auditory system. In future studies, we would like to further investigate the role of onset responses in less typical speech production. Just as self-generated speech is less suppressed during errors (Ozker et al., 2022, 2024) and less canonical utterances (Niziolek et al., 2013), the landmark detection services of the onset response may be more necessary in these contexts, leading to a reduced suppression of the onset response. Future research should also aim to better dissociate onset responses from expectancy effects observed in feedback perturbation tasks, which are similar in terms of spatial and temporal profile to onset responses in our data due to the limitations of naturalistic study design, yet we speculate mechanistically different than onset responses. Our findings support a functional network between the lateral temporal lobe, insula, and motor cortex to support natural communication. The differential responses of the speech-regions of STG and insula support the role of the posterior insula in auditory feedback control during speaking.

836
837

Acknowledgements

838 The authors would like to thank the patients at Dell Children's Medical Center, Texas
839 Children's Medical Center, and Dell Seton Medical Center for volunteering time during
840 their hospital stay to participate in this research. We thank the members of the clinical
841 team at Dell Children's that assisted in data collection and/or patient referral: Timothy

842 George, MD; Winson Ho, MD; Nancy Nussbaum, PhD; Rosario DeLeon, PhD; William
843 Andy Schraegle, PhD; Fred Perkins, MD; Karen Keough, MD; Aaron Cardon, MD;
844 Karen Skjei, MD; Teresa Ontiveros, RN, MSN; Cassidy Wink, RN; and Bethany
845 Hepokoski, RN. We thank Maansi Desai, PhD for her assistance with data collection
846 and manuscript edits. Lastly, we thank Stephanie Ries, PhD; Maya Henry, PhD, CCC-
847 SLP; Rosemary A. Lester-Smith PhD, CCC-SLP; and Jun Wang, PhD for their feedback
848 on early manuscript drafts. Funding was provided by the National Institutes of Health
849 National Institute on Deafness and Other Communication Disorders (1R01-DC018579,
850 to L.S.H.) and by a William Orr Dingwall Foundation Dissertation Fellowship (to G.L.K.).
851

852 **Author contributions**

853 Conceptualization: G.L.K., L.S.H.; methodology: G.L.K., L.S.H.; software: G.L.K.,
854 L.S.H.; formal analysis: G.L.K., L.S.H.; investigation: all authors; data curation: G.L.K.,
855 S.A., A.F., and L.S.H.; writing – original draft: G.L.K., L.S.H.; writing – review and
856 editing: all authors; visualization: G.L.K., L.S.H.; supervision: G.L.K., L.S.H.; project
857 administration: G.L.K., L.S.H.; funding acquisition: L.S.H.
858

859 **Declaration of interests**

860 The authors declare no competing interests.
861

862 **STAR Methods**

863 **Key resources table**

864

865

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Software and algorithms		
Python 3.9.7	python.org	N/A
MNE 1.1.1	Gramfort et al. (Gramfort et al., 2013)	https://doi.org/10.1016/j.neuroimage.2013.10.027
MATLAB r2021b	mathworks.com	N/A
R 4.2.1	r-project.org	N/A
Custom code and data	This paper	GitHub for code: https://github.com/HamiltonLabUT/kurteff2024_code Data will be made available through contact to the lead author
Imaging pipeline for stereotactic localization of electrodes	Hamilton et al. (Hamilton et al., 2017)	https://doi.org/10.3389/fninf.2017.00062
Browser-based electrode viewer	This paper	https://hamiltonlabut.github.io/kurteff2024/
Other		
Human patient participants recruited from Dell Children's Medical Center, Dell Seton Medical Center, and Texas Children's Hospital (see Table S1)	This paper	N/A

866

867 **Resource availability**

868 Lead contact

869 Further information and requests for resources and reagents should be directed to and
870 will be fulfilled by the lead contact, Liberty S. Hamilton
871 (liberty.hamilton@austin.utexas.edu).

872

873 Materials availability

874 This study did not generate new unique reagents.

875

876 Data and code availability

- 877 • The neural data reported in this study cannot be deposited in a public repository
878 because they could compromise research participant privacy and consent. To
879 request access, contact the lead contact.
- 880 • All original code has been deposited at GitHub and is publicly available as of the
881 date of publication. URLs are listed in the key resources table.
- 882 • Any additional information required to reanalyze the data reported in this paper is
883 available from the lead contact upon request.

884

885 **Experimental model and subject details**

886 17 individuals (sex: 9F; age: 16.6 ± 6.4 , range 8-37; race/ethnicity: 8 Hispanic/Latino, 6
887 White, 1 Asian, 2 multi-racial) undergoing intracranial monitoring of seizure activity via
888 stereoelectroencephalography (sEEG) for medically intractable epilepsy were recruited
889 from three hospitals: Dell Children's Medical Center in Austin, Texas ($n = 13$); Texas
890 Children's Hospital in Houston ($n = 3$), Texas; and Dell Seton Medical Center in Austin,
891 Texas ($n = 1$). Demographic and relevant clinical information is provided in Table S1.
892 Participants (and for minors, their guardians) received informed consent and provided
893 written consent for participation in the study. All experimental procedures were
894 approved by the Institutional Review Board at the University of Texas at Austin.

895

896 **Method details**

897 Neural data acquisition

898 Intracranial sEEG and ECoG data from a total of 2044 electrodes across subjects were
899 recorded continuously via the epilepsy monitoring teams using a Natus Quantum
900 headbox (Natus Medical Incorporated, San Carlos, CA, USA). At Texas Children's
901 Hospital, sEEG depths (AdTech Spencer Probe Depth electrodes, 5mm spacing,
902 0.86mm diameter, 4-16 contacts per device), strip electrodes (AdTech) and grids
903 (AdTech custom order, 5mm spacing, 8x8 contacts per device) were implanted in the
904 brain by the neurosurgeon in brain areas that are determined via clinical need. At Dell
905 Children's Medical Center and Dell Seton Medical Center, sEEG depths (PMT
906 Depthalon, 0.8mm diameter, 3.5mm spacing, 4-16 contacts per device) were used. A
907 TDT S-Box splitter was used at Dell Children's Medical Center to connect the data
908 stream to a TDT PZ5 amplifier, which then recorded the local field potential from the
909 sEEG electrodes onto a research computer running TDT Synapse via a TDT RZ2 digital
910 signal processor (Tucker Davis Technologies, Alachua, FL, USA). Speaker (perceived)
911 and microphone (produced) audio were also recorded via RZ2 at 22 kHz to circumvent

912 downsampling of audio by the clinical recording system. At the other two recording
913 locations, use of a dedicated research recording system was not possible due to clinical
914 constraints; instead, the auditory stimuli from the iPad were recorded directly on the
915 clinical system using an audio splitter cable. Simultaneous high-resolution audio was
916 recorded for both speaking and playback using an external microphone and a second
917 splitter cable from the iPad both plugged into a MOTU M4 USB audio interface (MOTU,
918 Cambridge, MA, USA) plugged into the research computer running Audacity recording
919 software. After the recording session, a match filter was used to synchronize high-
920 resolution audio from the external recording system to the neural data recorded on the
921 clinical system (Turin, 1960). Intracranial data were recorded at 3 kHz and
922 downsampled to 512 Hz before analysis for all sites.
923

924 Data preprocessing

925 Data were preprocessed offline using a combination of custom MATLAB scripts and
926 custom Python scripts built off the MNE-python software package (Gramfort et al.,
927 2013). First, data were notch filtered at 60/120/180 Hz to remove line noise, then bad
928 channels were manually inspected and rejected. Next, a common average reference
929 was applied across all non-bad channels. The high gamma analytic amplitude response
930 (Lachaux et al., 2012), which has been shown to strongly correlate with speech (Kunii et
931 al., 2013) and serves as a proxy for multi-unit neuronal firing (Ray & Maunsell, 2011),
932 was extracted via Hilbert transform (8 bands, log spaced, Gaussian kernel, 70-150 Hz).
933 Lastly, the 8-band Hilbert transform response was Z-scored relative to the mean activity
934 of the individual recording block. All preprocessing and subsequent analyses were
935 performed on a research computer with the following specifications: Ubuntu 20.04, AMD
936 Ryzen 7 3700X, 64GB DDR4 RAM, Nvidia RTX 2060.
937

938 Electrode localization

939 Electrodes' locations were registered in the three-dimensional Montreal Neurological
940 Institute (MNI) coordinate space (Evans et al., 1993). Electrodes were localized through
941 coregistration of an individual subject's T1 MRI scan with their CT scan using the
942 Python package img_pipe (Hamilton et al., 2017). Three-dimensional reconstructions of
943 the pial surface were created using an individual subject's T1 MRI scan in Freesurfer
944 and anatomical regions of interest for each electrode were labeled using the Destrieux
945 parcellation atlas (Dale et al., 1999; Destrieux et al., 2010). These reconstructions were
946 then inflated for better visualization of intra-Sylvian structures such as the insula and
947 Heschl's gyrus via Freesurfer. To visualize electrodes on the new inflated mesh,
948 electrodes were projected to the surface vertices of the inflated mesh, which maintained
949 the same number of vertices as the default pial reconstruction. To preserve electrode
950 location using inflated visualization, each electrode was projected to a mesh of its
951 individual Freesurfer ROI before projection to inflated space. Additionally, any depth
952 electrodes greater than 4 millimeters from the cortical surface ($n = 691$) were not
953 visualized on inflated surfaces due to a previously identified spatial falloff in high gamma
954 frequency bands for electrodes greater than 4 millimeters apart from each other (Muller
955 et al., 2016). Electrodes greater than 4 millimeters from the cortical surface, while
956 excluded from visualization, were included in analyses if they contained a robust
957 response ($p < 0.05$ for bootstrap procedure, $r \geq 0.1$ for TRF modeling) to any task

958 stimuli. To visualize electrodes across subjects, electrodes were nonlinearly warped to
959 the cvs_avg35_inMNI152 template reconstruction (Dale et al., 1999) using procedures
960 detailed in (Hamilton et al., 2017). While nonlinear warping ensures individual
961 electrodes remain in the same anatomical region of interest as they were in native
962 space, it does not preserve the geometry of individual devices (depth electrodes or
963 grids). For inflated visualization in warped space, an identical ROI-mesh-to-inflated-
964 surface projection method as described above was utilized, but the ROI and inflated
965 meshes were generated from the template brain instead. Anatomical regions of interest
966 were always derived from the electrodes in the original participant's native space.
967

968 Overt reading and playback task

969 *Stimuli and procedure*

970 The task was designed using a dual perception-production block paradigm, where trials
971 consisted of a dyad of sentence production followed by sentence perception. Both
972 perception and production trials were preceded by a fixation cross and broadband click
973 tone (Figure 1A). Production trials consisted of participants overtly reading a sentence,
974 then the trial dyad was completed by participants listening to a recording of themselves
975 reading that produced sentence. Playback of this recording was divided into two blocks
976 of consistent and inconsistent perceptual stimuli: consistent playback matched the
977 immediately preceding production trial, while inconsistent playback stimuli were instead
978 randomly selected from the previous block's production trials. The generation of
979 perception trials from the production aspect of the task allowed stimulus acoustics to be
980 functionally identical across conditions.

981 Sentences were taken from the MultiCHannel Articulatory (MOCHA) database, a
982 corpus of 460 sentences that include a wide distribution of phonemes and phonological
983 processes typically found in spoken English (Wrench, 1999). A subset of 100 sentences
984 from MOCHA were chosen at random for the stimuli in the present study; however,
985 before random selection, 61 sentences were manually removed for either containing
986 offensive semantic content or being difficult for an average reader to produce to reduce
987 extraneous cognitive effects and error production, respectively. This task is identical to
988 the one used in (Kurteff et al., 2023); see that paper for an analysis of this task in
989 noninvasive scalp EEG.

990 For this study, a modified version of the task optimized for participants with a
991 lower reading level was created so that pediatric participants could perform the task as
992 close to errorless as possible. This version took the randomly selected MOCHA
993 sentences from the main task and shortened the length and utilized higher-frequency
994 vocabulary that still encompassed the range of phonemes and phonological processes
995 found in the initial dataset. Seven of the seventeen participants (TC1, TC3, DC10,
996 DC12, DC13, DC16, DC17) completed the easy-reading version of the task.

997 Participants completed the task in blocks of 20 sentences (25 sentences for the easy-
998 reading version) produced and subsequently perceived for a total of 40 (50) trials per
999 block. Participants produced (and listened to subsequent playback of) an average of
1000 142 ± 61 trials. A broadband click tone was played in between trials.

1001 Stimuli were presented in the participant's hospital room on Apple iPad Air 2
1002 using custom interactive software developed in Swift (Apple). Auditory stimuli were
1003 presented at a comfortable listening level via external speakers. Insert earbuds and/or

1004 other methods of sound attenuation (e.g., soundproofing) were not possible given the
1005 clinical constraints of the participant population. Visual stimuli were presented in a white
1006 font on a black background after a 1000 msec fixation cross. Accurate stimulus
1007 presentation timing was controlled by synchronizing events to the refresh rate of the
1008 screen. The iPad was placed on an overbed table and trials were advanced by the
1009 researcher using a Bluetooth keyboard. Participants were instructed to complete the
1010 task at a comfortable pace and were familiarized with the task before recording began.
1011 Timing information was collected by an automatically generated log file to assist in data
1012 processing.

1013

1014 *Electrode selection*

1015 As mentioned above, electrodes >4 millimeters from the cortical surface were
1016 automatically excluded from visualization. However, electrodes identified as outside the
1017 brain or its pial surface via manual inspection of the subject's native imaging were
1018 excluded from all analyses. Electrodes in a ventricle or in a lesion were excluded using
1019 the same method. Adjacent electrodes that displayed a similar response profile to
1020 outside-brain electrodes were also excluded; conversely, electrodes on the lateral end
1021 of a device that displayed a markedly different response profile than medially adjacent
1022 electrodes were determined to be outside the brain and thus excluded. As an additional
1023 measure of manual artifact rejection, channels that displayed high trial-to-trial variability
1024 were excluded from analysis. Lastly, while data were common average referenced in
1025 analysis, the data were re-preprocessed using a bipolar reference and any electrodes
1026 with a markedly different response when the referencing method was changed were
1027 excluded from analysis. All electrodes rejected through manual inspection of imaging
1028 were discussed and agreed upon by three of the authors (GLK, AF, LSH). Electrodes
1029 above the significance threshold ($p > 0.05$) for both perception and production, as
1030 determined by bootstrap procedure described below, were excluded from cNMF
1031 clustering if the electrode also had a low correlation during the mTRF modeling
1032 procedure ($r < 0.1$). In other words: electrodes without a significant perception or
1033 production response to sentence onset nor a moderate performance during mTRF
1034 model fitting were excluded from cNMF.

1035

1036 Speech motor control task

1037 *Stimuli and procedure*

1038 A subset of six participants (TC6, DC7, DC10, DC13, DC16, DC17) completed a
1039 supplementary task with the goal of obtaining nonspeech oral motor movements to use
1040 as a control comparison for any electrodes that were production-selective to determine
1041 if they were speech-specific or not. Stimuli for this task consisted of written instructions
1042 accompanying a "go" signal on the iPad screen to prompt the participant to follow the
1043 instructions. The nine possible instructions, presented in a random order, were: "smile,"
1044 "puff your cheeks," "open and close your mouth," "stick your tongue out," "move your
1045 tongue left and right," "tongue up (tongue to nose)," "tongue down (tongue to chin)," and
1046 "say 'aaaa,'" "say 'oo-ee-oo-ee.'" These instructions were chosen as a subset of
1047 movements evaluated during typical oral mechanism exams conducted by speech-
1048 language pathologists (St. Louis & Ruscello, 1981). Each movement was repeated 3
1049 times.

1050

1051 *ERP analysis*

1052 For the nonspeech oral motor control task, except for the last two instructions (say “aa”
1053 or “oo-ee-oo-ee”), oral motor movements did not include an acoustic component. Thus,
1054 instead of being epoched to the acoustic onset of the trial like the primary task,
1055 responses were instead epoched to the display of the instruction text before the “go”
1056 signal, which was accompanied by the same broadband click tone as the main task. A
1057 match filter, identical to the one described above used to align high-resolution task
1058 audio with clinical recordings, identified the timing of these clicks and assisted in
1059 generation of the event files.

1060

1061 **Quantification and statistical analysis**

1062 Event-related potential (ERP) analysis

1063 We annotated accurate timing information for words, phonemes, and sentences to
1064 epoch data to differing levels of linguistic representation. A modified version of the Penn
1065 Phonetics Forced Aligner (Yuan & Liberman, 2008) was used to automatically generate
1066 Praat TextGrids (Boersma & Weenink, 2013) using a transcript generated by the iPad
1067 log file. Automatically generated TextGrids were checked for accuracy by the first author
1068 (GLK). Event files containing start and stop times for each phoneme, word, and
1069 sentence, as well as information about trial type (perception vs. production), were
1070 created using the iPad log file and accuracy-checked TextGrids. These event files were
1071 then used to average Z-scored high gamma across trials relative to sentence onset. For
1072 both production and perception, the onset of the sentence was treated as the acoustic
1073 onset of the first phoneme in the sentence as identified from the spectrogram.
1074 Responses were epoched between -0.5 and +2.0 seconds relative to sentence onset,
1075 with the negative window of interest intending to capture any pre-articulatory activity
1076 related to speech production (Chartier et al., 2018).

1077 Electrode significance was determined by bootstrap *t*-test with 1000 iterations
1078 comparing activity during the stimulus to randomly selected inter-stimulus-interval
1079 activity; bootstrapped significance for perception and production activity were calculated
1080 separately as to identify electrodes that may be selectively responsive to either
1081 perceptual or production stimuli. For the bootstrap procedure, we averaged activity 5-
1082 550 milliseconds after sentence onset and compared that to average activity during a
1083 silent 400-600 milliseconds after the inter-trial click as a control. The control time
1084 window was selected as to not include potential evoked responses from the click sound
1085 but still be in the 1000 millisecond window between the click sound and stimulus
1086 presentation. A similar procedure was used to calculate significance for the consistent-
1087 inconsistent playback contrast (same time windows used). Bootstrap significance for the
1088 speech motor control task used activity 500-1000 milliseconds after the click sound
1089 played when text instructions were displayed to avoid including evoked responses to the
1090 click sound itself in the procedure. Because there were no inter-trial click sounds in the
1091 speech motor control task with the click instead marking the display of instructions,
1092 activity -500 to 0 milliseconds prior to the click sound was used as the control interval.

1093 In addition to suppression, we were interested to see how onset responses
1094 change between speaking and listening. To quantify the presence of an onset response
1095 at a particular electrode, we looked in the first 300 msec of response relative to

1096 sentence onset for activity >1.5 SD above the mean response for the electrode's activity
1097 epoched to sentence onset. The time window of the onset response was defined as the
1098 range of contiguous samples of activity >1.5 SD above the mean, with the peak
1099 amplitude of the onset response being the greatest activity within the onset
1100 window. Onset latency was calculated as the maximum rate of change (differential) in
1101 the rising slope of the onset response. While we required an onset response to begin in
1102 the first 300 msec of activity after sentence onset, we did not specify a time window in
1103 which one must end. Onset responses were quantified separately for the average
1104 production response and average perception response of each electrode. Electrodes
1105 that exhibited an onset response during speech perception and production were
1106 classified as "dual onset," while electrodes that exhibited an onset response during
1107 speech perception only were classified as "onset suppression."

1108

1109 Convex non-negative matrix factorization (cNMF)

1110 To uncover patterns of evoked activity for speech production, speech perception, and
1111 auditory (click) perception that were consistent across participants, we employed
1112 convex non-negative matrix factorization (cNMF, Figure 3, (Ding et al., 2010)). This is
1113 an unsupervised clustering technique that reveals underlying statistical structure of
1114 datasets and has previously been used by our research group to discover profiles of
1115 neural response without explicitly specifying the feature represented by the response
1116 nor the anatomical location of the electrodes (Hamilton et al., 2018, 2021). We use a
1117 similar approach to these papers, summarized by the following equations:

1118

$$1119 X \approx \hat{X} = FG^\top,$$

1120

$$1121 X_{p,n} \approx \frac{1}{t} \overbrace{\sum_{n=-1}^{n=2} H \gamma_{p,n}}^{n=2} = FG^\top,$$

1122

1123 where X is the high gamma time series of shape (n samples, p electrodes) averaged
1124 across t epochs, and $F = XW$, where W is a matrix of shape (p electrodes, k clusters)
1125 and represents the cluster weights applied to the neural time series, and G is a matrix of
1126 shape (p electrodes, k clusters) and represents the weighting of an individual electrode
1127 within a cluster. cNMF was applied using this method to a concatenation of Z-scored
1128 evoked responses across subjects to sentences. Epochs consisted of a temporal range
1129 of -1 to +2 seconds relative to sentence onset. Epochs t were averaged within their
1130 response type then concatenated; possible response types were production onset,
1131 perception (playback) onset, and inter-trial click onset. Our method of performing cNMF
1132 on averaged epochs across different types of trials has been utilized in prior intracranial
1133 studies of speech (Leonard et al., 2019). In a supplemental analysis, we concatenated
1134 additional epoch averages corresponding to presentation of visual cues (e.g., text prior
1135 to reading, fixation cross) and a subdivision of playback onsets into consistent and
1136 inconsistent playback, but these manipulations did not significantly alter the clusters
1137 observed. We concatenated ERPs based on the response to production onset,
1138 perception (playback) onset, and click onset. We also incorporated information about
1139 expected vs. unexpected playback as well as presentation of the visual cue in separate

1140 supplemental analyses, but these did not significantly alter the clusters observed. Our
1141 final concatenation resulted in a matrix X of $n*3$ samples (production epochs, perception
1142 epochs, click epochs) by p electrodes. The number of basis functions to include was
1143 determined by two primary factors: first, the identification of a threshold such that adding
1144 additional clusters resulted in diminishing increases in percent variance explained;
1145 second, identifying a point at which adding additional clusters resulted in redundant
1146 average responses across clusters. We calculated percent variance as the coefficient of
1147 determination (R^2 ; Wright, 1921). This threshold was reached at $k=9$ clusters and 86%
1148 of the variance in the data explained. The average response for each of the $k=9$ clusters
1149 is provided in Figure S3.

1150

1151 Suppression index (SI) calculation

1152 Within the sentence-onset epochs, a further window of interest was defined to calculate
1153 the degree of suppression between task conditions. The window of interest for onset
1154 responses was defined as 0 to 1 seconds after sentence onset. Window sizes were
1155 determined by previous research on onset and sustained responses (Hamilton et al.,
1156 2018) as well as preliminary results of the unsupervised clustering technique shown in
1157 Figure 3. The suppression index (SI), or degree of suppression during speaking as
1158 compared to listening, was quantified at each electrode as the ratio of high gamma
1159 activity between two separate conditions averaged across all epochs for the task
1160 condition occurring at that electrode. This is formalized as:

1161

$$SI = \frac{H\gamma_L - H\gamma_S}{H\gamma_L + H\gamma_S},$$

1162

1163

1164 where SI of electrode n is the difference of high gamma activity during speaking ($H\gamma_S$)
1165 subtracted from high gamma activity during listening ($H\gamma_L$) divided by the sum of high
1166 gamma activity during speaking and listening in the first 1 second after the acoustic
1167 onset of the sentence. A positive SI means that activity was greater during listening as
1168 compared to speaking, whereas a negative SI means activity was greater during
1169 speaking compared to listening. An SI of zero would reflect no difference between
1170 conditions.

1171

1172 Linear mixed-effects (LME) modeling

1173 Linear mixed-effects (LME) models were fit using the package *lmerTest* (Kuznetsova et
1174 al., 2017) in R at several points in analysis to quantify trends in the data. We chose LME
1175 as our statistical testing framework due to its ability to regress across within- and
1176 between-subject variability, facilitating generalization across subjects. The general
1177 equation takes the form:

1178

$$y = X\beta + Zu + \epsilon,$$

1179

1180

1181 where β represents fixed-effects parameters, u represents random effects, and ϵ error.
1182 The first LME reported in this paper was used to quantify differences between
1183 suppression observed in onset and sustained responses. Suppression index (see
1184 above) was used as the response variable with window of interest (two-way categorical:
1185 onset or sustained) and ROI as fixed effects and subject as a random effect (in R: $si \sim$

1186 window + roi + (1|subject)). S/I was calculated separately in the onset and sustained
1187 windows for this analysis, unlike the S/I calculation above: onset S/I was calculated
1188 between 0 and 750 milliseconds and sustained S/I was calculated between 1000 and
1189 1750 milliseconds after sentence onset. We chose these windows based on the
1190 average duration of the onset response across all electrodes and chose to make the
1191 sustained time window non-contiguous with the onset window to prevent extraneous
1192 activity from longer onset responses erroneously being factored as sustained activity in
1193 the model. We reported the contrast in estimated marginal mean (EMM) S/I of the two
1194 windows. We then used post-hoc Wilcoxon signed-rank tests with Benjamini-Yekutieli
1195 correction to calculate significant differences in S/I between the onset and sustained
1196 responses within each ROI (Benjamini & Yekutieli, 2001). The second LME reported in
1197 this paper was used to quantify response latency within three regions of interest:
1198 primary auditory (HG, PT), non-primary auditory (STG, STS), and posterior + inferior
1199 insula. Peak latency values for the onset response (described above) were used as the
1200 response variable with ROI (three-way categorical) as a fixed effect and subject as a
1201 random effect (in R: $\text{peak_latency} \sim \text{roi} + (1|\text{subject})$). We reported the EMM peak
1202 latencies of the three ROIs as well as their contrasts. The third LME reported in this
1203 paper was used to quantify the mTRF ablation analysis, a causal probing technique
1204 where specific stimulus features are added or removed from an encoding model and
1205 differences in performance are recorded (Ivanova et al., 2021). For this LME model, the
1206 linear correlation coefficients between $\widehat{H\gamma}$ and $H\gamma$ were used as the response variable
1207 with model features (i.e., full vs. ablated) as a fixed effect and subject and channel as a
1208 random effect (in R: $r \sim \text{model} + (1|\text{subject}) + (1|\text{channel})$). We chose to include channel
1209 as a random effect here as we did not have a specific hypothesis for anatomical
1210 differences in ablated model performance; additionally, including channel as a fixed
1211 effect instead would have resulted in an uninterpretable amount of pairwise
1212 comparisons and introduce multiple comparisons bias into our analysis. We reported
1213 the EMM r values of the four models (base, ablate perception/production contrast,
1214 ablate consistent/inconsistent contrast, task-specific phonological feature encoding) as
1215 well as their contrasts. Contrast significance for all LMEs is calculated using F tests with
1216 Kenward-Roger approximation with n degrees of freedom specified, where n is the
1217 length of matrix X (Kenward & Roger, 1997).

1218

1219 Multivariate temporal receptive field (mTRF) modeling

1220 Multivariate temporal receptive field (mTRF) models were fit to describe the selectivity
1221 of the high gamma response to different sets of stimulus features (Aertsen &
1222 Johannesma, 1981; Crosse et al., 2016; Di Liberto et al., 2015; Theunissen et al.,
1223 2000). These models take the form of the equation below:

1224

$$1225 \hat{y}_n(t) = \sum_f \sum_{\tau=-0.3}^{\tau=0.5} w(f, \tau) S(f, t - \tau) + \epsilon,$$

1226

1227 where $\hat{y}_n(t)$ represents the estimated high gamma signal at electrode n at time t . The
1228 stimulus matrix S consists of behavioral information regarding features (f) for each time
1229 point $t - \tau$, where τ is the time delay between the stimulus and neural activity. We fit

1230 separate models to predict the high gamma response in each channel using time delays
1231 of -0.3 sec to 0.5 sec. This delay range encompasses the temporal integration times to
1232 similar responses found in previous research (Hamilton et al., 2018), but with an added
1233 negative delay to encompass potential pre-articulatory neural activity (Chartier et al.,
1234 2018; Kurteff et al., 2023). Data were split 80-20 into training and validation sets. To
1235 avoid overfitting, the data were segmented along sentence boundaries, such that the
1236 training and validation sets would not contain information from the same sentence.
1237 These segments were then randomly combined into the 80/20 training/validation sets.
1238 Weights for each feature and time delay $w(f, \tau)$ were fit using ridge regression on the
1239 training set and a regularization parameter chosen by 10 bootstrap iterations. The ridge
1240 parameter was selected at the value that provided the highest average correlation
1241 performance across all bootstraps. Ridge parameters between 10^2 and 10^8 were tested
1242 in 20 logarithmically scaled intervals. Model performance was assessed using
1243 correlations between the high gamma response predicted by the model and the true
1244 high gamma response. Significance of these correlations was obtained through a
1245 bootstrap *t*-test procedure with 100 iterations in which the training data were shuffled in
1246 chunks to remove the relationship between the stimulus and response.

1247 **References**

1248

1249 Ackermann, H., & Riecker, A. (2004). The contribution of the insula to motor aspects of
1250 speech production: a review and a hypothesis. *Brain and Language*, 89(2), 320–
1251 328. [https://doi.org/10.1016/S0093-934X\(03\)00347-X](https://doi.org/10.1016/S0093-934X(03)00347-X)

1252 Aertsen, A. M., & Johannesma, P. I. (1981). The spectro-temporal receptive field. A
1253 functional characteristic of auditory neurons. *Biological Cybernetics*, 42(2), 133–
1254 143. <https://doi.org/10.1007/BF00336731>

1255 Appelbaum, I. (1996). The lack of invariance problem and the goal of speech
1256 perception. *Proceeding of Fourth International Conference on Spoken Language
1257 Processing. ICSLP '96*, 3, 1541–1544 vol.3.
1258 <https://doi.org/10.1109/ICSLP.1996.607912>

1259 Astheimer, L. B., & Sanders, L. D. (2011). Predictability affects early perceptual
1260 processing of word onsets in continuous speech. *Neuropsychologia*, 49(12),
1261 3512–3516. <https://doi.org/10.1016/j.neuropsychologia.2011.08.014>

1262 Behroozmand, R., & Larson, C. R. (2011). Error-dependent modulation of speech-
1263 induced auditory suppression for pitch-shifted voice feedback. *BMC
1264 Neuroscience*, 12, 54. <https://doi.org/10.1186/1471-2202-12-54>

1265 Bendixen, A., Scharinger, M., Strauß, A., & Obleser, J. (2014). Prediction in the service
1266 of comprehension: modulated early brain responses to omitted speech
1267 segments. *Cortex; a Journal Devoted to the Study of the Nervous System and
1268 Behavior*, 53, 9–26. <https://doi.org/10.1016/j.cortex.2014.01.001>

1269 Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple
1270 testing under dependency. *Annals of Statistics*, 29(4), 1165–1188.
1271 <https://doi.org/10.1214/aos/1013699998>

1272 Berezutskaya, J., Freudenburg, Z. V., Güçlü, U., van Gerven, M. A. J., & Ramsey, N. F.
1273 (2017). Neural Tuning to Low-Level Features of Speech throughout the
1274 Perisylvian Cortex. *The Journal of Neuroscience: The Official Journal of the
1275 Society for Neuroscience*, 37(33), 7906–7920.
1276 <https://doi.org/10.1523/JNEUROSCI.0238-17.2017>

1277 Boersma, P., & Weenink, D. (2013). Praat: doing phonetics by computer [Computer
1278 program]. Version 5.3. 51. *Online: Http://Www. Praat. Org/Retrieved, Last
1279 Viewed On*, 12.

1280 Bouchard, K. E., & Chang, E. F. (2014). Control of spoken vowel acoustics and the
1281 influence of phonetic context in human speech sensorimotor cortex. *The Journal
1282 of Neuroscience: The Official Journal of the Society for Neuroscience*, 34(38),
1283 12662–12677. <https://doi.org/10.1523/JNEUROSCI.1219-14.2014>

1284 Bouchard, K. E., Mesgarani, N., Johnson, K., & Chang, E. F. (2013). Functional
1285 organization of human sensorimotor cortex for speech articulation. *Nature*,
1286 495(7441), 327–332. <https://doi.org/10.1038/nature11911>

1287 Breshears, J. D., Molinaro, A. M., & Chang, E. F. (2015). A probabilistic map of the
1288 human ventral sensorimotor cortex using electrical stimulation. *Journal of
1289 Neurosurgery*, 123(2), 340–349. <https://doi.org/10.3171/2014.11.JNS14889>

1290 Caucheteux, C., Gramfort, A., & King, J.-R. (2023). Evidence of a predictive coding
1291 hierarchy in the human brain listening to speech. *Nature Human Behaviour*, 7(3),
1292 430–441. <https://doi.org/10.1038/s41562-022-01516-2>

1293 Chang, E. F. (2015). Towards large-scale, human-based, mesoscopic
1294 neurotechnologies. *Neuron*, 86(1), 68–78.
1295 <https://doi.org/10.1016/j.neuron.2015.03.037>

1296 Chao, Z. C., Takaura, K., Wang, L., Fujii, N., & Dehaene, S. (2018). Large-Scale
1297 Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate
1298 Brain. *Neuron*, 100(5), 1252-1266.e3.
1299 <https://doi.org/10.1016/j.neuron.2018.10.004>

1300 Chartier, J., Anumanchipalli, G. K., Johnson, K., & Chang, E. F. (2018). Encoding of
1301 Articulatory Kinematic Trajectories in Human Speech Sensorimotor Cortex.
1302 *Neuron*, 98(5), 1042-1054.e4. <https://doi.org/10.1016/j.neuron.2018.04.031>

1303 Cheung, C., Hamilton, L. S., Johnson, K., & Chang, E. F. (2016). The auditory
1304 representation of speech sounds in human motor cortex. *eLife*, 5.
1305 <https://doi.org/10.7554/eLife.12577>

1306 Cogan, G. B., Thesen, T., Carlson, C., Doyle, W., Devinsky, O., & Pesaran, B. (2014).
1307 Sensory-motor transformations for speech occur bilaterally. *Nature*, 507(7490),
1308 94–98. <https://doi.org/10.1038/nature12935>

1309 Creutzfeldt, O., Ojemann, G., & Lettich, E. (1989). Neuronal activity in the human lateral
1310 temporal lobe. II. Responses to the subjects own voice. *Experimental Brain
1311 Research. Experimentelle Hirnforschung. Experimentation Cerebrale*, 77(3),
1312 476–489. <https://doi.org/10.1007/BF00249601>

1313 Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The Multivariate
1314 Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating
1315 Neural Signals to Continuous Stimuli. *Frontiers in Human Neuroscience*, 10, 604.
1316 <https://doi.org/10.3389/fnhum.2016.00604>

1317 Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I.
1318 Segmentation and surface reconstruction. *NeuroImage*, 9(2), 179–194.
1319 <https://doi.org/10.1006/nimg.1998.0395>

1320 Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of
1321 human cortical gyri and sulci using standard anatomical nomenclature.
1322 *NeuroImage*, 53(1), 1–15. <https://doi.org/10.1016/j.neuroimage.2010.06.010>

1323 Di Liberto, G. M., O'Sullivan, J. A., & Lalor, E. C. (2015). Low-Frequency Cortical
1324 Entrainment to Speech Reflects Phoneme-Level Processing. *Current Biology: CB*, 25(19), 2457–2465. <https://doi.org/10.1016/j.cub.2015.08.030>

1325 Dichter, B. K., Breshears, J. D., Leonard, M. K., & Chang, E. F. (2018). The Control of
1326 Vocal Pitch in Human Laryngeal Motor Cortex. *Cell*, 174(1), 21-31.e9.
1327 <https://doi.org/10.1016/j.cell.2018.05.016>

1328 Ding, C., Li, T., & Jordan, M. I. (2010). Convex and semi-nonnegative matrix
1329 factorizations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
1330 32(1), 45–55. <https://doi.org/10.1109/TPAMI.2008.277>

1331 Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. *Nature*,
1332 384(6605), 159–161. <https://doi.org/10.1038/384159a0>

1333 Evans, A. C., Collins, L., Mills, S. R., & Peters, T. M. (1993). 3D Statistical
1334 Neuroanatomical Models from 305 MRI Volumes. *Nuclear Science Symposium
1335 and Medical Imaging Conference, 1993., 1993 IEEE Conference Record.*, 1813–
1336 1817, 1813–1817 vol.3. <https://doi.org/10.1109/NSSMIC.1993.373602>

1337

1338 Fedorenko, E., & Blank, I. A. (2020). Broca's Area Is Not a Natural Kind. *Trends in*
1339 *Cognitive Sciences*, 24(4), 270–284. <https://doi.org/10.1016/j.tics.2020.01.001>

1340 Flinker, A., Chang, E. F., Kirsch, H. E., Barbaro, N. M., Crone, N. E., & Knight, R. T.
1341 (2010). Single-trial speech suppression of auditory cortex activity in humans. *The*
1342 *Journal of Neuroscience: The Official Journal of the Society for Neuroscience*,
1343 30(49), 16643–16650. <https://doi.org/10.1523/JNEUROSCI.1809-10.2010>

1344 Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F.,
1345 Knight, R. T., & Crone, N. E. (2015). Redefining the role of Broca's area in
1346 speech. *Proceedings of the National Academy of Sciences of the United States*
1347 *of America*, 112(9), 2871–2875. <https://doi.org/10.1073/pnas.1414491112>

1348 Forseth, K. J., Hickok, G., Rollo, P. S., & Tandon, N. (2020). Language prediction
1349 mechanisms in human auditory cortex. *Nature Communications*, 11(1), 5240.
1350 <https://doi.org/10.1038/s41467-020-19010-6>

1351 Friedman, D., Goldman, R., Stern, Y., & Brown, T. R. (2009). The brain's orienting
1352 response: An event-related functional magnetic resonance imaging investigation.
1353 *Human Brain Mapping*, 30(4), 1144–1154. <https://doi.org/10.1002/hbm.20587>

1354 Gonzalez Castro, L. N., Hadjiosif, A. M., Hemphill, M. A., & Smith, M. A. (2014).
1355 Environmental consistency determines the rate of motor adaptation. *Current*
1356 *Biology: CB*, 24(10), 1050–1061. <https://doi.org/10.1016/j.cub.2014.03.049>

1357 Goregliad Fjaellingsdal, T., Schwenke, D., Scherbaum, S., Kuhlen, A. K., Bögels, S.,
1358 Meekes, J., & Bleichner, M. G. (2020). Expectancy effects in the EEG during joint
1359 and spontaneous word-by-word sentence production in German. *Scientific*
1360 *Reports*, 10(1), 5460. <https://doi.org/10.1038/s41598-020-62155-z>

1361 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
1362 Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and
1363 EEG data analysis with MNE-Python. *Frontiers in Neuroscience*, 7, 267.
1364 <https://doi.org/10.3389/fnins.2013.00267>

1365 Guenot, M., Isnard, J., Ryvlin, P., Fischer, C., Ostrowsky, K., Mauguire, F., & Sindou,
1366 M. (2001). Neurophysiological monitoring for epilepsy surgery: the Talairach
1367 SEEG method. *StereoElectroEncephaloGraphy*. Indications, results,
1368 complications and therapeutic applications in a series of 100 consecutive cases.
1369 *Stereotactic and Functional Neurosurgery*, 77(1–4), 29–32.
1370 <https://doi.org/10.1159/000064595>

1371 Guenther, F. H. (2016). *Neural Control of Speech*. MIT Press.
1372 <https://doi.org/10.7551/mitpress/10471.001.0001>

1373 Hamilton, L. S. (2024). Neural Processing of Speech Using Intracranial
1374 Electroencephalography: Sound Representations in the Auditory Cortex. In
1375 *Oxford Research Encyclopedia of Neuroscience*. Oxford University Press.
1376 <https://doi.org/10.1093/acrefore/9780190264086.013.442>

1377 Hamilton, L. S., Chang, D. L., Lee, M. B., & Chang, E. F. (2017). Semi-automated
1378 Anatomical Labeling and Inter-subject Warping of High-Density Intracranial
1379 Recording Electrodes in Electrocorticography. *Frontiers in Neuroinformatics*, 11,
1380 62. <https://doi.org/10.3389/fninf.2017.00062>

1381 Hamilton, L. S., Edwards, E., & Chang, E. F. (2018). A Spatial Map of Onset and
1382 Sustained Responses to Speech in the Human Superior Temporal Gyrus.

1383 *Current Biology*: *CB*, 28(12), 1860-1871.e4.
1384 <https://doi.org/10.1016/j.cub.2018.04.033>

1385 Hamilton, L. S., Oganian, Y., Hall, J., & Chang, E. F. (2021). Parallel and distributed
1386 encoding of speech across human auditory cortex. *Cell*, 184(18), 4626-4639.e13.
1387 <https://doi.org/10.1016/j.cell.2021.07.019>

1388 Hawco, C. S., Jones, J. A., Ferretti, T. R., & Keough, D. (2009). ERP correlates of
1389 online monitoring of auditory feedback during vocalization. *Psychophysiology*,
1390 46(6), 1216–1225. <https://doi.org/10.1111/j.1469-8986.2009.00875.x>

1391 Heinks-Maldonado, T. H., Mathalon, D. H., Houde, J. F., Gray, M., Faustman, W. O., &
1392 Ford, J. M. (2007). Relationship of imprecise corollary discharge in schizophrenia
1393 to auditory hallucinations. *Archives of General Psychiatry*, 64(3), 286–296.
1394 <https://doi.org/10.1001/archpsyc.64.3.286>

1395 Heinks-Maldonado, T. H., Nagarajan, S. S., & Houde, J. F. (2006).
1396 Magnetoencephalographic evidence for a precise forward model in speech
1397 production. *Neuroreport*, 17(13), 1375–1379.
1398 <https://doi.org/10.1097/01.wnr.0000233102.43526.e9>

1399 Hickok, G. (2014). The architecture of speech production and the role of the phoneme in
1400 speech processing. *Language and Cognitive Processes*, 29(1), 2–20.
1401 <https://doi.org/10.1080/01690965.2013.834370>

1402 Hickok, G., Venezia, J., & Teghipco, A. (2023). Beyond Broca: neural architecture and
1403 evolution of a dual motor speech coordination system. *Brain: A Journal of*
1404 *Neurology*, 146(5), 1775–1790. <https://doi.org/10.1093/brain/awac454>

1405 Hillis, A. E., Work, M., Barker, P. B., Jacobs, M. A., Breese, E. L., & Maurer, K. (2004).
1406 Re - examining the brain regions crucial for orchestrating speech articulation.
1407 *Brain: A Journal of Neurology*, 127(7), 1479–1487.
1408 <https://doi.org/10.1093/brain/awh172>

1409 Houde, J. F., & Chang, E. F. (2015). The cortical computations underlying feedback
1410 control in vocal production. *Current Opinion in Neurobiology*, 33, 174–181.
1411 <https://doi.org/10.1016/j.conb.2015.04.006>

1412 Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state feedback control.
1413 *Frontiers in Human Neuroscience*, 5, 82.
1414 <https://doi.org/10.3389/fnhum.2011.00082>

1415 Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of
1416 the auditory cortex during speech: an MEG study. *Journal of Cognitive*
1417 *Neuroscience*, 14(8), 1125–1138. <https://doi.org/10.1162/089892902760807140>

1418 Hullett, P. W., Hamilton, L. S., Mesgarani, N., Schreiner, C. E., & Chang, E. F. (2016).
1419 Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation
1420 Tuning Derived from Speech Stimuli. *The Journal of Neuroscience: The Official*
1421 *Journal of the Society for Neuroscience*, 36(6), 2014–2026.
1422 <https://doi.org/10.1523/JNEUROSCI.1779-15.2016>

1423 Ivanova, A. A., Hewitt, J., & Zaslavsky, N. (2021). Probing artificial neural networks:
1424 insights from neuroscience. In *arXiv [cs.LG]*. arXiv.
1425 <http://arxiv.org/abs/2104.08197>

1426 Jacks, A., & Haley, K. L. (2015). Auditory Masking Effects on Speech Fluency in
1427 Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback.

1428 *Journal of Speech, Language, and Hearing Research: JSLHR*, 58(6), 1670–
1429 1686. https://doi.org/10.1044/2015_JSLHR-S-14-0277

1430 Jankowski, M. M., Karayanni, M., Harpaz, M., Polterovich, A., & Nelken, I. (2023). A
1431 Rapid Anterior Auditory Processing Stream Through the Insulo-Parietal Auditory
1432 Field in the Rat. In *bioRxiv* (p. 2023.09.12.557409).
1433 <https://doi.org/10.1101/2023.09.12.557409>

1434 Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from
1435 restricted maximum likelihood. *Biometrics*, 53(3), 983–997.
1436 <https://doi.org/10.2307/2533558>

1437 Kunii, N., Kamada, K., Ota, T., Kawai, K., & Saito, N. (2013). Characteristic profiles of
1438 high gamma activity and blood oxygenation level-dependent responses in
1439 various language areas. *NeuroImage*, 65, 242–249.
1440 <https://doi.org/10.1016/j.neuroimage.2012.09.059>

1441 Kurteff, G. L., Lester-Smith, R. A., Martinez, A., Currens, N., Holder, J., Villarreal, C.,
1442 Mercado, V. R., Truong, C., Huber, C., Pokharel, P., & Hamilton, L. S. (2023).
1443 Speaker-induced Suppression in EEG during a Naturalistic Reading and
1444 Listening Task. *Journal of Cognitive Neuroscience*, 35(10), 1538–1556.
1445 https://doi.org/10.1162/jocn_a_02037

1446 Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link between the
1447 systems: functional differentiation and integration within the human insula
1448 revealed by meta-analysis. *Brain Structure & Function*, 214(5–6), 519–534.
1449 <https://doi.org/10.1007/s00429-010-0255-z>

1450 Kuznetsova, A., Brockhoff, P., & Christensen, R. (2017). lmerTest Package: Tests in
1451 Linear Mixed Effects Models. *Journal of Statistical Software, Articles*, 82(13), 1–
1452 26. <https://doi.org/10.18637/jss.v082.i13>

1453 Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E., & Crone, N. E. (2012). High-
1454 frequency neural activity and human cognition: past, present and possible future
1455 of intracranial EEG research. *Progress in Neurobiology*, 98(3), 279–301.
1456 <https://doi.org/10.1016/j.pneurobio.2012.06.008>

1457 Lakretz, Y., Ossmy, O., Friedmann, N., Mukamel, R., & Fried, I. (2021). Single-cell
1458 activity in human STG during perception of phonemes is organized according to
1459 manner of articulation. *NeuroImage*, 226, 117499.
1460 <https://doi.org/10.1016/j.neuroimage.2020.117499>

1461 Leonard, M. K., Cai, R., Babiak, M. C., Ren, A., & Chang, E. F. (2019). The peri-Sylvian
1462 cortical network underlying single word repetition revealed by electrocortical
1463 stimulation and direct neural recordings. *Brain and Language*, 193, 58–72.
1464 <https://doi.org/10.1016/j.bandl.2016.06.001>

1465 Leonard, M. K., Gwilliams, L., Sellers, K. K., Chung, J. E., Xu, D., Mischler, G.,
1466 Mesgarani, N., Welkenhuysen, M., Dutta, B., & Chang, E. F. (2023). Large-scale
1467 single-neuron speech sound encoding across the depth of human cortex. *Nature*.
1468 <https://doi.org/10.1038/s41586-023-06839-2>

1469 Lester-Smith, R. A., Daliri, A., Enos, N., Abur, D., Lupiani, A. A., Letcher, S., & Stepp, C.
1470 E. (2020). The Relation of Articulatory and Vocal Auditory-Motor Control in
1471 Typical Speakers. *Journal of Speech, Language, and Hearing Research: JSLHR*,
1472 63(11), 3628–3642. https://doi.org/10.1044/2020_JSLHR-20-00192

1473 Levelt, W. J. M. (1993). *Speaking: From Intention to Articulation*. MIT Press.
1474 <https://doi.org/10.7551/mitpress/6393.001.0001>

1475 Linke, R., & Schwegler, H. (2000). Convergent and complementary projections of the
1476 caudal paralaminar thalamic nuclei to rat temporal and insular cortex. *Cerebral
1477 Cortex*, 10(8), 753–771. <https://doi.org/10.1093/cercor/10.8.753>

1478 Luck, S. J. (2014). *An Introduction to the Event-Related Potential Technique, second
1479 edition*. MIT Press. [https://play.google.com/store/books/details?id=y4-
uAwAAQBAJ](https://play.google.com/store/books/details?id=y4-
1480 uAwAAQBAJ)

1481 Mandelli, M. L., Caverzasi, E., Binney, R. J., Henry, M. L., Lobach, I., Block, N.,
1482 Amirbekian, B., Dronkers, N., Miller, B. L., Henry, R. G., & Gorno-Tempini, M. L.
1483 (2014). Frontal white matter tracts sustaining speech production in primary
1484 progressive aphasia. *The Journal of Neuroscience: The Official Journal of the
1485 Society for Neuroscience*, 34(29), 9754–9767.
1486 <https://doi.org/10.1523/JNEUROSCI.3464-13.2014>

1487 Martikainen, M. H., Kaneko, K.-I., & Hari, R. (2005). Suppressed responses to self-
1488 triggered sounds in the human auditory cortex. *Cerebral Cortex*, 15(3), 299–302.
1489 <https://doi.org/10.1093/cercor/bhh131>

1490 Max, L., & Daliri, A. (2019). Limited Pre-Speech Auditory Modulation in Individuals Who
1491 Stutter: Data and Hypotheses. *Journal of Speech, Language, and Hearing
1492 Research: JSLHR*, 62(8S), 3071–3084. [https://doi.org/10.1044/2019_JSLHR-S-
CSMC7-18-0358](https://doi.org/10.1044/2019_JSLHR-S-
1493 CSMC7-18-0358)

1494 Mercier, M. R., Dubarry, A.-S., Tadel, F., Avanzini, P., Axmacher, N., Cellier, D.,
1495 Vecchio, M. D., Hamilton, L. S., Hermes, D., Kahana, M. J., Knight, R. T.,
1496 Llorens, A., Megevand, P., Melloni, L., Miller, K. J., Piai, V., Puce, A., Ramsey, N.
1497 F., Schwiedrzik, C. M., ... Oostenveld, R. (2022). Advances in human intracranial
1498 electroencephalography research, guidelines and good practices. *NeuroImage*,
1499 260, 119438. <https://doi.org/10.1016/j.neuroimage.2022.119438>

1500 Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature
1501 encoding in human superior temporal gyrus. *Science*, 343(6174), 1006–1010.
1502 <https://doi.org/10.1126/science.1245994>

1503 Muller, L., Hamilton, L. S., Edwards, E., Bouchard, K. E., & Chang, E. F. (2016). Spatial
1504 resolution dependence on spectral frequency in human speech cortex
1505 electrocorticography. *Journal of Neural Engineering*, 13(5), 056013.
1506 <https://doi.org/10.1088/1741-2560/13/5/056013>

1507 Nguyen, D., Isnard, J., & Kahane, P. (2022). *Insular Epilepsies*. Cambridge University
1508 Press. <https://doi.org/10.1017/9781108772396>

1509 Niziolek, C. A., Nagarajan, S. S., & Houde, J. F. (2013). What does motor efference
1510 copy represent? Evidence from speech production. *The Journal of Neuroscience:
1511 The Official Journal of the Society for Neuroscience*, 33(41), 16110–16116.
1512 <https://doi.org/10.1523/JNEUROSCI.2137-13.2013>

1513 Nourski, K. V., Steinschneider, M., Rhone, A. E., Kovach, C. K., Banks, M. I., Krause, B.
1514 M., Kawasaki, H., & Howard, M. A. (2021). Electrophysiology of the Human
1515 Superior Temporal Sulcus during Speech Processing. *Cerebral Cortex*, 31(2),
1516 1131–1148. <https://doi.org/10.1093/cercor/bhaa281>

1517 Oganian, Y., Bhaya-Grossman, I., Johnson, K., & Chang, E. F. (2023). Vowel and
1518 formant representation in the human auditory speech cortex. *Neuron*, 111(13),
1519 2105-2118.e4. <https://doi.org/10.1016/j.neuron.2023.04.004>

1520 Oganian, Y., & Chang, E. F. (2019). A speech envelope landmark for syllable encoding
1521 in human superior temporal gyrus. *Science Advances*, 5(11), eaay6279.
1522 <https://doi.org/10.1126/sciadv.aay6279>

1523 Okada, K., Matchin, W., & Hickok, G. (2018). Phonological Feature Repetition
1524 Suppression in the Left Inferior Frontal Gyrus. *Journal of Cognitive
1525 Neuroscience*, 30(10), 1549–1557. https://doi.org/10.1162/jocn_a_01287

1526 Ozker, M., Doyle, W., Devinsky, O., & Flinker, A. (2022). A cortical network processes
1527 auditory error signals during human speech production to maintain fluency. *PLoS
1528 Biology*, 20(2), e3001493. <https://doi.org/10.1371/journal.pbio.3001493>

1529 Ozker, M., Yu, L., Dugan, P., Doyle, W., Friedman, D., Devinsky, O., & Flinker, A.
1530 (2024). Speech-induced suppression and vocal feedback sensitivity in human
1531 cortex. *BioRxiv : The Preprint Server for Biology*.
1532 <https://doi.org/10.1101/2023.12.08.570736>

1533 Penfield, W., & Roberts, L. (1959). *Speech and Brain Mechanisms*. Princeton University
1534 Press. <http://www.jstor.org/stable/j.ctt7ztt6j>

1535 Quabs, J., Caspers, S., Schöne, C., Mohlberg, H., Bludau, S., Dickscheid, T., &
1536 Amunts, K. (2022). Cytoarchitecture, probability maps and segregation of the
1537 human insula. *NeuroImage*, 260, 119453.
1538 <https://doi.org/10.1016/j.neuroimage.2022.119453>

1539 Ray, S., & Maunsell, J. H. R. (2011). Different origins of gamma rhythm and high-
1540 gamma activity in macaque visual cortex. *PLoS Biology*, 9(4), e1000610.
1541 <https://doi.org/10.1371/journal.pbio.1000610>

1542 Remedios, R., Logothetis, N. K., & Kayser, C. (2009). An auditory region in the primate
1543 insular cortex responding preferentially to vocal communication sounds. *The
1544 Journal of Neuroscience: The Official Journal of the Society for Neuroscience*,
1545 29(4), 1034–1045. <https://doi.org/10.1523/JNEUROSCI.4089-08.2009>

1546 Rodgers, K. M., Benison, A. M., Klein, A., & Barth, D. S. (2008). Auditory,
1547 somatosensory, and multisensory insular cortex in the rat. *Cerebral Cortex*,
1548 18(12), 2941–2951. <https://doi.org/10.1093/cercor/bhn054>

1549 Sawatari, H., Tanaka, Y., Takemoto, M., Nishimura, M., Hasegawa, K., Saitoh, K., &
1550 Song, W.-J. (2011). Identification and characterization of an insular auditory field
1551 in mice. *The European Journal of Neuroscience*, 34(12), 1944–1952.
1552 <https://doi.org/10.1111/j.1460-9568.2011.07926.x>

1553 Scheerer, N. E., & Jones, J. A. (2014). The predictability of frequency-altered auditory
1554 feedback changes the weighting of feedback and feedforward input for speech
1555 motor control. *The European Journal of Neuroscience*, 40(12), 3793–3806.
1556 <https://doi.org/10.1111/ejn.12734>

1557 Schneider, D. M., Nelson, A., & Mooney, R. (2014). A synaptic and circuit basis for
1558 corollary discharge in the auditory cortex. *Nature*, 513(7517), 189–194.
1559 <https://doi.org/10.1038/nature13724>

1560 Schneider, D. M., Sundararajan, J., & Mooney, R. (2018). A cortical filter that learns to
1561 suppress the acoustic consequences of movement. *Nature*, 561(7723), 391–395.
1562 <https://doi.org/10.1038/s41586-018-0520-5>

1563 Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor
1564 control. *Experimental Brain Research. Experimentelle Hirnforschung.*
1565 *Experimentation Cerebrale*, 185(3), 359–381. <https://doi.org/10.1007/s00221-008-1280-5>

1566 St. Louis, K. O., & Ruscello, D. M. (1981). *Oral Speech Mechanism Screening
1567 Examination (OSMSE)*. University Park Press. <https://eric.ed.gov/?id=ED214975>

1568 Takemoto, M., Hasegawa, K., Nishimura, M., & Song, W.-J. (2014). The insular auditory
1569 field receives input from the lemniscal subdivision of the auditory thalamus in
1570 mice. *The Journal of Comparative Neurology*, 522(6), 1373–1389.
1571 <https://doi.org/10.1002/cne.23491>

1572 Tang, C., Hamilton, L. S., & Chang, E. F. (2017). Intonational speech prosody encoding
1573 in the human auditory cortex. *Science*, 357(6353), 797–801.
1574 <https://doi.org/10.1126/science.aam8577>

1575 Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of
1576 nonlinear auditory neurons obtained using natural sounds. *The Journal of
1577 Neuroscience: The Official Journal of the Society for Neuroscience*, 20(6), 2315–
1578 2331. <https://doi.org/10.1523/JNEUROSCI.20-06-02315.2000>

1579 Tourville, J. A., & Guenther, F. H. (2011). The DIVA model: A neural theory of speech
1580 acquisition and production. *Language and Cognitive Processes*, 26(7), 952–981.
1581 <https://doi.org/10.1080/01690960903498424>

1582 Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural mechanisms underlying
1583 auditory feedback control of speech. *NeuroImage*, 39(3), 1429–1443.
1584 <https://doi.org/10.1016/j.neuroimage.2007.09.054>

1585 Towle, V. L., Yoon, H.-A., Castelle, M., Edgar, J. C., Biassou, N. M., Frim, D. M., Spire,
1586 J.-P., & Kohrman, M. H. (2008). ECoG gamma activity during a language task:
1587 differentiating expressive and receptive speech areas. *Brain: A Journal of
1588 Neurology*, 131(Pt 8), 2013–2027. <https://doi.org/10.1093/brain/awn147>

1589 Toyomura, A., Miyashiro, D., Kuriki, S., & Sowman, P. F. (2020). Speech-Induced
1590 Suppression for Delayed Auditory Feedback in Adults Who Do and Do Not
1591 Stutter. *Frontiers in Human Neuroscience*, 14, 150.
1592 <https://doi.org/10.3389/fnhum.2020.00150>

1593 Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the
1594 classic model of language neurobiology. *Brain and Language*, 162, 60–71.
1595 <https://doi.org/10.1016/j.bandl.2016.08.004>

1596 Turin, G. (1960). An introduction to matched filters. *IRE Transactions on Information
1597 Theory*, 6(3), 311–329. <https://doi.org/10.1109/TIT.1960.1057571>

1598 Woolnough, O., Forseth, K. J., Rollo, P. S., & Tandon, N. (2019). Uncovering the
1599 functional anatomy of the human insula during speech. *eLife*, 8.
1600 <https://doi.org/10.7554/eLife.53086>

1601 Wrench, A. (1999). *The MOCHA-TIMIT articulatory database*.

1602 Wright, S. (1921). Correlation and causation. *Journal of Agricultural Research*, 20(7),
1603 557. <https://cir.nii.ac.jp/crid/1370567187556110595>

1604 Yuan, J., & Liberman, M. (2008). Speaker identification on the SCOTUS corpus. *The
1605 Journal of the Acoustical Society of America*, 123(5), 3878.
1606 <https://doi.org/10.1121/1.2935783>

1607

1608 Zhang, Y., Zhou, W., Wang, S., Zhou, Q., Wang, H., Zhang, B., Huang, J., Hong, B., &
1609 Wang, X. (2018). The Roles of Subdivisions of Human Insula in Emotion
1610 Perception and Auditory Processing. *Cerebral Cortex* , 29(2), 517–528.
1611 <https://doi.org/10.1093/cercor/bhx334>