

1 **Title**

2 Inhibition of EGFR/ErbB does not protect against *C. difficile* toxin B

3 **Authors**

4 Uswah Siddiqi¹, Hannah M. Lunnemann¹, Kevin O. Childress², John A. Shupe², Stacey A.

5 Rutherford², Melissa A. Farrow², M. Kay Washington², Robert J. Coffey^{1,3}, D. Borden

6 Lacy^{1,2,3,4}, Nicholas O. Markham^{1,2,3,4}

7 **Affiliations**

8 1. Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt

9 University Medical Center, Nashville, TN

10 2. Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical

11 Center, Nashville, TN

12 3. Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN

13 4. Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN

14 **Corresponding author**

15 Nicholas O. Markham, MD, PhD

16 Assistant Professor of Medicine, Vanderbilt University Medical Center

17 Staff Physician, Tennessee Valley Healthcare System-VA, Nashville

18 1030C, MRB IV

19 2215 Garland Ave (Light Hall)

20 Nashville, TN 37232-0250

21 nick.markham@vumc.org

22 **Disclosures**

23 The authors have no conflicts of interest to disclose.

24 **Abstract**

25 *Clostridioides difficile* is a common cause of diarrhea and mortality, especially in
26 immunosuppressed and hospitalized patients. *C. difficile* is a toxin-mediated disease, but the host
27 cell receptors for *C. difficile* toxin B (TcdB) have only recently been revealed. Emerging data
28 suggest TcdB interacts with receptor tyrosine kinases during infection. In particular, TcdB can
29 elicit Epidermal Growth Factor Receptor (EGFR) transactivation in human colonic epithelial
30 cells. The mechanisms for this function are not well understood, and the involvement of other
31 receptors in the EGFR family of Erythroblastic Leukemia Viral Oncogene Homolog (ErbB)
32 receptors remains unclear. Furthermore, in an siRNA-knockdown screen for protective genes
33 involved with TcdB toxin pathogenesis, we show ErbB2 and ErbB3 loss resulted in increased
34 cell viability. We hypothesize TcdB induces the transactivation of EGFR and/or ErbB receptors
35 as a component of its cell-killing mechanism. Here, we show in vivo intrarectal instillation of
36 TcdB in mice leads to phosphorylation of ErbB2 and ErbB3. However, immunohistochemical
37 staining for phosphorylated ErbB2 and ErbB3 indicated no discernible difference between
38 control and TcdB-treated mice for epithelial phospho-ErbB2 and phospho-ErbB3. Human colon
39 cancer cell lines (HT29, Caco-2) exposed to TcdB were not protected by pre-treatment with
40 lapatinib, an EGFR/ErbB2 inhibitor. Similarly, lapatinib pre-treatment failed to protect normal
41 human colonoids from TcdB-induced cell death. Neutralizing antibodies against mouse EGFR
42 failed to protect mice from TcdB intrarectal instillation as measured by edema, inflammatory
43 infiltration, and epithelial injury. Our findings suggest TcdB-induced colonocyte cell death does
44 not require EGFR/ErbB receptor tyrosine kinase activation.

45

46

47 **Introduction**

48 *Clostridioides difficile* (*C. difficile*) is a toxin-producing, Gram-positive bacillus and is a
49 major cause of healthcare-associated diarrhea and mortality [1]. The virulence factors causing
50 most epithelial damage and inflammation are two large exotoxins, toxin A (TcdA) and toxin B
51 (TcdB) [2]. The contribution of a third toxin, transferase toxin (CDT), is not as well-understood
52 [3]. TcdA and TcdB have four functional domains: the glucosyltransferase domain (GTD), the
53 auto-protease domain (APD), the delivery domain, and the combined repetitive oligopeptides
54 (CROPS) domain [4,5]. Both toxins interact with multiple cell surface receptors (discussed
55 below), and they are internalized into endosomes [6]. Acidification of the endosome triggers a
56 conformational change in the toxin delivery domain, leading to pore formation and the
57 translocation of the APD and GTD into the cytosol [7]. The auto-proteolytic cleavage leads to the
58 release of the GTD so it can inactivate small RhoGTPases: RHO, RAC, and CDC42 via mono-
59 glucosylation. These proteins are guanosine triphosphatases that regulate cytoskeletal dynamics,
60 cell adhesion, and signal transduction [8]. Their inhibition results in cell rounding and apoptosis
61 of the intoxicated host cell [9].

62 Some evidence has suggested TcdA is essential for *C. difficile* infection (CDI) in humans
63 [10], but more recent data from patients infected with strains lacking TcdA and CDT
64 demonstrate TcdB alone can cause epithelial cell damage, inflammation, and a full range of
65 clinical symptom severity [11]. Interestingly, high concentrations (> 0.1 nM) of TcdB can induce
66 glucosyltransferase-independent necrosis through over-production of reactive oxygen species
67 [12]. Moreover, bezlotoxumab, a neutralizing antibody against TcdB, is superior to actoxumab, a
68 neutralizing antibody against TcdA, for reducing the rate of recurrent CDI [13]. In pre-clinical

69 models, isogenic knockout strains of *C. difficile* have shown TcdB is required for inducing wild-
70 type levels of tissue damage and mortality [14–16].

71 TcdB receptors include chondroitin sulfate proteoglycan 4 (CSPG4), Nectin 3 (PVRL3),
72 frizzled proteins (FZDs), and tissue factor pathway inhibitor (TFPI) [17]. FZDs are essential
73 receptors for WNT ligands that promote proliferation and self-renewal of colonic epithelial cells
74 [18]. The interaction between TcdB and FZDs, particularly FZD1, 2, and 7, may block WNT
75 signaling and contribute to cell death [19,20].

76 TcdB has been reported to induce EGFR transactivation as a part of the cell death mechanism
77 in CDI [21]. Specifically, in the non-transformed human colonic epithelial cell line, NCM460,
78 TcdB promotes TGF α -dependent phosphorylation of EGFR, and subsequent activation of the
79 ERK/MAP kinase cascade leads to IL-8 cytokine production. However, these data cannot rule
80 out the contribution of other ErbB receptors or address whether receptor transactivation
81 contributes significantly to cell death. EGFR and ErbB2 are essential for cell survival via anti-
82 apoptotic signals in mouse colonocytes in the setting of acute inflammation, but their role in the
83 setting of TcdB-induced inhibition of small RhoGTPases during CDI is unclear. CDC42-
84 deficient intestinal organoids undergo rapid apoptosis because CDC42 engaging with EGFR is
85 required for EGF-stimulated receptor-mediated endocytosis. Interestingly, treating breast cancer
86 cells in vitro with TcdB results in altered ErbB2 expression patterns leading to decreased tumor
87 burden [22].

88 Receptor tyrosine kinase inhibitors (TKIs) have found wide application in treating solid
89 tumors and hematological malignancies, effectively blocking signaling pathways that drive
90 tumor growth and spread [23]. Emerging clinical evidence suggests TKIs could potentially have
91 a protective role against CDI. In a study assessing the effect of anti-EGFR TKIs on CDI, lung

92 cancer patients with diarrhea due to *C. difficile* had a longer interval between TKI initiation and
93 diarrhea (median period: 75 days, range: 25 to 376 days) compared with patients who had
94 diarrhea due to other causes (median period: 7 days, range: 0 to 49 days) [24]. The incidence of
95 CDI in this study was 2.2%, which is notably lower compared to another study of cancer patients
96 receiving immune checkpoint inhibitor immunotherapy where the incidence of CDI was 9.7%
97 [25]. One possible explanation for these results is that blocking EGFR and/or ErbB receptor
98 signaling is protective against CDI. We hypothesize transactivation of EGFR and ErbB receptors
99 is increased by TcdB and is a component of its cell-killing mechanism during CDI.

100 Herein, we demonstrate that siRNA-knockdown of ErbB2 or ErbB3 protects against TcdB-
101 mediated cell death, and ErbB2 and ErbB3 are phosphorylated selectively by TcdB in the mouse
102 colon. However, phospho-ErbB2 and phospho-ErbB3 staining in mouse colonic epithelium by
103 immunohistochemistry show no significant differences in abundance or localization between
104 TcdB- and vehicle-instilled mice. In vitro, HT-29 cells did not show co-localization of phosphor-
105 EGFR and TcdB, nor were HT-29 or Caco-2 cells protected against TcdB when pre-treated with
106 lapatinib, a potent EGFR/ErbB2 inhibitor. To eliminate the possible confounding factors
107 associated with using cancer cell lines, we performed TcdB-intoxication experiments on normal
108 human colon organoids (colonoids). These colonoids were not protected from TcdB by either
109 lapatinib or a more general tyrosine kinase inhibitor dasatinib. Finally, we expanded our
110 investigations to include neutralizing antibodies against EGFR and found that this form of
111 inhibition did not protect the mouse colon or human colonoids from TcdB.

112

113

114

115 **Methods**

116 *siRNA knockdown screen*: HeLa cells were seeded into 96-well plates with a human siRNA
117 knockdown library (Dharmacon) and transfection reagent per manufacturer's protocol. Cells
118 were incubated with TcdB (100 ng/mL) at 37 °C, and cell viability was measured with CellTiter-
119 Glo luciferase assay. Results are expressed as viability relative to non-targeting control siRNA.
120 TcdB was prepared recombinantly as described [26].

121 *Phospho-specific receptor activation assay*: Wild-type C567Bl/6 female mice aged 8-10
122 weeks (Jackson Labs) were acclimatized to our AAALAC-accredited animal facility for 2 weeks.
123 All animal experiments were performed humanely under the IACUC-approved protocol
124 #V2100012. Mice were anesthetized and instilled intrarectally with purified, recombinant TcdB
125 as previously described [27]. After 4 h, mice were euthanized and whole colon tissue was
126 harvested and flash frozen. Only the most distal 4 cm of colon were used. Whole tissue lysates
127 were prepared as described previously [28]. Lysates of 3 mouse colons from each group were
128 pooled together and used as a substrate for the mouse Proteome Profiler Array (R&D Systems)
129 following the manufacturer's protocol.

130 *Immunohistochemistry*: Following intrarectal instillations as detailed above, whole mouse
131 colons were harvested, washed, formalin-fixed, and paraffin-embedded. Tissue blocks were
132 sectioned and prepared for immunohistochemistry (Agilent Technologies) as previously
133 described [27]. Antibodies used were: total-ErbB2 clone D8F12, phospho-ErbB2 clone 6B12,
134 total ErbB3 clone D22C5, and phospho-ErbB3 clone 21D3 (Cell Signaling Technologies).

135 *Immunofluorescence*: HT-29 cells (kindly gifted by the Coffey Lab) were seeded into 12-well
136 plates containing sterile glass coverslips. After reaching 90-100% confluence, TcdB was added
137 to the cells in fresh DMEM media (Gibco). Recombinant human EGF (R&D Systems) was

138 applied similarly as a positive control. Cells were washed and fixed to the coverslips at the
139 indicated times with 10% neutral buffered formalin (Sigma). Coverslips were permeabilized,
140 blocked, and immunostained using previously published methods [29]. The phospho-EGFR
141 antibody (clone 53A5, Cell Signaling) and anti-TcdB sheep polyclonal antibody (R&D Systems)
142 were used with species-specific secondary antibodies (Fisher Scientific).

143 *Cell viability assay:* HT-29 and Caco2 human adenocarcinoma cells were seeded in 96-well
144 plates in triplicate and grown to near confluence. Cells were washed three times in Hank's
145 balanced salt solution, then incubated with lapatinib at the indicated concentrations at 37 °C.
146 TcdB was added at the indicated concentrations after 1 hour and incubated at 37 °C for 20 h.
147 Viability was measured with CellTiter-Glo (Promega) and normalized to untreated controls.

148 *Normal human colonoid viability assays:* Normal human colon tissue was obtained from
149 normal-adjacent surgical resection tissue through the Cooperative Human Tissue Network under
150 the IRB-exempt protocol for Dr. Lacy. Epithelium was carefully dissected from the submucosa
151 using sterile technique. Colonoids were derived as previously described for mouse enteroids [30]
152 with the exception that chelation was performed with 50 mM EDTA/EGTA in PBS and 1 h
153 incubation time. Colonoids were passaged no more than 7 times prior to these experiments.
154 Colonoids were seeded into Matrigel (Corning) domes at a density of 100 cells/µL and cultured
155 for 7-10 days prior to the experiment. Cells were pretreated with small molecule inhibitors
156 lapatinib or dasatinib (Tocris) dissolved in 1% dimethyl sulfoxide and 99% Dulbecco's Modified
157 Eagle Medium (DMEM). Experiments using EGFR neutralization were performed with C225
158 monoclonal antibody (kindly provided by the Coffey Lab) diluted in DMEM. TcdB was diluted
159 in DMEM for addition to the colonoids after 1 h pretreatment. At the indicated times, colonoids

160 were imaged with phase-contrast light microscopy (Keyence BZ-X800) for counting or lysed for
161 viability assays using CellTiter-Glo 3D (Promega) and a luminometer (Bio-Tek Synergy HTX).

162 *EGFR neutralization in vivo*: P1X/P2X antibodies (Merrimack Pharmaceuticals) were diluted
163 in PBS to a concentration of 2.5 mg/mL and injected intraperitoneally at a dose of 25 mg/kg 3
164 times over 5 days to establish a steady-state in vivo concentration. Control mice were injected
165 with an equal volume of sterile phosphate-buffered saline. On the 6th day, mice were instilled
166 with 5 or 50 µg TcdB as previously published and euthanized after 4 or 18 h [27]. Mouse colons
167 were prepared as formalin-fixed, paraffin-embedded tissue as described above and sectioned for
168 H&E staining using standard techniques. Dr. Washington reviewed and scored the tissue blindly
169 using a previously published scoring rubric[31]. Colon tissue sections were prepared for
170 immunofluorescence staining as previously described [27] using goat anti-human-AF647 and
171 rabbit anti-GFP-AF488 conjugated antibodies (ThermoFisher, Invitrogen).

172

173 **Results**

174 To identify host factors contributing to TcdB-mediated cell killing, we analyzed results from
175 an in vitro siRNA-knockdown screen in HeLa cells treated with TcdB. Compared with non-
176 targeting controls, the siRNAs against ErbB2 and ErbB3 led to increased viability (Figure 1A).
177 The siRNAs against ErbB4 and the EGF-domain-containing transmembrane protein CD97 did
178 not have any effect on viability. Rac and 6V0C are known components of the TcdB-pathogenesis
179 mechanism and serve as positive controls.

180 In a parallel screen using intrarectal instillation of TcdB in the mouse colon, we measured the
181 phosphorylation of receptor tyrosine kinases. Purified recombinant TcdB or vehicle control were
182 intrarectally instilled into mouse colons, and whole distal colon tissue was harvested after 4 h.

183 Colon samples were pooled based on TcdB instillation or vehicle control (n=3 mice/group).
184 ErbB2 and ErbB3 were the only phosphorylated receptors in the mouse colon in TcdB-exposed
185 versus vehicle controls (Figure 1B).

186 To determine the location and cell type-specific expression of phospho-ErbB2 and phospho-
187 ErbB3 and to validate the screening results, we instilled wild-type C57Bl/6 female mice with
188 purified recombinant TcdB (50 µg) or vehicle control. We compared the amount of
189 immunohistochemistry staining for phospho-ErbB2 and phospho-ErbB3 as well as total ErbB2
190 and total ErbB3 (Figure 2A-B). From 6-8 mice per group, we did not observe any differences in
191 staining between TcdB- and vehicle-instilled colons among any of the ErbB antigens.

192 Next, we wanted to see if TcdB induces phosphorylation of EGFR in HT-29 human colon
193 cancer cells. Using a specific antibody against EGFR phospho-tyrosine 1173 (pY1173), we
194 performed immunofluorescence at 15-120 minutes after exposure to 10 nM of TcdB. At 30
195 minutes, there is increased staining for pY1173 diffusely but not precisely co-localizing with the
196 highest abundance of TcdB at specific cell-cell junctions (Figure 3A). Detection of pY1173 is
197 not seen at other time points. To determine if inhibition of EGFR and ErbB2 transactivation
198 protects HT-29 or Caco2 cells, we performed viability assays over a range of TcdB
199 concentrations after pre-treatment with lapatinib, a specific and potent inhibitor of the EGFR and
200 ErbB2 intracellular ATP-binding site [32]. Under these conditions, lapatinib does not have a
201 significant effect on the cell viability of either HT-29 or Caco2 cells exposed to TcdB (Figure
202 3B-C).

203 Adenocarcinoma cell lines like HT-29 and Caco2 grown on 2-dimensional plastic may have
204 changes in receptor tyrosine kinase expression or dependency that could interfere with modeling
205 the effect of TcdB in normal, non-cancerous cells [33]. Therefore, we derived organoids from

206 normal human colon biopsies taken during routine screening colonoscopy. These normal human
207 colonoids were grown as 3-dimensional spheres in Matrigel extracellular matrix and pretreated
208 with lapatinib or dimethyl sulfoxide control. The same organoids were imaged iteratively over 22
209 h and viable organoids were counted. Decreased cell viability was apparent in TcdB-exposed
210 colonoids compared to vehicle control (Figure 4A). Lapatinib pre-treatment did not improve cell
211 viability compared with dimethyl sulfoxide (DMSO) controls (Figure 4A-B). Next, we tested
212 lower concentrations of TcdB (10-20 pM) in normal human colonoids pretreated with lapatinib
213 (4 μ M) for 1 h. TcdB alone significantly decreased relative viability compared with DMSO
214 controls (Figure 4C). However, cells pretreated with lapatinib were not protected against TcdB-
215 mediated cell death. Ligand-independent phosphorylation of EGFR can occur through activation
216 of SRC kinase [34]. To determine if this mechanism contributes to TcdB pathogenesis, we
217 pretreated cells with dasatinib, a small molecule inhibitor of multiple tyrosine kinases, including
218 SRC. Similarly to lapatinib, pretreatment with dasatinib did not improve the relative viability of
219 TcdB-exposed normal human colonoids (Figure 4D). In fact, normal human colonoids given
220 dasatinib alone had reduced viability compared to DMSO control.

221 To determine if the EGFR tyrosine kinase receptor participates in TcdB pathology in vivo, we
222 performed in vivo mouse experiments using a pair of humanized neutralizing antibodies
223 (P1X/P2X) against the mouse EGFR extracellular domain [35]. The recipient mice contained an
224 Emerald-GFP fused to the C-terminus of the EGFR gene using CRISPR-Cas9 gene editing [36].
225 These mice were essential for this experiment, because reagents for detecting mouse EGFR are
226 not specific. Animals were given intraperitoneal injections of P1X/P2X humanized antibodies for
227 5 days to obtain a steady-state tissue concentration. Then, mice were given intrarectal
228 instillations of purified recombinant TcdB. Mouse colons were harvested 4 h after instillation and

229 stained with H&E for blinded scoring by a gastrointestinal pathologist. No significant differences
230 were observed between TcdB- and Vehicle-instilled mice with respect to edema, inflammatory
231 infiltration, or epithelial injury (Figure 5A). The P1X/P2X pair of neutralizing antibodies appear
232 to have been effective because we observed them in the colonic tissue by immunofluorescence
233 (Figure 5B), and the EGFR-GFP fusion protein had reduced expression (Figure 5C).

234 We performed a similar EGFR-neutralizing experiment in normal human colonoids to
235 determine if there is a species-specific role for EGFR in TcdB-mediated cell death. In this
236 experiment, we pretreated colonoids with the C225 antibody that neutralizes human EGFR
237 similarly to the anti-cancer drug cetuximab, which inhibits ligand binding and subsequent
238 receptor dimerization [37]. C225 was added to serum-starved normal human colonoids 1 h
239 before TcdB. Cell-permeable Hoechst 33342 and propidium iodide (live cells are impermeable to
240 propidium iodide) were then added to all colonoids 24 h after TcdB. To assess colonoid viability,
241 fluorescence microscopy measured the intensity of propidium iodide and Hoechst. The C225
242 neutralizing antibody did not improve colonoid viability, which was calculated as the inverse of
243 the propidium iodide-Hoechst ratio. Taken together, we ultimately found that specifically
244 blocking EGFR and/or ErbB2 in multiple models does not alter the effect of TcdB on colonocyte
245 death or injury.

246

247 **Discussion**

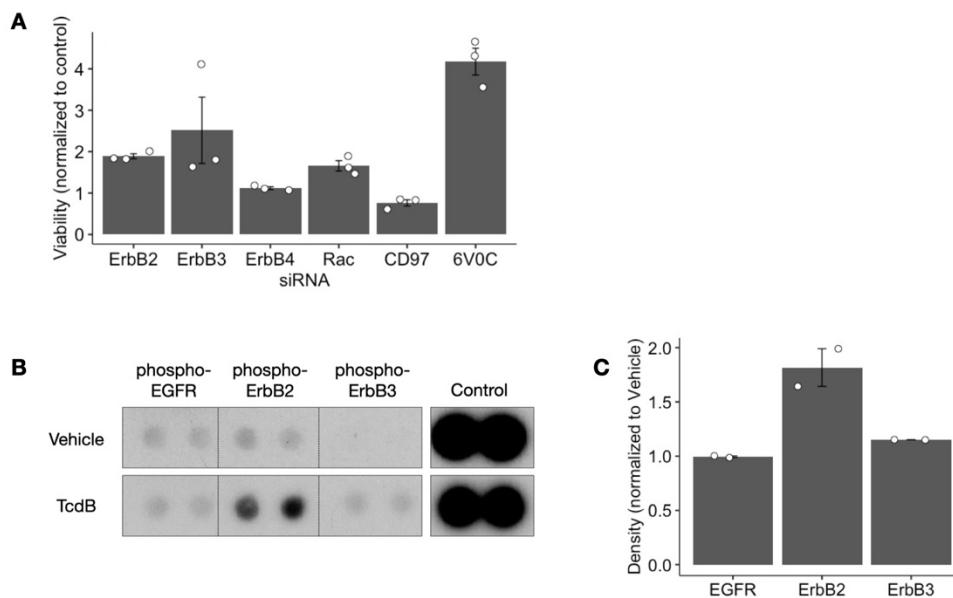
248 The appearance of ErbB2 and ErbB3 as protective factors against TcdB-mediated cell death
249 was initially surprising given the critical role of these receptors for epithelial restitution in
250 intestinal damage and colitis [38,39]. These receptors are largely considered to promote cell
251 growth, but their transactivation can lead to rapid cell death in the absence of the RhoGTPase

252 CDC42 [40]. This led us to hypothesize that the EGFR family of tyrosine kinase receptors might
253 activate apoptosis in the setting of TcdB glucosyltransferase-mediated inhibition of
254 RhoGTPases. Previous studies have shown TcdB-induced phosphorylation of EGFR in human
255 cell lines, but the reagents available at that time were not specific to EGFR and might have cross-
256 reacted with other family members, including ErbB2 and ErbB3 [21].

257 Our initial screening experiments supported our hypothesis. Phospho-proteome array data
258 suggested there might be a role for ErbB2 and ErbB3 in TcdB-induced mouse colitis, because
259 they were specifically phosphorylated in whole tissue lysates (Figure 1B). Looking at the same
260 mouse colon tissue with immunohistochemistry did not show any significant differences for
261 ErbB2 or ErbB3 total or phosphorylated protein in the epithelium (Figure 2A-B). Perhaps this
262 contradiction can be explained by increased ErbB2 and ErbB3 phosphorylation in stromal cells
263 or lymphoid aggregates form the whole tissue lysates used in the phospho-proteome array that
264 were not seen in the fixed tissue sections used for immunohistochemistry.

265 While TcdB appeared to increase the phospho-EGFR signal in HT-29 cells by
266 immunofluorescence (Figure 3A), it was not seen in the same location at the cell membrane as
267 TcdB. There was no protection against TcdB afforded by the pre-treatment of HT-29 or Caco-2
268 cells with lapatinib, a specific EGFR/ErbB2 inhibitor (Figure 3B-C). The detection of
269 transactivation in these cell lines was not as obvious as reported phosphorylation in NCM460
270 cells [21]. The baseline expression of receptors and the ligands present in the fetal bovine serum
271 may have been very different. Therefore, it was important for us to test different cell lines,
272 including normal human colonoids, and different concentrations of TcdB with different tyrosine
273 kinase inhibitors (Figures 4-5). Ultimately, we were unable to observe any functional effect of
274 EGFR/ErbB inhibition during TcdB-mediated cell killing.

275 In summary, we undertook a series of experiments to determine the influence of EGFR/ErbB
276 transactivation on TcdB toxin pathogenesis. The inhibition of EGFR and ErbB2/3 did not have a
277 detectable affect on viability in our cell lines, organoids, or mouse model. While these receptors
278 may influence TcdB in some circumstances, we have not found a robust effect.

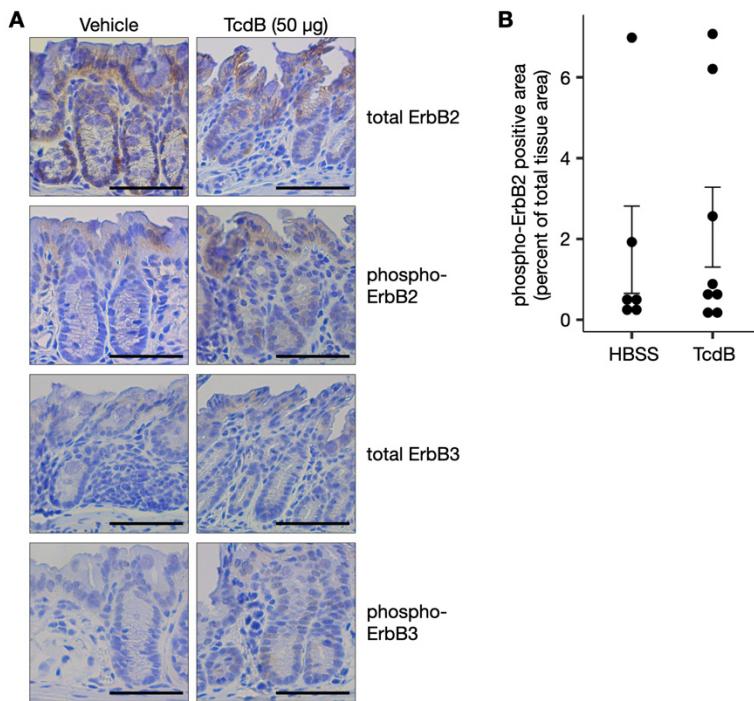

279

280 **Acknowledgments**

281 We wish to acknowledge the kind gift of C225 antibody from the laboratory of Robert J.
282 Coffey, Jr, MD. Core Services performed through Vanderbilt University Medical Center's
283 Digestive Disease Research Center supported by NIH grant P30DK058404. Funding to N.O.M.
284 and D.B.L. was provided by the U.S. Department of Veterans Affairs via grants BX005699 and
285 BX002943, respectively. The contents do not represent the views of the United States
286 Department of Veterans Affairs or the United States Government.

287

288 **Figure 1**



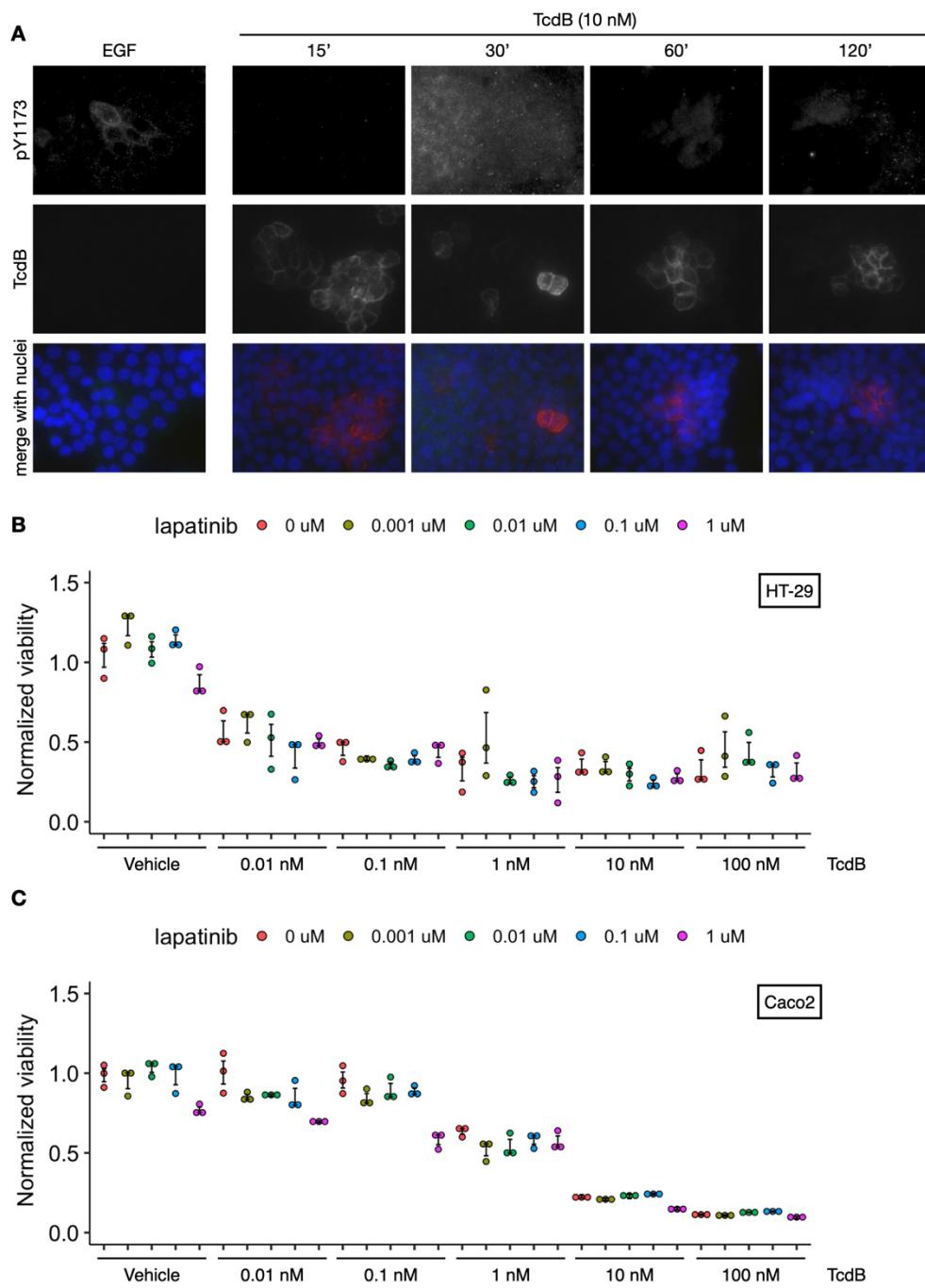
289

290 *Figure 1.* ErbB2 and ErbB3 are identified as potential contributors to TcdB pathogenesis from 2
291 screening experiments. A) siRNA-knockdown of ErbB2 and ErbB3 increased the relative
292 viability of HeLa cells exposed to 100 ng/mL TcdB. B) Dot blot from receptor tyrosine kinase
293 phospho-proteome array shows ErbB2 and ErbB3 are phosphorylated in pooled whole tissue
294 lysates of 3 mouse colons 4 h after 50 μ g TcdB intrarectal instillation. C) Densitometry of the dot
295 blot in (B) shows increased ErbB2 and ErbB3 phosphorylation but not EGFR phosphorylation.

296

297 **Figure 2**

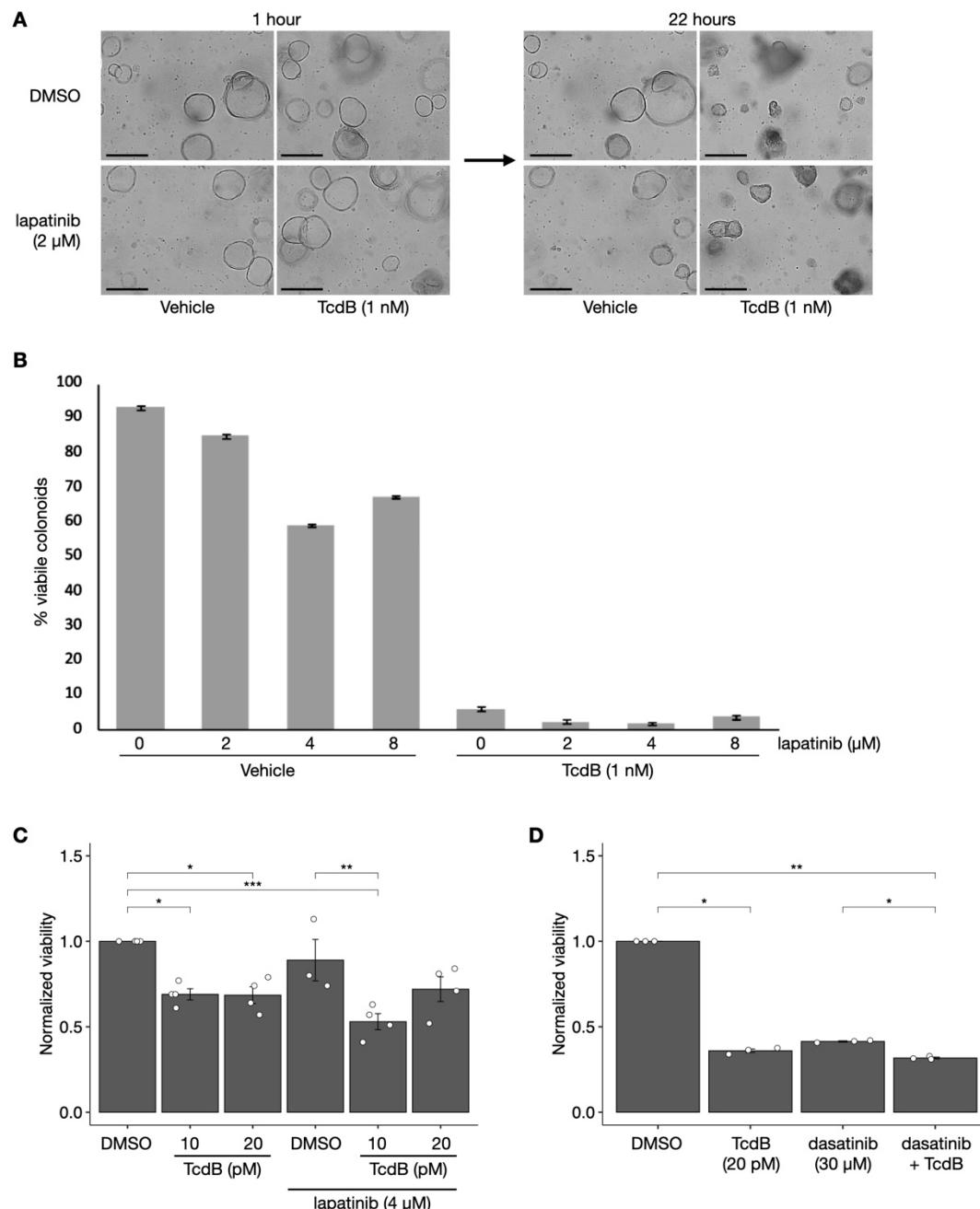
298


299

300 *Figure 2. ErbB2 and ErbB3 phosphorylation in TcdB-instilled mouse colon. A)*

301 Immunohistochemistry staining shows expression of 4 antigens (total ErbB2, phospho-ErbB2,
302 total ErbB3, and phospho-ErbB3) in distal mouse colon 4 h after instillation with either purified
303 recombinant TcdB or vehicle control; scale bar = 50 µm. B) Quantification of the
304 immunohistochemistry in (A) shows no statistical different using the Mann-Whitney U test.

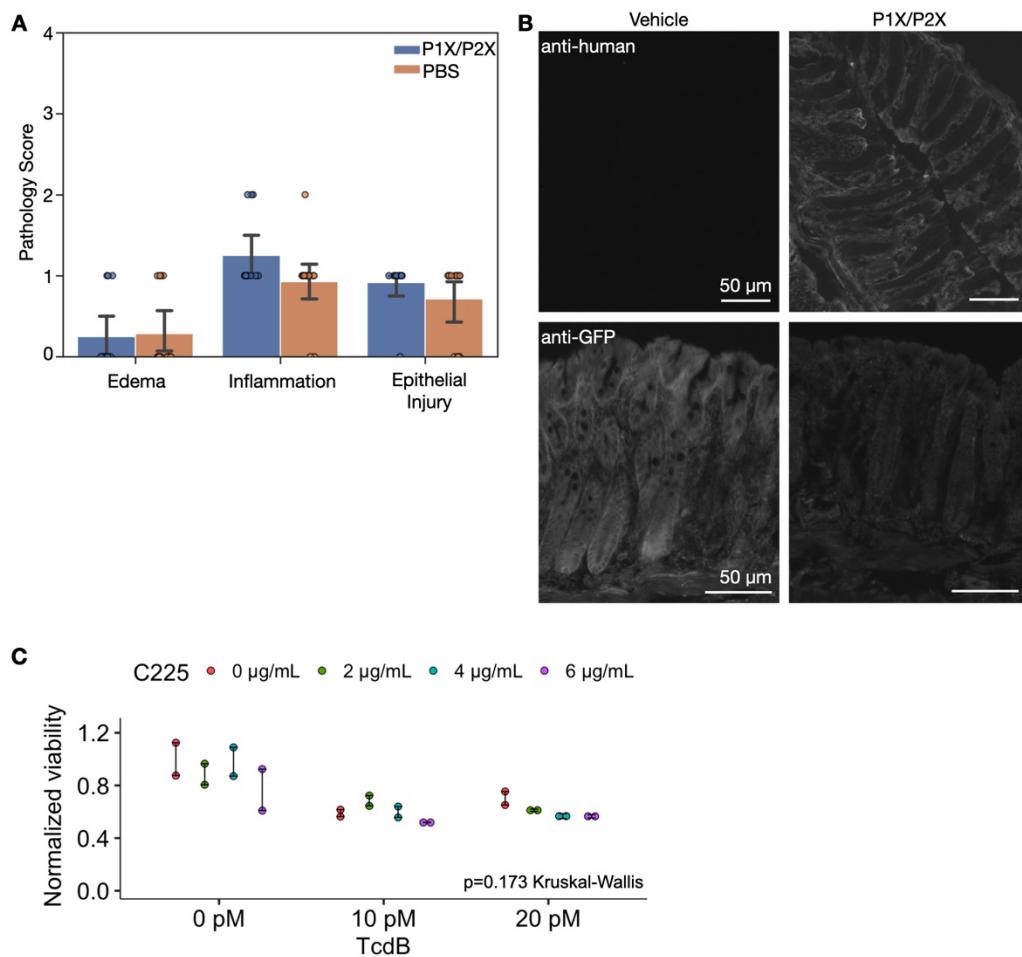
305


306 **Figure 3**

311 Epidermal growth factor (EGF) is used as a positive control. B, C) Cell viability assays for HT-
312 29 and Caco2 cells using CellTiter-Glo show lapatinib does not protect cells from TcdB. Within
313 any given TcdB concentration, there was no significant difference (adjusted *p*-value < 0.05)
314 between lapatinib and vehicle or between different lapatinib concentrations as measured by one-
315 way Kruskal-Wallis with Dunn's post-hoc test for multiple comparisons and Bonferroni
316 correction.

317

318 **Figure 4**


319

320 *Figure 4.* Lapatinib pretreatment does not protect normal human colonoids from TcdB-mediated
321 cell death. A) Phase contrast light microscopy images show normal human colonoids are killed
322 by TcdB (1 nM), but they are not protected by lapatinib (2 μ M) given 1 h before TcdB; scale bar

323 = 50 μ m. B) Quantification of the colonoid experiment in (A) using a range of lapatininib
324 concentrations. C) CellTiter-Glo viability assays with normal human colonoids, lapatininib
325 pretreatment, and lower concentrations of TcdB (10-20 pM). D) CellTiter-Glo viability assay
326 using dasatinib (30 μ M) pretreatment, which does not protect colonoids from 20 pM TcdB.

327

328 **Figure 5**

329

330 *Figure 5.* Neutralizing antibodies against mouse EGFR fail to protect the colon from TcdB-
331 mediated damage. A) Blinded histopathological scoring of mouse colon H&E tissue from
332 P1X/P2X-injected EGFR-EmeraldGFP mice compared to Vehicle controls. This bar plot

333 represents the mean score with error bars showing 95% confidence intervals. *p*-values were
334 calculated using the Mann-Whitney U test; Edema: 0.87, Inflammation: 0.10, Epithelial Injury:
335 0.21. B) Immunofluorescent staining of mouse colon tissue shows accumulation of the
336 humanized, neutralizing antibodies (top row) in P1X/P2X-treated mice and efficacy of the
337 neutralization as evident by reduction in EGFR-EmeraldGFP signal. C) TcdB induces human
338 colonoid death at 10-20 pM over 24 hrs, but C225 neutralizing antibody against human EGFR
339 does not protect colonoids; 2 independent wells, ~200 organoids/well. Kruskal-Wallis test was
340 used to identify a statistical difference between normalized viability as a function of C225
341 treatment, but the null hypothesis was confirmed (*p* = 0.173).

342

343 **References**

344

345 1. Barbut F, Jones G, Eckert C. Epidemiology and control of *Clostridium difficile* infections in
346 healthcare settings. *Curr Opin Infect Dis.* 2011;24: 370–376.
347 doi:10.1097/qco.0b013e32834748e5

348 2. Schnizlein MK, Young VB. Capturing the environment of the *Clostridioides difficile* infection
349 cycle. *Nat Rev Gastroenterol Hepatol.* 2022;19: 508–520. doi:10.1038/s41575-022-00610-0

350 3. Gerding DN, Johnson S, Rupnik M, Aktories K. *Clostridium difficile* binary toxin CDT. *Gut*
351 *Microbes.* 2014;5: 15–27. doi:10.1172/gmic.26854

352 4. Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Haslam D, Goldenring JR, et al.
353 *Clostridium difficile* Toxin B Causes Epithelial Cell Necrosis through an Autoprocessing-
354 Independent Mechanism. *PLoS Pathog.* 2012;8: e1003072. doi:10.1371/journal.ppat.1003072

355 5. Kordus SL, Thomas AK, Lacy DB. *Clostridioides difficile* toxins: mechanisms of action and
356 antitoxin therapeutics. *Nat Rev Microbiol.* 2022;20: 285–298. doi:10.1038/s41579-021-00660-2

357 6. Florin I, Thelestam M. Lysosomal involvement in cellular intoxication with *Clostridium*
358 *difficile* toxin B. *Microb Pathog.* 1986;1: 373–385. doi:10.1016/0882-4010(86)90069-0

359 7. Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K. Low pH-induced Formation of
360 Ion Channels by Clostridium difficile Toxin B in Target Cells*. *J Biol Chem.* 2001;276: 10670–
361 10676. doi:10.1074/jbc.m009445200

362 8. Just I, Selzer J, Wilm M, Eichel-Streiber C von, Mann M, Aktories K. Glucosylation of Rho
363 proteins by Clostridium difficile toxin B. *Nature.* 1995;375: 500–503. doi:10.1038/375500a0

364 9. Paparella AS, Cahill SM, Aboulache BL, Schramm VL. Clostridioides difficile TcdB Toxin
365 Glucosylates Rho GTPase by an SN i Mechanism and Ion Pair Transition State. *ACS Chem Biol.*
366 2022;17: 2507–2518. doi:10.1021/acschembio.2c00408

367 10. Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. *FEMS*
368 *Microbiol Rev.* 2017;41: 723–750. doi:10.1093/femsre/fux048

369 11. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. *Nat*
370 *Rev Dis Primers.* 2016;2: 16020. doi:10.1038/nrdp.2016.20

371 12. Peritore-Galve FC, Shupe JA, Cave RJ, Childress KO, Washington MK, Kuehne SA, et al.
372 Glucosyltransferase-dependent and independent effects of Clostridioides difficile toxins during
373 infection. *PLoS Pathog.* 2022;18: e1010323. doi:10.1371/journal.ppat.1010323

374 13. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, et al. Bezlotoxumab for
375 Prevention of Recurrent Clostridium difficile Infection. *N Engl J Med.* 2017;376: 305–317.
376 doi:10.1056/nejmoa1602615

377 14. Lyras D, O'Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, et al. Toxin B is
378 essential for virulence of Clostridium difficile. *Nature.* 2009;458: 1176–1179.
379 doi:10.1038/nature07822

380 15. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. The role of toxin A
381 and toxin B in Clostridium difficile infection. *Nature.* 2010;467: 711–713.
382 doi:10.1038/nature09397

383 16. Carter GP, Chakravorty A, Nguyen TAP, Mileto S, Schreiber F, Li L, et al. Defining the
384 Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and
385 the Host Response during Clostridium difficile Infections. *Mbio.* 2015;6: e00551-15.
386 doi:10.1128/mbio.00551-15

387 17. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, et al. Frizzled proteins are
388 colonic epithelial receptors for *C. difficile* toxin B. *Nature.* 2016;538: 350–355.
389 doi:10.1038/nature19799

390 18. MacDonald BT, He X. Frizzled and LRP5/6 Receptors for Wnt/β-Catenin Signaling. *Cold*
391 *Spring Harb Perspect Biol.* 2012;4: a007880. doi:10.1101/cshperspect.a007880

392 19. Chen P, Tao L, Wang T, Zhang J, He A, Lam K, et al. Structural basis for recognition of
393 frizzled proteins by Clostridium difficile toxin B. *Science*. 2018;360: 664–669.
394 doi:10.1126/science.aar1999

395 20. Mileto SJ, Jardé T, Childress KO, Jensen JL, Rogers AP, Kerr G, et al. Clostridioides
396 difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery
397 from disease. *Proc Natl Acad Sci U S A*. 2020;117: 8064–8073. doi:10.1073/pnas.1915255117

398 21. Na X, Zhao D, Koon HW, Kim H, Husmark J, Moyer MP, et al. Clostridium difficile toxin B
399 activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes.
400 *Gastroenterology*. 2005;128: 1002–1011. doi:10.1053/j.gastro.2005.01.053

401 22. Zhang Y, Li Y, Li H, Chen W, Liu W. Clostridium difficile toxin B recombinant protein
402 inhibits tumor growth and induces apoptosis through inhibiting Bcl-2 expression, triggering
403 inflammatory responses and activating C-erbB-2 and Cox-2 expression in breast cancer mouse
404 model. *Biomed Pharmacother*. 2018;101: 391–398. doi:10.1016/j.biopha.2018.02.045

405 23. Sunder SS, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer
406 therapy: pathophysiology, mechanisms and clinical management. *Signal Transduct Target Ther*.
407 2023;8: 262. doi:10.1038/s41392-023-01469-6

408 24. Chung Y-S, Lin Y-C, Hung M-S, Ho M-C, Fang Y-H. Clinical Impact of Epidermal Growth
409 Factor Receptor Tyrosine Kinase Inhibitor Associated Clostridioides difficile Infection Among
410 Patients with Lung Cancer. *OncoTargets Ther*. 2022;15: 1563–1571. doi:10.2147/ott.s386807

411 25. Vasavada S, Panneerselvam K, Amin R, Varatharajalu K, Okhuysen PC, Oliva ICG, et al.
412 Clostridioides difficile infection in cancer patients receiving immune checkpoint inhibitors. *Ann
413 Gastroenterol*. 2022;35: 393–399. doi:10.20524/aog.2022.0722

414 26. Pruitt RN, Chambers MG, Ng KK-S, Ohi MD, Lacy DB. Structural organization of the
415 functional domains of Clostridium difficile toxins A and B. *Proc Natl Acad Sci*. 2010;107:
416 13467–13472. doi:10.1073/pnas.1002199107

417 27. Markham NO, Bloch SC, Shupe JA, Laubacher EN, Thomas AK, Kroh HK, et al. Murine
418 Intrarectal Instillation of Purified Recombinant Clostridioides difficile Toxins Enables
419 Mechanistic Studies of Pathogenesis. *Infect Immun*. 2021;89. doi:10.1128/iai.00543-20

420 28. Monaghan TM, Seekatz AM, Markham NO, Yau TO, Hatziapostolou M, Jilani T, et al. Fecal
421 Microbiota Transplantation for Recurrent Clostridioides difficile Infection Associates With
422 Functional Alterations in Circulating microRNAs. *Gastroenterology*. 2021;161: 255–270.e4.
423 doi:10.1053/j.gastro.2021.03.050

424 29. Markham NO, Doll CA, Dohn MR, Miller RK, Yu H, Coffey RJ, et al. DIPA-family coiled-
425 coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in
426 hydrocephalus and heterotopia. *Mol Biol Cell*. 2014;25: 2592–2603. doi:10.1091/mbc.e13-08-
427 0492

428 30. Shelton CD, Sing E, Mo J, Shealy NG, Yoo W, Thomas J, et al. An early-life microbiota
429 metabolite protects against obesity by regulating intestinal lipid metabolism. *Cell Host Microbe*.
430 2023;31: 1604-1619.e10. doi:10.1016/j.chom.2023.09.002

431 31. Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB.
432 Cefoperazone-treated mice as an experimental platform to assess differential virulence of
433 *Clostridium difficile* strains. *Gut Microbes*. 2011;2: 326–334. doi:10.4161/gmic.19142

434 32. Tevaarwerk AJ, Kolesar JM. Lapatinib: A small-molecule inhibitor of epidermal growth
435 factor receptor and human epidermal growth factor receptor—2 tyrosine kinases used in the
436 treatment of breast cancer. *Clin Ther*. 2009;31: 2332–2348. doi:10.1016/j.clinthera.2009.11.029

437 33. Solmi R, Lauriola M, Francesconi M, Martini D, Voltattorni M, Ceccarelli C, et al.
438 Displayed correlation between gene expression profiles and submicroscopic alterations in
439 response to cetuximab, gefitinib and EGF in human colon cancer cell lines. *BMC Cancer*.
440 2008;8: 227. doi:10.1186/1471-2407-8-227

441 34. Nozaki M, Yasui H, Ohnishi Y. Ligand-Independent EGFR Activation by Anchorage-
442 Stimulated Src Promotes Cancer Cell Proliferation and Cetuximab Resistance via ErbB3
443 Phosphorylation. *Cancers*. 2019;11: 1552. doi:10.3390/cancers11101552

444 35. Huh WJ, Niitsu H, Carney B, McKinley ET, Houghton JL, Coffey RJ. Identification and
445 Characterization of Unique Neutralizing Antibodies to Mouse EGF Receptor. *Gastroenterology*.
446 2020;158: 1500–1502. doi:10.1053/j.gastro.2019.12.017

447 36. Yang Y-P, Ma H, Starchenko A, Huh WJ, Li W, Hickman FE, et al. A Chimeric Egfr Protein
448 Reporter Mouse Reveals Egfr Localization and Trafficking In Vivo. *Cell Rep*. 2017;19: 1257–
449 1267. doi:10.1016/j.celrep.2017.04.048

450 37. Fukai J, Nishio K, Itakura T, Koizumi F. Antitumor activity of cetuximab against malignant
451 glioma cells overexpressing EGFR deletion mutant variant III. *Cancer Sci*. 2008;99: 2062–2069.
452 doi:10.1111/j.1349-7006.2008.00945.x

453 38. Yamaoka T, Yan F, Cao H, Hobbs SS, Dise RS, Tong W, et al. Transactivation of EGF
454 receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis. *Proc Natl
455 Acad Sci*. 2008;105: 11772–11777. doi:10.1073/pnas.0801463105

456 39. Zhang Y, Dubé PE, Washington MK, Yan F, Polk DB. ErbB2 and ErbB3 regulate recovery
457 from dextran sulfate sodium-induced colitis by promoting mouse colon epithelial cell survival.
458 *Lab Invest*. 2012;92: 437–450. doi:10.1038/labinvest.2011.192

459 40. Zhang X, Bandyopadhyay S, Araujo LP, Tong K, Flores J, Laubitz D, et al. Elevating EGFR-
460 MAPK program by a non-conventional Cdc42 enhances intestinal epithelial survival and
461 regeneration. *JCI Insight*. 2020;5: e135923. doi:10.1172/jci.insight.135923

462