

1 **Intensifying marine heatwaves and limited protection threaten global kelp forests**

2

3 **Authors:** Nur Arafah-Dalmau^{1,2,3}, Juan Carlos Villaseñor-Derbez¹, David S. Schoeman^{4,5},
4 Alejandra Mora-Soto⁶, Tom W. Bell⁷, Claire L. Butler⁸, Maycira Costa⁶, Loyiso V. Dunga⁹, Henry
5 F. Houskeeper⁷, Cristian Lagger^{10,11}, Carolina Pantano¹², Daniela Laínez del Pozo¹³, Kerry J.
6 Sink^{14,15}, Fiorenza Micheli^{1,16}, Kyle C. Cavanaugh²

7

8 **Affiliations:**

9

10 ¹Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA

11

12 ²Department of Geography, University of California Los Angeles, Los Angeles, California, USA

13

14 ³Centre for Biodiversity Conservation, School of the Environment, University of Queensland, St. Lucia, QLD,
15 Australia

16

17 ⁴Ocean Futures Research Cluster, School of Science, Technology and Engineering, University of the Sunshine
18 Coast, Maroochydore, QLD, Australia

19

20 ⁵Department of Zoology, Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South
21 Africa

22

23 ⁶Department of Geography, University of Victoria, Victoria, British Columbia, Canada

24

25 ⁷Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA,
26 USA

27

28 ⁸Institute of Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia

29

30 ⁹University of Cape Town, Cape Town, South Africa

31

32 ¹⁰Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba,
33 Argentina

34

35 ¹¹Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal
36 (IDEA), Córdoba, Argentina

37

38 ¹²Fundación Por El Mar (PEM), Argentina

39

40 ¹³Departments of Geography and Anthropology, University College London

41

42 ¹⁴South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa

43

44 ¹⁵Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa

45

46 ¹⁶Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, California, USA

47

48 Correspondence to: n.arafahdalmau@uq.net.au

49 Abstract

50 Kelp forests are one of the earth's most productive ecosystems and are at the greatest risk from
51 climate change, yet little is known regarding their future threats and current conservation
52 status. By combining a global remote sensing dataset of floating kelp forests with climate data and
53 projections, we find that exposure to projected marine heatwaves will increase ~8 times compared
54 to contemporary (2001-2020) exposure for intermediate climate scenarios. While exposure will
55 intensify for all forests, climate refugia emerge for some southern hemisphere kelp forests, which
56 have lower exposure to contemporary and projected marine heatwaves. Under these escalating
57 threats, less than 3% of global kelp forests are currently within highly restrictive marine protected
58 areas, the most effective conservation measure for providing climate resilience. Our findings
59 emphasize the urgent need to increase the global protection of kelp forests and set bolder climate
60 adaptation goals.

61 Main

62 Marine protected areas (MPAs) are a cornerstone of marine conservation¹. Promoted by
63 international agreements, such as the Convention on Biological Diversity (CBD) Aichi Target 11²,
64 the area of marine ecosystems under some form of protection has increased since the turn of the
65 century³. Because climate change is the main long-term threat to biodiversity⁴⁻⁶, the newly agreed
66 Global Biodiversity Framework at COP15⁷ calls for effectively protecting 30% of the oceans by
67 2030. A central component of the post-2020 targets is increasing the representation of different
68 habitats under effective protection while adapting to climate change. Although many studies report
69 the protection of critical habitat-forming species, such as corals, seagrass, and mangroves³, other
70 essential marine habitats, such as kelp forests, remain largely neglected⁸ (but see^{9,10}). Information
71 on kelp forest distribution, threats associated with climate change, and protection status is urgently
72 needed to guide ongoing local and global protection efforts.

73 Kelp forests dominate >30% of the world's rocky reefs and are among the most productive
74 ecosystems on earth —comparable to terrestrial rainforests and coral reefs¹¹⁻¹³. However, marine
75 heatwaves (MHWs) and anthropogenic activities threaten kelp forests¹⁴⁻¹⁷ and their capacity to
76 provide ecosystem services worth billions of dollars¹⁸⁻²⁰. Kelp forests are among the marine
77 ecosystems at greatest risk from MHWs⁶, which is concerning given that MHWs are projected to
78 become more frequent and severe in the next decades²¹. For example, Tasmania and northern
79 California have lost >90% of their kelp forests following MHWs and other impacts of climate
80 change^{10,22,23}. Climate adaptation strategies —including MPAs— are urgently needed to halt and
81 reverse this loss^{15,24}. Well-managed and highly restrictive MPAs —no-take marine reserves where
82 all fishing activities are prohibited—are the most effective type of MPA for supporting the stability
83 of kelp forests²⁵ and their resilience to MHW impacts^{26,27} by facilitating the recovery of higher-
84 trophic-level, which helps control kelp grazer populations and prevent overgrazing of kelp²⁸⁻³⁰.

85 Monitoring subtidal kelp populations over large spatial and temporal scales can be challenging.
86 However, the largest species (i.e., *Macrocystis pyrifera*, *Nereocystis leutkeana*, *Ecklonia maxima*)
87 can be mapped by remote sensing because they create extensive forests that float on the surface.
88 Recent advances in satellite imaging of surface-canopy-forming kelp species provide an
89 opportunity to map their distribution³¹, quantify the threats posed by MHWs, and assess their
90 protection status. These data can also inform other climate-adaptation strategies such as identifying
91 climate refugia^{32,33}—areas less impacted by or more resilient to climate change—for kelp forests.
92 Effectively protecting climate refugia for kelp forests is a priority for conservation³⁴ because, in
93 these areas, biodiversity can persist³² and enhance the resilience of other kelp forests by
94 maintaining a source of recovery for impacted kelp habitats²⁴.

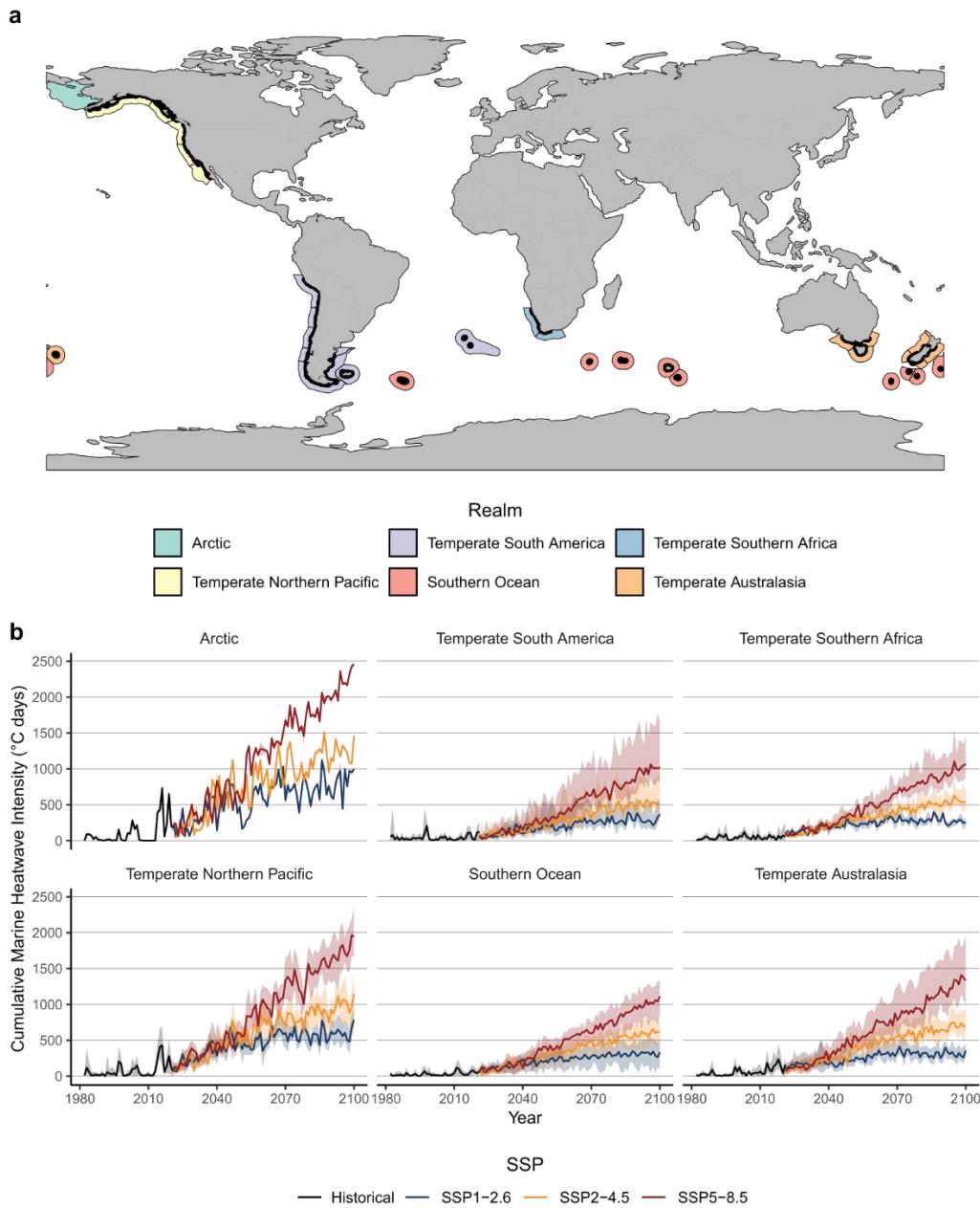
95 Here, we compile the first comprehensive global map of surface-canopy-forming kelp forests
96 (henceforth “kelp forests”) and leverage these datasets to project the global exposure of kelp forests
97 to MHWs and assess their protection status within MPAs. To create the global kelp forest map, we
98 assemble existing regional and national remote-sensing datasets from Landsat observations (1984-
99 present), supplemented with Sentinel-2 satellite imagery (2015-2019³⁵) (Supplementary Table 1;
100 see methods). To project threats to kelp forests from climate change, we estimate future cumulative
101 annual MHW intensities from an ensemble of sea surface temperature (SST) from 11 Earth System
102 models, using three climate scenarios generated under the IPCC Shared Socio-Economic Pathways
103 (SPPs)³⁶ (see methods). We then quantify the global protection status and the representation of
104 kelp forests at both country and biogeographic levels (i.e., realm, ecoregions³⁷) within MPAs
105 categorized as highly, moderately, or less protected based on restrictions to extractive activities
106 obtained from Protected Seas³⁸ (see methods). Our findings reveal increasing threats to all kelp
107 forests from future MHWs, although some southern hemisphere forests may act as climate refuges.
108 We also found that kelp forests remain largely unprotected within restrictive MPAs, the most
109 effective type of MPA, which are poorly represented globally. These findings emphasize the urgent
110 need to increase the global protection and effective representation of kelp forests and, given the
111 scale of the threat posed by future MHWs, for bolder climate adaptation goals for kelp forests.

112 **Global distribution of kelp forests**

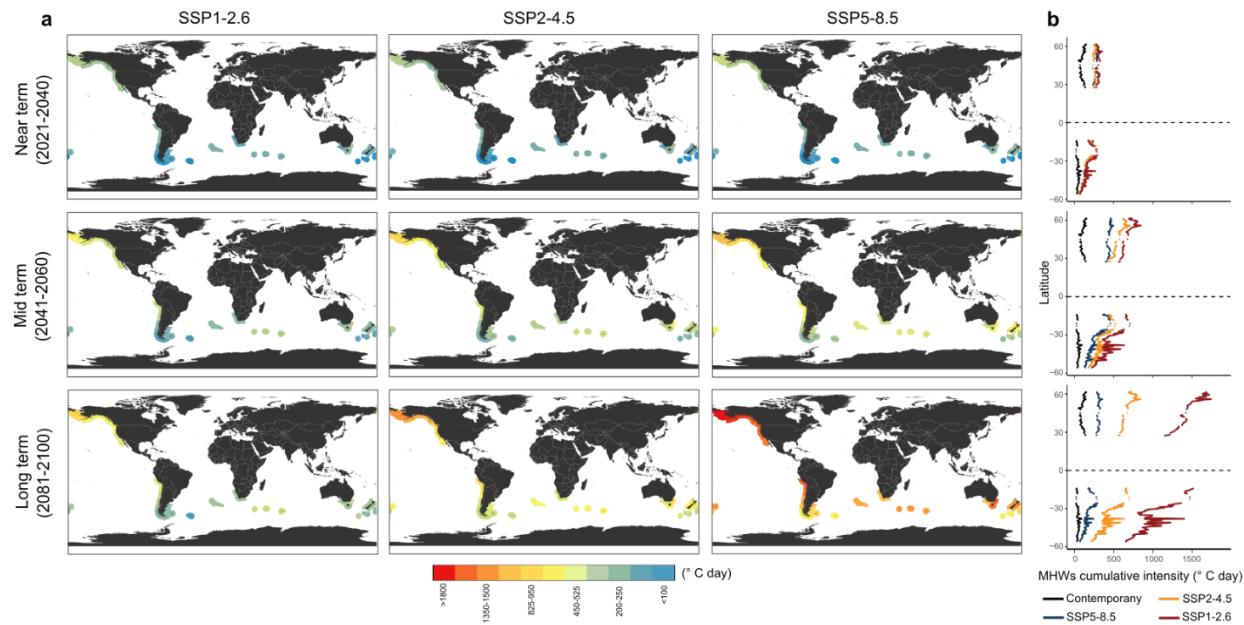
113 We found surface-canopy-forming kelp forests in only 12 nations distributed across 6
114 biogeographic realms and 32 ecoregions, mostly in mid-latitudes in the Pacific, Atlantic, and
115 Indian Oceans (Fig. 1a). Most of the kelp forests are located in five ecoregions, with 23.7% in
116 Malvinas/Falklands, 20.9% in Channels and Fjords of Southern Chile, 12.8% in Southern
117 California Bight, 10.3% in Kerguelen Islands, and 9.2% in Northern California; while 17
118 ecoregions combined account for only 1% of the kelp forests (Supplementary Fig. 1).

119 In the northern hemisphere, kelp forests can be found at their highest latitudes in the USA (~61.4
120 °N), extending southward to their warm-distribution limit in Mexico (~27 °N). In the southern
121 hemisphere, kelp forests can be found at their lowest latitudes, overall, at their warm-distribution

122 limit in Peru (~13.6 °S), extending to their highest latitudes in Chile (~56 °S). Other warm-
123 distribution limits of kelp forests in the southern hemisphere include Argentina, Namibia, South
124 Africa, Australia, and New Zealand.


125 **Contemporary and Future exposure of kelp forests to marine heatwaves**

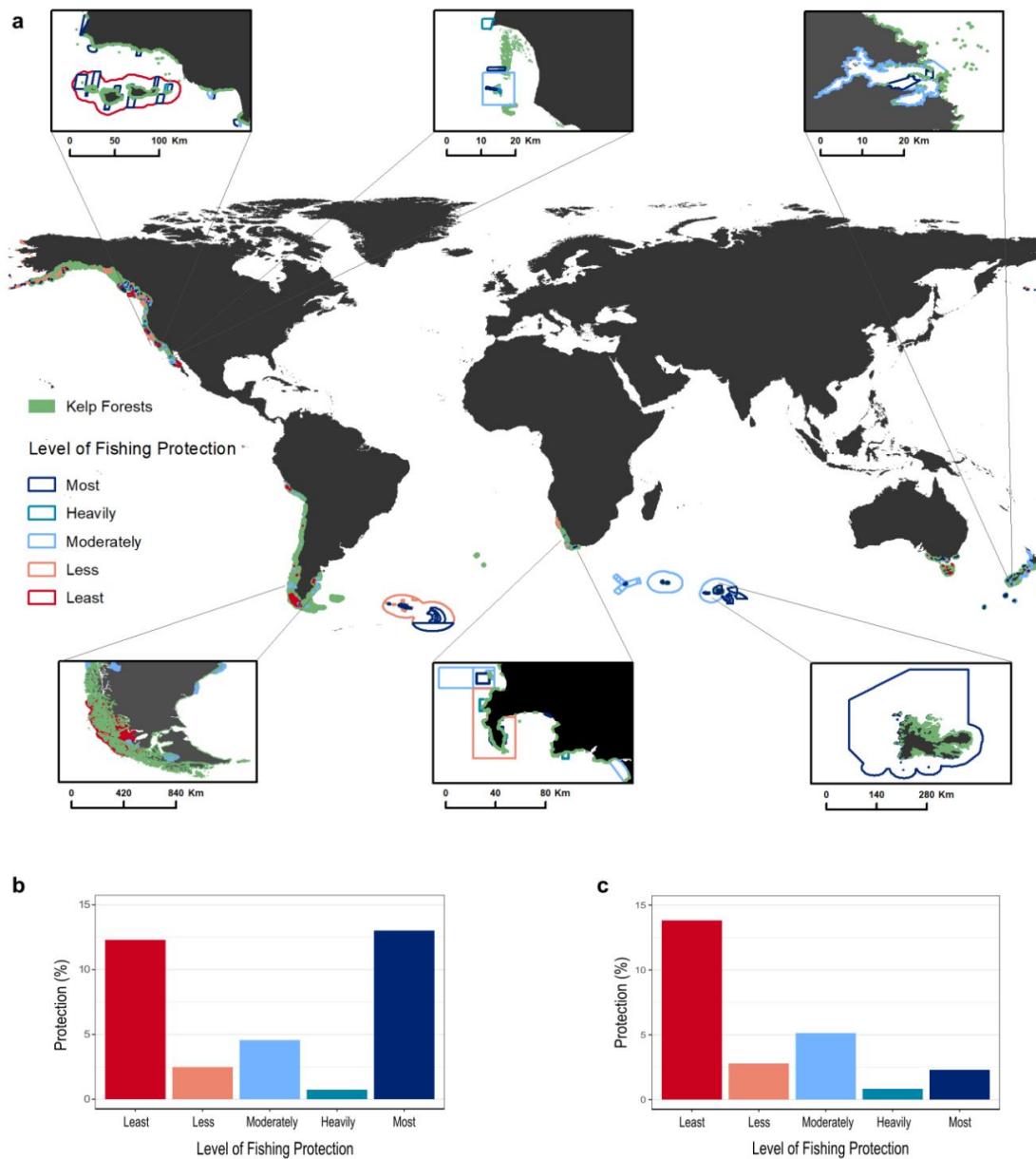
126 The exposure of kelp forests to contemporary (2001-2020) average annual cumulative MHW
127 intensities (henceforth “cumulative MHW intensities (°C days)”) was over two-fold higher in the
128 northern hemisphere than in the southern (Supplementary Table 2). The Arctic and Temperate
129 northern Pacific realms were the most exposed to MHWs, particularly the Eastern Bering Sea and
130 the Gulf of Alaska ecoregions, which have registered an average cumulative MHW intensity from
131 2001–2020 of 177.4 ± 15.1 and 136.7 ± 1.8 °C days, respectively. The Temperate South America
132 realm was the least exposed, particularly the Malvinas/Falkland and Prince Edward Islands
133 ecoregions, which have registered an average cumulative MHW intensity from 2001–2020 of only
134 20.5 ± 0.7 and 23.7 ± 4.3 °C days.


135 Projected future MHWs for kelp forests increase for each realm, ecoregion, climate scenario, and
136 time (Fig. 1b and 2a and Supplementary Fig. 2 and 3). In the near term (2021-2040), kelp forests
137 are projected to be subject to > 2 times higher exposure to cumulative MHW intensities compared
138 to contemporary exposure, with similar values across climate scenarios (Supplementary Table 2-
139 5). Projections suggest that these magnitudes will continue to intensify, and under SSP5-8.5, kelp
140 forests could be subject to > 6 to > 16 times higher cumulative MHW intensities in the mid (2041-
141 2060) and long term (2081-2100), respectively, compared to contemporary exposure. These
142 magnitudes are ~ 2 to ~ 3 times higher than corresponding projections under SSP1-2.6 and SSP2.4-
143 5, respectively.

144 The Arctic and the Temperate North Pacific are projected to be the most exposed to future MHWs
145 under all climate scenarios, while Temperate South America will be the least exposed (Fig. 1b),
146 matching the general spatial patterns in contemporary exposure. Overall, the pattern is very similar
147 across SSP scenarios, with the northern hemisphere experiencing nearly twice the exposure to
148 future MHWs than the southern hemisphere (Fig. 2b). However, some differences emerge. We
149 found a difference in the latitudinal pattern of exposure between the northern and southern
150 hemisphere. While in the northern hemisphere projections suggest a latitudinal pattern of
151 increasing exposure to future MHWs from lower to higher latitudes, in the southern hemisphere,
152 this pattern is reversed (Fig. 2b). For example, in the mid and long term and under all future
153 scenarios for the northern hemisphere, the Eastern Bering Sea and the Gulf of Alaska are projected
154 to become the most exposed ecoregions, while the southern California Bight becomes the least
155 exposed (Fig. 2a and Supplementary Fig. 3), albeit with elevated levels of MHW exposure relative
156 to the present. In contrast, in the southern hemisphere lower latitude ecoregions such as Cape Howe
157 and Humboldtian are projected to be the most exposed to future MHWs while remote islands in

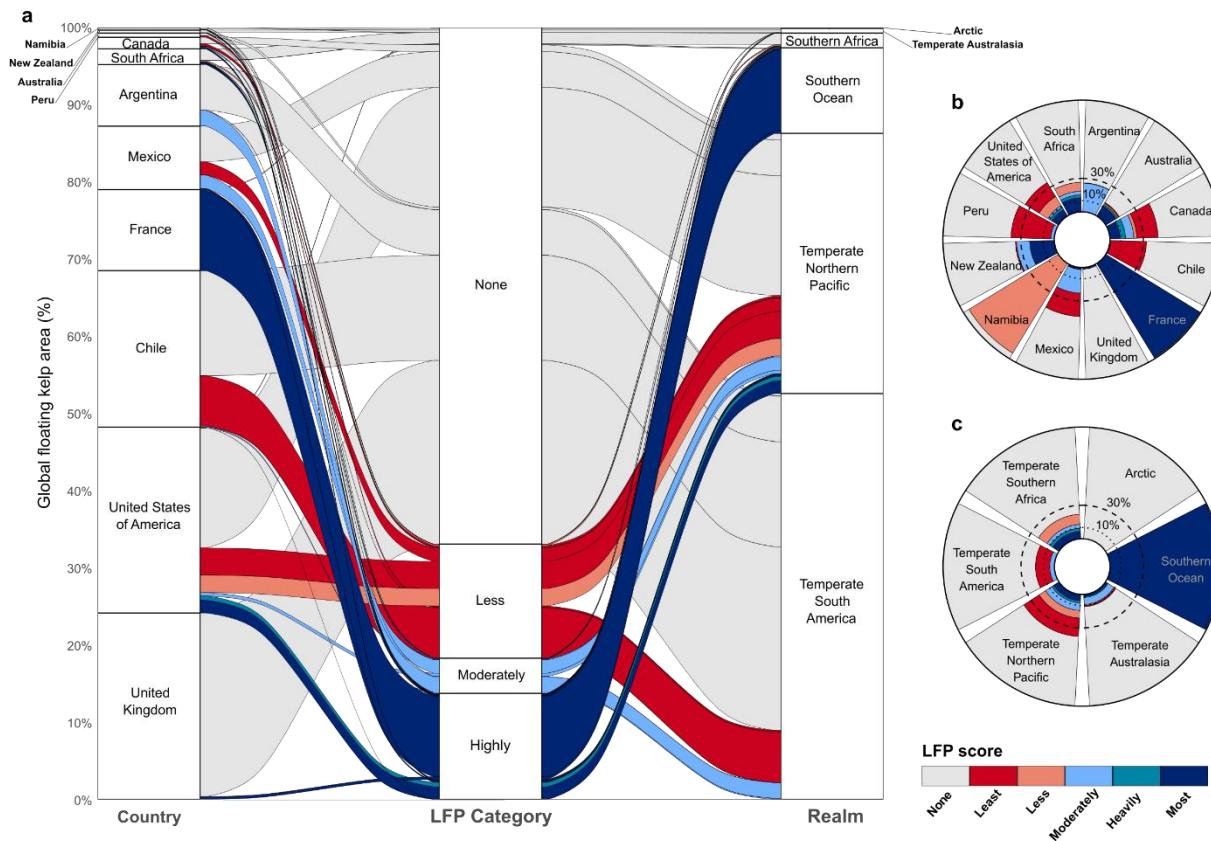
158 high latitudes and ecoregions such as the Channels and Fjords of Southern Chile will be the least
159 exposed.

160 **Figure 1 - Global distribution of floating kelp forests and exposure to contemporary and**
161 **future marine heatwaves.** Panel **a** map of kelp distribution (black lines) across 32 biogeographic
162 ecoregions (census³⁷) (polygons; the color indicates the realm to which they belong), **b** realm-
163 specific exposure of kelp forest to historical (1982-2020) and future cumulative annual MHW
164 intensities (2021-2100) across three climate scenarios (SSP-1.26, SSP-2.45, SSP-5.85). The solid
165 line shows the mean across ensemble medians for all pixels, and the shaded area represents the 5th
166 and 95th percentiles.


167 **Figure 2- Ecoregional exposure of floating kelp forests to contemporary and future marine**
168 **heatwaves.** a mean cumulative annual marine heatwave intensity for all pixels in each of 32
169 ecoregions under three climate scenarios (SSP-1.26, SSP-2.45, SSP-5.85) and three-time frames
170 (near, mid, and long term). b Latitudinal plots representing mean cumulative annual marine
171 heatwave intensities by 1° of latitude under contemporary and climate scenarios for each time.

172 Global protection status of kelp forests

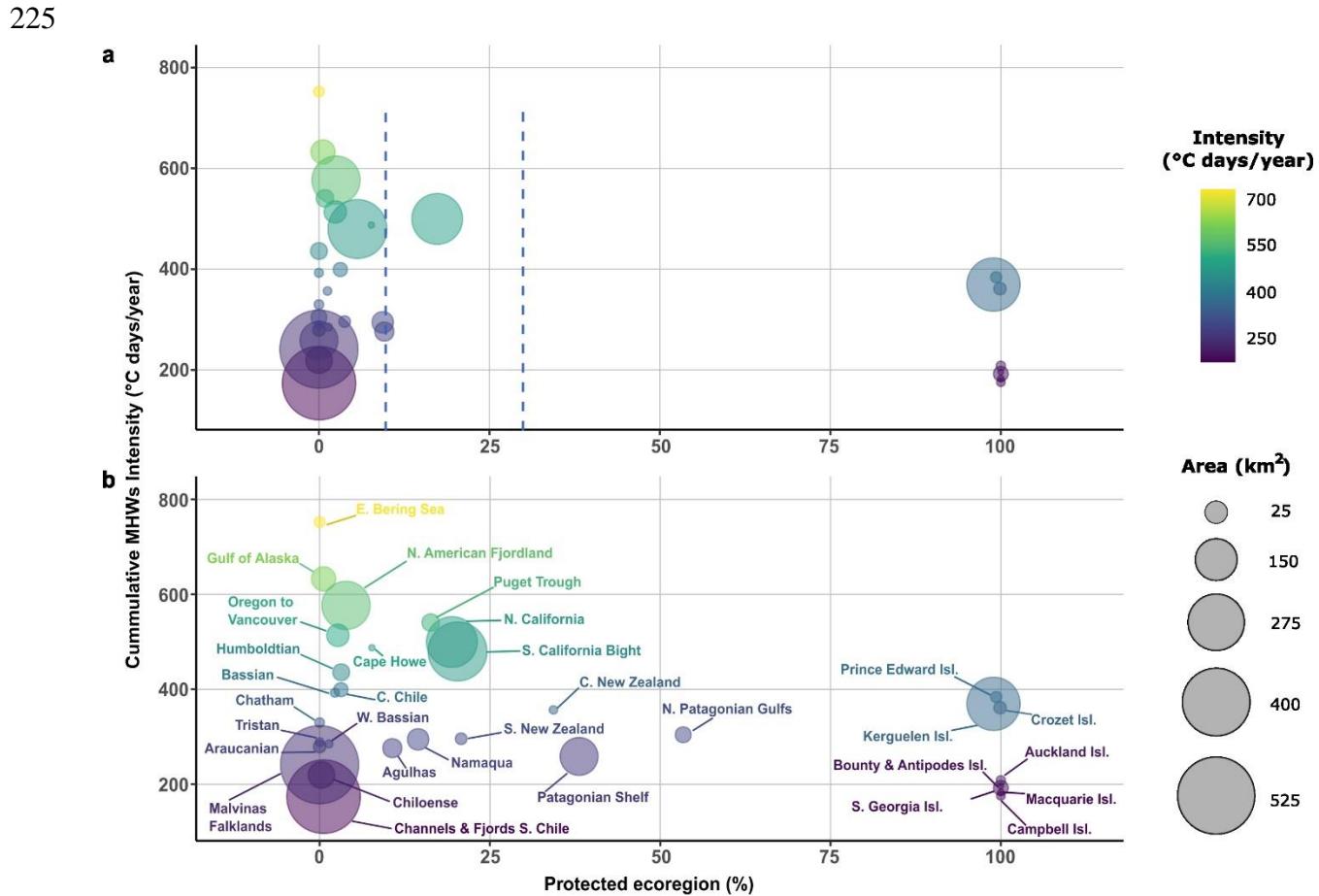
173 Globally, more than 33.1% of kelp forests are protected by MPAs, of which 13.7% are highly
174 protected (the most effective type of MPAs), 4.6% are moderately protected, and 14.8% are in
175 less-protected MPAs (Fig. 3a,b and 4a). However, most of the effective protection for kelp forests
176 is in remote islands in the Southern Ocean realm, and when excluding these areas, only 2.8% of
177 the global kelp forests are highly protected from fishing activities (Fig. 3c). At the country level,
178 France has placed all their kelp forests within highly protected MPAs (Fig. 4a,b) and is the only
179 country that meets the current 30% effective representation target⁷. New Zealand, South Africa,
180 Canada, Australia, and the USA have at least 10% of their kelp forests highly protected (Fig. 4a,b).
181 However, this protection is in their overseas territories in remote islands for all of France
182 (Kerguelen and Crozet Islands) and much of New Zealand, South Africa, and Australia. Australia
183 has only 2.7%, New Zealand 3.2%, and South Africa 9.5% of their continental kelp forests highly
184 protected. Mexico and Great Britain have provided effective protection for less than 2% of their
185 kelp forests, Chile less than 0.02%, and Peru, Argentina, and Namibia none.


186 Of the world's biogeographic realms, the Southern Ocean has 99.9% of its kelp forests within
187 highly protected MPAs, while all other realms have less than 10%. However, at least 10% of kelp
188 forests are protected in some form of MPA in all realms, except for the Arctic, where the area of
189 surface-canopy forming kelp is minimal and no kelp forests are protected under any category (Fig.

190 4c). At the ecoregional level, only 9 ecoregions have met the old 10% effective representation
191 targets² for kelp forests within highly protected MPAs, all in remote islands except for the Northern
192 California ecoregion (Supplementary Fig. 4). Overall, 47.2% of ecoregions have less than 10% of
193 the kelp forests protected, regardless of the MPA type. Only one nation, one realm, and 25% of
194 ecoregions (all remote islands) meet the new 30% target for effective representation⁷ for kelp
195 forests.

196 **Figure 3 - Global distribution of floating kelp forests and marine protected areas by**
197 **categories of protection. a** Global map of kelp forests and marine protected areas, we provide six
198 fine-scale views. Starting from the top-left and moving clockwise: USA, Mexico, New Zealand,
199 France, South Africa, and Chile and Argentina. Global protection (%) of kelp by category of

200 protection **b** including all realms and **c** excluding the Southern Ocean realm. Protection categories
201 are based on the Level of Fishing Protection (LFP)³⁸ score assigned to each marine protected area.
202 The scores are divided in three categories: Lightly protected (LFP score of “Least” and “Less”),
203 moderately protected, and highly protected (LFP score of “Heavily” and “Most”).
204



205
206 **Figure 4 - Global status and distribution of floating kelp forest protection.** **a** Alluvial diagram
207 with the distribution and protection of kelp by country and realm (% of total area), and radial plots
208 showing percentage protection of kelp at the level of **b** country and **c** biogeographic realm. The
209 dotted and dashed lines show the old 10%² and the current 30%⁷ effective protection targets. Note
210 that we included the Malvinas/Falkland Islands as part of the United Kingdom territory, although
211 we acknowledge that Argentina has ongoing legal claims for their sovereignty.
212

213 Ecoregional future marine heatwave threats and protection status

214 Kelp forests within the ecoregions that are most threatened by projected MHWs and currently have
215 low levels of effective protection (highly protected) include the Bering Sea (none protected), the
216 Gulf of Alaska (0.6%), the North American Fjordlands (2.5%), the Puget Through (0.09%), and
217 the Oregon to Vancouver ecoregions (2.4%) (Figure 5a,b and Supplementary Fig. 5 and 6).
218 Northern California is the only ecoregion projected to be highly threatened by MHWs where at least

219 10% of kelp forests are inside highly protected MPAs. In contrast, eight ecoregions that have all
220 their kelp forests inside highly protected MPAs will face low to intermediate threats from projected
221 MHWs under the SSP2.4-5 scenario. These ecoregions are all located in remote islands of the
222 Southern Ocean realm. When combining highly and moderately protected MPAs, the Patagonian
223 Shelf and North Patagonian Gulfs ecoregions have at least 30% of their kelp forests protected and
224 low exposure to MHWs (Fig. 5b).

226 **Figure 5.- Relationship between threat posed by future marine heatwaves and level of**
227 **protection for floating kelp forests.** Scatterplots of mean future cumulative annual marine
228 heatwave intensities for the midterm (2041-2060) under SSP2-4.5 and the amount of kelp forest **a**
229 highly protected, **b** highly and moderately protected combined. The size of the bubble indicates
230 the amount of kelp in each ecoregion. The dashed blue vertical lines represent the old 10%² and
231 the current 30%⁷ targets for effective protection.

232
233
234
235

236 **Discussion**

237
238 We present the first global map of the protection status of floating kelp forests, which allowed us
239 to identify escalating climate change threats and important conservation gaps for kelp forest
240 ecosystems globally. Although one country and a few ecoregions are meeting current international
241 protection targets⁷ for kelp forests, many of these MPAs are in remote islands with low levels of
242 exposure to contemporary and projected MHWs and few non-climatic threats³⁹. When kelp forests
243 in remote islands are excluded, less than 3% of kelp forests are inside highly restrictive MPAs —
244 no-take marine reserves — the most effective type of MPA for conserving biodiversity^{1,40} and for
245 enhancing climate resilience^{26-28,30,41-43}. Thus, current global protection does not adequately
246 account for anthropogenic pressures on kelp forest ecosystems. It is concerning that the kelp forests
247 most exposed to current and projected MHWs have minimal protection, which suggests that their
248 resilience is likely being compromised. Therefore, to achieve international conservation
249 commitments and climate adaptation goals, most countries and ecoregions require additional
250 investments to increase the area of kelp forests that are effectively protected. This presents a unique
251 opportunity for designing and implementing climate-smart MPAs²⁴.

252
253 Our study reveals that marine heatwaves will increasingly threaten kelp forests under all projected
254 SSP scenarios and time frames. If greenhouse emissions are not mitigated, kelp forests could be
255 exposed to >16 times the magnitude of contemporary exposure under extreme scenarios by the
256 end of the century. That represents an increase of 2–5°C in average ocean temperatures, which in
257 some regions may permanently surpass physiological tolerances of kelp forests, impact their
258 distribution, restructure associated ecological communities and impact the livelihood of local
259 human communities^{4,14,16,18,19,44-47}. Kelp forests near their current warm distribution limit will
260 likely be the most affected and subject to range contractions^{14,45,48,49}. Predicting whether MPAs
261 can provide resilience to kelp forest ecosystems under such extreme and persistent changes is
262 challenging. However, for less-extreme emission scenarios that track current mitigation
263 policies^{50,51}, the magnitude of exposure to future MHWs will be two times lower than for extreme
264 scenarios. Under these conditions, it is more likely that marine reserves can support the resilience
265 of kelp forests and enhance their adaptive capacity.

266
267 MPAs cannot directly mitigate the impacts of MHWs that surpass the physiological thresholds of
268 kelp forests; however, they can minimize other non-climatic threats, such as overfishing and
269 habitat destruction, thereby promoting the recovery of kelp forests following MHWs. For example,
270 after the 2014–2016 MHWs in the northeast Pacific Ocean, urchins overgrazed kelp forests and
271 caused many of them to collapse into less biodiverse ecosystems^{15,22}. However, highly protected
272 MPAs have prevented kelp forest collapse and have provided resilience to climate impacts by
273 facilitating recovery of overfished predators that control urchin populations^{29,30}. MPAs will likely
274 not be enough to support the persistence of kelp forests, given the magnitude of future climate
275 threats reported here, so other climate-adaptation strategies will be necessary, particularly for areas

276 of high exposure to future MHWs, such as the Bering Sea, the Gulf of Alaska and the North
277 American Fjordlands. These strategies include identifying and protecting climate refugia, restoring
278 degraded kelp, identifying genetically resilient kelp stocks, and managing other anthropogenic
279 impacts not mitigated by MPAs^{15,52}.

280
281 We identified areas that will likely act as climate refugia—projected to be less exposed to future
282 MHWs—where kelp forests are likely to persist^{9,10,24,53}. We found that although many ecoregions
283 with potential climate refugia have all their kelp forests protected inside MPAs, the Southern
284 Fjordlands of Chile and the Malvinas/Falklands ecoregions have no protection and account for
285 >40% of the global distribution of kelp forests. These ecoregions emerge as priority areas for
286 global conservation of kelp forests, and efforts are needed to secure their effective protection and
287 representation³⁹ before other non-climatic threats intensify and erode their resilience.

288 It is important to note that our analysis includes only surface canopy kelp forests, thus excluding
289 other kelp species. There are > 120 laminarian kelp species, of which only three of the largest kelp
290 species form extensive floating canopies that can be detected by remote sensing. Our estimates
291 likely represent overall kelp distribution and protection in regions where floating kelps co-exist
292 with other kelp species. However, some areas included in our study and other nations and regions
293 not included here have extensive subsurface kelp forests. Given the limitations in detecting
294 subsurface canopy kelp species, they are likely less-well represented here than floating kelp
295 species. This is a substantial gap for kelp conservation and an avenue for novel technologies and
296 research⁵⁴ to address associated needs, as these subsurface kelps also support diverse and
297 productive ecosystems^{13,55} and human livelihoods²⁰. We also note that our compiled map may
298 overestimate or underestimate floating kelp coverage for those regions where validation of
299 globally robust classifier maps is presently incomplete (e.g., Canada, Chile, New Zealand) and has
300 been supplemented using a global map³⁵. Therefore, the coverage of floating kelp reported here
301 need to be carefully used for those regions and updated as new information becomes available.

302 Our analysis uses the distribution of present surface canopy kelp, and it does not account for range
303 contractions or expansions of kelp forests that are projected under climate scenarios^{45,46}.
304 Integrating future range shifts of kelp species and associated biodiversity under climate scenarios
305 could guide the identification of climate-smart priority areas for kelp forest conservation²⁴. Finally,
306 the MPA dataset used here has some limitations regarding the quantification of protection. For
307 example, it does not account for other human activities that MPAs can manage (e.g., mining,
308 dredging) or indicators of management efficiency (e.g., budget capacity, stage of establishment)¹
309 that need to be included to ensure MPAs are effectively protecting ecosystems⁵⁶. Therefore,
310 including such information will likely decrease the coverage of kelp forests within highly protected
311 MPAs. However, a comprehensive dataset of protection effectiveness is currently unavailable for
312 all countries and MPAs (e.g., <https://mpatlas.org/>), and to date, Protected Seas³⁸ is the most
313 complete database available to assess the level of restriction inside MPAs.

314

315 **Conclusions**

316

317 Kelp forests remain largely excluded from most international conservation policies^{8,57}, despite
318 their enormous contribution to earth's biodiversity^{12,13} and provisioning of ecosystem services²⁰.
319 Nations have an opportunity to harness, protect, and restore kelp forests⁵⁸, not only for their
320 function as biogenic habitats and biodiversity hot spots¹³, but also to support their role in carbon
321 sequestration and mitigation of climate change⁵⁹. In addition, kelp forests provide food and support
322 the livelihoods of millions of people worldwide^{13,20}. As part of efforts to protect 30% of the oceans
323 by 2030⁷, nations have an opportunity to explicitly include the representation of kelp forests in
324 their national conservation policies. Where nations share ecoregions, transboundary management
325 and coordination may also be needed²⁴. However, given the immediate and escalating threats posed
326 by climate change^{14,16,44} and other anthropogenic stressors, representation, though essential, may
327 not be enough to secure the persistence of kelp forests. It is paramount that kelp forests are
328 protected in each ecoregion, through representative, adequate, and well-connected networks of
329 climate-smart MPAs that consider additional climate adaptation strategies²⁴.

330 **Methods**

331 **Mapping kelp forests**

332 We compiled existing regional and national datasets of surface-canopy forming kelp derived using
333 remote sensing observations (Supplementary Table 1). We compiled regional estimates of kelp
334 canopy derived from up to four Landsat sensors: Landsat 5 Thematic Mapper (1984–2011),
335 Landsat 7 Enhanced Thematic Mapper+ (1999–present), Landsat 8 Operational Land Imager
336 (2013–present), and Landsat 9 Operational Land Imager-2 (2021–present). The applicable Landsat
337 observations have pixel resolutions of 30 × 30 m and repeat times of 16 days (8 days since 1999
338 in most years because two Landsat sensors were operational). Classification of floating kelp
339 canopy was derived by applying a globally robust random forest classifier to individual Landsat
340 scenes⁶⁰. The compiled datasets include minor differences in methodologies and time periods, but
341 they all cover approximately over 30 years (1984 onwards) (Supplementary Table 1). Kelp maps
342 were created by compositing observations of kelp presence across this time series. The maps
343 include most of the USA (California, Oregon, parts of Washington, and parts of Alaska) and all of
344 Mexico, Peru, and Argentina (available at <https://kelpwatch.org/>)⁶⁰, most of the United Kingdom⁶¹
345 (Malvinas/Falkland Islands), and most of Australia²³ (Tasmania). We included the
346 Malvinas/Falkland Islands as part of the United Kingdom territory, although we acknowledge that
347 Argentina has ongoing legal claims for their sovereignty.

348

349 We then used existing maps for South Africa⁶² and an empirical global map³⁵ derived, both, from
350 Sentinel-2 satellite data for the areas where the Landsat maps are not available. For the global
351 empirical map, kelp area was calculated through a band-difference threshold algorithm validated
352 using ground observations of *Macrocystis pyrifera* forests with high confidence in South

353 America³³. This method averages all the available images from the Sentinel-2 satellite sensor from
354 26 June 2015 to 23 June 2019 to create a cloud-free mosaic. It then applies band-difference
355 thresholds to identify pixels likely containing floating kelp canopy and a land mask using global
356 digital elevation models (ALOS and SRTM), discarding topography with elevation >0 m. The
357 global map has not been validated for all areas and has some detection caveats; thus, region-
358 specific uncertainties are unknown. For this reason, we excluded pixels that fell within a 30-m
359 buffer relative to the coastline because the global map does not distinguish between intertidal green
360 algae and floating kelp forests. We also masked those pixels that overlie estuaries, as this can also
361 be a source of false positives. See Supplementary Table 1 for sources of information used to apply
362 filters and masks. All kelp datasets were converted from coordinates to shapefiles with
363 ArcMap10.8 using the World Geodetic System 1984 (WGS84). The final kelp habitat map
364 includes any pixel that the satellite detected kelp at any point in the time series.

365 **Exposure of kelp forests to contemporary and future marine heatwaves**

366 We estimated the expected threat of climate change to kelp forests by calculating historical and
367 projected cumulative annual MHW intensities. Marine heatwaves are periods during which
368 temperature exceeds the 90th percentile of temperatures seasonally during a baseline period and
369 last for at least five consecutive days⁶³. To quantify the magnitude of present-day MHWs, we used
370 the NOAA 0.25°-resolution Optimum Interpolation Sea-Surface Temperatures (OISST)⁶⁴ dataset
371 (1982–present).

372

373 We also considered MHW characteristics using SST outputs from each of 11 Coupled Model
374 Intercomparison Project Phase 6 (CMIP6; Supplementary Table 6) Earth System models (ESMs)
375 re-gridded to 0.25° resolution using bilinear interpolation in CDO (Climate Data Operators). We
376 selected three climate scenarios generated under the IPCC Shared Socio-Economic Pathways
377 (SPPs)³⁶: SSP1-2.6, SSP2-4.5, SSP5-8.5. SSP1-2.6 represents an optimistic scenario with a peak
378 in radiative forcing at ~3 W m⁻² by 2100 (approximating a future with 2°C of warming relative to
379 the pre-industrial temperatures). SSP2-4.5 represents an intermediate mitigation scenario with
380 radiative forcing stabilized at ~4.5 W m⁻² by 2100 (approximating implementation of current
381 climate policies, resulting in 2.7°C of warming by 2100). SSP5-8.5 represents an extreme
382 counterfactual climate scenario with a continued increase in greenhouse gas emissions with
383 radiative forcing reaching 8.5 W m⁻² by 2100 and rising after that. We bias-corrected the SST
384 dataset from each ESM using the delta method (see⁶⁵). This method ensures that the mean SST for
385 each ESM was the same as that for the corresponding NOAA 0.25°-resolution OISST data for the
386 reference period 1983–2014. We then determined which grid cells overlaid with kelp forests, and
387 when the kelp cell had no corresponding SST data for the ESM models (because ESMs have
388 relatively coarse resolution), we filled the cell using the inverse-distance-weighted mean of
389 surrounding cells.

390

391 We then used the R package *heatwaveR*⁶⁶ to estimate historical (1983–2020) and projected (2021–
392 2100) cumulative annual MHW intensity (°C days) for each pixel using a baseline climatology of
393 1983–2012. Note that although we used OISST data to quantify contemporary MHW intensities,
394 we used corresponding data from each ESM’s historical run for the period 1983–2014 when
395 quantifying projected MHW intensities. This meant that we used ESM data in the baseline period
396 instead of the OISST data, which ensured that inter-ESM skill in representing variability was
397 faithfully captured. We used annual cumulative intensities because they are a good indicator of the
398 exposure of kelp forests to warm anomalies^{21,24}. We then estimated the median cumulative annual
399 MHW intensity for each grid cell for the contemporary (2000–2021) period and across the 11
400 ESMs for the near- (2021–2040), mid- (2041–2060), and long-term (2081–2100) for each SSP and
401 grid cell. Finally, we summarized trends in MHWs at the level of biogeographic realms and
402 ecoregions³⁷ by conducting a spatial overlay (following the same approach as in the next sections).

403 **Marine protected areas: level of fishing restriction**

404 We obtained the spatial boundaries of MPAs using two different sources of information for the
405 countries that have surface-canopy forming kelp forests. First, we downloaded MPA boundaries
406 from official country-level agencies (Supplementary Table 1). We undertook extensive searches
407 to ensure that we used the most updated official information, as global datasets can be less
408 comprehensive at the country-level. We then categorized each MPA based on the level of
409 restrictions to extractive activities. We used the Level of Fishing Protection (LFP) score obtained
410 from Protected Seas³⁸ (<https://protectedseas.net/>). This database scores MPAs based on fishing
411 restrictions on a scale of 1–5 scale (1 = Least restricted, 2 = Less restricted, 3 = Moderately
412 restricted, 4 = Heavily restricted, 5 = Most restricted). Protected Seas further divides the scores
413 into categories: an LFP score of 1–2 is categorized as less protected, 3 as moderately protected,
414 and 4–5 as highly protected areas, the most effective type of MPA. Finally, we reviewed both
415 country-level and Protected Seas datasets and, when needed, consulted country-level experts to
416 ensure that all MPAs were included. We did not include other types of spatial closures and area-
417 based measures that are not MPAs. For a few MPAs (34 of 817) that had no LFP score, we
418 reviewed existing information and assigned a new score based on the fishing restrictions reported
419 at the country level. We did not include other regulatory activities that MPAs can manage (e.g.,
420 mining, dredging, anchoring) or indicators of management efficiency (e.g., enforcement capacity,
421 budget capacity, implementing management plan)¹ because such datasets are not comprehensively
422 available for all countries.

423 **Global kelp distribution and protection**

424 To estimate the amount of kelp within each level of protection, we performed a spatial intersection
425 of MPA types (LFP classification; 817 spatial features) and the global kelp forest distribution
426 (428,400 spatial features). Spatial intersection is a computationally expensive operation, so
427 avoiding trivial calculations can significantly improve performance. We therefore developed and

428 implemented a nested, parallelized, and hierarchical intersection algorithm. The approach is
429 “nested” because spatial layers are split based on national jurisdiction before performing the spatial
430 intersection. The approach is “parallelized” because the country-level intersection operations can
431 be performed across parallel computer cores. Finally, the approach is “hierarchical” because, even
432 within a country, not all kelp forests may lie within an MPA and not all MPAs may contain kelp.
433 We first use a simple and less computationally expensive spatial join to identify kelp forests and
434 MPAs that do not overlap with each other and exclude them from the expensive intersection
435 calculation. Kelp forests excluded in this step are categorized as “not protected”. Finally, we
436 perform the spatial intersection between the kelp forests and MPAs that overlap. We then repeated
437 this approach at the biogeographic realms and ecoregions as outlined by³⁷. For all operations, we
438 used unprojected coordinates (EPSG code 4326) that uses WGS84 datum and a spherical geometry
439 engine (s2)⁶⁷ via the sf package⁶⁸ in R. Parallelization was done using the furrr and future⁶⁹ package
440 in R. We validated geometries throughout the pipeline using ast_make_valid in sf; any invalid
441 geometries were removed.
442

443 Knowing the location and amount of kelp protected, we proceeded to calculate the total extent of
444 kelp by country, biogeographic realm, and ecoregion, and by MPA category and LFP score. We
445 also determined how much kelp was outside any protection. All spatial analyses were performed
446 in R version 4.3.1 (2023-06-16)⁷⁰ using a x86_64-apple-darwin20 platform running macOS
447 Ventura 13.4.1 and using the sf package v1.0^{68,71} with GEOS 3.11.0, GDAL 3.5.3, and PROJ 9.1.0.

448 **Ecoregional marine heatwave threats under SSP2.4-5 and kelp representation**

449 Our final analysis assessed the relationship between the threats posed by projected future MHWs
450 to kelp forests and the amount (% area) protected in each ecoregion. We conducted this analysis
451 at the ecoregional scale because, ideally, networks of MPAs should be established to protect the
452 underlying biophysical processes that maintain species distribution and composition²⁴. Areas with
453 low values of projected future MHW intensities are potential climate refugia for kelp forests. For
454 simplicity, our measure of threat is focused only on the average cumulative MHW intensity under
455 one SSP for each timeframe. We used SSP2.4-5 as an intermediate climate scenario that reflects
456 less extreme outcomes and has been proposed to inform climate adaptation and policy^{50,51}. Because
457 the patterns of threat for each ecoregion are similar across time frames (i.e., magnitude is the
458 largest difference across times), we focus in the main text on the mid-term and include results of
459 the other times in the Supplementary information. We report results most conservatively for highly
460 protected kelp, and then also for highly and moderately protected kelp combined. We did not
461 include less protected MPAs in this analysis because this type of MPA provides minimal to no
462 protection to marine ecosystems from extractive activities¹.

463

464

465 **Data availability**

466 The remote-sensing kelp forest dataset is available
467 at <https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-sbc.74.13>,
468 <https://kelpwatch.org/map>, and
469 <https://biogeoscienceslaboxford.users.earthengine.app/view/kelpforests>. The marine protected
470 area database is available at <https://protectedseas.net/> upon request. All other data needed to
471 evaluate the conclusions in the paper are present in the paper or its Supplementary information.
472 The codes used for this project will be made available upon publication.

473 **Acknowledgments**

474 N.A.-D., K.C., and T.B. acknowledge support from the NASA Ocean Biology and
475 Biogeochemistry program (80NSSC21K1429). N.A.-D. acknowledges support from the Estate
476 Winifred Violet Scott (Australia) for a research grant. F.M. and N.A.-D. acknowledges support from
477 the National Science Foundation (2108566). N.A.-D., F.M., and K.C. acknowledge funding from the
478 Lenfest Ocean Program (ID Number: 00036969). We are very thankful to the Protected Seas team
479 for sharing the marine protected area dataset.

480 **Author contributions**

481 N.A.-D. conceived the study with inputs from J.V.-D., D.S., F.M., and K.C. A.M.-S., T.B., H.H.,
482 L.D., C.B., and K.C. provided remote-sensing floating kelp forest datasets. N.A.-D., J.V.-D., and
483 D.S. conducted analyses. N.A.-D. led reviewing nation-level marine protected area database with
484 the support of A.M.-S., L.D., K.S., C.P., D.P., and C.L. N.A.-D. led the writing of the manuscript
485 with the support of D.S., J.V.-D., F.M., and K.C. All authors contributed to reviewing and editing
486 of the manuscript.

487

488 **Declaration of interests**

489

490 All other authors declare they have no competing interests.

491 **References**

492

- 493 1 Grorud-Colvert, K. *et al.* The MPA Guide: A framework to achieve global goals for the
494 ocean. *Science* **373**, eabf0861 (2021).
- 495 2 Diversity, C. o. B. COP 10 Decision X/2: strategic plan for biodiversity 2011–2020. (2010).
- 496 3 Maxwell, S. L. *et al.* Area-based conservation in the twenty-first century. *Nature* **586**, 217–
497 227 (2020).
- 498 4 Pecl, G. T. *et al.* Biodiversity redistribution under climate change: Impacts on ecosystems
499 and human well-being. *Science* **355**, eaai9214 (2017).
- 500 5 Pörtner, H.-O. *et al.* Overcoming the coupled climate and biodiversity crises and their
501 societal impacts. *Science* **380**, eabl4881 (2023).

502 6 Parmesan, C., Morecroft, M. D. & Trisurat, Y. *Climate change 2022: Impacts, adaptation*
503 and *vulnerability*, GIEC, (2022).

504 7 CBD. Nations Adopt Four Goals, 23 Targets for 2030 in Landmark UN Biodiversity
505 Agreement. (2023).

506 8 Valckenaere, J., Techera, E., Filbee-Dexter, K. & Wernberg, T. Unseen and unheard: the
507 invisibility of kelp forests in international environmental governance. *Frontiers in Marine*
508 *Science* (2023).

509 9 Arafeh-Dalmau, N. *et al.* Southward decrease in the protection of persistent giant kelp
510 forests in the northeast Pacific. *Communications Earth & Environment* **2**, 119 (2021).

511 10 Arafeh-Dalmau, N., Olguín-Jacobson, C., Bell, T. W., Micheli, F. & Cavanaugh, K. C.
512 Shortfalls in the protection of persistent bull kelp forests in the USA. *Biological*
513 *Conservation* **283**, 110133 (2023).

514 11 Jayathilake, D. R. & Costello, M. J. Version 2 of the world map of laminarian kelp benefits
515 from more Arctic data and makes it the largest marine biome. *Biological Conservation* **257**,
516 109099 (2021).

517 12 Schiel, D. R. & Foster, M. S. *The biology and ecology of giant kelp forests*. (Univ of
518 California Press, 2015).

519 13 Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. in *World seas: An*
520 *environmental evaluation* 57-78 (Elsevier, 2019).

521 14 Arafeh-Dalmau, N. *et al.* Extreme marine heatwaves alter kelp forest community near its
522 equatorward distribution limit. *Frontiers in Marine Science* **6**, 499 (2019).

523 15 Arafeh-Dalmau, N. *et al.* Marine heat waves threaten kelp forests. *Science* **367**, 635-635
524 (2020).

525 16 Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. *New Phytologist* **225**,
526 1447-1454 (2020).

527 17 Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. & Beas-Luna, R. Spatial
528 variability in the resistance and resilience of giant kelp in southern and Baja California to
529 a multiyear heatwave. *Frontiers in Marine Science* **6**, 413 (2019).

530 18 Smale, D. A. *et al.* Marine heatwaves threaten global biodiversity and the provision of
531 ecosystem services. *Nature Climate Change* **9**, 306-312 (2019).

532 19 Smith, K. E. *et al.* Socioeconomic impacts of marine heatwaves: Global issues and
533 opportunities. *Science* **374**, eabj3593 (2021).

534 20 Eger, A. M. *et al.* The value of ecosystem services in global marine kelp forests. *nature*
535 *communications* **14**, 1894 (2023).

536 21 Oliver, E. C. *et al.* Projected marine heatwaves in the 21st century and the potential for
537 ecological impact. *Frontiers in Marine Science* **6**, 734 (2019).

538 22 McPherson, M. L. *et al.* Large-scale shift in the structure of a kelp forest ecosystem co-
539 occurs with an epizootic and marine heatwave. *Communications biology* **4**, 298 (2021).

540 23 Butler, C. L., Lucieer, V. L., Wotherspoon, S. J. & Johnson, C. R. Multi-decadal decline
541 in cover of giant kelp *Macrocystis pyrifera* at the southern limit of its Australian range.
542 *Marine Ecology Progress Series* **653**, 1-18 (2020).

543 24 Arafeh-Dalmau, N. *et al.* Integrating climate adaptation and transboundary management:
544 Guidelines for designing climate-smart marine protected areas. *One Earth* **6**, 1523-1541
545 (2023).

546 25 Peleg, O., Blain, C. O. & Shears, N. T. Long-term marine protection enhances kelp forest
547 ecosystem stability. *Ecological Applications* **33**, e2895 (2023).

548 26 Ziegler, S. L. *et al.* Marine protected areas, marine heatwaves, and the resilience of
549 nearshore fish communities. *Scientific Reports* **13**, 1405 (2023).

550 27 Olguin-Jacobson, C. *et al.* Recovery mode: Marine protected areas enhance the resilience
551 of kelp species from marine heatwaves. *bioRxiv*, 2024.2005. 2008.592820 (2024).

552 28 Ling, S., Johnson, C., Frusher, S. & Ridgway, K. Overfishing reduces resilience of kelp
553 beds to climate-driven catastrophic phase shift. *Proceedings of the National Academy of
554 Sciences* **106**, 22341-22345 (2009).

555 29 Eisaguirre, J. H. *et al.* Trophic redundancy and predator size class structure drive
556 differences in kelp forest ecosystem dynamics. *Ecology* **101**, e02993 (2020).

557 30 Kumagai, J. A. *et al.* Marine protected areas promote resilience of kelp forests to marine
558 heatwaves by preserving trophic cascades. *bioRxiv*, 2024.2004. 2010.588833 (2024).

559 31 Cavanaugh, K. C. *et al.* A Review of the Opportunities and Challenges for Using Remote
560 Sensing for Management of Surface-Canopy Forming Kelps. *Frontiers in Marine Science*,
561 1536 (2021).

562 32 Keppel, G. *et al.* Refugia: identifying and understanding safe havens for biodiversity under
563 climate change. *Global Ecology and Biogeography* **21**, 393-404 (2012).

564 33 Woodson, C. B. *et al.* Harnessing marine microclimates for climate change adaptation and
565 marine conservation. *Conservation Letters* **12**, e12609 (2019).

566 34 Keppel, G. *et al.* The capacity of refugia for conservation planning under climate change.
567 *Frontiers in Ecology and the Environment* **13**, 106-112 (2015).

568 35 Mora-Soto, A. *et al.* A high-resolution global map of Giant kelp (*Macrocystis pyrifera*)
569 forests and intertidal green algae (Ulvophyceae) with Sentinel-2 imagery. *Remote Sensing*
570 **12**, 694 (2020).

571 36 O'Neill, B. C. *et al.* The roads ahead: Narratives for shared socioeconomic pathways
572 describing world futures in the 21st century. *Global environmental change* **42**, 169-180
573 (2017).

574 37 Spalding, M. D. *et al.* Marine ecoregions of the world: a bioregionalization of coastal and
575 shelf areas. *BioScience* **57**, 573-583 (2007).

576 38 Driedger, A. *et al.* Guidance on marine protected area protection level assignments when
577 faced with unknown regulatory information. *Marine Policy* **148**, 105441 (2023).

578 39 Jones, K. R. *et al.* The location and protection status of Earth's diminishing marine
579 wilderness. *Current Biology* **28**, 2506-2512. e2503 (2018).

580 40 Edgar, G. J. *et al.* Global conservation outcomes depend on marine protected areas with
581 five key features. *Nature* **506**, 216-220 (2014).

582 41 Micheli, F. *et al.* Evidence that marine reserves enhance resilience to climatic impacts.
583 *PLoS One* **7**, e40832 (2012).

584 42 Jacquemont, J., Blasiak, R., Le Cam, C., Le Gouellec, M. & Claudet, J. Ocean conservation
585 boosts climate change mitigation and adaptation. *One Earth* **5**, 1126-1138 (2022).

586 43 Benedetti-Cecchi, L. *et al.* Marine protected areas promote stability of reef fish
587 communities under climate warming. *Nature Communications* **15**, 1822 (2024).

588 44 Wernberg, T. *et al.* Climate-driven regime shift of a temperate marine ecosystem. *Science*
589 **353**, 169-172 (2016).

590 45 Assis, J., Fragkopoulou, E., Gouvêa, L., Araújo, M. B. & Serrão, E. A. Kelp forest diversity
591 under projected end-of-century climate change. *Diversity and Distributions*, e13837
592 (2024).

593 46 Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M. & Pedersen, M. F.
594 Arctic kelp forests: Diversity, resilience and future. *Global and planetary change* **172**, 1-
595 14 (2019).

596 47 Mora-Soto, A. *et al.* Kelp dynamics and environmental drivers in the southern Salish Sea,
597 British Columbia, Canada. *Frontiers in Marine Science* (2024).

598 48 Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-
599 forming species. *Proceedings of the Royal Society B: Biological Sciences* **280**, 20122829
600 (2013).

601 49 Assis, J. *et al.* Major shifts at the range edge of marine forests: the combined effects of
602 climate changes and limited dispersal. *Scientific Reports* **7**, 44348 (2017).

603 50 Burgess, M. G., Becker, S. L., Langendorf, R. E., Fredston, A. & Brooks, C. M. Climate
604 change scenarios in fisheries and aquatic conservation research. *ICES Journal of Marine
605 Science*, fsad045 (2023).

606 51 Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. *Nature*
607 **577**, 618-620 (2020).

608 52 Eger, A. M. *et al.* Global kelp forest restoration: past lessons, present status, and future
609 directions. *Biological Reviews* **97**, 1449-1475 (2022).

610 53 Mora-Soto, A. *et al.* A Song of Wind and Ice: Increased Frequency of Marine Cold-Spells
611 in Southwestern Patagonia and Their Possible Effects on Giant Kelp Forests. *Journal of
612 Geophysical Research: Oceans* **127**, e2021JC017801 (2022).

613 54 Jayathilake, D. R. & Costello, M. J. Version 2 of the world map of laminarian kelp benefits
614 from more Arctic data and makes it the largest marine biome. (2021).

615 55 Duarte, C. M. *et al.* Global estimates of the extent and production of macroalgal forests.
616 *Global Ecology and Biogeography* **31**, 1422-1439 (2022).

617 56 Pike, E. P. *et al.* Ocean protection quality is lagging behind quantity: Applying a scientific
618 framework to assess real marine protected area progress against the 30 by 30 target.
619 *Conservation Letters*, e13020.

620 57 Arafeh-Dalmau, N. *et al.* Introducing the Seaweed Specialist Group of the IUCN Species
621 Survival Commission. *Oryx* **58**, 147-148 (2024).

622 58 Eger, A. M. *et al.* The Kelp Forest Challenge: A collaborative global movement to protect
623 and restore 4 million hectares of kelp forests. *Journal of Applied Phycology*, 1-14 (2023).

624 59 Pessarrodona, A. *et al.* Carbon sequestration and climate change mitigation using
625 macroalgae: a state of knowledge review. *Biological Reviews* **98**, 1945-1971 (2023).

626 60 Bell, T. W. *et al.* Kelpwatch: A new visualization and analysis tool to explore kelp canopy
627 dynamics reveals variable response to and recovery from marine heatwaves. *PLoS One* **18**,
628 e0271477 (2023).

629 61 Houskeeper, H. F. *et al.* Automated satellite remote sensing of giant kelp at the Falkland
630 Islands (Islas Malvinas). *PLoS One* **17**, e0257933 (2022).

631 62 Dunga, V. L. *Mapping and assessing ecosystem threat status of South African kelp forests*,
632 Faculty of Science, (2020).

633 63 Hobday, A. J. *et al.* A hierarchical approach to defining marine heatwaves. *Progress in
634 Oceanography* **141**, 227-238 (2016).

635 64 Huang, B. *et al.* Improvements of the daily optimum interpolation sea surface temperature
636 (DOISST) version 2.1. *Journal of Climate* **34**, 2923-2939 (2021).

637 65 Schoeman, D. S. *et al.* Demystifying global climate models for use in the life sciences.
638 *Trends in Ecology & Evolution* (2023).

639 66 Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of
640 heatwaves and cold-spells. *Journal of Open Source Software* **3**, 821 (2018).

641 67 Dunnington D, P. E., Rubak E s2: Spherical Geometry Operators Using the S2 Geometry
642 Library. R package version 1.1.6. (<https://github.com/r-spatial/s2>, <http://s2geometry.io/>,
643 <https://r-spatial.github.io/s2/>, 2024).

644 68 Pebesma, E. J. Simple features for R: standardized support for spatial vector data. *R J.* **10**,
645 439 (2018).

646 69 Bengtsson, H. A unifying framework for parallel and distributed processing in R using
647 futures. *arXiv preprint arXiv:2008.00553* (2020).

648 70 R Core Team, R. R: A language and environment for statistical computing. (2013).

649 71 Pebesma, E. & Bivand, R. *Spatial data science: With applications in R*. (CRC Press, 2023).

650