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Abstract

Kelp forests are one of the earth’s most productive ecosystems and are at the greatest risk from
climate change, yet little is known regarding their future threats and current conservation
status. By combining a global remote sensing dataset of floating kelp forests with climate data and
projections, we find that exposure to projected marine heatwaves will increase ~8 times compared
to contemporary (2001-2020) exposure for intermediate climate scenarios. While exposure will
intensify for all forests, climate refugia emerge for some southern hemisphere kelp forests, which
have lower exposure to contemporary and projected marine heatwaves. Under these escalating
threats, less than 3% of global kelp forests are currently within highly restrictive marine protected
areas, the most effective conservation measure for providing climate resilience. Our findings
emphasize the urgent need to increase the global protection of kelp forests and set bolder climate
adaptation goals.

Main

Marine protected areas (MPAs) are a cornerstone of marine conservation'. Promoted by
international agreements, such as the Convention on Biological Diversity (CBD) Aichi Target 112,
the area of marine ecosystems under some form of protection has increased since the turn of the
century®. Because climate change is the main long-term threat to biodiversity*®, the newly agreed
Global Biodiversity Framework at COP15’ calls for effectively protecting 30% of the oceans by
2030. A central component of the post-2020 targets is increasing the representation of different
habitats under effective protection while adapting to climate change. Although many studies report
the protection of critical habitat-forming species, such as corals, seagrass, and mangroves®, other
essential marine habitats, such as kelp forests, remain largely neglected® (but see®*°). Information
on kelp forest distribution, threats associated with climate change, and protection status is urgently
needed to guide ongoing local and global protection efforts.

Kelp forests dominate >30% of the world’s rocky reefs and are among the most productive
ecosystems on earth —comparable to terrestrial rainforests and coral reefs'**3. However, marine
heatwaves (MHWSs) and anthropogenic activities threaten kelp forests*4*” and their capacity to
provide ecosystem services worth billions of dollars®2°, Kelp forests are among the marine
ecosystems at greatest risk from MHWSs®, which is concerning given that MHWs are projected to
become more frequent and severe in the next decades?’. For example, Tasmania and northern
California have lost >90% of their kelp forests following MHWSs and other impacts of climate
change'®?223, Climate adaptation strategies —including MPAs— are urgently needed to halt and
reverse this loss*24, Well-managed and highly restrictive MPAs —no-take marine reserves where
all fishing activities are prohibited—are the most effective type of MPA for supporting the stability
of kelp forests® and their resilience to MHW impacts?®? by facilitating the recovery of higher-
trophic-level, which helps control kelp grazer populations and prevent overgrazing of kelp?®-3°,
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85  Monitoring subtidal kelp populations over large spatial and temporal scales can be challenging.
86  However, the largest species (i.e., Macrocystis pyrifera, Nereocystis leutkeana, Ecklonia maxima)
87  can be mapped by remote sensing because they create extensive forests that float on the surface.
88 Recent advances in satellite imaging of surface-canopy-forming kelp species provide an
89  opportunity to map their distribution®!, quantify the threats posed by MHWSs, and assess their
90 protection status. These data can also inform other climate-adaptation strategies such as identifying
91 climate refugia®?3® —areas less impacted by or more resilient to climate change — for kelp forests.
92  Effectively protecting climate refugia for kelp forests is a priority for conservation* because, in
93 these areas, biodiversity can persist®®> and enhance the resilience of other kelp forests by
94  maintaining a source of recovery for impacted kelp habitats?*.

95  Here, we compile the first comprehensive global map of surface-canopy-forming kelp forests
96 (henceforth “kelp forests”) and leverage these datasets to project the global exposure of kelp forests
97 to MHWs and asses their protection status within MPAs. To create the global kelp forest map, we
98  assemble existing regional and national remote-sensing datasets from Landsat observations (1984-
99  present), supplemented with Sentinel-2 satellite imagery (2015-2019%°) (Supplementary Table 1;
100  see methods). To project threats to kelp forests from climate change, we estimate future cumulative
101  annual MHW intensities from an ensemble of sea surface temperature (SST) from 11 Earth System
102  models, using three climate scenarios generated under the IPCC Shared Socio-Economic Pathways
103  (SPPs)® (see methods). We then quantify the global protection status and the representation of
104  kelp forests at both country and biogeographic levels (i.e., realm, ecoregions®’) within MPAs
105 categorized as highly, moderately, or less protected based on restrictions to extractive activities
106  obtained from Protected Seas®® (see methods). Our findings reveal increasing threats to all kelp
107  forests from future MHWs, although some southern hemisphere forests may act as climate refuges.
108  We also found that kelp forests remain largely unprotected within restrictive MPAs, the most
109 effective type of MPA, which are poorly represented globally. These findings emphasize the urgent
110 need to increase the global protection and effective representation of kelp forests and, given the
111  scale of the threat posed by future MHWSs, for bolder climate adaptation goals for kelp forests.

112  Global distribution of kelp forests

113  We found surface-canopy-forming kelp forests in only 12 nations distributed across 6
114  biogeographic realms and 32 ecoregions, mostly in mid-latitudes in the Pacific, Atlantic, and
115 Indian Oceans (Fig. 1a). Most of the kelp forests are located in five ecoregions, with 23.7% in
116  Malvinas/Falklands, 20.9% in Channels and Fjords of Southern Chile, 12.8% in Southern
117  California Bight, 10.3% in Kerguelen Islands, and 9.2% in Northern California; while 17
118  ecoregions combined account for only 1% of the kelp forests (Supplementary Fig. 1).

119 In the northern hemisphere, kelp forests can be found at their highest latitudes in the USA (~61.4
120  °N), extending southward to their warm-distribution limit in Mexico (~27 °N). In the southern
121 hemisphere, kelp forests can be found at their lowest latitudes, overall, at their warm-distribution
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122 limit in Peru (~13.6 °S), extending to their highest latitudes in Chile (~56 °S). Other warm-
123  distribution limits of kelp forests in the southern hemisphere include Argentina, Namibia, South
124  Africa, Australia, and New Zealand.

125  Contemporary and Future exposure of kelp forests to marine heatwaves

126  The exposure of kelp forests to contemporary (2001-2020) average annual cumulative MHW
127  intensities (henceforth “cumulative MHW intensities (°C days)”’) was over two-fold higher in the
128  northern hemisphere than in the southern (Supplementary Table 2). The Arctic and Temperate
129  northern Pacific realms were the most exposed to MHWSs, particularly the Eastern Bering Sea and
130 the Gulf of Alaska ecoregions, which have registered an average cumulative MHW intensity from
131  2001-2020 of 177.4 £ 15.1 and 136.7 + 1.8°C days, respectively. The Temperate South America
132  realm was the least exposed, particularly the Malvinas/Falkland and Prince Edward Islands
133  ecoregions, which have registered an average cumulative MHW intensity from 2001-2020 of only
134 20.5+0.7 and 23.7 £ 4.3°C days.

135  Projected future MHWs for kelp forests increase for each realm, ecoregion, climate scenario, and
136  time (Fig. 1b and 2a and Supplementary Fig. 2 and 3). In the near term (2021-2040), kelp forests
137  are projected to be subject to > 2 times higher exposure to cumulative MHW intensities compared
138  to contemporary exposure, with similar values across climate scenarios (Supplementary Table 2-
139  5). Projections suggest that these magnitudes will continue to intensify, and under SSP5-8.5, kelp
140  forests could be subject to > 6 to >16 times higher cumulative MHW intensities in the mid (2041-
141  2060) and long term (2081-2100), respectively, compared to contemporary exposure. These
142  magnitudes are ~2 to ~3 times higher than corresponding projections under SSP1-2.6 and SSP2.4-
143 5, respectively.

144  The Arctic and the Temperate North Pacific are projected to be the most exposed to future MHWSs
145  under all climate scenarios, while Temperate South America will be the least exposed (Fig. 1b),
146  matching the general spatial patterns in contemporary exposure. Overall, the pattern is very similar
147  across SSP scenarios, with the northern hemisphere experiencing nearly twice the exposure to
148  future MHWs than the southern hemisphere (Fig. 2b). However, some differences emerge. We
149 found a difference in the latitudinal pattern of exposure between the northern and southern
150 hemisphere. While in the northern hemisphere projections suggest a latitudinal pattern of
151  increasing exposure to future MHWSs from lower to higher latitudes, in the southern hemisphere,
152  this pattern is reversed (Fig. 2b). For example, in the mid and long term and under all future
153  scenarios for the northern hemisphere, the Eastern Bering Sea and the Gulf of Alaska are projected
154  to become the most exposed ecoregions, while the southern California Bight becomes the least
155  exposed (Fig. 2a and Supplementary Fig. 3), albeit with elevated levels of MHW exposure relative
156  tothe present. In contrast, in the southern hemisphere lower latitude ecoregions such as Cape Howe
157  and Humboldtian are projected to be the most exposed to future MHWSs while remote islands in
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158  high latitudes and ecoregions such as the Channels and Fjords of Southern Chile will be the least
159  exposed.
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160 Figure 1 - Global distribution of floating kelp forests and exposure to contemporary and
161  future marine heatwaves. Panel a map of kelp distribution (black lines) across 32 biogeographic
162  ecoregions (census®’) (polygons; the color indicates the realm to which they belong), b realm-
163  specific exposure of kelp forest to historical (1982-2020) and future cumulative annual MHW
164  intensities (2021-2100) across three climate scenarios (SSP-1.26, SSP-2.45, SSP-5.85). The solid
165  line shows the mean across ensemble medians for all pixels, and the shaded area represents the 5%
166  and 95" percentiles.
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167  Figure 2- Ecoregional exposure of floating kelp forests to contemporary and future marine
168  heatwaves. a mean cumulative annual marine heatwave intensity for all pixels in each of 32
169  ecoregions under three climate scenarios (SSP-1.26, SSP-2.45, SSP-5.85) and three-time frames
170  (near, mid, and long term). b Latitudinal plots representing mean cumulative annual marine
171  heatwave intensities by 1° of latitude under contemporary and climate scenarios for each time.

172  Global protection status of kelp forests

173 Globally, more than 33.1% of kelp forests are protected by MPAs, of which 13.7% are highly
174  protected (the most effective type of MPAS), 4.6% are moderately protected, and 14.8% are in
175  less-protected MPAs (Fig. 3a,b and 4a). However, most of the effective protection for kelp forests
176 is in remote islands in the Southern Ocean realm, and when excluding these areas, only 2.8% of
177  the global kelp forests are highly protected from fishing activities (Fig. 3c). At the country level,
178  France has placed all their kelp forests within highly protected MPAs (Fig. 4a,b) and is the only
179  country that meets the current 30% effective representation target5’. New Zealand, South Africa,
180  Canada, Australia, and the USA have at least 10% of their kelp forests highly protected (Fig. 4a,b).
181  However, this protection is in their overseas territories in remote islands for all of France
182  (Kerguelen and Crozet Islands) and much of New Zealand, South Africa, and Australia. Australia
183  hasonly 2.7%, New Zealand 3.2%, and South Africa 9.5% of their continental kelp forests highly
184  protected. Mexico and Great Britain have provided effective protection for less than 2% of their
185  kelp forests, Chile less than 0.02%, and Peru, Argentina, and Namibia none.

186  Of the world’s biogeographic realms, the Southern Ocean has 99.9% of its kelp forests within
187  highly protected MPAs, while all other realms have less than 10%. However, at least 10% of kelp
188  forests are protected in some form of MPA in all realms, except for the Arctic, where the area of
189  surface-canopy forming kelp is minimal and no kelp forests are protected under any category (Fig.
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190  4c). At the ecoregional level, only 9 ecoregions have met the old 10% effective representation
191  targets? for kelp forests within highly protected MPAs, all in remote islands except for the Northern
192  California ecoregion (Supplementary Fig. 4). Overall, 47.2% of ecoregions have less than 10% of
193  the kelp forests protected, regardless of the MPA type. Only one nation, one realm, and 25% of

194  ecoregions (all remote islands) meet the new 30% target for effective representation’ for kelp
195  forests.
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196  Figure 3 - Global distribution of floating kelp forests and marine protected areas by
197  categories of protection. a Global map of kelp forests and marine protected areas, we provide six
198  fine-scale views. Starting from the top-left and moving clockwise: USA, Mexico, New Zealand,
199  France, South Africa, and Chile and Argentina. Global protection (%) of kelp by category of
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protection b including all realms and ¢ excluding the Southern Ocean realm. Protection categories
are based on the Level of Fishing Protection (LFP)% score assigned to each marine protected area.
The scores are divided in three categories: Lightly protected (LFP score of “Least” and “Less”),
moderately protected, and highly protected (LFP score of “Heavily” and “Most”).
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Figure 4 - Global status and distribution of floating kelp forest protection. a Alluvial diagram
with the distribution and protection of kelp by country and realm (% of total area), and radial plots
showing percentage protection of kelp at the level of b country and c biogeographic realm. The
dotted and dashed lines show the old 10%? and the current 30%’ effective protection targets. Note
that we included the Malvinas/Falkland Islands as part of the United Kingdom territory, although
we acknowledge that Argentina has ongoing legal claims for their sovereignty.

Ecoregional future marine heatwave threats and protection status

Kelp forests within the ecoregions that are most threatened by projected MHWSs and currently have
low levels of effective protection (highly protected) include the Bering Sea (none protected), the
Gulf of Alaska (0.6%), the North American Fjordlands (2.5%), the Puget Through (0.09%), and
the Oregon to Vancouver ecoregions (2.4%) (Figure 5a,b and Supplementary Fig. 5 and 6).
Northern California is the only ecoregion projected to be highly threated by MHWSs where at least
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219  10% of kelp forests are inside highly protected MPAs. In contrast, eight ecoregions that have all
220  their kelp forests inside highly protected MPAs will face low to intermediate threats from projected
221  MHWs under the SSP2.4-5 scenario. These ecoregions are all located in remote islands of the
222  Southern Ocean realm. When combining highly and moderately protected MPAs, the Patagonian
223  Shelf and North Patagonian Gulfs ecoregions have at least 30% of their kelp forests protected and
224 low exposure to MHWs (Fig. 5b).
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226  Figure 5.- Relationship between threat posed by future marine heatwaves and level of
227  protection for floating kelp forests. Scatterplots of mean future cumulative annual marine
228  heatwave intensities for the midterm (2041-2060) under SSP2-4.5 and the amount of kelp forest a
229  highly protected, b highly and moderately protected combined. The size of the bubble indicates
230 the amount of kelp in each ecoregion. The dashed blue vertical lines represent the old 10%? and
231  the current 30%/ targets for effective protection.
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236  Discussion

237
238  We present the first global map of the protection status of floating kelp forests, which allowed us

239 to identify escalating climate change threats and important conservation gaps for kelp forest
240  ecosystems globally. Although one country and a few ecoregions are meeting current international
241  protection targets’ for kelp forests, many of these MPAs are in remote islands with low levels of
242 exposure to contemporary and projected MHWs and few non-climatic threats®. When kelp forests
243  in remote islands are excluded, less than 3% of kelp forests are inside highly restrictive MPAs —
244 no-take marine reserves— the most effective type of MPA for conserving biodiversity“° and for
245  enhancing climate resilience?6-28304143  Thus, current global protection does not adequately
246  account for anthropogenic pressures on kelp forest ecosystems. It is concerning that the kelp forests
247  most exposed to current and projected MHWSs have minimal protection, which suggests that their
248  resilience is likely being compromised. Therefore, to achieve international conservation
249  commitments and climate adaptation goals, most countries and ecoregions require additional
250 investments to increase the area of kelp forests that are effectively protected. This presents a unique
251  opportunity for designing and implementing climate-smart MPAs?,

252

253  Our study reveals that marine heatwaves will increasingly threaten kelp forests under all projected
254  SSP scenarios and time frames. If greenhouse emissions are not mitigated, kelp forests could be
255  exposed to >16 times the magnitude of contemporary exposure under extreme scenarios by the
256  end of the century. That represents an increase of 2-5°C in average ocean temperatures, which in
257  some regions may permanently surpass physiological tolerances of kelp forests, impact their
258  distribution, restructure associated ecological communities and impact the livelihood of local
259  human communities®!416.181944-47 "Kel|n forests near their current warm distribution limit will
260 likely be the most affected and subject to range contractions'*4>449 Predicting whether MPAs
261  can provide resilience to kelp forest ecosystems under such extreme and persistent changes is
262  challenging. However, for less-extreme emission scenarios that track current mitigation
263 policies®®®!, the magnitude of exposure to future MHWs will be two times lower than for extreme
264  scenarios. Under these conditions, it is more likely that marine reserves can support the resilience
265  of kelp forests and enhance their adaptive capacity.

266

267  MPAs cannot directly mitigate the impacts of MHWSs that surpass the physiological thresholds of
268  kelp forests; however, they can minimize other non-climatic threats, such as overfishing and
269  habitat destruction, thereby promoting the recovery of kelp forests following MHWSs. For example,
270  after the 2014-2016 MHWs in the northeast Pacific Ocean, urchins overgrazed kelp forests and
271  caused many of them to collapse into less biodiverse ecosystems®>?2, However, highly protected
272  MPAs have prevented kelp forest collapse and have provided resilience to climate impacts by
273 facilitating recovery of overfished predators that control urchin populations?>*. MPAs will likely
274 not be enough to support the persistence of kelp forests, given the magnitude of future climate
275  threats reported here, so other climate-adaptation strategies will be necessary, particularly for areas
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276  of high exposure to future MHWS, such as the Bering Sea, the Gulf of Alaska and the North
277  American Fjordlands. These strategies include identifying and protecting climate refugia, restoring
278  degraded kelp, identifying genetically resilient kelp stocks, and managing other anthropogenic
279  impacts not mitigated by MPAs®®2,

280

281  We identified areas that will likely act as climate refugia —projected to be less exposed to future
282  MHWs— where kelp forests are likely to persist®1924°3 We found that although many ecoregions
283  with potential climate refugia have all their kelp forests protected inside MPAs, the Southern
284  Fjordlands of Chile and the Malvinas/Falklands ecoregions have no protection and account for
285  >40% of the global distribution of kelp forests. These ecoregions emerge as priority areas for
286  global conservation of kelp forests, and efforts are needed to secure their effective protection and
287  representation®® before other non-climatic threats intensify and erode their resilience.

288 It is important to note that our analysis includes only surface canopy kelp forests, thus excluding
289  other kelp species. There are > 120 laminarian kelp species, of which only three of the largest kelp
290  species form extensive floating canopies that can be detected by remote sensing. Our estimates
291 likely represent overall kelp distribution and protection in regions where floating kelps co-exist
292  with other kelp species. However, some areas included in our study and other nations and regions
293  not included here have extensive subsurface kelp forests. Given the limitations in detecting
294  subsurface canopy kelp species, they are likely less-well represented here than floating kelp
295  species. This is a substantial gap for kelp conservation and an avenue for novel technologies and
296  research® to address associated needs, as these subsurface kelps also support diverse and
297  productive ecosystems'** and human livelihoods®. We also note that our compiled map may
298  overestimate or underestimate floating kelp coverage for those regions where validation of
299  globally robust classifier maps is presently incomplete (e.g., Canada, Chile, New Zealand) and has
300  been supplemented using a global map®. Therefore, the coverage of floating kelp reported here
301 need to be carefully used for those regions and updated as new information becomes available.

302  Our analysis uses the distribution of present surface canopy kelp, and it does not account for range
303  contractions or expansions of kelp forests that are projected under climate scenarios*>.
304 Integrating future range shifts of kelp species and associated biodiversity under climate scenarios
305  could guide the identification of climate-smart priority areas for kelp forest conservation?*. Finally,
306 the MPA dataset used here has some limitations regarding the quantification of protection. For
307  example, it does not account for other human activities that MPAs can manage (e.g., mining,
308 dredging) or indicators of management efficiency (e.g., budget capacity, stage of establishment)*
309 that need to be included to ensure MPAs are effectively protecting ecosystems®®. Therefore,
310 including such information will likely decrease the coverage of kelp forests within highly protected
311 MPAs. However, a comprehensive dataset of protection effectiveness is currently unavailable for
312 all countries and MPAs (e.g., https://mpatlas.org/), and to date, Protected Seas*® is the most
313  complete database available to assess the level of restriction inside MPAs.

314
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315  Conclusions

316

317  Kelp forests remain largely excluded from most international conservation policies®®’, despite
318 their enormous contribution to earth’s biodiversity'?*® and provisioning of ecosystem services?.
319 Nations have an opportunity to harness, protect, and restore kelp forests®®, not only for their
320 function as biogenic habitats and biodiversity hot spots®3, but also to support their role in carbon
321  sequestration and mitigation of climate change®®. In addition, kelp forests provide food and support
322 the livelihoods of millions of people worldwide'®?°, As part of efforts to protect 30% of the oceans
323 by 20307, nations have an opportunity to explicitly include the representation of kelp forests in
324  their national conservation policies. Where nations share ecoregions, transboundary management
325  and coordination may also be needed?*. However, given the immediate and escalating threats posed
326 by climate change'*!%** and other anthropogenic stressors, representation, though essential, may
327  not be enough to secure the persistence of kelp forests. It is paramount that kelp forests are
328  protected in each ecoregion, through representative, adequate, and well-connected networks of
329  climate-smart MPAs that consider additional climate adaptation strategies?*.

330  Methods
331  Mapping kelp forests

332  We compiled existing regional and national datasets of surface-canopy forming kelp derived using
333  remote sensing observations (Supplementary Table 1). We compiled regional estimates of kelp
334  canopy derived from up to four Landsat sensors: Landsat 5 Thematic Mapper (1984-2011),
335 Landsat 7 Enhanced Thematic Mapper+ (1999—present), Landsat 8 Operational Land Imager
336  (2013-present), and Landsat 9 Operational Land Imager-2 (2021-present). The applicable Landsat
337  observations have pixel resolutions of 30 x 30 m and repeat times of 16 days (8 days since 1999
338 in most years because two Landsat sensors were operational). Classification of floating kelp
339  canopy was derived by applying a globally robust random forest classifier to individual Landsat
340  scenes®. The compiled datasets include minor differences in methodologies and time periods, but
341  they all cover approximately over 30 years (1984 onwards) (Supplementary Table 1). Kelp maps
342  were created by compositing observations of kelp presence across this time series. The maps
343  include most of the USA (California, Oregon, parts of Washington, and parts of Alaska) and all of
344  Mexico, Peru, and Argentina (available at https://kelpwatch.org/)®°, most of the United Kingdom®!
345  (Malvinas/Falkland Islands), and most of Australia®® (Tasmania). We included the
346  Malvinas/Falkland Islands as part of the United Kingdom territory, although we acknowledge that
347  Argentina has ongoing legal claims for their sovereignty.

348

349  We then used existing maps for South Africa®® and an empirical global map?® derived, both, from
350  Sentintel-2 satellite data for the areas where the Landsat maps are not available. For the global
351  empirical map, kelp area was calculated through a band-difference threshold algorithm validated
352 using ground observations of Macrocystis pyrifera forests with high confidence in South
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353  America®. This method averages all the available images from the Sentinel-2 satellite sensor from
354 26 June 2015 to 23 June 2019 to create a cloud-free mosaic. It then applies band-difference
355 thresholds to identify pixels likely containing floating kelp canopy and a land mask using global
356 digital elevation models (ALOS and SRTM), discarding topography with elevation >0 m. The
357 global map has not been validated for all areas and has some detection caveats; thus, region-
358  specific uncertainties are unknown. For this reason, we excluded pixels that fell within a 30-m
359  buffer relative to the coastline because the global map does not distinguish between intertidal green
360 algae and floating kelp forests. We also masked those pixels that overlie estuaries, as this can also
361  be asource of false positives. See Supplementary Table 1 for sources of information used to apply
362 filters and masks. All kelp datasets were converted from coordinates to shapefiles with
363  ArcMapl0.8 using the World Geodetic System 1984 (WGS84). The final kelp habitat map
364 includes any pixel that the satellite detected kelp at any point in the time series.

365  Exposure of kelp forests to contemporary and future marine heatwaves

366  We estimated the expected threat of climate change to kelp forests by calculating historical and
367  projected cumulative annual MHW intensities. Marine heatwaves are periods during which
368 temperature exceeds the 90" percentile of temperatures seasonally during a baseline period and
369 last for at least five consecutive days®. To quantify the magnitude of present-day MHWSs, we used
370  the NOAA 0.25°-resolution Optimum Interpolation Sea-Surface Temperatures (OISST)% dataset
371  (1982-present).

372

373  We also considered MHW characteristics using SST outputs from each of 11 Coupled Model
374 Intercomparison Project Phase 6 (CMIP6; Supplementary Table 6) Earth System models (ESMs)
375  re-gridded to 0.25° resolution using bilinear interpolation in CDO (Climate Data Operators). We
376  selected three climate scenarios generated under the IPCC Shared Socio-Economic Pathways
377  (SPPs)®: SSP1-2.6, SSP2-4.5, SSP5-8.5. SSP1-2.6 represents an optimistic scenario with a peak
378 inradiative forcing at ~3 W m by 2100 (approximating a future with 2°C of warming relative to
379  the pre-industrial temperatures). SSP2-4.5 represents an intermediate mitigation scenario with
380 radiative forcing stabilized at ~4.5 W m by 2100 (approximating implementation of current
381 climate policies, resulting in 2.7°C of warming by 2100). SSP5-8.5 represents an extreme
382  counterfactual climate scenario with a continued increase in greenhouse gas emissions with
383 radiative forcing reaching 8.5 W m2 by 2100 and rising after that. We bias-corrected the SST
384  dataset from each ESM using the delta method (see®®). This method ensures that the mean SST for
385  each ESM was the same as that for the corresponding NOAA 0.25°-resolution OISST data for the
386  reference period 1983-2014. We then determined which grid cells overlayed with kelp forests, and
387  when the kelp cell had no corresponding SST data for the ESM models (because ESMs have
388 relatively coarse resolution), we filled the cell using the inverse-distance-weighted mean of
389  surrounding cells.

390
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391  We then used the R package heatwaveR®® to estimate historical (1983-2020) and projected (2021
392  2100) cumulative annual MHW intensity (°C days) for each pixel using a baseline climatology of
393  1983-2012. Note that although we used OISST data to quantify contemporary MHW intensities,
394  we used corresponding data from each ESM’s historical run for the period 1983-2014 when
395 quantifying projected MHW intensities. This meant that we used ESM data in the baseline period
396 instead of the OISST data, which ensured that inter-ESM skill in representing variability was
397  faithfully captured. We used annual cumulative intensities because they are a good indicator of the
398  exposure of kelp forests to warm anomalies??4, We then estimated the median cumulative annual
399  MHW intensity for each grid cell for the contemporary (2000-2021) period and across the 11
400 ESMs for the near- (2021-2040), mid- (2041-2060), and long-term (2081-2100) for each SSP and
401  grid cell. Finally, we summarized trends in MHWSs at the level of biogeographic realms and
402  ecoregions® by conducting a spatial overlay (following the same approach as in the next sections).

403  Marine protected areas: level of fishing restriction

404  We obtained the spatial boundaries of MPAs using two different sources of information for the
405  countries that have surface-canopy forming kelp forests. First, we downloaded MPA boundaries
406  from official country-level agencies (Supplementary Table 1). We undertook extensive searches
407  to ensure that we used the most updated official information, as global datasets can be less
408 comprehensive at the country-level. We then categorized each MPA based on the level of
409  restrictions to extractive activities. We used the Level of Fishing Protection (LFP) score obtained
410  from Protected Seas® (https://protectedseas.net/). This database scores MPAs based on fishing
411  restrictions on a scale of 1-5 scale (1 = Least restricted, 2 = Less restricted, 3 = Moderately
412  restricted, 4 = Heavily restricted, 5 = Most restricted). Protected Seas further divides the scores
413  into categories: an LFP score of 1-2 is categorized as less protected, 3 as moderately protected,
414  and 4-5 as highly protected areas, the most effective type of MPA. Finally, we reviewed both
415  country-level and Protected Seas datasets and, when needed, consulted country-level experts to
416  ensure that all MPAs were included. We did not include other types of spatial closures and area-
417  based measures that are not MPAs. For a few MPAs (34 of 817) that had no LFP score, we
418  reviewed existing information and assigned a new score based on the fishing restrictions reported
419  at the country level. We did not include other regulatory activities that MPAs can manage (e.g.,
420  mining, dredging, anchoring) or indicators of management efficiency (e.g., enforcement capacity,
421  budget capacity, implementing management plan) because such datasets are not comprehensively
422  available for all countries.

423  Global kelp distribution and protection

424  To estimate the amount of kelp within each level of protection, we performed a spatial intersection
425  of MPA types (LFP classification; 817 spatial features) and the global kelp forest distribution
426 (428,400 spatial features). Spatial intersection is a computationally expensive operation, so
427  avoiding trivial calculations can significantly improve performance. We therefore developed and
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428 implemented a nested, parallelized, and hierarchical intersection algorithm. The approach is
429  “nested” because spatial layers are split based on national jurisdiction before performing the spatial
430 intersection. The approach is “parallelized” because the country-level intersection operations can
431  be performed across parallel computer cores. Finally, the approach is “hierarchical” because, even
432  within a country, not all kelp forests may lie within an MPA and not all MPAs may contain kelp.
433  We first use a simple and less computationally expensive spatial join to identify kelp forests and
434  MPAs that do not overlap with each other and exclude them from the expensive intersection
435  calculation. Kelp forests excluded in this step are categorized as “not protected”. Finally, we
436  perform the spatial intersection between the kelp forests and MPAs that overlap. We then repeated
437  this approach at the biogeographic realms and ecoregions as outlined by®’. For all operations, we
438  used unprojected coordinates (EPSG code 4326) that uses WGS84 datum and a spherical geometry
439  engine (s2)% via the sf package® in R. Parallelization was done using the furrr and future®® package
440 in R. We validated geometries throughout the pipeline using ast_make_valid in sf; any invalid
441  geometries were removed.

442

443  Knowing the location and amount of kelp protected, we proceeded to calculate the total extent of
444 kelp by country, biogeographic realm, and ecoregion, and by MPA category and LFP score. We
445  also determined how much kelp was outside any protection. All spatial analyses were performed
446  in R version 4.3.1 (2023-06-16)° using a x86_64-apple-darwin20 platform running macOS
447  Ventura 13.4.1 and using the sf package v1.0%% 7 with GEOS 3.11.0, GDAL 3.5.3, and PR0OJ 9.1.0.

448  Ecoregional marine heatwave threats under SSP2.4-5 and kelp representation

449  Our final analysis assessed the relationship between the threats posed by projected future MHWSs
450  to kelp forests and the amount (% area) protected in each ecoregion. We conducted this analysis
451  at the ecoregional scale because, ideally, networks of MPAs should be established to protect the
452  underlying biophysical processes that maintain species distribution and composition*. Areas with
453  low values of projected future MHW intensities are potential climate refugia for kelp forests. For
454 simplicity, our measure of threat is focused only on the average cumulative MHW intensity under
455  one SSP for each timeframe. We used SSP2.4-5 as an intermediate climate scenario that reflects
456  less extreme outcomes and has been proposed to inform climate adaptation and policy>*°!. Because
457  the patterns of threat for each ecoregion are similar across time frames (i.e., magnitude is the
458 largest difference across times), we focus in the main text on the mid-term and include results of
459  the other times in the Supplementary information. We report results most conservatively for highly
460  protected kelp, and then also for highly and moderately protected kelp combined. We did not
461 include less protected MPAs in this analysis because this type of MPA provides minimal to no
462  protection to marine ecosystems from extractive activities®.

463

464
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465 Data availability

466  The remote-sensing kelp forest dataset is available
467  at https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-sbc.74.13,
468  https://kelpwatch.org/map, and

469  https://biogeoscienceslaboxford.users.earthengine.app/view/kelpforests. The marine protected
470 area database is available at https://protectedseas.net/ upon request. All other data needed to
471  evaluate the conclusions in the paper are present in the paper or its Supplementary information.
472  The codes used for this project will be made available upon publication.
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