

1 **WUSCHEL-dependent chromatin regulation in maize inflorescence 2 development at single-cell resolution**

3 Sohyun Bang¹, Xuan Zhang², Jason Gregory^{3,4}, Zongliang Chen³, Mary Galli³, Andrea Gallavotti^{3,4*},
4 Robert J. Schmitz^{2*}

5 ¹ *Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA*, ² *Department of Genetics,
6 University of Georgia, Athens, GA 30602, USA*, ³ *Waksman Institute of Microbiology, Rutgers University,
7 Piscataway, NJ 08540 USA*; ⁴ *Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA*.

8
9 *schmitz@uga.edu and * agallavotti@waksman.rutgers.edu

10

11 **SUMMARY**

12

13 WUSCHEL (WUS) is transcription factor vital for stem cell proliferation in plant meristems. In maize,
14 *ZmWUS1* is expressed in the inflorescence meristem, including the central zone, the reservoir of stem
15 cells. *ZmWUS1* overexpression in the *Barren inflorescence3* mutant leads to defects in inflorescence
16 development. Here, single-cell ATAC-seq analysis shows that *ZmWUS1* overexpression alters chromatin
17 accessibility throughout the central zone. The CAATAATGC motif, a known homeodomain recognition
18 site, is predominantly observed in the regions with increased chromatin accessibility suggesting
19 *ZmWUS1* is an activator in the central zone. Regions with decreased chromatin accessibility feature
20 various motifs and are adjacent to *AUXIN RESPONSE FACTOR* genes, revealing negative regulation of
21 auxin signaling in the central zone. DAP-seq of *ZmWUS1* identified the TGAATGAA motif, abundant
22 in epidermal accessible chromatin compared to the central zone. These findings highlight *ZmWUS1*'s
23 context-dependent mechanisms for stem cell maintenance in the inflorescence meristem.

24

25 **KEYWORDS**

26

27 Single-cell ATAC-seq, *WUSCHEL*, *ZmWUS1*, inflorescence meristem, maize ear, meristem
28 development, cis-regulatory elements, epigenomics

29

30 **INTRODUCTION**

31

32 In the inflorescence meristem, the delicate balance between self-renewal and differentiation of stem cells
33 is tightly controlled by the transcription factor WUSCHEL (WUS)¹. This stem cell maintenance involves
34 a negative feedback loop where WUS promotes *CLAVATA3* (*CLV3*) expression, and *CLV3* represses

32 WUS². In *Arabidopsis*, mutant studies revealed the functional interplay between these two components:
33 in *clv3*, *WUS* expression expands, whereas in *wus*, *CLV3* expression markedly decreases³. This feedback
34 loop ensures a balanced stem cell population, where an overabundance of WUS increases stem cells and
35 its scarcity depletes them⁴. The CLV-WUS regulatory pathway is conserved among plant species,
36 including tomato, maize and rice⁵⁻⁷.

37 In maize, *ZmWUS1*, a co-ortholog of *Arabidopsis WUS*, is expressed in cells that neighbor the
38 stem cells within the female inflorescence and the axillary meristems, which eventually give rise to
39 mature ears⁸. These include spikelet-pair meristems, spikelet meristems, and floral meristems, all of
40 which contribute to kernel formation⁹. *Barren inflorescence3 (Bif3)* mutants, overexpress *ZmWUS1* and
41 displays small, spherical ears with a reduced kernel count, indicative of inflorescence meristem
42 disruption⁸. Similar to *Arabidopsis*, *ZmCLE7*, a functional homolog of *CLV3*, is implicated in the
43 regulation of inflorescence growth¹⁰. Diminished *ZmCLE7* expression increases kernel count, producing
44 kernels that are narrower, less round, and deeper, whereas *ZmCLE7* upregulation lowers yield of the
45 female inflorescence¹¹.

46 The influence of WUS on *CLV3* regulation is cell-context dependent. In *Arabidopsis*, *CLV3* is
47 expressed in the three uppermost cell layers, L1, L2, and L3, where the stem cells are located¹². *WUS* is
48 expressed in cells starting from the L3 layer and extending to more inner layers; the region where *WUS*
49 is expressed is known as the organizing center¹³. Although *WUS* is expressed in the organizing center
50 that is beneath the stem cell niche, WUS protein accumulates across a wider area including *CLV3*
51 expressing stem cells¹⁴. It is posited that WUS diffuses to activate *CLV3* in these stem cells, as evidenced
52 by the observation that a decrease in *WUS* expression leads to a reduction in *CLV3* expression¹⁵. If WUS
53 acts as an activator regardless of its cell type, it should activate *CLV3* in the organizing center cells.
54 However, the exclusive expression of *WUS* and absence of *CLV3* expression in the organizing center
55 suggests that WUS functions as a repressor in the organizing center¹⁶. The GRAS transcription factors
56 HAIRY MERISTEMS (HAMS) function as co-factors and their interaction suggests a model where
57 WUS-HAM complexes in the organizing center inhibit *CLV3* transcriptional activation¹⁶. In contrast,
58 another model proposes that WUS forms homodimers that repress *CLV3* in the organizing center, but as
59 it diffuses to nearby cells its concentration diminishes and transitions to function as a monomer that
60 activates *CLV3*¹⁷. These findings collectively highlight that WUS's function varies dependent on cellular
61 context, emphasizing the need for cell-specific data to fully understand its regulatory roles.

62 WUS is homeodomain transcription factor, that has a helix–turn–helix DNA-binding domain
63 that targets specific *cis*-regulatory elements ¹³. There have been significant efforts to identify WUS-
64 dependent *cis*-regulation at *CLV3* and other targets. For example, Electrophoretic Mobility Shift Assays
65 (EMSA) and Chromatin Immunoprecipitation followed by quantitative PCR (ChIP-qPCR) have detected
66 binding of WUS to TAAT motifs in regions flanking *CLV3*, both upstream and downstream ^{14,17}. This
67 TAAT motif is bound by other homeodomain transcription factors ^{13,18}. WUS and SHOOT
68 MERISTEMLESS (STM) also form a dimer that interacts with the TGACA motif upstream of *CLV3* ¹⁹.
69 Additionally, ChIP-qPCR has revealed WUS binding upstream of the *ARABIDOPSIS RESPONSE*
70 *REGULATOR 7 (ARR7)* ²⁰, whereas EMSA has identified WUS binding downstream of the *AGAMOUS*
71 (*AG*), corresponding to a CC(A/T)6GG ^{21,22} or TTAATGG motif ²³. Genomic approaches have also
72 identified WUS targets. For example, ChIP-seq using inducible WUS and WUS DNA affinity
73 purification sequencing (DAP-seq) ²⁴ in *Arabidopsis* have identified the TGAATGAA motif ^{24,25}.
74 Microscale thermophoresis has demonstrated a preference for the TGAATGAA motif over TAAT ²⁶.
75 The crystal structure of the WUS homodimer suggests it prefers the TGAATGAA motif ²⁶. These diverse
76 and occasionally conflicting WUS binding motifs reflect the hierarchical nature of protein:DNA
77 interactions, likely revealing that some sequences are favored over others in certain cellular contexts.
78 This implies that its binding, as well as the specific cell types in which different co-factors or transcription
79 factors exist, could influence WUS activity and targeting of *cis*-regulatory elements.

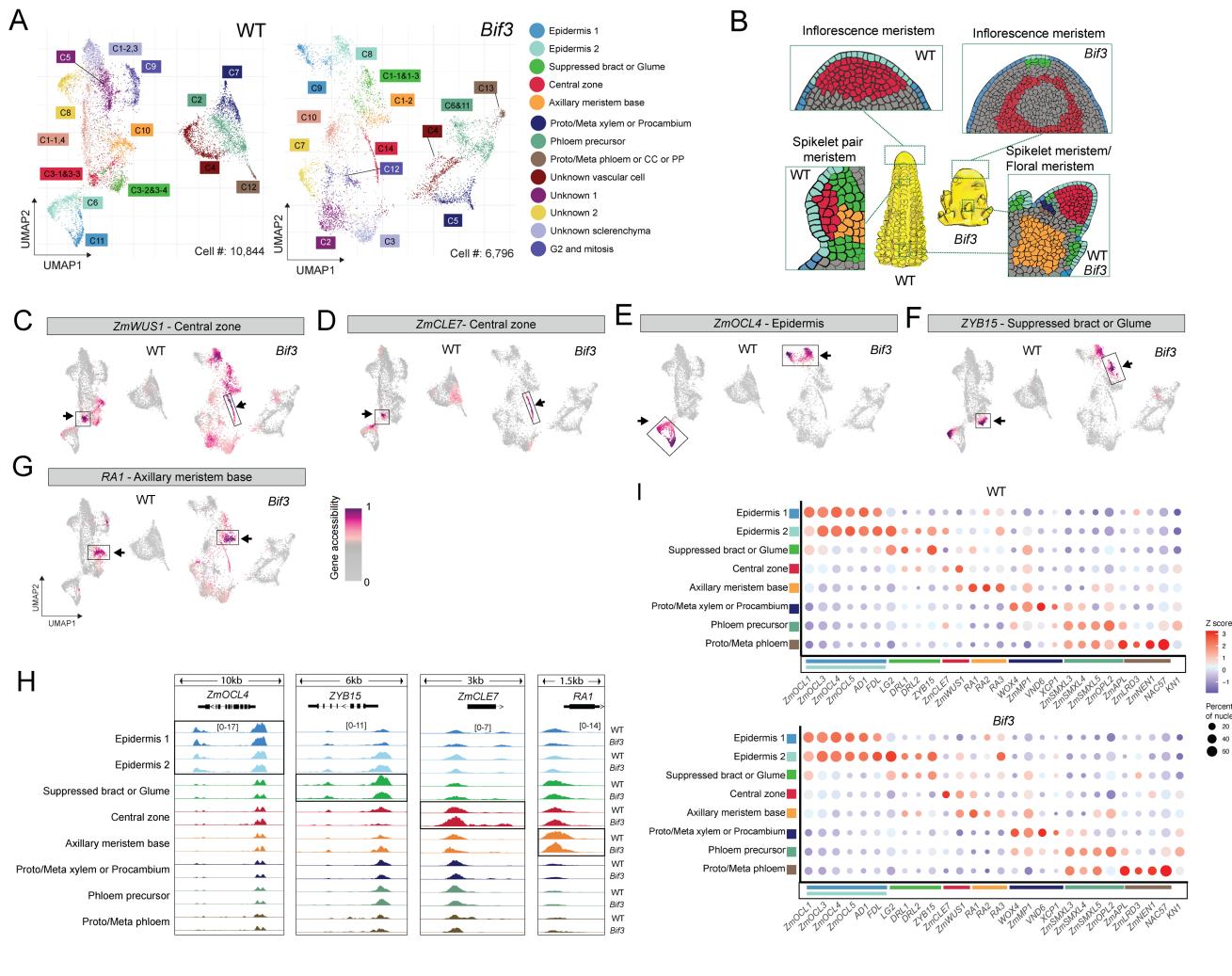
80 Although the role of *ZmWUS1* is significant in maize inflorescence development ⁸, the detailed
81 mechanisms, and particularly its target *cis*-regulatory elements, are unknown. The complex regulatory
82 dynamics of *ZmWUS1* and its unique cell-type-specific expression pattern complicate target gene
83 identification. To accurately identify *cis*-regulatory elements influenced by *ZmWUS1* at single-cell
84 resolution, we used single-cell Assay for Transposase-Accessible Chromatin with sequencing (scATAC-
85 seq) using immature maize ears in wild type (WT) and the *Bif3* mutant background. By contrasting
86 chromatin accessibility variation in WT and *Bif3* across various cell types within the developing
87 inflorescence, we identified cell-type-specific mechanisms of *cis*-regulation and how *ZmWUS1*
88 overexpression affects development. This research has led to a model whereby *ZmWUS1* targets distinct
89 *cis*-regulatory elements depending on the cell type.

90

91

92 RESULTS

93


94 scATAC-seq captures central zone nuclei in the immature maize ear

95 We hypothesized that overexpression of *ZmWUS1* alters *cis*-regulatory element activity in *Bif3* by
96 binding *cis*-regulatory elements that are not typically targeted in WT. To assess this, we compared the
97 chromatin accessibility landscape across cell types between WT and *Bif3* immature ears. We performed
98 scATAC-seq in developing maize inflorescences in WT and *Bif3* using two biological replicates. After
99 filtering nuclei based on Tn5 insertion number per nucleus, transcription start site enrichment, organellar
100 ratio, FRiP scores, and doublet scores, an average of 4,426 nuclei per replicate remained, each with an
101 average of ~25,000 Tn5 insertions. Separate cell annotations for WT and *Bif3* identified 13 and 14 distinct
102 nuclei clusters, respectively, with sub-clustering further refining cell-type annotations (Figure S2A and
103 B; Table S1-3).

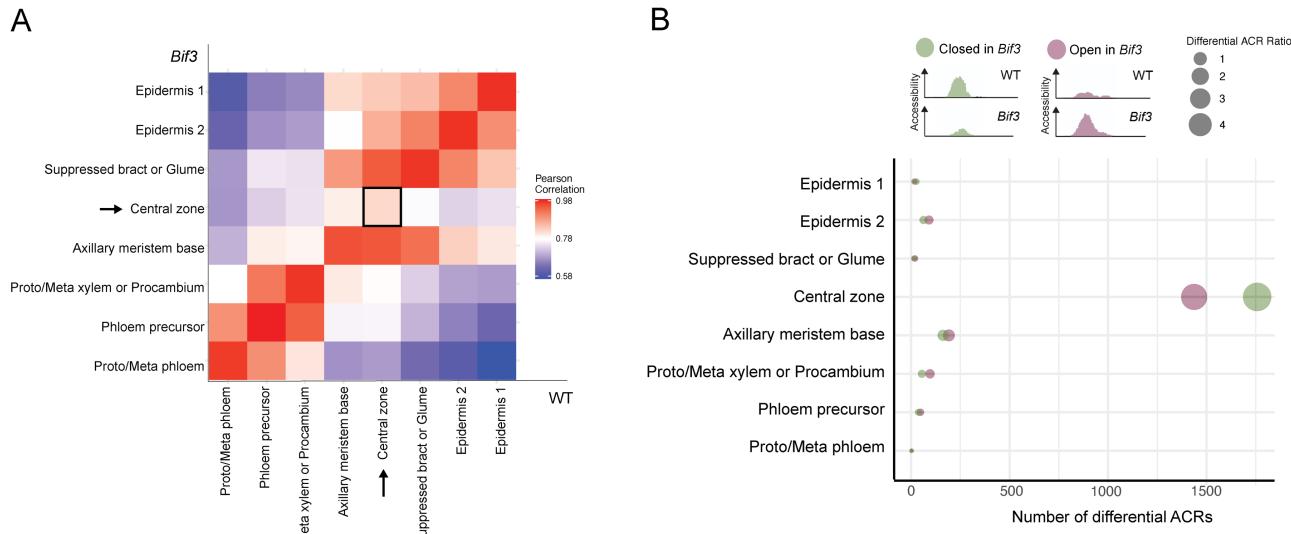
104 Cluster annotation was determined using gene body chromatin accessibility for marker genes
105 (Figure 1A). Although *Arabidopsis WUS* is expressed in the organizing center, specifically in the L3
106 layer and more internal cells at the center of the meristem²⁷, the expression domain of *ZmWUS1* in
107 maize female inflorescence spans a broader area, covering cell layers 1 through 10 across the entire
108 meristem, not just the middle⁸. Furthermore, the distinction between the stem cell niche and cells
109 containing *ZmWUS1* is less defined in the inflorescence meristem, where *ZmCLE7* is expressed in the
110 outermost cells—also the location of *ZmWUS1* expression. This pattern continues in the axillary
111 meristem cells, where the stem cell marker gene *ZmCLE7* and *ZmWUS1* exhibit precisely overlapping
112 expression patterns⁸. In the *Bif3* mutant, this overlap of *ZmWUS1* and *ZmCLE7* expression extends to
113 both the axillary and inflorescence meristems. This leads us to designate *ZmWUS1* and *ZmCLE7*
114 expressing nuclei as the central zone that is illustrated in the accompanying sketch (Figure 1B). *ZmWUS1*
115 gene body chromatin accessibility was widespread and enriched in WT Cluster (C) 3-1 & 3-3, and in
116 *Bif3* C14 (Figure 1C). *ZmCLE7* exhibited pronounced gene body chromatin accessibility in the clusters
117 that also show the highest gene body chromatin accessibility for *ZmWUS1* (Figure 1D). WT C6 and C11,
118 and *Bif3* C8 and C9 were annotated as epidermis, as they exhibited significant gene body chromatin
119 accessibility for *OUTER CELL LAYER4 (OCL4)*²⁸, a transcription factor gene expressed in the meristem
120 L1 layer and in the epidermis (Figure 1E). WT C3-2 and C3-4, along with *Bif3* C1-1 and C1-3, were
121 annotated as suppressed bract or glume primordia, due to increased gene body chromatin accessibility of

122 *ZEA YABBY15 (ZYB15)*^{8,29} (Figure 1F). WT C10 and *Bif3* C1 and C2 were classified as the base of the
123 axillary meristem, as they were characterized by notable gene body chromatin accessibility for
124 *RAMOSA1 (RA1)*³⁰ (Figure 1G). The remaining clusters were annotated using previously published cell-
125 type-specific markers (Figure S3). All clusters were identified in both WT and *Bif3*, except for a few
126 unknown clusters that we were unable to annotate and nuclei at different stages of the cell cycle (Figure
127 2A; Figure S1F-J; Figure S2 C and D).

128 Although there are significant morphological differences between WT and *Bif3*⁸, there was an
129 unexpected amount of consistency in cell-type-specific patterns of chromatin accessibility (Figure 1H;
130 Figure S3). To evaluate the gene body chromatin accessibility pattern more comprehensively for all
131 marker genes, we generated dot plots for 30 marker genes in WT and *Bif3* across all clusters (Figure 1I).
132 The results revealed similar patterns of marker gene chromatin accessibility between WT and *Bif3*,
133 suggesting that the annotated cell types correspond between the two genotypes. Next, using the defined
134 clusters, we identified cell-type-specific markers *de novo* and again we observed a clear correspondence
135 in gene body chromatin accessibility between WT and *Bif3* (Figure S4). These findings indicate that there
136 is a similarity in the patterns of gene body chromatin accessibility for primary marker genes between WT
137 and *Bif3*, which aids in annotating corresponding cell types. The distribution of the proportion of
138 annotated cells aligns with the phenotypic characteristics observed in WT and *Bif3* (Figure S5), where
139 the *Bif3* mutant exhibited a reduced number of cells in the axillary meristem base, coupled with an
140 increased number in the suppressed bract cells²⁶ (Figure 1B).

Figure 1. Annotation of central zone nuclei with chromatin accessibility in WT and *Bif3*. **(A)** UMAP plot for WT and *Bif3*, colored to represent the 14 cell types. **(B)** Illustrations depicting the phenotypes of WT and *Bif3*, including longitudinal sections of the inflorescence meristem, the spikelet pair meristem, the spikelet meristem, and the floral meristem are colored to correspond with the cell types in the UMAP. Grey colors represent cell types with an unknown annotation. **(C-G)** UMAP plots highlighting nuclei exhibiting high gene body chromatin accessibility, depicted in purple, surrounding the marker genes of *ZmWUS1* **(C)**, *ZmCLE7* **(D)**, *ZmOCL4* **(E)**, *ZYB15* **(F)**, and *RA1* **(G)**. **(H)** Genome browser track displaying chromatin accessibility around marker genes for meristem-associated cells in WT and *Bif3*. The ranges of number of indicate CPM (counts per million) normalized Tn5 insertion number. **(I)** Gene body chromatin accessibility patterns of 30 marker genes in WT and *Bif3*. The dot size represents the percentage of nuclei that have chromatin accessibility around the marker genes. The values are Z-score normalized aggregated number of Tn5 insertions by cell types.

Intergenic chromatin accessibility specifically differs in the central zone of *Bif3*


To understand the molecular differences in Accessible Chromatin Region (ACR) that underlie the morphological variation between WT and *Bif3*, we identified differential ACRs, dynamic regions of chromatin accessibility that differ between WT and *Bif3*. Upon merging the ACRs to form a union using

157 ACRs identified from each cell type, the total number of ACRs amounted to 91,386 in WT and 77,393
158 in *Bif3* (Table S4). In WT, approximately 46.6% of the ACRs are gene-overlapping ACRs, 36.6% are
159 distal ACRs – located more than 2 kbp from the closest gene, and 16.7% are proximal ACRs – situated
160 less than 2 kbp from a gene. Similarly, in *Bif3*, the distribution includes ~47.3% gene-overlapping ACRs,
161 ~35.6% distal ACRs, and 17% proximal ACRs.

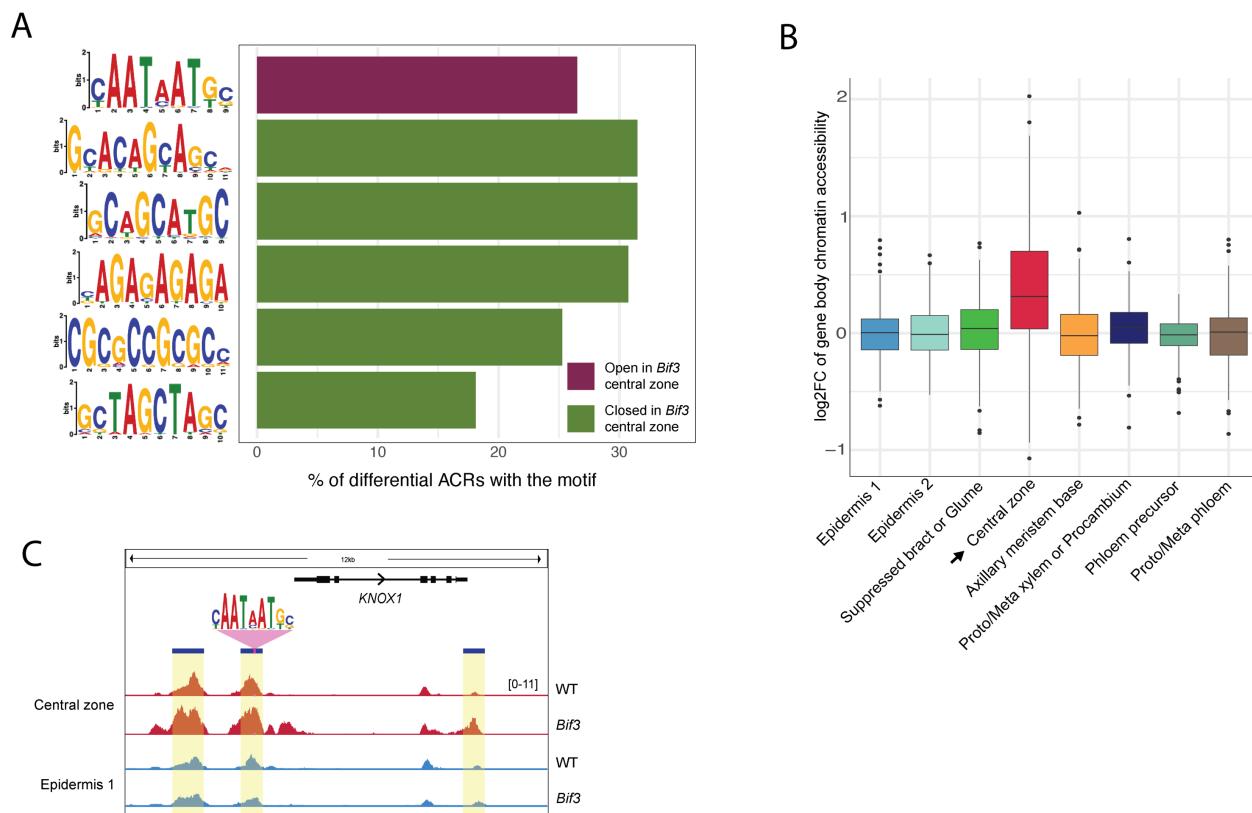
162 We investigated genome-wide accessible chromatin changes within cell types in WT and *Bif3*
163 (Figure 2A). We created intergenic ACR sets, defined by the condition that the midpoint of the ACR
164 does not overlap with any genic region. We aggregated intergenic ACRs across all cell types and
165 genotypes, resulting in 58,578 intergenic ACRs, each spanning 500 bp based on the peak summit.
166 Correlations of read density within ACRs between corresponding cell types exceeded 0.95 for all the cell
167 types except the central zone, indicating a high degree of similarity between WT and *Bif3*. The only cell
168 type that did not follow this trend in WT and *Bif3* was the central zone nuclei, which displayed a
169 correlation of 0.81. This suggests drastic alterations in chromatin accessibility within the *Bif3* central
170 zone, amidst an otherwise conserved chromatin landscape, suggesting the central zone is the source of
171 the morphological differences observed in *Bif3*.
172

173 To further investigate whether chromatin accessibility in the central zone of *Bif3* is increased or
174 decreased, we identified differentially accessible chromatin regions (differential ACRs). For each cell
175 type, we combined intergenic ACRs from both WT and *Bif3*, covering the full extent of ACRs found in
176 either genotype. The procedure was performed independently for each cell type, resulting in intergenic
177 ACR sets of varying numbers. On average, 40,208 intergenic ACRs were pairwise tested for differential
178 ACRs by comparing their chromatin accessibility between WT and *Bif3*. Most cell types had fewer than
179 355 differential ACRs, representing less than 1% of the total ACRs per cell type, whereas the central
180 zone exhibited 3,194 differential ACRs, accounting for 8.5% of its total ACRs (Figure 2B). Among the
181 differential ACRs in the central zone, 1,437 showed increased chromatin accessibility in *Bif3* (termed
182 ‘increased in *Bif3*’), whereas 1,757 exhibited decreased chromatin accessibility in *Bif3* (termed
183 ‘decreased in *Bif3*’) (Table S5).

184

185

186 **Figure 2. The overall chromatin accessibility profile of WT and *Bif3*.** (A) A heatmap depicts the correlation of intergenic
187 ACRs between WT and *Bif3*. The 2,000 most variable intergenic ACRs were selected for analysis. The correlation is based
188 on the aggregated number of Tn5 insertions by cell type between WT and *Bif3*. (B) A dot plot displays the number of
189 differential ACRs across various cell types. The illustration provides examples of differential ACRs with either higher
190 chromatin accessibility in WT or *Bif3*. The total number of differential ACRs, as well as those exhibiting higher chromatin
191 accessibility in either *Bif3* or WT, are distinctly colored. The ratio of differential ACRs is calculated by dividing the number
192 of differential ACRs by the total number of intergenic ACRs.


193

194 **Regions with increased chromatin accessibility due to overexpressed *ZmWUS1* were
195 enriched for the CAATAATGC motif and genes near this motif show signs of elevated
196 transcription**

197 To uncover transcription factors potentially involved in the altered chromatin accessibility landscape, we
198 identified enriched motifs in differential ACRs increased and decreased in *Bif3*, respectively. The
199 differential ACRs increased in *Bif3* were enriched for a single significant motif (CAATAATGC),
200 whereas the differential ACRs decreased in *Bif3* showed enrichment for five distinct motifs (Figure 3A).
201 In total, there were 381 differential ACRs (~26.51% of those increased in *Bif3*) that had a CAATAATGC
202 motif. The CAATAATGC motif has a core motif of TAAT, which was previously identified as a WUS
203 binding motif^{13,18}. This finding is supported by our hypothesis that overexpressed *ZmWUS1* targets
204 chromatin regions not originally intended as its binding sites in WT, thereby increasing chromatin
205 accessibility. Thus, the ‘increased in *Bif3*’ differential ACRs containing the CAATAATGC motif in the
206 central zone represent ACRs directly associated with the overexpression of *ZmWUS1*.

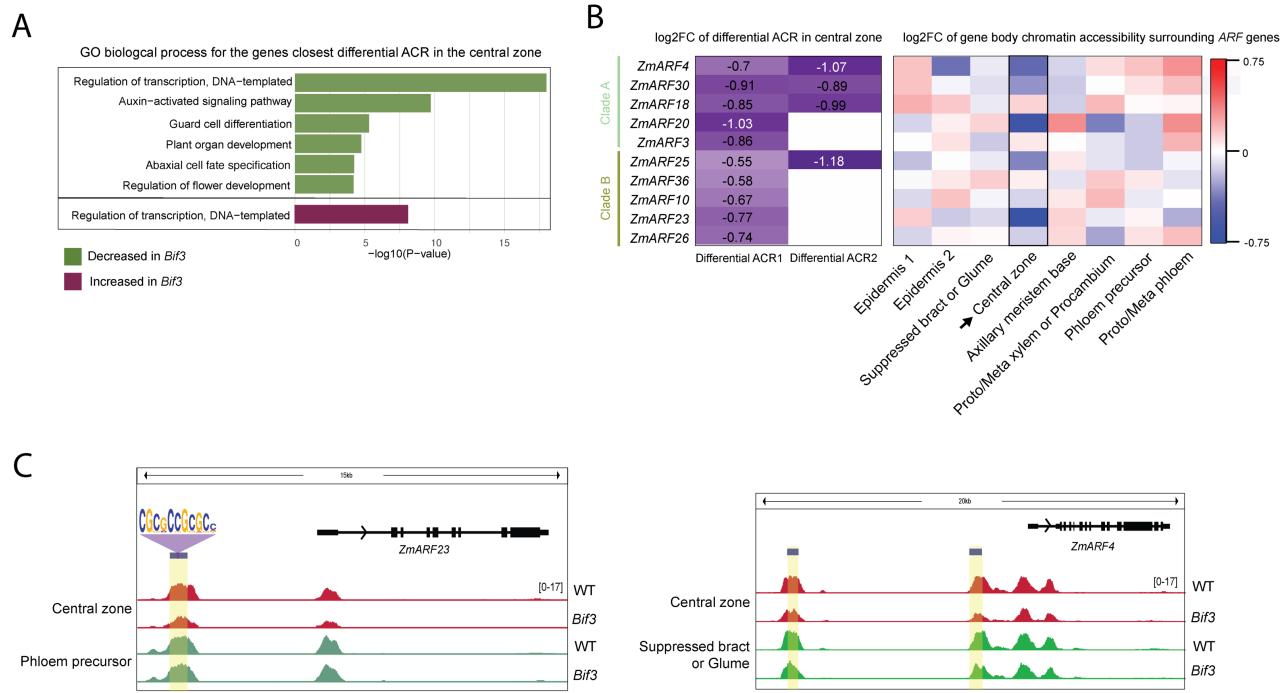
207 *ZmWUS1* is a member of the *WUSCHEL-related homeobox (WOX)* gene family that shares a
208 conserved DNA-binding homeodomain ³¹. For example, *in vitro* assays revealed interactions between
209 TAAT sequences and OsWOX5 (*Oryza sativa*) in rice ³², and TTAATT and *Arabidopsis* WOX11 ²⁴. One
210 possibility for the detection of the TAAT motif in the differential ACRs is that *ZmWUS1* enhances the
211 expression of other *WOX* genes, making it difficult to distinguish if these ACRs are affected by
212 *ZmWUS1* or *WOX* transcription factors. Thus, we explored which cell types have higher gene body
213 chromatin accessibility, a proxy for expression ³³, in the 14 annotated *WOX* genes ³⁴ and *ZmWUS2* ³⁵, the
214 *ZmWUS1* co-ortholog. Our analysis in WT showed that although most *WOX* genes have increased
215 chromatin accessibility in vascular nuclei, *ZmWOX2A*, *ZmWOX9B*, *ZmWOX9C*, *ZmWOX13B*, and
216 *ZmWUS2* showed greater chromatin accessibility in the central zone nuclei compared to other cell types
217 (Figure S6A). A comparison of gene body chromatin accessibility between WT and *Bif3* showed a
218 general decrease of chromatin accessibility for *WOX* genes in the *Bif3* central zone, particularly
219 *ZmWOX3A*, *ZmWOX9B*, and *ZmWOX9C* (Figure S6B and C). This is highlighted by the ACR near the
220 promoter of *ZmWUS2*, which exhibits a substantial reduction in chromatin accessibility in the *Bif3* central
221 zone nuclei (Figure S6D) and is downregulated in *Bif3* RNA-seq datasets ⁸. These findings suggest that
222 the prevalence of CAATAATGC motifs in the ‘increased in *Bif3*’ differential ACRs is not predominantly
223 driven by other *WOX* family members.

224 We investigated whether the 381 differential ACRs in the central zone nuclei with a
225 CAATAATGC motif are associated with activated or inactivated nearby genes. We used gene body
226 chromatin accessibility proximal to these differential ACRs targets as proxy for whether a gene is
227 expressed or not, as previous research showed there is a good correlation ³³. We discovered that gene
228 body chromatin accessibility of most of the genes associated with the 381 differential ACRs increased in
229 the central zone of *Bif3* compared to WT (Figure 3B). The central zone displayed an average log2 fold
230 change in gene body chromatin accessibility, comparing *Bif3* to WT, of approximately 0.38. In contrast,
231 other cell types displayed log2 fold change values that, on average, were less than 0.05 in magnitude,
232 indicating minimal changes. As examples, we observed a differential ACRs that becomes accessible in
233 *Bif3* in the central zone near *KNOTTED-like homeobox (KNOX1)*, a meristematic gene ²⁴ (Figure 3C).
234 This indicates that the differential ACRs exhibiting increased chromatin accessibility in *Bif3* are
235 associated with elevated transcription of nearby genes.

236

237 **Figure 3. Characteristics of differentially Accessible Chromatin Regions (differential ACRs) between WT and *Bif3* by**
 238 **cell types. (A)** The PWM illustrates significant motifs discovered within differential ACRs in the central zone (E-value <1).
 239 The ratio indicates the number of differential ACRs containing the motif divided by the total number of differential ACRs.
 240 The color denotes whether the differential ACR sets are increased or decreased in *Bif3* central zone. **(B)** Box plot displays the
 241 log2 fold change (log2FC) of gene body chromatin accessibility surrounding differential ACRs increased in *Bif3* with the
 242 CAATAATGC motif. Log2FC was calculated by normalizing gene body chromatin accessibility of differential ACRs in *Bif3*
 243 to those of WT. Rows represent individual genes, while columns represent cell types. **(C)** Genome browser view illustrates
 244 chromatin accessibility in central zone for the peaks with the CAATAATGC motif.

245


246 **Accessible chromatin regions with decreased accessibility due to overexpressed *ZmWUS1*** 247 **are associated with reduced auxin signaling**

248 We examined gene body chromatin accessibility changes near differential ACRs that were decreased in
 249 *Bif3* in the central zone nuclei, which were associated with five different motifs: GCACAGCAGC,
 250 GCAGCATGC, CGCGCCGCGCC, GCTAGCTAGC, and AG repeats (Fig 3A). The multiple motifs
 251 present in the decreased ACR set suggests that distinct transcription factors may be involved with these
 252 regions, each recognizing their specific motif sequence. Near these decreased differential ACRs with the

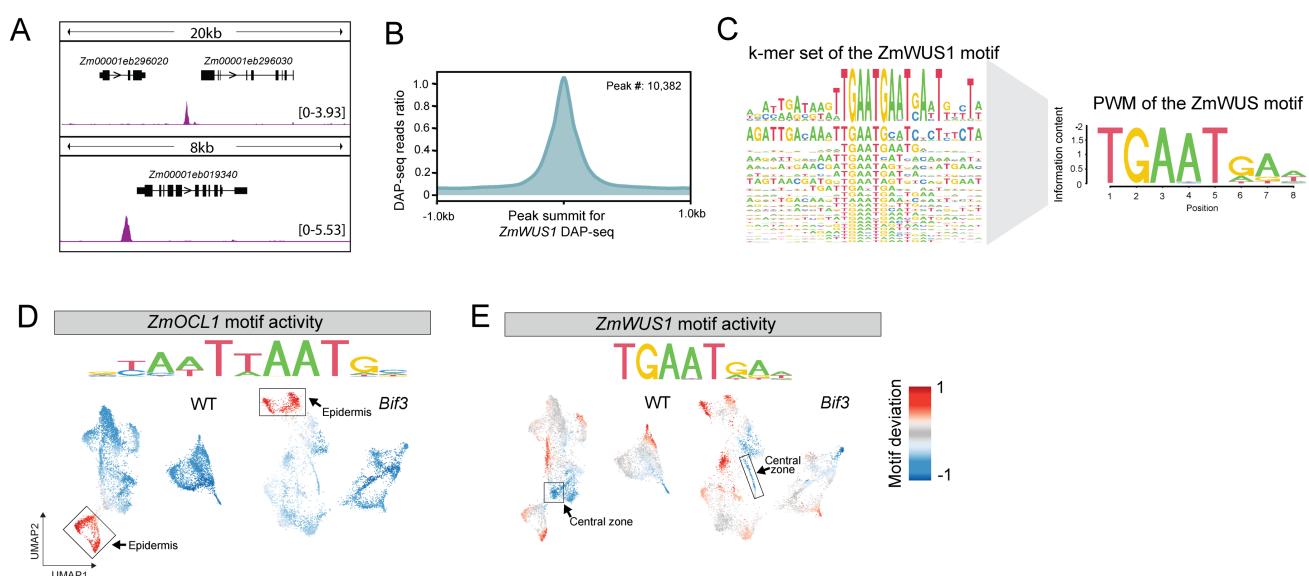
253 five motifs, we observed decreased gene body chromatin accessibility in *Bif3* central zone genes (Figure
254 S7). This indicates that differential ACRs decreased in *Bif3* are likely involved in reducing the
255 transcription of nearby genes.

256 Gene ontology analysis revealed that the differential ACRs decreased in *Bif3* in the central zone
257 were linked to transcription regulation, developmental regulation and auxin hormone responses (Figure
258 4A). As meristem size regulation is associated with auxin hormone pathways³⁶, we investigated *AUXIN*
259 *RESPONSE FACTORS (ARFs)* genes. We discovered 10 *ZmARF* genes nearby differential ACRs in the
260 central zone. All these differential ACRs decreased in *Bif3*, whereas none were nearby ACRs increased
261 in *Bif3* (Figure 4B; Figure S8A). Most of these *ZmARF* genes displayed decreased gene body chromatin
262 accessibility in the *Bif3* central zone nuclei, with varying changes observed in other cell types. Genome
263 browser views showed reduced chromatin accessibility of differential ACRs upstream of *ZmARF4* and
264 *ZmARF23*, as well as reduced gene body chromatin accessibility in the *Bif3* central zone (Figure 4C).
265 Thus, differential ACRs decreased in central zone of *Bif3* are associated with likely decreased
266 transcription of *ZmARFs*. This indicates that *ZmARFs* transcription is negatively associated with
267 overexpressed *ZmWUS1* and is consistent with the negative regulation of *ZmARFs* being associated with
268 increased meristem size³⁷.

269 We further categorized *ZmARFs* near differential ACRs in the central zone into clade A and B;
270 clade A, are transcriptional activators, while clade B are repressors^{38,39}. Among the 10 *ZmARFs* found
271 near differential ACRs, *ZmARF4*, *ZmARF18*, *ZmARF20*, and *ZmARF30* belong to clade A, whereas
272 *ZmARF10*, *ZmARF23*, *ZmARF25*, and *ZmARF36* are in clade B⁴⁰. The differential ACRs near clade A
273 *ZmARFs* lacked the five motifs found in the decreased differential ACRs, whereas those near clade B
274 *ZmARFs* contained at least one of these motifs. Notably, all differential ACRs near clade B *ZmARFs*
275 commonly featured the CGCGCCGCGCC motif (Figure S8B). This indicates that the negative regulation
276 of *ZmARFs* by overexpressed *ZmWUS1* involves both clade A and clade B, with clade B being
277 predominantly regulated by a single CGCGCCGCGCC motif.

278

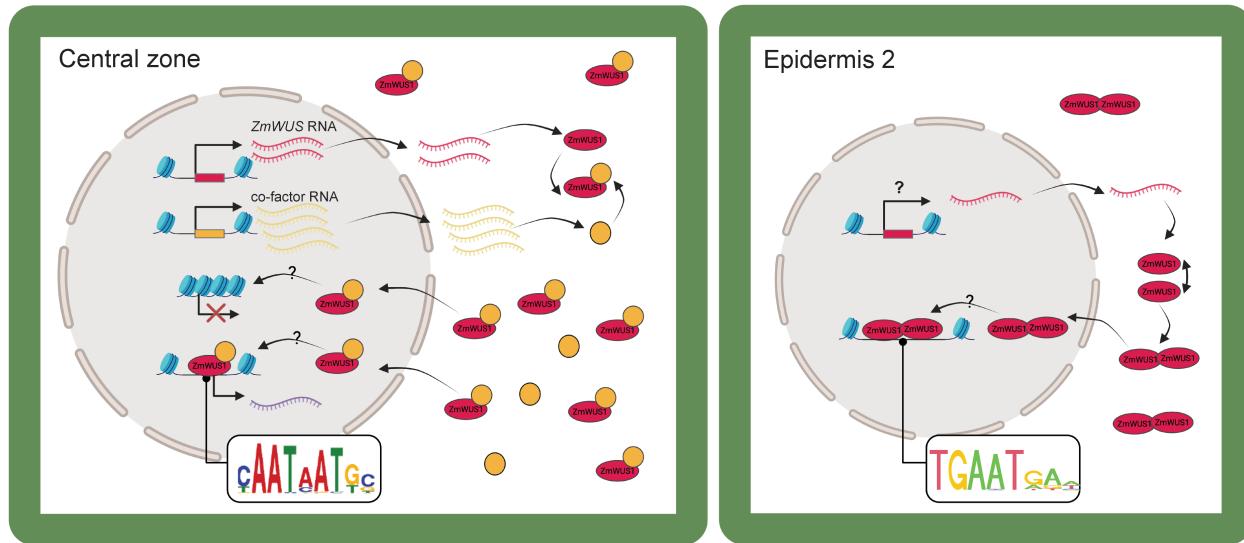
279 **Figure 4. The *ARF* genes are associated with decreased differential ACRs by overexpression of *ZmWUS1*.** (A) Bar graph
280 illustrates significant biological process terms identified using a Fisher's exact test using the genes closest to the differential
281 ACRs in the central zone (FDR <0.05). (B) The left heatmap shows the logFC of differential ACRs around *ARF* genes,
282 whereas the right heatmap shows the gene body chromatin accessibility of *ARFs* by cell types. (C) Chromatin accessibility in
283 the central zone around *ZmARF4* and *ZmARF23*. The blue bar and yellow highlighted region indicate the differential ACRs.


284

285 **ZmWUS1 DAP-seq identified the TGAATGAA motif rather than the CAATAATGC motif**

286 We used DAP-seq²⁴ to identify DNA sequences directly bound by ZmWUS1 across the maize genome
287 (Figure 5A). In total, 10,382 peaks were identified, which uncovered TGAATGAA as the top-ranked
288 motif consistently observed at the center of the peaks (Figure 5B). The first occurrence of TGAA in the
289 motif shows strong representation, whereas the second occurrence exhibits variability especially in the
290 tail of the motif (Figure 5C). The analysis using Tomtom⁴¹ and the JASPAR motif database for plants⁴²
291 and the DAP-seq cistrome database²⁴ revealed that the TGAATGAA motif from ZmWUS1 DAP-seq
292 shares similarity with the Arabidopsis WUS motif (E-value=0.079), but not with any other motif. The
293 TGAATGAA motif matches the motif previously identified using ChIP-seq and DAP-seq using
294 Arabidopsis WUS^{8,24,25}. This shows the TGAATGAA motif is unique from other known TF motifs in
295 plants.

296 We hypothesized that the TGAATGAA motif would be accessible for binding in the nuclei
297 where *ZmWUS1* is active. First, we identified all intergenic ACRs across all cell types in each genotype,
298 which revealed 58,424 and 49,618 ACRs in WT and *Bif3* respectively. Next, we used chromVar⁴³ to
299 calculate motif deviation scores, which represents the likelihood of observing a specific motif with high
300 chromatin accessibility within the intergenic ACRs in each nucleus. Our previous study indicated that in
301 certain cell types, transcription factors with high gene body chromatin accessibility also tend to have
302 higher motif deviation scores³³. As an example, based on its orthology to *Arabidopsis*
303 HOMEO DOMAIN GLABROUS1 (HDG1), the *ZmOCL1* transcription factor is expressed in the outer
304 layers and is predicted to bind a TAATTAATG motif. Motif deviation for *ZmOCL1* indicated its target
305 motif is enriched in the intergenic ACRs of the epidermis in both WT and *Bif3*, as its motif deviation is
306 higher in epidermis compared to other cells (Figure 5D). This suggests that the *ZmOCL1* transcription
307 factor, expressed in the epidermis, binds to ACRs within the same cells where it is expressed.


308 For the TGAATGAA motif identified via DAP-seq for *ZmWUS1*, we observed low motif
309 deviation scores in the central zone of both WT and *Bif3* (Figure 5E). This indicates that TGAATGAA
310 motifs are less prevalent in the accessible chromatin regions (ACRs) of the central zone where *ZmWUS1*
311 is expressed, compared to other cell types. In both genotypes, the highest motif deviation scores for
312 *ZmWUS1*'s TGAATGAA motif was in the epidermis, proto/meta xylem or procambial cells. This
313 suggests that *ZmWUS1* likely targets cis-regulatory elements with the TGAATGAA motif in specific
314 cell types away from the central zone if it can act as a monomer or homodimer.

315

316 **Figure 5.** The ZmWUS1 motif identified using DAP-seq shows different activity within ACRs depending on the cell type.
317 (A) A genome browser view showing the peaks from ZmWUS1 DAP-seq. The y-axis shows CPM values. (B) A metaplot
318 displaying the ratio of reads within a 1-kilobase pair region surrounding the ZmWUS1 DAP-seq peaks. (C) Identification of
319 the ZmWUS1 motif using a k-mer set analysis, along with Position Weight Matrix (PWM) models of the most enriched and
320 significant motifs. (D) The motif deviation of ZmOCL1 in WT and *Bif3*. The motif is known for Arabidopsis HDG1, which
321 is orthologous to ZmOCL1. The box with arrows indicates the epidermis cells. (E) The motif deviation of ZmWUS1 in WT
322 and *Bif3*. The box with arrows indicates the central zone cells.

323

324
325
326

Figure 6. A proposed model for central zone specific ZmWUS1 *cis*-regulation. cell-type-specific motif usage by ZmWUS1
326 could be attributed to the unique molecular interactions occurring in central zone cells.

327

328 Discussion

329
330
331
332
333
334
335
336
337
338
339

ZmWUS1 plays a crucial role in meristem development as a transcription factor that binds to *cis*-regulatory elements and facilitates formation of the ear. *ZmWUS1* expression is confined to the central zone, which has presented challenges in identifying associated *cis*-regulatory elements. To address this, we compared cell-type chromatin accessibility differences in the central zone between WT and *Bif3*, identifying 1,437 regions with increased chromatin accessibility and 1,757 regions with decreased chromatin accessibility in *Bif3*. The accessible chromatin regions with increased accessibility in the *Bif3* central zone nuclei were enriched for the CAATAATGC motif, comprising approximately 26.51% of these regions. WUS can bind TAAT repeats in a variety of *in vitro* binding assays^{14,20}. Our data suggests that overexpressed *ZmWUS1* might lead to binding *cis*-regulatory elements in accessible chromatin beyond its typical targets when expressed at WT levels. Together, these results suggest that ZmWUS1 likely targets TAAT in the central zone nuclei. Another possibility is that related gene family members

340 that also target the TAAT motif perform this function; however, the diminished gene body chromatin
341 accessibility observed for *ZmWUS2* or *WOX* genes reduces this likelihood and supports the hypothesis
342 that *ZmWUS1* targets the CAATAATGC motif in the central zone nuclei (Figure S6). As WUS is
343 proposed to be a dual functional transcription factor that can activate or repress gene expression in
344 *Arabidopsis* depending on its context¹⁶, we examined gene body chromatin accessibility changes near
345 target regions harboring the CAATAATGC motif and discovered that their gene body chromatin
346 accessibility mostly increases, which implies that *ZmWUS1* likely acts as an activator in the central zone
347 nuclei in maize.

348 The TGAATGAA motifs identified by *ZmWUS1* DAP-seq were not predominant in the
349 accessible chromatin regions of *Bif3* in the central zone nuclei; instead, the CAATAATGC motif was
350 prevalent. DAP-seq captures *ZmWUS1* binding, either as a monomer or a homodimer²⁴, and suggests
351 that the TGAATGAA motif might derive from either form of *ZmWUS1* binding. Protein structural
352 analysis indicates a potential for homodimer formation of *ZmWUS1* using TGAATGAA for DNA
353 binding⁸. Given the increased amount of *ZmWUS1* in the central zone nuclei of *Bif3*, there's a heightened
354 likelihood for homodimer formation. Absence of the TGAATGAA motifs in accessible chromatin
355 regions in the central zone nuclei in *Bif3* suggests additional factors influence *ZmWUS1* binding to target
356 sequences in the central zone. One possibility is that there could be protein interactions with the other
357 transcription factors that are specific to the central zone and restrict the binding of *ZmWUS1* in
358 comparison to nearby cells where *ZmWUS1* is able to act as a monomer or homodimer (Figure 6).
359 Alternatively, cell-type-specific post-translational modifications of *ZmWUS1* could affect its activity
360 including its ability to partner with other proteins or it could affect its DNA-binding affinity^{44,45}. Future
361 research that incorporates cell-type-specific binding of *ZmWUS1* to its targets will be needed to resolve
362 this question.

363 The TGAATGAA motif was found more frequently in the ACRs of the epidermis and proto/meta
364 xylem cells compared to those of central zone in both WT and *Bif3*. This includes the 'epidermis 2' nuclei,
365 which had gene body chromatin accessibility for *ZmWUS1*. This observation suggests that *ZmWUS1*,
366 when expressed in epidermis 2, may target the TGAATGAA motif. However, the enriched TGAATGAA
367 motif in ACRs of epidermis 1 and the proto/meta xylem or procambium cells remains challenging to
368 explain. In the absence of *ZmWUS1* expression in these cells, one might speculate that *ZmWUS1* diffuses
369 there. Nonetheless, even if *ZmWUS1* does move, its effects seem minimal. Furthermore, the coinciding
370 expression patterns of *ZmWUS1* and *ZmCLE7* within the central zone of maize immature ears prompt

371 further inquiry into the necessity and scope of ZmWUS1's movement for different motif usage. Our
372 findings lead to a proposed model illustrating cell-type-specific motif utilization by ZmWUS1 (Figure
373 6).

374 The decreased chromatin accessibility in the central zone nuclei due to overexpressed *ZmWUS1*
375 raises intriguing questions. If ZmWUS1 actively binds these regions, they should be accessible, yet they
376 are inaccessible, indicating a past binding event or possibly indicating that the regions were never
377 accessible in the first place. One possibility is that overexpressed *ZmWUS1* previously initiated
378 chromatin closure, an event that might have occurred before sampling of the *Bif3* tissue used in this study.
379 This is plausible given *ZmWUS1* is expressed during the embryonic stage³⁵. Given that the central zone
380 encompasses multiple cell types, ZmWUS1 could potentially interact with other transcription factors
381 across these different cells. This interaction is suggested by the enrichment of five distinct motifs
382 (GCACAGCAGC, GCAGCATGC, CGCGCCGCGCC, GCTAGCTAGC, and AG repeats) in the
383 decreased chromatin accessibility region in the central zone. Alternatively, ZmWUS1 might indirectly
384 cause chromatin closure without directly binding to these regions. For example, the presence of AG
385 repeats is one class of polycomb response elements^{46,47}, and suggests a potential silencing role directed
386 by the Polycomb repressive complex 2. The decreased gene body chromatin accessibility of genes linked
387 to these motifs supports a silencing function, pointing to a complex interplay where ZmWUS1 might be
388 implicated in silencing either directly or indirectly. Future studies that can dissect cell-type-specific
389 binding of ZmWUS1 will be needed to resolve these possibilities.

390 The reduced chromatin accessibility near *ZmARF* genes suggests a link between overexpressed
391 *ZmWUS1* and diminished auxin signaling in the central zone nuclei. This observation aligns with the
392 known interactions between *Bif3* and auxin-insensitive mutants⁸. In *Arabidopsis*, the shoot apical
393 meristem exhibits lower auxin signaling in the central zone compared to peripheral regions⁴⁸. Previous
394 research indicates that induced *WUS* expression further decreases auxin signaling in the central zone,
395 suggesting *WUS* shields stem cells from auxin-driven differentiation²⁵. This auxin-related regulatory
396 mechanism implies that ZmWUS1 might negatively influence *ZmARF* gene regulation, affecting auxin
397 signaling pathways. The diminished transcription of *ZmARF* in the central zone accounts for the reduced
398 differentiation observed in *Bif3*, characterized by an increased stem cell count in the inflorescence
399 meristem and the presence of single rather than paired spikelet meristems. Overall, this study highlights
400 how the overexpression of *ZmWUS1* influences early ear development by enhancing chromatin

401 accessibility in central zone ACRs containing the CAATAATGC motif and simultaneously reducing
402 ACRs associated with the auxin signaling pathway.

403

404

405 **STAR*METHODS**

406 **RESOUCE AVAILABILITY**

407 **Lead contact**

408 Further information and requests for resources and reagents should be directed to and will be fulfilled by
409 Lead Contact, Robert J. Schmitz (schmitz@uga.edu).

410 **Materials availability**

411 This study did not generate new unique reagents.

412 **Data and code availability**

413 Single-cell ATAC-seq and DAP-seq data have been deposited at the NCBI GEO database under
414 accession code GSE266007.

415

416 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

417 Immature ears (2-6 mm in size) were collected from the inbred line A619 wild-type, and *+/Bif3* plants
418 (back-crossed 12 times in A619) grown in winter 2020 in the Waksman Institute greenhouse (Piscataway,
419 NJ, USA), and in summer 2021 in the Waksman Institute field (Piscataway, NJ, USA). The *Bif3* mutant
420 phenotype is completely dominant in A619 ears²⁶. Immature ears were harvested (36 and 31 samples for
421 A619, and 41 and 36 for *+/Bif3* in 2020 and 2021, respectively) approximately at the same time of the
422 day (from 11am-2pm) and bulked for subsequent analysis. Greenhouse sown seeds were grown in 5-
423 gallon pots filled with PROMIX BX General Purpose Soil and supplemented with 14-14-14 Osmocote.
424 Soil was saturated with tap water and placed under GE Lucalox 400W lighting. Seedlings were grown
425 under a photoperiod of 16 hours of light, 8 hours of dark. The temperature was maintained at ~25°C
426 during light hours with a relative humidity of approximately 30%. Greenhouse growing conditions were
427 monitored and controlled by MicroGrow Greenhouse Systems.

428

429 **METHOD DETAILS**

430 **Single-cell ATAC-seq library construction**

431 The protocol for nuclei isolation and purification was adapted from a previously described method with
432 specific modifications to improve nuclei yield and quality ⁴⁹. In brief, approximately 5-6 immature maize
433 ears were fine chopped on ice for approximately one minute using 300 µL of pre-chilled Nuclei Isolation
434 Buffer (NIB, 10 mM MES-KOH at pH 5.4, 10 mM NaCl, 250 mM sucrose, 0.1 mM spermine, 0.5 mM
435 spermidine, 1 mM DTT, 1% BSA, and 0.5% TritonX-100). Following chopping, the mixture was filtered
436 through a 40-µm cell strainer and then centrifuged at 500 rcf for 5 minutes at 4°C. The supernatant was
437 carefully removed, and the pellet was washed in 500 µL of NIB wash buffer, comprised of 10 mM MES-
438 KOH at pH 5.4, 10 mM NaCl, 250 mM sucrose, 0.1 mM spermine, 0.5 mM spermidine, 1 mM DTT, and
439 1% BSA. Then, the sample was filtered again through a 20-µm cell strainer, and then gently layered onto
440 the surface of 500 µL of a 35% Percoll buffer, prepared by mixing 35% Percoll with 65% NIB wash
441 buffer, in a 1.5-mL centrifuge tube. The nuclei were centrifuged at 500 rcf for 8 minutes at 4°C. After
442 centrifugation, the supernatant was carefully removed, and the pellets were resuspended in 10 µL of
443 diluted nuclei buffer (DNB, 10X Genomics Cat# 2000207). Approximately 5 µL of nuclei were diluted
444 10 times, stained with DAPI (Sigma Cat. D9542), and then assessed for quality and density with a
445 hemocytometer under a microscope. The original nuclei were diluted with DNB buffer to a final
446 concentration of 3,200 nuclei per uL. Finally, 5 uL of nuclei (16,000 nuclei in total) were used as input
447 for scATAC-seq library preparation. scATAC-seq libraries were generated using the Chromium scATAC
448 v1.1 (Next GEM) kit from 10X Genomics (Cat# 1000175), following the manufacturer's instructions
449 (10xGenomics,

450 CG000209_Chromium_NextGEM_SingleCell_ATAC_ReagentKits_v1.1_UserGuide_RevE). The
451 libraries were sequenced with Illumina NovaSeq 6000 in dual-index mode with 8 and 16 cycles for i7
452 and i5 index, respectively.

453

454 **DAP-seq library construction**

455 DAP-seq libraries for assessing ZmWUS1 binding to maize genomic DNA were created as described in
456 Galli et al., 2018 ⁴⁰. In brief, genomic DNA was extracted from the leaves of 14 day-old B73 seedlings
457 using a phenol:chloroform:Iso amyl alcohol procedure. 5µg of extracted DNA was sheared in a Covaris
458 S2 sonicator to 200bp fragments. The fragmented DNA was then end repaired using the END-IT DNA
459 repair kit (Lucigen) per the manufacturer's recommendations and cleaned using a QiaQuick PCR clean-

460 up method (Qiagen). Eluted DNA was then A-tailed using Klenow exo- (NEB) for 30min at RT. Samples
461 were cleaned using a QiaQuick PCR-clean-up method. Eluted DNA was ligated to truncated Illumina Y-
462 adapters overnight at 16 degrees C using T4 DNA ligase (NEB). Samples were heat inactivated for 10
463 min at 70 degrees C followed by a 1:1 bead clean-up using AmpureXP beads (Beckman-Coulter).
464 Libraries were quantified using the Qubit HS kit. 1ug of this library was then incubated with in vitro
465 expressed HALO-WUS1 protein bound to 10ul of MagneHALO beads (TNT rabbit reticulocyte
466 expression system and MagneHALO beads, Promega) generated from 1ug of pIX-HALO-WUS1
467 plasmid. Unbound DNA was washed away using six washes of phosphate buffered saline (PBS), and
468 bound DNA was eluted from the beads using 30ul of 10mM Tris (EB) and heating to 98 degrees C for
469 10 min. DNA was barcoded and enriched with 19 cycles and Illumina primers prior to sequencing on a
470 NextSeq500 with 75bp Single End reads.

471

472 **QUANTIFICATION AND STATISTICAL ANALYSIS**

473

474 **High-quality nuclei identification**

475 The reads from scATAC-seq are mapped using the CellRanger-atac count (v2.0.0) by 10X Genomics to
476 modified B73 v5 reference genome. In B73 v5, the scaffolds are removed while Mt (mitochondria) and
477 Pt (plastids) were added from v3 genome. The multi-mapped reads with BWA added tags of “XA” and
478 “SA” were removed ⁵⁰. De-duplication was performed by picard MarkDuplicates (v2.16.0)
479 (<https://broadinstitute.github.io/picard/>). Single-base pair Tn5 integration were identified using a python
480 script ⁵¹.

481 Socrates, R package (<https://github.com/plantformatics/Socrates>), was used to filter out nuclei
482 that did not meet quality thresholds ³³. These criteria included the quantification of Tn5 transposase
483 insertions, the proximity ratio of Tn5 insertions to the transcription start site (TSS), the fraction of reads
484 in peaks (FRiP) score, and the organelle DNA ratio. We excluded nuclei falling below the knee point
485 identified in the plot correlating unique Tn5 integration sites per nucleus with barcode rank. Nuclei were
486 filtered if they exhibited TSS ratio or FRiP score beyond three standard deviations from the mean, and if
487 the organelle DNA ratio exceeded 5%. Additionally, nuclei with fewer than 100 accessible chromatin
488 regions, or with an open chromatin peak ratio below 0.01 or above 0.05, were excluded from subsequent
489 analysis.

490 We used the presence or absence of Tn5 insertions within 500 bp windows as features for
491 dimensionality reduction. A blacklist generated from comparative ATAC-seq to genomic DNA and
492 control ChIP-seq data was applied to remove features. The cleanData function in the Socrates package
493 was used to apply feature filters based on their frequency across the cell population. Features present in
494 more than 5% of cells were retained using the 'max.t=0.05' parameter, while those observed in fewer than
495 1% of cells were excluded with the 'min.t=0.01' threshold. Feature normalization was performed using
496 the term frequency-inverse document frequency transformation (TF-IDF)⁵². The top third of the features,
497 identified as highly variable, were selected for further dimensionality reduction using the reduceDims
498 function in Socrates.

499 Singular value decomposition (SVD) was used to reduce dimensionality and compute the
500 principal components⁵³. The top 100 principal components were used for Uniform Manifold
501 Approximation Projection (UMAP). Doublets were identified and removed using Scrublet using the
502 software Scrublet as implemented in detectDoublets and filterDoublets function in Socrates with the
503 option of filterRatio=1.5⁵⁴. Finally, to integrate the two replicates, we applied the Harmony algorithm
504 with 'theta=2, sigma=0.1, max.iter.cluster=100, and max.iter.harmony=30'⁵⁵. Cell clustering was
505 performed using Louvain clustering on k=50 nearest neighborhood graph with a resolution of 0.3.
506 Subsequent cluster assignment by Louvain community detection identified distinct cell clusters.

507

508 **Gene body chromatin accessibility analysis**

509 Gene body accessibility served as a basis for cell annotation, leveraging the variability across cells. We
510 used marker genes referenced in prior scATAC-seq literature³³ and additionally collected marker genes
511 known for their localization in specific cell types, as identified in other literature through *in situ*
512 hybridization. We added the *ZmCLE7* gene from reference genome AGPv3.19 into the B73 v5 genome,
513 by finding the sequence match at "chr4:8531149-8531929" for *ZmCLE7* in v5 using BLAST. To assess
514 gene body chromatin accessibility, we counted Tn5 insertions within the gene body and 500 bp upstream
515 and downstream extended regions using Granges and findOverlaps⁵⁶. Cell annotations were performed
516 using a UMAP plot, depicting gene body accessibility per nucleus. For enhanced clarity in visualization,
517 we applied smoothing to the normalized gene accessibility scores using a diffusion nearest neighbor
518 graph⁵⁷. The other usage of gene body chromatin accessibility is to assess differences in gene body
519 chromatin accessibility between genotypes. For this purpose, we calculated the log2 FC in chromatin

520 accessibility by excluding genes with fewer than 50 Tn5 insertions in any cell type to mitigate extreme
521 values resulting from sparse data.

522

523 **Identification of accessible chromatin regions**

524 Accessible chromatin regions were identified by aggregating cells with the same annotation into
525 pseudo bulks. Peak calling was executed on pooled and individual replicates. MACS2 (v 2.2.7.1) was
526 utilized with ‘--nomodel --keep-dup auto --extsize 150 --shift 75 --qvalue .05’⁵⁸. The summits identified
527 in each replicate were expanded by 250 bp on both sides. The peaks with less than 20 Tn5 coverage were
528 filtered. Only the peaks present in all replicates and that overlapped a pooled set peak were retained⁵¹.

529

530 **Correlation analysis for the ACR by cell types**

531 To compare chromatin accessibility within peaks across cell types, we used peaks called individually for
532 each genotype and corresponding cell type. For the correlation analysis, we established a set of 500 bp
533 union peaks. When using a fixed size of 500bp peaks, we assessed the p-value of each peak across cell
534 types, utilizing a chromatin accessibility score that was normalized per million reads to identify the most
535 representative peaks⁵⁹. The aggregated Tn5 insertions for each cell type were quantile normalized, and
536 Pearson correlation coefficients were calculated using read density for the 2,000 most variable peaks.

537

538 **Differential ACR analysis**

539 For differential ACR analysis, we created the sets of union peaks per cell type. We merged peaks from
540 both genotypes for each cell type, resulting in distinct sets of union peaks specific to each genotype.
541 Consequently, the lengths of the peaks used for differential ACR analysis vary. Two pseudo replicates
542 were generated for each biological replicate within cell types to enhance the robustness by randomly
543 partitioning cells in one replicate into two groups. To quantify chromatin accessibility in the pseudo bulk
544 replicates, we aggregated the chromatin accessibility within peaks by pseudo replicates to each cell type.
545 We normalized aggregated chromatin accessibility as Trimmed Mean of M values (TMM) to adjust for
546 different library sizes and performed statistical tests under generalized linear model using edgeR (v3.32.1)
547⁶⁰.

548

549 **Motif analysis in accessible chromatin regions**

550 We used three approaches to find the motif enrichment in ACRs: 1) Motif deviation calculation across
551 cells, 2) *de novo* motif searches and 3) known motif searches. To identify the cells where the motif is
552 active, we computed motif deviation score using chromVar⁴³. We used Tn5 insertion counts at intergenic
553 ACRs per cell as input for chromVar. For motif PWM, we used the non-redundant core plant PWM
554 database from JASPAR2022 and PWMs derived from DAP-seq motif discovery. We applied smoothing
555 to the bias-corrected motif deviations for each nucleus, integrating them into UMAP embedding for
556 visualization, which is the same method used for visualizing gene body chromatin accessibility⁵⁷.
557 Additionally, we rescaled the bias-corrected motif deviations to fit a color scale ranging from -1 to 1
558 across all motifs.

559 *De novo* motif searches in differential ACRs was performed using XSTREME version 5.5.3
560 within the MEME suite package (v5.5.0)^{61,62}. XSTREME leverages STEME that finds the enriched
561 motif in the test set relative to control sets⁶³. While the test set is differential ACRs, control regions were
562 used to determine the significance of motif occurrence compared to the background. To create the control
563 set, we randomly selected the same number and length of ACRs from all ACRs, ensuring that they had
564 a similar GC content ratio to the test set. To account for varied ACR lengths in the test set, we ensured
565 the control set featured a comparable distribution of lengths. The motif search with STEME halts when
566 it encounters a succession of motifs with p-values exceeding 0.05, applying “–thresh” option. We
567 showcased motifs boasting an e-value below 1. Furthermore, utilizing the identified de novo motifs, fimo
568 scrutinized specific ACR regions⁶⁴, pinpointing motif occurrences with p-values under 0.0001.
569

570 **DAP-seq analysis and motif discovery**

571 Raw reads were trimmed using trimmomatic⁶⁵ with the following settings: ILLUMINACLIP:TruSeq3-
572 PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50.
573 Trimmed reads were mapped to the B73v5 genome using bowtie2⁶⁶ with default settings. Mapped reads
574 were filtered to retain those with a MAPQ score greater than 30 using samtools⁶⁷ view -b -q 30. To
575 identify peaks and motifs, we employed GEM (v 3.0)⁶⁸ with the following options: '--q 5 --k_min 5 --
576 k_max 14'. This option uses significant peaks with a q-value below 5 and specifies a range of k-mer
577 lengths from 5 to 14 for motif discovery.

578

579 **Acknowledgements**

580 This research was supported by the National Science Foundation (IOS-2026554) to RJS and AG as well
581 as the UGA Office of Research to RJS.

582

583 **Author contributions**

584 S.B., R.J.S., and A.G. designed the experiments and wrote the paper; S.B. and M.G. analyzed the data;
585 X.Z., J.G., Z.C., M.G. and A.G. generated materials and/or conducted the experiments.

586

587 **Declaration of interests**

588 R.J.S. is a co-founder of REquest Genomics, LLC, a company that provides epigenomic services. The
589 remaining authors declare no competing interests.

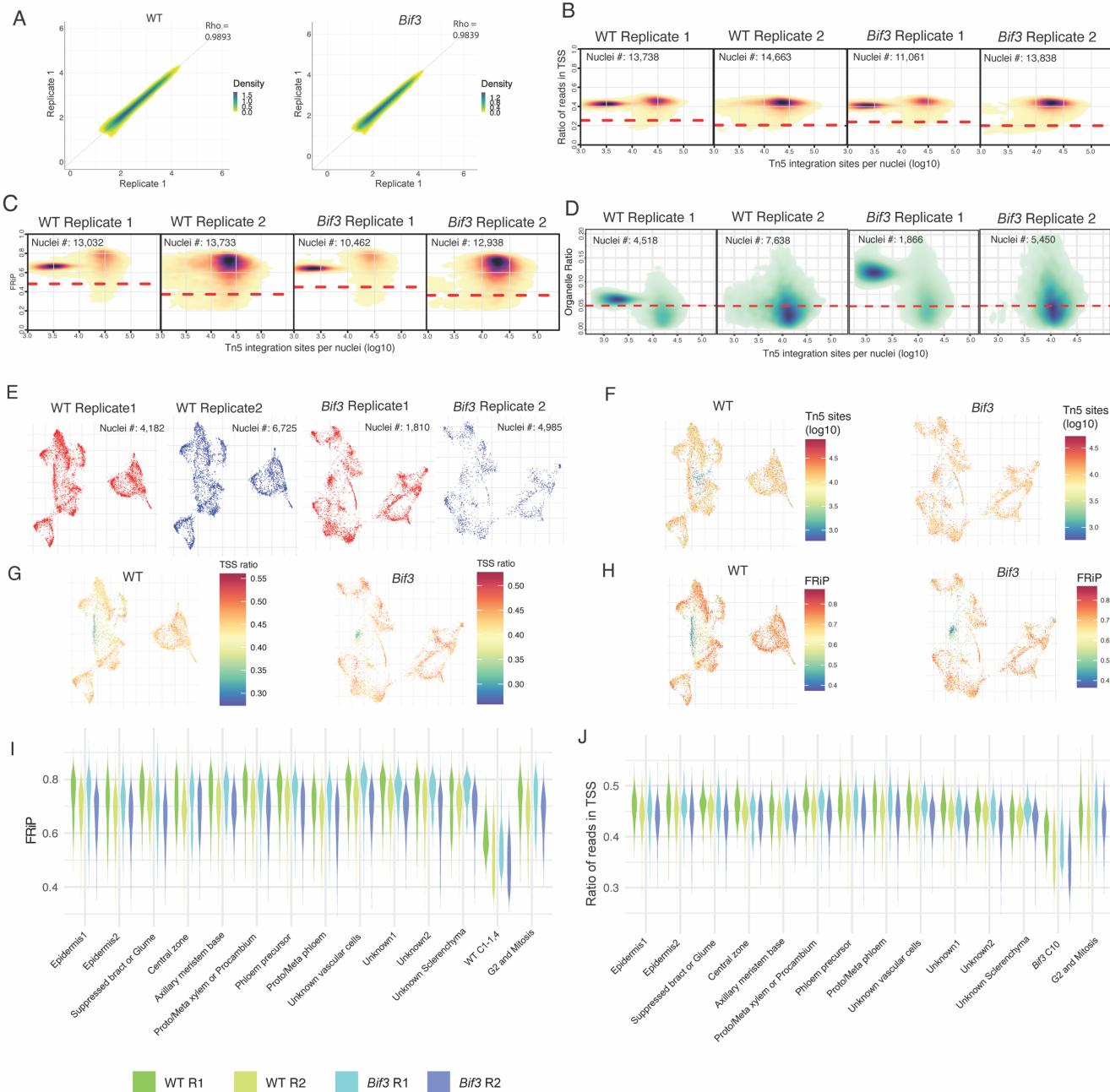
590

591 **Supplemental information**

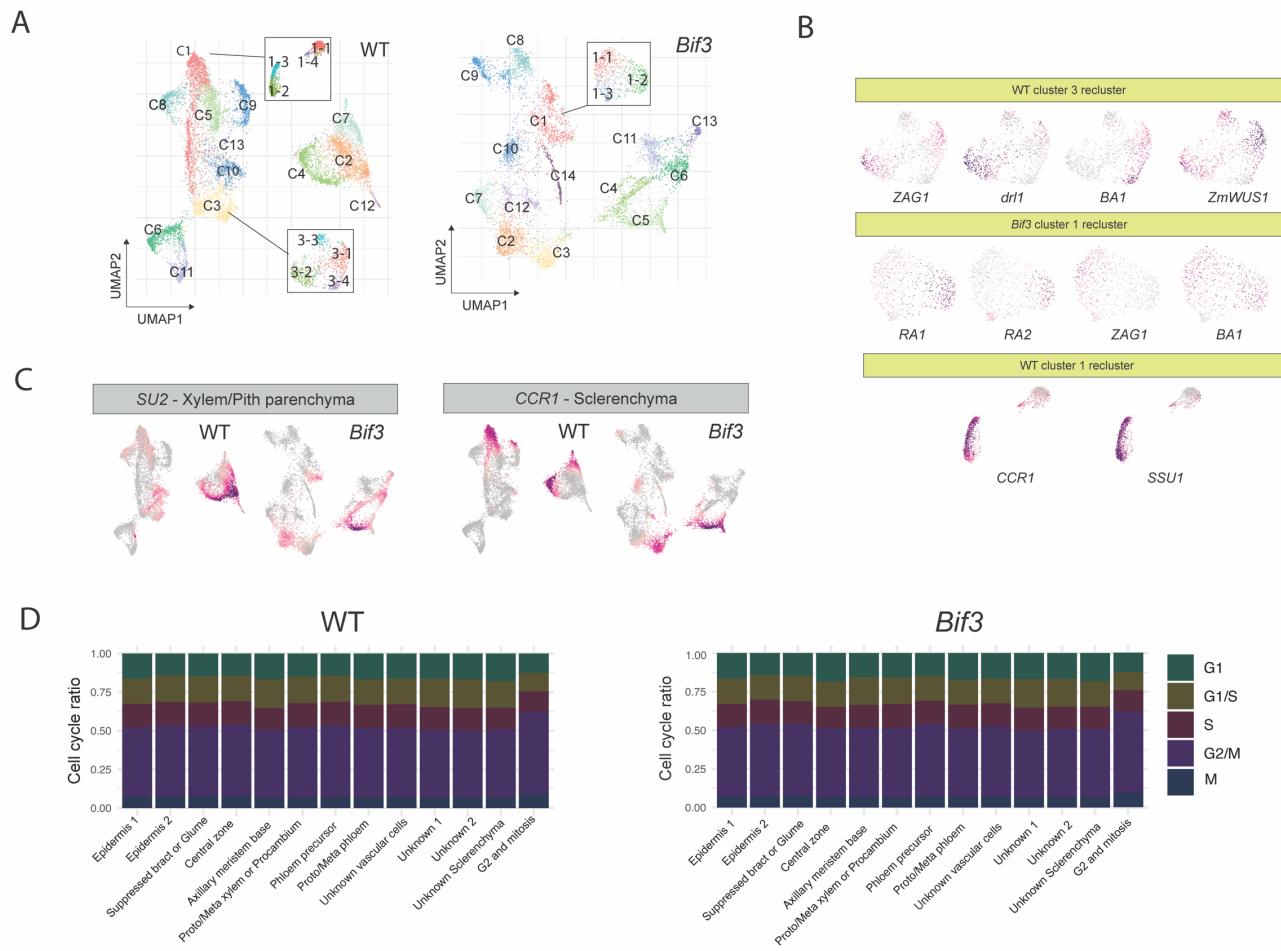
592 Supplementary Tables.xlsx: TableS1-S5 in excel file.

593 Table S1. The quality information for the replicates.

594 Table S2. Meta data for the annotated cells of WT.

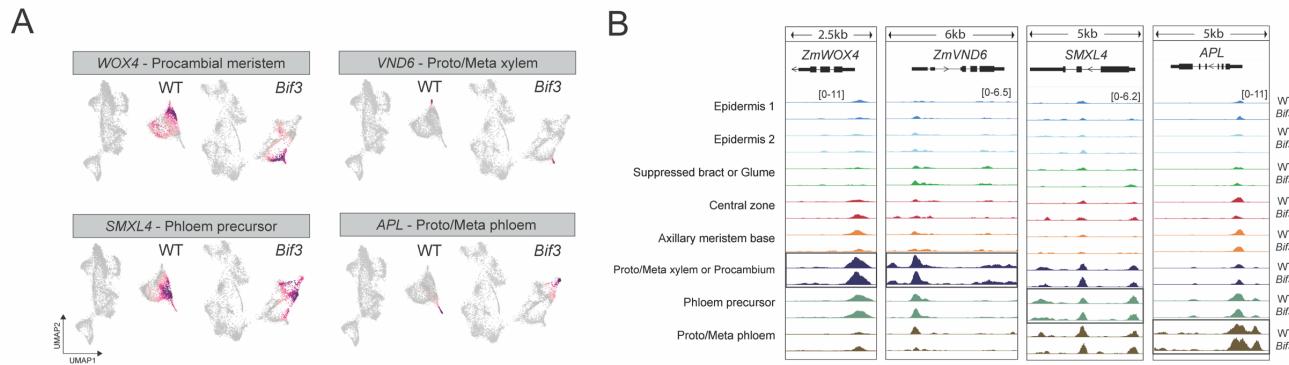

595 Table S3. Meta data for the annotated cells of *Bif3*.

596 Table S4. The number of peaks by cell types in WT and *Bif3*.


597 Table S5. Closet gene information for differential ACR and intergenic ACR in central zone.

598

599 Page 24-31: Figure S1-S8.


Figure S1. Evaluation and quality control of maize ear scATAC-seq libraries in WT and *Bif3*. (A) Correlation of replicates for the union peaks. The peaks were identified in bulk and the chromatin accessibility in peaks were quantile normalized using a log10 scale. (B-D) Density heatmap for ratio of reads in TSS, FRIP scores, organelle ratio by number of Tn5 per nuclei. Darker color represents dense nuclei number. The red line shows the cutoff for each library. (E) UMAP visualization for replicates. Replicates were well integrated by using UMAP dimensionality reduction of the Tn5 insertion sites after mitigating technical artifacts (F-H) The number of Tn5 insertions using a log10 scale, ratio of reads in TSS, and FRIP score by cell in UMAP. (G, H) FRIP and ratio of reads in TSS by annotated cell types. The four colors represent each of the libraries. (I, J) The FRIP score and ratio of reads in TSS of samples by cell types.

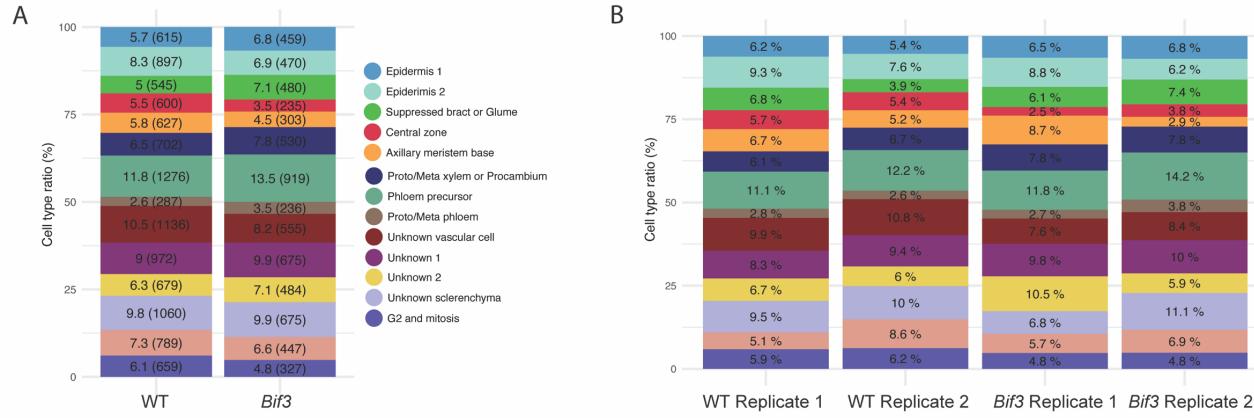
609
610
611
612
613
614

Figure S2. Annotation of clusters. **(A)** UMAP visualization representing WT and *Bif3*, categorized by cluster numbers. A highlighted inset focuses on the subclusters within WT C1, WT C3, and *Bif3* C8. **(B)** Gene body chromatin accessibility for specific marker genes across different subclusters: WT C3-1,2,3,4, *Bif3* C1-1,2,3 and WT C1-1,2,3,4. **(C)** The gene body chromatin accessibility for the ground cell marker genes. **(D)** Predicted the cell cycle phase by cell types in WT and *Bif3*. The colors represent the cell cycle phase for G1, G1/S, S, G2/M and M.

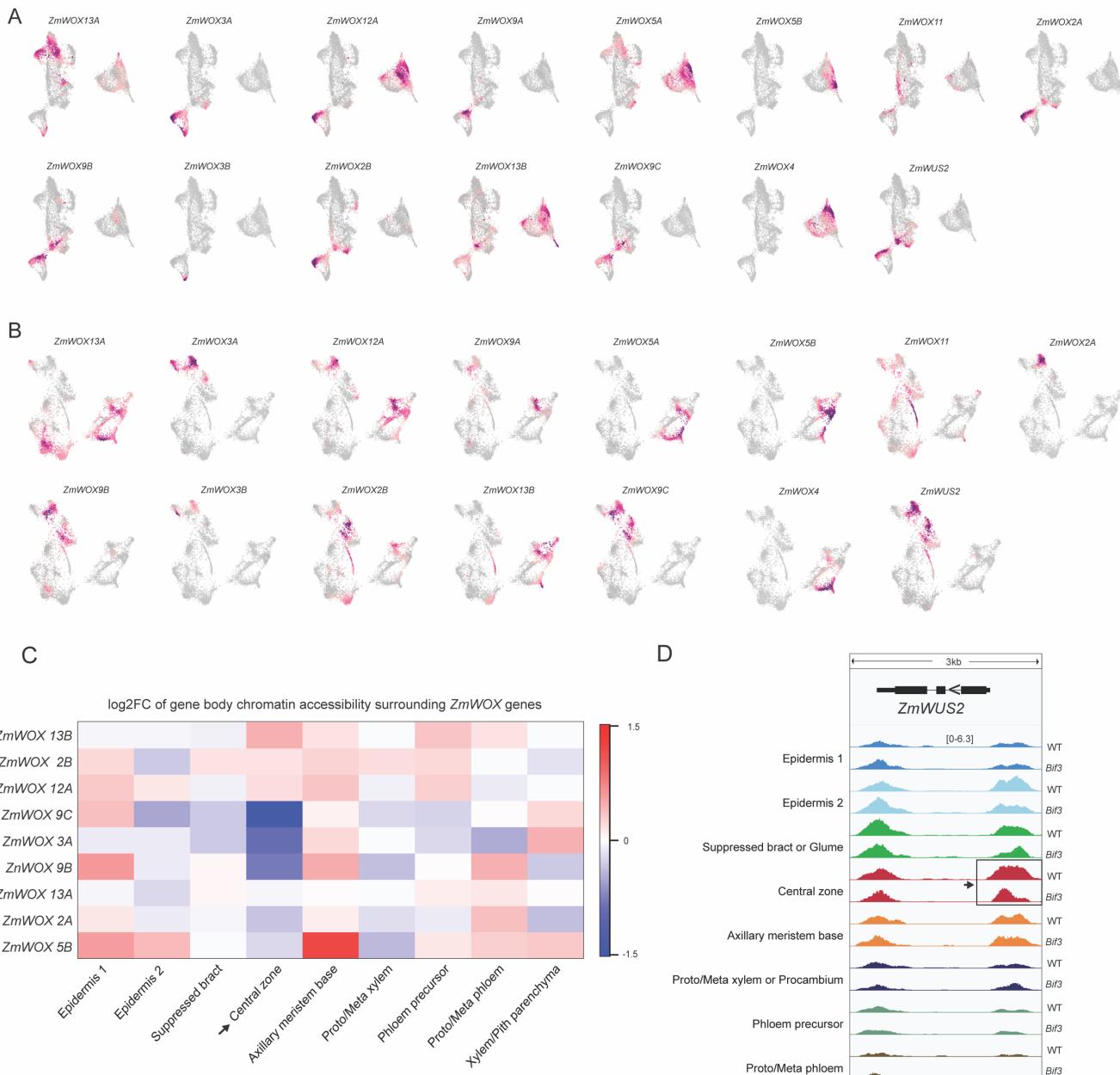
615

616

617 **Figure S3. Annotation of vasculature cells.** **(A)** Visualization of gene body chromatin accessibility for marker genes for
618 vascular cells, with higher chromatin accessibility indicated in purple. **(B)** Genome browser tracks show chromatin
619 accessibility by cell types around vascular cell marker genes in WT and *Bif3*.

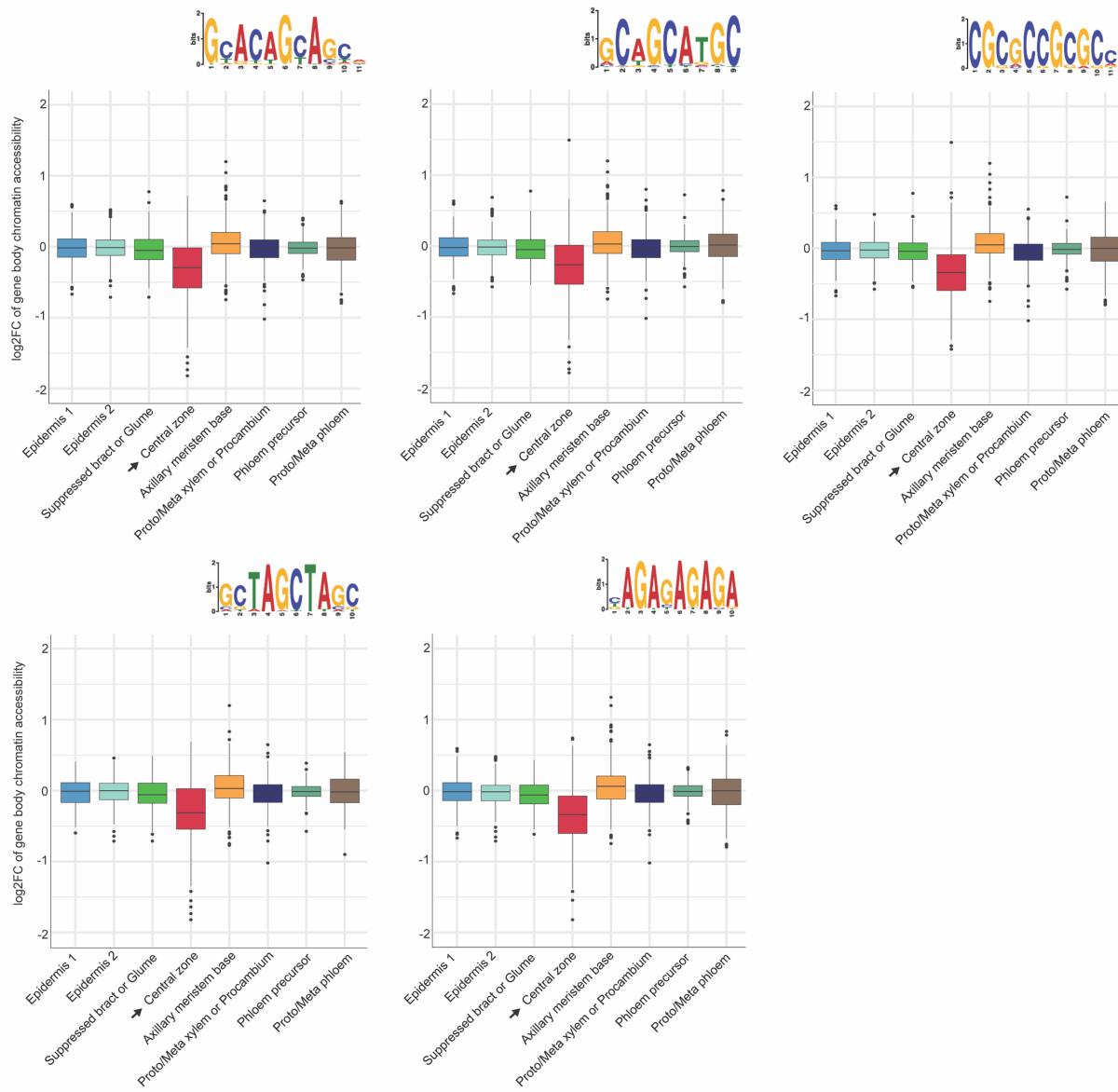

620

621
622
623
624
625
626
627


Figure S4. *De novo* marker genes identified across 14 clusters in WT. (A) UMAP highlighting areas of high chromatin accessibility, depicted in red, surrounding *de novo* marker genes in WT and *Bif3*. **(B)** Dot plot depicting five *de novo* marker genes for each cell type in WT and *Bif3*. The color above each *de novo* marker gene indicates the cell types where these genes exhibit higher gene body chromatin accessibility compared to other cell types. Five *de novo* marker genes were selected based on their statistical significance. Overlapping colors on the bars represent *de novo* marker genes that are shared between cell types.

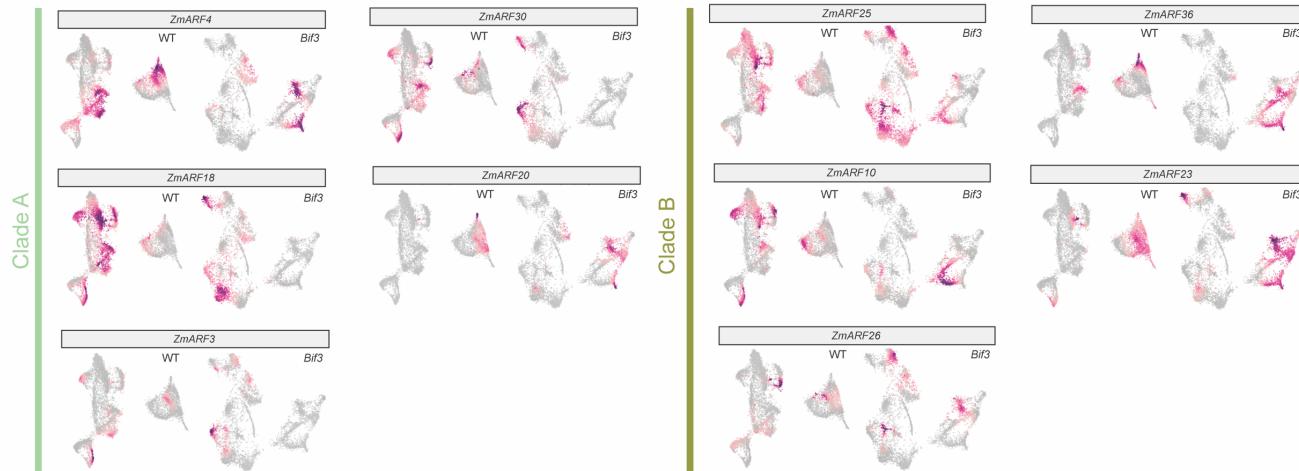
628

629
630
631
632


Figure S5. The distribution of cell types among the total cell population. (A) Proportion of each cell type in WT and *Bif3* samples. The numbers enclosed in parentheses indicate the number of cells. **(B)** Proportion of each cell type across libraries, with color coding consistent with the cell types in (A).

633

634


Figure S6. The gene body chromatin accessibility of *WOX* and *ZmWUS2* genes by cell types. (A, B) Visualization of gene body chromatin accessibility in UMAP of WT (A) and *Bif3* (B). **(C)** The log2FC of gene body chromatin accessibility for *WOX* genes between WT and *Bif3* mutant. **(D)** The genome browser image for chromatin accessibility around *ZmWUS2* gene by cell types and genotypes.

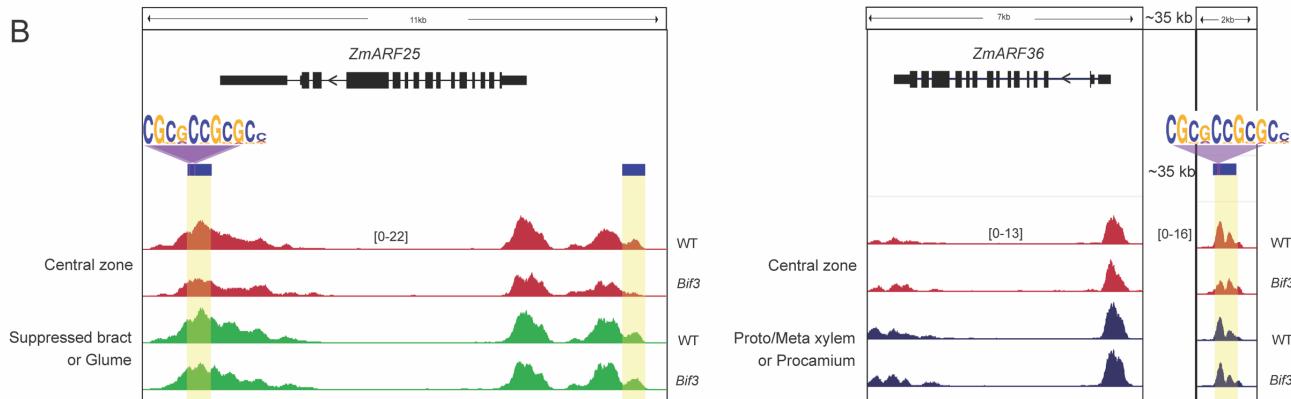

638
639
640
641

Figure S7. The boxplot illustrates the log2FC of gene body chromatin accessibility for genes located near decreased differential ACRs. Each plot represents a set of genes adjacent to decreased differential ACRs, categorized by the presence of specific motif sequences.

A

B

642
643
644
645
646

Figure S8. Chromatin accessibility of *ZmARF* genes in WT and *Bif3*. (A) UMAP visualization showing gene body chromatin accessibility for *ZmARF* genes, with genes categorized by clades. (B) Visualization of differentially accessible chromatin regions surrounding clade B *ZmARF* genes, highlighting the CGCGCCGCCGCC motif presence in these differential ACRs. Blue bars and yellow highlights indicate the intergenic differential ACRs.

647
648

649 References

- 650 1. Laux, T., Mayer, K.F., Berger, J., and Jürgens, G. (1996). The WUSCHEL gene is required for
651 shoot and floral meristem integrity in *Arabidopsis*. *Development* *122*, 87-96.
- 652 2. Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1995). CLAVATA3 is a specific regulator of
653 shoot and floral meristem development affecting the same processes as CLAVATA1.
654 *Development* *121*, 2057-2067.
- 655 3. Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jürgens, G., and Laux, T. (2000). The stem
656 cell population of *Arabidopsis* shoot meristems is maintained by a regulatory loop between the
657 CLAVATA and WUSCHEL genes. *Cell* *100*, 635-644.
- 658 4. Gaillochet, C., and Lohmann, J.U. (2015). The never-ending story: from pluripotency to plant
659 developmental plasticity. *Development* *142*, 2237-2249.
- 660 5. Suzuki, T., Toriba, T., Fujimoto, M., Tsutsumi, N., Kitano, H., and Hirano, H.-Y. (2006).
661 Conservation and diversification of meristem maintenance mechanism in *Oryza sativa*: function
662 of the FLORAL ORGAN NUMBER2 gene. *Plant and Cell Physiology* *47*, 1591-1602.
- 663 6. Xu, C., Liberatore, K.L., MacAlister, C.A., Huang, Z., Chu, Y.-H., Jiang, K., Brooks, C., Ogawa-
664 Ohnishi, M., Xiong, G., and Pauly, M. (2015). A cascade of arabinosyltransferases controls shoot
665 meristem size in tomato. *Nature genetics* *47*, 784-792.
- 666 7. Rodríguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E., and Lippman, Z.B. (2017).
667 Engineering quantitative trait variation for crop improvement by genome editing. *Cell* *171*, 470-
668 480. e478.
- 669 8. Chen, Z., Li, W., Gaines, C., Buck, A., Galli, M., and Gallavotti, A.J.N.c. (2021). Structural
670 variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. *12*, 1-
671 12.
- 672 9. Chen, Z., and Gallavotti, A.J.M.B. (2021). Improving architectural traits of maize inflorescences.
673 *41*, 1-13.
- 674 10. Je, B.I., Gruel, J., Lee, Y.K., Bommert, P., Arevalo, E.D., Eveland, A.L., Wu, Q., Goldshmidt,
675 A., Meeley, R., and Bartlett, M. (2016). Signaling from maize organ primordia via FASCIATED
676 EAR3 regulates stem cell proliferation and yield traits. *Nature genetics* *48*, 785-791.
- 677 11. Liu, L., Gallagher, J., Arevalo, E.D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M., and Jackson,
678 D. (2021). Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE
679 genes. *Nature Plants* *7*, 287-294.
- 680 12. Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of
681 cell fate decisions by CLAVATA3 in *Arabidopsis* shoot meristems. *Science* *283*, 1911-1914.
- 682 13. Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., and Laux, T. (1998). Role of
683 WUSCHEL in regulating stem cell fate in the *Arabidopsis* shoot meristem. *Cell* *95*, 805-815.
- 684 14. Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jönsson, H., and Reddy, G.V. (2011). WUSCHEL
685 protein movement mediates stem cell homeostasis in the *Arabidopsis* shoot apex. *Genes &*
686 *development* *25*, 2025-2030.
- 687 15. Daum, G., Medzihradzky, A., Suzuki, T., and Lohmann, J.U. (2014). A mechanistic framework
688 for noncell autonomous stem cell induction in *Arabidopsis*. *Proceedings of the National Academy
689 of Sciences* *111*, 14619-14624.
- 690 16. Zhou, Y., Yan, A., Han, H., Li, T., Geng, Y., Liu, X., and Meyerowitz, E.M. (2018). HAIRY
691 MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem
692 layers. *Science* *361*, 502-506.

693 17. Perales, M., Rodriguez, K., Snipes, S., Yadav, R.K., Diaz-Mendoza, M., and Reddy, G.V. (2016).
694 Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. *Proceedings*
695 of the National Academy of Sciences *113*, E6298-E6306.

696 18. Noyes, M.B., Christensen, R.G., Wakabayashi, A., Stormo, G.D., Brodsky, M.H., and Wolfe,
697 S.A. (2008). Analysis of homeodomain specificities allows the family-wide prediction of
698 preferred recognition sites. *Cell* *133*, 1277-1289.

699 19. Su, Y.H., Zhou, C., Li, Y.J., Yu, Y., Tang, L.P., Zhang, W.J., Yao, W.J., Huang, R., Laux, T.,
700 and Zhang, X.S. (2020). Integration of pluripotency pathways regulates stem cell maintenance in
701 the *Arabidopsis* shoot meristem. *Proceedings of the National Academy of Sciences* *117*, 22561-
702 22571.

703 20. Leibfried, A., To, J.P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann,
704 J.U. (2005). *WUSCHEL* controls meristem function by direct regulation of cytokinin-inducible
705 response regulators. *Nature* *438*, 1172-1175.

706 21. Liu, X., Kim, Y.J., Müller, R., Yumul, R.E., Liu, C., Pan, Y., Cao, X., Goodrich, J., and Chen,
707 X. (2011). *AGAMOUS* terminates floral stem cell maintenance in *Arabidopsis* by directly
708 repressing *WUSCHEL* through recruitment of Polycomb Group proteins. *The Plant Cell* *23*,
709 3654-3670.

710 22. Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the
711 binding sequences for the product of the *Arabidopsis* floral homeotic gene *AGAMOUS*. *Nucleic*
712 acids research

713 23. Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., and Weigel, D. (2001).
714 A molecular link between stem cell regulation and floral patterning in *Arabidopsis*. *Cell* *105*, 793-
715 803.

716 24. O'Malley, R.C., Huang, S.-s.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M.,
717 Gallavotti, A., and Ecker, J.R. (2016). Cistrome and epicistrome features shape the regulatory
718 DNA landscape. *Cell* *165*, 1280-1292.

719 25. Ma, Y., Miotk, A., Šutiković, Z., Ermakova, O., Wenzl, C., Medzihradzky, A., Gaillochet, C.,
720 Forner, J., Utan, G., and Brackmann, K. (2019). *WUSCHEL* acts as an auxin response rheostat
721 to maintain apical stem cells in *Arabidopsis*. *Nature communications* *10*, 5093.

722 26. Sloan, J., Hakenjos, J.P., Gebert, M., Ermakova, O., Gumiero, A., Stier, G., Wild, K., Sinning, I.,
723 and Lohmann, J.U. (2020). Structural basis for the complex DNA binding behavior of the plant
724 stem cell regulator *WUSCHEL*. *Nature Communications* *11*, 2223.

725 27. Fuchs, M., and Lohmann, J.U. (2020). Aiming for the top: non-cell autonomous control of shoot
726 stem cells in *Arabidopsis*. *Journal of plant research* *133*, 297-309.

727 28. Vernoud, V., Laigle, G., Rozier, F., Meeley, R.B., Perez, P., and Rogowsky, P.M. (2009). The
728 HD-ZIP IV transcription factor *OCL4* is necessary for trichome patterning and anther
729 development in maize. *The Plant Journal* *59*, 883-894.

730 29. Strable, J., and Vollbrecht, E. (2019). Maize *YABBY* genes *drooping leaf1* and *drooping leaf2*
731 regulate floret development and floral meristem determinacy. *Development* *146*, dev171181.

732 30. Bortiri, E., Chuck, G., Vollbrecht, E., Rocheford, T., Martienssen, R., and Hake, S. (2006).
733 *ramosa2* encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate
734 of stem cells in branch meristems of maize. *The Plant Cell* *18*, 574-585.

735 31. van der Graaff, E., Laux, T., and Rensing, S.A. (2009). The *WUS* homeobox-containing (WOX)
736 protein family. *Genome biology* *10*, 1-9.

737 32. Kawai, T., Shibata, K., Akahoshi, R., Nishiuchi, S., Takahashi, H., Nakazono, M., Kojima, T.,
738 Nosaka-Takahashi, M., Sato, Y., and Toyoda, A. (2022). *WUSCHEL*-related homeobox family

739 genes in rice control lateral root primordium size. *Proceedings of the National Academy of*
740 *Sciences* **119**, e2101846119.

741 33. Marand, A.P., Chen, Z., Gallavotti, A., and Schmitz, R.J. (2021). A cis-regulatory atlas in maize
742 at single-cell resolution. *Cell* **184**, 3041-3055. e3021.

743 34. Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., and Werr, W. (2007). WOX gene
744 phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.
745 *Molecular Biology and Evolution* **24**, 2474-2484.

746 35. Nardmann, J., and Werr, W. (2006). The shoot stem cell niche in angiosperms: expression
747 patterns of WUS orthologues in rice and maize imply major modifications in the course of mono-
748 and dicot evolution. *Molecular Biology and Evolution* **23**, 2492-2504.

749 36. Kitagawa, M., and Jackson, D. (2019). Control of meristem size. *Annual Review of Plant Biology*
750 **70**, 269-291.

751 37. Ioio, R.D., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T., Aoyama, T.,
752 Costantino, P., and Sabatini, S. (2008). A genetic framework for the control of cell division and
753 differentiation in the root meristem. *Science* **322**, 1380-1384.

754 38. Finet, C., Berne-Dedieu, A., Scutt, C.P., and Marlétaz, F. (2013). Evolution of the ARF gene
755 family in land plants: old domains, new tricks. *Molecular Biology and Evolution* **30**, 45-56.

756 39. Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1999). Activation and repression of transcription by
757 auxin-response factors. *Proceedings of the National Academy of Sciences* **96**, 5844-5849.

758 40. Galli, M., Khakhar, A., Lu, Z., Chen, Z., Sen, S., Joshi, T., Nemhauser, J.L., Schmitz, R.J., and
759 Gallavotti, A. (2018). The DNA binding landscape of the maize AUXIN RESPONSE FACTOR
760 family. *Nature communications* **9**, 4526.

761 41. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., and Noble, W.S. (2007). Quantifying
762 similarity between motifs. *Genome biology* **8**, 1-9.

763 42. Sandelin, A., Alkema, W., Engström, P., Wasserman, W.W., and Lenhard, B. (2004). JASPAR:
764 an open-access database for eukaryotic transcription factor binding profiles. *Nucleic acids
765 research* **32**, D91-D94.

766 43. Schep, A.N., Wu, B., Buenrostro, J.D., and Greenleaf, W.J. (2017). chromVAR: inferring
767 transcription-factor-associated accessibility from single-cell epigenomic data. *Nature methods*
768 **14**, 975-978.

769 44. Barlev, N.A., Liu, L., Chehab, N.H., Mansfield, K., Harris, K.G., Halazonetis, T.D., and Berger,
770 S.L. (2001). Acetylation of p53 activates transcription through recruitment of
771 coactivators/histone acetyltransferases. *Molecular cell* **8**, 1243-1254.

772 45. Yuan, Z.-l., Guan, Y.-j., Chatterjee, D., and Chin, Y.E. (2005). Stat3 dimerization regulated by
773 reversible acetylation of a single lysine residue. *Science* **307**, 269-273.

774 46. Xiao, J., Jin, R., Yu, X., Shen, M., Wagner, J.D., Pai, A., Song, C., Zhuang, M., Klasfeld, S., and
775 He, C. (2017). Cis and trans determinants of epigenetic silencing by Polycomb repressive
776 complex 2 in *Arabidopsis*. *Nature genetics* **49**, 1546-1552.

777 47. Yan, H., Mendieta, J.P., Zhang, X., Marand, A.P., Liang, Y., Luo, Z., Minow, M.A., Roulé, T.,
778 Wagner, D., and Tu, X. (2024). Evolution of plant cell-type-specific cis-regulatory elements.
779 bioRxiv, 2024.2001.2008.574753.

780 48. Shi, B., Guo, X., Wang, Y., Xiong, Y., Wang, J., Hayashi, K.-i., Lei, J., Zhang, L., and Jiao, Y.
781 (2018). Feedback from lateral organs controls shoot apical meristem growth by modulating auxin
782 transport. *Developmental cell* **44**, 204-216. e206.

783 49. Zhang, X., Marand, A.P., Yan, H., and Schmitz, R.J. (2023). Massive-scale single-cell chromatin
784 accessibility sequencing using combinatorial fluidic indexing. *BioRxiv*.

785 50. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A.,
786 Keane, T., McCarthy, S.A., and Davies, R.M. (2021). Twelve years of SAMtools and BCFtools.
787 *Gigascience* *10*, giab008.

788 51. Mendieta, J.P., Tu, X., Yan, H., Zhang, X., Marrand, A.P., Zhong, S., and Schmitz, R.J. (2024).
789 Investigating the cis-Regulatory Basis of C3 and C4 Photosynthesis in Grasses at Single-Cell
790 Resolution. *bioRxiv*, 2024.2001. 2005.574340.

791 52. Cusanovich, D.A., Hill, A.J., Aghamirzaie, D., Daza, R.M., Pliner, H.A., Berletch, J.B.,
792 Filippova, G.N., Huang, X., Christiansen, L., and DeWitt, W.S. (2018). A single-cell atlas of in
793 vivo mammalian chromatin accessibility. *Cell* *174*, 1309-1324. e1318.

794 53. Witten, D.M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition, with
795 applications to sparse principal components and canonical correlation analysis. *Biostatistics* *10*,
796 515-534.

797 54. Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: computational identification of cell
798 doublets in single-cell transcriptomic data. *Cell systems* *8*, 281-291. e289.

799 55. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,
800 M., Loh, P.-r., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell
801 data with Harmony. *Nature methods* *16*, 1289-1296.

802 56. Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M.T.,
803 and Carey, V.J. (2013). Software for computing and annotating genomic ranges. *PLoS
804 computational biology* *9*, e1003118.

805 57. Van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R.,
806 Chaffer, C.L., and Pattabiraman, D. (2018). Recovering gene interactions from single-cell data
807 using data diffusion. *Cell* *174*, 716-729. e727.

808 58. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C.,
809 Myers, R.M., Brown, M., and Li, W. (2008). Model-based analysis of ChIP-Seq (MACS).
810 *Genome biology* *9*, 1-9.

811 59. Corces, M.R., Granja, J.M., Shams, S., Louie, B.H., Seoane, J.A., Zhou, W., Silva, T.C.,
812 Groeneveld, C., Wong, C.K., and Cho, S.W. (2018). The chromatin accessibility landscape of
813 primary human cancers. *Science* *362*, eaav1898.

814 60. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for
815 differential expression analysis of digital gene expression data. *bioinformatics* *26*, 139-140.

816 61. Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. (2015). The MEME suite. *Nucleic acids
817 research* *43*, W39-W49.

818 62. Grant, C.E., and Bailey, T.L. (2021). XSTREME: Comprehensive motif analysis of biological
819 sequence datasets. *BioRxiv*, 2021.2009. 2002.458722.

820 63. Bailey, T.L. (2021). STREME: accurate and versatile sequence motif discovery. *Bioinformatics*
821 *37*, 2834-2840.

822 64. Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of a given
823 motif. *Bioinformatics* *27*, 1017-1018.

824 65. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
825 sequence data. *Bioinformatics* *30*, 2114-2120.

826 66. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature
827 methods* *9*, 357-359.

828 67. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
829 Durbin, R., and Subgroup, G.P.D.P. (2009). The sequence alignment/map format and SAMtools.
830 *bioinformatics* *25*, 2078-2079.

831 68. Guo, Y., Mahony, S., and Gifford, D.K. (2012). High resolution genome wide binding event
832 finding and motif discovery reveals transcription factor spatial binding constraints.
833