
Title: 

Automated segmentation of epilepsy surgical resection cavities: comparison of four methods 

to manual segmentation 

 

Authors: 

Merran R. Courtney,*1,2,3 Benjamin Sinclair,*1,2 Andrew Neal,1,2,3 John-Paul Nicolo,1,2,3 

Patrick Kwan,1,2,3,4 Meng Law,1,5,6 Terence J. O’Brien,1,2,3,4 and Lucy Vivash.1,2,3,4 

* These authors contributed equally 

1. Department of Neuroscience, School of Translational Medicine, Monash University, 

Melbourne, Victoria, Australia 

2. Department of Neurology, Alfred Health, Melbourne, Victoria, Australia 

3. Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia 

4. Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia 

5. Department of Radiology, Alfred Health, Melbourne, Victoria, Australia 

6. Department of Electrical and Computer Systems Engineering, Monash University, 

Melbourne, Victoria, Australia 

 

Corresponding author: 

Dr Lucy Vivash  

Lucy.vivash@monash.edu 

Department of Neuroscience, School of Translational Medicine, Monash University, 99 

Commercial Road, Melbourne, 3004, Australia.  

 

Word count: 3877      Number of tables: 4   

Abstract word count: 216     Number of figures: 2 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.13.593855doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.13.593855
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT 

Accurate resection cavity segmentation on MRI is important for neuroimaging research 

involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour 

intensive. Automated pipelines are an efficient potential solution; however, most have been 

developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy 

of four automated segmentation pipelines following surgical resection in a mixed cohort of 

subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source 

automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within 

MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks. 

We manually segmented the resection cavity of 50 consecutive subjects who underwent 

epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient 

(DSC) for each algorithm compared to the manual segmentation. No algorithm identified all 

resection cavities. ResectVol (n=44, 88%) and Epic-CHOP (n=43, 86%) were able to detect 

more resection cavities than Resseg (n=22, 44%, P<0.001) and Deep Resection (n=21, 42%, 

P<0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the 

deep learning-based pipelines in the overall and extratemporal surgery cohorts, however there 

was no difference between methods in the temporal surgery cohort. These pipelines could be 

applied to machine learning studies of outcome prediction to improve efficiency in pre-

processing data, however human quality control is still required. 
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1. Introduction 

Epilepsy surgery is the most effective treatment choice for selected patients with drug resistant 

focal epilepsy, as it offers a better chance of long-term seizure control compared to best medical 

therapy. In their Cochrane systematic review, West et al found that 64% patients who 

underwent resective epilepsy surgery became seizure free  (West et al., 2019). In order to 

further improve the proportion of patients for whom epilepsy surgery is successful, it is 

imperative that new tools are developed to improve patient selection and/or assist with tailoring 

a more individualised resection to maximise the chance of seizure freedom without negatively 

impacting neurocognitive function. 

 

Some neuroimaging factors, including the detection of a resectable lesion on preoperative MRI, 

or the detection of localising 18F-FDG-PET hypometabolism, are associated with an increased 

chance of seizure freedom following epilepsy surgery  (West et al., 2019, Alim-Marvasti et al., 

2022, Tonini et al., 2004, Tellez-Zenteno et al., 2010, Courtney et al., 2024). Therefore, the 

development of neuroimaging based predictive tools may help to better delineate the subset 

patients who would benefit from epilepsy surgery. Accurate segmentation of the epilepsy 

surgery resection cavity is essential in order to incorporate data about the resection cavity into 

such a tool. Furthermore, surgical factors, such as complete resection of certain epileptogenic 

lesions, for example, focal cortical dysplasias (Rowland et al., 2012) and low grade epilepsy 

associated tumours  (Shan et al., 2018), as well as complete resection of the epileptogenic zone  

(West et al., 2019, Krucoff et al., 2017), are associated with better outcome following epilepsy 

surgery. Accurate resection cavity segmentation is also important in assessing these factors in 

epilepsy surgery research. Manual segmentation is the gold standard for brain region of interest 

segmentation, however it is labour intensive, which prohibits its use in larger datasets, such as 

those required for the development of deep learning-based tools. Several open-source 
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automated tools for segmenting the epilepsy surgery resection cavity are available, however 

these have largely been developed and/or validated for use following temporal epilepsy surgery  

(Cahill et al., 2019, Casseb et al., 2021, Arnold et al., 2022, Pérez-García et al., 2021).  

 

The aim of the study reported here was to assess the accuracy of publicly available automated 

epilepsy surgery resection cavity segmentation tools compared to manual segmentation across 

a mixed cohort of subjects following epilepsy surgery, including subjects who have had 

temporal or extratemporal epilepsy surgery.   

 

2. Methods 

2.1 Ethics approval 

This study was approved by the Human Research Ethics Committees (HRECs) at the Alfred 

Hospital (central reference number: HREC/88862/Alfred-2022-335736, local reference 

number: 507/22) and Royal Melbourne Hospital (local reference number: 2022.355). The 

HRECs determined that participant consent was not required for this study, as it utilised 

retrospective data acquired for clinical purposes. 

 

2.2 Subject selection 

We identified subjects from the Comprehensive Epilepsy Programmes at the Alfred and Royal 

Melbourne Hospitals in Melbourne, Australia who underwent resective epilepsy surgery for 

drug resistant focal epilepsy. The inclusion criteria were: (1) ≥ 16 years old at the time of 

surgery, (2) a preoperative T1-weighted MRI had been performed, and (3) a post-operative T1-

weighted MRI had been performed ≥ 3 months following resective epilepsy surgery. For 

subjects meeting the inclusion criteria, we consecutively selected 30 who underwent resective 

temporal epilepsy surgery between January 2019 and May 2023, and 20 who underwent 
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resective extratemporal epilepsy surgery between July 2015 and May 2023. 16 subjects who 

had temporal epilepsy surgery at our institutions during this period were excluded as there was 

no postoperative MRI performed ≥ 3 months after surgery. No subjects with extratemporal 

surgical resections were excluded.  

 

2.3 Clinical data 

Clinical data was collected from medical records. We collected demographics (age and sex), 

MRI diagnosis, resection type, and histopathological diagnosis. Resection type was 

subcategorised into anterior temporal lobectomy with amygdalohippocampectomy, temporal 

polectomy with encephalocoele(s) disconnection, lesionectomy, and corticectomy. 

Lesionectomy was defined as a sub-lobar resection that included resection of a lesion that had 

been detected on MRI, which may also have included resection of part of the cortex. 

Corticectomy was defined as a sub-lobar resection of cerebral cortex for subjects in whom the 

MRI did not detect a resectable lesion. The temporal polectomy with encephalocoele(s) 

disconnection subgroup was differentiated from the lesionectomy and corticectomy subgroups 

because an encephalocoele is an area of brain herniation into a skull defect, rather than a lesion 

within the cortex or subcortical structures, and as such we wanted to explore how each 

algorithm performed with an abnormality of the brain surface structure. 

 

2.4 MRI acquisition 

Preoperative and postoperative MRI scans were obtained as part of routine clinical care. MRI 

scans at the Alfred Hospital were performed on a Magnetom Skyra 3 T (n=37), while MRI 

scans at the Royal Melbourne Hospital were performed on either a Magnetom Skyra 3 T (n=8), 

Magnetom Sola 1.5 T (n=2) or Magnetom Trio 3 T (n=4; Siemens Medical Solutions, Erlangen, 

Germany). Three-dimensional, T1-weighted, magnetisation-prepared rapid acquisition 
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gradient echo (MPRAGE) sequences were used for image processing. Voxel size for images 

performed on both Skyras and the Sola were 1.0mm3, while the voxel size for images 

performed on the Trio were 0.45 x 0.9 x 0.45 mm. 

 

2.5 Manual segmentation 

The resection cavity for each postoperative T1-weighted MRI was manually segmented using 

ITK-SNAP (Yushkevich et al., 2006) by a neurologist with expertise in epilepsy (MRC). The 

first five manual segmentations were checked by a senior neurologist with expertise in epilepsy 

(AN).  

 

2.6 Automated segmentation 

We performed a literature search using Medline and Web of Science databases in August 2023, 

to identify publicly available automated epilepsy surgery resection cavity segmentation tools. 

The search terms included variations and expansions on the following terms: “neuroimaging,” 

“magnetic resonance imaging,” “segmentation,” “epilepsy,” and “neurosurgery.” Four tools 

were identified. These included (1) Epilepsy Cavity Characterisation Pipeline (Epic-CHOP)  

(Cahill et al., 2019), (2) ResectVol  (Casseb et al., 2021), (3) Deep Resection  (Arnold et al., 

2022), and (4) Resseg  (Pérez-García et al., 2021). Epic-CHOP and ResectVol are both 

automated pipelines for resection cavity segmentation using Statistical Parametric Mapping 

(SPM) software, version 12  (Friston et al., 1994). SPM12 was used within MATLAB R2021a  

(Natuck, Massachusetts, USA). Deep Resection and Resseg are both deep learning models that 

utilise U-net convolutional neural networks to generate a segmented mask of the resection 

cavity. The processing pipelines for each method have been reported on in detail previously  

(Cahill et al., 2019, Arnold et al., 2022, Pérez-García et al., 2021, Casseb et al., 2021). 
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2.6.1 Epic-CHOP 

Using the Epic-CHOP pipeline  (Cahill et al., 2019), the resection cavity was generated by 

deriving the difference of the preoperative and postoperative images. Briefly, the steps 

included: (1) recentering using the centre of mass, (2) non-linear registration of preoperative 

and postoperative images using SPM’s longitudinal registration toolbox, (3) segmentation into 

grey matter, white matter, and cerebrospinal fluid (CSF), (4) skull stripping,  (5) thresholding 

and subtraction of the combined grey and white matter partitions of the preoperative and 

postoperative images, (6) erosion of the difference map by one voxel, (7) selection of three 

largest clusters, and (8) dilation by two voxels. Steps 6 and 8 help to reduce the segmentation 

and registration error in the difference map. In the automated version of Epic-CHOP, the largest 

cluster of the difference map is then selected as the mask of the resection cavity. However, 

Epic-CHOP also has the capacity to save multiple different clusters as separate segmentation 

masks and can therefore be used in a semi-automated way, where the user reviews each cluster 

and determines the cluster which best represents the resection cavity. 

 

The Epic-CHOP algorithm generates the mask of the resection cavity in preoperative space. 

However, outputs in postoperative space and Montreal Neurological Institute (MNI) space are 

also provided, the first by applying the postoperative deformation field from the longitudinal 

registration, and the second by registration to SPM12’s MNI atlas. 

 

2.6.2 ResectVol 

Using the ResectVol algorithm  (Casseb et al., 2021), the mask of the resection region was also 

generated by deriving the difference between the preoperative and postoperative MR images. 

Briefly, the steps included: (1) linear registration to co-register the preoperative and 

postoperative MR images, (2) segmentation, (3) thresholding of the grey matter and white 
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matter partitions, (4) binarization, and (5) subtraction of the preoperative and postoperative 

images from each other to generate the mask of the resection region. The ResectVol algorithm 

generates the mask of the resection cavity in preoperative space, however, an output in MNI 

space is also provided by registration to SPM12’s MNI atlas.  

 

ResectVol does not have an output in postoperative space. Therefore, in order to compare the 

output of each algorithm to a manual segmentation performed in postoperative space, we 

applied the transformation matrix generated by the linear registration step in ResectVol’s 

algorithm to the mask of the resection cavity to move it to postoperative space.  

 

2.6.3 Deep Resection and Resseg 

Deep Resection (Arnold et al., 2022) and Resseg (Pérez-García et al., 2021) are deep learning-

based automated segmentation tools, which utilise three-dimensional U-net convolutional 

neural networks to generate a mask of the resection cavity. Deep Resection was developed 

using a small dataset (n=45) of subjects who underwent resective temporal epilepsy surgery 

and fine-tuned using a resective extratemporal epilepsy surgery dataset (n=16). Resseg was 

trained using the EPISURG (Pérez-García et al., 2020) database (n=430), which includes 

subjects who have undergone either resective temporal or extratemporal epilepsy surgery. The 

output mask of the resection cavity for both algorithms is generated in postoperative space. 

Neither algorithm requires a preoperative MRI. 

 

2.6.4 Source code availability 

The source code for each algorithm is available online: 

● Epic-CHOP: https://github.com/iBrain-Lab/EPIC-CHOP 

● ResectVol: https://www.lniunicamp.com/resectvol 
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● Deep Resection: https://github.com/penn-cnt/DeepResection 

● Resseg: https://github.com/fepegar/resseg 

 

2.7 Data analysis 

For the primary analysis we calculated the Dice similarity coefficient (DSC) for each 

automated segmentation mask compared to the manual segmentation in postoperative space. 

Secondary analyses included: (1) a comparison of the automated segmentation mask to manual 

segmentation in postoperative space for temporal and extratemporal subgroups, (2) a 

comparison of the automated segmentation mask to manual segmentation in postoperative 

space for different resection type subgroups, and (3) a comparison of the automated 

segmentation mask to manual segmentation in preoperative and MNI spaces for the algorithms 

which generated images in these spaces (Epic-CHOP and ResectVol). We performed the 

analyses in preoperative and MNI spaces as both ResectVol and Epic-CHOP generate the mask 

of the resection cavity in preoperative space, and each also provide the output in MNI space. 

As such, we chose to assess each algorithm’s performance in its native space, and all other 

spaces in which it provided an output. As the manual segmentation was performed in 

postoperative space, it was moved to preoperative space by applying the deformation field or 

transformation matrix from the registration process of each algorithm to enable each algorithm 

to be compared to manual segmentation in preoperative space. The manual segmentation was 

also moved to MNI space using the given algorithm’s registration to SPM12’s MNI atlas.  

 

Finally, we explored the relationship between the volume of resection and the DSC for each 

algorithm. Volume of the manual segmentation was used as a proxy measure of the volume of 

the resection cavity. As a supplementary analysis, we assessed the performance of Epic-

CHOP’s semi-automated function. We reviewed each of the three largest clusters, and visually 
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determined which aligned with the resection cavity, and subsequently calculated the DSC 

compared to manual segmentation. 

 

2.8 Statistical analysis 

The DSC was calculated using Python according to the following equation: 𝐷𝑆𝐶 = !	($∩&)
$(&

, 

where X is the binary segmentation mask of the resection cavity generated by the automated 

algorithm and Y is the manual segmentation. We considered the automated algorithm to have 

identified the resection cavity if the DSC>0, reflecting any overlap of the two images. 

However, we also report the detection rates and accuracy of each algorithm where the 

DSC>0.5, reflecting a more meaningful overlap of at least 50%. We calculated the median 

DSC and interquartile range (IQR) for the total cohort and identified cohorts (DSC>0 and 

DSC>0.5) for the primary analysis and each of the secondary analyses. All other statistical 

analyses and graphs were performed using GraphPad Prism version 10.0 (Boston, 

Massachusetts, USA) for Mac. The detection rates (DSC>0) for each algorithm were compared 

using Fisher’s exact test. The distribution of data was assessed using D’Agostino-Pearson and 

Shapiro-Wilk normality tests. The comparison of medians between different algorithms for the 

primary analysis and secondary analyses with three or more groups were performed using non-

parametric one-way ANOVA (Kruskal-Wallis) test, followed by pairwise comparison using 

Dunn’s test, with p values corrected for multiple comparisons using the Bonferroni adjustment. 

The comparison of medians between different algorithms for secondary analyses with two 

groups were performed using non-parametric independent t (Mann-Whitney) test. The 

relationship between volume of resection and DSC was graphically presented with a 

scatterplot, and a linear regression model was calculated for each algorithm. 

 

3. Results 
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3.1 Population clinical characteristics 

Our dataset was comprised of 50 subjects with drug resistant epilepsy who underwent temporal 

(n=30) or extratemporal (n=20) epilepsy surgery. The population demographic data are 

presented in Table 1, and individual subject characteristics are available in Appendix Table 1. 

The mean age at epilepsy surgery was 35.1 years. An epileptogenic lesion was detected on the 

preoperative MRI of 86% subjects, with the most common findings being low-grade epilepsy 

associated tumour (n=11) and focal cortical dysplasia (n=11), followed by cavernoma (n=7), 

hippocampal sclerosis (n=6), encephalocoele (n=6), and periventricular nodular heterotopia 

(n=2). Frontal resections were the most common extratemporal resections (n=17). A variety of 

resection types were represented, with the most common being lesionectomy (n=22), followed 

by anterior temporal lobectomy with amygdalohippocampectomy (n=18), temporal polectomy 

with encephalocoele(s) disconnection (n=6), and corticectomy (n=4). 

 

3.2 Model performances in postoperative space 

The results of the primary analysis are presented in Table 2. Example outputs from each 

automated segmentation algorithm are presented in Figure 1. None of the algorithms identified 

(DSC>0) every resection cavity in our cohort (n=50). Epic-CHOP (n=43, 86%) and ResectVol 

(n=44, 88%) both identified more resection cavities than either Resseg (n=22, 44%, p<0.001) 

or Deep Resection (n=21, 42%, p<0.001). There was a difference (p<0.001) between the DSCs 

(median [IQR]) of the four algorithms: Epic-CHOP 0.71 (0.24), ResectVol 0.67 (IQR, 0.34), 

Resseg 0.00 (IQR, 0.84), and Deep Resection 0.00 (IQR, 0.58). However, when adjusted for 

multiple comparisons, there was only a significant difference between Epic-CHOP and Deep 

Resection (p<0.05), and ResectVol and Deep Resection (p<0.05). Raw data from pairwise 

comparisons for all analyses are presented in Appendix Table 2. 
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3.3 Model performances for temporal and extratemporal resection subgroups 

The results of the temporal (n=30) and extratemporal (n=20) resection subgroup analyses are 

presented in Table 2. Epic-CHOP (n=28, 93%) and ResectVol (n=27, 90%) identified (DSC>0) 

more temporal resection cavities than either Resseg (n=19, 63%, p<0.05) or Deep Resection 

(n=18, 60%, p<0.05). There was no difference (p=0.13) between the DSCs (median [IQR]) for 

the temporal epilepsy surgery cohort: Epic-CHOP 0.77 (0.21), ResectVol 0.67 (0.29), Resseg 

0.81 (0.87), and Deep Resection 0.40 (0.74).  

 

For the extratemporal epilepsy surgery subgroup, Epic-CHOP (n=15, 75%) and ResectVol 

(n=17, 85%) identified (DSC>0) more resection cavities than either Resseg (n=3, 15%, 

p<0.001) or Deep Resection (n=3, 15%, p<0.001). There was a difference (p<0.001) in the 

DSCs (median [IQR]) for the extratemporal epilepsy surgery cohort: Epic-CHOP 0.63 (0.74), 

ResectVol 0.70 (0.60), Resseg 0.00 (0.00) and Deep Resection 0.00 (0.00). The results of 

pairwise comparisons are presented in Appendix Table 2. 

 

3.4 Model performances in postoperative space for different resection types 

The results of the subgroup analyses for different resection types are presented in Table 3. 

There was a difference in the median DSCs for each algorithm for the anterior temporal 

lobectomy with amygdalohippocampectomy (n=18, p=0.01), lesionectomy (n=22, p=0.01) and 

corticectomy (n=4, p=0.03) subgroups. However, pairwise comparisons did not demonstrate 

any significant differences between algorithms following adjustment for multiple comparisons 

(Appendix Table 3). There was no difference in the median DSCs for each algorithm in the 

temporal polectomy with encephalocoele(s) disconnection (n=6) subgroup. 

 

3.5 Model performances in preoperative and MNI spaces 
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The model performances for Epic-CHOP and ResectVol in preoperative and MNI space are 

presented in Table 4. There was no difference between the DSCs (median [IQR]) in 

preoperative space (p=0.56): Epic-CHOP 0.71 (0.28), ResectVol 0.68 (0.35) nor MNI space 

(p=0.86): Epic-CHOP 0.71 (0.27), ResectVol 0.67 (0.34).  

 

3.6 Relationship between volume of resection and DSC 

We examined the relationship between volume of resection and DSC for each algorithm in 

scatterplots, presented in Figure 2. Linear regression analyses demonstrated a weak 

relationship for all algorithms, such that DSC increased with increasing resection volume: 

Epic-CHOP (R2 = 0.24, p<0.001), ResectVol (R2 = 0.12, p=0.02), Resseg (R2 = 0.24, p<0.001), 

and Deep Resection (R2 = 0.13, p=0.01). 

 

3.7 Analysis of Epic-CHOP semi-automated 

The results of the supplementary analysis of the semi-automated version of Epic-CHOP are 

presented in Appendix Table 4. One additional resection region was detected compared to 

Epic-CHOP automated (n=44/50), however this was not statistically significant (p=0.99). 

There was no difference in the median DSCs between the automated and semi-automated 

versions of Epic-CHOP (P=1.00). 

 

4. Discussion 

In this study, we compare four publicly available automated tools for segmenting the epilepsy 

surgery resection cavity. Our results demonstrate: (1) the SPM-based tools (Epic-CHOP and 

ResectVol) identified more resection cavities than the deep learning-based tools (Resseg and 

Deep Resection) for the mixed temporal and extratemporal epilepsy surgery cohort, and had 

higher median DSCs than Deep Resection; (2) all four tools analysed had similar detection 
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rates and accuracies for temporal epilepsy surgery resection cavities; (3) the SPM-based tools 

had higher detection rates and better accuracies than the deep learning tools in the 

extratemporal epilepsy surgery cohort; (4) the accuracy of each model improves as the size of 

the resection cavity increases; and (5) quality control is required when using all tools. 

 

Overall, the SPM-based automated segmentation tools (Epic-CHOP and ResectVol) had higher 

detection rates and better accuracies than the deep learning-based automated segmentation 

tools (Resseg and Deep Resection) on the mixed cohort of temporal and extratemporal epilepsy 

surgical resections. Although there was no difference between the performance of the models 

in the temporal epilepsy surgery cohort, the SPM-based tools performed better than the deep 

learning-based tools in the extratemporal cohort. Deep Resection was primarily trained on 

temporal epilepsy resections, and Resseg was trained on the EPISURG dataset, which is 

predominantly (81%) temporal epilepsy resections, which may explain why the deep learning-

based methods performed less well on the extratemporal resections compared to the temporal 

resections. Although not statistically significant, the deep learning model Resseg had the 

highest median DSC in the temporal epilepsy surgery group. Therefore, a similar model trained 

with extratemporal resections has the potential to be highly accurate. The deep learning models 

also had the fastest computational times, taking only a few minutes per subject, in comparison 

to the SPM-based models, which took approximately 20-25 minutes per subject. However, 

since all methods can be configured to loop over subjects, the overall time saved to the user is 

considerable for all the methods tested. 

 

Conversely, although both SPM-based tools were developed using temporal epilepsy 

resections, the principles underlying these pipelines are not exclusive to temporal lobe 

resections, which may explain why these models also performed better on the extra-temporal 
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epilepsy resections. Both Epic-CHOP and ResectVol generate the mask of the resection cavity 

by deriving the difference between the preoperative and postoperative MR images. These 

models rely on accurate registration and segmentation of the images into grey matter, white 

matter, and CSF partitions. The SPM segmentation toolbox utilises Bayesian probability to 

determine the tissue type, with both voxel intensity and tissue probability maps included in the 

calculation. Certain features on the preoperative and postoperative MR images may lead to 

segmentation error in the SPM-based tools. For example, blood in the resection cavity may be 

segmented as if it was grey matter, such that following subtraction of the postoperative grey 

and white matter partitions from the preoperative, the resection cavity may be missed or 

underestimated. We attempted to avoid this by using postoperative MRIs performed ≥ 3 months 

following surgery. Alternatively, certain lesions on the preoperative MRI, for example a cystic 

lesion, which has a similar voxel intensity as CSF, may be segmented as CSF, again leading to 

either a missed or underestimated resection cavity. Epic-CHOP and Resect Vol differ in two 

main aspects. Firstly, Epic-CHOP performs an erosion and dilation of the difference mask to 

account for segmentation and registration error, which may account for the slightly higher DSC 

in the identified lesions (Table 2). Secondly, ResectVol performs a linear registration between 

the preoperative and postoperative MRIs, whilst Epic-CHOP performs a non-linear registration 

to account for post-operative collapse of tissue into the resection cavity.  However, this second 

aspect will not be reflected in the DSCs as the manual segmentations were performed on 

postoperative MRIs. Furthermore, while the default output for the Epic-CHOP and ResectVol 

resection region segmentations is in preoperative space, which endeavours to reflect the 

preoperative tissue that was resected, the two deep learning methods output the resection region 

in postoperative space. Although the ability to use Resseg and Deep Resection in situations 

where only a postoperative MRI is available is a potential advantage, the interpretation of the 

segmented resection region when performed in postoperative space is different to when it is 
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performed in preoperative space. If the intention is to use the deep learning-based algorithms 

to make inferences about the preoperative tissue that has been resected, a further registration 

step to the preoperative MRI would be required.  

 

We found that there was a weak relationship between the volume of the resection cavity and 

the DSC for each algorithm, such that larger resections were associated with higher DSCs. In 

our cohort, the largest resections were anterior temporal lobectomies with 

amygdalohippocampectomies (see Figure 2), which may explain this relationship, as each of 

the models was predominantly trained and/or developed using such resections. Smaller 

resections, particularly the temporal polectomies with encephalocoele(s) disconnections, were 

overall less accurate than the anterior temporal lobectomy with amygdalohippocampectomies. 

It is clear, regardless of the algorithm being used, that a quality control step, to check that the 

automated segmentation has not missed or grossly underestimated the resection cavity, is 

required.  

 

The main limitation of this study was that the manual segmentations were only performed by 

a single researcher. Therefore, an inter-rater reliability could not be calculated, and it is possible 

that some of the differences between the manual and automated segmentations may be due to 

error in the manual segmentation. However, we felt this was acceptable, as the purpose of the 

study was not validation of the tools, but to compare them in a mixed cohort of subjects 

following either temporal or extratemporal epilepsy surgery. Another limitation is that most of 

the extratemporal resections were frontal epilepsy resections (n=17/20, 85%). We 

consecutively selected the 20 extratemporal cases, therefore the predominance of frontal cases 

reflects the fact that frontal epilepsy resections were the most common extratemporal resections 

in our institutions over the inclusion time-period. This raises the question about whether the 
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extratemporal epilepsy resection results are generalisable to extra-frontal resections, however, 

we believe that the principles underpinning the performance of each model on the 

extratemporal resections would apply regardless of the extratemporal location. Thirdly, all 

algorithms provided an output in postoperative space except for ResectVol. Therefore, in order 

to compare each method, we had to move the ResectVol output from preoperative space to 

postoperative space. We used the transformation matrix from the linear registration used in 

ResectVol to minimise bias, however this process may have biased against ResectVol in the 

primary analysis. To assess ResectVol’s performance in its native space, we also performed 

analyses in preoperative and MNI spaces, and these results were similar to postoperative space. 

 

In conclusion, automated resection cavity segmentation pipelines have the potential to reduce 

the significant burden of time involved in manually generating a mask of the resection cavity 

for research purposes. In our mixed temporal and extratemporal epilepsy resection cohort, the 

SPM-based automated segmentation tools (Epic-CHOP and ResectVol) performed better than 

the deep learning-based automated segmentation tools (Resseg and Deep Resection). However, 

none of the pipelines identified every resection cavity, and their use should be combined with 

a human quality control step. 
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FIGURE TITLES AND LEGENDS 

Figure 1: Automated segmentation outputs for each model 

The automated resection cavity segmentation output overlayed on the postoperative T1-

weighted MPRAGE for each algorithm for different resection types: (A) right anterior temporal 

lobectomy (DSC range 0.67-0.90); (B) right temporal polectomy with encephalocoele 

disconnection (DSC range 0.00-0.51); (C) left frontal corticectomy (0.00-0.63); (D) left frontal 

lesionectomy (DSC range 0.00-0.85). 

Figure 2: Relationship of model performance with volume of the resection cavity 

Relationship between the volume of the resection cavity and Dice similarity coefficient for 

each algorithm with associated linear regression model: (A) Epic-CHOP, coefficient of 

determination (R2) = 0.24 (p<0.001); (B) ResectVol, R2 = 0.12 (p=0.02); (C) Resseg, R2 = 0.24 

(p<0.001); (D) Deep Resection, R2 = 0.13 (p=0.01). 
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Table 1: Demographic data (n=50) 
 
Demographic Number (%) 
Sex, male 27 (54) 
Age (median, [range]) 33 (18-62) 
MRI diagnosis 
        Hippocampal sclerosis 6 (12) 
        Focal cortical dysplasia 11 (22) 
        Tumour 11 (22) 
        Cavernoma 7 (14) 
        Periventricular nodular heterotopia 2 (4) 
        Encephalocele 6 (12) 
        Normal, no epileptogenic lesion detected 7 (14) 
Location of resection 
        Temporal 30 (60) 
        Frontal 17 (34) 
        Insular-opercular 1 (2) 
        Occipital 1 (2) 
        Parietal 1 (2) 
Surgical side 
        Left 22 (44) 
        Right 28 (56) 
Type of resection 
        Anterior temporal lobectomy with amygdalohippocampectomy 18 (36) 
        Temporal polectomy with encephalocoele(s) disconnection 6 (12) 
        Lesionectomy 22 (44) 
        Corticectomy 4 (8) 
Histopathological diagnosis         
        Hippocampal sclerosis 6 (12) 
        Focal cortical dysplasia 
                1B 1 (2) 
                2A 7 (14) 
                2B 4 (8) 
                3B 1 (2) 
                NOS 2 (4) 
        Tumour 
                DNET 3 (6) 
                Ganglioglioma 2 (4) 
                Oligodendroglioma 1 (2) 
                Pleomorphic xanthoastrocytoma 2 (4) 
                Other 6 (12) 
        Cavernoma 6 (12) 
        Gliosis 1 (2) 
        Normal 8 (16) 
 
DNET, dysembryoplastic neuroepithelial tumour; IQR, interquartile range; MRI, magnetic 
resonance imaging; NOS, not otherwise specified.  
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 Table 2: Dice similarity coefficient for each automated segmentation algorithm compared to manual segmentation in post-operative space for the 
total cohort, temporal epilepsy surgery and extratemporal epilepsy surgery groups.  
 

Algorithm 

Total cohort Temporal epilepsy surgery Extratemporal epilepsy surgery 
No. subjects 

identified  
Dice similarity coefficient 

(median [IQR]) 
No. subjects 

identified  
Dice similarity coefficient 

(median [IQR]) 
No. subjects 

identified  
Dice similarity coefficient 

(median [IQR]) 

DSC
>0 

DSC
>0.5 

Total 
cohort 

Cohort 
with 

DSC>0 

Cohort 
with 

DSC>0.5 
DSC
>0 

DSC
>0.5 

Total 
cohort 

Cohort 
with 

DSC>0 

Cohort 
with 

DSC>0.5 
DSC
>0 

DSC
>0.5 

Total 
cohort 

Cohort 
with 

DSC>0 

Cohort 
with 

DSC>0.5 
Epic-
CHOP 

43/50 38/50 0.71 
(0.24) 

0.74 
(0.17) 

0.77 
(0.13) 

28/30 26/30 0.77 
(0.21) 

0.78 
(0.16) 

0.77 
(0.21) 

15/20 12/20 0.63 
(0.74) 

0.71 
(0.16) 

0.73 
(0.11) 

ResectVol 44/50 36/50 0.67 
(0.34) 

0.72 
(0.23) 

0.67 
(0.34) 

27/30 22/30 0.67 
(0.29) 

0.68 
(0.23) 

0.68 
(0.22) 

17/20 14/20 0.70 
(0.60) 

0.72 
(0.20) 

0.75 
(0.13) 

Resseg 22/50 22/50 0.00 
(0.84) 

0.85 
(0.08) 

0.85 
(0.08) 

19/30 19/30 0.81 
(0.87) 

0.86 
(0.07) 

0.86 
(0.07) 

3/20 3/20 0.00 
(0.00) 

0.76 
(0.14) 

0.76 
(0.14) 

Deep 
Resection 

21/50 16/50 0.00 
(0.58) 

0.68 
(0.38) 

0.75 
(0.25) 

18/30 14/30 0.40 
(0.74) 

0.62 
(0.44) 

0.81 
(0.29) 

3/20 2/20 0.00 
(0.00) 

0.68 
(0.15) 

0.71 
(0.03) 

 
DSC, Dice similarity coefficient; IQR, interquartile range.    
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Table 3: Dice similarity coefficient for each automated segmentation algorithm compared to 
manual segmentation in post-operative space for each resection type. 
 

Type of 
resection  Algorithm 

No. subjects 
identified  Dice similarity coefficient (median [IQR]) 

DSC>0 DSC>0.5 
Total 
cohort 

Cohort with 
DSC>0 

Cohort with 
DSC>0.5 

ATL+AH 

Epic-CHOP 18/18 17/18 0.79 (0.11) 0.79 (0.11) 0.79 (0.10) 
ResectVol 17/18 15/18 0.68 (0.19) 0.71 (0.17) 0.76 (0.14) 
Resseg 15/18 15/18 0.84 (0.13) 0.86 (0.08) 0.86 (0.08) 
Deep Resection 12/18 9/18 0.51 (0.80) 0.68 (0.37) 0.72 (0.32) 

Temporal 
polectomy + 
encephalocele 
disconnection 

Epic-CHOP 4/6 3/6 0.48 (0.45) 0.55 (0.05) 0.56 (0.04) 
ResectVol 4/6 2/6 0.40 (0.44) 0.50 (0.21) 0.67 (0.10) 
Resseg 0/6 0/6 0.00 (0.00) - - 
Deep Resection 2/6 1/6 0.04 (0.20) 0.42 (0.17) 0.59 (0.00) 

Lesionectomy 

Epic-CHOP 18/22 16/22 0.68 (0.67) 0.77 (0.16) 0.78 (0.16) 
ResectVol 20/22 16/22 0.73 (0.27) 0.74 (0.18) 0.76 (0.11) 
Resseg 7/22 7/22 0.00 (0.72) 0.84 (0.07) 0.84 (0.07) 
Deep Resection 8/22 6/22 0.00 (0.63) 0.75 (0.24) 0.81 (0.14) 

Corticectomy 

Epic-CHOP 3/4 3/4 0.70 (0.19) 0.71 (0.02) 0.71 (0.02) 
ResectVol 3/4 3/4 0.64 (0.24) 0.67 (0.10) 0.64 (0.10) 
Resseg 0/4 0/4 0.00 (0.00) - - 
Deep Resection 0/4 0/4 0.00 (0.00) - - 

 
ATL+AH, anterior temporal lobectomy with amygdalohippocampectomy; DSC, Dice 
similarity coefficient; IQR, interquartile range.   
 
 
 
 
Table 4: Dice similarity coefficient for automated segmentation outputs in preoperative space 
and MNI space compared to manual segmentation. 
 

Algorithm 

No. subjects 
identified  

DSC preoperative space 
(median [IQR]) 

DSC MNI space 
(median [IQR]) 

DSC>0 DSC>0.5 
Total 
cohort 

Cohort 
with 

DSC>0 

Cohort 
with 

DSC>0.5 
Total 
cohort 

Cohort 
with 

DSC>0 

Cohort 
with 

DSC>0.5 
Epic-CHOP 43/50 38/50 0.71 

(0.27) 
0.75 

(0.17) 
0.71 

(0.27) 
0.71 

(0.27) 
0.77 

(0.15) 
0.77 

(0.17) 
ResectVol 44/50 36/50 0.68 

(0.35) 
0.72 

(0.23) 
0.68 

(0.34) 
0.67 

(0.34) 
0.71 

(0.24) 
0.67 

(0.34) 
 
DSC, Dice similarity coefficient; IQR, interquartile range; MNI, Montreal Neurological 
Institute. 
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C. Resseg

Key: 	 ATL+AH        Encephalocoele disconnection        Lesionectomy        Corticectomy    
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