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ABSTRACT

Accurate resection cavity segmentation on MRI is important for neuroimaging research
involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour
intensive. Automated pipelines are an efficient potential solution; however, most have been
developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy
of four automated segmentation pipelines following surgical resection in a mixed cohort of
subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source
automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within
MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks.
We manually segmented the resection cavity of 50 consecutive subjects who underwent
epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient
(DSC) for each algorithm compared to the manual segmentation. No algorithm identified all
resection cavities. ResectVol (n=44, 88%) and Epic-CHOP (n=43, 86%) were able to detect
more resection cavities than Resseg (n=22, 44%, P<0.001) and Deep Resection (n=21, 42%,
P<0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the
deep learning-based pipelines in the overall and extratemporal surgery cohorts, however there
was no difference between methods in the temporal surgery cohort. These pipelines could be
applied to machine learning studies of outcome prediction to improve efficiency in pre-

processing data, however human quality control is still required.
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1. Introduction

Epilepsy surgery is the most effective treatment choice for selected patients with drug resistant
focal epilepsy, as it offers a better chance of long-term seizure control compared to best medical
therapy. In their Cochrane systematic review, West et al found that 64% patients who
underwent resective epilepsy surgery became seizure free (West et al., 2019). In order to
further improve the proportion of patients for whom epilepsy surgery is successful, it is
imperative that new tools are developed to improve patient selection and/or assist with tailoring
a more individualised resection to maximise the chance of seizure freedom without negatively

impacting neurocognitive function.

Some neuroimaging factors, including the detection of a resectable lesion on preoperative MRI,
or the detection of localising '®F-FDG-PET hypometabolism, are associated with an increased
chance of seizure freedom following epilepsy surgery (West et al., 2019, Alim-Marvasti et al.,
2022, Tonini et al., 2004, Tellez-Zenteno et al., 2010, Courtney et al., 2024). Therefore, the
development of neuroimaging based predictive tools may help to better delineate the subset
patients who would benefit from epilepsy surgery. Accurate segmentation of the epilepsy
surgery resection cavity is essential in order to incorporate data about the resection cavity into
such a tool. Furthermore, surgical factors, such as complete resection of certain epileptogenic
lesions, for example, focal cortical dysplasias (Rowland et al., 2012) and low grade epilepsy
associated tumours (Shan et al., 2018), as well as complete resection of the epileptogenic zone
(West et al., 2019, Krucoff et al., 2017), are associated with better outcome following epilepsy
surgery. Accurate resection cavity segmentation is also important in assessing these factors in
epilepsy surgery research. Manual segmentation is the gold standard for brain region of interest
segmentation, however it is labour intensive, which prohibits its use in larger datasets, such as

those required for the development of deep learning-based tools. Several open-source


https://doi.org/10.1101/2024.05.13.593855
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.13.593855; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

automated tools for segmenting the epilepsy surgery resection cavity are available, however
these have largely been developed and/or validated for use following temporal epilepsy surgery

(Cahill et al., 2019, Casseb et al., 2021, Arnold et al., 2022, Pérez-Garcia et al., 2021).

The aim of the study reported here was to assess the accuracy of publicly available automated
epilepsy surgery resection cavity segmentation tools compared to manual segmentation across
a mixed cohort of subjects following epilepsy surgery, including subjects who have had

temporal or extratemporal epilepsy surgery.

2. Methods

2.1 Ethics approval

This study was approved by the Human Research Ethics Committees (HRECs) at the Alfred
Hospital (central reference number: HREC/88862/Alfred-2022-335736, local reference
number: 507/22) and Royal Melbourne Hospital (local reference number: 2022.355). The
HRECs determined that participant consent was not required for this study, as it utilised

retrospective data acquired for clinical purposes.

2.2 Subject selection

We identified subjects from the Comprehensive Epilepsy Programmes at the Alfred and Royal
Melbourne Hospitals in Melbourne, Australia who underwent resective epilepsy surgery for
drug resistant focal epilepsy. The inclusion criteria were: (1) > 16 years old at the time of
surgery, (2) a preoperative T1-weighted MRI had been performed, and (3) a post-operative T1-
weighted MRI had been performed > 3 months following resective epilepsy surgery. For
subjects meeting the inclusion criteria, we consecutively selected 30 who underwent resective

temporal epilepsy surgery between January 2019 and May 2023, and 20 who underwent


https://doi.org/10.1101/2024.05.13.593855
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.13.593855; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

resective extratemporal epilepsy surgery between July 2015 and May 2023. 16 subjects who
had temporal epilepsy surgery at our institutions during this period were excluded as there was
no postoperative MRI performed > 3 months after surgery. No subjects with extratemporal

surgical resections were excluded.

2.3 Clinical data

Clinical data was collected from medical records. We collected demographics (age and sex),
MRI diagnosis, resection type, and histopathological diagnosis. Resection type was
subcategorised into anterior temporal lobectomy with amygdalohippocampectomy, temporal
polectomy with encephalocoele(s) disconnection, lesionectomy, and corticectomy.
Lesionectomy was defined as a sub-lobar resection that included resection of a lesion that had
been detected on MRI, which may also have included resection of part of the cortex.
Corticectomy was defined as a sub-lobar resection of cerebral cortex for subjects in whom the
MRI did not detect a resectable lesion. The temporal polectomy with encephalocoele(s)
disconnection subgroup was differentiated from the lesionectomy and corticectomy subgroups
because an encephalocoele is an area of brain herniation into a skull defect, rather than a lesion
within the cortex or subcortical structures, and as such we wanted to explore how each

algorithm performed with an abnormality of the brain surface structure.

2.4 MRI acquisition

Preoperative and postoperative MRI scans were obtained as part of routine clinical care. MRI
scans at the Alfred Hospital were performed on a Magnetom Skyra 3 T (n=37), while MRI
scans at the Royal Melbourne Hospital were performed on either a Magnetom Skyra 3 T (n=8),
Magnetom Sola 1.5 T (n=2) or Magnetom Trio 3 T (n=4; Siemens Medical Solutions, Erlangen,

Germany). Three-dimensional, TI1-weighted, magnetisation-prepared rapid acquisition
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gradient echo (MPRAGE) sequences were used for image processing. Voxel size for images
performed on both Skyras and the Sola were 1.0mm?®, while the voxel size for images

performed on the Trio were 0.45 x 0.9 x 0.45 mm.

2.5 Manual segmentation

The resection cavity for each postoperative T1-weighted MRI was manually segmented using
ITK-SNAP (Yushkevich et al., 2006) by a neurologist with expertise in epilepsy (MRC). The
first five manual segmentations were checked by a senior neurologist with expertise in epilepsy

(AN).

2.6 Automated segmentation
We performed a literature search using Medline and Web of Science databases in August 2023,
to identify publicly available automated epilepsy surgery resection cavity segmentation tools.

The search terms included variations and expansions on the following terms: “neuroimaging,”

99 ¢ 99 ¢

“magnetic resonance imaging,” “segmentation,” “epilepsy,” and “neurosurgery.” Four tools
were identified. These included (1) Epilepsy Cavity Characterisation Pipeline (Epic-CHOP)
(Cahill et al., 2019), (2) ResectVol (Casseb et al., 2021), (3) Deep Resection (Arnold et al.,
2022), and (4) Resseg (Pérez-Garcia et al., 2021). Epic-CHOP and ResectVol are both
automated pipelines for resection cavity segmentation using Statistical Parametric Mapping
(SPM) software, version 12 (Friston et al., 1994). SPM12 was used within MATLAB R2021a
(Natuck, Massachusetts, USA). Deep Resection and Resseg are both deep learning models that
utilise U-net convolutional neural networks to generate a segmented mask of the resection

cavity. The processing pipelines for each method have been reported on in detail previously

(Cahill et al., 2019, Arnold et al., 2022, Pérez-Garcia et al., 2021, Casseb et al., 2021).
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2.6.1 Epic-CHOP

Using the Epic-CHOP pipeline (Cahill et al., 2019), the resection cavity was generated by
deriving the difference of the preoperative and postoperative images. Briefly, the steps
included: (1) recentering using the centre of mass, (2) non-linear registration of preoperative
and postoperative images using SPM’s longitudinal registration toolbox, (3) segmentation into
grey matter, white matter, and cerebrospinal fluid (CSF), (4) skull stripping, (5) thresholding
and subtraction of the combined grey and white matter partitions of the preoperative and
postoperative images, (6) erosion of the difference map by one voxel, (7) selection of three
largest clusters, and (8) dilation by two voxels. Steps 6 and 8 help to reduce the segmentation
and registration error in the difference map. In the automated version of Epic-CHOP, the largest
cluster of the difference map is then selected as the mask of the resection cavity. However,
Epic-CHOP also has the capacity to save multiple different clusters as separate segmentation
masks and can therefore be used in a semi-automated way, where the user reviews each cluster

and determines the cluster which best represents the resection cavity.

The Epic-CHOP algorithm generates the mask of the resection cavity in preoperative space.
However, outputs in postoperative space and Montreal Neurological Institute (MNI) space are
also provided, the first by applying the postoperative deformation field from the longitudinal

registration, and the second by registration to SPM12’s MNI atlas.

2.6.2 ResectVol

Using the ResectVol algorithm (Casseb et al., 2021), the mask of the resection region was also
generated by deriving the difference between the preoperative and postoperative MR images.
Briefly, the steps included: (1) linear registration to co-register the preoperative and

postoperative MR images, (2) segmentation, (3) thresholding of the grey matter and white
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matter partitions, (4) binarization, and (5) subtraction of the preoperative and postoperative
images from each other to generate the mask of the resection region. The ResectVol algorithm
generates the mask of the resection cavity in preoperative space, however, an output in MNI

space is also provided by registration to SPM12’s MNI atlas.

ResectVol does not have an output in postoperative space. Therefore, in order to compare the
output of each algorithm to a manual segmentation performed in postoperative space, we
applied the transformation matrix generated by the linear registration step in ResectVol’s

algorithm to the mask of the resection cavity to move it to postoperative space.

2.6.3 Deep Resection and Resseg

Deep Resection (Arnold et al., 2022) and Resseg (Pérez-Garcia et al., 2021) are deep learning-
based automated segmentation tools, which utilise three-dimensional U-net convolutional
neural networks to generate a mask of the resection cavity. Deep Resection was developed
using a small dataset (n=45) of subjects who underwent resective temporal epilepsy surgery
and fine-tuned using a resective extratemporal epilepsy surgery dataset (n=16). Resseg was
trained using the EPISURG (Pérez-Garcia et al., 2020) database (n=430), which includes
subjects who have undergone either resective temporal or extratemporal epilepsy surgery. The
output mask of the resection cavity for both algorithms is generated in postoperative space.

Neither algorithm requires a preoperative MRI.

2.6.4 Source code availability
The source code for each algorithm is available online:

e Epic-CHOP: https://github.com/iBrain-Lab/EPIC-CHOP

e ResectVol: https://www.lniunicamp.com/resectvol
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e Deep Resection: https://github.com/penn-cnt/DeepResection

e Resseg: https://github.com/fepegar/resseg

2.7 Data analysis

For the primary analysis we calculated the Dice similarity coefficient (DSC) for each
automated segmentation mask compared to the manual segmentation in postoperative space.
Secondary analyses included: (1) a comparison of the automated segmentation mask to manual
segmentation in postoperative space for temporal and extratemporal subgroups, (2) a
comparison of the automated segmentation mask to manual segmentation in postoperative
space for different resection type subgroups, and (3) a comparison of the automated
segmentation mask to manual segmentation in preoperative and MNI spaces for the algorithms
which generated images in these spaces (Epic-CHOP and ResectVol). We performed the
analyses in preoperative and MNI spaces as both ResectVol and Epic-CHOP generate the mask
of the resection cavity in preoperative space, and each also provide the output in MNI space.
As such, we chose to assess each algorithm’s performance in its native space, and all other
spaces in which it provided an output. As the manual segmentation was performed in
postoperative space, it was moved to preoperative space by applying the deformation field or
transformation matrix from the registration process of each algorithm to enable each algorithm
to be compared to manual segmentation in preoperative space. The manual segmentation was

also moved to MNI space using the given algorithm’s registration to SPM12’s MNI atlas.

Finally, we explored the relationship between the volume of resection and the DSC for each
algorithm. Volume of the manual segmentation was used as a proxy measure of the volume of
the resection cavity. As a supplementary analysis, we assessed the performance of Epic-

CHOP’s semi-automated function. We reviewed each of the three largest clusters, and visually
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determined which aligned with the resection cavity, and subsequently calculated the DSC

compared to manual segmentation.

2.8 Statistical analysis

2 (XNY)

The DSC was calculated using Python according to the following equation: DSC = iy

9

where X is the binary segmentation mask of the resection cavity generated by the automated
algorithm and Y is the manual segmentation. We considered the automated algorithm to have
identified the resection cavity if the DSC>0, reflecting any overlap of the two images.
However, we also report the detection rates and accuracy of each algorithm where the
DSC>0.5, reflecting a more meaningful overlap of at least 50%. We calculated the median
DSC and interquartile range (IQR) for the total cohort and identified cohorts (DSC>0 and
DSC>0.5) for the primary analysis and each of the secondary analyses. All other statistical
analyses and graphs were performed using GraphPad Prism version 10.0 (Boston,
Massachusetts, USA) for Mac. The detection rates (DSC>0) for each algorithm were compared
using Fisher’s exact test. The distribution of data was assessed using D’ Agostino-Pearson and
Shapiro-Wilk normality tests. The comparison of medians between different algorithms for the
primary analysis and secondary analyses with three or more groups were performed using non-
parametric one-way ANOVA (Kruskal-Wallis) test, followed by pairwise comparison using
Dunn'’s test, with p values corrected for multiple comparisons using the Bonferroni adjustment.
The comparison of medians between different algorithms for secondary analyses with two
groups were performed using non-parametric independent t (Mann-Whitney) test. The
relationship between volume of resection and DSC was graphically presented with a

scatterplot, and a linear regression model was calculated for each algorithm.

3. Results
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3.1 Population clinical characteristics

Our dataset was comprised of 50 subjects with drug resistant epilepsy who underwent temporal
(n=30) or extratemporal (n=20) epilepsy surgery. The population demographic data are
presented in Table 1, and individual subject characteristics are available in Appendix Table 1.
The mean age at epilepsy surgery was 35.1 years. An epileptogenic lesion was detected on the
preoperative MRI of 86% subjects, with the most common findings being low-grade epilepsy
associated tumour (n=11) and focal cortical dysplasia (n=11), followed by cavernoma (n=7),
hippocampal sclerosis (n=6), encephalocoele (n=6), and periventricular nodular heterotopia
(n=2). Frontal resections were the most common extratemporal resections (n=17). A variety of
resection types were represented, with the most common being lesionectomy (n=22), followed
by anterior temporal lobectomy with amygdalohippocampectomy (n=18), temporal polectomy

with encephalocoele(s) disconnection (n=6), and corticectomy (n=4).

3.2 Model performances in postoperative space

The results of the primary analysis are presented in Table 2. Example outputs from each
automated segmentation algorithm are presented in Figure 1. None of the algorithms identified
(DSC>0) every resection cavity in our cohort (n=50). Epic-CHOP (n=43, 86%) and ResectVol
(n=44, 88%) both identified more resection cavities than either Resseg (n=22, 44%, p<0.001)
or Deep Resection (n=21, 42%, p<0.001). There was a difference (p<<0.001) between the DSCs
(median [IQR]) of the four algorithms: Epic-CHOP 0.71 (0.24), ResectVol 0.67 (IQR, 0.34),
Resseg 0.00 (IQR, 0.84), and Deep Resection 0.00 (IQR, 0.58). However, when adjusted for
multiple comparisons, there was only a significant difference between Epic-CHOP and Deep
Resection (p<0.05), and ResectVol and Deep Resection (p<0.05). Raw data from pairwise

comparisons for all analyses are presented in Appendix Table 2.
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3.3 Model performances for temporal and extratemporal resection subgroups

The results of the temporal (n=30) and extratemporal (n=20) resection subgroup analyses are
presented in Table 2. Epic-CHOP (n=28, 93%) and ResectVol (n=27, 90%) identified (DSC>0)
more temporal resection cavities than either Resseg (n=19, 63%, p<0.05) or Deep Resection
(n=18, 60%, p<0.05). There was no difference (p=0.13) between the DSCs (median [IQR]) for
the temporal epilepsy surgery cohort: Epic-CHOP 0.77 (0.21), ResectVol 0.67 (0.29), Resseg

0.81 (0.87), and Deep Resection 0.40 (0.74).

For the extratemporal epilepsy surgery subgroup, Epic-CHOP (n=15, 75%) and ResectVol
(n=17, 85%) identified (DSC>0) more resection cavities than either Resseg (n=3, 15%,
p<0.001) or Deep Resection (n=3, 15%, p<0.001). There was a difference (p<<0.001) in the
DSCs (median [IQR]) for the extratemporal epilepsy surgery cohort: Epic-CHOP 0.63 (0.74),
ResectVol 0.70 (0.60), Resseg 0.00 (0.00) and Deep Resection 0.00 (0.00). The results of

pairwise comparisons are presented in Appendix Table 2.

3.4 Model performances in postoperative space for different resection types

The results of the subgroup analyses for different resection types are presented in Table 3.
There was a difference in the median DSCs for each algorithm for the anterior temporal
lobectomy with amygdalohippocampectomy (n=18, p=0.01), lesionectomy (n=22, p=0.01) and
corticectomy (n=4, p=0.03) subgroups. However, pairwise comparisons did not demonstrate
any significant differences between algorithms following adjustment for multiple comparisons
(Appendix Table 3). There was no difference in the median DSCs for each algorithm in the

temporal polectomy with encephalocoele(s) disconnection (n=6) subgroup.

3.5 Model performances in preoperative and MNI spaces
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The model performances for Epic-CHOP and ResectVol in preoperative and MNI space are
presented in Table 4. There was no difference between the DSCs (median [IQR]) in
preoperative space (p=0.56): Epic-CHOP 0.71 (0.28), ResectVol 0.68 (0.35) nor MNI space

(p=0.86): Epic-CHOP 0.71 (0.27), ResectVol 0.67 (0.34).

3.6 Relationship between volume of resection and DSC

We examined the relationship between volume of resection and DSC for each algorithm in
scatterplots, presented in Figure 2. Linear regression analyses demonstrated a weak
relationship for all algorithms, such that DSC increased with increasing resection volume:
Epic-CHOP (R?=0.24, p<0.001), ResectVol (R>=0.12, p=0.02), Resseg (R? = 0.24, p<0.001),

and Deep Resection (R? =0.13, p=0.01).

3.7 Analysis of Epic-CHOP semi-automated

The results of the supplementary analysis of the semi-automated version of Epic-CHOP are
presented in Appendix Table 4. One additional resection region was detected compared to
Epic-CHOP automated (n=44/50), however this was not statistically significant (p=0.99).
There was no difference in the median DSCs between the automated and semi-automated

versions of Epic-CHOP (P=1.00).

4. Discussion

In this study, we compare four publicly available automated tools for segmenting the epilepsy
surgery resection cavity. Our results demonstrate: (1) the SPM-based tools (Epic-CHOP and
ResectVol) identified more resection cavities than the deep learning-based tools (Resseg and
Deep Resection) for the mixed temporal and extratemporal epilepsy surgery cohort, and had

higher median DSCs than Deep Resection; (2) all four tools analysed had similar detection
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rates and accuracies for temporal epilepsy surgery resection cavities; (3) the SPM-based tools
had higher detection rates and better accuracies than the deep learning tools in the
extratemporal epilepsy surgery cohort; (4) the accuracy of each model improves as the size of

the resection cavity increases; and (5) quality control is required when using all tools.

Overall, the SPM-based automated segmentation tools (Epic-CHOP and ResectVol) had higher
detection rates and better accuracies than the deep learning-based automated segmentation
tools (Resseg and Deep Resection) on the mixed cohort of temporal and extratemporal epilepsy
surgical resections. Although there was no difference between the performance of the models
in the temporal epilepsy surgery cohort, the SPM-based tools performed better than the deep
learning-based tools in the extratemporal cohort. Deep Resection was primarily trained on
temporal epilepsy resections, and Resseg was trained on the EPISURG dataset, which is
predominantly (81%) temporal epilepsy resections, which may explain why the deep learning-
based methods performed less well on the extratemporal resections compared to the temporal
resections. Although not statistically significant, the deep learning model Resseg had the
highest median DSC in the temporal epilepsy surgery group. Therefore, a similar model trained
with extratemporal resections has the potential to be highly accurate. The deep learning models
also had the fastest computational times, taking only a few minutes per subject, in comparison
to the SPM-based models, which took approximately 20-25 minutes per subject. However,
since all methods can be configured to loop over subjects, the overall time saved to the user is

considerable for all the methods tested.

Conversely, although both SPM-based tools were developed using temporal epilepsy
resections, the principles underlying these pipelines are not exclusive to temporal lobe

resections, which may explain why these models also performed better on the extra-temporal
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epilepsy resections. Both Epic-CHOP and ResectVol generate the mask of the resection cavity
by deriving the difference between the preoperative and postoperative MR images. These
models rely on accurate registration and segmentation of the images into grey matter, white
matter, and CSF partitions. The SPM segmentation toolbox utilises Bayesian probability to
determine the tissue type, with both voxel intensity and tissue probability maps included in the
calculation. Certain features on the preoperative and postoperative MR images may lead to
segmentation error in the SPM-based tools. For example, blood in the resection cavity may be
segmented as if it was grey matter, such that following subtraction of the postoperative grey
and white matter partitions from the preoperative, the resection cavity may be missed or
underestimated. We attempted to avoid this by using postoperative MRIs performed > 3 months
following surgery. Alternatively, certain lesions on the preoperative MRI, for example a cystic
lesion, which has a similar voxel intensity as CSF, may be segmented as CSF, again leading to
either a missed or underestimated resection cavity. Epic-CHOP and Resect Vol differ in two
main aspects. Firstly, Epic-CHOP performs an erosion and dilation of the difference mask to
account for segmentation and registration error, which may account for the slightly higher DSC
in the identified lesions (Table 2). Secondly, ResectVol performs a linear registration between
the preoperative and postoperative MRIs, whilst Epic-CHOP performs a non-linear registration
to account for post-operative collapse of tissue into the resection cavity. However, this second
aspect will not be reflected in the DSCs as the manual segmentations were performed on
postoperative MRIs. Furthermore, while the default output for the Epic-CHOP and ResectVol
resection region segmentations is in preoperative space, which endeavours to reflect the
preoperative tissue that was resected, the two deep learning methods output the resection region
in postoperative space. Although the ability to use Resseg and Deep Resection in situations
where only a postoperative MRI is available is a potential advantage, the interpretation of the

segmented resection region when performed in postoperative space is different to when it is
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performed in preoperative space. If the intention is to use the deep learning-based algorithms
to make inferences about the preoperative tissue that has been resected, a further registration

step to the preoperative MRI would be required.

We found that there was a weak relationship between the volume of the resection cavity and
the DSC for each algorithm, such that larger resections were associated with higher DSCs. In
our cohort, the largest resections were anterior temporal lobectomies with
amygdalohippocampectomies (see Figure 2), which may explain this relationship, as each of
the models was predominantly trained and/or developed using such resections. Smaller
resections, particularly the temporal polectomies with encephalocoele(s) disconnections, were
overall less accurate than the anterior temporal lobectomy with amygdalohippocampectomies.
It is clear, regardless of the algorithm being used, that a quality control step, to check that the
automated segmentation has not missed or grossly underestimated the resection cavity, is

required.

The main limitation of this study was that the manual segmentations were only performed by
a single researcher. Therefore, an inter-rater reliability could not be calculated, and it is possible
that some of the differences between the manual and automated segmentations may be due to
error in the manual segmentation. However, we felt this was acceptable, as the purpose of the
study was not validation of the tools, but to compare them in a mixed cohort of subjects
following either temporal or extratemporal epilepsy surgery. Another limitation is that most of
the extratemporal resections were frontal epilepsy resections (n=17/20, 85%). We
consecutively selected the 20 extratemporal cases, therefore the predominance of frontal cases
reflects the fact that frontal epilepsy resections were the most common extratemporal resections

in our institutions over the inclusion time-period. This raises the question about whether the


https://doi.org/10.1101/2024.05.13.593855
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.13.593855; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

extratemporal epilepsy resection results are generalisable to extra-frontal resections, however,
we believe that the principles underpinning the performance of each model on the
extratemporal resections would apply regardless of the extratemporal location. Thirdly, all
algorithms provided an output in postoperative space except for ResectVol. Therefore, in order
to compare each method, we had to move the ResectVol output from preoperative space to
postoperative space. We used the transformation matrix from the linear registration used in
ResectVol to minimise bias, however this process may have biased against ResectVol in the
primary analysis. To assess ResectVol’s performance in its native space, we also performed

analyses in preoperative and MNI spaces, and these results were similar to postoperative space.

In conclusion, automated resection cavity segmentation pipelines have the potential to reduce
the significant burden of time involved in manually generating a mask of the resection cavity
for research purposes. In our mixed temporal and extratemporal epilepsy resection cohort, the
SPM-based automated segmentation tools (Epic-CHOP and ResectVol) performed better than
the deep learning-based automated segmentation tools (Resseg and Deep Resection). However,
none of the pipelines identified every resection cavity, and their use should be combined with

a human quality control step.
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FIGURE TITLES AND LEGENDS

Figure 1: Automated segmentation outputs for each model

The automated resection cavity segmentation output overlayed on the postoperative T1-
weighted MPRAGE for each algorithm for different resection types: (A) right anterior temporal
lobectomy (DSC range 0.67-0.90); (B) right temporal polectomy with encephalocoele
disconnection (DSC range 0.00-0.51); (C) left frontal corticectomy (0.00-0.63); (D) left frontal
lesionectomy (DSC range 0.00-0.85).

Figure 2: Relationship of model performance with volume of the resection cavity
Relationship between the volume of the resection cavity and Dice similarity coefficient for
each algorithm with associated linear regression model: (A) Epic-CHOP, coefficient of
determination (R?) = 0.24 (p<0.001); (B) ResectVol, R?=0.12 (p=0.02); (C) Resseg, R? = 0.24

(p<0.001); (D) Deep Resection, R? = 0.13 (p=0.01).
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Table 1: Demographic data (n=50)

Demographic Number (%)
Sex, male 27 (54)
)Age (median, [range]) 33 (18-62)
IMRI diagnosis
Hippocampal sclerosis 6(12)
Focal cortical dysplasia 11(22)
Tumour 11(22)
Cavernoma 7(14)
Periventricular nodular heterotopia 24
Encephalocele 6(12)
Normal, no epileptogenic lesion detected 7(14)
Location of resection
Temporal 30 (60)
Frontal 17 (34)
Insular-opercular 1(2)
Occipital 1(2)
Parietal 1(2)
Surgical side
Left 22 (44)
Right 28 (56)
Type of resection
Anterior temporal lobectomy with amygdalohippocampectomy 18 (36)
Temporal polectomy with encephalocoele(s) disconnection 6(12)
Lesionectomy 22 (44)
Corticectomy 4(8
Histopathological diagnosis
Hippocampal sclerosis \ 6(12)
Focal cortical dysplasia
1B 1(2)
2A 7(14)
2B 4 (8)
3B 1(2)
NOS 2 (4)
Tumour
DNET 3(6)
Ganglioglioma 24
Oligodendroglioma 1(2)
Pleomorphic xanthoastrocytoma 24
Other 6(12)
Cavernoma 6(12)
Gliosis 1(2)
Normal 8 (16)

DNET, dysembryoplastic neuroepithelial tumour; IQR, interquartile range; MRI, magnetic
resonance imaging; NOS, not otherwise specified.
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Table 2: Dice similarity coefficient for each automated segmentation algorithm compared to manual segmentation in post-operative space for the
total cohort, temporal epilepsy surgery and extratemporal epilepsy surgery groups.

Total cohort Temporal epilepsy surgery Extratemporal epilepsy surgery
No. subjects Dice similarity coefficient No. subjects Dice similarity coefficient No. subjects Dice similarity coefficient
identified (median [IQR]) identified (median [IQR]) identified (median [IQR])
Cohort | Cohort Cohort | Cohort Cohort Cohort
DSC | DSC | Total with with DSC | DSC | Total with with DSC | DSC Total with with
Algorithm >0 >0.5 | cohort | DSC>0 | DSC>0.5| >0 >0.5 | cohort | DSC>0 | DSC>0.5 >0 >0.5 cohort DSC>0 | DSC>0.5
Epic- 43/50 | 38/50 0.71 0.74 0.77 28/30 | 26/30 0.77 0.78 0.77 15/20 | 12/20 0.63 0.71 0.73
CHOP (0.24) (0.17) (0.13) (0.21) (0.16) (0.21) (0.74) (0.16) (0.11)
ResectVol | 44/50 | 36/50 0.67 0.72 0.67 27/30 | 22/30 0.67 0.68 0.68 17/20 | 14/20 0.70 0.72 0.75
(0.34) (0.23) (0.34) (0.29) (0.23) (0.22) (0.60) (0.20) (0.13)
Resseg 22/50 | 22/50 0.00 0.85 0.85 19/30 | 19/30 0.81 0.86 0.86 3/20 | 3/20 0.00 0.76 0.76
(0.84) (0.08) (0.08) (0.87) (0.07) (0.07) (0.00) (0.14) (0.14)
Deep 21/50 | 16/50 0.00 0.68 0.75 18/30 | 14/30 0.40 0.62 0.81 3/20 | 2/20 0.00 0.68 0.71
Resection (0.58) (0.38) (0.25) (0.74) (0.44) (0.29) (0.00) (0.15) (0.03)

DSC, Dice similarity coefficient; IQR, interquartile range.
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Table 3: Dice similarity coefficient for each automated segmentation algorithm compared to
manual segmentation in post-operative space for each resection type.

No. subjects

identified Dice similarity coefficient (median [IQR])
Type of Total Cohort with Cohort with
resection Algorithm DSC>0 | pSC>0.5 cohort DSC>0 DSC>0.5
Epic-CHOP 18/18 17/18 0.79 (0.11) 0.79 (0.11) 0.79 (0.10)
ResectVol 17/18 15/18 0.68 (0.19) 0.71 (0.17) 0.76 (0.14)
Resseg 15/18 15/18 0.84 (0.13) 0.86 (0.08) 0.86 (0.08)
ATL+AH Deep Resection 12/18 9/18 0.51 (0.80) 0.68 (0.37) 0.72 (0.32)
Temporal Epic-CHOP 4/6 3/6 0.48 (0.45) 0.55 (0.05) 0.56 (0.04)
polectomy + ResectVol 4/6 2/6 0.40 (0.44) 0.50 (0.21) 0.67 (0.10)
encephalocele | Resseg 0/6 0/6 0.00 (0.00) - -
disconnection | Deep Resection 2/6 1/6 0.04 (0.20) 0.42 (0.17) 0.59 (0.00)
Epic-CHOP 18/22 16/22 0.68 (0.67) 0.77 (0.16) 0.78 (0.16)
ResectVol 20/22 16/22 0.73 (0.27) 0.74 (0.18) 0.76 (0.11)
Resseg 7/22 7/22 0.00 (0.72) 0.84 (0.07) 0.84 (0.07)
Lesionectomy | Deep Resection 8/22 6/22 0.00 (0.63) 0.75 (0.24) 0.81(0.14)
Epic-CHOP 3/4 3/4 0.70 (0.19) 0.71 (0.02) 0.71 (0.02)
ResectVol 3/4 3/4 0.64 (0.24) 0.67 (0.10) 0.64 (0.10)
Resseg 0/4 0/4 0.00 (0.00) - -
Corticectomy | Deep Resection 0/4 0/4 0.00 (0.00) - -

ATL+AH, anterior temporal lobectomy

similarity coefficient; IQR, interquartile range.

with amygdalohippocampectomy; DSC, Dice

Table 4: Dice similarity coefficient for automated segmentation outputs in preoperative space
and MNI space compared to manual segmentation.

No. subjects DSC preoperative space DSC MNI space
identified (median [IQR]) (median [IQR])
Cohort Cohort Cohort Cohort
Total with with Total with with
Algorithm DSC>0 | DSC>0.5 | cohort DSC>0 | DSC>0.5 | cohort | DSC>0 | DSC>0.5
Epic-CHOP 43/50 38/50 0.71 0.75 0.71 0.71 0.77 0.77
(0.27) (0.17) (0.27) (0.27) (0.15) (0.17)
ResectVol 44/50 36/50 0.68 0.72 0.68 0.67 0.71 0.67
(0.35) (0.23) (0.34) (0.34) (0.24) (0.34)

DSC, Dice similarity coefficient; IQR, interquartile range; MNI, Montreal Neurological
Institute.
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