

1 **Parallel rapid phenotypic differentiation along climatic gradients in**
2 **multiple introduced lineages of an alien plant species**

3
4 Saeko Matsuhashi¹, Hiroshi Kudoh², Michio Oguro³, and Satoki Sakai⁴
5
6 ¹National Agriculture and Food Research Organization, Tsukuba, 305-8506, Japan; ²Center
7 for Ecological Research, Kyoto University, Otsu 520-2113, Japan; ³Forestry and Forest
8 Products Research Institute, Tsukuba 305-8687, Japan; ⁴Graduate School of Life Sciences,
9 Tohoku University, Sendai 980-8578, Japan,
10
11 Author for correspondence: Saeko Matsuhashi

12
13
14

15 **Abstract**

16 Widespread plant species are faced with various climatic gradients and undergo clinal
17 differentiation. Alien species which have been introduced repeatedly can be used to
18 investigate the parallel processes of clinal differentiation during their range expansions.
19 *Cardamine hirsuta* L. has been unintentionally introduced to Japan at least three times and has
20 become widely distributed across Japan. To elucidate the processes of clinal differentiation,
21 we conducted a common garden experiment using three lineages of *C. hirsuta* (North, East,
22 and West). We tested for phenotypic differentiation among and within the lineages, and for a
23 common pattern of clinal variations in phenotypic traits. We detected differentiations of
24 flowering phenology and body size within and among the lineages. The East lineage showed
25 delayed flowering phenology and larger mass, whereas the West lineage showed rapid
26 flowering phenology and smaller mass. In addition, three patterns of variation between
27 climate factors in seed source habitats and phenotypic traits were detected in all three
28 lineages: higher temperature was related to earlier flowering and lower leaf number at the
29 start of flowering, and more hours of sunshine were related to shorter flowering period. These
30 patterns imply independent and parallel differentiations in the three lineages. These results
31 suggest that analyses of distinct lineages allow repeated observations of differentiation
32 processes and rapid responses of species during successful distribution in new environments.

33

34 **Key words**

35 Brassicaceae, Exotic species, Local adaptation, Phenology, Rapid evolution

36

37 **Introduction**

38 Widespread plant species are faced with various climatic gradients such as temperature,
39 rainfall, snowfall, and sunlight conditions, and must adapt to local environments (Joshi et al.
40 2001; Petru et al. 2006). Understanding which climatic factors act as selective pressures and
41 how clinal differentiation is constructed allows us to estimate how plant distributions are
42 determined and to understand evolution during range expansions in the past, present, and
43 future (Li et al. 1998; Olsson and Agren 2002; Paccard et al. 2014; Preite et al. 2015). Alien
44 species often provide opportunities to investigate clinal differentiation during their range
45 expansions (Hulme 2011; Colautti and Barrett 2013; Liao et al. 2016; Helsen et al. 2020)
46 because adaptation to novel climatic conditions in introduced areas is essential for their
47 success. Clinal differentiation in adaptive traits along climatic gradients has been reported in
48 several widespread alien species (Weber and Schmid 1998; Kollmann and Bañuelos 2004;
49 Maron et al. 2004; Novy et al. 2013; Oduor et al. 2016). For example, flowering initiation
50 time and size at flowering have differentiated along latitude in introduced *Lythrum salicaria*
51 (Montague et al. 2008), and height and aboveground biomass have differentiated along
52 altitudinal gradients in introduced *Senecio inaequidens* (Monty and Mahy 2009).

53 However, structures of genetic variations governing phenotypic traits in alien species
54 should be interpreted carefully because they may be affected by multiple introductions (van
55 Boheemen et al. 2019). Introductions of distinct lineages of the same alien species into
56 non-native ranges from multiple different sources have been reported (Bossdorf et al. 2005;
57 Dlugosch and Parker 2008), and lineages with different origins may have different sets of
58 genetic variations affecting the same traits. By taking lineage composition into account, we
59 can distinguish whether clinal differentiation resulted from differentiation within lineages or
60 from different distributions of multiple lineages. However, few studies of alien species have

61 examined clinal differentiation of phenotypic traits and distributions of lineages
62 simultaneously.

63 *Cardamine hirsuta* L. (Brassicaceae), a winter annual native to Europe, has been
64 introduced to Japan at least three times and has become widely distributed across Japan
65 (Matsuhashi et al. 2016). The three lineages can be distinguished clearly in the current
66 Japanese populations using genetic markers, suggesting that intercrossing between different
67 lineages has been infrequent (Matsuhashi et al. 2016). This situation allowed us to study clinal
68 differentiation within and between the lineages. Moreover, we could test whether there is a
69 common pattern of genetic differentiation affecting phenotypic traits along climatic gradients
70 during the range expansions of the three lineages.

71 Here, we examined whether genetic differentiations in growth-related and phenology
72 traits along climatic gradients have shaped Japanese populations of *C. hirsuta*. For this
73 purpose, we conducted a common garden experiment using materials collected from a wide
74 range of geographic regions across Japan. We analyzed how genetic variation of the traits
75 correlated with climatic factors for the distinct lineages previously identified using neutral
76 genetic markers (Matsuhashi et al. 2016). We asked the following questions: (i) Are there
77 genetic differentiations in growth-related and phenological traits among the three lineages?
78 (ii) Are there clinal differentiations of traits within each lineage? (iii) Are there shared patterns
79 in the clinal differentiations of traits among the three lineages? By answering these questions,
80 we identified traits that have genetically differentiated in response to climatic gradients and
81 the climatic factors that are expected to have driven clinal genetic differentiation during range
82 expansions of introduced *C. hirsuta*.

83

84 **Materials and Methods**

85 *Plant species*

86 *C. hirsuta* is native to Europe, but is distributed worldwide today; it is found in North
87 America, Australia, North Africa, Asia, and other areas (Lihova et al. 2006). In Japan, the
88 earliest specimen was collected in 1974 (Kudoh et al. 1992), and its distribution has expanded
89 recently (Kudoh et al. 2007). Three distinct lineages were detected using microsatellite
90 analyses (Matsuhashi et al. 2016). They are widely distributed in northern, eastern, and
91 western Japan, and are referred to as the North, East, and West lineages, respectively. The
92 species shows seed dormancy during summer and germination begins in September (Kudoh et
93 al. 2007). The flowers are self-compatible and the flowering period extends from February to
94 April (Yatsu et al. 2003; Kudoh et al. 2007).

95

96 *Sample collection*

97 We collected seeds for growth experiments from 92 plants (maternal families) from 57 sites in
98 Japan (Fig. 1). When multiple samples were collected from a single site, seeds were collected
99 from plants growing at least 5 m apart. The samplings were conducted from March to May in
100 2009 and 2010. All sampling sites were located within ten kilometers of the nearest
101 meteorological stations operated by the Japan Meteorological Agency. From all the
102 corresponding stations, we obtained meteorological data on temperature, precipitation, and
103 hours of sunlight for 1999–2009. To estimate the climate conditions of each site during the
104 growth period of *C. hirsuta* (from September to the next April; Kudoh et al. 2007), we
105 calculated the mean daily temperature, the total precipitation, and the total hours of sunshine
106 from September to the next April.

107 All maternal plants had been genotyped using nine microsatellite markers as
108 described by Matsuhashi *et al.* (2016). According to the results of Bayesian clustering, 35, 25

109 and 32 maternal families were assigned to the North, East, and West lineages, respectively
110 (Fig. 1). As the measures of genetic differences among the maternal families, we used the
111 values calculated in our previous study (Matsuhashi et al. 2016), i.e., PC1 and PC2 from the
112 result of a principal coordinate analysis (PCoA) on D_A genetic distance (Nei et al. 1983).

113

114 *Phenology monitoring and trait measurements*

115 To compare reproductive, vegetative, and phenological traits among families, we conducted a
116 growth experiment from October 2011 to March 2012 in a controlled environment. For each
117 maternal family, 20 seeds were sown on perlite in a petri dish. The dishes were placed in an
118 incubator under 20°C/10°C of day/night temperature with 12 h day length and kept moist with
119 distilled water throughout these periods. The seeds germinated 1-3 weeks after sowing. Four
120 weeks after sowing, each seedling was transplanted to a plastic pot (7.5cm diameter)
121 containing a soil mixture of vermiculite:perlite:culture soil = 3:1:1 (0.4gN, 1.0gP, and 0.6gK
122 per kg culture soil) by volume. Four weeks after transplantation, we selected 3 plants with 5-8
123 true leaves from each maternal family and exposed them to low temperature (5°C) for 3
124 weeks under darkness for vernalization. They were then transferred to a phytotron (NCP-1.5,
125 NK system, Japan) and grown under 20°C/10°C of day/night temperature with 12 h day
126 length.

127 For each plant, the number of leaves in the rosette was counted at the end of the
128 vernalization treatment. Then, the growth of 276 plants (2-3 plants per maternal family after
129 removing several plants which were accidentally damaged) was monitored every day after
130 transfer to the growth chamber. We recorded the dates of opening of the first and last flowers
131 of the main inflorescence of each plant. We calculated the number of days from the end of the
132 vernalization treatment to the opening of the first flower (days to flowering after

133 vernalization), and from the opening of the first flower to the opening of the last flower of the
134 main inflorescence (flowering period).

135 After all flowers of the main inflorescence had finished flowering, we recorded the
136 number of flowers, including those on the lateral inflorescences, and the number of rosette
137 leaves, including withered ones, for each plant. We randomly selected four fruits on the main
138 inflorescence and counted the number of ovules to compare potential seed production ability.
139 Roots, rosette leaves, and reproductive parts including supporting organs (inflorescences with
140 stem and caudine leaves) of each plant were separated and dried in an oven at 60°C for 3 days.
141 Root dry mass, rosette leaf dry mass, and reproductive dry mass were measured and recorded.
142 Total plant dry mass was also calculated by adding the dry masses of all parts.

143 We thus obtained the following ten phenotypic traits for each plant: a) days to
144 flowering after vernalization, b) flowering period, c) flower number, d) leaf number when the
145 first flower opened, e) leaf number when the last flower opened, f) root dry mass, g)
146 above-ground dry mass, h) reproductive dry mass, i) total plant dry mass, and j) total number
147 of ovules in four fruits.

148

149 *Analyses of the effects of lineage, genetic distance, and climate on the plant traits*

150 All the analyses described below were conducted using R 3.2.5 (R Core Team 2016) unless
151 otherwise noted.

152 To elucidate the genetic differentiation of the phenotypic traits among the lineages
153 and among the maternal families, we conducted nested analysis of variance (nested-ANOVA)
154 in which the maternal families were nested within the three lineages.

155 To evaluate the dependencies of the phenotypic values on the lineages, the climatic
156 conditions of the sampling sites, and the genetic distances, generalized linear mixed models

157 (GLMMs) were applied. The response variables of the models were the ten phenotypic traits.
158 The lineage, the climatic conditions of the sampling sites (mean daily temperature, total
159 precipitation, and total hours of sunshine from September to April), and the measures of
160 genetic distances (PC1 and PC2 of the results of PCoA) were used as the explanatory
161 variables. To deal with non-linear relationships, quadratic terms of the climatic conditions and
162 the measures of genetic distances were also included in the models. To detect differences in
163 the relationships of the phenotypic traits to the climatic conditions and to the measures of
164 genetic distance among lineages, interaction terms between the lineage and the climatic
165 conditions and between the lineage and the measures of genetic distances were included. The
166 identities of maternal families nested within the identities of sampling sites were used as the
167 random effect.

168 Implementation of the GLMMs was conducted using the *MCMCglmm* function in the
169 *MCMCglmm* package (Hadfield 2010). For the error distributions of the models, normal
170 distributions were used for the continuous traits including the days to flowering after
171 vernalization and the flowering period (they are continuous by nature) and Poisson
172 distributions were used for the discrete traits. For the prior distributions of model parameters,
173 uninformative priors were used: the default parameters were used for the fixed effect
174 (B-structure), an inverse-Gamma distribution ($V = 1$ and $nu = 0.002$) was used for the
175 variance (R-structure), and a scaled Fisher F distribution ($V = 1$, $nu = 1$, $alpha.mu = 0$, and
176 $alpha.V = 10^9$) was used for the random effects (G-structure) (de Villemereuil et al. 2013). A
177 Markov chain Monte Carlo (MCMC) sampler with 130,000 iterations, 30,000 burn-in, and
178 100 thinning interval was used to estimate the posterior probability distribution of the model
179 parameters. Convergences of the models were checked by Gelman and Rubin's convergence
180 diagnostic (Gelman and Rubin 1992) using the *gelman.diag* function in the *coda* package

181 (Plummer et al. 2006). If a MCMC sampler did not converge, values of iterations, burn-in,
182 and thinning interval were doubled, and the analysis was run again. This procedure was
183 repeated until the MCMC converged. Before the analyses, values of climatic conditions and
184 measures of genetic distance were scaled to mean = 0 and standard deviation = 1 using the
185 *scale* function in R to improve mixing of the MCMCs and to obtain standardized regression
186 coefficients.

187 To obtain the models having the best predictive ability, combinations of the
188 explanatory variables were selected to minimize deviance information criteria (DIC)
189 (Spiegelhalter et al. 2002) by stepwise model selection procedures. We tried both backward
190 and forward model selection procedures and selected the model having the smaller value of
191 DIC as the model with the best predictive ability (best model).

192

193 **Results**

194 *Phenotypic differences among the lineages*

195 In the experiment using the 92 maternal families, we found differences among the three
196 lineages for most traits (Table 1, Fig. 2, 3). The results of nested-ANOVA (Table 1) showed
197 that all the measured traits except for the total number of ovules differed significantly among
198 the lineages and among the maternal families within the lineages. For all traits, the effect sizes
199 η^2 of the maternal families within the lineages were larger than those of the lineages (Table 1).

200 The East lineage showed delayed flowering (mean days to flowering after
201 vernalization: 45.3 days) and longer flowering period (mean: 21.5 days), while the West
202 lineage tended to show earlier flowering (mean: 36.5 days) and shorter flowering period
203 (mean: 17.1 days) than the other two lineages (Fig. 2a, b). Total mass and root mass were
204 larger in the East lineage than in the other two lineages (Fig. 2i, f). Total above-ground, root,

205 and reproductive mass were smaller in the West lineage than in the other two lineages (Fig. 2g,
206 h, i). In contrast, the flower number was greater in the West lineage than in the other two
207 lineages (Fig. 2c). The East lineage had larger ranges in the leaf number when the first flower
208 of each plant opened and the leaf number when the last flower opened than the other lineages
209 (Fig. 2d, e). The total number of ovules was significantly different among the maternal
210 families within all the lineages, but not among the lineages (Table 1).

211

212 *Effects of climate factors and genetic differences within each lineage on the traits*

213 In the GLMM results, the lineages, the genetic distance (PC1 and/or PC2) and at least one of
214 the climate factors were selected as the fixed effects for all traits. The relationships between a
215 trait and a climate factor, and between a trait and genetic distance were different among the
216 lineages for most of the 50 relationships ((3 climate factors + 2 genetic axes) x 10 traits)
217 analyzed. For example, with increasing hours of sunshine, flower number increased in the
218 North lineage, decreased in the East lineage, and showed no change in the West lineage.
219 However, the three relationships between plant traits and climate factors were common to all
220 lineages: days to flowering after vernalization (Fig. 3a, $p < 0.001$) and leaf number when the
221 first flower opened (Fig. 3b, $p = 0.006$) decreased with increasing temperature, and flowering
222 period (Fig. 3c, $p = 0.012$) decreased with increasing hours of sunshine. A positive
223 relationship between root dry mass ($p = 0.004$) and PC2 was also detected in all lineages.

224

225 **Discussion**

226 Our common garden experiments demonstrated that the phenotypic variations in several traits
227 of *C. hirsuta* have genetic bases determined partly by seed families and partly by lineages,
228 genetic variation within each lineage, and climate factors. In particular, the effects of the

229 lineages were strong for most of the traits. Moreover, a consistent effect of temperature on
230 flowering phenology was detected; with increasing temperature in the seed source habitats,
231 the timing of flowering became earlier in all three lineages. This result suggests that the
232 genetic differentiations in response to temperature gradients have been constructed repeatedly
233 in the non-native ranges encountered by *C. hirsuta*.

234

235 *Differentiation among the lineages and effects of multiple introductions*

236 In our experiment, most of the phenotypic traits were significantly different among the
237 lineages (Table 1). For example, the East lineage showed later flowering phenology and larger
238 mass, whereas the West lineage showed earlier flowering phenology and smaller mass. One of
239 the main causes of such phenotypic differences among the lineages could be differences
240 among the introduced lineages. According to the results of ANOVA (Table 1), we could
241 confirm that differences among lineages have caused large differences in some phenotypic
242 traits. Evidence that multiple introductions provide genetic and phenotypic variation in
243 introduced populations is accumulating (Bossdorf et al. 2005; Roman and Darling 2007; Xu et
244 al. 2010; Tang et al. 2022), however, few studies have distinguished and quantified
245 phenotypic variations among lineages of alien plants. In the case of *C. hirsuta* in Japan, we
246 have succeeded in quantifying the phenotypic variations of distinct lineages due to this plant's
247 high rate of self-fertilization and early stage of invasion, and demonstrating that multiple
248 introductions have increased the phenotypic variation in the non-native area. Unfortunately,
249 there is no information about variation in traits in the source area that would enable us to
250 evaluate the effects of multiple introductions more clearly.

251

252 *Phenotypic differentiation within each lineage and the similarity among the lineages*

253 Among the relationships of genetic variation and climatic factors to the phenotypic variations
254 we detected, three relationships were similar among the three lineages.

255 The effect of lower temperature on later flowering was detected most clearly among
256 the three common relationships between plant traits and climate factors. The families from
257 warmer areas tended to show earlier flowering and to have fewer leaves at the onset of
258 flowering. Adaptation of flowering phenology to different temperature conditions has been
259 repeatedly observed in spring-flowering species. Fitter and Fitter (2002) analyzed past and
260 present data (in total four decades) of first flowering dates in 385 plant species including *C.*
261 *hirsuta* and demonstrated that the first flowering dates of spring-flowering species became
262 earlier with increased temperature due to climate change. In *Arabidopsis thaliana*, which is
263 also a spring-flowering species and phylogenetically close to *C. hirsuta*, higher-altitude types
264 had genetically later flowering phenology and larger mass than lower-altitude types
265 (Montesinos-Navarro et al. 2011). Montesinos-Navarro et al. (2011) proposed a hypothesis
266 that late flowering phenology is advantageous in environments with long, severe winters at
267 high altitudes, whereas early phenology is advantageous in environments with short, mild
268 winters at low altitudes. This is because, in environments with long, severe winters, plants are
269 at the risk of damage by frost and sudden temperature decline in early spring. Later flowering
270 is expected to help flowers and fruits to avoid such risk. By contrast, in environments with
271 short, mild winters, plants are not likely to suffer from such risks, but rather to suffer stress
272 from heat and drought in late spring. Rapid flowering after the end of winter is expected to
273 help flowers and fruits to avoid such stress. This hypothesis seems to be also applicable to *C.*
274 *hirsuta*. During range expansion, individuals with later flowering phenology may be able to
275 survive in areas with severe winters and low temperatures. On the other hand, rapid flowering
276 phenology may be advantageous in areas with mild winters and higher temperatures. Thus, for

277 spring-flowering species, flowering phenology strategies aligned with the environment are
278 critical for survival and reproduction.

279 As temperature of origin increased, not only days to flowering but also leaf number
280 when the first flower opened decreased. At first glance, this result seems to be because early
281 flowering may cause a decrease in the duration of leaf growth prior to flowering. A positive
282 weak correlation was observed between the days to flowering and the leaf number (Pearson's
283 correlation coefficient = 0.26; $p < 0.001$) when all lineages were pooled for the analysis.
284 However, when analyses within each lineage were conducted the correlation was not detected
285 in the West lineage (Pearson's correlation coefficient = -0.15; $p = 0.15$). This result indicates
286 that replication using lineage helps to understand accurate correlations among traits and avoid
287 misleading results from pooled data.

288 Strains from sites with more hours of sunshine tended to have shorter flowering
289 periods. As *C. hirsuta* is an autogamous species, a long flowering period may not contribute
290 to reproductive success. In our observations, insects that visited *C. hirsuta* during the
291 flowering period were not pollinators but herbivores such as Aphidoidea. Although further
292 field observations during flowering are needed, a shorter flowering period under sunny
293 conditions might be effective for avoiding risks from herbivores and other stresses such as
294 solar radiation, competition with another plants, or weeding.

295 The northwest area (facing the Japan Sea) of Japan is snow covered and has few
296 hours of sunshine in winter. Although we detected a negative correlation between hours of
297 sunshine and flowering period, there is a possibility that snow cover affected flowering period.
298 Repressed growth under snow during winter might slow flower growth. Although the effects
299 of snow on flowering phenology have been studied mainly in alpine plants (Kudo 1992; Wipf
300 and Rixen 2010), widespread species also have the potential to be adapted to local snowfall.

301 We also found many relationships between climatic factors and plant traits that
302 showed different patterns among the three lineages. One possible explanation for these
303 observations is that differences in genetic and/or phenotypic variations within lineages lead to
304 different responses to encountered environments. For example, the West lineage has lower
305 genetic variation than the other lineages. If the lower variation was caused by bottleneck
306 effects, it might have reduced the possibility of adaptation to new environments. Another
307 possible explanation is the different climatic ranges encountered by the lineages; the nature
308 and strength of the selective pressure may differ among the climatic ranges encountered. For
309 example, cold may be a selective pressure on the North lineage, but it may have weak effects
310 on survival in the West lineage. By clarifying the differences in responses among the lineages
311 in reciprocal transplant experiments, we will be able to better understand the process of
312 differentiation.

313

314 *Phenotypic differentiation during range expansion and Perspective*

315 In this study, we narrowed down the candidates for responses that promote range
316 expansion by exploring patterns common to the three lineages and showed both independent
317 and parallel differentiations. Thus, we can observe replications of differentiation by
318 distinguishing lineages having different origins. Such observations may be a novel utility of
319 distinct lineages for the study of range expansion and evolution.

320 Our results suggested that rapid responses of plant traits are likely to result from
321 natural selection in the new environmental conditions. To test this hypothesis, a reciprocal
322 transplant experiment would be an effective approach. In such an experiment, we could
323 examine whether the differentiations detected in this study actually contribute to increased
324 fitness. In addition, as *C. hirsuta* has been studied well genetically (Gan et al. 2016; Hay and

325 Tsiantis 2016), we would be able to utilize the accumulated knowledge of genetics to
326 elucidate the genetic background of differentiation. These advanced studies could link the
327 mechanisms in the ecological and genetic processes for the differentiation of traits, and
328 provide a better understanding of range expansion of plant species.

329

330 **Acknowledgements**

331 We thank Tomoyuki Itagaki, Yusuke Fusato and Masashi Sato for help with growth
332 experiments, and Hideyuki Doi for his useful comments.

333

334 **Declarations**

335 **Funding**

336 This study was supported by a Grant-in-Aid from The Japan Society for the Promotion of
337 Science Fellows to SM and by a Sasakawa Scientific Research Grant from The Japan Science
338 Society (20-539) to SM.

339

340 **Conflict of interest**

341 The authors declare no conflict of interest.

342

343 **Author Contributions**

344 SM, HK and SS conceived and designed the experiments. SM, HK and SS conducted material
345 sampling, and SM performed the experiments. SM and MO analyzed the data. All authors
346 contributed to writing the manuscript.

347

348

349 **References**

350 Bosendorf O, Auge H, Lafuma L, et al (2005) Phenotypic and genetic differentiation between
351 native and introduced plant populations. *Oecologia* 144:1–11.
352 <https://doi.org/10.1007/s00442-005-0070-z>

353 Colautti RI, Barrett SCH (2013) Rapid adaptation to climate facilitates range expansion of an
354 invasive plant. *Science* 342:364–6. <https://doi.org/10.1126/science.1242121>

355 de Villemereuil P, Gimenez O, Doligez B (2013) Comparing parent–offspring regression with
356 frequentist and Bayesian animal models to estimate heritability in wild populations: a
357 simulation study for Gaussian and binary traits. *Methods Ecol Evol* 4:260–275.
358 <https://doi.org/10.1111/2041-210X.12011>

359 Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation,
360 adaptive evolution, and the role of multiple introductions. *Mol Ecol* 17:431–449.
361 <https://doi.org/10.1111/j.1365-294X.2007.03538.x>

362 Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. *Science* (80-)
363 296:1689–1691. <https://doi.org/10.1126/science.1071617>

364 Gan X, Hay A, Kwanten M, et al (2016) The *Cardamine hirsuta* genome offers insight into the
365 evolution of morphological diversity. *Nat Plants* 2:
366 <https://doi.org/10.1038/nplants.2016.167>

367 Gelman A, Rubin DB (1992) Inference from Iterative Simulation Using Multiple Sequences.
368 *Stat Sci* 7:457–472. <https://doi.org/10.1214/ss/1177011136>

369 Hadfield JD (2010) MCMC Methods for Multi-Response Generalized Linear Mixed Models:
370 The MCMCglmm R Package. *J Stat Softw* 33:1–22.
371 <https://doi.org/10.18637/jss.v033.i02>

372 Hay A, Tsiantis M (2016) *Cardamine hirsuta*: a comparative view. *Curr Opin Genet Dev*

373 39:1–7. <https://doi.org/10.1016/j.gde.2016.05.005>

374 Helsen K, Acharya KP, Graae BJ, et al (2020) Earlier onset of flowering and increased
375 reproductive allocation of an annual invasive plant in the north of its novel range. *Ann
376 Bot* 126:1005–1016. <https://doi.org/10.1093/aob/mcaa110>

377 Hulme PE (2011) Consistent flowering response to global warming by European plants
378 introduced into North America. *Funct Ecol* 25:1189–1196.
379 <https://doi.org/10.1111/j.1365-2435.2011.01899.x>

380 Jinfei Y, Xiaobing Z, Benfeng Y, et al (2021) Species-dependent responses of root growth of
381 herbaceous plants to snow cover changes in a temperate desert, Northwest China. *Plant
382 Soil* 459:249–260. <https://doi.org/10.1007/s11104-020-04756-1>

383 Joshi J, Schmid B, Caldeira MC, et al (2001) Local adaptation enhances performance of
384 common plant species. *Ecol Lett* 4:536–544.
385 <https://doi.org/10.1046/j.1461-0248.2001.00262.x>

386 Kollmann J, Bañuelos M (2004) Latitudinal trends in growth and phenology of the invasive
387 alien plant *Impatiens glandulifera* (Balsaminaceae). *Divers Distrib* 377–385

388 Kudo G (1992) Performance and phenology of alpine herbs along a snow-melting gradient.
389 *Ecol Res* 7:297–304. <https://doi.org/10.1007/BF02347098>

390 Kudoh H, Ishiguri Y, Kawano S (1992) *Cardamine hirsuta* L., a new ruderal species
391 introduced into Japan. *J Phytogeogr Taxon* 40:85–89

392 Kudoh H, Nakayama M, Lihova J, Marhold K (2007) Does invasion involve alternation of
393 germination requirements? A comparative study between native and introduced strains of
394 an annual *Brassicaceae*, *Cardamine hirsuta*. *Ecol Res* 22:869–875.
395 <https://doi.org/10.1007/s11284-007-0417-5>

396 Li B, Suzuki JI, Hara T (1998) Latitudinal variation in plant size and relative growth rate in

397 *Arabidopsis thaliana*. *Oecologia* 115:293–301. <https://doi.org/10.1007/s004420050519>

398 Liao H, D'Antonio CM, Chen B, et al (2016) How much do phenotypic plasticity and local

399 genetic variation contribute to phenotypic divergences along environmental gradients in

400 widespread invasive plants? A meta-analysis. *Oikos* 125:905–917.

401 <https://doi.org/10.1111/oik.02372>

402 Lihova J, Marhold K, Kudoh H, Koch MA (2006) Worldwide phylogeny and biogeography of

403 *Cardamine flexuosa* (Brassicaceae) and its relatives. *Am J Bot* 93:1206–1221.

404 <https://doi.org/10.3732/ajb.93.8.1206>

405 Maron J, Vilà M, Bommarco R (2004) Rapid evolution of an invasive plant. *Ecol ...*

406 74:261–280

407 Matsuhashi S, Kudoh H, Maki M, et al (2016) Invasion history of *Cardamine hirsuta* in Japan

408 inferred from genetic analyses of herbarium specimens and current populations. *Biol*

409 *Invasions* 18:1939–1951. <https://doi.org/10.1007/s10530-016-1139-9>

410 Montague JL, Barrett SCH, Eckert CG (2008) Re-establishment of clinal variation in

411 flowering time among introduced populations of purple loosestrife (*Lythrum salicaria*,

412 *Lythraceae*). *J Evol Biol* 21:234–245. <https://doi.org/10.1111/j.1420-9101.2007.01456.x>

413 Montesinos-Navarro A, Wig J, Pico FX, Tonsor SJ (2011) *Arabidopsis thaliana* populations

414 show clinal variation in a climatic gradient associated with altitude. *New Phytol*

415 189:282–294. <https://doi.org/10.1111/j.1469-8137.2010.03479.x>

416 Monty A, Mahy G (2009) Clinal differentiation during invasion: *Senecio inaequidens*

417 (Asteraceae) along altitudinal gradients in Europe. *Oecologia* 159:305–315.

418 <https://doi.org/10.1007/s00442-008-1228-2>

419 Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular

420 data 2. Gene frequency data. J Mol Evol 19:153–170.

421 https://doi.org/10.1007/bf02300753

422 Novy A, Flory SL, Hartman JM (2013) Evidence for rapid evolution of phenology in an
423 invasive grass. *J Evol Biol* 26:443–450. <https://doi.org/10.1111/jeb.12047>

424 Oduor AMO, Leimu R, van Kleunen M (2016) Invasive plant species are locally adapted just
425 as frequently and at least as strongly as native plant species. *J Ecol* 104:957–968.
426 <https://doi.org/10.1111/1365-2745.12578>

427 Olsson K, Agren J (2002) Latitudinal population differentiation in phenology, life history and
428 flower morphology in the perennial herb *Lythrum salicaria*. *J Evol Biol* 15:983–996.
429 <https://doi.org/10.1046/j.1420-9101.2002.00457.x>

430 Paccard A, Fruleux A, Willi Y (2014) Latitudinal trait variation and responses to drought in
431 *Arabidopsis lyrata*. *Oecologia* 175:577–587. <https://doi.org/10.1007/s00442-014-2932-8>

432 Petrů M, Tielbörger K, Belkin R, et al (2006) Life history variation in an annual plant under
433 two opposing environmental constraints along an aridity gradient. *Ecography* (Cop)
434 29:66–74. <https://doi.org/10.1111/j.2005.0906-7590.04310.x>

435 Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output
436 analysis for MCMC. *R News* 6:7–11

437 Preite V, Stöcklin J, Armbruster GFJ, Scheepens JF (2015) Adaptation of flowering
438 phenology and fitness-related traits across environmental gradients in the widespread
439 *Campanula rotundifolia*. *Evol Ecol* 29:249–267.
440 <https://doi.org/10.1007/s10682-015-9754-y>

441 R Core Team (2016) R: A language and environment for statistical computing. R Foundation
442 for Statistical Computing

443 Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic
444 invasions. *Trends Ecol Evol* 22:454–464. <https://doi.org/10.1016/j.tree.2007.07.002>

445 Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian Measures of Model
446 Complexity and Fit. *J R Stat Soc Ser B Stat Methodol* 64:583–639.
447 <https://doi.org/10.1111/1467-9868.00353>

448 Tang J, Mao K, Zhang H, et al (2022) Multiple introductions and genetic admixture facilitate
449 the successful invasion of *Plantago virginica* into China. *Biol Invasions* 24:2261–2272.
450 <https://doi.org/10.1007/s10530-022-02773-y>

451 van Boheemen LA, Atwater DZ, Hodgins KA (2019) Rapid and repeated local adaptation to
452 climate in an invasive plant. *New Phytol* 222:614–627.
453 <https://doi.org/10.1111/nph.15564>

454 Weber E, Schmid B (1998) Latitudinal population differentiation in two species of *Solidago*
455 (Asteraceae) introduced into Europe. *Am J Bot* 85:1110–1121.
456 <https://doi.org/10.2307/2446344>

457 Wipf S, Rixen C (2010) A review of snow manipulation experiments in Arctic and alpine
458 tundra ecosystems. *Polar Res* 29:95–109.
459 <https://doi.org/10.1111/j.1751-8369.2010.00153.x>

460 Xu CY, Julien MH, Fatemi M, et al (2010) Phenotypic divergence during the invasion of
461 *Phyla canescens* in Australia and France: Evidence for selection-driven evolution. *Ecol*
462 *Lett* 13:32–44. <https://doi.org/10.1111/j.1461-0248.2009.01395.x>

463 Yatsu Y, Kachi N, Kudoh H (2003) Ecological distribution and phenology of an invasive
464 species, *Cardamine hirsuta* L. and its native counterpart, *Cardamine flexuosa* With., in
465 central Japan. *Plant Species Biol* 18:35–42

466

467

468 Table 1

469 The results of nested-ANOVA. The differentiation of the ten phenotypic traits among the
470 lineages (North, East, and West) and among the maternal families within each lineage. The
471 effect size η^2 is calculated from the sum of squares of the effect divided by the total sum of
472 squares.

473

Traits	Source of Variation	Sum of Squares	Degrees of Freedoms	Mean Square	η^2	F	P
Days to flowering after vernalization	Lineage	3476	2	1737.8	0.296	164.49	<0.001
	Lineage*Maternal family	6313	89	70.9	0.538	6.71	<0.001
	Residuals	1944	184	10.6			
Flowering period	Lineage	844.4	2	422.2	0.190	73.72	<0.001
	Lineage*Maternal family	2604.7	89	29.3	0.585	5.11	<0.001
	Residuals	1002.3	175	5.7			
Flower number	Lineage	2777	2	1388.3	0.100	17.87	<0.001
	Lineage*Maternal family	11289	89	126.8	0.405	1.63	<0.01
	Residuals	13832	178	77.7			
Leaf number when the first flower opened	Lineage	266	2	133.15	0.034	7.08	<0.01
	Lineage*Maternal family	4075	89	45.79	0.528	2.44	<0.001
	Residuals	3384	180	18.8			
Leaf number when the last flower opened	Lineage	997	2	498.3	0.066	12.10	<0.001
	Lineage*Maternal family	6428	89	72.2	0.428	1.75	<0.001
	Residuals	7581	184	41.2			
Root dry mass	Lineage	0.005	2	0.002	0.131	85.85	<0.001
	Lineage*Maternal family	0.026	89	0.000	0.729	10.71	<0.001
	Residuals	0.005	182	0.000			
Above-ground dry mass	Lineage	1.563	2	0.781	0.317	154.61	<0.001
	Lineage*Maternal family	2.450	89	0.028	0.497	5.45	<0.001
	Residuals	0.920	182	0.005			
Reproductive dry mass	Lineage	0.085	2	0.042	0.109	31.67	<0.001
	Lineage*Maternal family	0.452	89	0.005	0.579	3.80	<0.001
	Residuals	0.243	182	0.001			
Total plant dry mass	Lineage	1.734	2	0.867	0.327	235.27	<0.001
	Lineage*Maternal family	2.903	89	0.033	0.547	8.85	<0.001
	Residuals	0.667	181	0.004			
Total number of ovules in four fruits	Lineage	74	2	36.85	0.007	1.51	0.224
	Lineage*Maternal family	5805	89	65.22	0.570	2.67	<0.001
	Residuals	4302	176	24.44			

474

475

476 **Figure legends**

477 Fig. 1

478 The locations of 57 sample collection sites where maternal plants were collected. The color of
479 each circle symbol indicates the lineage to which the maternal plant belongs. The number of
480 circle symbols indicates the number of maternal plants collected at a site.

481

482 Fig. 2

483 The measured values of ten traits (a~j). Each bar indicates the mean of each maternal family.
484 The bars are sorted by the three lineages (North, East, and West) and arranged in order of the
485 site numbers in Fig. 1.

486

487 Fig. 3

488 Partial dependence plots representing relationships which were common to all lineages. Each
489 triangle, circle, and cross denotes an individual plant in the north, east, and west lineages,
490 respectively. The solid, dotted, and dashed lines represent predicted relationships for the north,
491 east, and west lineages and shaded areas represent confidence intervals. Predicted mean
492 relationships and confidence intervals were calculated using the *lsmeans* package (Lenth
493 2006) in R by fixing the other parameters at their means. Note that because the values of the x
494 axes are scaled to mean=0 and SD = 1, the slopes of the relationships represent their effect
495 sizes.

496

Fig. 1

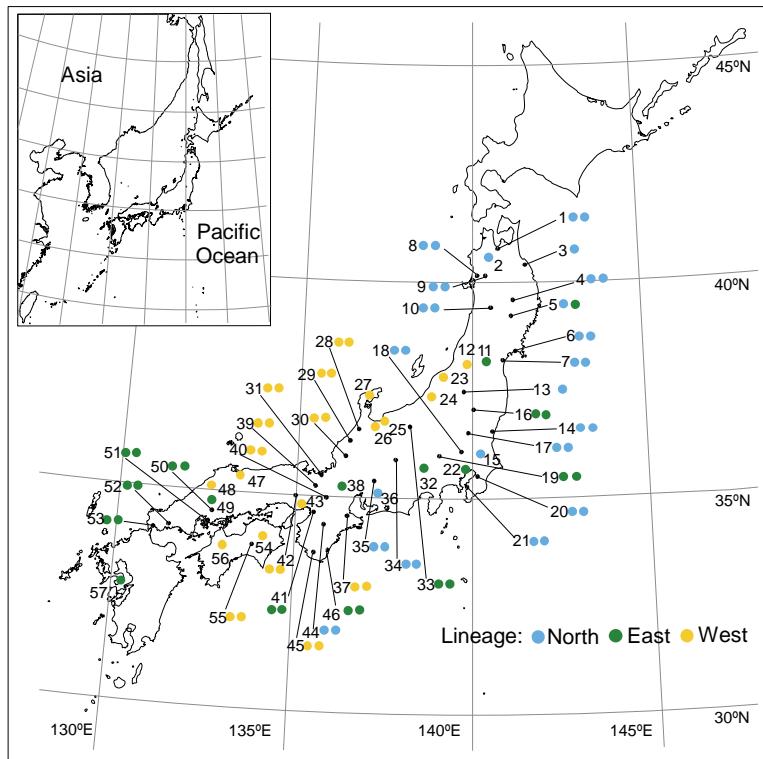


Fig. 2

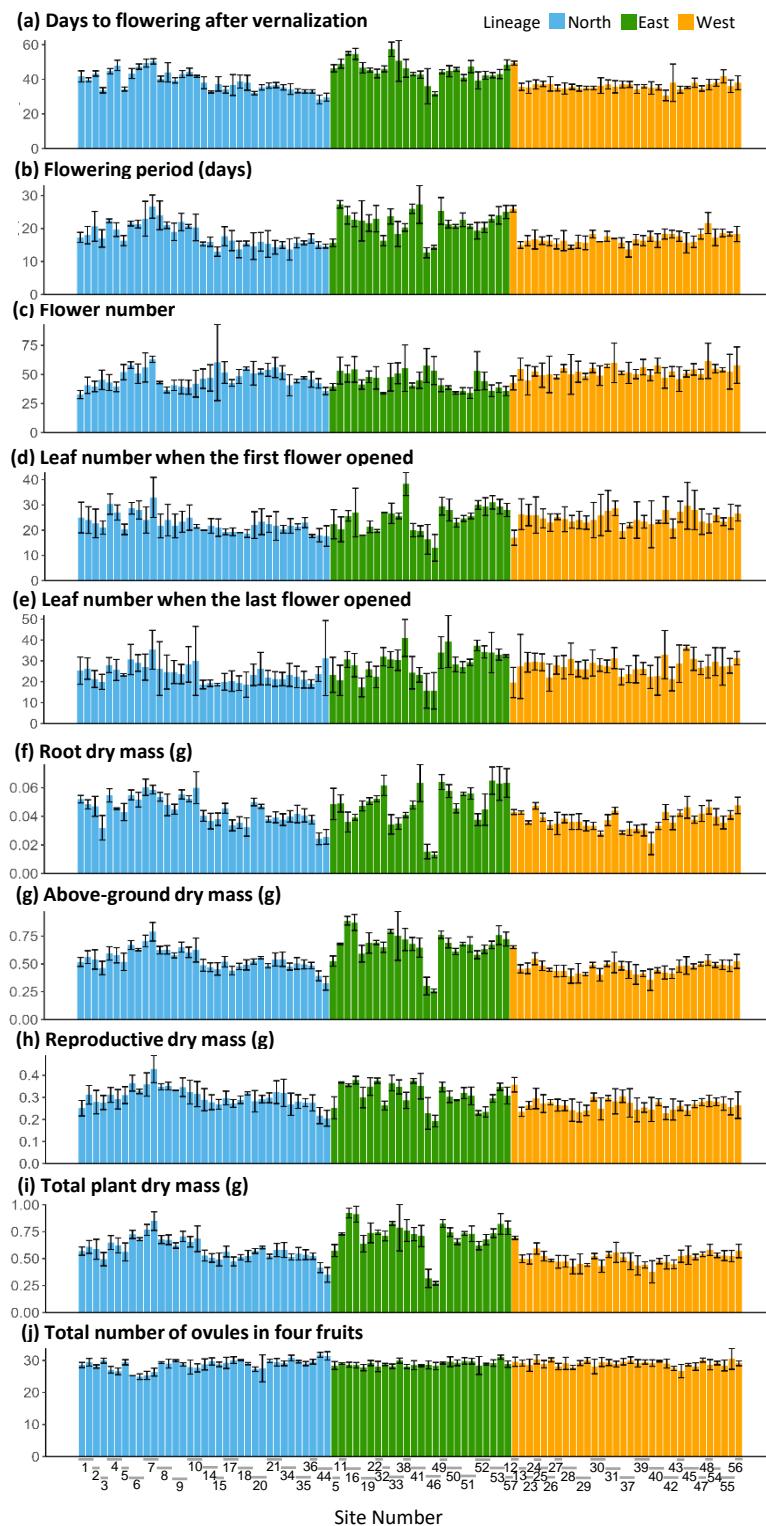
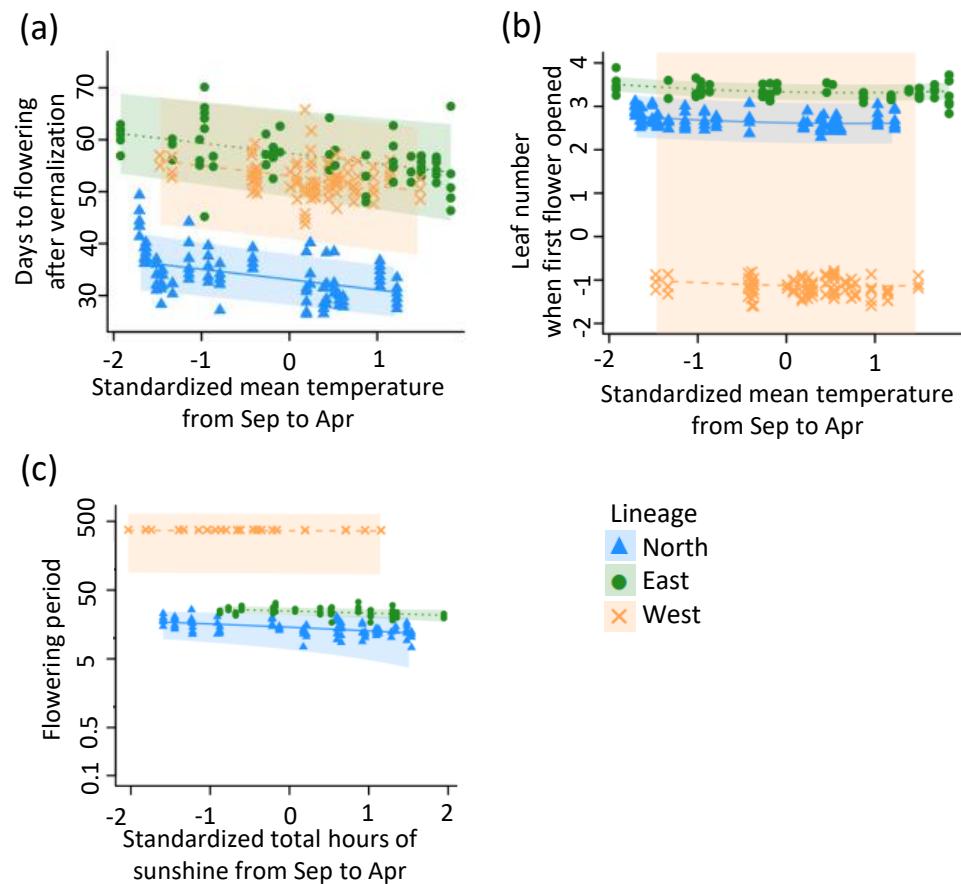



Fig. 3

