

1 **The dual resistance mechanism of CYP325G4 and**
2 **CYP6AA9 in *Culex pipiens pallens* legs according to**
3 **transcriptome and proteome analysis**

4 **Short title: CYP325G4 and CYP6AA9 in *Culex pipiens pallens* drug resistance**

5

6 Yang Xu^{2¶}, Jiajia Du^{1¶}, Kewei Zhang³, Jinze Li¹, Feifei Zou², Xixi Li², Yufen Meng²,
7 Yin Chen², Li Tao, Fengming Zhao², Lei Ma¹, Bo Shen¹, Dan Zhou^{1*}, Yan Sun^{1*},
8 Guiyun Yan³ and Changliang Zhu¹

9 ¹Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.

10 ²School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

11 ³ College of Health Sciences, University of California, Irvine, CA, USA

12

13 *Corresponding author: sunyan@njmu.edu.cn and zhoudan@njmu.edu.cn

14 ¶Yang Xu and Jiajia Du contributed equally to this work

15

16 E-mails:

17 Yang Xu: xuyang9072@163.com;

18 Jiajia Du: Djj0620@outlook.com;

19 Kewei Zhang: keweiz8@uci.edu;

20 Jinze Li: njlijinze@163.com;

21 Feifei Zou: feifeizou2@163.com;

22 Xixi Li: zxlx0720@aliyun.com;

23 Yufen Meng: yufenmeng@njucm.edu.cn;

24 Yin Chen: 846309@njucm.edu.cn;

25 Li Tao: taoli@njucm.edu.cn;

26 Fengming Zhao: 616938158@qq.com;

27 Lei Ma: malei@njmu.edu.cn;

28 Bo Shen: shenbo@njmu.edu.cn;

29 Dan Zhou: zhoudan@njmu.edu.cn;

30 Yan Sun: sunyan@njmu.edu.cn;

31 Guiyun Yan: guiyuny@uci.edu;

32 Changliang Zhu: clzhu@njmu.edu.cn;

33

34 **Abstract**

35 Mosquitoes within the *Culex pipiens* complex play a crucial role in human disease
36 transmission. Insecticides, especially pyrethroids, are used to control these vectors.

37 Mosquito legs are the main entry point and barrier for insecticides to gain their
38 neuronal targets. However, the resistance mechanism in mosquito legs is unclear.

39 Herein, we employed transcriptomic analyses and isobaric tags for relative and
40 absolute quantitation techniques to investigate the resistance mechanism, focusing on

41 *Cx. pipiens* legs. We discovered 2346 differentially expressed genes (DEGs) between
42 deltamethrin-resistant (DR) and deltamethrin-sensitive (DS) mosquito legs, including

43 41 cytochrome P450 genes. In the same comparison, we identified 228 differentially
44 expressed proteins (DEPs), including six cytochrome P450 proteins. Combined

45 transcriptome and proteome analysis revealed only two upregulated P450 genes,
46 *CYP325G4* and *CYP6AA9*. The main clusters of DEGs and DEPs were associated
47 with metabolic processes, such as cytochrome P450-mediated metabolism of drugs
48 and xenobiotics. Transcription analysis revealed high *CYP325G4* and *CYP6AA9*
49 expression in the DR strain at 72 hours post-eclosion compared with that in the DS
50 strain, particularly in the legs. Mosquitoes knocked down for *CYP325G4* were more
51 sensitive to deltamethrin than the controls. *CYP325G4* knockdown reduced the
52 expression of several chlorinated hydrocarbon (CHC)-related genes, which altered the
53 cuticle thickness and structure. Conversely, *CYP6AA9* knockdown increased CHC
54 gene expression without altering cuticle thickness and structure. P450 activity
55 analysis demonstrated that *CYP325G4* and *CYP6AA9* contributed to metabolic
56 resistance in the midgut and legs. This study identified *CYP325G4* as a novel
57 mosquito deltamethrin resistance factor, being involved in both metabolic and
58 cuticular resistance mechanisms. The previously identified *CYP6AA9* was
59 investigated for its involvement in metabolic resistance and potential cuticular
60 resistance in mosquito legs. These findings enhance our comprehension of resistance
61 mechanisms, identifying P450s as promising targets for the future management of
62 mosquito vector resistance, and laying a theoretical groundwork for mosquito
63 resistance management.

64

65

66 **Keywords:** *Culex pipiens pallens*, metabolic resistance, cuticular resistance,

67 cytochrome P450, CYP325G4, CYP6AA9

68

69 **Author Summary**

70 *Culex pipiens* mosquitoes are the primary vector of the filamentous nematode,
71 *Wuchereria bancrofti* and also involved in the transmission of other pathogens, such
72 as West Nile virus (WNV), avian malarias, and avian pox virus. Insecticides,
73 particularly pyrethroids, continue to be the primary method to control these significant
74 vectors. Worryingly, resistance to insecticides has become widespread and is rapidly
75 intensifying in *Culex* mosquitoes throughout China, posing a threat to the efficacy of
76 insecticides. Legs are the main sites of contact with ITNs and sprayed insecticides,
77 and the insecticides have to penetrate the leg cuticle to reach their targets. Therefore,
78 the resistance mechanisms in mosquito legs deserve further investigation. Several
79 reports have found a certain amount of P450 in insect legs. Unfortunately, none of the
80 above reports have conducted further functional studies on P450s in the legs. Here,
81 we have identified two P450 enzymes, CYP325G4 and CYP6AA9, through the
82 integrated analysis of transcriptomics and proteomics. CYP325G4 enriched in the
83 cuticle of resistant mosquitoes might possess a dual resistance mechanism involving
84 metabolic resistance and cuticle resistance. CYP6AA9 was slightly different, possibly
85 exerting metabolic resistance as its main function and also being involved in cuticle
86 synthesis. Understanding the dual resistance mechanism of P450s in the metabolism
87 of pyrethroid insecticides will have an important role in optimizing vector control
88 strategies.

89

90

91 **Introduction**

92 Mosquitoes are important insect vectors of diseases such as West Nile Virus, Zika,
93 yellow fever, dengue fever, and, especially, malaria, posing a major threat to global
94 human health [1-5]. Worldwide, there were approximately 56 million cases of dengue
95 and 229 million cases of malaria (with 409,000 deaths) in 2019 [6]. In the last five
96 decades, there has been an approximately 30-fold increase in the incidence of dengue
97 fever worldwide, and a recent study suggested that different species of mosquitoes
98 will continue to spread globally in the coming decades, with a significant increase in
99 the incidence of dengue fever by 2050 [7, 8]. Chemical control using insecticides is an
100 important means to control mosquito-borne diseases [9]. Pyrethroids are the only
101 insecticides recommended by the World Health Organization for use in mosquito nets.
102 However, resistance to pyrethroid insecticides has increased rapidly in mosquitoes,
103 greatly reducing the efficacy of insecticide-treated bed nets (ITNs) [10-12]. The WHO
104 has called for effective action to delay and prevent the development of insecticide
105 resistance [13, 14]. Worryingly, the lack of in-depth understanding of the molecular
106 mechanisms of resistance presents a major challenge to develop strategies to manage
107 resistance to pyrethroids [15].

108 The mechanisms of insecticide resistance include three main aspects. Firstly, target
109 resistance, which is not sensitive to target sites, is caused by structural modifications
110 or mutations (point mutations) of genes that encode target proteins that interact with

111 insecticides [16, 17]. The second is metabolic resistance, which enhances the
112 metabolic detoxification of insecticides, including the upregulation or enhanced
113 activity of enzymes such as cytochrome P450s (P450s), carboxyl/cholinesterase
114 (CCE), and glutathione-S transferase (GST), which contribute to heterologous
115 detoxification [18]. The third is cuticle resistance, which is caused by increased
116 deposition of chlorinated hydrocarbons (CHCs) in the stratum corneum or proteins
117 that restrict insecticide penetration [19]. P450s comprise a superfamily of heme
118 thioproteins and are an important class of Phase I detoxifying enzymes that can
119 metabolize both endogenous and exogenous compounds [20]. Cytochrome P450 is
120 encoded by the CYP gene, and studies have shown that multiple cytochrome P450s
121 were involved in mosquito insecticide resistance. It was found that the gene
122 *CYP6P9a/b* was highly expressed in transcriptome sequencing of pyrethroid resistant
123 compared to sensitive malaria mosquitoes [21]. Multiple detoxifying enzymes have
124 been found to be overexpressed in imidacloprid-resistant *Aedes* mosquitoes in Egypt,
125 such as *CYP6BB2*, *CYP9M9*, and *CYP6M11* [22]. Eight P450 genes were found to be
126 upregulated in cypermethrin-resistant *Cx. quinquefasciatus* mosquitoes, including
127 *CYP4C52v1* and *CYP6BY3* [23]. These findings not only emphasized the functional
128 importance of P450s in insecticide resistance, but also revealed that overexpression of
129 P450s was a significant cause of mosquito insecticide resistance.

130 Herein, we focused on the mosquitoes' legs because the legs are the main sites of
131 contact with ITNs and sprayed insecticides, and the insecticides have to penetrate the
132 leg cuticle to reach their targets. However, whether metabolic resistance also occurs

133 place in mosquito legs in unknown. The proteome of *Anopheles gambiae* legs did
134 contain detoxification enzymes [24], and a few GSTs and P450s were identified in the
135 transcriptome of tick legs [25]. Compared with that in the whole body, four
136 cytochrome P450s were enriched significantly in the leg of *An. coluzzii*, and seven
137 cytochrome P450s were upregulated in the legs of resistant *An. coluzzii* [26].
138 Recently, a dataset comprising *Drosophila melanogaster* single-cell transcriptomic
139 data was shown to contain transcripts of detoxification enzymes, including CYP450s,
140 in cell types from the legs [27]. Unfortunately, none of the above reports have
141 conducted further functional studies on P450s in the legs.

142 Therefore, in this study, we aimed to determine the molecular mechanism of
143 mosquito leg insecticide resistance using transcriptomics (RNA sequencing
144 (RNA-seq)) and proteomics (isobaric tags for relative and absolute quantitation
145 (iTRAQ)).

146

147

148

149

150 **Results**

151 **Leg transcriptome**

152 Fig 1 shows a flow chart of the experiment. A total of 2346 DEGs were obtained in
153 the comparison of the transcriptomes between the DR and DS mosquito legs (Fig 2A),
154 which were associated with metabolic processes, including drug

155 metabolic-Cytochrome P450 and metabolism of xenobiotics (Fig 2D). These DEGs
156 included 41 p450 genes (Fig 2B)(14 upregulated). Among them, two genes,
157 *CYP325G4* and *CYP6AA9* showed significant overexpression in DR legs compared
158 with that in DS legs (Fig 2C).

159

160 **Leg proteome**

161 A total of 228 differentially expressed proteins DEPs were obtained between the DR
162 and DS leg samples (Fig 3A), which were associated with metabolic processes,
163 including drug metabolic-Cytochrome P450 and metabolism of xenobiotics (Fig 3C).
164 These DEPs included six p450 proteins, two of which were upregulated: CYP325G4
165 and CYP6AA9 (Fig 3B).

166

167 **Correlation between transcripts and proteins**

168 We identified 59 proteins that were differentially expressed at both the mRNA and
169 protein levels between the DR legs and DS legs (Fig 4A), which were associated with
170 metabolic processes, including drug metabolic-Cytochrome P450 and metabolism of
171 xenobiotics (Fig 4C). Among them, the only upregulated P450s were CYP325G4 and
172 CYP6AA9 (Fig 4B).

173

174 **CYP325G4 and CYP6AA9 are overexpressed in the DR 175 strain and in mosquito legs**

176 The expression levels of *CYP325G4* and *CYP6AA9* in the DR strain were 3.7-fold (*P*

177 = 0.0079; Fig 5A) and 35.5-fold ($P = 0.0136$)(Fig 5B) higher than those in the DS
178 strain, respectively. The expression levels of *CYP325G4* and *CYP6AA9* in various
179 tissues from female mosquitoes at 72 h PE were examined using qRT-PCR.
180 *CYP325G4* and *CYP6AA9* expression levels were enriched in the legs, and were
181 highly expressed in DR legs compared with that in DS legs (Fig 6A,6B), suggesting
182 that *CYP325G4* and *CYP6AA9* have important functions in mosquito legs.

183

184 **The role of CYP325G4 and CYP6AA9 in deltamethrin
185 resistant mosquitoes**

186 Subsequently, RNAi was used to knockdown the expression of *CYP325G4* and
187 *CYP6AA9*, separately, and functional analysis was performed. The interference
188 efficiency of *CYP325G4* was 65% ($P < 0.0001$; Fig 7A) for the whole body and 54%
189 ($P = 0.0017$; Fig 7B) for the legs. The interference efficiency of *CYP6AA9* was 37%
190 ($P = 0.0059$; Fig 7C) for the whole body and 36.6% ($P = 0.0087$; Fig 7D) for the legs.
191 The CDC bottle biology assay of the siCYP325G4 group revealed that exposure to
192 deltamethrin enhanced mosquito mortality rates from 15 to 120 minutes compared
193 with that of the control group ($P < 0.05$). At 120 minutes of exposure to deltamethrin,
194 the siCYP325G4 group had a 48.1% higher mortality rate than the control group ($P <$
195 0.05; Fig 8). Thus, silencing of *CYP325G4* enhanced mosquito susceptibility to
196 deltamethrin, indicating that *CYP325G4* was implicated in mosquito deltamethrin
197 resistance. As reported previously, *CYP6AA9* knockdown enhanced the sensitivity of
198 adult female mosquitoes to deltamethrin [28].

199

200 **Silencing *CYP325G4* and *CYP6AA9* affected the expression**
201 **of genes related to hydrocarbon synthesis**

202 We further explored the resistance role exerted by *CYP325G4* and *CYP6AA9* in the
203 leg. The formation of the mosquito cuticle is closely connected with the synthesis of
204 chlorinated hydrocarbons (CHCs). First, we investigated whether *CYP325G4* and
205 *CYP6AA9* silencing influenced the expression of six key CHC synthesis genes.
206 According to qRT-PCR analysis, knockdown of *CYP325G4* decreased the mRNA
207 expression level of acetyl-coenzyme A carboxylase (ACC), fatty acid synthase
208 S-acetyltransferase (FAS), elongase (CPIJ003715), very-long-chain fatty
209 acid-coenzyme A ligase (FACVL), and CYP303A1 in the whole body (Fig 9A). In
210 the legs, knockdown of *CYP325G4* efficiently decreased the mRNA expression level
211 of elongase (CPIJ015710), elongase (CPIJ003715), FACVL, and CYP303A1(Fig
212 9B). In the whole body, silencing of *CYP6AA9* increased the mRNA expression of
213 ACC and FAS (Fig 9C), and increased the mRNA expression of ACC, FAS, elongase
214 (CPIJ003715), and elongase (CPIJ015710) in the legs (Fig 9D). We proposed that
215 *CYP325G4* and *CYP6AA9* affected the expression of CHC biosynthesis genes via
216 different regulatory pathways, and thus their potential functions might be different.

217

218 **SEM analysis of cuticle thickness**

219 Subsequently, we analyzed mosquito legs using SEM, which revealed uneven cuticle
220 thickness in the RNAi group. The siCYP325G4 group had a lower average cuticle

221 thickness ($1.349 \pm 0.29 \mu\text{m}$) than the siNC group ($1.676 \pm 0.25 \mu\text{m}$; $P = 0.0185$)(Fig
222 10A,B). The result implied that CYP325G4 might cause cuticle resistance by
223 influencing the CHC content, which would lead to cuticle changes in mosquito legs.
224 Compared with that in the control group, there was no change in the cuticle structure
225 and thickness in the siCYP6AA9 group (Fig 10C,D; Table 1).

226

Table 1. Average cuticle thickness of each component

Group	siNC	siCYP325G4	siNC	siCYP6AA9
Cuticle thickness				
Cuticle thickness by SEM (μm)	1.676 ± 0.25	1.349 ± 0.29	1.325 ± 0.26	1.316 ± 0.24

227

228

229 **CYP325G4 and CYP6AA9 are involved in mosquito**
230 **metabolic resistance**

231 To determine whether CYP325G4 and CYP6AA9 are involved in metabolic
232 resistance, P450 enzyme activity was measured in samples from gene-silenced
233 mosquitoes (Fig 11A). The enzyme activities in the siCYP325G4 and siCYP6AA9
234 groups in the whole body were reduced by 11% ($P = 0.001$) and 10% ($P = 0.004$)
235 relative to that in the control group, respectively (Fig 11B,F), implying that the P450
236 enzyme activities of CYP325G4 and CYP6AA9 are involved in mosquito metabolic
237 resistance. Additionally, we observed that the P450 enzyme activity of midguts of the

238 siCYP325G4 and siCYP6AA9 group mosquitoes decreased by 81% ($P < 0.0001$) and
239 19% ($P = 0.001$) respectively (Fig 11C,G). By contrast, the activities in the legs were
240 reduced by 19% ($P = 0.0382$) and 15.7% ($P = 0.046$) respectively (Fig 11D,H) in the
241 siCYP325G4 and siCYP6AA9 groups compared with those in the control group.
242 These results suggested that CYP325G4 and CYP6AA9 exert metabolic resistance,
243 not only in the mosquito midgut, but also in the mosquito leg, which is the initial site
244 of mosquito exposure to insecticides.

245

246 **Discussion**

247 **The legs are the primary and important body part related to 248 mosquito resistance**

249 When mosquitoes land on an insecticide-treated net or an insecticide-sprayed surface,
250 their legs are a key point of contact with the insecticide. Therefore, the insecticide
251 must first penetrate the cuticle of the legs to reach the neurons. The cuticle forms the
252 outermost part of the mosquito leg, which exerts various functions, such as
253 movement, mechanical support, perception of the environment, chemical
254 communication, and preventing dryness [29]. The cuticle in the leg also acts as the
255 primary barrier that protect insects from insecticide ingress [29]. In 2019,
256 *Balabanidou* et al. reported that CYP450s were present in the leg-specific proteome
257 [24]. In 2021, the same group reported that four P450s were enriched in the legs of
258 *Anopheles* mosquitoes, and transcriptome analysis identified seven upregulated P450s
259 in pyrethroid-resistant mosquito legs [26]. Several transcripts encoding detoxifying
260 enzymes, such as cytochrome P450, glutathione-S transferase, and UDP glucuronic

261 acid transferase, were identified in recent single-cell transcriptome profiles of
262 *Drosophila melanogaster* [27]. A small number of P450s was also found in the
263 transcriptome of tick legs [25]. Thus, the importance of insect legs in resistance
264 warranted further in-depth study. Indeed, new resistance mechanisms in the legs have
265 been discovered, not only the cuticle resistance caused by cuticle proteins, which
266 leads to cuticle thickening, but also the involvement of chemoreceptors and ABC
267 transporters in the legs of mosquitoes in resistance. Recently, it was found that many
268 P450 gathered in the legs; however, their role was unknown [26, 30]. Our group
269 screened differentially expressed genes and proteins of DR and DS mosquito legs
270 through transcriptome and proteome analysis. We found that multiple P450s were
271 differentially expressed. According to the KEGG enrichment analysis, the drug
272 metabolizing enzyme-cytochrome P450 pathway was enriched in resistant mosquito
273 legs. Nevertheless, it was unclear whether P450s exhibit metabolic resistance in
274 mosquito legs and their exact role was unknown.

275

276 **First detection of CYP325G4 and CYP6AA9 expression in**
277 **mosquito legs**

278 The increased expression of P450s in insect bodies has been related to improved
279 insecticide detoxification levels, evolutionary selection of insecticides, and the ability
280 of insects to adapt to environmental changes [31, 32]. To date, the CYP6 and CYP9
281 families have been widely reported. Previously, we reported the involvement of
282 CYP6AA9 in mosquito pyrethroid resistance [28]. However, its function remains
283 unexplored. In addition, our group also reported that the *CYP325A3* gene of *An.*
284 *gambiae* and the *CYP307B1* and *CYP314A1* genes of *Cx. pipiens pallens* are
285 associated with resistance to pyrethroids [33, 34]. *Liu* et al. found that cypermethrin

286 had an inducing effect on the expression of multiple P450s in mosquitoes, with the
287 expression level of the *CYP325G4* gene increasing by more than twice compared with
288 that in response to acetone treatment [32]; however, there was a lack of further
289 mechanistic research on CYP325G4. Herein, we found that cytochrome P450s
290 CYP325G4 and CYP6AA9 were upregulated in both the transcriptome and proteome
291 of the legs of resistant mosquitoes and were both overexpressed in the whole body of
292 resistant mosquitoes.

293

294 **CYP325 and CYP6AA9 are not only enriched in legs, but**
295 **also highly expressed in resistant legs**

296 In recent years, transcriptomic or immuno-localization analysis in local tissues of
297 insecticide-resistant insects (e.g., mosquitoes, *Drosophila*, and *Bemisia tabaci*) has
298 shown that P450s are expressed in many organs and tissues besides the common
299 midgut. This tissue specificity of P450s in, for example, the cuticle, oocytes, brain,
300 Malpighian tubules, and Haller's organ, suggested that the tissue specificity of P450s
301 might be associated with insecticide resistance [35, 36]. Our transcriptome analysis
302 revealed that high expression of multiple P450s in the cuticle of DR *Cx. pipiens*
303 *pallens*, involving members of the CYP6 family (e.g., AA9, BB3, BB4, M13, and
304 N23), CYP325 family (e.g., BG1, B4, K3, N3, and V2), and CYP4 family (e.g., J13,
305 C38, and D43). Combined transcriptome and proteome analysis showed that
306 CYP325G4 and CYP6AA9 were highly expressed at both the mRNA and protein
307 levels. Analysis using qRT-PCR revealed that *CYP325G4* and *CYP6AA9* were not
308 only enriched in legs, but also highly expressed in the legs of resistant mosquitoes,
309 suggesting that CYP325G4 and CYP6AA9 might play an important role in insecticide
310 resistance in the legs.

311

312 **Cuticle resistance involving CYP325G4 and CYP6AA9**

313 Recent studies have found that CYP450s not only play a metabolic detoxification role
314 in insects, but also have an important function in cuticle formation. CYP4G16 was
315 found to confer mosquito insecticide resistance through the formation of catalytic
316 CHCs in a multi-insecticide resistant strain of *An. gambiae* [37]. In *Locusta*
317 *migratoria*, researchers found that follicle-cell-specific CYP450 *LmCYP4G102* was
318 inhibited, resulting in a dramatic decrease in the total alkane content and a significant
319 increase in cuticular fragility [38]. In *Blattella Germanica*, CYP4G19 is highly
320 expressed in pyrethroid-resistant strains and is involved in the production of CHC,
321 thereby promoting the insect's ability to resist cuticular penetration [38]. Most studies
322 on P450 genes involved in insect cuticle formation have been related to the CYP4G
323 family. Interestingly, some recent studies have suggested that the CYP3 family might
324 also be involved in insect CHC formation. One of the functions of the *LmCYP303A1*
325 gene in *Locusta migratoria* was to regulate CHC biosynthesis, playing a key role in
326 preventing water loss and insecticide penetration [39]. Research on mosquito CYP
327 genes has mostly focused on metabolic detoxification, with less research on their
328 involvement in cuticle synthesis, especially in the CYP3 family. CHC biosynthesis
329 involves many enzymes [40-42]. In this study, we selected six genes involved in CHC
330 synthesis, including those encoding ACC, FAS, two elongation enzymes, FACVL,
331 and CYP303A1. mRNA level analysis showed that all six genes were decreased to
332 varying degrees after RNAi of *CYP325G4*. However, knockdown of

333 *CYP6AA9* efficiently promoted the expression of the several CHC genes. Thus,
334 CYP325G4 and *CYP6AA9* showed opposite regulatory trends. We speculated that
335 CYP325G4 and *CYP6AA9* affect CHC biosynthesis-related gene expression via
336 different regulatory pathways and their potential functions might be different.

337 Finally, we observed the cuticle structure of mosquito legs using SEM. The control
338 group had a cuticle with uniform thickness and a dense structure, while the
339 siCYP325G4 group showed uneven thickness and thinning of the tarsal cuticle, which
340 might benefit insecticide penetration. These results suggested that cuticle-enriched
341 CYP325G4 in resistant mosquitoes might participate in cuticle resistance by changing
342 the structure or composition of the cuticle via CHCs. However, compared with the
343 control group, there was no change in the cuticle structure and thickness of the
344 siCYP6AA9 group. This result was very complex and required further research.

345

346

347 **Metabolic resistance of CYP325G4 and CYP6AA9 in the
348 legs and midgut**

349 Multiple studies have shown that an increase in P450 expression levels leads to an
350 increase in total P450 levels, as well as an increase in P450 enzyme activity, resulting
351 in insecticide resistance [23, 43, 44]. The CYP450 enzyme activity of resistant *An.*
352 *stephensi* in different regions was 2.23 and 2.54-fold higher than that of sensitive
353 strains [45]. The activity of monooxygenases in pyrethroid resistant *An. stephensi* was
354 1.88-fold higher than that of sensitive strains [46]. In this study, we found that RNAi
355 of *CYP325G4* enhanced mosquito susceptibility to deltamethrin, suggesting that

356 CYP325G4 is associated with insecticide resistance. CYP6AA9 has already been
357 reported to be related to resistance [28]. The activities of P450s decreased after
358 *CYP325G4* and *CYP6AA9* silencing. This suggested that CYP325G4 and CYP6AA9
359 are involved in metabolic resistance.

360 We found that the RNAi groups had the most significant decreases in P450
361 enzyme activities in the midgut compared with those of the siNC group. Notably,
362 compared with that in the legs of the siNC group, the legs of the RNAi groups showed
363 a significant decrease in P450 enzyme activity, suggesting that CYP325G4 and
364 CYP6AA9 not only exerted metabolic resistance in the common metabolic site of the
365 mosquito midgut, but also in the initial site of mosquito contact with insecticides, i.e.,
366 the legs. We speculated that mosquito legs are involved in the immediate degradation
367 and metabolism of insecticides as the first line of defense. Metabolizing insecticides
368 before they enter the mosquito body and exert their toxic effects, would ameliorate at
369 least some of the toxic effects of insecticides, and even protect the peripheral nerves
370 of the legs from pyrethroid toxicity. This study is the first report of metabolic
371 insecticide resistance mediated by CYP450s not only in the guts but also in the legs.

372

373

374 **Conclusions**

375 As the first line of defense, the thickened cuticle of mosquito legs could reduce the
376 penetration of certain insecticides. Insecticides that have already penetrated into the
377 leg cuticle could be partially degraded by leg-resident CYP325G4 and CYP6AA9.
378 When the insecticide reaches the midgut of mosquitoes, it will be degraded by P450
379 metabolic enzymes, including CYP325G4 and CYP6AA9, greatly reducing the
380 toxicity of the insecticide to mosquitoes. Consequently, CYP325G4 enriched in the

381 cuticle of resistant mosquitoes might have a dual resistance mechanism of metabolic
382 resistance and cuticle resistance. CYP6AA9 was slightly different, possibly exerting
383 metabolic resistance as its main function and also being involved in cuticle synthesis.
384 Understanding the dual resistance mechanism of P450s in the metabolism of
385 pyrethroid insecticides will have an important role in optimizing vector control
386 strategies.

387

388

389 **Materials and methods**

390 **Strains of mosquito**

391 *Cx. pipiens pallens* mosquitoes (as the deltamethrin-sensitive (DS) strain) were
392 collected from Tangkou (Shandong province, China). This DS strain had a lethal
393 concentration 50 (LC50) for deltamethrin of 0.03 mg/L. Forty generations of selection
394 in DS larvae were used to derive the DR strain (LC50 = 5 mg/L), as reported
395 previously [47].

396

397 **Leg dissection**

398 We dissected the whole legs (including the tarsus, tibia, femur, trochanter, and coxa)
399 from non-blood fed 3-day-old female mosquitoes. Three biological replicates (n= 100
400 legs in each replicate) were used for each strain and/or condition.

401

402 **RNA sequencing**

403 A Directzol RNA MiniPrep Plus kit (Zymo Research Corp, Irvine, CA, USA) was

404 used to extract total RNA (100 mosquito legs per tube, three replicates) according to
405 the supplier's recommendations, including treatment with DNase. A NanoDrop
406 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used to
407 assess the RNA purity and concentration, and a Bioanalyzer (Agilent, Santa Clara,
408 CA, USA) was used to confirm the RNA integrity. Three replicates of each genotype
409 were analyzed. PGM sequencing carried out the RNA-seq protocol at the UTHSC
410 Molecular Resource Center (MRC, Memphis, TN, USA). The RNA samples were
411 converted into Ion Torrent sequencing libraries followed by processing on 318v2
412 chips utilizing an Ion Torrent Proton sequencer. Chip-to-chip variability was
413 minimized by sequencing all replicates and groups simultaneously.

414

415 **Analysis of RNA-seq data**

416 We chosed the sequence of *Cx. quinquefasciatus*
417 (<https://www.vectorbase.org/organisms/culex-quinquefasciatus>) as a reference
418 genome (assembly version: CpipJ1) and a reference gene (geneset version: CpipJ1.3).
419 since there is high similarity between *Cx. pipiens pallens* and *Cx. Quinquefasciatus*
420 [48]. A local Slipstream application running a GALAXY installation was used to
421 align and analyze the RNA-seq data. FASTQC was used to check the quality of the
422 sequencing data using the FASTQ files obtained directly from the sequencer.
423 Nucleotides with a phred score < Q20 were trimmed off the reads. RNA STAR was
424 then employed to align the trimmed FASTQ files to the reference library.
425 Subsequently, read count data for each gene in the reference file were extracted from

426 the generated SAM files. The Transcripts per Million (TPM) method was used to
427 normalize the read counts for the entire experiment. DeSeq2 was then employed to
428 analyze the resulting data. We excluded those genes that did not show a fold change
429 of at least a 1.5 and a p-value > 0.05. The trimmed gene list was then subjected to
430 Benjamini and Hochberg false discovery rate (FDR) correction, retaining genes with
431 an FDR < 0.05. The resultant list of significantly differentially expressed genes
432 (DEGs) was imported into R for visualization. The heatmap.2 function in the gplots R
433 package was used to generate heatmaps [26]. KEGG Automatic Annotation Server
434 (KAAS), (<http://www.Jp/kegg/kaas/>) was used to annotate sequences of terms and
435 identify the paths involved.

436

437 **Quantitative proteomics**

438 To extract the proteins from mosquito legs (100 legs per tube, 3 replicates), the legs of
439 each genotype were homogenized in Radioimmunoprecipitation assay buffer
440 containing a complete Protease Inhibitor Cocktail (Roche, Basel, Switzerland). A
441 Filter Aided Sample Preparation (FASP) column was used to desalt and immobilize
442 the lysates, followed by digestion using trypsin and Tandem Mass Tag (TMT)
443 labeling, as detailed previously [49]. All groups were labeled simultaneously to
444 ensure consistent labeling. Liquid Chromatography with tandem mass spectrometry
445 analysis of the digested labeled peptides was then carried out employing an
446 EASY-nLC 1000 UPLC system (Thermo Fisher Scientific) incorporating a 50 cm
447 EASY-Spray Column coupled with an Orbitrap Fusion Lumos mass spectrometer

448 (Thermo Fisher Scientific). The peptides were separated using a 210-minute gradient
449 with a flow rate of 300 nL/min.

450 The mass informatics platform Proteome Discoverer 2.0 was used for post-acquisition
451 analysis of the raw mass spectrometry data, with searches conducted using the
452 SEQUEST HT search engine. We set the precursor mass tolerance to 10 ppm, and set
453 the fragment ion tolerance to 0.02 Da for the Orbitrap analyzer and 0.6 Da for the ion
454 trap analyzer. Static modifications included Tandem Mass Tags 6 (TMT6) on lysines
455 and N-termini (+229.163 Da) and carbamidomethylation on cysteines (+57.021 Da).
456 Methionine oxidation (+15.995 Da) was considered a dynamic modification. A
457 UniProt *Culex quinquefasciatus* database was then used to search the data. Parent
458 proteins were identified and quantified using the obtained peptide identification data.
459 The abundance of the peptides was determined employing signal-to-noise (S/N)
460 values derived from the corrected reporter ion abundances taken from the supplier's
461 data sheets. Subsequently, to determine the abundance of each protein, the S/N values
462 for all its constituent peptides were log-transformed, aggregated, and summed.
463 Analysis of variance (ANOVA) was conducted to ascertain the significant differences
464 among the protein abundances. The FDR was then calculated to statistically validate
465 the results, and with an FDR < 0.05 indicating a significant difference.

466

467 **RNA-seq and proteomics combined analysis**

468 A unified analysis of the RNA-seq and proteomics data was conducted by identifying
469 proteins and their corresponding transcripts that showed significant differential

470 expression. The protein Log2 fold change was calculated using the protein abundance
471 ratios, while Fragments Per Kilobase of transcript per Million mapped reads (FPKM)
472 values were employed to determine the transcript Log2 fold change.

473

474 **Extraction of RNA and synthesis of cDNA**

475 The wings, legs, abdomens, thoraxes, and heads were collected from female DS and
476 DR mosquitoes at 72 h post-eclosion (PE). The same tissues from 20 mosquitoes were
477 placed in a tube (n = 3 tubes per tissue). Total RNA was then extracted from the
478 tissues following the guidelines of the RNAiso Plus kit (Takara, Shiga, Japan).
479 Subsequently, as the first step of the quantitative real-time reverse transcription PCR
480 (qRT-PCR) protocol, a Takara PrimeScriptRT Reagent Kit was employed to convert
481 the RNA to cDNA.

482

483 **Quantitative real-time PCR (qPCR)**

484 The prepared cDNA was diluted with an appropriate amount of RNase-free water,
485 followed by its use as the template for qPCR, which employed a Power SYBR Green
486 PCR Master Mix (Applied Biosystems, Foster City, CA, USA) following the
487 supplier's guidelines. The reactions (20 μ L) consisted of the diluted cDNA, specific
488 primer pairs (as shown in Additional file 2: Table S1), and the Power SYBR Green
489 PCR Master Mix. The qPCR thermal program comprised: An initial denaturation at
490 95 °C for 10 min; and 40 cycles of denaturation at 95 °C for 15 s and
491 annealing/extension at 60 °C for 1 min. For qPCR validation, melting curve analysis

492 was performed immediately post-qPCR to ensure the presence of a curve with a single
493 peak. Amplification signals in the primer control or no-template control samples
494 exhibited high cycle threshold (Ct) values ($Ct > 35$). Additionally, the specificity of
495 the primers was confirmed by sequencing the qPCR products when the primers were
496 used for the first time. In each test, the calibration curves exhibited correlation
497 coefficients exceeding 0.99. The internal control gene *ACTB* (encoding β -actin) was
498 used to normalize the relative expression levels [50, 51] according to the $2^{-\Delta\Delta Ct}$
499 method, where the formula $\text{target gene} / ACTB = 2\Delta Ct$ was applied, with $\Delta Ct = Ct$
500 (*ACTB*) – Ct (target gene) [52]. For qPCR analyses, three technical and biological
501 replicates were conducted.

502

503 **Gene silencing**

504 Female mosquitoes from the DR and DS strains were used for RNA interference
505 (RNAi) experiments, with microinjection performed at 12 h PE ($n = 3$ tubes per
506 group; 10 RNAi mosquitoes in each tube). GenePharma (Shanghai, China)
507 synthesized small interfering RNAs (siRNAs) targeting *CYP325G4* (siCYP325G4)
508 and *CYP6AA9* (siCYP6AA9), together with a non-targeting negative control siRNA
509 (siNC) (Table S1). The siNC, does not induce gene silencing because it has no
510 homologous gene targets in the mosquito genome. Approximately 364 ng of
511 siCYP325G4, 364 ng of siCYP6AA9, and 350 ng of siNC were injected individually
512 into female mosquito thoraxes. The detailed procedures of the gene silencing
513 technique were carried out according to a previously published method [53]. At 3

514 days after injection, qRT-PCR was conducted to assess the efficiency of RNAi for the
515 target gene.

516

517 **P450 activity**

518 A steel pestle was employed to homogenize individual deep-frozen adult mosquitoes,
519 guts and legs in 300 μ l of cold 0.0625 M phosphate buffer (pH 7.2) at 4 °C in a
520 flat-bottom 96-well microtiter plate. The homogenates were then subjected to
521 centrifugation at 1109 \times g for 20 min at 4 °C. The supernatant was retained as the
522 enzyme source for subsequent reactions. In duplicate wells of a new microtiter plate,
523 each reaction mixture comprised 20 μ l of homogenate, 25 μ l of 3% hydrogen
524 peroxide, 200 μ l of 3,3',5,5'-tetramethylbenzidine (TMBZ) solution (0.01 g of TMBZ
525 dissolved in a mixture of 15 ml of 0.25 M sodium acetate buffer (pH 5.0) and 5 ml of
526 methanol), and 80 μ l of 0.0625 M potassium phosphate buffer (pH 7.2). The plate was
527 left at room temperature for 2 h and then the absorbance at 450 nm was measured as
528 an endpoint. Equivalent units of cytochrome (EUC) P450s per milligram of protein
529 was used to quantify the enzyme contents. A standard curve generated using purified
530 cytochrome C was used to adjust the results for the known heme content of
531 cytochrome C and P450s. Standard concentrations (0.01, 0.02, 0.04, 0.06, 0.08, and
532 0.1 mg/mL) of cytochrome C were measured and the results were plotted as a graph
533 using Microsoft Excel (Redmond, WA, USA). Using the standard curve, the
534 concentration of P450 monooxygenase in a sample was determined and expressed as
535 cytochrome P450 per minute per milligram of protein. To determine the protein

536 concentrations, in a 96-well plate, 5 μ l of protein standards at various concentrations
537 were added to separate wells, while 5 μ l of the test sample was added to the sample
538 well, followed by the addition of 250 μ l of G250 staining solution to each well. After
539 a 5 min incubation at room temperature, the absorbance of each well at 595 nm was
540 determined. A standard curve constructed using bovine serum albumin was used to
541 convert the absorbance values into protein concentrations. For all the biochemical
542 assays, a minimum of three blank replicates (using water instead of the enzyme
543 solution) were set up using the corresponding reagents and solutions for the assay.
544 The average optical densities (ODs) of the blank replicates were subtracted from the
545 ODs of the test wells for adjustment. The protein concentration in the sample was
546 determined by referencing the standard curve and considering the sample volume
547 used.

548

549 **Centers for Disease Control and Prevention (CDC) bottle**
550 **bioassay**

551 The bottle bioassay of the Centers for Disease Control and Prevention had been
552 described earlier[47]. In each bottle, approximately 20 4-day-old non blood fed
553 female mosquitoes from the siCYP325G4, siNC, and DEPC water groups were
554 introduced into bottles coated with deltamethrin (0.1mg/ml) and incubated for 2
555 hours. Bottles coated with acetone are used as insecticide free controls. Mortality rate
556 were assessed every 15 minutes during exposure. Each group is repeated three times.

557

558 **Scanning electron microscopy (SEM)**

559 To account for the effect of mosquito size on cuticle thickness, the wing lengths of all
560 female mosquitoes involved in the study were measured. Each group (siNC,
561 siCYP325G4, and siCYP6AA9) consisted of 7–8 female mosquitoes, from which one
562 right front leg from each mosquito was selected. The selected legs underwent two
563 washes using 70% ethanol for thorough cleaning. Subsequently, alcohol was applied
564 to tarsomere I of the leg at the midpoint, followed by precise cutting using a
565 platinum-coated blade. Following cutting, the leg sections were washed to eliminate
566 any debris. Subsequently, the sections were immersed in 2.5% glutaraldehyde (Sigma,
567 St. Louis, MO, USA) for 12 h, followed by sequential incubation in a series of graded
568 ethanol concentrations (30, 50, 70, 80, 90, 95, and 100%) for 10 min each time.
569 Afterwards, an EM CPD300 critical point dryer (Leica, Wetzlar, Germany) was used
570 to dry the sections, employing an automated process involving 15 exchanges. Finally,
571 a K550 X sputter coater (Electron Microscopy Sciences, Hatfield, PA, USA) was
572 utilized to coat the sections, followed by SEM analysis. To examine the cuticle
573 thickness, SEM image analysis was conducted using Image J software (NIH,
574 Bethesda, MD, USA). The cuticle thickness at 23 randomly selected positions was
575 used to determine the average cuticle thickness of each leg.

576

577 **Statistical considerations**

578 Statistical analysis was conducted using SPSS 23.0 and GraphPad Prism 6.0 software
579 [54]. Student's t-test was employed to compare the data between two groups.
580 ANOVA was used to analyze the expression levels of *CYP325G4* and *CYP6AA9* in

581 various tissues. The Chi-square test was utilized to analyze mosquito mortality[55,
582 56]. All results are displayed as the mean \pm standard deviation (SD), and statistical
583 significance was considered at $p < 0.05$. Each experiment was replicated in at least
584 three independent cohorts.

585

586

587 **Additional files**

588 **Additional file 1: Table S1. Primers used for qPCR analysis and siRNA synthesis
589 of CYP325G4 and CYP6AA9.**

590 **Additional file 2: Summary of the transcriptome data of DR and DS legs.**

591 **Additional file 3: Summary of the proteome data of DR and DS legs.**

592 **Additional file 4: Summary of the transcriptome and proteome of DR and DS
593 legs.**

594 **Additional file 5: KEGG_enrichment of the transcriptome**

595 **Additional file 6: KEGG_enrichment of the proteome**

596 **Additional file 7: KEGG_enrichment of the transcriptome and proteome**

597

598 **Abbreviations**

599 *Cx. Pipiens*: *Culex pipiens*; iTRAQ: isobaric tags for relative and absolute
600 quantitation; DEGs: differentially expressed genes; DEPs: differentially expressed
601 proteins; DR: deltamethrin-resistant; DS: deltamethrin-susceptible; PE: post-eclosion;
602 qRT-PCR: quantitative real-time reverse transcription PCR; FDR: False Discovery
603 Rate; FPKM: Fragments Per Kilobase Million; siCYP325G4: small interfering RNA
604 for silencing the *CYP325G4* gene; siCYP6AA9: small interfering RNA for silencing

605 the *CYP6AA9* gene; NC: negative control; DEPC: diethyl pyrocarbonate; CDC:
606 Centers for Disease Control and Prevention; SEM: scanning electron microscope;
607 LC₅₀: 50% lethal concentration; CHC: chlorinated hydrocarbon; CP: cuticle protein);
608 ACC: acetyl-coenzyme A carboxylase; FAS: fatty acid synthase S-acetyltransferase;
609 FACVL: very-long-chain fatty acid-coenzyme A ligase.

610

611 **Acknowledgements**

612 Not applicable.

613

614 **Ethics approval and consent to participate**

615 All animal procedures performed in this study were approved by the Institutional
616 Animal Care and Use Committee (IACUC) of Nanjing Medical University. The study
617 was conducted according to the guidelines for the use of laboratory animals, under
618 Protocol No. 582/2017.

619

620 **Consent for publication**

621 Not applicable

622

623 **Availability of data and materials**

624 Data supporting the conclusions of this article are included within the article and its
625 supplementary files. All data are fully available without restriction and can be
626 obtained upon request.

627

628 **Competing interests**

629 The authors declare that they have no competing interests.

630

631 **Funding**

632 This work was supported by the National Natural Science Foundation of China (grant
633 numbers 82372286, 82172304)

634

635 **Authors' contributions**

636 YX, JJD, FFZ, XXL, LT and YFM performed experiments. YX, YC, KWZ, LM and
637 YS wrote the manuscript and prepared the figures. FMZ, BS, YS, DZ, GYY and CLZ
638 conceived the study and coordinated the project. All authors have read and approved
639 the final version of the manuscript for submission.

640

641

642

643 **References**

- 644 1. Arora G, Chuang Y-M, Sinnis P, Dimopoulos G, Fikrig E. Malaria: influence of Anopheles mosquito
645 saliva on Plasmodium infection. *Trends Immunol.* 2023;44(4):256-65. doi: 10.1016/j.it.2023.02.005.
646 PubMed PMID: 36964020; PubMed Central PMCID: PMCQ1.
- 647 2. Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH. Dengue virus infection - a review of
648 pathogenesis, vaccines, diagnosis and therapy. *Virus Res.* 2023;324:199018. doi:
649 10.1016/j.virusres.2022.199018. PubMed PMID: 36493993; PubMed Central PMCID: PMCQ2.
- 650 3. Sokol J. How the yellow fever mosquito found its first human victim. *Science.*
651 2023;379(6639):1281-2. doi: 10.1126/science.adi0090. PubMed PMID: 36996228; PubMed Central
652 PMCID: PMCQ1.
- 653 4. Giraldo MI, Gonzalez-Orozco M, Rajsbaum R. Pathogenesis of Zika Virus Infection. *Annu Rev
654 Pathol.* 2023;18:181-203. doi: 10.1146/annurev-pathmechdis-031521-034739. PubMed PMID:
655 36151059; PubMed Central PMCID: PMCQ1.
- 656 5. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. West Nile virus. *Lancet Infect Dis.*
657 2002;2(9):519-29. PubMed PMID: 12206968; PubMed Central PMCID: PMCQ1.
- 658 6. <World-Malaria-Report-2020.pdf>.
- 659 7. Paixão ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: the causes and threats of
660 new and re-emerging arboviral diseases. *BMJ Glob Health.* 2018;3(Suppl 1):e000530. doi:

661 10.1136/bmigh-2017-000530. PubMed PMID: 29435366; PubMed Central PMCID: PMCQ1.

662 8. Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future
663 spread of the arbovirus vectors *Aedes aegypti* and *Aedes albopictus*. *Nat Microbiol*. 2019;4(5):854-63.
664 doi: 10.1038/s41564-019-0376-y. PubMed PMID: 30833735; PubMed Central PMCID: PMCQ1.

665 9. Guo Y, Hu K, Zhou J, Xie Z, Zhao Y, Zhao S, et al. The dynamics of deltamethrin resistance
666 evolution in *Aedes albopictus* has an impact on fitness and dengue virus type-2 vectorial capacity.
667 *BMC Biol*. 2023;21(1):194. doi: 10.1186/s12915-023-01693-0. PubMed PMID: 37704988; PubMed
668 Central PMCID: PMCQ1.

669 10. Toé KH, Jones CM, N'Fale S, Ismail HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in
670 malaria vectors and decreased bed net effectiveness, Burkina Faso. *Emerg Infect Dis*.
671 2014;20(10):1691-6. doi: 10.3201/eid2010.140619. PubMed PMID: 25279965; PubMed Central
672 PMCID: PMCQ1.

673 11. Adams KL, Selland EK, Willett BC, Carew JW, Vidoudez C, Singh N, et al. Selection for insecticide
674 resistance can promote *Plasmodium falciparum* infection in *Anopheles*. *PLoS Pathog*.
675 2023;19(6):e1011448. doi: 10.1371/journal.ppat.1011448. PubMed PMID: 37339122; PubMed Central
676 PMCID: PMCQ1.

677 12. Brake S, Gomez-Maldonado D, Hummel M, Zohdy S, Peresin MS. Understanding the current
678 state-of-the-art of long-lasting insecticide nets and potential for sustainable alternatives. *Curr Res
679 Parasitol Vector Borne Dis*. 2022;2:100101. doi: 10.1016/j.crpvbd.2022.100101. PubMed PMID:
680 36248356.

681 13. McArthur DB. Emerging Infectious Diseases. *Nurs Clin North Am*. 2019;54(2):297-311. doi:
682 10.1016/j.cnur.2019.02.006. PubMed PMID: 31027668; PubMed Central PMCID: PMCQ2.

683 14. Zinszer K, Talisuna AO. Fighting insecticide resistance in malaria control. *Lancet Infect Dis*.
684 2023;23(2):138-9. doi: 10.1016/S1473-3099(22)00518-7. PubMed PMID: 36174593; PubMed Central
685 PMCID: PMCQ1.

686 15. David MD. The potential of pro-insecticides for resistance management. *Pest Manag Sci*.
687 2021;77(8):3631-6. doi: 10.1002/ps.6369. PubMed PMID: 33729660; PubMed Central PMCID:
688 PMCQ1.

689 16. Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WC. Does kdr genotype
690 predict insecticide-resistance phenotype in mosquitoes? *Trends Parasitol*. 2009;25(5):213-9. doi:
691 10.1016/j.pt.2009.02.007. PubMed PMID: 19369117; PubMed Central PMCID: PMCQ1.

692 17. Casida JE, Durkin KA. Neuroactive insecticides: targets, selectivity, resistance, and secondary
693 effects. *Annu Rev Entomol*. 2013;58. doi: 10.1146/annurev-ento-120811-153645. PubMed PMID:
694 23317040; PubMed Central PMCID: PMCQ1.

695 18. Edi CV, Djogbénou L, Jenkins AM, Regna K, Muskavitch MAT, Poupartin R, et al. CYP6 P450
696 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria
697 mosquito *Anopheles gambiae*. *PLoS Genet*. 2014;10(3):e1004236. doi:
698 10.1371/journal.pgen.1004236. PubMed PMID: 24651294; PubMed Central PMCID: PMCQ1.

699 19. Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide
700 resistance. *Curr Opin Insect Sci*. 2018;27:68-74. doi: 10.1016/j.cois.2018.03.001. PubMed PMID:
701 30025637; PubMed Central PMCID: PMCQ1.

702 20. Haas J, Hayward A, Buer B, Maiwald F, Nebelsiek B, Glaubitz J, et al. Phylogenomic and functional
703 characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification
704 mechanism in bees. *Proc Natl Acad Sci U S A*. 2022;119(26):e2205850119. doi:

705 10.1073/pnas.2205850119. PubMed PMID: 35733268; PubMed Central PMCID: PMCQ1.

706 21. Wondji CS, Hearn J, Irving H, Wondji MJ, Weedall G. RNAseq-based gene expression profiling of
707 the *Anopheles funestus* pyrethroid-resistant strain FUMOZ highlights the predominant role of the
708 duplicated CYP6P9a/b cytochrome P450s. *G3 (Bethesda)*. 2022;12(1). doi: 10.1093/g3journal/jkab352.
709 PubMed PMID: 34718535; PubMed Central PMCID: PMCQ3.

710 22. Zoh MG, Gaude T, Prud'homme SM, Riaz MA, David J-P, Reynaud S. Molecular bases of
711 P450-mediated resistance to the neonicotinoid insecticide imidacloprid in the mosquito *Ae. aegypti*.
712 *Aquat Toxicol.* 2021;236:105860. doi: 10.1016/j.aquatox.2021.105860. PubMed PMID: 34015756;
713 PubMed Central PMCID: PMCQ1.

714 23. Yang T, Li T, Feng X, Li M, Liu S, Liu N. Multiple cytochrome P450 genes: conferring high levels of
715 permethrin resistance in mosquitoes, *Culex quinquefasciatus*. *Sci Rep.* 2021;11(1):9041. doi:
716 10.1038/s41598-021-88121-x. PubMed PMID: 33907243; PubMed Central PMCID: PMCQ2.

717 24. Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR, Mijailovsky SJ, et al. Mosquitoes cloak
718 their legs to resist insecticides. *Proc Biol Sci.* 2019;286(1907):20191091. doi: 10.1098/rspb.2019.1091.
719 PubMed PMID: 31311476; PubMed Central PMCID: PMCQ1.

720 25. Carr AL, Mitchell RD, Dhammi A, Bissinger BW, Sonenshine DE, Roe RM. Tick Haller's Organ, a
721 New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects. *Int J Mol Sci.* 2017;18(7). doi:
722 10.3390/ijms18071563. PubMed PMID: 28718821; PubMed Central PMCID: PMCQ1.

723 26. Kefi M, Charamis J, Balabanidou V, Ioannidis P, Ranson H, Ingham VA, et al. Transcriptomic
724 analysis of resistance and short-term induction response to pyrethroids, in *Anopheles coluzzii* legs.
725 *BMC Genomics.* 2021;22(1):891. doi: 10.1186/s12864-021-08205-w. PubMed PMID: 34903168;
726 PubMed Central PMCID: PMCQ1.

727 27. Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, et al. Fly Cell Atlas: A
728 single-nucleus transcriptomic atlas of the adult fruit fly. *Science.* 2022;375(6584):eabk2432. doi:
729 10.1126/science.abk2432. PubMed PMID: 35239393; PubMed Central PMCID: PMCQ1.

730 28. Lv Y, Wang W, Hong S, Lei Z, Fang F, Guo Q, et al. Comparative transcriptome analyses of
731 deltamethrin-susceptible and -resistant *Culex pipiens pallens* by RNA-seq. *Mol Genet Genomics.*
732 2016;291(1):309-21. doi: 10.1007/s00438-015-1109-4. PubMed PMID: 26377942; PubMed Central
733 PMCID: PMCQ2.

734 29. Noppun V, Saito T, Miyata T. Noppun V, Saito T, Miyata T. Cuticular penetration of S-fenvalerate
735 in fenvalerate-resistant and susceptible strains of the diamondback moth, *Plutella xylostella* (L.).
736 *Pesticide Biochemistry and Physiology.* 1989.

737 30. Kefi M, Balabanidou V, Sarafoglou C, Charamis J, Lycett G, Ranson H, et al. ABCH2 transporter
738 mediates deltamethrin uptake and toxicity in the malaria vector *Anopheles coluzzii*. *PLoS Pathog.*
739 2023;19(8):e1011226. doi: 10.1371/journal.ppat.1011226. PubMed PMID: 37585450; PubMed Central
740 PMCID: PMCQ1.

741 31. Li M, Feng X, Reid WR, Tang F, Liu N. Multiple-P450 Gene Co-Up-Regulation in the Development
742 of Permethrin Resistance in the House Fly, *Musca domestica*. *Int J Mol Sci.* 2023;24(4). doi:
743 10.3390/ijms24043170. PubMed PMID: 36834582; PubMed Central PMCID: PMCQ1.

744 32. Gong Y, Li T, Zhang L, Gao X, Liu N. Permethrin induction of multiple cytochrome P450 genes in
745 insecticide resistant mosquitoes, *Culex quinquefasciatus*. *Int J Biol Sci.* 2013;9(9):863-71. doi:
746 10.7150/ijbs.6744. PubMed PMID: 24155662; PubMed Central PMCID: PMCQ1.

747 33. Nauen R, Bass C, Feyereisen R, Vontas J. The Role of Cytochrome P450s in Insect Toxicology and
748 Resistance. *Annu Rev Entomol.* 2022;67:105-24. doi: 10.1146/annurev-ento-070621-061328. PubMed

749 PMID: 34590892; PubMed Central PMCID: PMCQ1.

750 34. Xu N, Sun X-H, Liu Z-H, Xu Y, Sun Y, Zhou D, et al. Identification and classification of differentially
751 expressed genes in pyrethroid-resistant *Culex pipiens pallens*. *Mol Genet Genomics*.
752 2019;294(4):861-73. doi: 10.1007/s00438-018-1521-7. PubMed PMID: 30904950; PubMed Central
753 PMCID: PMCQ2.

754 35. Ingham VA, Jones CM, Pignatelli P, Balabanidou V, Vontas J, Wagstaff SC, et al. Dissecting the
755 organ specificity of insecticide resistance candidate genes in *Anopheles gambiae*: known and novel
756 candidate genes. *BMC Genomics*. 2014;15(1):1018. doi: 10.1186/1471-2164-15-1018. PubMed PMID:
757 25421852; PubMed Central PMCID: PMCQ1.

758 36. Riveron JM, Ibrahim SS, Chanda E, Mzilahowa T, Cuamba N, Irving H, et al. The highly
759 polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and
760 CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector *Anopheles funestus* in
761 Africa. *BMC Genomics*. 2014;15(1):817. doi: 10.1186/1471-2164-15-817. PubMed PMID: 25261072;
762 PubMed Central PMCID: PMCQ1.

763 37. Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, et al.
764 Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in
765 *Anopheles gambiae*. *Proc Natl Acad Sci U S A*. 2016;113(33):9268-73. doi: 10.1073/pnas.1608295113.
766 PubMed PMID: 27439866; PubMed Central PMCID: PMCQ1.

767 38. Yu Z, Zhang X, Wang Y, Moussian B, Zhu KY, Li S, et al. LmCYP4G102: An oenocyte-specific
768 cytochrome P450 gene required for cuticular waterproofing in the migratory locust, *Locusta*
769 *migratoria*. *Sci Rep*. 2016;6:29980. doi: 10.1038/srep29980. PubMed PMID: 27444410; PubMed
770 Central PMCID: PMCQ2.

771 39. Wu L, Yu Z, Jia Q, Zhang X, Ma E, Li S, et al. Knockdown of LmCYP303A1 alters cuticular
772 hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in *Locusta*
773 *migratoria*. *Pestic Biochem Physiol*. 2020;168:104637. doi: 10.1016/j.pestbp.2020.104637. PubMed
774 PMID: 32711771; PubMed Central PMCID: PMCQ1.

775 40. Zhao X, Yang Y, Niu N, Zhao Y, Liu W, Ma E, et al. The fatty acid elongase gene LmELO7 is
776 required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, *Locusta*
777 *migratoria*. *J Insect Physiol*. 2020;123:104052. doi: 10.1016/j.jinsphys.2020.104052. PubMed PMID:
778 32259526; PubMed Central PMCID: PMCQ1.

779 41. Pei X-J, Chen N, Bai Y, Qiao J-W, Li S, Fan Y-L, et al. BgFas1: A fatty acid synthase gene required
780 for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, *Blattella*
781 *germanica* (L.). *Insect Biochem Mol Biol*. 2019;112:103203. doi: 10.1016/j.ibmb.2019.103203.
782 PubMed PMID: 31425851; PubMed Central PMCID: PMCQ1.

783 42. Finet C, Slavik K, Pu J, Carroll SB, Chung H. Birth-and-Death Evolution of the Fatty Acyl-CoA
784 Reductase (FAR) Gene Family and Diversification of Cuticular Hydrocarbon Synthesis in *Drosophila*.
785 *Genome Biol Evol*. 2019;11(6):1541-51. doi: 10.1093/gbe/evz094. PubMed PMID: 31076758; PubMed
786 Central PMCID: PMCQ2.

787 43. Zhu F, Liu N. Differential expression of CYP6A5 and CYP6A5v2 in pyrethroid-resistant house flies,
788 *Musca domestica*. *Arch Insect Biochem Physiol*. 2008;67(3):107-19. doi: 10.1002/arch.20225. PubMed
789 PMID: 18163524; PubMed Central PMCID: PMCQ1.

790 44. Zhu F, Feng JN, Zhang L, Liu N. Characterization of two novel cytochrome P450 genes in
791 insecticide-resistant house-flies. *Insect Mol Biol*. 2008;17(1):27-37. doi:
792 10.1111/j.1365-2583.2008.00777.x. PubMed PMID: 18237282; PubMed Central PMCID: PMCQ1.

793 45. Safi NHZ, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, et al. Evidence of
794 metabolic mechanisms playing a role in multiple insecticides resistance in *Anopheles stephensi*
795 populations from Afghanistan. *Malar J*. 2017;16(1):100. doi: 10.1186/s12936-017-1744-9. PubMed
796 PMID: 28253925; PubMed Central PMCID: PMCQ2.

797 46. Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecular evidence for a
798 kdr-like pyrethroid resistance mechanism in the malaria vector mosquito *Anopheles stephensi*. *Med*
799 *Vet Entomol*. 2003;17(2):138-44. PubMed PMID: 12823830; PubMed Central PMCID: PMCQ2.

800 47. Huang Y, Guo Q, Sun X, Zhang C, Xu N, Xu Y, et al. *Culex pipiens pallens* cuticular protein CPLCG5
801 participates in pyrethroid resistance by forming a rigid matrix. *Parasit Vectors*. 2018;11(1):6. Epub
802 2018/01/06. doi: 10.1186/s13071-017-2567-9. PubMed PMID: 29301564; PubMed Central PMCID:
803 PMCPMC5753453.

804 48. Luo Q-C, Hao Y-J, Meng F, Li T-J, Ding Y-R, Hua Y-Q, et al. The mitochondrial genomes of *Culex*
805 *tritaeniorhynchus* and *Culex pipiens pallens* (Diptera: Culicidae) and comparison analysis with two
806 other *Culex* species. *Parasit Vectors*. 2016;9(1):406. doi: 10.1186/s13071-016-1694-z. PubMed PMID:
807 27444629; PubMed Central PMCID: PMCQ1.

808 49. Jiang X, Bomgarden R, Brown J, Drew DL, Robitaille AM, Viner R, et al. Sensitive and Accurate
809 Quantitation of Phosphopeptides Using TMT Isobaric Labeling Technique. *J Proteome Res*.
810 2017;16(11):4244-52. doi: 10.1021/acs.jproteome.7b00610. PubMed PMID: 29022350; PubMed
811 Central PMCID: PMCQ1.

812 50. Haac ME, Anderson MAE, Eggleston H, Myles KM, Adelman ZN. The hub protein loquacious
813 connects the microRNA and short interfering RNA pathways in mosquitoes. *Nucleic Acids Res*.
814 2015;43(7):3688-700. doi: 10.1093/nar/gkv152. PubMed PMID: 25765650; PubMed Central PMCID:
815 PMCQ1.

816 51. Hansen IA, Attardo GM, Park J-H, Peng Q, Raikhel AS. Target of rapamycin-mediated amino acid
817 signaling in mosquito anautogeny. *Proc Natl Acad Sci U S A*. 2004;101(29):10626-31. PubMed PMID:
818 15229322; PubMed Central PMCID: PMCQ1.

819 52. Livak KJ, Schmittgen TDL. Analysis of relative gene expression data using real-time quantitative
820 PCR and the 2-DDCt method. *Methods*. 2001;25(4):402-8.

821 53. Zhou D, Duan B, Xu Y, Ma L, Shen B, Sun Y, et al. NYD-OP7/PLC regulatory signaling pathway
822 regulates deltamethrin resistance in *Culex pipiens pallens* (Diptera: Culicidae). *Parasit Vectors*.
823 2018;11(1):419. doi: 10.1186/s13071-018-3011-5. PubMed PMID: 30012184; PubMed Central PMCID:
824 PMCQ1.

825 54. Yang M, Wang Y, Jiang F, Song T, Wang H, Liu Q, et al. miR-71 and miR-263 Jointly Regulate
826 Target Genes Chitin synthase and Chitinase to Control Locust Molting. *PLoS Genet*.
827 2016;12(8):e1006257. doi: 10.1371/journal.pgen.1006257. PubMed PMID: 27532544; PubMed
828 Central PMCID: PMCQ1.

829 55. Zou FF, Guo Q, Sun Y, Zhou D, Hu MX, Hu HX, et al. Identification of protease m1 zinc
830 metalloprotease conferring resistance to deltamethrin by characterization of an AFLP marker in *Culex*
831 *pipiens pallens*. *Parasit Vectors*. 2016;9:172. doi: 10.1186/s13071-016-1450-4. PubMed PMID:
832 27007119; PubMed Central PMCID: PMCQ1.

833 56. Lv Y, Lei Z, Hong S, Wang W, Zhang D, Zhou D, et al. Venom allergen 5 is Associated With
834 Deltamethrin Resistance in *Culex pipiens pallens* (Diptera: Culicidae). *J Med Entomol*.
835 2015;52(4):672-82. doi: 10.1093/jme/tjv059. PubMed PMID: 26335474; PubMed Central PMCID:
836 PMCQ2.

837

838 **Figure legends**

839 **Fig 1. Experimental flowchart of the study.** DR, deltamethrin-resistant; DS,
840 deltamethrin-sensitive; CHC, chlorinated hydrocarbon.

841

842 **Fig 2. Genes that were up- or downregulated between DR and DS legs in the**
843 **RNA-seq experiments.** **A** Functional classification of 2346. **B** DEGs. Z-scores
844 (normalized expression levels) for the differential expression of cytochrome P450 and
845 upregulated P450s. **C** The top 10 pathways of the DEGs, identified using KEGG
846 enrichment analysis. DR, deltamethrin-resistant; DS, deltamethrin-sensitive;
847 RNA-Seq, RNA sequencing; KEGG, Kyoto Encyclopedia of Genes and Genomes;
848 DEG, differentially expressed gene.

849

850 **Fig 3. Significantly up- or downregulated proteins between the DR and DS legs.**
851 **A** Functional classification of 228 DEPs. Normalized expression levels (z-scores) for
852 **B** differential expression of cytochrome P450 proteins. **C** The top 10 pathways of the
853 DEPs, identified using KEGG enrichment analysis. DR, deltamethrin-resistant; DS,
854 deltamethrin-sensitive; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEP,
855 differentially expressed protein.

856

857

858 **Fig 4. Summary of CYPs that were overexpressed in transcriptomic and**
859 **proteomic analyses.** A Venn diagrams depicting the distinctions between different
860 transcripts and proteins. B The top 20 pathways of the DEGs and DEPs, identified
861 using KEGG enrichment analysis. C Upregulation of two CYP450s at the transcript
862 and protein levels. DEG, differentially expressed gene; DEP, differentially expressed
863 protein; KEGG, Kyoto Encyclopedia of Genes and Genomes.

864 **Fig 5. *CYP325G4* and *CYP6AA9* expression in DR and DS mosquitoes.** A
865 *CYP325G4* expression levels at 72 h PE in the DR and DS strains. B *CYP6AA9*
866 expression levels at 72 h PE in the DR and DS strains. The lowest expression value
867 was assigned an arbitrary value of 1, which was then used to calculate the relative
868 expression levels. The results appear as the mean \pm standard deviation (SD) (n = 3
869 biological replicates). *P \leq 0.05; **P \leq 0.01. PE, post-eclosion; DR,
870 deltamethrin-resistant; DS, deltamethrin-sensitive.

871

872 **Fig 6. *CYP325G4* and *CYP6AA9* expression profiles in various mosquito tissues.**
873 A Constitutive *CYP325G4* expression in the DR and DS strains. B Constitutive
874 *CYP6AA9* expression in the DR and DS strains. The mRNA levels in the head, thorax,
875 abdomen, legs, and wings of the DS and DR mosquitoes were determined. The lowest
876 expression value was assigned an arbitrary value of 1, which was then used to
877 calculate the relative expression levels. The results appear as the mean \pm standard
878 deviation (SD) (n = 3 biological replicates). *P \leq 0.05; **P \leq 0.01, ****P \leq 0.0001;
879 ns, not significant; DR, deltamethrin-resistant; DS, deltamethrin-sensitive.

880

881 **Fig 7. Relative expression levels of *CYP325G4* and *CYP6AA9* after RNAi.**

882 *CYP325G4* expression in whole mosquito bodies **A** and legs **B** after *CYP325G4*
883 silencing. *CYP6AA9* expression in whole mosquito bodies **C** and legs **D** after
884 *CYP6AA9* silencing. The results appear as the mean \pm standard deviation (SD) (n = 3
885 biological replicates). *P \leq 0.05; **P \leq 0.01. RNAi, RNA interference; siNC,
886 negative control small interfering RNA; siCYP325G4, small interfering RNA
887 targeting *CYP325G4*; siCYP6AA9, small interfering RNA targeting *CYP6AA9*.

888

889 **Fig 8. CDC bottle bioassay after *CYP325G4* knockdown in the DR strain.**

890 CDC bottle assays (0.1 mg/ml) to determine the level of insecticide resistance
891 following *CYP325G4* silencing. The results appear as the mean \pm standard deviation
892 (SD) (n = 3 biological replicates). The p-values were determined relative to the results
893 in the NC group. The results for the DEPC and NC injected groups were not
894 significantly different. *P \leq 0.05; **P $<$ 0.01. CDC, Center for Disease Control; DR,
895 deltamethrin-resistant; siNC, negative control small interfering RNA; WT, wild-type;
896 siCYP325G4, small interfering RNA targeting *CYP325G4*; DEPC, diethyl
897 pyrocarbonate.

898

899 **Fig 9. Expression levels of CHC-related genes after microinjection of**
900 **siCYP325G4 and siCYP6AA9.** **A** Expression levels of CHC-related genes in whole
901 mosquitoes after microinjection of siCYP325G4; **B** Expression levels of CHC-related
902 genes in the legs after microinjection of siCYP325G4. **C** Expression levels of
903 CHC-related genes in whole mosquitoes after microinjection of siCYP6AA9; **D**

904 Expression levels of CHC-related genes in the legs after microinjection of
905 siCYP6AA9. * $P \leq 0.05$; ** $P \leq 0.01$; ns, not significant. CHC, chlorinated
906 hydrocarbon; siNC, negative control small interfering RNA; siCYP325G4, small
907 interfering RNA targeting *CYP325G4*; siCYP6AA9, small interfering RNA targeting
908 *CYP6AA9*.

909

910 **Fig 10. Leg cuticle thickness in mosquitoes treated with siCYP325G4 and**
911 **siCYP6AA9.** A SEM images of the front view of a sectioned leg from the siNC group
912 and siCYP325G4 group. B Column bar graph (vertical) of the whole cuticle thickness
913 after microinjection of siNC and siCYP325G4. C SEM images of the front view from
914 a sectioned leg of the siNC group and the siCYP6AA9 group. D Column bar graph
915 (vertical) of the whole cuticle thickness after microinjection of siNC and siCYP6AA9.
916 The mean cuticle thickness was calculated using 16 points of measurement in each
917 individual. Results appear as the mean \pm SD. n = the number of measurements
918 performed for each batch of 7 or 8 mosquitoes. * $P \leq 0.05$; ns, not significant. SEM,
919 scanning electron microscope; siNC, negative control small interfering RNA;
920 siCYP325G4, small interfering RNA targeting *CYP325G4*; siCYP6AA9, small
921 interfering RNA targeting *CYP6AA9*.

922

923

924 **Fig 11. Measurement of cytochrome P450 enzyme activity after microinjection of**
925 **siCYP325G4 and siCYP6AA9.** A Schematic diagram of the method used to assess
926 P450 activity. B P450 enzyme activities in the whole body after microinjection of
927 siCYP325G4. C P450 enzyme activities in the gut after microinjection of
928 siCYP325G4. D P450 enzyme activities in the legs after microinjection of

929 siCYP325G4; **E** P450 enzyme activities in the whole body after microinjection of
930 siCYP6AA9; **F** P450 enzyme activities in the guts after microinjection of
931 siCYP6AA9; **G** P450 enzyme activities in the legs after microinjection of
932 siCYP6AA9; * $P \leq 0.05$; ** $P < 0.01$; *** $P < 0.0001$. siNC, negative control small
933 interfering RNA; siCYP325G4, small interfering RNA targeting *CYP325G4*;
934 siCYP6AA9, small interfering RNA targeting *CYP6AA9*.

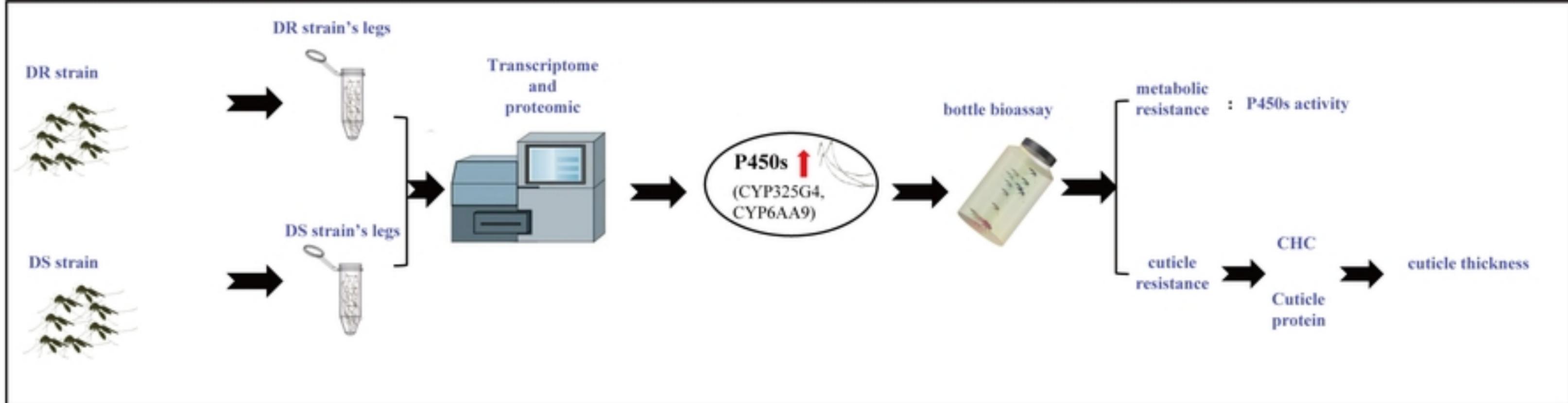
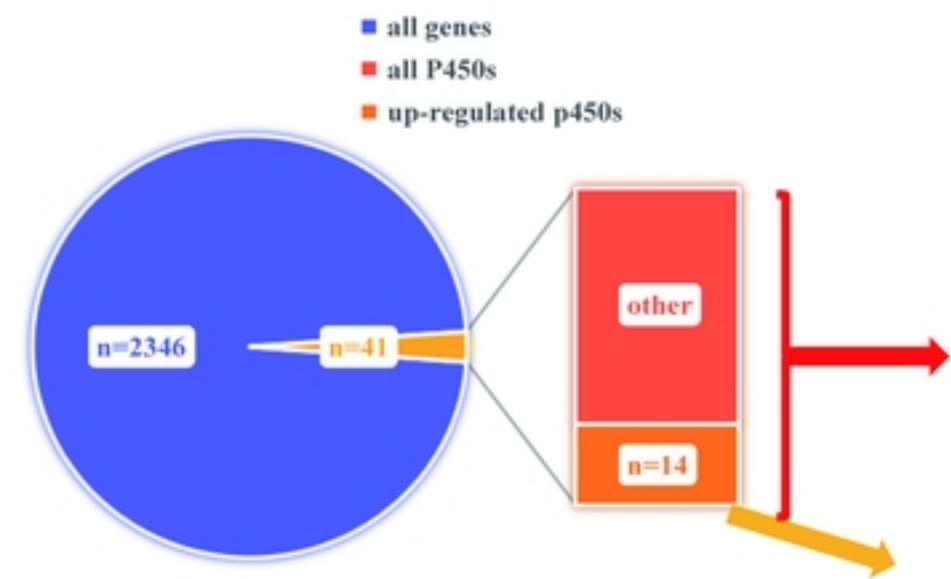
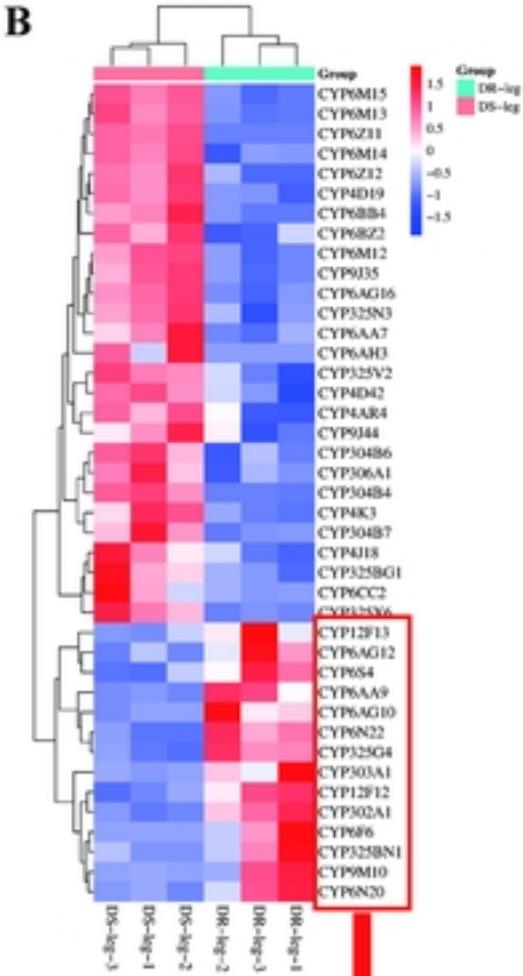
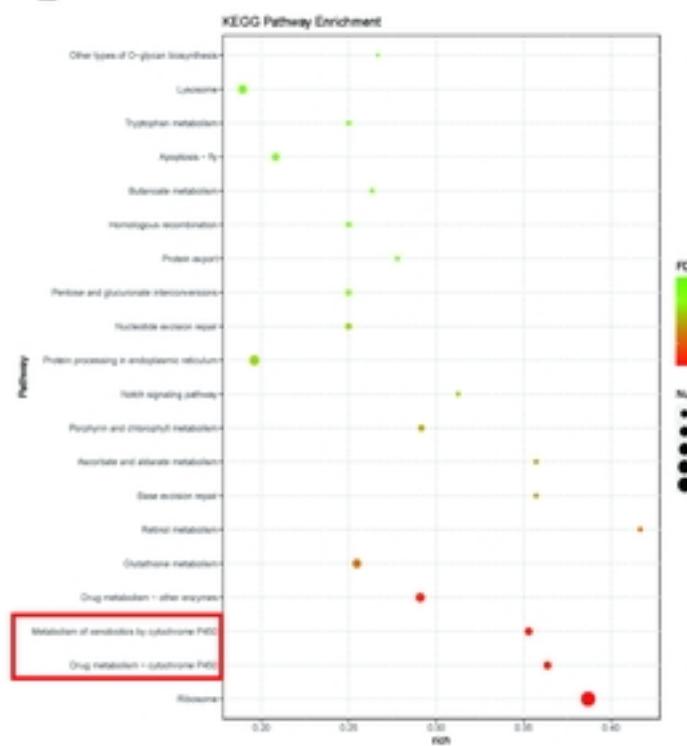
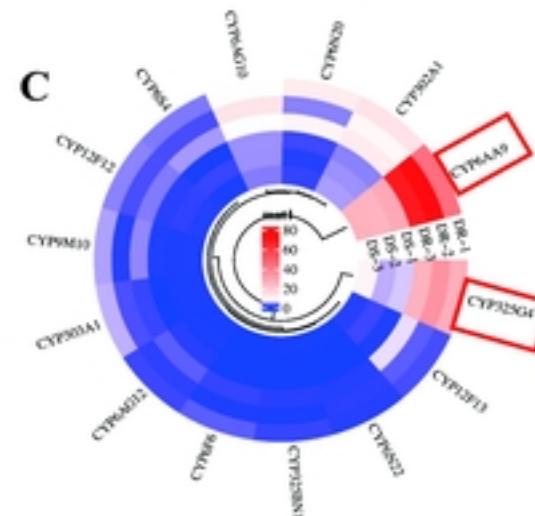
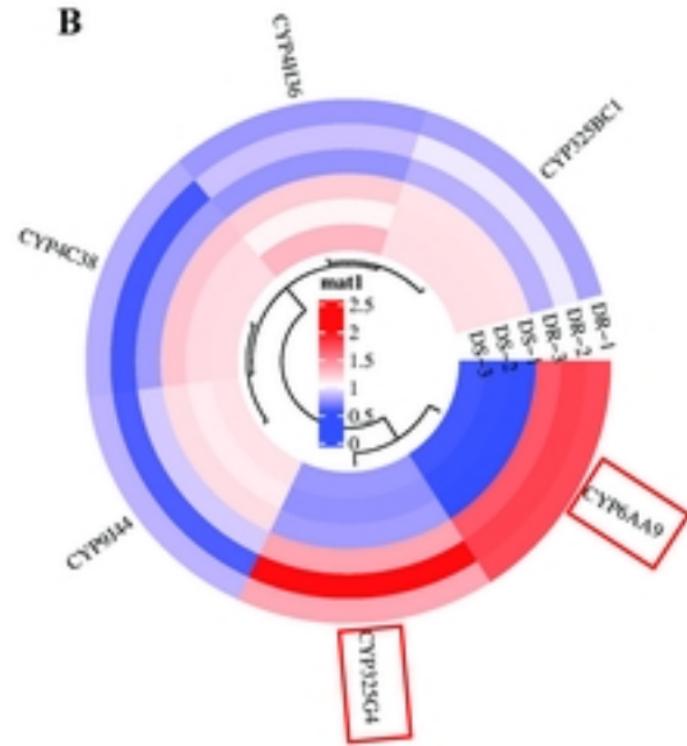
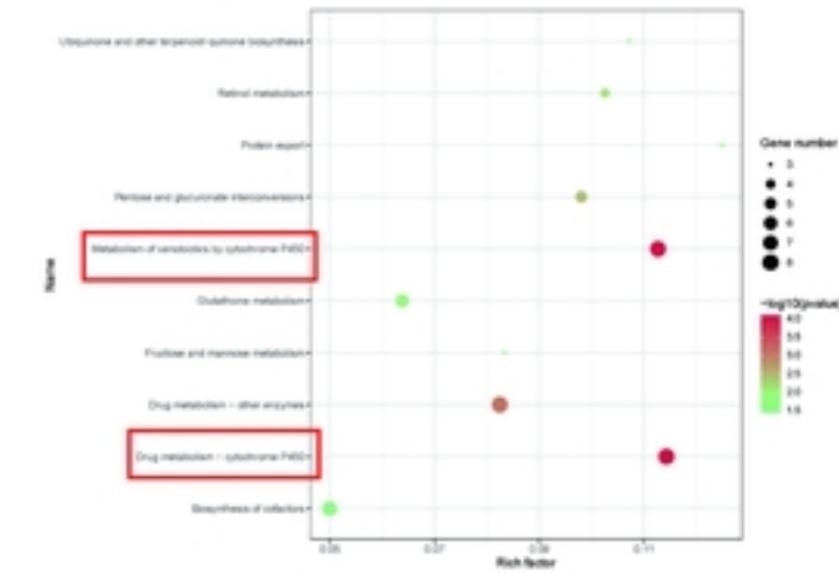
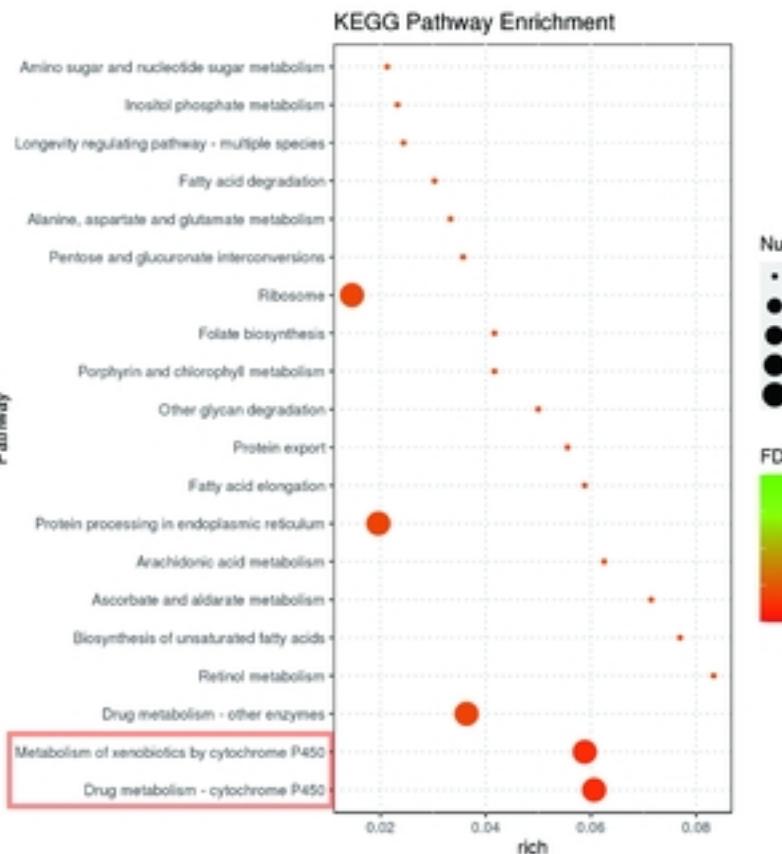
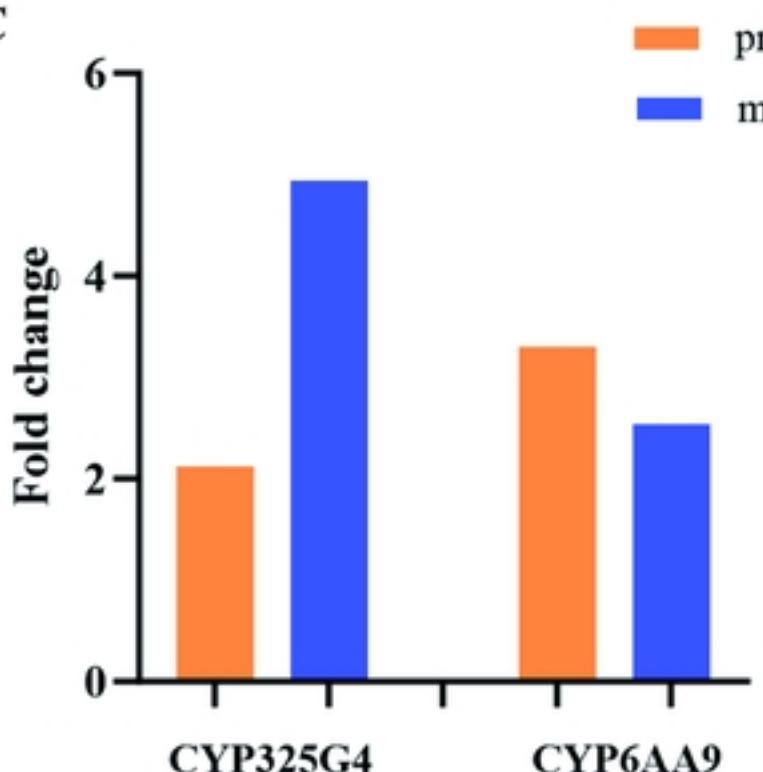
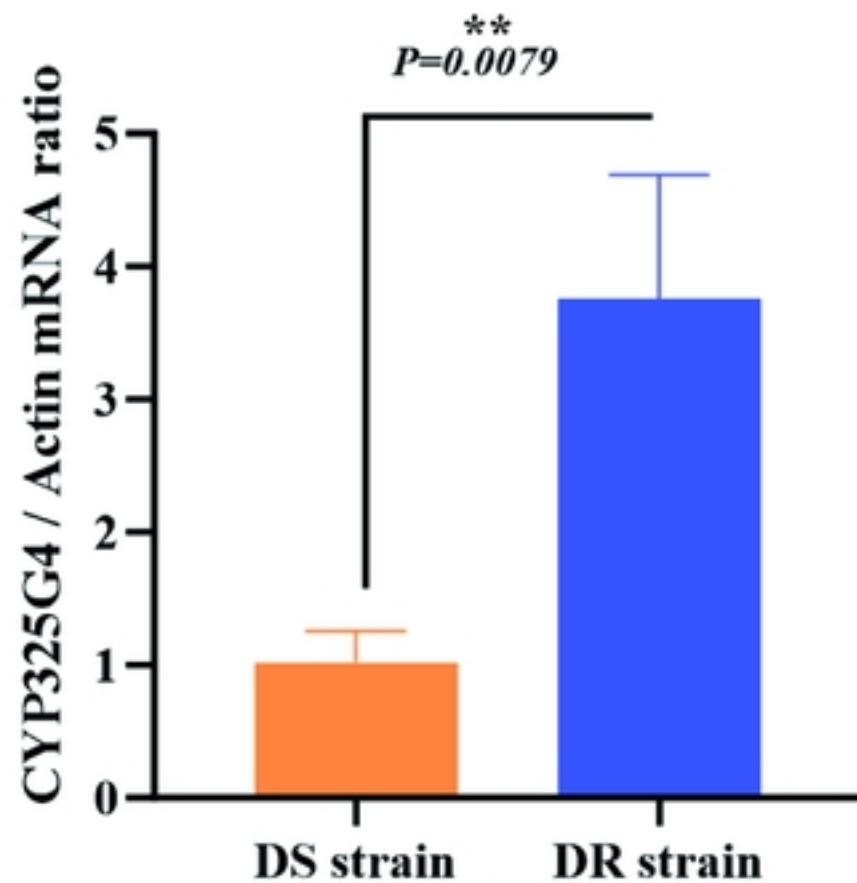
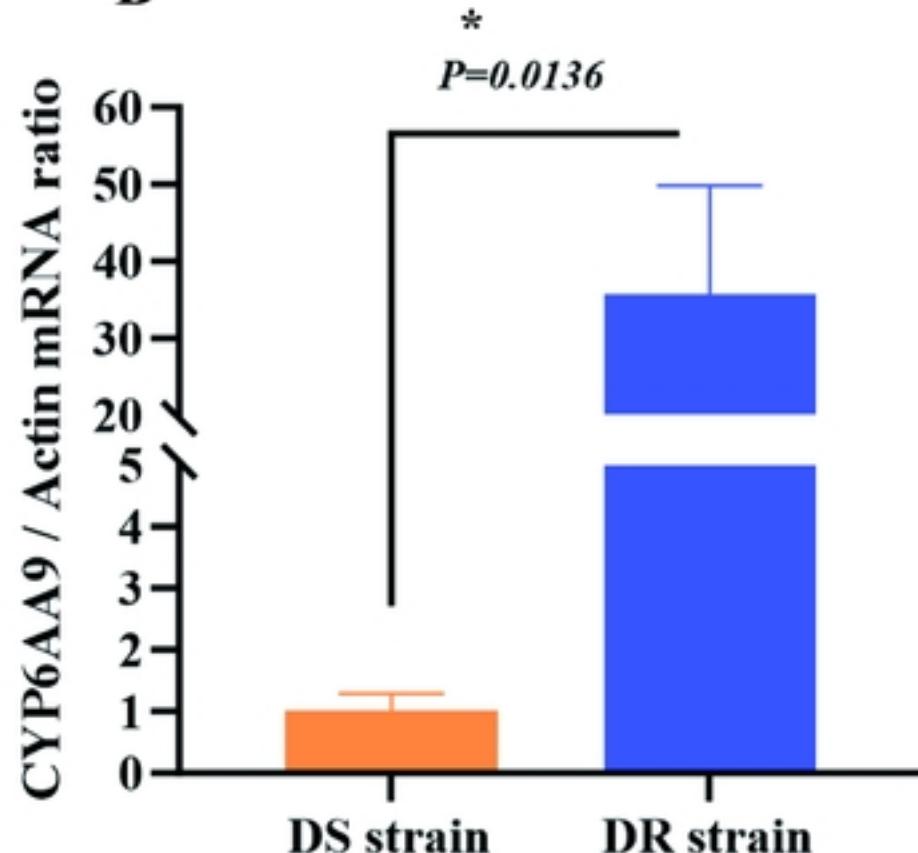
935

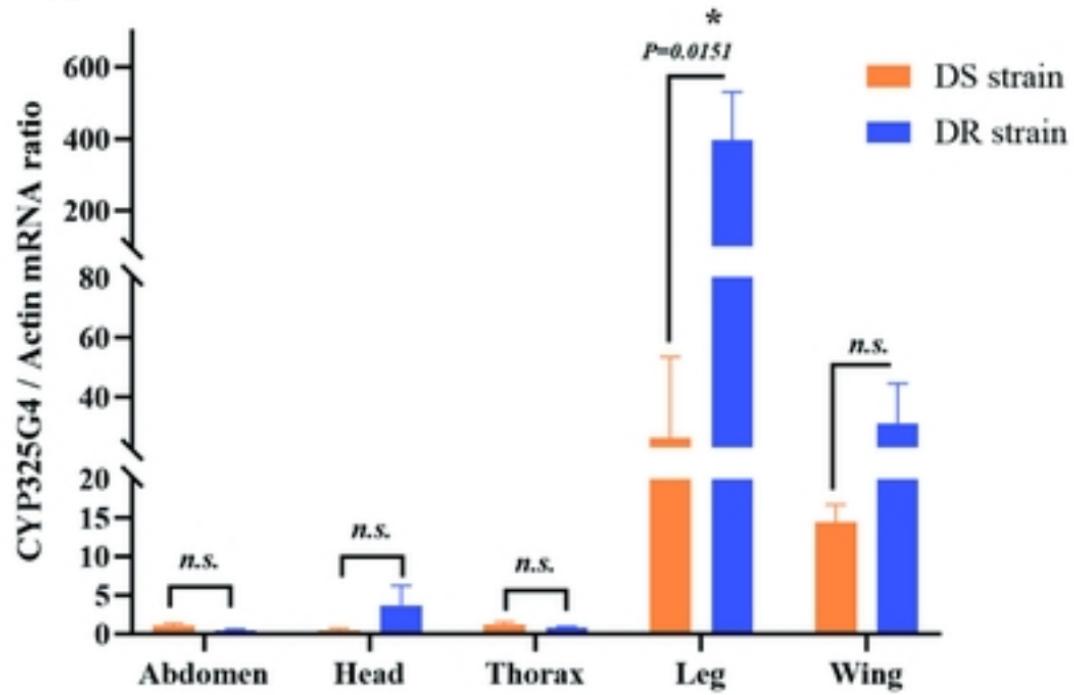
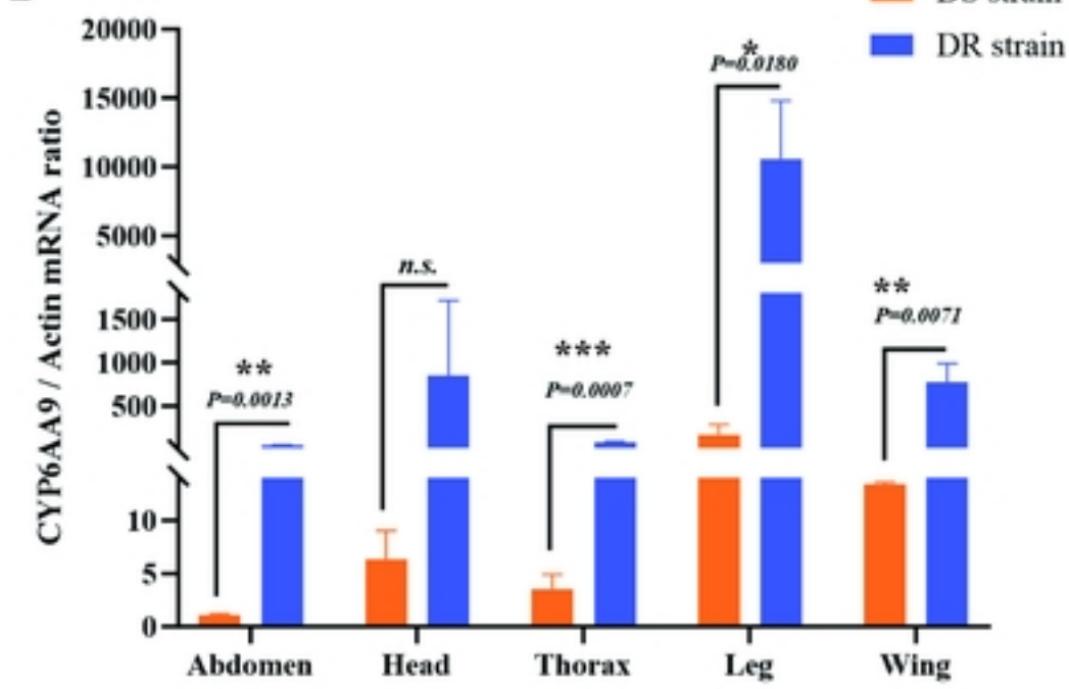
936 **Tables**

937 **Table 1. Average cuticle thickness of each group.**

938

939



Fig 1

A**B****D****C****Fig 2**

A**B****C****Fig 3**

A**B****C****Fig 4**

A**B****Fig 5**

A**B****Fig 6**

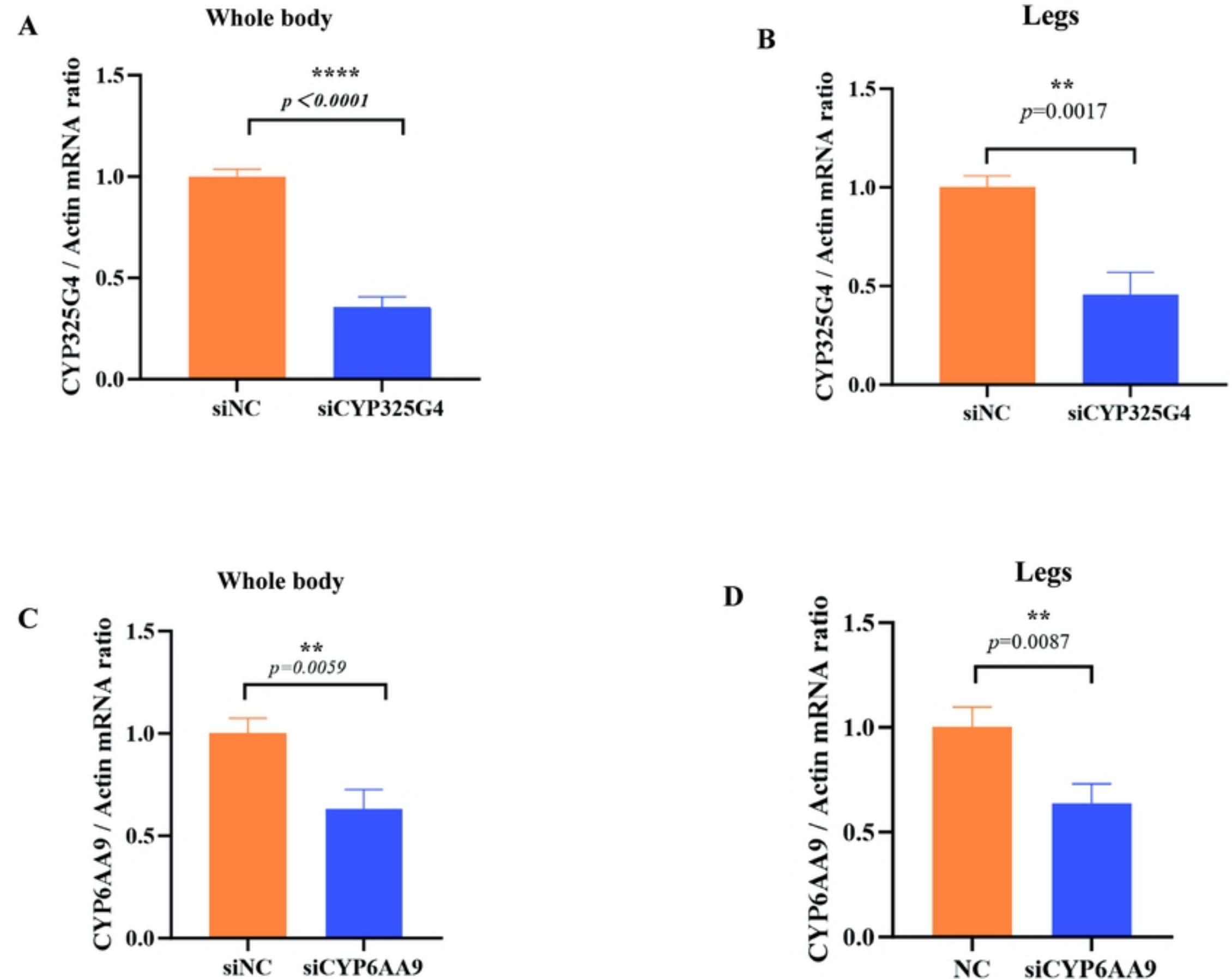


Fig 7

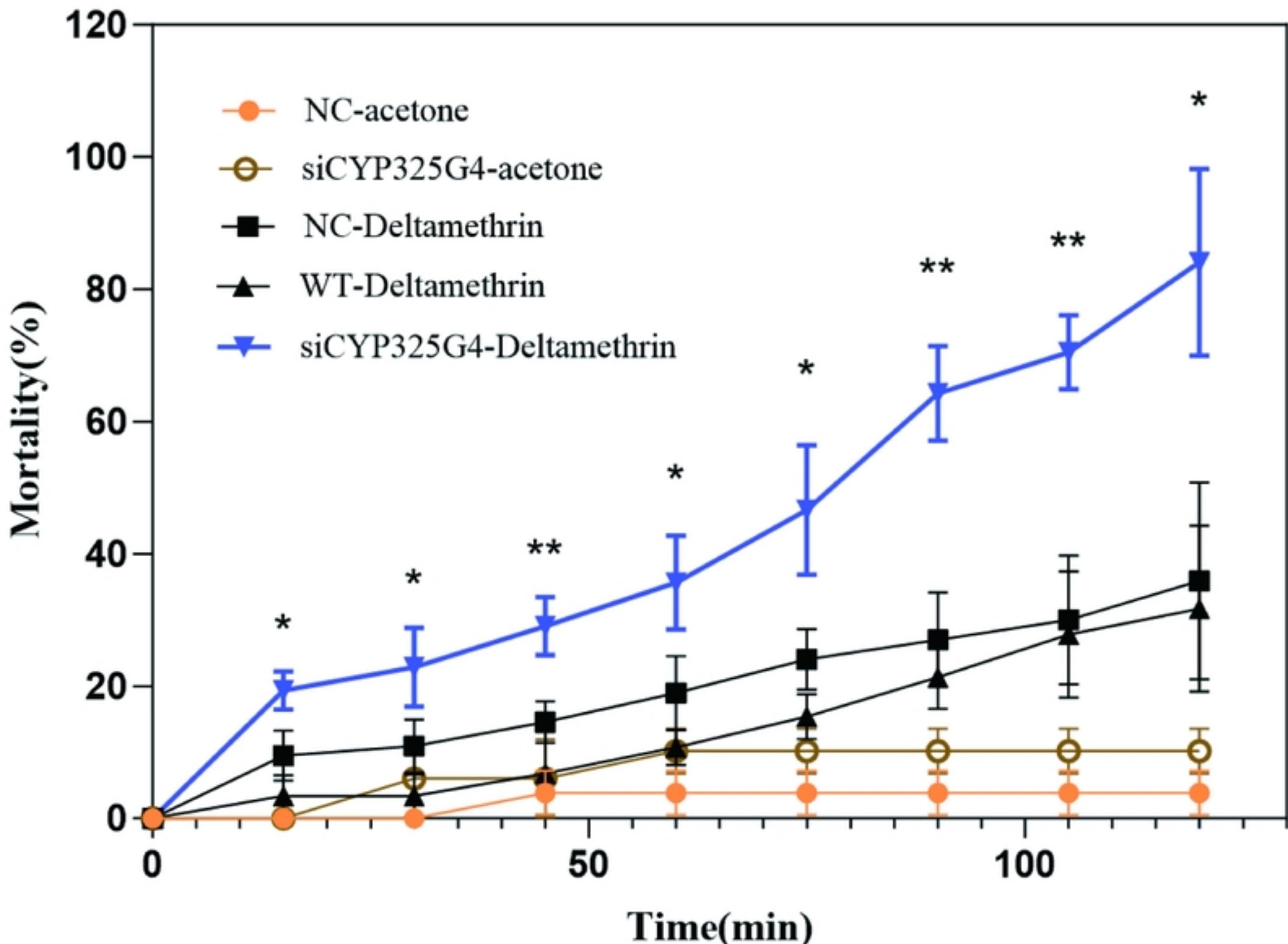


Fig 8

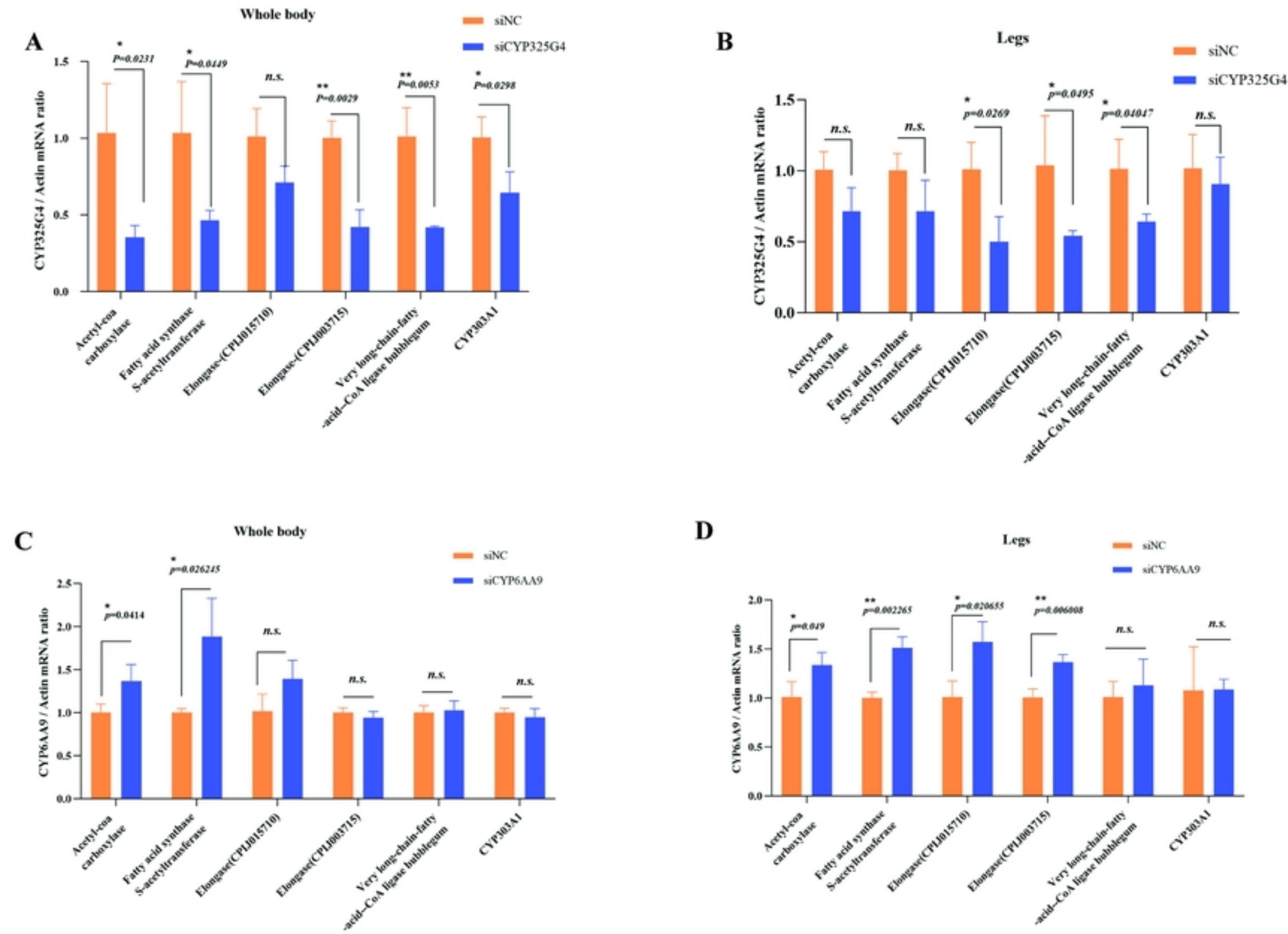
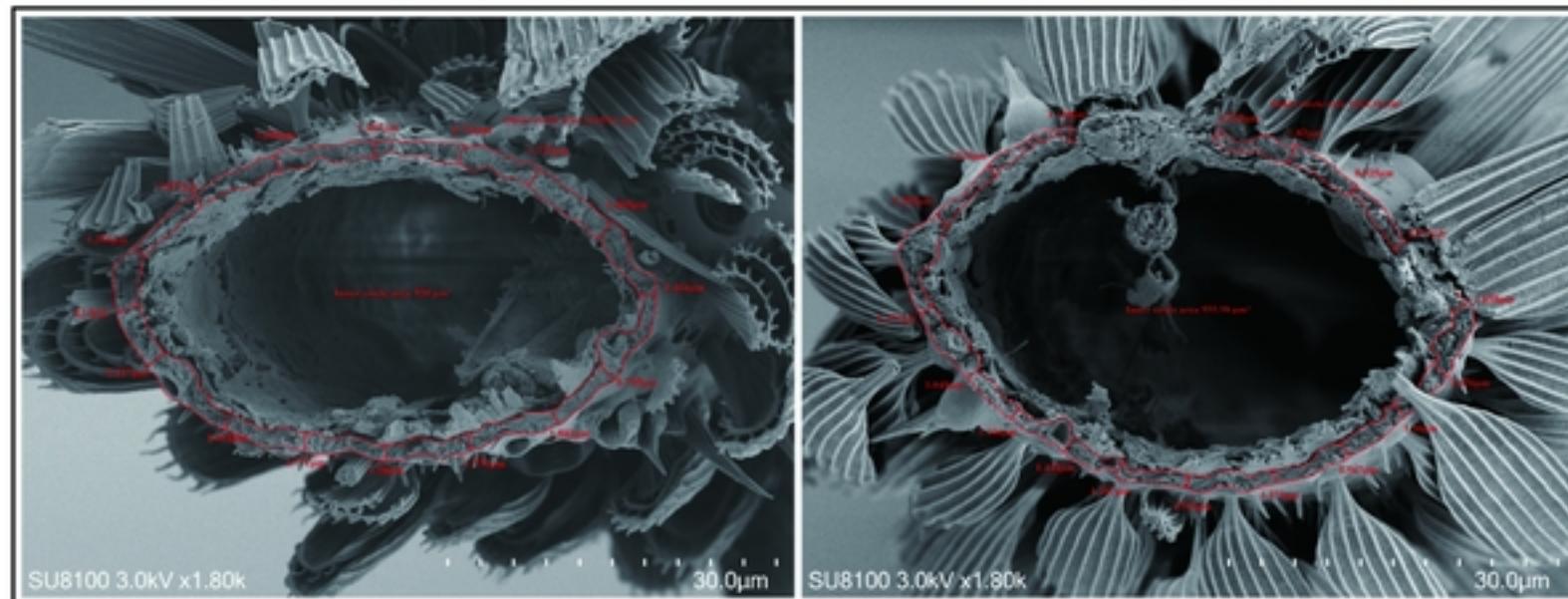
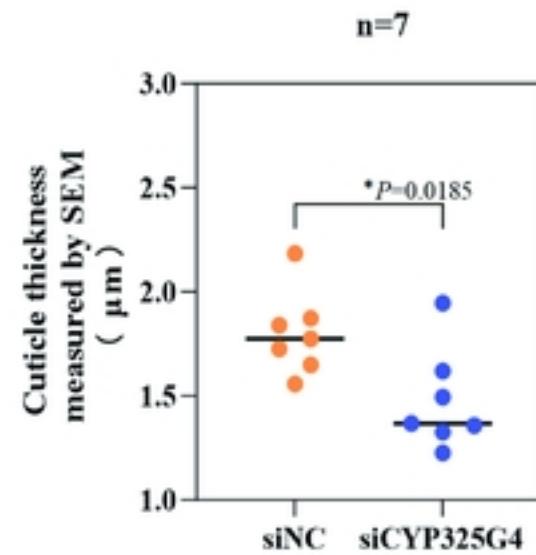
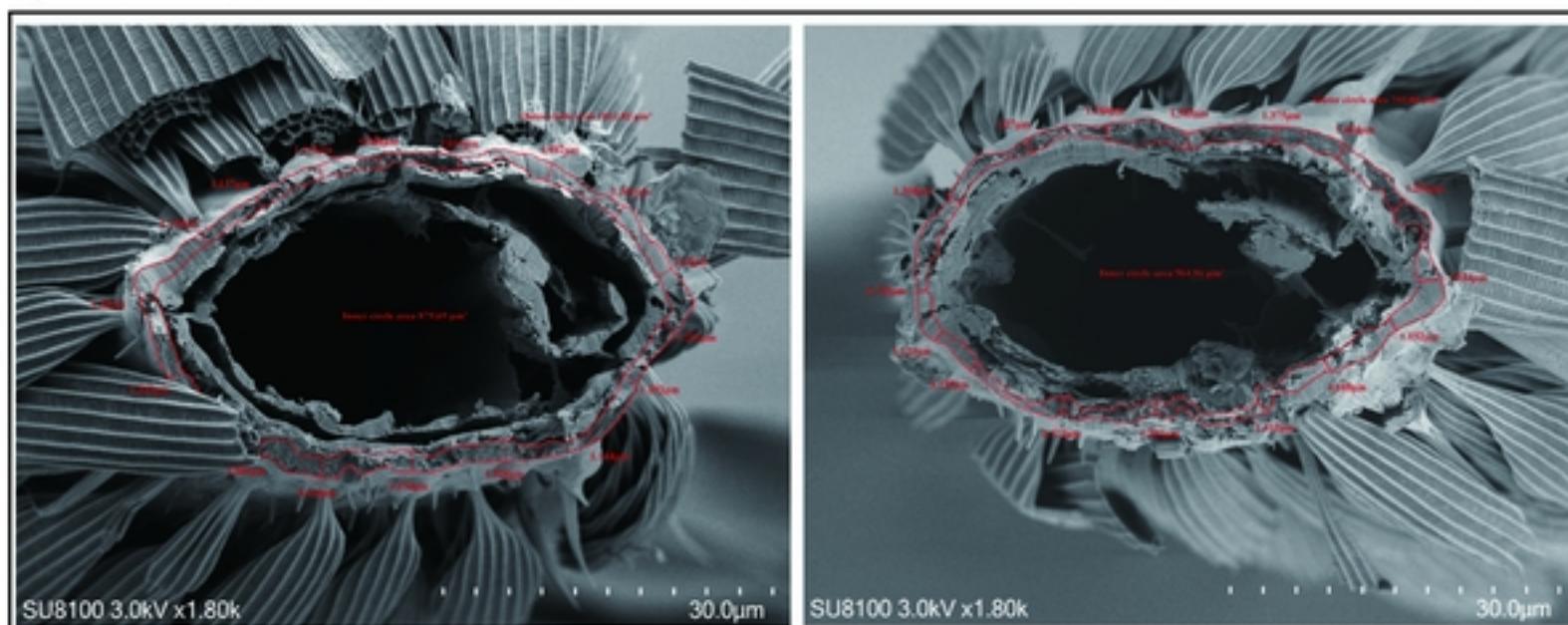



Fig 9


A

siNC

siCYP325G4


B

C

siNC

siCYP6AA9

D

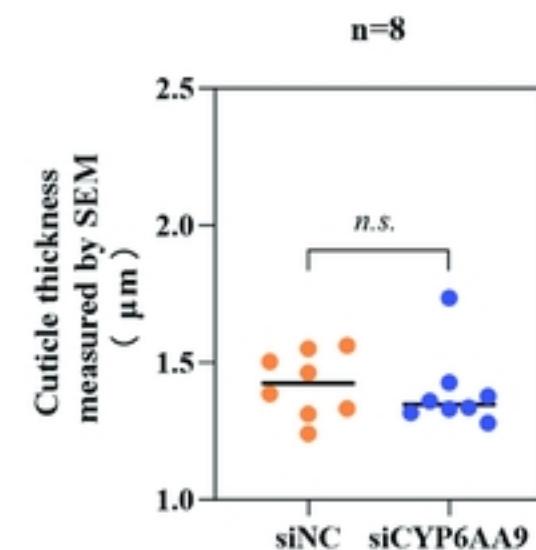
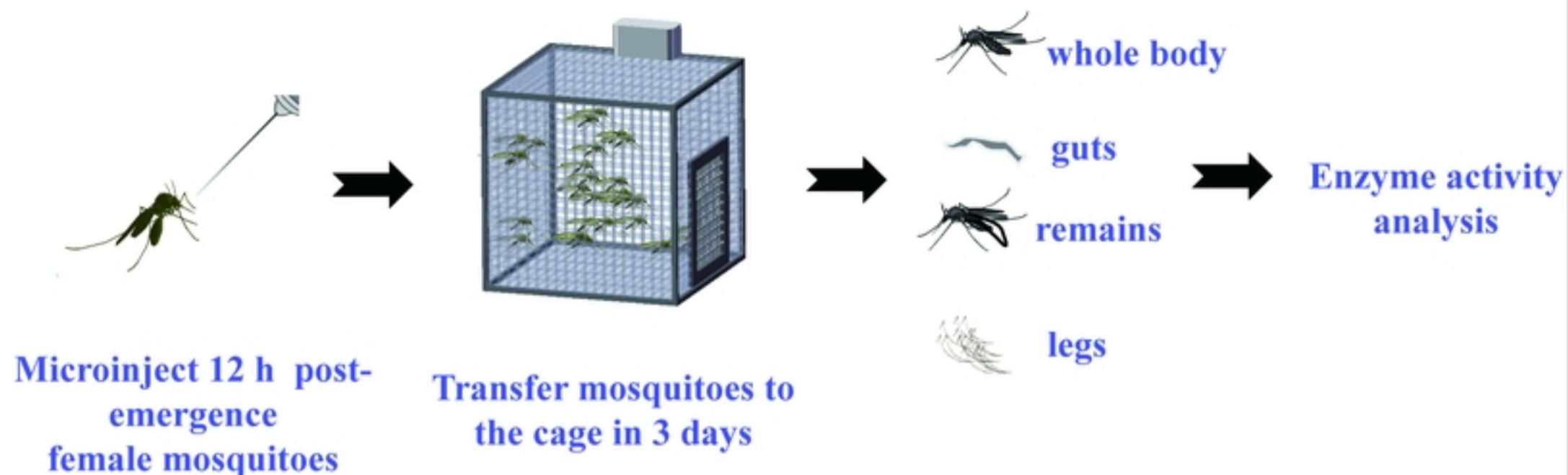
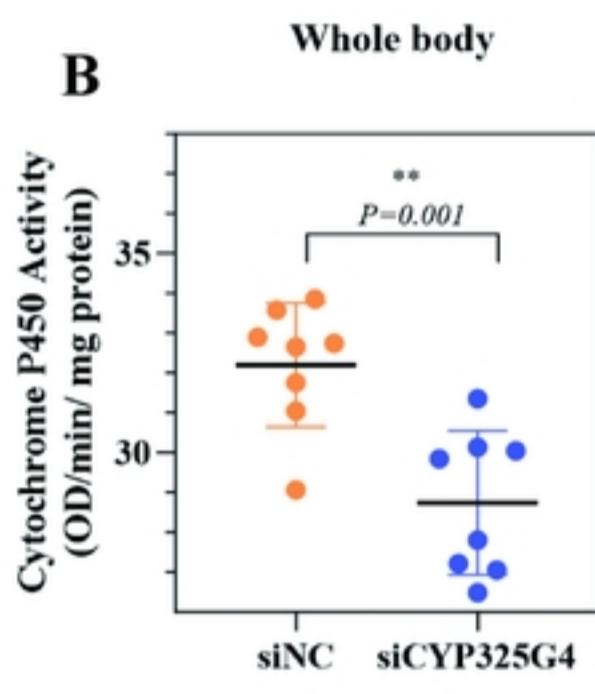
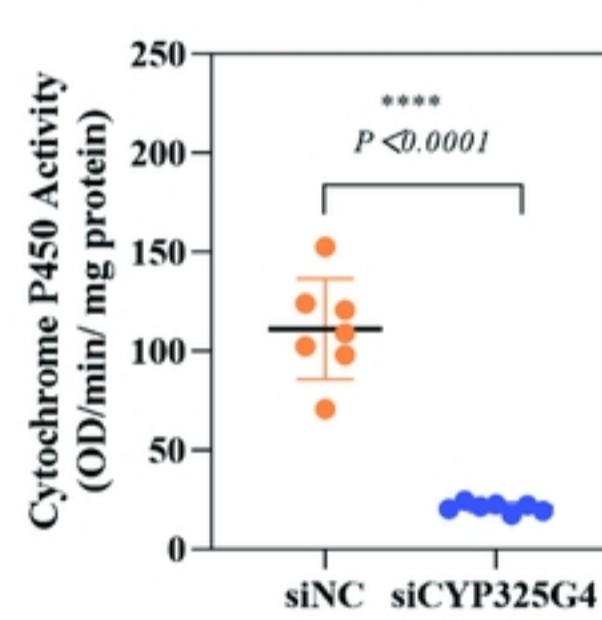
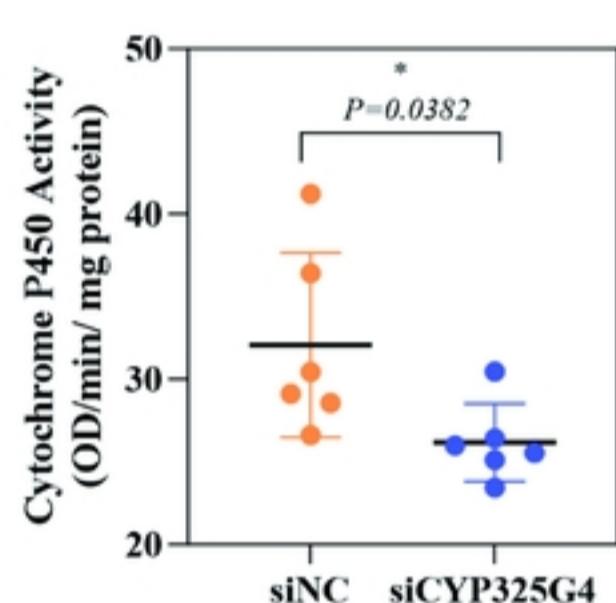
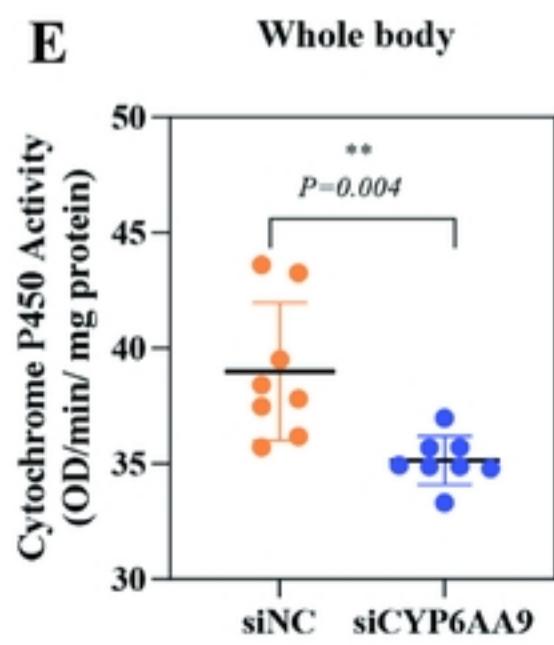
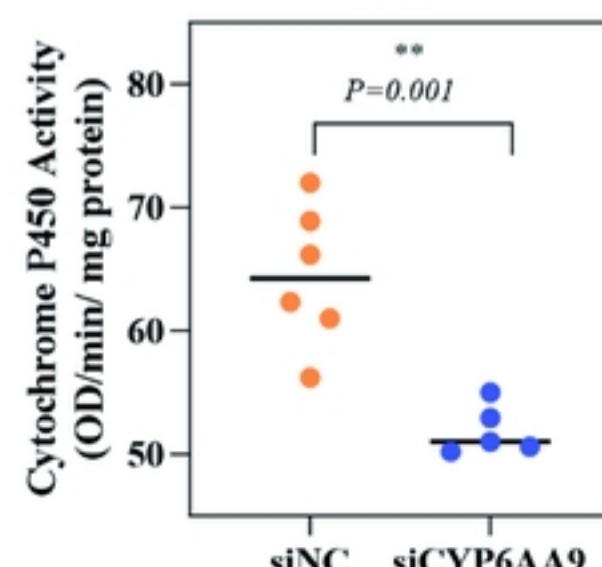
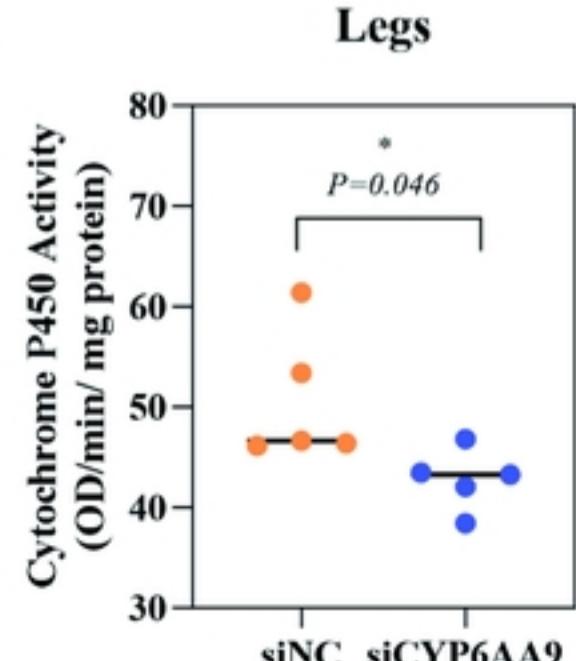









Fig 10

A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.05.13.593821>; this version posted May 14, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**C****D****E****F****G**