

1 **Compositional restrictions in the flanking regions give**
2 **potential specificity and strength boost to binding in short**
3 **linear motifs**
4
5 **Short title: Functional relevance of linear motif flanking**
6 **regions**
7

8 Veronika Acs^{1,2}, Andras Hatos^{1,3}, Agnes Tantos¹, Lajos Kalmar^{1,4*}
9

10 ¹Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.

11 ²Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest,
12 Hungary.

13 ³Department of Computational Biology, University of Lausanne, Lausanne, Switzerland

14 ⁴MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom.

15

16

17 *Corresponding author

18 E-mail: lk397@cam.ac.uk

19

20

21 **Abstract**

22 Short linear motif (SLiM)-mediated protein–protein interactions play important roles in several
23 biological processes where transient binding is needed. They usually reside in intrinsically
24 disordered regions (IDRs), which makes them accessible for interaction. Although information
25 about the possible necessity of the flanking regions surrounding the motifs is increasingly
26 available, it is still unclear if there are any generic amino acid attributes that need to be
27 functionally preserved in these segments. Here, we describe the currently known ligand-binding
28 SLiMs and their flanking regions with biologically relevant residue features and analyse them
29 based on their simplified characteristics. Our bioinformatics analysis reveals several important
30 properties in the widely diverse motif environment that presumably need to be preserved for
31 proper motif function, but remained hidden so far. Our results will facilitate the understanding
32 of the evolution of SLiMs, while also hold potential for expanding and increasing the precision
33 of current motif prediction methods.

34

35

36 **Author summary**

37 Protein–protein interactions between short linear motifs and their binding domains play key
38 roles in several molecular processes. Mutations in these binding sites have been linked to severe
39 diseases, therefore, the interest in the motif research field has been dramatically increasing.
40 Based on the accumulated knowledge, it became evident that not only the short motif sequences
41 themselves, but their surrounding flanking regions also play crucial roles in motif structure and
42 function. Since most of the motifs tend to be located within highly variable disordered protein
43 regions, searching for functionally important physico-chemical properties in their proximity
44 could facilitate novel discoveries in this field. Here we show that the investigation of the motif
45 flanking regions based on different amino acid attributes can provide further information on
46 motif function. Based on our bioinformatics approach we have found so far hidden features that

47 are generally present within certain motif categories, thus could be used as additional
48 information in motif searching methods as well.

49

50

51 **Introduction**

52 Short linear motifs (SLiMs) are short modules of protein sequences that play crucial roles in
53 mediating and regulating protein–protein interactions, where transient and dynamic binding is
54 needed (e.g., signal transduction and regulatory processes) [1]. SLiMs are represented by a
55 limited number of constrained affinity- and specificity-determining residues within peptides
56 that are typically between 3 and 11 amino acids in length and can be described by regular
57 expression patterns. Due to the limited number of specificity determinants, novel SLiMs can
58 easily evolve *de novo*, adding new functionality to proteins [2]. Motif binding strongly depends
59 on the context, e.g., functional instances mainly occur inside intrinsically disordered regions
60 (IDRs) that are accessible for interaction [3,4].

61 Recently, together with publications focusing on the motif sequence, the number of articles
62 dealing with the possible contribution of the disordered flanking regions to motif function is
63 rising. For instance, Stein and Aloy have shown that the contextual contribution to the binding
64 energy of peptide-based interactions is 20% on average. Their results suggest that the context
65 plays a crucial role in maximising binding specificity [5]. Furthermore, coarse-grained
66 simulations have shown that aggregation of small hydrophobic binding motifs can be
67 suppressed by embedding the motifs in disordered regions that are able to sterically stabilise
68 the peptides and hinder the formation of aggregates [6]. In the case of SH2 domain binding
69 motifs Liu *et al.* have found that the contextual specificity is crucial for directing
70 phosphotyrosine signalling [7]. Moreover, Kelil *et al.* have found that although in the case of
71 predicted SH3-binding sites the amino acid sequences are highly conserved compared with their

72 flanking sequences, the latter segments also have a determinant role in positive/negative
73 binding selectivity [8].

74 Besides some observations related to the probable significance of motif flanking regions in
75 general, there are also examples on how these segments can specifically fine-tune motif
76 binding. One way is to potentially increase affinity via additional binding positions. This is the
77 case during the interaction of the nuclear coactivator binding domain (NCBD) of the CREB
78 binding protein (CBP) and the CBP interaction domain (CID) of the p160 transcriptional co-
79 activator NCOA3, where the binding of the relatively long interaction motif of CID is promoted
80 by short-lived non-specific hydrophobic and/or polar contacts between the flanking regions and
81 NCBD [9]. It has also been shown that the enterohaemorrhagic *Escherichia coli* (EHEC) protein
82 EspFU provides a superior binding affinity compared to cellular ligands of the SH3 domain of
83 the host insulin receptor tyrosine kinase (IRTKS) by utilizing a tryptophan switch in the
84 tripeptide linker between its two PxxP motifs [10]. Another example is the proliferating cell
85 nuclear antigen (PCNA), a cellular hub protein in DNA replication and repair, which is also a
86 potential anti-cancer target. Several proteins interact with PCNA via a SLiM known as the
87 PCNA-interacting protein-box (PIP-box). A systematic study has revealed that the PIP-box
88 affinity can be modulated over four orders of magnitude by additional positively charged
89 residues in the flanking regions [11]. Recently, a new screening method uncovered examples
90 on how the context can influence SLiM's binding to the EVH1 domain of the cytoskeleton
91 regulator ENAH, that is highly expressed in invasive cancers [12]. In addition, the presence of
92 aromatic residues directly flanking a SLiM in the actin bundling protein Drebrin prevents its
93 interaction with the scaffold protein Homer, which interaction is likely involved in the
94 modulation of synaptic actin cytoskeletons. This example shows that SLiM sequence context
95 can also inhibit motif-based interactions [13]. Furthermore, it has been suggested that the
96 flanking region of radical induced cell death 1 (RCD1)-binding SLiM of DREB2A

97 (Dehydration responsive element binding-protein, a transcription factor known to be involved
98 in plant stress responses) contributes to the stabilisation of the complex possibly through
99 enthalpy-entropy compensation [14].

100 Many viral proteins use SLiMs in host-pathogen interactions that resemble motifs carried by
101 host proteins. This phenomenon is called linear motif mimicry and helps viruses or other
102 pathogens hijack and deregulate host cellular pathways [15]. These pathogenic SLiMs also
103 often use additional binding sites in their flanking regions to overcome their host counterparts.
104 For instance, the Retinoblastoma protein (pRb)-binding LxCxE and pRb AB groove SLiMs
105 contain charged amino acid stretches in their flanking segments and thereby fine-tune their
106 binding affinity and specificity [16,17]. In addition, phosphorylation of flanking residues can
107 also regulate LxCxE motif binding [18].

108 In many cases, SLiMs can adopt a well-defined structure before or during partner binding that
109 is also largely influenced by flanking residues. The length and stability of these transient
110 secondary structural elements is crucial for proper complex formation and the mutation of even
111 a single position can have a dramatic effect on the structure and consequently on the function
112 as well. Helix-capping prolines can influence residual helicity and binding affinity by
113 controlling the length of the helix, thus the lifetime of the bound complex. This has been shown
114 in the case of the MDM2-binding motif of the p53 protein, where the proline 27 to alanine
115 (P27A) mutation increases the residual helicity and causes a 10-fold increase in affinity for its
116 ordered binding partner, MDM2. This high-affinity binding to MDM2 is associated with short
117 and weak pulses of p53 activity and reduced p21 expression [19]. However, mutation of helix-
118 flanking prolines to alanines is not always associated with an increase in affinity, as a significant
119 decrease was observed for MLL:KIX, presumably due to the influence of the Pro residue on
120 the interaction of the preceding Leu side chain [20]. The helix initiating and terminating role of
121 helix-capping prolines has also been demonstrated by molecular dynamics (MD) simulations

122 of pre-structured motifs (PreSMos) [21]. Furthermore, it has been suggested that the presence
123 of proline residues adjacent to the RGD motif in dendroaspin and other venom proteins may
124 provide a favourable conformation of the solvent-exposed RGD site for its interaction with
125 integrin receptors [22].

126 The above findings show that beyond flexibility and accessibility in general, utilizing the
127 disordered context seems to be a perfect way to specifically fine-tune the motif's binding
128 properties through contributing to its specificity and binding affinity, or influencing its
129 regulation and even its structure. It is still unclear, however, if these segments share any
130 properties in common, which would be indispensable for the emergence of novel functional
131 motifs in a highly variable environment. Such additional information besides the very short and
132 often degenerate regular expressions would make the prediction of these binding sites more
133 accurate as well. In the case of IDRs, Zarin et. al have already shown using an evolutionary
134 approach that most disordered regions contain multiple molecular features that are under
135 selection and that IDRs with similar evolutionary signatures are capable of rescuing function *in*
136 *vivo*. Their results indicate that sequence-based prediction of IDR functions should be possible
137 based on their physico-chemical properties [23].

138 Thus, to shed light on the possible role of hitherto unrecognised properties in the function of
139 SLiMs and their surrounding disordered regions, we collected all the known experimentally
140 validated ligand-binding motifs and described them and their flanking regions with different
141 amino acid indices. Our main goal was to find general attributes which need to be preserved
142 within the disordered flanking regions of SLiMs for proper functioning. The results of the
143 present bioinformatics study demonstrate that despite the high sequence diversity within the
144 motif context in general, some restrictions can be found regarding the composition of the
145 flanking regions in several motif classes and in higher motif categories as well.

146

147

148 **Results**

149 To find so far hidden properties and function-determining factors in the known domain-binding
150 motifs and their flanking regions we started with developing a new approach that could help us
151 further understand their features and characteristics. Motifs are usually embedded in IDRs and
152 it has already been shown that around 20 residues can be considered as unstructured on both
153 sides [3]. Based on earlier findings in the field of SLiMs (see Introduction) we propose that the
154 function-determining factors within their flanking regions are usually not position-specific and
155 cannot be captured by examining the conservation of the amino acid sequence itself. In addition,
156 the determination of motif boundaries can also be challenging in many cases since they can be
157 extremely difficult to define even with experimental methods. Therefore, we aimed to
158 investigate different parts of the flanking regions within 20 residues from the motif boundaries
159 instead of specific positions. We also suggest, based on previous findings in the field of IDRs
160 that the composition and the physico-chemical properties of these protein segments must be the
161 key to find additional information on their function. Thus, we have decided to examine the
162 motifs and their flanking regions based on functionally important amino acid properties /
163 indices. To reduce complexity and to ensure that the sequences could be comparable, we have
164 used simplified numbers representing the original indices of each amino acid. The mean values
165 of different flanking segments have also been calculated to capture their basic characteristics.

166

167 **Characterisation of the flanking regions by simplified amino acid
168 properties.**

169 We performed a property-based bioinformatics analysis on the flanking regions of domain-
170 binding motifs, where we focused on the attribute diversity and restrictions in 6 different parts

171 of these segments. To this end, we retrieved all the known experimentally validated general
172 ligand-binding sites from the ELM (true positive LIG, DEG and DOC motif instances) and
173 LMPID databases. Both databases contain manually curated motifs from the literature.
174 Although ELM is the most widely used resource of SLiMs and is also more regularly updated
175 compared to LMPID, with careful reconciliation of motif classes and boundaries the latter could
176 perfectly complement our dataset. For the property-based analysis we decided to characterise
177 the disordered flanking segments of motifs with 8 biologically relevant amino acid indices that
178 reliably represent their physical, chemical or structural characteristics and are not highly
179 correlated with each other: Kyte-Doolittle hydropathy, volume, isoelectric point, charge,
180 negative charge, positive charge, proline content and serine/threonine content. Hydropathy, net
181 charge and volume are attributes that are known to have the ability to distinguish between order
182 and disorder [24,25] tendencies. Since flanking regions have considerably less charged residues
183 than IDRs [3], we used charge content instead of net charge in this work for the comparison of
184 different parts of the flanking regions. In addition, proline-rich segments, highly negatively and
185 positively charged sequences [26], as well as the number of phosphorylation sites can also be
186 determining for the function within IDRs [27]. To create a robust and comparable dataset, the
187 residues of the motifs and their 20 residue-long flanking segments were substituted with
188 numbers (1 to 5) representing the linearly rescaled AAindex values of each amino acid for a
189 given feature (see Methods, S1 Appendix and S2 Appendix). Since this work addresses
190 characteristic physico-chemical features of SLiMs and their flanking regions, we divided the
191 flanking regions into smaller, 5 and 10 residues long segments and performed calculations and
192 comparisons on these regions separately. Through this approach, the simplified properties of
193 each part of the flanking regions could be determined and further examined (Fig 1).

194

195 **Fig 1. Schematic representation of the indexing process using amino acid size as an example**
196 **feature.**

197
198 **The flanking regions show higher property diversity than the**
199 **motifs.**

200 In the ELM database, SLiMs are categorised into motif classes, where instances share function
201 or partner domain and are described with the same regular expression [28]. The motif core –
202 which is sufficient for partner binding – is defined by fixed and degenerate positions (where
203 none, or only limited types of substitutions are tolerated) and additional sequential restrictions
204 (like prohibited residues in certain positions) that are specific to each class and provide relevant
205 information for motif searching methods. Here, the ranges (largest differences) of the property
206 mean values of the motifs and their 5 AA-long N- and C-terminal flanking segments (N5 and
207 C5, respectively) were calculated for 42 motif classes (classes that contain at least 10 motif
208 instances in our dataset) (S1 Table). From these data, 6 attributes of 10 randomly selected
209 representative motif classes are shown in Fig 2A. We found that the flanking regions tend to
210 show higher diversity for all investigated features, compared to the motifs. To confirm this
211 finding statistically, we performed paired t-tests using the ranges of the 42 large classes. We
212 found that both the N5 and C5 regions show significantly higher diversity than the motifs (the
213 p-values were $<1.23E-07$ for all the 8 properties) (S2 Table). Moreover, in the case of the 10
214 randomly selected classes, the difference between the maximum and minimum mean values of
215 the motifs is at most 2.0, while in the 5 residue-long flanking sequences goes up to 4.0.
216 However, we also observed in a few cases that the motifs also show relatively high variability
217 (e.g., the proline content of the LIG_SH3_3 and DOC_WW_Pin1_4 classes, the Ser/Thr content
218 of DOC_WW_Pin1_4 class, or the charge content of LIG_SH2_CRK and
219 LIG_SUMO_SIM_anti_2 classes (S1 Table).

220

221 **Fig 2. Variability of properties within the motifs and their flanking regions.** N5: first 5 residues
222 upstream of the motif, C5: first 5 residues downstream of the motif. A: Largest ranges of mean values
223 within 10 randomly selected motif classes are shown. B: Largest ranges of mean values of 6 motif classes
224 where small (≤ 0.8) variety can be found within both flanking regions. Darker green colours represent
225 higher variations, yellow colours represent smaller variations.

226

227 In the case of proline, serine/threonine and charge indices, if the contents of two sequences
228 differ by only one amino acid (e.g., 0 or 1 proline is present) within a 5 residue-long region, the
229 difference between the mean values will be 0.8. Thus, a maximum value of 0.8 is considered a
230 small range, while a value of > 0.8 is considered a high range (maximum – minimum mean
231 value of a region) within a motif class. Analysing the ranges using this threshold we observed
232 that in some cases flanking segments also show low variety, especially in their proline content
233 or negative/positive charge contents (S1 Table). These results indicate that in some motif
234 classes flanking regions close to the motif core may also have features that need to be under
235 evolutionary constraint. In this first analysis we filtered the motif flanking regions to be highly
236 disordered (see Methods) to ensure that potentially structured flanking regions (that may
237 influence the binding properties and transient structure of the motif) are not included. In the
238 next section we extend the scope for all motifs and flanking regions to validate if these findings
239 are generally applicable to certain ELM classes.

240

241

242 **Several motif classes show low property variety close to the motif**
243 **core.**

244 We repeated the previous analysis with all the available motif instances of the ELM database
245 (version of February 2023, without disorder filtering) in the case of those motif classes, where
246 we earlier found a property with low variety (a maximum of 0.8 range) within at least one of
247 their flanking regions. We found 19 elm classes where at least one of the investigated amino
248 acid properties were conserved within the 5-residue long flanking regions (Table 1).
249 Furthermore, in 6 out of the 19 classes we observed small variations that were symmetrical (the
250 ranges are small on both sides of the motifs) (Fig 2B). Overall, the LIG_PROFILIN motif class
251 shows the highest conservation of charge properties in both flanking regions due to the complete
252 lack of charged residues adjacent to its motif instances. These proline-rich SLiMs bind to a
253 hydrophobic groove of profilin, a key regulator in actin polymerization, and based on our
254 results, charged side chains are not tolerated for this interaction. LIG_PROFILIN motifs are
255 often involved in multiple binding, while their flanking regions are also enriched in Gly and
256 Pro residues, thus, extreme flexibility may also be crucial for their functions.
257 LIG_Actin_WH2_2 motifs also contribute to actin filament assembly through binding to G-
258 actin. They all consist of an N-terminal short helical, and a C-terminal disordered region. We
259 found that the proline content of the N5 and C5 flaking regions of WH2 SLiMs is generally low
260 (0 or 1 Pro occurs in these sequences). Similarly, the nuclear receptor (NR)-binding
261 LIG_NRBOX motifs adopt helical structures upon binding and based on our findings, a
262 maximum of 1 proline residue is tolerated within their proximity. The 5 residue-long flanking
263 regions in the GTPase-binding domain (GBD) ligand LIG_GBD_Chelix_1 motif class also
264 seem to be under constraint. Both N5 and C5 contain at most 1 negatively charged residue,
265 while the mean hydropathy of N5 and the volume, Pro content and Ser/Thr content of C5 all
266 show very low diversity among the instances of the motif class. In the class LIG_KLC1_WD_1
267 – which binds to the TPR domain of kinesin light chain 1 and is involved in cellular cargo
268 transport –, a maximum of 1 positively charged residue can be found in the N-terminal flanking

269 regions of the instances. This is in accord with the fact that the surface of the binding groove of
270 the TPR domain is positively charged which can ideally stabilise the acidic binding motif
271 through electrostatic interactions [29].

272

273 **Table 1. Conserved properties in the flanking regions.** ELM classes, where certain AA properties of
274 the 5 residue-long flanking regions are preserved are shown (the difference between the maximum and
275 minimum mean values is ≤ 0.8).

	N5	C5
Charge	LIG_PROFILIN_1	LIG_PROFILIN_1
Ser/Thr content		LIG_GBD_Chelix_1
Pro content	LIG_NRBOX LIG_Actin_WH2_2 DOC_PP4_FxxP_1	LIG_NRBOX LIG_Actin_WH2_2 LIG_GBD_Chelix_1
Hydropathy	LIG_GBD_Chelix_1	
Volume		LIG_GBD_Chelix_1
Isoelectric point	LIG_PROFILIN_1 LIG_HOMEobox	LIG_PROFILIN_1
Positive charge	LIG_EVH1_1 DOC_PP4_FxxP_1 LIG_PROFILIN_1 LIG_HOMEobox LIG_KLC1_WD_1 LIG_CtBP_PxDLS_1 LIG_WRPW_1 LIG_SUMO_SIM_anti_2	DOC_SPAK_OSRI_1 LIG_EVH1_1 LIG_PROFILIN_1 DOC_MAPK_NFAT4_5
Negative charge	LIG_PROFILIN_1 LIG_GBD_Chelix_1 LIG_HOMEobox DOC_MAPK_JIP1_4 LIG_SH3_1	LIG_WW_1 LIG_CSL_BTD_1 LIG_PROFILIN_1 LIG_GBD_Chelix_1 LIG_HOMEobox LIG_CtBP_PxDLS_1 LIG_PCNA_PIPBox_1 LIG_PAM2_1

276

277

278 **The percentage distribution of properties is similar in different**
279 **parts of the flanking regions.**

280 To find out if there are any differences between the frequencies of properties in different parts
281 of the flanking regions, we calculated the percentage distribution of 5 simplified mean values
282 in 6 parts of our sequences (Fig 3). This analysis was performed on 20x120 random samples
283 from our nonredundant and nonbiased collection (1192 motifs, see Methods). Here, besides the
284 simplified low (the mean value of the region is >1 and ≤ 2), medium (the mean value is >2 and
285 ≤ 3), high (the mean value is >3 and ≤ 4), and very high (the mean value is >4) categories, we
286 also included 'none' mean value indicating that such an attribute is not present within a protein
287 region (the mean value is 1). We found that different parts of the context usually show very
288 similar properties in the N- and C-terminal flanking regions, and in most cases, in the first and
289 second 10 residue-long flanking regions (regions 1-10 and 11-20, respectively) as well.

290 Although no remarkable differences could be detected comparing these regions, some
291 characteristic preferences could be established for the flanking segments. For example,
292 regarding the Kyte-Doolittle hydropathy and isoelectric point, all the 6 investigated regions
293 tend to show intermediate (medium) mean values, sequences with low and high mean values
294 also occur, but the extremities are not represented (Figs 3A and B). For the residue volume
295 index, medium and low mean values occur most frequently, but among the C1-5 regions some
296 show 'none' values (where the mean value is 1, since only Ala, Gly, Pro or Ser residues occur
297 within the sequence). Not surprisingly, there are no regions with very high mean side chain
298 volume values amongst our disordered flanking sequences as high-volume residues typically
299 have large hydrophobic side chains (Fig 3C).

300

301 **Fig 3. The frequencies of property means in different parts of the flanking regions** (1192 motifs,
302 random 20x120 sequences, 80% maximum similarity). N: N-terminal flanking, C: C-terminal
303 flanking.

304
305 Focusing on the Ser/Thr content, in N1-5 and C1-5 regions, 'none' and low mean values are
306 the most common. High and very high Ser/Thr content is rare in all regions, while there are no
307 sequences with very high values within the first 10 residue-long flanking segments (N1-10 and
308 C1-10) (Fig 3D).

309 Proline content is also very similar in the N-and C-terminal flanking regions. More than 50%
310 of the sequences do not contain any proline residues within 5 amino acids, while high and very
311 high Pro content is extremely rare. In N1-10 very high means of Pro content are completely
312 missing (Fig 3E).

313 The highest variability can be found in the case of charge content, where low and medium mean
314 values are relatively common within N1-5 and C1-5, but highly charged sequences also occur.
315 In the 10 residue-long flanking regions most sequences have low or medium mean values, but
316 highly charged and uncharged sequences are also present in our dataset. Interestingly, the
317 mostly charged region is N1-10, where we can see some slight differences ('none' mean charge
318 is less frequent, while medium is more frequent) comparing with the other parts of the flanking
319 regions (Fig 3F). Within N1-5 and C1-5, most sequences do not have positively charged
320 residues, while it is rare that motifs are embedded in a highly positively charged protein region.
321 Interestingly, very high mean values cannot be found in the 10 amino acid-long segments of
322 the flanking regions at all, indicating that too many positively charged residues close to each
323 other are not favourable in the motifs' proximity (Fig 3G). Negative charge content shows very
324 similar tendencies to positive charge content, except that medium, high and very high mean
325 values all show higher frequencies in the former case (Fig 3H).

326

327

328 **Specific compositional biases in the different ELM category motif flanking regions.**

329 Since the 2014 release of ELM, docking (DOC) and degradation (degron, DEG) motifs have
330 been classified separately from the classical ligand-binding (LIG) sites [2]. Although all three
331 types are ligands of globular domains, docking sites typically interact with kinases and
332 phosphatases separate from the active site [30], while DEG motifs target the protein for
333 degradation, and several mutations in their flanking segments have been linked with decreased
334 degradation rates and severe diseases [31]. To see if there are any differences in the distribution
335 of properties between the 3 separated subcategories, we repeated the previous analysis with
336 smaller datasets including only LIG, DEG or DOC motifs (S1 Fig). Only slight differences can
337 be detected in the distribution of flanking properties comparing the 3 subcategories. The most
338 remarkable finding is that in at least one of the 3 investigated categories some ranges of mean
339 property values that could theoretically occur within IDRs are not found at all. For instance,
340 among the flanking regions N1-10 and C1-10 of DEG type motif classes there are no sequences
341 with very high charge content, while the same flanking regions of certain LIG and DOC type
342 motifs are highly charged. The 10 residue-long flanking regions of degrons also seem to lack
343 sequences with very high proline content (this is also true for DOC N1-10, N11-20, and C1-
344 10), while there are several LIG motifs in our dataset that are surrounded by many proline
345 residues.

346 To see what properties are completely missing in the sequence context of all the currently
347 known ligand-binding SLiMs, we collected all motifs and their flanking segments from the
348 latest version of the ELM database (last modified on: March 14, 2023) and repeated the analysis
349 without redundancy and disorder filtering. The occurrence of sequences with extreme
350 composition ('none', high and very high mean values) in the LIG/DEG/DOC datasets is
351 summarized in Fig 4. Here, the most interesting observation regarding all ligand-binding motifs

352 (all the 3 subcategories) is that very high positive charge mean values are completely missing
353 in the 10 residue-long flanking segments, while very high negative charge can occur in some
354 regions. While there are no sequences with very high negative charge in the N-terminal flanking
355 segments of the DEG and DOC motifs, SLiMs of the LIG subcategory can be highly negatively
356 charged. Apparently, unlike DEG and DOC motifs, LIG sequences can be embedded in a more
357 structured or an extremely flexible environment as well, since very high mean hydropathy
358 values and 'none' mean volume values (where only tiny residues are present) are both tolerated
359 by functional LIG SLiMs. Furthermore, LIG, DOC and DEG SLiMs all have flanking segments
360 where very high Ser/Thr content does not occur. Degrons seem to have the most restrictions
361 regarding the composition of their flanking regions. Unlike LIG motifs and docking sites, they
362 are not located in regions where the 10 residue-long flanking segments have very high proline
363 content, or the first 10 residues are extremely charged.

364
365 **Fig 4. Occurrence of 'none', 'high' and 'very high' mean values in the LIG/DOC/DEG flanking**
366 **regions.** The coloured cells indicate that sequences with such mean value are present in the dataset,
367 while 'x' denotes that there are no sequences with such property in the given category.

368
369 **Overlapping and adjacent motifs have smaller means of volume in general.**
370 It has been already shown that SLiMs are abundant in hydrophobic and charged residues (which
371 is particularly important for partner recognition), while are also enriched in floppy and rigid
372 amino acids, which distinguishes them from both globular and disordered protein regions.
373 Flanking regions, however, are depleted in hydrophobic residues and contain less charged
374 amino acids than generic IDRs [3]. This raises the question whether those motifs that are
375 situated in another motif's proximity – thus, theoretically need to function as a ligand-binding
376 site and a flexible flanking region of another motif at the same time – show any differences
377 compared to those SLiMs which are 'alone' in an unstructured region. To test this, we collected

378 those motifs that are located close to another known, experimentally validated ligand-binding
379 motif (overlapping/adjacent motifs overlap with another LIG/DOC/DEG motif but have at least
380 4 residues outside the other motif's core or start within another motif's 8 residue-long flanking
381 region). As a control dataset we used the remaining of our motif collection, after removing
382 overlapping motifs and close proximity motif incidences (where other known LIG/DEG/DOC
383 motifs can be found within 10 residues from the motif's boundaries). While we cannot exclude
384 the presence of yet unknown motifs in the flanking regions of these motifs, we believe it is
385 much less enriched and can be used in the comparison. The most remarkable differences could
386 be detected in the case of volume index, where we found that overlapping/adjacent motifs have
387 smaller means of side chain volume in general, compared to the control dataset (Fig 5A). They
388 also use more Ser/Thr and Pro residues, while have less hydrophobic side chains (Figs 5B, C
389 and D). These latter findings also explain the difference in the means of volume index between
390 the two datasets. It is also noteworthy, that in the case of charge content, isoelectric point, and
391 positive/negative charge content separately, we could not detect remarkable differences
392 between the two datasets. Overlapping and adjacent SLiMs can derive from the same, or even
393 from different motif classes, and there are many examples in the literature on how they can
394 influence each other (e.g., co-operatively or even competitively) [32]. Based on these data it is
395 plausible that the usage of more small/tiny residues in the case of overlapping/adjacent SLiMs
396 is necessary to avoid steric interference between the motifs as well as to retain local flexibility.

397

398 **Fig 5. The frequencies of property mean values of overlapping/adjacent motifs and the control**
399 **dataset.** N: None, L: Low, M: Medium, H: High and V: Very high.

400

401 **Discussion**

402 Earlier, the work of Chica *et al.* already indicated that the prediction of linear motifs can be
403 complemented with contextual information [33]. Conversely, Davey *et al.* have found that
404 functional SLiMs show higher levels of conservation than their context, and that flanking
405 regions of targeting and ligand binding sites most closely resemble the IDRs based on amino
406 acid attributes of the sequences [34]. In the present study we focused on the potential
407 contribution of the flanking regions to motif function in general. We investigated the diversity,
408 property distribution, and preserved features in the flanking regions of the 3 ligand-binding
409 categories of SLiMs (LIG, DEG and DOC) and 42 large motif classes of the ELM database.
410 We found that in many cases, additional information can be captured on the feature level in the
411 flanking segments that might be under evolutionary constraint and contribute to proper motif
412 structure and function.

413 By comparing the ranges of index mean values of the motifs and their 5 residue-long flanking
414 regions within larger ELM classes we found that the flanking segments show higher diversity
415 than the motifs in general (even though motifs usually contain only a few fixed positions and
416 considered as degenerate segments). Such a high level of diversity can give potential to
417 specifically fine-tune each individual motif's binding properties, as exemplified by the cases
418 described in the 'Introduction' section. Yet, we found 19 classes where at least 1 index shows
419 very low variety and thus seems to be evolutionarily preserved. In class level categories (ligand-
420 binding sites in general, and LIG/DEG/DOC motifs separately), we also found that while the
421 property content is well-distributed in all parts of the flanking regions, some types of IDRs are
422 not represented. For example, very high positive charge content is not present in the 10 residue-
423 long flanking regions of the examined ligand-binding motifs. The reason of this observation is
424 unclear at present, but we speculate that while a limited number of additional positively charged
425 amino acids could specifically fine-tune motif binding, many of them would result in undesired
426 interactions in the cell (e.g., DNA or RNA binding). Furthermore, LIG, DOC and DEG SLiMs

427 all have flanking segments where very high Ser/Thr contents never occur. A recent review
428 demonstrates how phosphorylation events on these side chains can modulate the motif's binding
429 affinity [35], thus it is reasonable to think that there must be some constraint on the number of
430 Ser/Thr residues in these regions.

431 Out of the 3 categories, degrons seem to have the most restrictions regarding the composition
432 of their surrounding regions. DEG motifs do not have very highly charged N1-10 and C1-10
433 sequences (or very high negative charges in 3 regions), and they do not use very high Ser/Thr
434 content in 3 out of 4 10 residue-long flanking segments, either. It has recently been shown that
435 additional Ser, Thr, or Tyr residues surrounding DEG motifs can regulate or even rescue degron
436 function [31]. However, regions that are abundant in serines can be highly modified (e.g.,
437 phosphorylated or glycosylated), and extremely high serine content has been linked to various
438 specific regulatory processes [36]. Thus, it seems plausible that the motif context does not prefer
439 poly-Ser/Thr sequences in order to avoid unfavourable interactions / modifications. Similar
440 observation was made with the Pro index of the 10 residue-long flanking regions of DEG (and
441 3 out of 4 flanking regions of DOC) motifs, where no sequences with very high Pro content
442 could be detected. Pro-rich disordered segments often promote polyproline type II (PPII) helix
443 conformations [37], that would likely provide an environment that is too rigid for the proper
444 functioning of these types of SLiMs, while they could also be involved in additional
445 hydrophobic interactions.

446 Our findings indicate that positive charge content, and in some regions, negative charge, Pro
447 and Ser/Thr content all need to be under evolutionary constraint in the context of SLiMs.
448 Kastano *et al.* have recently shown that Ser, Pro, Glu and Lys are the most abundant residues
449 within compositionally biased regions (CBRs) of the human proteome. However, if we focus
450 on CBRs located in IDRs involved in hub interaction networks, Ser-, Pro- and Glu-rich regions
451 are the most common, while K-rich regions barely occur [38]. The enrichment of Ser and Pro

452 residues in CBRs can be explained by the presence of tandem SLiMs generated for cooperative
453 regulation, that is in line with our findings regarding overlapping/adjacent motifs. It is
454 particularly interesting, though, that while Ser-, Pro- and Glu-rich segments are abundant in
455 CBRs, motif flanking regions seem to avoid the usage of these types of disordered regions,
456 presumably due to their abovementioned involvement in regulation and additional protein–
457 protein interactions.

458 SLiMs are important and highly abundant [39] protein functional modules. However, certain
459 features of the motifs cannot be efficiently captured by the regular expressions, especially those
460 that cannot be rendered to specific positions. Although we cannot rule out the possibility that
461 some of the examined classes and higher categories would allow wider variety of the features
462 we found to be preserved, the above findings all indicate that the examination of disordered
463 sequences based on amino acid properties is a valid approach to reveal important features in the
464 flanking regions of SLiMs that are otherwise barely recognisable. Moreover, since the
465 computational identification of motifs is hindered by their compactness and the relatively low
466 numbers of well-defined positions, preserved features in the flanking regions can also add
467 further information to motif searching and prediction methods. In addition, our finding that
468 overlapping/adjacent SLiMs seem to use smaller side chains could also be taken into
469 consideration during the identification of new motifs located in other motifs' proximity. Our
470 approach provided further information on the characteristics of the disordered flanking regions
471 of domain-binding motifs that can help us understand motif evolution better, while it can also
472 give potential to expand motif searching and prediction methods.

473

474

475 **Methods**

476 **Dataset generation.**

477 All the known experimentally validated, true positive motif instances were downloaded from
478 the Eukaryotic Linear Motif (ELM) database [40] (<http://elm.eu.org>, version of 15.10.2020). In
479 this work, we aimed to examine those SLiMs that are ligands of globular protein domains, thus
480 only the LIG/DEG/DOC motifs were selected for further investigation. SLiMs from the LMPID
481 database [41] (<http://bicresources.jcbose.ac.in/ssaha4/lmpid/>) were also downloaded and added
482 to the dataset. Next, we performed a preliminary redundancy filtering, where identical motif
483 regions within the same proteins (identical UniProt ID and motif boundaries) were filtered out.
484 Protein sequences were downloaded from the UniProt database (<https://www.uniprot.org/>) and
485 motifs with their 20 residue-long flanking regions were collected. Disorder filtering of the
486 motifs and their surrounding segments were performed using the IUPred2A long algorithm [42]
487 (<https://iupred2a.elte.hu/>). Since our main purpose was to investigate the features of SLiMs
488 located in highly flexible and variable protein regions, we tried to filter out sequences where at
489 least one of the flanking segments would fall into a more structured region. Based on our
490 comparison of different filtering settings, many sequences where at least 50% of the residues
491 have IUPred scores ≥ 0.4 failed to satisfy this criterion. Thus, sequences where at least 50% of
492 the residues have scores ≥ 0.5 were considered disordered and kept in the dataset. Also, because
493 our dataset still contained some motifs based on only prediction methods, those instances were
494 retained which were supported by at least one experimental evidence. Finally, we applied a
495 second redundancy filtering for significantly overlapping motifs (the motif boundaries differed
496 in 2 residues at most). We also compared the motif classes of the ELM and LMPID databases
497 and ignored those from the latter, which did not ‘fit in’ one of the known ELM classes (or the
498 motif boundaries were not identical to the boundaries of the equivalent ELM class). The only
499 exception was the LIG_Rb_LxCxE_1 class, where the true length of the motif is arguable based
500 on the large difference between the boundaries in the two databases we used. Thus, in this case

501 we changed the lengths of the motif instances to 8 residues in all cases. The final dataset
502 contained 1297 ligand-binding motifs and their 20 residue-long flanking regions.
503 Our dataset contained 3 large motif classes (LIG_14-3-3_CanoR_1, DOC_WW_PIN_1_4 and
504 LIG_EH_1) with 60-80 instances in each. In order to avoid any bias, for the analysis of the
505 percentage distribution of the property mean values in the flanking regions and within
506 nonoverlapping motifs (see below), we randomly decreased the number of motifs from these
507 classes to 30, as all the other classes contained approximately 10-30 instances.

508

509 **Selection of amino acid properties.**

510 Amino acid indices were downloaded from the Amino acid index (AAindex) database [43]
511 (<https://www.genome.jp/aaindex/>) and 3 biologically relevant properties were chosen for our
512 analysis: Kyte-Doolittle hydropathy, volume and isoelectric point (AAindex accession number
513 KYTJ820101, GRAR740103, and ZIMJ680104, respectively). We also added 5 further
514 attributes representing different amino acid contents typically enriched in disordered protein
515 regions: charge, negative charge, positive charge, proline content and serine/threonine content.

516

517 **Rescaling, indexing sequences.**

518 Since not only the amino acid values but also the scale of the indices in the AAindex database
519 are very diverse due to the different methods the authors used, we needed to reduce this
520 complexity to simplify and also rescale our data. For this purpose, first we divided the scales to
521 5 equal parts, and placed the amino acids on them according to their original values of properties
522 (Fig 1, S1 Appendix). Then, we substituted the side chains with numbers 1 to 5 based on their
523 location along our simplified scale. Here, amino acids with the lowest values were replaced by
524 number 1, while those having the highest values were substituted with number 5. In the case of

525 charge, proline and serine/threonine content indices we only used numbers 1 and 5 as absent or
526 present respectively (except for positive charge, where His received number 3).

527 Following this, we substituted all the amino acids with numbers 1 to 5 along the collected motif
528 sequences and their flanking regions. This indexing step was performed with every property we
529 selected for this work (S2 Appendix). Mean values of the motifs and their 5, 10 and 20 amino
530 acid-long flanking regions were calculated for the investigation of the characteristics of the
531 substituted sequences. Sequences that did not contain all residues of an examined flanking
532 segment were omitted from the calculation of mean values.

533

534 **Paired t-tests**

535 Shapiro-Wilk normality tests and paired t-tests were performed for both the N5-motif and C5-
536 motif range value pairs of the 42 large ELM motif classes using the R program ([http://www.](http://www.r-project.org/)
537 [r-project.org/](http://www.r-project.org/)).

538

539 **Distribution of property mean values in different parts of the flanking regions.**

540 To analyse property characteristics in different parts of the flanking regions, first we simplified
541 the calculated mean values by substituting them with one of 5 categories ('none': only number
542 1s occur in the region, low: the mean value is >1 and ≤ 2 , medium: the mean value is >2 and \leq
543 3, high: the mean value is >3 and ≤ 4 , and very high: the mean value is >4 .

544 Next, we generated 20x120 random datasets from our nonbiased dataset (1192 motifs) and
545 performed a redundancy filtering using the online Expasy decrease redundancy program
546 (https://web.expasy.org/decrease_redundancy/). Here, sequences (motifs with their 5-5 residue-
547 long flanking regions) with a maximum of 80% similarity were retained in the datasets. The
548 percentage distribution of mean values was calculated using Perl program language.

549 We repeated this analysis for the LIG/DEG/DOC motifs separately, where the randomized LIG
550 datasets (15x120 out of 854), DOC datasets (6x120 out of 246) and the DEG dataset (88) were
551 also subjected to an 80% redundancy filtering and the percentage distribution of simplified
552 mean values were calculated for 6 different parts of the flanking regions.

553

554 **Investigation of all LIG/DEG/DOC motifs from the ELM database.**

555 We downloaded the latest version of the motif instances dataset from the ELM database (last
556 modified on: March 14, 2023) and collected the ‘true positive’ LIG/DEG/DOC motifs and their
557 20 residue-long flanking regions in separate datasets. We repeated the indexing process with
558 these nonfiltered datasets and calculated the simplified mean values for 6 different parts of the
559 flanking regions (as seen above).

560

561 **‘Overlapping/adjacent’ and control datasets.**

562 We collected all motifs from our dataset which contain another ligand-binding motif in their
563 proximity and named them ‘overlapping/adjacent’ motifs (an ‘overlapping/adjacent’ motif
564 overlaps with another LIG/DOC/DEG motif but has at least 4 residues outside the other motif’s
565 core or starts within another motif’s 8 residue-long flanking region). Following a redundancy
566 filtering (80% maximum similarity of the motif sequences and only one motif has been retained
567 from the same class with the same UniProt ID), we created a dataset of 60 nonredundant motif
568 instances. Motifs of the control dataset do not have another LIG/DEG/DOC motif within their
569 10 residue-long flanking regions. Property means and their ratios of the motifs were calculated
570 (as described above) for the ‘overlapping/adjacent’ and control (10x60 random sequences with
571 a maximum of 80% similarity) datasets.

572

573

574

575 **Author contributions**

576 Conceptualisation: VA, LK and AT; methodology: VA and LK; research: VA and AH;
577 software: VA and AH; data analysis: VA; resources: AT; data curation: VA; writing - original
578 manuscript: VA; writing – review and editing: LK and AT; supervision: LK and AT; funding
579 acquisition: AT.

580

581 **References**

- 582 1. Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, et al. Understanding
583 eukaryotic linear motifs and their role in cell signaling and regulation. *Front Biosci.* 2008
584 May 1;13:6580–603.
- 585 2. Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, et al. The
586 eukaryotic linear motif resource ELM: 10 years and counting. *Nucleic Acids Res.* 2014
587 Jan;42(Database issue):D259–66.
- 588 3. Fuxreiter M, Tompa P, Simon I. Local structural disorder imparts plasticity on linear
589 motifs. *Bioinformatics.* 2007 Apr 15;23(8):950–6.
- 590 4. Tompa P. Unstructural biology coming of age. *Curr Opin Struct Biol.* 2011
591 Jun;21(3):419–25.
- 592 5. Stein A, Aloy P. Contextual specificity in peptide-mediated protein interactions. *PLoS
593 One.* 2008 Jul 2;3(7):e2524.
- 594 6. Abeln S, Frenkel D. Disordered flanks prevent peptide aggregation. *PLoS Comput Biol.*
595 2008 Dec;4(12):e1000241.
- 596 7. Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD. SH2 domains
597 recognize contextual peptide sequence information to determine selectivity. *Mol Cell
598 Proteomics.* 2010 Nov;9(11):2391–404.
- 599 8. Kelil A, Levy ED, Michnick SW. Evolution of domain-peptide interactions to coadapt
600 specificity and affinity to functional diversity. *Proc Natl Acad Sci U S A.* 2016 Jul
601 5;113(27):E3862–71.
- 602 9. Karlsson E, Schnatwinkel J, Paissoni C, Andersson E, Herrmann C, Camilloni C, et al.
603 Disordered Regions Flanking the Binding Interface Modulate Affinity between CBP and
604 NCOA. *J Mol Biol.* 2022 Jul 15;434(13):167643.
- 605 10. Aitio O, Hellman M, Skehan B, Kesti T, Leong JM, Saksela K, et al.

606 Enterohaemorrhagic *Escherichia coli* exploits a tryptophan switch to hijack host f-actin
607 assembly. *Structure*. 2012 Oct 10;20(10):1692–703.

608 11. Prestel A, Wichmann N, Martins JM, Marabini R, Kassem N, Broendum SS, et al. The
609 PCNA interaction motifs revisited: thinking outside the PIP-box. *Cell Mol Life Sci*. 2019
610 Dec;76(24):4923–43.

611 12. Hwang T, Parker SS, Hill SM, Grant RA, Ilunga MW, Sivaraman V, et al. Native
612 proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP
613 protein ENAH. *Elife*. 2022 Jan 25;11.

614 13. Li Z, Liu H, Li J, Yang Q, Feng Z, Li Y, et al. Homer Tetramer Promotes Actin
615 Bundling Activity of Drebrin. *Structure*. 2019 Jan 2;27(1):27–38.e4.

616 14. Theisen FF, Staby L, Tidemand FG, O’Shea C, Prestel A, Willemoës M, et al.
617 Quantification of Conformational Entropy Unravels Effect of Disordered Flanking
618 Region in Coupled Folding and Binding. *J Am Chem Soc*. 2021 Sep 15;143(36):14540–
619 50.

620 15. Chemes LB, de Prat-Gay G, Sánchez IE. Convergent evolution and mimicry of protein
621 linear motifs in host-pathogen interactions. *Curr Opin Struct Biol*. 2015 Jun;32:91–101.

622 16. Chemes LB, Sánchez IE, de Prat-Gay G. Kinetic recognition of the retinoblastoma tumor
623 suppressor by a specific protein target. *J Mol Biol*. 2011 Sep 16;412(2):267–84.

624 17. Palopoli N, González Foutel NS, Gibson TJ, Chemes LB. Short linear motif core and
625 flanking regions modulate retinoblastoma protein binding affinity and specificity. *Protein*
626 *Eng Des Sel*. 2018 Mar 1;31(3):69–77.

627 18. Chemes LB, Sánchez IE, Smal C, de Prat-Gay G. Targeting mechanism of the
628 retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural
629 modularity, intrinsic disorder and phosphorylation of human papillomavirus E7. *FEBS J*.
630 2010 Feb;277(4):973–88.

631 19. Kriwacki RW. Protein dynamics: tuning disorder propensity in p53. *Nat Chem Biol*.
632 2014 Dec;10(12):987–8.

633 20. Crabtree MD, Borcherds W, Poosapati A, Shammas SL, Daughdrill GW, Clarke J.
634 Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target
635 Affinity by Altering the Lifetime of the Bound Complex. *Biochemistry*. 2017 May
636 9;56(18):2379–84.

637 21. Lee C, Kalmar L, Xue B, Tompa P, Daughdrill GW, Uversky VN, et al. Contribution of
638 proline to the pre-structuring tendency of transient helical secondary structure elements
639 in intrinsically disordered proteins. *Biochim Biophys Acta*. 2014 Mar;1840(3):993–
640 1003.

641 22. Lu X, Sun Y, Shang D, Wattam B, Egglezou S, Hughes T, et al. Evaluation of the role of
642 proline residues flanking the RGD motif of dendroaspin, an inhibitor of platelet
643 aggregation and cell adhesion. *Biochem J*. 2001 May 1;355(Pt 3):633–8.

644 23. Zarin T, Strome B, Nguyen Ba AN, Alberti S, Forman-Kay JD, Moses AM. Proteome-

645 wide signatures of function in highly diverged intrinsically disordered regions. *Elife*.
646 2019 Jul 2;8.

647 24. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, et al. Intrinsically
648 disordered protein. *J Mol Graph Model*. 2001;19(1):26–59.

649 25. Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured
650 under physiologic conditions? *Proteins*. 2000 Nov 15;41(3):415–27.

651 26. Lise S, Jones DT. Sequence patterns associated with disordered regions in proteins.
652 *Proteins*. 2005 Jan 1;58(1):144–50.

653 27. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, et al.
654 The importance of intrinsic disorder for protein phosphorylation. *Nucleic Acids Res*.
655 2004 Feb 11;32(3):1037–49.

656 28. Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, et al. ELM:
657 the status of the 2010 eukaryotic linear motif resource. *Nucleic Acids Res*. 2010
658 Jan;38(Database issue):D167–80.

659 29. Pernigo S, Lamprecht A, Steiner RA, Dodding MP. Structural basis for kinesin-1:cargo
660 recognition. *Science*. 2013 Apr 19;340(6130):356–9.

661 30. Reményi A, Good MC, Lim WA. Docking interactions in protein kinase and phosphatase
662 networks. *Curr Opin Struct Biol*. 2006 Dec;16(6):676–85.

663 31. Guharoy M, Bhowmick P, Sallam M, Tompa P. Tripartite degrons confer diversity and
664 specificity on regulated protein degradation in the ubiquitin-proteasome system. *Nat
665 Commun*. 2016 Jan 6;7:10239.

666 32. Van Roey K, Davey NE. Motif co-regulation and co-operativity are common
667 mechanisms in transcriptional, post-transcriptional and post-translational regulation. *Cell
668 Commun Signal*. 2015 Dec 1;13:45.

669 33. Chica C, Diella F, Gibson TJ. Evidence for the concerted evolution between short linear
670 protein motifs and their flanking regions. *PLoS One*. 2009 Jul 8;4(7):e6052.

671 34. Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, et al. Attributes
672 of short linear motifs. *Mol Biosyst*. 2012 Jan;8(1):268–81.

673 35. Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating
674 downstream effects by short linear motifs. *Biochem J*. 2022 Jan 14;479(1):1–22.

675 36. Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. *Intrinsically
676 Disord Proteins*. 2015 Mar 17;3(1):e1027032.

677 37. Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P, Dunker AK, et al. The alphabet of
678 intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in
679 intrinsically disordered proteins. *Intrinsically Disord Proteins*. 2013 Apr 1;1(1):e24360.

680 38. Kastano K, Mier P, Dosztányi Z, Promponas VJ, Andrade-Navarro MA. Functional
681 Tuning of Intrinsically Disordered Regions in Human Proteins by Composition Bias.

682 Biomolecules. 2022 Oct 15;12(10).

683 39. Tompa P, Davey NE, Gibson TJ, Babu MM. A million peptide motifs for the molecular
684 biologist. Mol Cell. 2014 Jul 17;55(2):161–9.

685 40. Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, et al. ELM—the
686 eukaryotic linear motif resource in 2020. Nucleic Acids Res. 2020 Jan 8;48(D1):D296–
687 306.

688 41. Sarkar D, Jana T, Saha S. LMPID: a manually curated database of linear motifs
689 mediating protein-protein interactions. Database. 2015 Mar 16;2015.

690 42. Mészáros B, Erdos G, Dosztányi Z. IUPred2A: context-dependent prediction of protein
691 disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018 Jul
692 2;46(W1):W329–37.

693 43. Kawashima S, Ogata H, Kanehisa M. AAindex: Amino Acid Index Database. Nucleic
694 Acids Res. 1999 Jan 1;27(1):368–9.

695

696

697 **Supporting information**

698 S1 Appendix: Selected indices and the simplified (1 to 5) values of each amino acid.

699 S2 Appendix: Final dataset of the motifs and their flanking regions containing the original and
700 the indexed sequences.

701 S1 Table: The ranges (largest differences) of the property mean values of the motifs and their
702 5 AA-long N- and C-terminal flanking segments in 42 motif classes.

703 S2 Table: p-values calculated from the paired t-tests showing the significant differences in
704 property diversity between the N5 – motif and motif – C5 regions of 42 motif classes.

705 S1 Fig: The frequencies of property mean values in different parts of the flanking regions
706 (LIG, DEG and DOC motifs separately). N: N-terminal flanking, C: C-terminal flanking.

Database: AAindex
Entry: GRAR740103
LinkDB: GRAR740103

H GRAR740103
D Volume (Grantham, 1974)
R PMID:4843792
A Grantham, R.
T Amino acid difference formula to help explain protein evolution
J Science 185, 862-864 (1974)

C	KRIW790103	0.989	BIGC670101	0.984	GOLD730102	0.984				
TSAJ990101	0.979	TSAJ990102	0.978	CHOC750101	0.973					
FAUJ880103	0.959	CHAM820101	0.951	HARY940101	0.946					
CHOC760101	0.945	POHJ960101	0.937	ROSG850101	0.922					
RADA880106	0.928	FASG760101	0.908	LEVM760105	0.900					
CHAM830106	0.890	LEVM760102	0.885	ZHOH840102	0.872					
DAWD720101	0.853	LEVM760106	0.846	LEVM760107	0.841					
FAUJ880106	0.819	MCMT640101	0.817	RADA880103	-0.881					
I	A/L	R/K	N/M	D/F	C/P	Q/S	E/T	G/W	H/Y	I/V
31.	124.	56.	54.	55.	85.	83.	3.	96.	111.	
111.	119.	105.	132.	32.5	32.	61.	170.	136.	84.	

//

P03409 348-353
DNDHEPQISPGGLEPPSEKH**FRETEV**
O00257 463-468
PAAERPDLPPAAALPQPEV**ILLDSL**LDEPIDLRCVKTRSEAGEPP
Q12888 1168-1174
SQNNIGIQTMECSLRVPETV**SAATQTI**KNVCEQGTSTVDQNFGKQDA
Q9JL19 1494-1500
LPSVEENKNLMSPAMREAPT**SLSQLLD**NSGAPNVTIKPPGLTDLEVT
O00268 764-768
QQPPKPGALIRPPQVTLTQT**PMVAL**RQPHNRIMLTPQQIQLNPL
...
flanking motif flanking

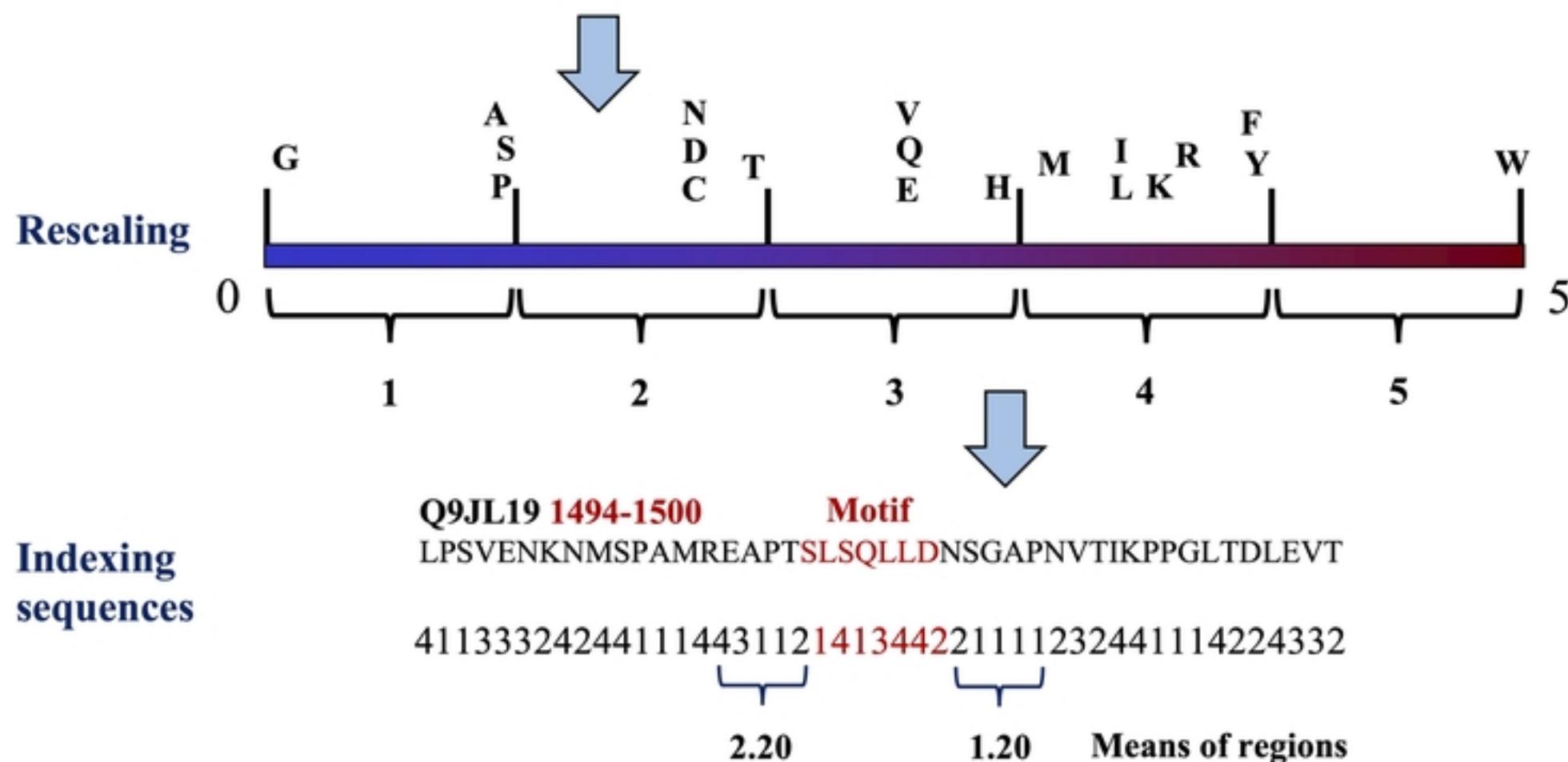


Figure 1

A

Motif class	Charge			Ser/Thr content			Pro content			Hydropathy			Volume			Isoelectric point		
	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5
DOC_MAPK_MEF2A_6	3.2	1.6	2.0	2.4	1.6	2.4	0.8	1.0	2.4	2.2	1.5	1.6	2.0	1.5	1.6	2.2	1.5	1.0
LIG_SUMO_SIM_par_1	2.4	1.7	3.2	2.4	2.0	2.4	1.6	0.6	1.6	2.6	1.3	2.4	2.2	0.7	1.8	2.2	0.7	2.0
LIG_Actin_WH2_2	3.2	1.8	2.4	1.6	0.7	1.6	0.8	0.2	0.0	2.2	0.7	2.2	1.6	0.9	1.2	1.2	0.8	1.2
DOC_PP4_FxxP_1	2.4	2.0	2.4	1.6	1.0	1.6	0.8	0.0	1.6	2.6	1.8	2.2	1.6	0.8	1.8	1.2	1.5	1.0
DOC_MAPK_NFAT4_5	2.4	0.7	2.4	1.6	1.3	2.4	1.6	0.4	1.6	2.4	0.9	1.6	1.2	0.7	1.8	1.6	0.6	1.2
LIG_PCNA_PIPBox_1	2.8	1.2	3.2	1.6	1.6	2.4	1.6	0.4	1.6	1.4	1.1	2.2	1.8	0.9	2.8	2.2	0.8	2.0
DOC_CYCLIN_RXL_1	2.0	1.7	4.0	1.6	1.6	0.8	3.2	1.0	2.4	2.0	0.8	2.4	2.0	1.5	2.6	1.8	0.9	2.8
LIG_PTAP_UEV_1	1.6	0.7	2.4	3.2	1.3	1.6	2.4	0.7	2.4	1.6	1.2	2.8	1.8	0.8	2.4	1.6	0.5	1.0
DEG_APCC_KENBOX_2	1.6	1.6	2.4	2.4	0.8	1.6	2.4	0.0	1.6	3.0	1.6	1.4	2.2	0.8	1.6	1.6	1.2	1.4
LIG_EVH1_1	2.4	0.0	2.4	1.6	0.8	1.6	2.4	0.8	4.0	2.4	1.0	1.6	2.0	0.6	2.4	1.2	0.4	1.6

B

Motif class	Charge			Pro content			Isoelectric point			Positive charge			Negative charge		
	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5	N5	Motif	C5
LIG_NRBOX	3.6	1.7	3.2	0.8	0.0	0.8	2.0	1.4	1.2	2.8	1.7	1.6	1.6	0.6	1.6
LIG_PROFILIN_1	0.0	0.0	0.4	4.0	1.1	3.2	0.6	0.0	0.6	0.0	0.0	0.4	0.0	0.0	0.0
LIG_Actin_WH2_2	3.2	1.8	2.4	0.8	0.2	0.0	1.2	0.8	1.2	0.8	1.0	1.6	2.4	0.8	1.6
LIG_GBD_Chelix_1	1.6	0.9	1.6	2.4	0.0	0.0	1.4	0.7	1.6	0.8	0.7	2.4	0.8	0.4	0.8
LIG_HOMEobox	1.6	1.0	2.4	2.4	1.0	0.8	0.6	0.5	1.2	0.8	0.0	1.6	0.8	1.0	0.8
LIG_EVH1_1	2.4	0.0	2.4	2.4	0.8	4.0	1.2	0.4	1.6	0.0	0.0	0.4	2.4	0.0	2.4

Figure 2

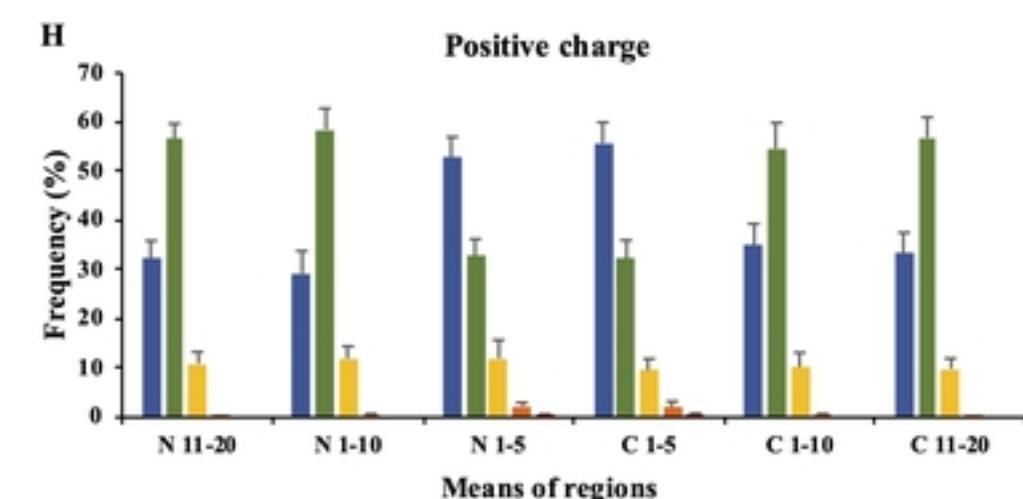
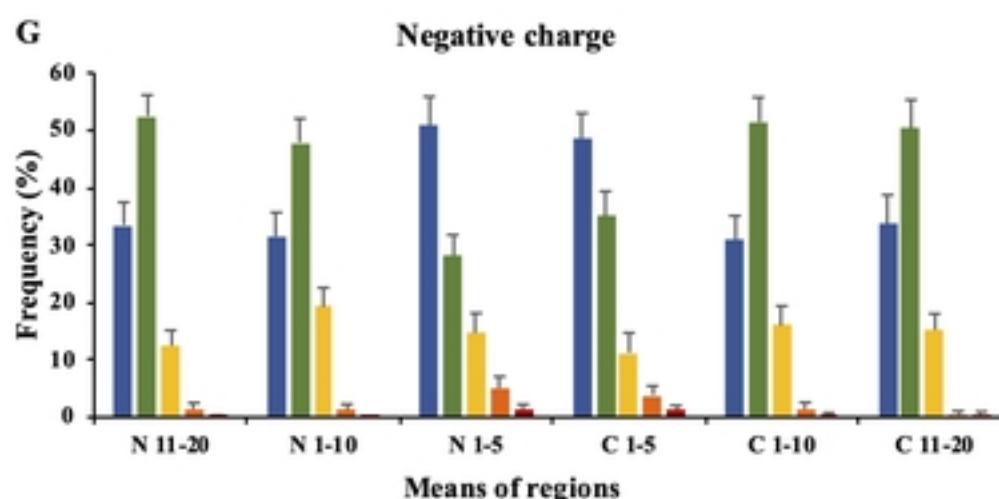
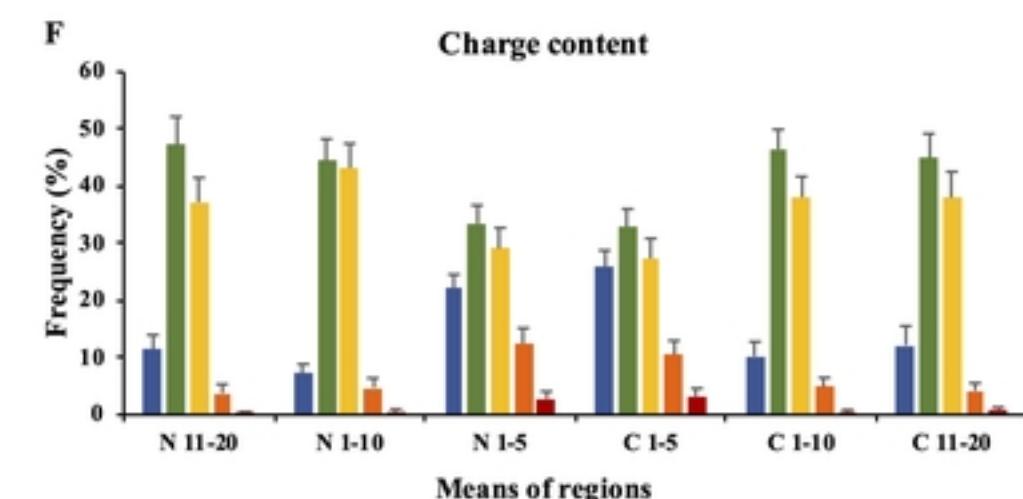
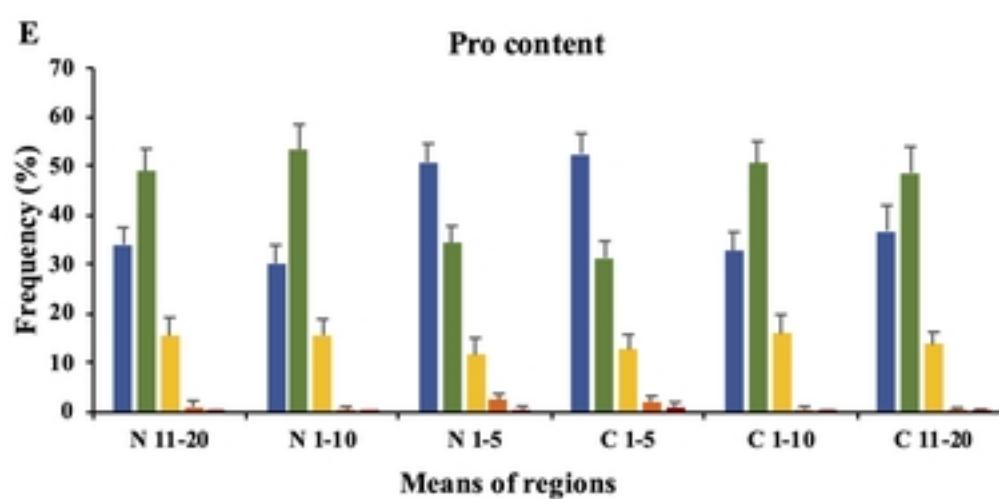
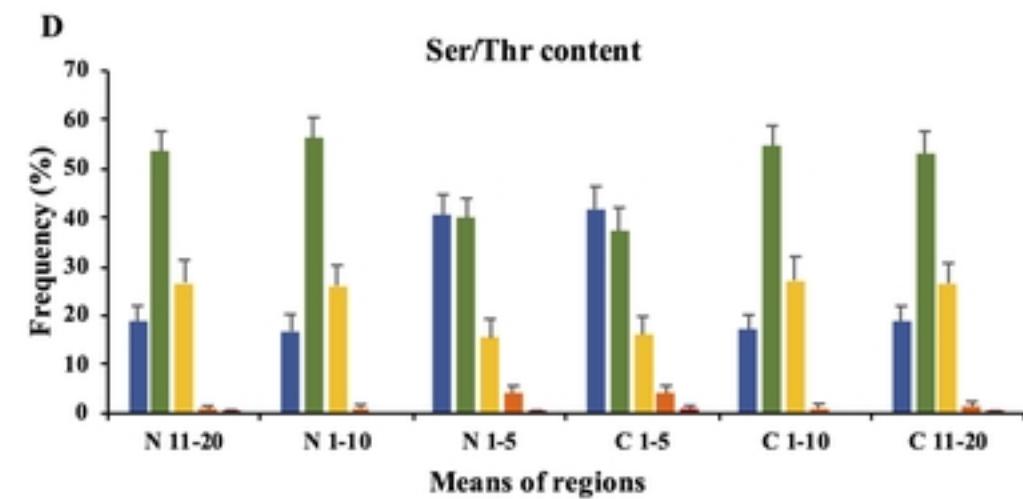
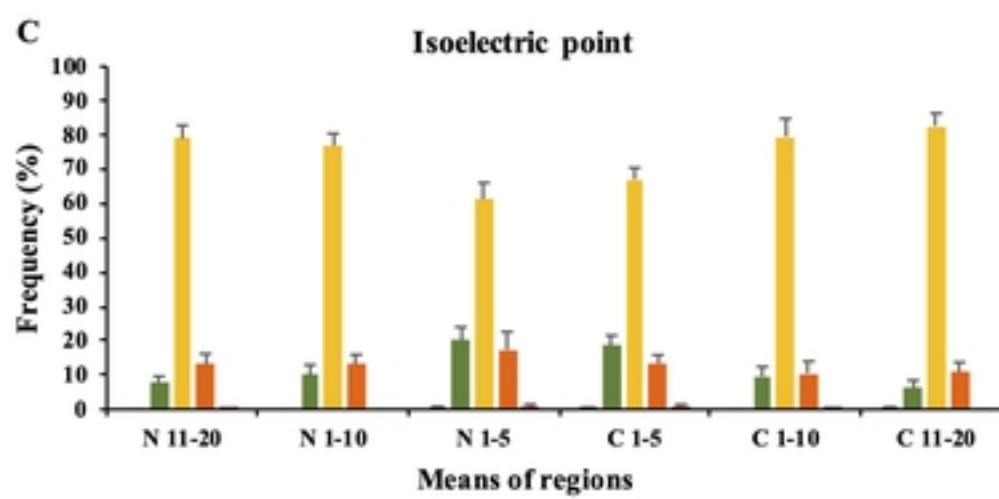
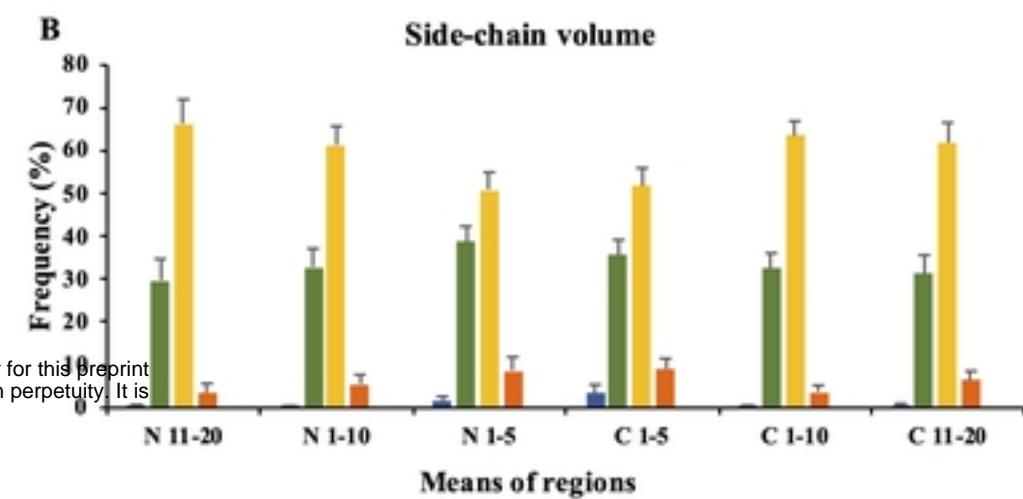
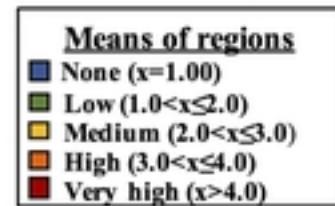









Figure 3

		N11-20			N1-10			N1-5			C1-5			C1-10			C11-20		
		LIG	DOC	DEG	LIG	DOC	DEG	LIG	DOC	DEG	LIG	DOC	DEG	LIG	DOC	DEG	LIG	DOC	DEG
Hydropathy	None	X		X		X	X								X	X		X	X
	High																		
	Very high		X	X		X	X				X	X		X	X				X
Volume	None		X	X		X	X							X		X	X		X
	High																		
	Very high	X	X	X	X	X	X				X	X	X	X	X	X	X	X	X
Ser/Thr content	None																		
	High																X		
	Very high		X	X	X		X								X	X	X		
Pro content	None																		
	High																		X
	Very high		X	X		X	X								X	X			X
Isoelectric point	None	X	X	X	X	X	X		X					X	X	X		X	X
	High																		
	Very high	X				X	X							X		X	X		X
Charge	None																		
	High																		
	Very high							X								X			
Positive charge	None																		
	High																X		
	Very high	X	X	X	X	X	X							X	X	X	X	X	X
Negative charge	None																		
	High							X											X
	Very high		X	X		X	X				X			X		X	X		X

Figure 4

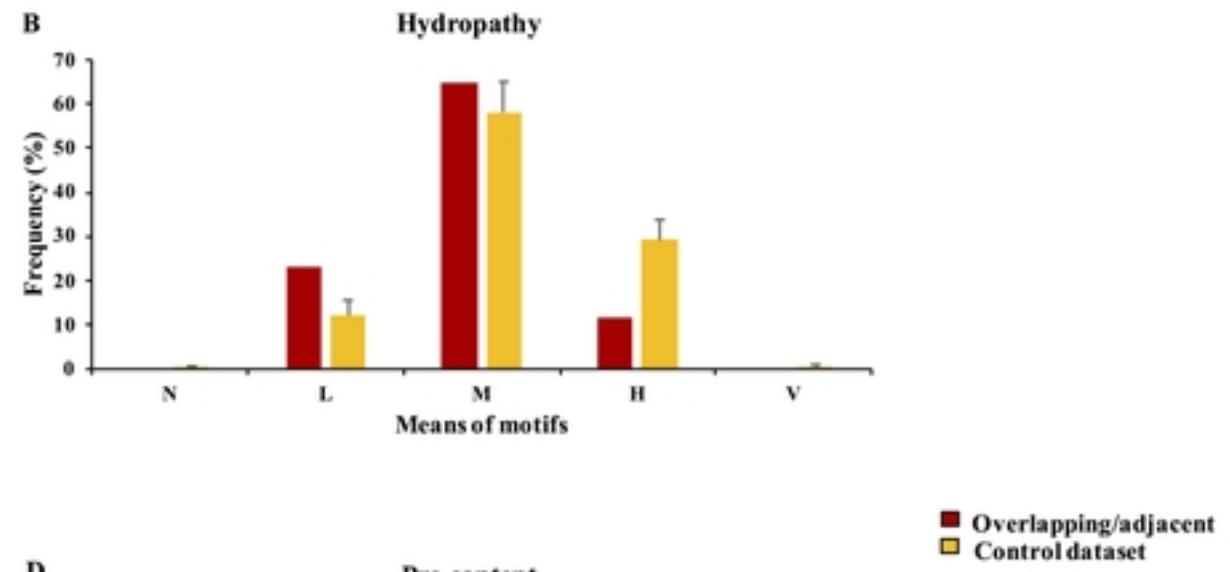
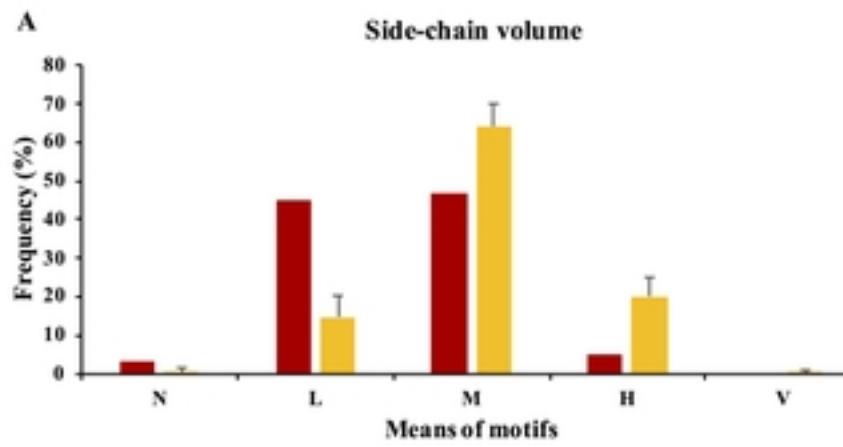



Figure 5