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Abstract

For genetic association analysis based on multiple SNP regression of genotypes obtained by
dense DNA sequencing or array data imputation, multi-collinearity can be a severe issue
causing failure to fit the regression model. In this study, we proposed a method of Dimension
Reduction using Local Principal Components (DRLPC) which aims to resolve multi-
collinearity by removing SNPs under the assumption that the remaining SNPs can capture
the effect of a removed SNP due to high linear dependency. This approach to dimension
reduction is expected to improve the power of regression-based statistical tests. We apply
DRLPC to chromosome 22 SNPs of two data sets, the 1000 Genomes Project (phase 3) and
Canadian Longitudinal Study on Aging (CLSA), and calculated Variance Inflation Factors
(VIF) in various SNP-sets before and after implementing DRLPC as a metric of collinearity.
Notably, DRLPC addresses multi-collinearity by excluding variables with a VIF exceeding
a predetermined threshold (VIF=20), thereby improving applicability for subsequent
regression analyses. The number of variables in a final set for regression analysis is reduced
to around 20% on average for larger-sized genes, whereas for smaller ones, the proportion is
around 48%; suggesting that DRLPC is more effective for larger genes. We also compare the
power of several multi-SNP statistics constructed for gene-specific analysis to evaluate
power gains achieved by DRLPC. In simulation studies based on 100 genes with <500 SNPs
per gene, DRLPC effectively increased the power of the multiple regression Wald test from
60% to around 80%.

KEYWORDS
Dimension reduction, principal component analysis (PCA), multi-collinearity, variance
inflation factor (VIF), multi-SNP statistics, Canadian Longitudinal on Aging (CLSA), 1000
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Genomes Project (phase 3)

14
15 1| INTRODUCTION

16 Genetic association studies investigate associations between single nucleotide polymorphisms
17 (SNPs) and a trait of interest (Yu, 2012; Yoo et al., 2017; Xue et al., 2020). High-density SNP
18  genotypes generated from genome-wide genotyping arrays and imputed to a reference panel,
19 or Next-Generation Sequencing (NGS) technologies are analyzed to detect SNP-trait
20  association signals (Gauderman et al., 2007; Kim et al., 2010; Slavin et al., 2011; Wu et al.,
21 2011). A single-SNP analysis considers the association between a trait and one SNP at a time
22 (Syvinen, et al., 2001; Spencer et al., 2009; Kim et al., 2010). On the other hand, multi-SNP
23 analysis investigates the association between a trait and multiple SNPs simultaneously. In the
24 multi-SNP approach, a set of SNPs is considered together in region-level analysis, e.g. SNPs
25  within aregion defined by gene boundaries, that obtain a global statistic to test for the combined
26 effect of the SNP set. Global testing can yield robust, powerful, and informative results (Asimit
27  etal., 2009; Chapman & Whittaker, 2008). In particular, SNP genotypes within a gene can be
28  analyzed using a multi-SNP regression model, and joint effects of a SNP set tested by a large
29  sample Wald statistic with multiple df (Clayton et al., 2004; Gauderman et al., 2007; Wang et
30 al., 2012; Yoo etal., 2013).

31 In multi-SNP joint regression analysis, issues with multi-collinearity can occur when there are
32 alarge number of predictors or when the ratio of number of observations relative to the number
33  of predictors is not large. In regression, multi-collinearity means linear or near-linear
34  dependency among two or more predictors, which corresponds to a lack of orthogonality
35 among them (Alin, 2010). The linkage disequilibrium (LD) structure of high-density SNP
36 genotype data often shows clusters of highly correlated SNP, which may or may not be
37  consecutively located (Kim et al., 2018; Kim et al., 2019). High-density SNP genotype
38  predictors in proximity often yield multi-collinearity due to LD (Wang et al., 2012). Multi-
39  collinearity can cause a singular covariance matrix due to independent variables. This
40  singularity arises because the matrix’s determinant approaches zero, making it mathematically
41 unstable for inversion (Farrar et al., 1967). Multi-collinearity can lead to misleading or
42  unexpected signs of the regression coefficient, as their signs may deviate from the expected
43 relationship between predictors and the response variable. The most severe effect of multi-
44 collinearity is the inflation of standard errors associated with regression coefficients, signifying
45  large sampling variability (Alin, 2010). Ways to detect collinearity among predictors, include
46  pairwise correlations, eigenvalues, and the Variance Inflation Factor (VIF). The correlation
47  matrix and eigenvalues can provide indications of the existence of multi-collinearity; however,
48  they cannot accurately measure the extent of multi-collinearity. The VIF, which measures how
49  much the variance of the estimated regression coefficient is inflated due to collinearity among
50 the variables, quantifies multi-collinearity and effects on computation and can be interpreted
51  quickly and clearly (Gwelo et al., 2019).

52 Applying Principal Component Analysis (PCA, Edgeworth, 1884) for both SNP genotype and
53  haplotype-based approaches within multiple regression analysis is an efficacious dimension
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reduction! technique (Wang et al., 2008; Chapman et al., 2003; and Clayton et al., 2004).
Moreover, this approach offers a valuable statistical technique for detecting, quantifying, and
adjusting for multi-collinearity in a dataset (Lafi et al.,1992). Several methods have been
developed to reduce the dimension of complex data; however, PCA is a conventional
dimension reduction approach for multivariate data that depends on an orthogonal linear
combination of variables, called principal components (PCs) (Li, 2010; Abdi & Williams, 2010;
Park et al., 2020). Wang & Abbott (2008) have applied principal components regression
(PCReg) to test for the association of a set of SNPs with the phenotype, assuming that a small
number of variables can model a sufficient amount of variation in the joint distribution of all
SNPs. As a result of this, a few PCs, which are computed from the sample covariance matrix
of the SNP genotype, are used as regressors in multiple regression.

In the context of high-dimensional genetic association analysis, when the number of genetic
predictors exceeds the sample size, the model cannot be fit at all using standard least squares
methods. It leads to overfitting, high variance stability, singular and collinearity, reduced
statistical power, misleading interpretation, and inflated type Il errors. Dimension reduction
streamlines the model by focusing on a reduced set of features. This strategy counters the risk
of overfitting, enhancing the power of statistical tests. Replacing SNP variables with principal
components can improve the power of regression-based statistical tests by addressing the
challenges associated with high dimensionality. Gauderman et al., (2007) highlighted the
advantages of the PC approach over joint-SNP and haplotype tests. Their findings emphasized
that PCs capture SNP variation within the genetic locus. Substantive dimension reduction was
achieved by adopting an 80% explained variance threshold for the disease model, which gained
statistical power. However, the PCs constructed from all SNP variables in a region are hard to
interpret as biological entities and are not helpful for localization and fine mapping.

While PCA can project high-dimensional data onto a lower-dimensional space that captures
most of the original data’s variance using the variables’ correlation structure, it cannot represent
local information for data with complicated distributions (Wold et al., 1987; Yu, 2012). If the
variables have non-linear dependencies, PCA will require a more significant dimensional
representation than would be found by a non-linear technique. Kambhatla & Leen (1997)
introduced an extension to PCA using a local linear approach called Local PCA (LPCA). In
contrast to global PCA, which projects an entire set of variables onto a low-dimensional space,
LPCA focuses on subsets or "local" regions of the data to capture more nuanced or complex
relationships that may be missed by global PCA. Similar to PCA, LPCA can relieve multi-
collinearity and reduce data dimensionality. The LPCA algorithm for n-dimensional input data
can be stated as follows:

Step 1. First, partition the input data into Q disjoint regions {R®,R®), ..., R(@)},

Step 2. Compute the local covariance matrix £® = E[(x — Ex)(x — Ex)T|x € R®];i =
1, ..., Q, for the variables in region and their eigenvectors ej(] ), j =1, ...,n. Without loss of
generality, the eigenvectors can be relabeled so that the corresponding eigenvalues are in

descending order Agi) > /1;0 >.> Ag).
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94  Step 3. Select a target dimension m and retain the leading m eigenvector directions for reducing
95  the data dimension.

96 In the present article, we propose a new approach to gene-level association analysis based on

97  LPCA that aims to improve the power of global multi-SNP test statistics while preserving the

98 interpretability of the localized effects. In regression analysis, Dimension Reduction using

99  Local Principal Components (DRLPC) proceeds by first selecting clusters of SNPs in high
100  correlation and replacing each cluster with a local principal component constructed from the
101 SNPs in the cluster. DRLPC also aims to resolve multi-collinearity among the updated
102  variables by removing variables with VIF values greater than a predefined threshold iteratively
103 until the highest value of VIF falls under the threshold. DRLPC, using an LPCA technique and
104  removing variables with a high VIF with the underlying assumption that the remaining
105  variables possess the capacity to capture the impact of the removed variables due to their high
106 linear dependency, can simultaneously reduce the dimensionality of the data and resolve multi-
107  collinearity.

108  To examine the behavior of DRLPC in achieving dimension reduction, we applied the
109  algorithm to SNP genotypes from two data sets. The first is the 1000 Genomes Project data
110  (phase 3), chromosome 22 of three major super-populations: European, East Asian, and African.
111 The second dataset is the European ancestry subset of the Canadian Longitudinal Study on
112 Aging (CLSA), also for chromosome 22 SNPs. The dimension of each dataset was reduced
113 separately, considering several choices of threshold values for clustering and principal
114 components selection. We also designed simulation studies to generate quantitative trait values
115  from the 1000 Genomes Projects genotype under gene-level regression models for genetic
116  association. Analyses of the original SNP genotype variables and the DRLPC processed
117  variables were then conducted to compare type I error and power of several multi-variable
118  statistics including generalized linear regression Wald (Wald, 1943), multiple linear
119  combination (MLC) (Yoo et al., 2017, generalized Wald with global principal components
120  (Gauderman et al., 2007), and sequence kernel association (SKAT) and SKAT-O ((Ionita-Laza
121 etal., 2013; Lee et al., 2012).

122 The rest of the paper is organized into the following sections: Section 2 includes a description
123 of the DRLPC method. Section 3 discusses the results obtained from the proposed method for
124  actual data application using two different SNP sets for two datasets. Section 4 reports
125  simulation study results for the power and type I error of multi-marker statistics obtained using
126 DRLPC processed datasets. The discussion and conclusion are given in Section 5 and Section

127 6, respectively.
128

129 2| MATERIALS AND METHODS

130 2.1 | Dimension reduction using local principal components

131 Suppose that the genotypes of m SNPs are coded as 0, 1, or 2 based on an additive genetic
132 model and denoted by X = (X1, X, ..., X;,) . The multi-SNP joint regression model of m SNPs
133 consider E[Y]X] as the expected value of quantitative trait Y conditional on the given SNP
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134 genotypes and is formulated as follows:
135 E[Y|X] = Bo + B1X1 + B2Xa + - + BrnXim (1)

136 Global test statistics based on the above regression analysis can be constructed from the beta
137 estimates 8 = (By, ..., B,n) and the associated covariance matrix Y. One of the objectives of
138 the DRLPC technique is to reduce the dimension of data before conducting regression analysis.
139  To achieve this, the DRLPC employs two strategies for dimension reduction: local PCs and
140  filtering on VIF. These strategies are employed to reduce the number of regression variables
141 and remove multi-collinearity.

142 Figure 1 illustrates the steps in the DRLPC processing with an example region "SLC35E4" in
143 chromosome 22 (bp position of 31,031,643 ~ 31,064,736), which includes 57 SNPs in 1000
144 Genomes Projects (phase 3), EUR super-population.

145  The DRLPC algorithm requires three thresholds: a threshold (CLQcut) for pairwise 72 to
146  construct clusters of highly correlated SNPs by the clique-based graph partitioning method
147 (Yoo et al., 2015); a threshold (VIFcut) for variance inflation factor (VIF) values to remove
148  variables with linear dependencies and reduce multi-collinearity; a threshold (PCcut) to select
149  some PC variables that capture the variability of all the removed variables as the candidates for
150  addition of variables at the last step of the algorithm. DRLPC also designates a value (Klim)
151 as the partition limit for the alias? removal step to apply this step separately for each subset of
152 partitioned SNPs when the number of SNPs is greater than the sample size. The details of the
153  DRLPC algorithm are explained as follows:

154  Step 1. Removal of linearly dependent SNPs: Suppose that m SNPs in a gene are indexed with
155V, ={1,2,...,m}. Let V :=V,. First, SNPs with complete linear dependency (aliased SNPs)
156  are detected, and one SNP per group of aliased SNPs forming each linear dependency

157  relationship is removed. The set of SNPs removed by this process is denoted by Wj;. If the
158  number of SNPs is greater than or close to the sample size, we partition SNPs into subsets,
159  including fewer SNPs than the sample size. A partition limit (Klim) is set to partition the SNPs
160  into sets with a size less than Klim in which the procedure of breaking the linear dependency
161 is applied to each partition separately. Since the linear dependency may occur between
162  partitioned parts, we apply this process repeatedly for the combined sets of the remaining SNPs
163 until no completely dependent SNPs remain. In this way, the set of current SNPs V is updated
164 by V, =V\W;,.

165  Step 2. Clustering of highly correlated SNPs: Using the clique-based clustering algorithm
166  CLQ-D in Kim et al., (2018), find the groups of SNPs in V, that have pairwise 72 greater
167  than the CLQcut. Some SNPs do not form groups and remain as singletons. Denote the groups
168  (bins) with multiple SNPs found in this step by G = {Gy,--,G;}. Also, denote the set of
169  singleton SNPs by S.

170 Step 3. Replacing each group with a local PC: Replace the SNPs in each G; by the first

171 principal component obtained applying PCA only for the SNPs within the group, known as a
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172 local PC (LPC), which is denoted by LPC;. Now let L = {LPCy, -+, LPC;}. Then, update the
173 current set of dimension-reduced variables V, with V3 =S UL =SU{LPC,---,LPC;}.

174 There is a possibility of no LPC replacing the SNPs when no cluster of multiple SNPs is found
175  in Step 2.

176  Step 4. Removal of variables to reduce multi-collinearity: Suppose the variables in V3 are
177  indexed such that V3 = {v,, v,, ..., v}, regardless they are the original SNPs or LPCs. First,
178  calculate VIFi= 1/(1— R2) for each variable in V5 where RZ is the coefficient of
179  determination obtained from the regression of v, on the other variables in V3. Next, remove

180  the variable with the highest VIF value from V3. Repeat this procedure iteratively until the
181  highest value of VIF becomes under the threshold for VIF (VIFcut). The set of removed
182  wvariables in this step is named W,. Update the current set of dimension-reduced variables
183 V with V, = V5\W,.

184  Step 5. Selective addition of PCs representing the removed SNPs: In the last step, another
185  PCAsstep is applied to the set of SNPs removed in Steps 1 and 4. In Step 4, ifan LPC is selected
186  to be removed due to high VIF, the SNPs in the cluster corresponding to the LPC are all
187  considered to be removed. Take the minimum number of PCs with their proportion of

188  cumulative explained variance greater than the threshold value PCcut as the candidate for
189  added variables. Then, examine if the variability of these PCs can be captured by the current
190  set V =V, byregression each of these PC on the variablesin V and obtain the R?.Ifthe R?
191 islessthan 1/(1 — VIFcut) add the corresponding PC into the current set V. The set of PCs
192  selected to be added in this step is denoted as R, and they are called RPCs. Update the current
193  set V with Vs =V, UR.

194  Final set of dimension-reduced variables. In this way, the dimension of high-density SNP data
195  isreduced iteratively, and the final variables after the dimension reduction process are the union
196  of singleton SNPs and LPCs that are not removed by step 4 and RPCs added by step 5. The
197  intersection of these three sets is empty, and each of the three sets can also be an empty set.
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Step 1: Remove variables with complete dependency (aliased variables) 57 SNPs
® 60060 69600666066606 © 6666
566 - © ® 66060 ©EEOE00E

L

Step 2: Clustering SNPs using clique-based clustering algorithm 12 variables
[BinT] Bin 2
EEEEE \000000‘0000@0..00\ EEE®E)
Bin3 | Bin 4| [Bin 5] Bin 6
8806 P06 000 008 oo

L

Step 3: Replacing clusters with Local PCs 12 variables

Step 4: Removing variables with high VIF 11 variables

Step 5: Add additional PCs obtained from removed SNPs 13 variables
TRYEE e @@ - O

198  FIGURE 1 Illustration of DRLPC algorithm applied for “SLC35E4 " region (chromosome 22)
199  data from 1000 Genomes Project, EUR population data. Blurred variables at Step 1 and Step 4
200  denote those removed in that step.

201 3 | APPLICATIONS of DRLPC to SNP GENOTYPES
202 3.1 | Datasets

203  To evaluate the performance of the DRLPC algorithm, we applied it in two datasets:

204 » the 1000 Genomes Project (phase 3) chromosome 22 data (1000 Genomes Project

205 Consortium.,(2015)) from three super-populations: European (EUR), East-Asian (EAS),
206 and African (AFR), from https://fip.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/.
207 » the HRC-imputed SNP genotype datasets of the Canadian Longitudinal Study on Aging
208 (CLSA) (Raina et al., 2009). QC was applied as described in Forgetta et al., (2022) and
209 summarized in supplemental methods.

210  We limited analysis to the data of European ancestry since other groups do not have large
211 enough sample sizes. The datasets were preprocessed similarly. First, SNPs with missing values
212 and multi-allelic SNPs were removed. Also, SNPs with minor allele frequency (MAF) less than
213 0.05 were excluded. In the CLSA, we required an INFO score > 0.8 to select well-imputed
214 SNPs. Table 1 reports the number of individuals in each population and the total number of
215 remaining SNPs post-filtering for each of the 1000 Genomes and CLSA populations.

216
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217  TABLE 1 Sample size, number of SNPs on chromosome 22, number of SNP sets of the 100
218  SNPs, number of SNPs in genes, and number of genes for each population dataset studied

Sample Number Number of Number Number of
size of SNPs SNPsets of SNPs Genes

Population (total) (100 SNPs per set) (total in genes)

'EUR (1KG) 503 85,718 857 50,705 698
‘EAS (1KG) 504 78,461 784 46,476 693
SAFR(1KG) 661 118,466 1,184 70,471 734
European

(CLS‘;) 17,779 71,695 717 71,695 611

219  'EUR: European population; ‘EAS; East Asian population; SAFR: African population
220 3.2 | Methods

221 To examine the population-specific dimension reduction results, we created two types of SNP
222  sets from each population dataset: 1) a set of 100 consecutive SNPs and 2) a set of SNPs in
223 gene regions. For the 100 SNP sets, we partitioned all SNPs in chromosome 22 into sets of 100
224  consecutive SNPs. For gene-based datasets, we considered only the SNPs within gene regions,
225  based on the gene information obtained from the Ensemble BioMart database for NCBI hg19
226 Build 37 (GRCh37.p13) (http://grch37.ensembl.org/biomart). Table 1 reports the number of
227  SNPsets of 100 SNPs, the total number of SNPs in genes, and the number of genes with more
228  than one SNP for each population. Table 2 also reports summary statistics of the number of
229  SNPs in a gene for each population.

230 TABLE 2 Summary statistics of numbers of SNPs per gene on chromosome 22 for each
231 population

Number Summary of the number of SNPs in a gene
Population of genes Average SD Median Min Max
EUR 698 72.6 156.7 26 2 1875
EAS 693 67.1 142.1 24 2 1846
AFR 734 96.0 209.5 36 2 2764
European (CLSA) 611 71.8 151.0 27 2 1759

232 To assess the performance of the proposed method, we applied DRLPC to each SNP set with
233 several combinations of threshold values required for the algorithm. For CLQcut, which is the
234 threshold value for the clique-based clustering algorithm CLQD (Yoo et al., 2015) used to find
235  SNP clusters, we designated four values: 0.5, 0.8, 0.9, and 0.9. For VIFcut, which is the
236  threshold value for variable removal based on the variance inflation factor (VIF) to reduce
237  multi-collinearity, we assigned a fixed value of 20. For PCcut, which is the threshold value for
238  selecting additional PCs representing the removed SNPs at the final step of the algorithm, we
239  chose 0.8 and 0.9. Eight different combinations of threshold values were applied to obtain
240  dimension reduction results by DRLPC.
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241 3.3 | Results
242 3.3.1 | Dimension reduction results of 1000 Genomes Project dataset

243 When the DRLPC algorithm is applied to the SNP sets in gene regions of chromosome 22, the
244  number of variables in genotype data was reduced to 8~16% in EUR and EAS and 18~31% in
245  AFR, depending on the threshold values used (Figure 2, and Supplementary Table S1). When
246 the DRLPC algorithm is applied to each of the 100 consecutive SNP sets, the dimension of
247  genotype data was reduced to 13-25% in EUR and EAS and 22-41% in AFR, depending on the
248  threshold values used (Figure S1, and Supplementary Table S2). The dimension reduction in
249  AFR by DRLPC was less than in EUR and EAS, which can be explained by weaker LD in the
250  AFR population, fewer sites being in LD, and divergent patterns of LD between AFR and non-
251 AFR (Tishkoff et al., 2002). In both types of SNP sets, it was observed that lower CLQ
252 threshold values led to greater dimension reduction. The percentages of the final number of
253  variables after the DRLPC process compared to the number of SNPs in the original dataset
254  were very slightly lower with PCcut value of 0.8, compared to a PCcut value of 0.9.
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Percentage distribution of final variables, 1000 Genomes Project, gene regions
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EUR EAS AFR
PCeut=0.8 , CLQcut=0.5 M PCeut=0.8 , CLQcut=0.8

PCeut=0.8 , CLQcut=0.9 M PCeut=0.8 , CLQcut=0.95
PCeut=0.9 , CLQcut=0.5 M PCcut=0.9 , CLQcut=0.8
WPCeut-0.9, CLQcut-0.9 W PCcut=0.9, CLQcut=0.95

255  FIGURE 2 The percentage distribution of final variables after the DRLPC process compared
256  to the number of SNPs in the original gene-based datasets of 1000 Genomes Project,
257  chromosome 22, with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95), two threshold
258  values (0.8, 0.9) for PCcut, and for three super-populations (EUR, EAS, AFR).

259  Figure 3 presents the relationship between gene size and the reduction rate across all 1000
260  Genomes super-populations and CLSA data European ancestry (considering a PCcut value of
261 0.8, a comparable plot for a PCcut value of 0.9 is provided in Supplementary Figure S2). The
262  reductionrate is defined as one minus the proportion of final variables after the DRLPC process
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263 relative to the number of variables in the original data. An upward trend is observed, indicating
264  that the reduction rate also tends to increase the number of SNPs in a gene increase. Similar
265  trends are observed across all super-populations and different choices of threshold values. We
266  also compared the reduction rates resulting from the DRLPC process for each super-population
267  after dividing genes into two groups considering the number of SNPs: 1) genes with below-
268  average numbers of SNPs and 2) genes with above-average numbers of SNPs. The average
269  number of SNPs per gene for EUR, EAS, and AFR populations was 72.6, 67.1, and 96.0,
270  respectively. As presented in Table 3, the differences in average reduction rates are about 28~35%
271 between the genes with a larger number of SNPs (above average group) and those below the
272 average group. On average, the dimension reduction rates for genes with more SNPs were
273 around 83% for EUR and EAS populations and 75% for the AFR population. In comparison,
274  the corresponding rates for genes with fewer SNPs were around 53% for both the EUR and
275  EAS populations and 42% for the AFR population. These results align with African populations
276 exhibiting reduced levels of linkage disequilibrium (LD) compared to non-African populations
277  (Campbell et al., 2008).
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278  FIGURE 3 The reduction rates after the DRLPC process plotted with the number of SNPs
279  in the original dataset (gene size) for gene-based datasets of 1000 Genomes Project and CLSA
280  data, chromosome 22, with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95), a threshold
281  value 0.8 for PCcut, and for three super-populations (EUR, EAS, AFR) and European ancestry.
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282 TABLE 3 Average reduction rate after (percentage) in the number of variables after the
283  DRLPC process compared to the original number of SNPs in the gene regions of chromosome
284 22 for EUR, EAS, and AFR populations.

Average reduction Average reduction Average reduction
rate (%), EUR rate (%), EAS rate (%), AFR
'CLQcut  ‘PCcut ‘Below TAbove Below Above Below Above
average average average average average average
(522 (176 (526 (167 (553 (181
genes) genes) genes) genes) genes) genes)
0.8 61.2 89.3 62.8 89.9 53.3 83.2
0.5 0.9 60.9 88.9 62.4 89.5 52.9 82.3
0.8 53.8 84.4 52.2 82.5 42.2 74.7
0.8 0.9 53.6 84.2 55.9 85.0 42.0 74.2
0.8 49.9 81.8 48.5 80.1 37.8 71.5
0.9 0.9 49.8 81.7 52.1 82.3 37.6 71.0
0.8 47.2 80.0 48.5 80.1 34.6 70.0
0.95 0.9 47.1 79.8 48.4 79.9 34.4 69.4

285 +CLQ(:ut: the threshold values for clique-based clustering algorithm CLQD (Yoo et al., 2015) to find SNP clusters;

286 #PCcut: the threshold value for selecting additional PCs representing the removed SNPs at the final step of the
287 algorithm; $Below: Below the average number of SNPs (The average number of SNPs is 72.6, 67.1, and 96.0 for
288 EUR, EAS, and AF, respectively); 1Above: Above the average number of SNPs (The average number of SNPs is
289 72.6, 67.1, and 96.0 for EUR, EAS, and AF, respectively).

290 In addition to dimension reduction, as previously noted, DRLPC aims to resolve multi-
291 collinearity. To demonstrate the effectiveness of DRLPC, we compared the highest VIF values
292  for the remaining variables at each step of DRLPC in gene regions. Table 4 illustrates the
293  average and standard deviation of the highest VIF values of each step of DRLPC over gene
294  regions of three super-populations. According to the DRLPC algorithm, at the first step, aliased
295  variables (variables with complete dependency) were removed from the data; as shown in Table
296 3, the average of VIF values remained significantly high, which is a warning sign of extreme
297  multi-collinearity. It is essential to highlight that the number of variables in steps 2 and 3
298 remains consistent; however, in step 3, bins(groups) are replaced by the first principal
299  component. DRLPC can effectively address the multi-collinearity by replacing highly
300 correlated SNPs with local PCs at step 3. As shown in Table 4, applying LPCA in step 3
301  partially resolves multi-collinearity. The average highest VIF values for CLQcut of 0.5 are
302  reduced to the values below the VIF threshold (VIFcut=20) for all three super-populations. The
303  VIF reduction? of the highest VIF values from steps 1 to 3(2), ranging from 89.0% to 99.89%,
304  suggests that incorporating the LPC has effectively mitigated issues related to multi-
305 collinearity in the dataset. At step 4, the average of the highest VIF values is reduced to the
306  value below the VIF threshold for all three super-populations for all CLQcut and PCcut values,
307  underscoring DRLPC's capability to resolve multi-collinearity effectively. As indicated in
308  Table 4, the average of the highest VIF at step 5 with a PCcut value of 0.8 falls below the VIF
309 threshold value for EUR and AFR. However, with a PCcut of 0.9, the average of the highest
310  VIF increases and surpasses the threshold, particularly with CLQcut value of 0.5 for EUR and
311 EAS. It may be ascribed to the higher average number of new variables (RPCs) using a larger
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PCcut value (Supplementary Table S6). For AFR, the average of the highest VIF values remains
the VIF threshold when considering all CLQcut and PCcut values; however, similar to EUR
and EAS, an increase in PCcut value corresponds to a rise in the average of the highest VIF.
Elevating the average of the highest VIF by increasing the CLQcut values, can be attributed to
the clique-based clustering algorithm's tendency to form clusters with fewer SNPs, therefore
less dimension reduction, using a larger CLQ threshold (Yoo et al., 2015). No significant
difference was observed when using different PCcut values across populations for a specific
CLQcut value except for step 5. The findings underscore the effectiveness of DRLPC in
successfully mitigating multi-collinearity before conducting regression analysis (refer to
Supplementary Excel file, Table S24 to S47 for details).
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322 TABLE 4 The average and standard deviation of the highest VIF values after each DRLPC step obtained over gene regions in chromosome 22
323  using 1000 Genomes Project data of three super-populations. The VIF (average, SD) of aliased variables at step 1 for EUR, EAS, and AFR are
324 (10572.5, 175545.0), (16114.1, 371104.1), (11300.5, 93899.4), respectively, and are same for using all CLQcut and PCcut value combinations.

Steps 2 & 3 Step 4 StepS

CLQcut PCcut Average SD Average SD Average SD

EUR 0.5 0.8 11.3 21.1 5.6 5.6 8.6 13.2
0.9 11.3 21.1 5.6 5.6 253 374.6

0.8 0.8 60.0 117.8 8.7 6.6 9.4 8.0
0.9 60.0 117.8 8.7 6.6 20.3 258.5

0.9 0.8 214.2 2850.0 9.6 6.6 10.4 16.6

0.9 214.2 2850.0 9.6 6.6 11.1 17.5

0.95 0.8 1158.4 26297.8 10.9 6.7 11.8 23.2

0.9 1158.4 26297.8 10.9 6.7 13.1 24.9
EAS 0.5 0.8 9.5 17.5 4.6 5.1 21.3 322.2
0.9 9.5 17.5 4.6 5.1 24.7 323.0

0.8 0.8 53.0 88.0 8.5 17.1 9.1 17.4

0.9 53.0 88.0 8.5 17.1 10.4 18.6

0.9 0.8 89.2 126.9 9.2 6.6 9.8 12.7

0.9 89.2 126.9 9.2 6.6 10.6 13.7

0.95 0.8 133.4 249.4 11.5 22.9 11.8 23.2

0.9 133.4 249.4 11.5 22.9 12.7 24.0

AFR 0.5 0.8 18.9 40.3 8.3 15.8 12.7 27.5
0.9 18.9 41.1 8.3 19.9 17.1 39.4

0.8 0.8 112.0 539.5 12.4 22.1 14.5 31.0

0.9 112.1 539.9 12.4 22.1 16.9 32.0

0.9 0.8 200.1 850.8 14.2 23.7 16.3 36.6

0.9 200.1 850.8 14.2 23.7 17.8 37.9

0.95 0.8 354.6 1827.7 14.4 29.4 16.2 32.2

0.9 354.6 1827.7 14.4 29.4 18.0 34.4

325
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326  3.2.2| Dimension reduction results of CLSA dataset

327  Application of the DRLPC algorithm to SNP sets in gene regions, reduced the average
328 dimension of genotype data to 7~14%, depending on the threshold values (Figure 4 and
329  Supplementary Table S3). We also observed that lower CLQ threshold values yield more
330 dimension reduction than higher CLQ cut points, and larger genes had greater reduction than
331  smaller genes (Figure 4, Table 5, Supplementary Table S4). The European ancestry results
332  obtained from the CLSA data align consistently with the findings from the 1000 Genomes
333  Project EUR population, revealing a comparable pattern. When the DRLPC algorithm is
334  applied to each of the 100 consecutive SNP sets, the dimension of genotype data was reduced
335  to 11~21% depending on the threshold values used (Supplementary Table S4). With lower
336  CLQcut threshold values, the dimension of 100 SNP sets was more reduced than with the
337  higher CLQcut values. With the lower PCcut value (0.8), the percentages of final variables
338 after the DRLPC process were applied were slightly lower than those with a PCcut of 0.9.
339  Similar to previous results for 1000 Genomes Project data, a noticeable ascending pattern
340  suggests a corresponding elevation in the reduction rate by increasing gene size (Figure S2).
341 Additionally, the choice of different CLQcut values has a negligible effect on the identified

342  pattern; moreover, regardless of CLQcut variations, the pattern remains steady.
343
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FIGURE 4 The percentage distribution of final variables after the DRLPC process compared
with the original data of gene regions, with four threshold values for CLQcut (0.5, 0.8, 0.9,
0.95) and two threshold values (0.8, 0.9) for PCcut, 1000 Genomes project for EUR and CLSA
data European ancestry.
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348  Similar reduction rate patterns persist across various threshold values when examining both the
349 1000 Genomes Project EUR population and the CLSA data of European ancestry (Figure 3).
350 Following the approach used in the 1000 Genomes Project data, we also compared the
351  reduction rates resulting from the DRLPC process after dividing genes into two groups based
352  on the number of SNPs: genes with the number of SNPs below the average and those above
353  the average. As shown in Table 5, the average number of SNPs per gene was 71.6, the
354  differences in average reduction rates are about 23~28% between the bigger group (above the
355  size average) and the smaller group (below the size average), as presented in Table 5. On
356  average, the dimension reduction rates for genes with more SNPs were around 86%. The
357  corresponding rates for genes with fewer SNPs were around 60%. Based on the results
358 presented in Tables 2 and 5, it becomes evident that the EUR population in the 1000 Genomes
359  Project and the European ancestry within the CLSA dataset exhibit a striking similarity in the
360 observed reduction rates. Notably, this similarity holds across varying CLQcut and PCcut
361  thresholds, with the highest reduction rates consistently occurring when both groups (below
362  and above the size average) employ CLQcut 0.5 and PCcut 0.8. The values obtained for these
363  thresholds are not only in the same range but also reflect the maximum reduction rates among
364  the thresholds considered. The reduction rate for the smaller size group (below the size average)
365 is 47.1~61.2% and 53.2~67.3% for EUR 1000 Genomes Project and European CLSA data,
366  respectively. On the other hand, the reduction rate for the bigger group (above the size average)
367 is 79.8~89.3% and 82.1~90.6% for EUR 1000 Genomes Project and European CLSA data,
368  respectively. This close alignment of results underscores a similarity in the reduction rate trends
369  observed across these two datasets.

370  TABLE 5 Average reduction rate (percentage) by DRLPC compared to the original number of
371 SNPs in the gene regions (average number of SNPs per gene is 71.6) of European ancestry for
372 CLSA population, chromosome 22.

Average reduction rate (%), European, CLSA

CLQcut PCeut "Below average ‘Above average
(454 genes) (157 genes)
0.5 0.8 67.3 90.6
0.9 67.2 90.3
0.8 0.8 59.7 86.4
0.9 59.6 86.2
0.9 0.8 56.0 83.9
0.9 55.9 83.7
0.95 0.8 53.4 82.3
0.9 53.2 82.1

373 "Below: Below the average number of SNPs (The average number of SNPs is 71.6); ‘Above: Above the average
374 number of SNPs (The average number of SNPs is 71.6).

375 In evaluating the efficacy of DRLPC to address multi-collinearity within the CLSA data,
376  similar to our approach with the 1000 Genomes Project, we focused on the average of highest
377  VIF values on gene regions of chromosome 22 (refer to Supplementary Table S5 and
378  Supplementary Excel file Table S48 to S55). Our findings consistently correspond to those
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379  obtained from the 1000 Genomes Project, specifically within the EUR population and CLSA
380  dataset. The VIF reduction from steps 1 to 3 (step 2) is around 99%, highlighting the
381  effectiveness of the local Principal Component in revolving multi-collinearity in the dataset.
382  Upon implementing LPCA at step 3, The average highest VIF values for CLQcut of 0.5 are
383  reduced to the values below the VIF threshold (VIFcut=20). However, in harmony with the
384 1000 Genomes Project data observations, the average of the highest VIF values at step 4
385  consistently are reduced to the values below the VIF threshold across all CLQcut and PCcut
386  values. In Step 5, the average of the highest VIF values remains below the threshold for both
387  CLQcut values. The difference observed between the CLSA data and the 1000 Genomes
388  Project data in Step 5 may be attributed to the lower average of adding new variables for the
389  CLSA data in this step. However, considering the results in steps 3 and 4, the VIF findings
390 substantiate the effectiveness of DRLPC in successfully mitigating multi-collinearity for both
391  datasets, emphasizing the significance of this approach before conducting regression analyses,
392  as detailed in earlier discussions. It should be mentioned that the average number of aliased
393  variables in the CLSA data is notably lower compared to the results observed for the EUR
394  population in the 1000 Genomes Project (Table S6 and S7). Several factors contribute to this
395  disparity. The CLSA dataset encompasses imputed genetic data for European ancestry. Imputed
396  genotype data undergoes rigorous quality control procedures to ensure high imputation
397  accuracy. By selecting the high-quality imputed variants, poorly imputed variants that would
398  have otherwise been aliased in the genotype data are effectively excluded from the analysis.
399  Furthermore, it is essential to note that our study exclusively considered well-imputed SNPs.
400  Another influential factor to consider is the discrepancy in the number of individuals between
401  the two datasets. The 1000 Genomes Project dataset is limited to 503 individuals within the
402  EUR population, while the CLSA dataset boasts a much larger cohort of 17,779 individuals.

403  The dimension reduction was higher for larger size genes across all three super-populations in
404  this study, although there is a complex relationship between gene size and recombination rate
405  since there are several factors that influence recombination rates, it could be attributed to the
406  construction of robust LD blocks of highly correlated SNPs by the clique-based algorithm (Yoo
407 et al., 2015). The structure of LD is influenced by various factors, including recombination,
408  mutation, selection and population history, and genetic drift (Pritchard et al., 2001; McVean et
409  al., 2004). Halldorsson et al., (2019) found that recombination rates are lower in genic regions
410  (defined by the beginning of the first exon of a gene to the end of the last) than in noncoding
411 regions. These results strongly contradict with earlier reports (Eyre-Walker, 1993; Kong et al.,
412 2002) of a positive correlation between gene density and recombination rate. The apparent
413 contradiction may be explained if recombination hotspots are more likely to occur near genes
414 than within them. The relationship between recombination rate and LD is generally inverse;
415  lower recombination rates are associated with higher LD.

416 4| SIMULATION STUDY
417 4.1 | Methods

418  To investigate the impact of DRLPC on statistical performance in regression-based multi-SNP
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419  statistics, we designed simulation studies based on observed human genotypes from the 1000
420  Genomes Project (phase 3 chromosome 22 for three super-populations (EUR, EAS, and AFR),
421 as in section 3). Quantitative traits were generated in three series of simulations of gene-level
422 association in 100 genes. One series assumed a global null effect model (Model 1) to evaluate
423 type I error, and two series assumed alternative trait models with one or two causal SNPs per
424 gene (Models 2 and 3) to evaluate power gene-based tests, with and without DRLPC processing.

425 4.1.1 | Genotype data

426 To identify genes for multi-SNP association test evaluation, we first excluded rare and low
427  frequency SNPs (MAF< 0.05), pruned SNPs in complete LD, and removed multi-allelic SNPs.
428  This produced 775, 759, and 803 genes for EUR, EAS, and AFR, respectively, each with at
429  least one SNP ( https://www.ensembl.org/). From these, we selected genes with number of
430  SNPs per gene ranging from m=11 to 500, resulting in 462, 454, and 498 genes for EUR, EAS,
431 and AFR, respectively. Finally, we randomly selected 100 genes in common from 742 genes
432 across all three super-populations, to compare the performance of gene-based tests under
433  realistic gene structure by simulation studies (Supplementary Excel file Tables S21 to S23).
434  Considering EUR, EAS, and AFR separately, including 503. 504, and 661 individuals
435  respectively, the CLQD algorithm was applied with CLQcut = 0.5 threshold value to assign all
436  m SNPs in a gene into mutually-exclusive clusters of varying size and number, according to

437 the within-gene LD structure.

438  4.1.2 | Simulation model

439  To better understand the data and model characteristics that influence the performance of
440 DRLPC method, we conducted a simulation study based on observed human genotypes.
441 Quantitative trait ¥ values were generated for each gene under null and alternative hypotheses
442  using genotype data from the 1000 Genomes Project phase 3 for three super-populations
443 assuming an additive genetic model with ¢ causal SNPs, as described below:

t
444 Y = z ain' + ¢
i=1

445  where ¢ is the number of causal SNPs per gene, a; is the effect of the i causal SNP, X; is the
446  number of minor alleles at the i SNP, and ¢ is the error term considered to follow a normal
447  distribution with mean 0 and variance ¢?. We considered three different quantitative trait
448  models for each gene, including 0, 1, or 2 causal SNPs per gene (Table 6). Under the null
449  hypothesis of no gene effect (Model 1), all a; were specified to be null in the trait generation
450  model. Under the alternative hypothesis (Models 2 and 3), non-null SNP effects were specified
451  as: a) lcausal model with one causal SNP per gene has effect a; = 1 (#=1), or b) 2causal
452 model with two causal SNPs per gene has effectsa; = 1 and a, = 1 (#=2). Under Model 2,
453 one SNP in a gene was randomly selected to be causal. Under Model 3, a second SNP was also
454  selected to be causal. If there was only one cluster in a gene, the second SNP was randomly
455  chosen from the same cluster, and if there was more than one cluster in a gene, the second SNP
456  was randomly selected from a different cluster.
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457  TABLE 6 Quantitative trait models used to generate phenotypes for type I error and power
458  comparisons of multi-SNP tests.

Model Explanation "Trait model parameters
1 No SNP association All zero
2 One causal SNP within a gene (1causal) a =1
3 Two causal SNPs, both deleterious

a=1a,=1
(2causal) 1 z
459 "The trait model is Y = Yi_ia;X;+ & where € = N(0,02), t is the number of causal SNPs, a; is the effect of
460 the i causal SNP, and X; is the number of risk alleles for the i causal SNPs. The variance o2 is selected to
461 maintain the power of the Wald test at 60% for each set of causal SNPs for 1causal and 2causal models.

462  To estimate empirical type I error, we generated 1000 replicated datasets for each gene under
463  Model 1, and applied the analysis methods described in section 4.1.3 in each replicate,
464  including all the SNPs and their cluster information in the regression analyses. The proportion
465  of replicates in which the null hypothesis was rejected was then averaged over all genes, and
466  then over subsets of genes stratified according to the original number of SNPs in the gene, and
467  for each gene, all SNPs were included in the regression analysis. For power estimation under
468  the alternative, we generated 1000 replicated datasets under Models 2 and 3, and similarly
469  tabulated and averaged the per gene rejection rates in analyses that considered all SNPs.
470  Assuming CLQcut 0.5 and PCcut 0.8, two causal SNPs were selected from different LPCs if
471 possible. In this study, the error variance o2 was adjusted separately for each gene and trait
472 model to achieve a 60% power in the Wald test. The error variance was estimated using the
473  original genotype variables in a set of 1,000 replicates under the alternative model, and
474 regressions that include all causal and non-causal SNPs.

475  4.1.3 | Multi-marker test statistics

476  Whenever a gene includes several SNPs, multi-SNP analysis can be applied by multiple
477  regression with multi-parameter hypotheses or by incorporating single-SNP marginal
478  regression analysis results. Both approaches demand coded genotype data. In order to evaluate
479  the impact of DRLPC on regression-based multi-SNP statistics, we selected several multi-
480  marker statistics based on joint or marginal regression to compare the power using original data
481  and dimension-reduced data by DRLPC. Among joint regression tests, Wald (Wald, 1943),
482  Multiple linear combination (MLC) (Yoo et al., 2017), and PC80 tests (Gauderman et al., 2007)
483  are evaluated in this study. Furthermore, the sequence kernel association (SKAT) and SKAT-O
484  tests (Ionita-Laza et al., 2013; Lee et al., 2012), are included as well-known gene-based tests
485  of SNP sets for gene-based association analysis. The MLC test is derived from the joint
486  regression Wald statistics by applying a set of linear contrasts to the multi-SNP regression
487  parameters that reduce the dimension (df) of the test statistic. The contrasts reflect the cluster
488  membership determined using the CLQ algorithm prior to regression estimation (Yoo et al.,
489 2015, Yoo et al., 2017). CLQ optimizes within-cluster correlation using pairwise correlation of
490  additively coded SNPs, with SNP recoding as necessary for positive within-cluster correlation.
491  The weights in the multiple linear combinations are derived from the regression variance-
492  covariance matrix which depends on MAFs and LD among the SNPs in the gene. We
493  considered two types of MLC tests: MLC-B (based on the beta coefficients) and MLC-Z
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494  (comparable Z statisticstest, Z = (Zy,Z;, ..., Zy)T), considering two CLQcut threshold values,
495 0.5 and 0.8, respectively. The details of all tests are available in Supplementary Methods.

496 4.2 | Results

497  4.2.1| Evaluation of type I error rate

498  We report the type I error estimates of each statistic using 10,000 replications considering two
499  nominal critical values for a= 0.05 and 0.01 and averaging across 100 genes (Table 7,
500  Supplementary Table sS8 and S9, Figures S3 and S4). For the simulation study, two CLQcut
501 (0.5 and 0.8) and one PCcut (0.8) threshold values are selected to obtain type I error (and
502  empirical power) for all gene-based tests using the DRLPC method. As shown in Table 7, the
503  average empirical type I error for the Wald test was elevated in the original data and declined
504  from 0.07 by 0.02 in the DRLPC processed data, and close to the nominal 0.05 level for all
505 three super-populations under the 1causal model. The average standard deviation and average
506  df for the Wald test also decreased considerably with application of DRLPC for both CLQcut
507  points. On average, all other test statistics exhibited type I error control in original and DRLPC
508 analysis. We also observed greater type I error inflation with larger genes for some tests,
509 particularly for the Wald test (Supplementary Tables S10 to S12 and Figures S5 to S7).
510  However, applying the DRLPC decreased the inflation, resulting in values close to the nominal
511 0.05 level for three super-populations under the 1causal model. The average and SD of MLC-
512 B tests vary little across the CLQ threshold values, suggesting that clustering and dimension
513  reduction do not affect standard error estimates. Comparing the obtained empirical type I error
514  values between populations demonstrates a high similarity between the results. It can be
515 inferred that the implementation of DRLPC has reduced the type I error values for all three
516  super-populations.
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TABLE 7 Empirical type I error of gene-based statistics (N=10,000 replicates) at the nominal level o= 0.05, averaged over 100 genes, using
original data and two DRLPC processed data for three super-populations.

"Original data *CLQcut 0.5 SCLQcut 0.8
Population IStatistics Average SD Avczlr;ige Average SD szr: & Average SD szr;lge
EUR Wald 0.071 0.010 35.7 0.052 0.003 9.0 0.053 0.003 12.6
PC80 0.051 0.002 4.2 0.051 0.002 4.8 0.052 0.002 53
MLC-B5 0.053 0.003 8.9 0.052 0.003 7.3 0.052 0.003 8.1
MLC-B8 0.055 0.004 14.5 0.052 0.003 8.7 0.053 0.003 11.9
SKAT 0.049 0.003 - 0.049 0.003 - 0.050 0.002 -
SKAT-O 0.052 0.003 - 0.052 0.003 - 0.052 0.003 -
EAS Wald 0.069 0.012 333 0.053 0.002 7.9 0.053 0.003 11.2
PC80 0.051 0.002 3.7 0.052 0.002 4.6 0.052 0.002 4.9
MLC-B5 0.053 0.003 7.9 0.052 0.003 6.4 0.052 0.003 7.1
MLC-B8 0.055 0.004 7.9 0.053 0.003 7.6 0.053 0.003 10.3
SKAT 0.049 0.002 - 0.049 0.002 - 0.050 0.003 -
SKAT-O 0.052 0.003 - 0.052 0.003 - 0.052 0.003 -
AFR Wald 0.076 0.015 67.8 0.054 0.003 18.1 0.055 0.004 26.4
PC80 0.052 0.002 7.4 0.052 0.002 7.9 0.052 0.002 8.8
MLC-B5 0.054 0.003 18.6 0.053 0.003 14.0 0.053 0.003 16.2
MLC-B8 0.057 0.005 31.5 0.054 0.003 17.8 0.055 0.004 25.4
PC80 0.052 0.002 7.4 0.052 0.002 7.9 0.052 0.002 8.8
SKAT 0.050 0.002 - 0.050 0.002 - 0.050 0.002 -
SKAT-O 0.052 0.003 - 0.052 0.003 - 0.052 0.003 -

'Used data: Original data; “CLQcut 0.5: DRLPC processed data using CLQ threshold value 0.5; SCLQcut 0.8: DRLPC processed data using CLQ threshold value 0.8. "List
of test statistics: Wald: generalized Wald test (Wald, 1943); PC80: global test on regression using the minimum number of principal components capturing 80% of variance
(Gauderman et al, 2007); MLC test: Multi Linear combination test (Yoo et al, 2017); MLC-B5: MLC tests using beta coefficient by considering CLQcut equal to 0.5, MLC-
B8: MLC tests using beta coefficient by considering CLQcut equal to 0.8; SKAT: sequence kernel associated tests for the common variants (Ionita-Laza et al, 2013); SKAT-
O: a linear combination of SKAT and burden test with optimized mixing proportion (Lee et al, 2012).
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524  4.2.2| Comparison of empirical power values for original data versus DRLPC processed data

525  To evaluate the efficiency of the DRLPC method, empirical power values of each of the multi-
526  SNP statistics were estimated using 1000 replications for each of 100 genes using the original
527  data and two DRLPC processed data for two trait models (Table 8, Supplementary Table S13,
528  Supplementary Figures S8 to S10). We computed power as the proportion of replicates with p-
529  values below the threshold corresponding to a nominal critical value for @ = 0.05 and obtained
530 average and standard deviation of empirical power across all gens under two trait models in
531  three super-populations (Supplementary Table S14 provides similar results for 2causal model,
532 Supplementary Tables S56 to S61 provide results for each gene for three super-populations).

533  As shown in Table 8, it is noteworthy that Wald test average power remarkably improves by
534  20% using DRLPC processed data compared to using original data for all three super-
535  populations. As expected, CLQcut 0.5 produces larger clusters and smaller df than CLQcut 0.8.
536  The PC80 achieves similar power using the original data compared to DRLPC for both CLQcut
537  values in all three super-populations. The PC80 DRLPC processed data and original data results
538  are remarkably similar on average. Nevertheless, it is worth mentioning that not all (global)
539  principal components are readily interpretable in a biological context, and choosing a subset of
540  principal components might lead to the exclusion of meaningful information; hence, the results
541  obtained with the DRLLPC may offer a more dependable basis for interpretation.

542  MLC-B performs dimension reduction by constructing a weighted linear combination for each
543  cluster using the original multiple regression coefficients, while DRLPC reduces dimension by
544  constructing a new variable which is a weighted linear combination of the genotypes within
545  each cluster and then performs, multiple regression with the new variables, but the weights
546  differ. Nevertheless, the average power of MLC-B obtained using the original data is similar
547  to the power of Wald using DRLPC processed data for corresponding CLQcut values. The
548  DRLPC process slightly enhanced the power of MLC-B compared to using the original data in
549  every population when the CLQ threshold was 0.8.

550  Forthe 1 causal model, SKAT usually has higher average power than SKAT-O, especially using
551  CLQ cut-point 0.5 across three super-populations. While analyzing the 2causal model
552  (Supplementary Table S14), we observed that SKAT and SKAT-O had usually higher power
553  using the original data for all three populations. Since the effects of both causal variants for the
554  2causal model are in the same direction, SKAT usually has a higher average power than SKAT-
555 O for all populations.

556  The average power of each test by applying DRLPC was higher than 70% for three populations
557  under both trait models. Based on the result in Table 8, we can infer that the power of DRLPC
558  processed data tends to increase when the degrees of freedom (df) of each test decrease,
559  implying that DRLPC can enhance power by reducing the dimension of the data. The average
560  power obtained by DRLPC is higher considering CLQcut 0.5 than CLQcut 0.8. under each trait
561  model for all tests (Table 8 and Supplementary Tables S13 and S14).

562
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TABLE 8 Empirical power (percentage) of gene-based statistics (N=1,000 replicates) at the 0.05 level for three populations, 1causal model,

averaged over 100 genes.

Original data CLQcut 0.5 CLQcut 0.8
Population Statistics Average SD dA;/erage Average SD dA;/erage Average SD dA;/erage
EUR Wald 60.3 4.6 35.7 81.3 9.5 9.0 78.7 8.2 12.6
PC80 82.1 18.4 4.2 81.4 12.7 4.8 81.9 11.3 5.3
MLC-B5 81.3 8.6 8.9 82.2 11.2 7.3 82.7 9.5 8.1
MLC-B8 77.0 7.8 14.5 81.8 9.5 8.7 79.4 8.6 11.9
SKAT 76.8 20.5 - 80.5 18.0 - 76.1 25.0 -
SKAT-O 74.6 22.0 - 77.6 19.5 - 74.0 25.0 -
EAS Wald 60.5 4.0 333 82.3 8.9 7.9 79.6 7.6 11.2
PC80 84.5 14.0 3.7 81.5 13.4 4.6 82.9 12.2 4.9
MLC-B5 81.3 11.5 7.9 81.1 14.8 6.4 81.0 13.3 7.1
MLC-B8 78.2 7.7 7.9 82.8 8.6 7.6 80.4 7.9 10.3
SKAT 79.5 18.5 - 80.0 18.2 - 74.6 22.2 -
SKAT-O 76.6 20.6 - 78.1 18.8 - 73.0 22.8 -
AFR Wald 60.5 3.9 67.8 82.8 8.7 18.1 79.3 8.0 26.4
PC80 85.8 11.9 7.4 82.7 12.7 7.9 85.5 9.3 8.8
MLC-B5 82.8 8.2 18.6 83.6 9.4 14.0 83.3 10.2 16.2
MLC-B8 77.0 7.0 31.5 82.9 8.7 17.8 80.0 8.2 25.4
SKAT 79.6 17.2 - 81.5 16.2 - 72.5 27.5 -
SKAT-O 74.7 19.3 - 77.8 17.8 - 69.7 27.9 -
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566  For each population, we also compared the median and interquartile range (IQR) of empirical
567  power for 100 genes, stratified into three groups based on the number of SNPs: genes with less
568  than 100 SNPs, 101~200 SNPs, and more than 200 SNPs (Figure S11 reports distributions of
569  the number of SNPs per gene). As shown in Figure 5 (Supplementary Tables S15 and S16),
570  DRLPC exhibited a strong enhancement in the power of the Wald test for larger genes, resulting
571  in an approximately 30% increase in power with type I error control (Table 7). Based on the
572  data application in section 3, in which the dimension reduction is greater in bigger-size genes,
573  such results are expected. Furthermore, in contrast to the Wald test, the average power of the
574  PC80 and MLC-B demonstrated a modest increase for larger gene sizes for CLQcut value 0.8.
575  The results of the DRLPC processed data using the CLQcut value 0.5 of the third group for
576  SKAT and SKAT-O have lower median the power than original data but with high variability
577  due to the small number of genes in that group, which is 7. The average power for SKAT and
578  SKAT-O tests using DRLPC processed data is higher than the original data using CLQcut 0.8
579  for the bigger-size genes; while for genes with less than 200 SNPs (groups 1 and 2), the average
580 power is higher for DRLPC processed data than original data using CLQcut 0.5. It is worth
581 noting that our finding remained consistent for another trait model and other populations
582  (Supplementary Tables S17 to S20 and Figures S12 to S17 for results in EAS and AFR
583  populations and the 2causal model), further substantiating the robustness and utility of DRLPC
584  in various genetic association scenarios.
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585  FIGURE 5 Percentage of empirical power for gene-based statistics (N=1,000 replicate) at the

586  0.05 level for EUR population, 1causal model, averaged across three groups of 100 genes based
587  on the number of SNPs in the gene.

588 4.3 | Runtime evaluations for DRLPC

589  Figure 6 presents the run-time of DRLPC when applied to gene-based SNP-set genotype data
590  from the three super-populations in 1000 Genomes Project and the CLSA, after sorting genes
591  based on their size using four CLQcut thresholds of (0.5, 0.8, 0.9, 0.95), as well as PCcut
592  threshold of 0.8 (Supplementary Figure for same CLQcut values and PCcut of 0.9). It is
593  noteworthy that computational time for different CLQcut values shows little difference
594  between thresholds. We summarized the average run-time of DRLPC for several genes with
595  different sizes (refer to Supplementary Excel file, Table S62 to S65 for more information),
596  which demonstrated that the average computational time for genes with less than 500 SNPs, is
597  around 0.06 seconds while the average computational time for genes with more than 500 SNPs
598 1is 3.41 seconds. Furthermore, the maximum run-time for larger genes (genes with more than
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599 1000 SNPs) is less than 100 seconds for all three super-populations of 1000 Genomes Project
600  (sample size 503-661) and 1,000 seconds for CLSA European ancestry (sample size 17,965)
601  (Figure S18), underscoring the effectiveness of DRLPC in reducing the computational time.
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602  FIGURE 6 Computational time for dimension reduction using the DRLPC for gene regions
603  (chromosome 22), with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95) and a threshold
604  values 0.8 for PCcut, 1000 Genomes Project, three super-populations (sample size are 503-601)
605 and CLSA data European ancestry (sample size is 17,779).

606

607  Aspreviously discussed, our simulation study applied the DRLPC to the 1000 Genomes Project
608 across three super-populations. Figure 7 illustrates the computational time for test statistics in
609  asingle replication using the original data and two sets of DRLPC processed data for 1causal
610 model EUR population (Supplementary Figures S19 to S23 for 2causal model and other
611  populations). The genes were sorted based on their size, and two CLQcut thresholds (0.5, 0.8)
612  and a PCcut threshold of 0.8 were employed. Notably, the computational time using DRLPC
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613  decreased as gene sizes increased, particularly for genes with more than 200 SNPs, since the
614  multiple regression dimension (df) has already been reduced by the DRLPC reduction within
615 the clusters. This trend is consistent across various tests and populations. Additionally, using a
616  CLQcut value of 0.5 demonstrated better computational performance, requiring approximately
617  10~30% less time for larger-sized genes, to the 0.8 threshold. The Intel(R) Core(TM) 15-4200U
618  CPU with 1.60GHz and a memory of 8.00 Gb DDR3 RAM and 238Gb local hard disk was
619  used for the calculation.
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620  FIGURE 7 The computational time for test statistics in a single replication of 1causal model
621  on 100 selected genes, chromosome 22: 79 genes with less than 101 SNPs, 14 genes with
622  101~200 SNPs, and seven genes with more than 200 SNPs, from 1000 Genomes Project, EUR.
623  The X-axis represents the original gene size, sorted by the number of SNPs. The original data
624  and the DRLPC processed data were examined at two threshold values for CLQcut (0.5, 0.8)
625  and a threshold value of 0.8 for PCcut.
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626 S5 | DISCUSSION

627 By jointly analyzing multiple variants within a gene, instead of one variant at a time, gene-
628 based multiple regression can improve power, robustness, and interpretation in genetic
629  association analysis. Yoo et al., (2017) proposed multiple linear regression with multi-
630  dimension Wald and reduced dimension multiple linear combination (MLC) test statistics and
631  demonstrated multi-SNP regression-based analysis can be a well-powered and robust choice
632  among the existing methods across a range of complex genetic architectures. Using the same
633 LD clique-based clustering implemented to define sets of related SNPs for MLC tests (Yoo et
634 al., 2015) and incorporating dimension reduction through LPCA in each cluster, we have
635  proposed the DRLPC algorithm to enhance statistical validity and power of multi-SNP tests
636  among multiple correlated genetic variants.

637  Dimension reduction is an approach to reduce the number of variables in a dataset while

638 retaining as much variation in the original dataset as possible. Kambhatla et al. (1997)

639  demonstrated that applying LPCA effectively reduces dimension in high-dimension data and

640 relieves concerns related to multi-collinearity. Multi-collinearity occurs when there is a high

641  level of linear dependency among regression variables. Methods proposed to resolve multi-

642  collinearity include ridge regression (Hoerl & Kennard, 1970), partial least squares (Wold et

643  al, 1984), lasso method (Tibshirani, 1997), principal component analysis (Pearson 1901,

644  Hotteling 1933). While acknowledging the potential of PCA and LPCA in addressing multi-

645  collinearity at least partially, it is important to note that these methods may not guarantee a

646  complete solution due to their limited effectiveness in providing a comprehensive diagnosis of
647  multi-collinearity. In this study, we introduced the DRLPC algorithm which reduces the

648  dimension of dense sequencing data by selecting clusters with high within-cluster correlation
649  and replacing each cluster with local principal components constructed locally among the SNP

650 in the cluster before the regression analysis. Dimension reduction is a crucial strength of
651  DRLPC, as it allows researchers to manage the difficulties of working with complex and highly

652 interrelated genomic data. Incorporating the Local Principal Component (Kambhatla et al. 1997)
653 in DRLPC facilitates the identification of the underlying genetic structure and improves the

654  accuracy and stability of regression models. Moreover, DRLPC directly addresses the issue of
655  multi-collinearity through a sequential two-step procedure. Initially, employing LPCA offers a

656  degree of relief from multi-collinearity and enhances the power of regression-based multi-SNP

657  genetic association analysis. This approach allows researchers to tackle two critical aspects

658  simultaneously, resulting in a more efficient and comprehensive solution.

659  To investigate the performance of DRLPC in dimension reduction, we applied it to genotypic
660  data from the 1000 Genomes Project for three super-populations (EUR, EAS, and AFR) and
661  the CLSA European ancestry subset. Considering results for nearly 200 SNP sets of varying
662  number obtained in chromosome 22, DRLPC effectively reduced dimension in all datasets. The
663  dimension reduction rate for larger genes was around 83% for EUR and EAS, and 74% for
664  AFR 1000 Genomes samples, and 85% for European ancestry CLSA samples. We observed
665 less dimension reduction in AFR compared to EUR and EAS due to weaker LD in AFR
666  (Supplementary Figures S24).
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667  For some genes, there was a strong dependency between some SNPs before applying DRLPC,
668 and LPCA reduced the average of VIF for the remaining variables. However, in some instances,
669  VIF values exceeding the predefined threshold remained after applying LPCA. Subsequently,
670  removing variables with the highest VIF (step 4) ensures that the remaining variables maintain
671  VIF values below the threshold. By systematically eliminating high VIF values via the DRLPC
672  framework (step 4), the average VIF for all genes descended below the predetermined threshold.
673  The outcomes indicate that applying DRLPC yielded consistent results across populations.

674  To investigate the performance of DRLPC pre-processing in hypothesis testing for genetic
675  association, we conducted simulations based on the 1000 Genomes populations to assess
676  validity and power of several gene-level test statistics. Based on the simulation results, we
677 conclude that the multi-SNP Wald regression test applied to the DRLPC processed data
678  performs better than in the original data for genes with larger numbers of highly correlated
679  SNPs. On average over 100 genes, all test statistics based on DRLPC effectively control type
680 I errors near the nominal 0.05 level in all three super-populations. Moreover, DRLPC
681  processing removed type I error inflation for the Wald test. This finding underscores the validity
682  of the method.

683  Furthermore, the empirical power across 1,000 replications obtained for each of 100 genes in
684  three super-populations under two trait models, indicated that the genotypic dimension
685  reduction and the impact of DRLPC was almost identical in the two trait models for all tests.
686  Inboth trait models, the Wald test with DRLPC showed the most robust efficiency, with power
687  improved by around 20%, particularly for larger size genes. Use of the same clique-based
688  algorithm and the same CLQcut value to create SNPs clusters for Local PCs in DRLPC and
689  linear combination of SNPs within clusters in MLC, produces similar empirical power for the
690 DRLPC Wald test and original MLC test.

691  The effect of DRLPC on PC80 was not remarkable since PC80 already achieves an acceptable
692  power without DRLPC. Although constructing principal components from all SNP variables in
693  aregion is a common approach, interpreting them as biological entities may be challenging. It
694 s possible that information may be lost by analyzing only a subset of principal components.
695  On the other hand, clusters of the highly correlated SNPs produced by the clique-based
696  algorithm and used by DRLPC and MLC retain their biological meaning.

697  The SKAT test is based on marginal beta coefficients and does not consider SNP covariance
698  directly in the test statistic. Moreover, SNP LD is not considered in the linear burden test
699  component of SKAT-O. Based on the results obtained in this study, the power for SKAT is often
700  greater than for SKAT-O. In general, the positive impact of the DRLPC on SKAT was greater
701 than that on SKAT-O. For SKAT and SKAT-O larger genes processed by DRLPC have lower
702  median power than the original data, with variability attributed to the limited number of genes
703 in this group, totaling 7. Although substantial differences were not observed between the three
704  super-populations for the SKAT test, the power of the SKAT test was higher using the DRLPC
705  processed data under the 1causal model compared to the 2causal model, particularly when
706 using a CLQcut point 0.5 across all three super-populations.

707  We also conducted a stratified analysis by grouping genes based on their size and computing
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708  the type I error and average empirical power for each group using original data, and two
709  DRLPC processed datasets. Notably, the number of SNPs in the gene did not substantially
710  influence the type I error in the latter, resulting in the limited impact of this variation.
711 Remarkably, the Wald test exhibited the most improvement. The enhancement in power
712 through increased gene size was more conspicuous, especially with the CLQcut value set at
713 0.5. Therefore, we recommend the threshold value of 0.5 for DRLPC. In addition to reducing
714  dimensionality while maintaining the interpretability of localized effects, pre-processing with
715 DRPC offers the advantage of decreased computational time required for regression analysis.
716 The results demonstrate that applying DRLPC elevates the statistical power of Wald tests and
717  effectively reduces computational time.

718  Given mounting evidence for the role of LD structure in the effectiveness of gene-based tests,
719  itis prudent to consider approaches like DRLPC, explicitly tailored to leverage LD information,
720  as a viable alternative for genetic association analysis of dense genotyping data characterized
721 by correlated SNPs and intricate LD structure.

722 6 | CONCLUSIONS

723 In conclusion, our study has demonstrated that dimension reduction by local principal
724 components (DRLPC) effectively reduces the dimension of high-density DNA sequencing or
725 imputed array data and. Our results indicate that DRLPC significantly resolves multi-
726  collinearity prior to regression analysis and improves the power obtained for the Wald test,
727  making it an equivalent approach to the MLC test. By reducing the data dimension, DRLPC
728  has been shown to enhance the accuracy and efficiency of multi-marker methods such as the
729  Wald test. The simulation results strongly suggest that DRLPC has excellent potential for
730  improving the power of SNP-based association studies. Applying DRLPC improves type I error
731  control and enhances the statistical power of the Wald test especially (and potentially also for
732 the MLC test) when the number of SNPs per gene is large and the sample size is relatively
733 modest (i.e. low n/p ratio). Additionally, it reduces computational time. Our findings provide
734 valuable insights into the use of DRLPC as a promising tool for the analysis of complex genetic
735  data, and we hope that our study will inspire further research in this critical area.
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898  FOOTNOTES

899 ! Dimension reduction refers to approaches to summarizing massive data such that most of
900 the information in the data is preserved even with a smaller number of variables.

901  2Inregression studies, alias variables refer to variables that are highly correlated or redundant
902  with each other.

903 3 The reduction in VIF is calculated as the percentage of one minus the ratio of the highest VIF
904 at a specific step to the highest VIF at the preceding step.
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