

1 **Dimension Reduction using Local Principal Components for**
2 **Regression-based Multi-SNP Analysis in 1000 Genomes and**
3 **the Canadian Longitudinal Study on Aging (CLSA)**

4

5 Fatemeh Yavartanoo¹ | Myriam Brossard² | Shelley B. Bull^{2,3} | Andrew D. Paterson^{3,4} | Yun
6 Joo Yoo¹

7 ¹Department of Mathematics Education, Seoul National University, Seoul, South Korea

8 ²Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada;

9 ³Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada;

10 ⁴Program in Genetics & Genome Biology, Hospital for Sick Children Research Institute,
11 Toronto, Ontario, Canada.

12 Correspondence to: yyoo@snu.ac.kr

13

Abstract

For genetic association analysis based on multiple SNP regression of genotypes obtained by dense DNA sequencing or array data imputation, multi-collinearity can be a severe issue causing failure to fit the regression model. In this study, we proposed a method of Dimension Reduction using Local Principal Components (DRLPC) which aims to resolve multi-collinearity by removing SNPs under the assumption that the remaining SNPs can capture the effect of a removed SNP due to high linear dependency. This approach to dimension reduction is expected to improve the power of regression-based statistical tests. We apply DRLPC to chromosome 22 SNPs of two data sets, the 1000 Genomes Project (phase 3) and Canadian Longitudinal Study on Aging (CLSA), and calculated Variance Inflation Factors (VIF) in various SNP-sets before and after implementing DRLPC as a metric of collinearity. Notably, DRLPC addresses multi-collinearity by excluding variables with a VIF exceeding a predetermined threshold (VIF=20), thereby improving applicability for subsequent regression analyses. The number of variables in a final set for regression analysis is reduced to around 20% on average for larger-sized genes, whereas for smaller ones, the proportion is around 48%; suggesting that DRLPC is more effective for larger genes. We also compare the power of several multi-SNP statistics constructed for gene-specific analysis to evaluate power gains achieved by DRLPC. In simulation studies based on 100 genes with ≤ 500 SNPs per gene, DRLPC effectively increased the power of the multiple regression Wald test from 60% to around 80%.

KEYWORDS

Dimension reduction, principal component analysis (PCA), multi-collinearity, variance inflation factor (VIF), multi-SNP statistics, Canadian Longitudinal on Aging (CLSA), 1000

Genomes Project (phase 3)

1 | INTRODUCTION

16 Genetic association studies investigate associations between single nucleotide polymorphisms
 17 (SNPs) and a trait of interest (Yu, 2012; Yoo et al., 2017; Xue et al., 2020). High-density SNP
 18 genotypes generated from genome-wide genotyping arrays and imputed to a reference panel,
 19 or Next-Generation Sequencing (NGS) technologies are analyzed to detect SNP-trait
 20 association signals (Gauderman et al., 2007; Kim et al., 2010; Slavin et al., 2011; Wu et al.,
 21 2011). A single-SNP analysis considers the association between a trait and one SNP at a time
 22 (Sylvänen, et al., 2001; Spencer et al., 2009; Kim et al., 2010). On the other hand, multi-SNP
 23 analysis investigates the association between a trait and multiple SNPs simultaneously. In the
 24 multi-SNP approach, a set of SNPs is considered together in region-level analysis, e.g. SNPs
 25 within a region defined by gene boundaries, that obtain a global statistic to test for the combined
 26 effect of the SNP set. Global testing can yield robust, powerful, and informative results (Asimit
 27 et al., 2009; Chapman & Whittaker, 2008). In particular, SNP genotypes within a gene can be
 28 analyzed using a multi-SNP regression model, and joint effects of a SNP set tested by a large
 29 sample Wald statistic with multiple df (Clayton et al., 2004; Gauderman et al., 2007; Wang et
 30 al., 2012; Yoo et al., 2013).

In multi-SNP joint regression analysis, issues with multi-collinearity can occur when there are a large number of predictors or when the ratio of number of observations relative to the number of predictors is not large. In regression, multi-collinearity means linear or near-linear dependency among two or more predictors, which corresponds to a lack of orthogonality among them (Alin, 2010). The linkage disequilibrium (LD) structure of high-density SNP genotype data often shows clusters of highly correlated SNP, which may or may not be consecutively located (Kim et al., 2018; Kim et al., 2019). High-density SNP genotype predictors in proximity often yield multi-collinearity due to LD (Wang et al., 2012). Multi-collinearity can cause a singular covariance matrix due to independent variables. This singularity arises because the matrix's determinant approaches zero, making it mathematically unstable for inversion (Farrar et al., 1967). Multi-collinearity can lead to misleading or unexpected signs of the regression coefficient, as their signs may deviate from the expected relationship between predictors and the response variable. The most severe effect of multi-collinearity is the inflation of standard errors associated with regression coefficients, signifying large sampling variability (Alin, 2010). Ways to detect collinearity among predictors, include pairwise correlations, eigenvalues, and the Variance Inflation Factor (VIF). The correlation matrix and eigenvalues can provide indications of the existence of multi-collinearity; however, they cannot accurately measure the extent of multi-collinearity. The VIF, which measures how much the variance of the estimated regression coefficient is inflated due to collinearity among the variables, quantifies multi-collinearity and effects on computation and can be interpreted quickly and clearly (Gwelo et al., 2019).

52 Applying Principal Component Analysis (PCA, Edgeworth, 1884) for both SNP genotype and
 53 haplotype-based approaches within multiple regression analysis is an efficacious dimension

54 reduction¹ technique (Wang et al., 2008; Chapman et al., 2003; and Clayton et al., 2004).
55 Moreover, this approach offers a valuable statistical technique for detecting, quantifying, and
56 adjusting for multi-collinearity in a dataset (Lafi et al., 1992). Several methods have been
57 developed to reduce the dimension of complex data; however, PCA is a conventional
58 dimension reduction approach for multivariate data that depends on an orthogonal linear
59 combination of variables, called principal components (PCs) (Li, 2010; Abdi & Williams, 2010;
60 Park et al., 2020). Wang & Abbott (2008) have applied principal components regression
61 (PCReg) to test for the association of a set of SNPs with the phenotype, assuming that a small
62 number of variables can model a sufficient amount of variation in the joint distribution of all
63 SNPs. As a result of this, a few PCs, which are computed from the sample covariance matrix
64 of the SNP genotype, are used as regressors in multiple regression.

65 In the context of high-dimensional genetic association analysis, when the number of genetic
66 predictors exceeds the sample size, the model cannot be fit at all using standard least squares
67 methods. It leads to overfitting, high variance stability, singular and collinearity, reduced
68 statistical power, misleading interpretation, and inflated type II errors. Dimension reduction
69 streamlines the model by focusing on a reduced set of features. This strategy counters the risk
70 of overfitting, enhancing the power of statistical tests. Replacing SNP variables with principal
71 components can improve the power of regression-based statistical tests by addressing the
72 challenges associated with high dimensionality. Gauderman et al., (2007) highlighted the
73 advantages of the PC approach over joint-SNP and haplotype tests. Their findings emphasized
74 that PCs capture SNP variation within the genetic locus. Substantive dimension reduction was
75 achieved by adopting an 80% explained variance threshold for the disease model, which gained
76 statistical power. However, the PCs constructed from all SNP variables in a region are hard to
77 interpret as biological entities and are not helpful for localization and fine mapping.

78 While PCA can project high-dimensional data onto a lower-dimensional space that captures
79 most of the original data's variance using the variables' correlation structure, it cannot represent
80 local information for data with complicated distributions (Wold et al., 1987; Yu, 2012). If the
81 variables have non-linear dependencies, PCA will require a more significant dimensional
82 representation than would be found by a non-linear technique. Kambhatla & Leen (1997)
83 introduced an extension to PCA using a local linear approach called Local PCA (LPCA). In
84 contrast to global PCA, which projects an entire set of variables onto a low-dimensional space,
85 LPCA focuses on subsets or "local" regions of the data to capture more nuanced or complex
86 relationships that may be missed by global PCA. Similar to PCA, LPCA can relieve multi-
87 collinearity and reduce data dimensionality. The LPCA algorithm for n -dimensional input data
88 can be stated as follows:

89 *Step 1.* First, partition the input data into Q disjoint regions $\{R^{(1)}, R^{(2)}, \dots, R^{(Q)}\}$.

90 *Step 2.* Compute the local covariance matrix $\Sigma^{(i)} = E[(x - Ex)(x - Ex)^T | x \in R^{(i)}]; i =$
91 $1, \dots, Q$, for the variables in region and their eigenvectors $e_j^{(j)}, j = 1, \dots, n$. Without loss of
92 generality, the eigenvectors can be relabeled so that the corresponding eigenvalues are in
93 descending order $\lambda_1^{(i)} > \lambda_2^{(i)} > \dots > \lambda_n^{(i)}$.

94 Step 3. Select a target dimension m and retain the leading m eigenvector directions for reducing
95 the data dimension.

96 In the present article, we propose a new approach to gene-level association analysis based on
97 LPCA that aims to improve the power of global multi-SNP test statistics while preserving the
98 interpretability of the localized effects. In regression analysis, Dimension Reduction using
99 Local Principal Components (DRLPC) proceeds by first selecting clusters of SNPs in high
100 correlation and replacing each cluster with a local principal component constructed from the
101 SNPs in the cluster. DRLPC also aims to resolve multi-collinearity among the updated
102 variables by removing variables with VIF values greater than a predefined threshold iteratively
103 until the highest value of VIF falls under the threshold. DRLPC, using an LPCA technique and
104 removing variables with a high VIF with the underlying assumption that the remaining
105 variables possess the capacity to capture the impact of the removed variables due to their high
106 linear dependency, can simultaneously reduce the dimensionality of the data and resolve multi-
107 collinearity.

108 To examine the behavior of DRLPC in achieving dimension reduction, we applied the
109 algorithm to SNP genotypes from two data sets. The first is the 1000 Genomes Project data
110 (phase 3), chromosome 22 of three major super-populations: European, East Asian, and African.
111 The second dataset is the European ancestry subset of the Canadian Longitudinal Study on
112 Aging (CLSA), also for chromosome 22 SNPs. The dimension of each dataset was reduced
113 separately, considering several choices of threshold values for clustering and principal
114 components selection. We also designed simulation studies to generate quantitative trait values
115 from the 1000 Genomes Projects genotype under gene-level regression models for genetic
116 association. Analyses of the original SNP genotype variables and the DRLPC processed
117 variables were then conducted to compare type I error and power of several multi-variable
118 statistics including generalized linear regression Wald (Wald, 1943), multiple linear
119 combination (MLC) (Yoo et al., 2017, generalized Wald with global principal components
120 (Gauderman et al., 2007), and sequence kernel association (SKAT) and SKAT-O ((Ionita-Laza
121 et al., 2013; Lee et al., 2012).

122 The rest of the paper is organized into the following sections: Section 2 includes a description
123 of the DRLPC method. Section 3 discusses the results obtained from the proposed method for
124 actual data application using two different SNP sets for two datasets. Section 4 reports
125 simulation study results for the power and type I error of multi-marker statistics obtained using
126 DRLPC processed datasets. The discussion and conclusion are given in Section 5 and Section
127 6, respectively.
128

129 2 | MATERIALS AND METHODS

130 2.1 | Dimension reduction using local principal components

131 Suppose that the genotypes of m SNPs are coded as 0, 1, or 2 based on an additive genetic
132 model and denoted by $X = (X_1, X_2, \dots, X_m)$. The multi-SNP joint regression model of m SNPs
133 consider $E[Y|X]$ as the expected value of quantitative trait Y conditional on the given SNP

134 genotypes and is formulated as follows:

135
$$E[Y|X] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_m X_m \quad (1)$$

136 Global test statistics based on the above regression analysis can be constructed from the beta
137 estimates $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_m)^T$ and the associated covariance matrix Σ_B . One of the objectives of
138 the DRLPC technique is to reduce the dimension of data before conducting regression analysis.
139 To achieve this, the DRLPC employs two strategies for dimension reduction: local PCs and
140 filtering on VIF. These strategies are employed to reduce the number of regression variables
141 and remove multi-collinearity.

142 Figure 1 illustrates the steps in the DRLPC processing with an example region "SLC35E4" in
143 chromosome 22 (bp position of 31,031,643 ~ 31,064,736), which includes 57 SNPs in 1000
144 Genomes Projects (phase 3), EUR super-population.

145 The DRLPC algorithm requires three thresholds: a threshold (CLQcut) for pairwise r^2 to
146 construct clusters of highly correlated SNPs by the clique-based graph partitioning method
147 (Yoo et al., 2015); a threshold (VIFcut) for variance inflation factor (VIF) values to remove
148 variables with linear dependencies and reduce multi-collinearity; a threshold (PCcut) to select
149 some PC variables that capture the variability of all the removed variables as the candidates for
150 addition of variables at the last step of the algorithm. DRLPC also designates a value (Klim)
151 as the partition limit for the alias² removal step to apply this step separately for each subset of
152 partitioned SNPs when the number of SNPs is greater than the sample size. The details of the
153 DRLPC algorithm are explained as follows:

154 **Step 1. Removal of linearly dependent SNPs:** Suppose that m SNPs in a gene are indexed with
155 $V_1 = \{1, 2, \dots, m\}$. Let $V := V_1$. First, SNPs with complete linear dependency (aliased SNPs)
156 are detected, and one SNP per group of aliased SNPs forming each linear dependency
157 relationship is removed. The set of SNPs removed by this process is denoted by W_1 . If the
158 number of SNPs is greater than or close to the sample size, we partition SNPs into subsets,
159 including fewer SNPs than the sample size. A partition limit (Klim) is set to partition the SNPs
160 into sets with a size less than Klim in which the procedure of breaking the linear dependency
161 is applied to each partition separately. Since the linear dependency may occur between
162 partitioned parts, we apply this process repeatedly for the combined sets of the remaining SNPs
163 until no completely dependent SNPs remain. In this way, the set of current SNPs V is updated
164 by $V_2 = V \setminus W_1$.

165 **Step 2. Clustering of highly correlated SNPs:** Using the clique-based clustering algorithm
166 CLQ-D in Kim et al., (2018), find the groups of SNPs in V_2 that have pairwise r^2 greater
167 than the CLQcut. Some SNPs do not form groups and remain as singletons. Denote the groups
168 (bins) with multiple SNPs found in this step by $G = \{G_1, \dots, G_J\}$. Also, denote the set of
169 singleton SNPs by S .

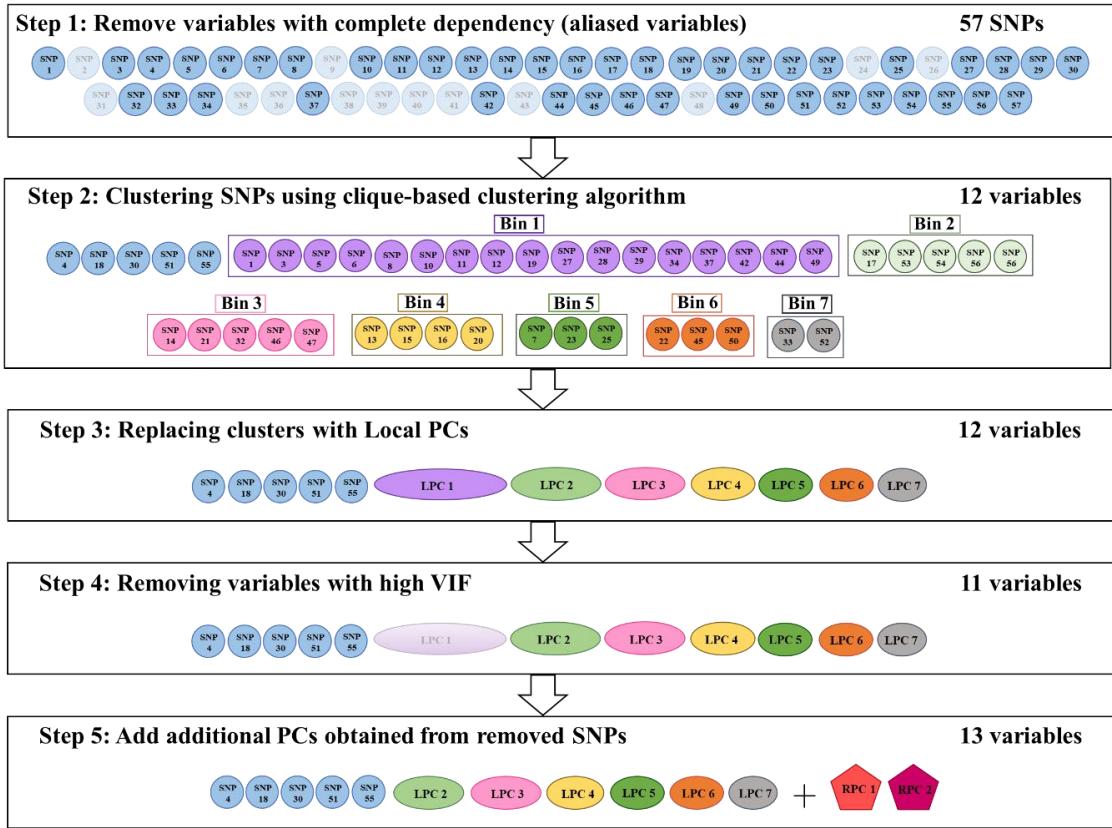
170 **Step 3. Replacing each group with a local PC:** Replace the SNPs in each G_j by the first
171 principal component obtained applying PCA only for the SNPs within the group, known as a

172 local PC (LPC), which is denoted by LPC_j . Now let $L = \{LPC_1, \dots, LPC_J\}$. Then, update the
173 current set of dimension-reduced variables V_2 with $V_3 = S \cup L = S \cup \{LPC_1, \dots, LPC_J\}$.
174 There is a possibility of no LPC replacing the SNPs when no cluster of multiple SNPs is found
175 in Step 2.

176 **Step 4. Removal of variables to reduce multi-collinearity:** Suppose the variables in V_3 are
177 indexed such that $V_3 = \{v_1, v_2, \dots, v_K\}$, regardless they are the original SNPs or LPCs. First,
178 calculate $VIF_k = 1/(1 - R_k^2)$ for each variable in V_3 where R_k^2 is the coefficient of
179 determination obtained from the regression of v_k on the other variables in V_3 . Next, remove
180 the variable with the highest VIF value from V_3 . Repeat this procedure iteratively until the
181 highest value of VIF becomes under the threshold for VIF (VIFcut). The set of removed
182 variables in this step is named W_2 . Update the current set of dimension-reduced variables
183 V with $V_4 = V_3 \setminus W_2$.

184 **Step 5. Selective addition of PCs representing the removed SNPs:** In the last step, another
185 PCA step is applied to the set of SNPs removed in Steps 1 and 4. In Step 4, if an LPC is selected
186 to be removed due to high VIF, the SNPs in the cluster corresponding to the LPC are all
187 considered to be removed. Take the minimum number of PCs with their proportion of
188 cumulative explained variance greater than the threshold value PCcut as the candidate for
189 added variables. Then, examine if the variability of these PCs can be captured by the current
190 set $V = V_4$ by regression each of these PC on the variables in V and obtain the R^2 . If the R^2
191 is less than $1/(1 - VIFcut)$ add the corresponding PC into the current set V . The set of PCs
192 selected to be added in this step is denoted as R , and they are called RPCs. Update the current
193 set V with $V_5 = V_4 \cup R$.

194 **Final set of dimension-reduced variables.** In this way, the dimension of high-density SNP data
195 is reduced iteratively, and the final variables after the dimension reduction process are the union
196 of singleton SNPs and LPCs that are not removed by step 4 and RPCs added by step 5. The
197 intersection of these three sets is empty, and each of the three sets can also be an empty set.



198 **FIGURE 1** Illustration of DRLPC algorithm applied for “*SLC35E4*” region (chromosome 22)
199 data from 1000 Genomes Project, EUR population data. Blurred variables at Step 1 and Step 4
200 denote those removed in that step.

201 3 | APPLICATIONS of DRLPC to SNP GENOTYPES

202 3.1 | Datasets

203 To evaluate the performance of the DRLPC algorithm, we applied it in two datasets:

- 204 ➤ the 1000 Genomes Project (phase 3) chromosome 22 data (1000 Genomes Project
205 Consortium.,(2015)) from three super-populations: European (EUR), East-Asian (EAS),
206 and African (AFR), from <https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/>.
- 207 ➤ the HRC-imputed SNP genotype datasets of the Canadian Longitudinal Study on Aging
208 (CLSA) (Raina et al., 2009). QC was applied as described in Forgetta et al., (2022) and
209 summarized in supplemental methods.

210 We limited analysis to the data of European ancestry since other groups do not have large
211 enough sample sizes. The datasets were preprocessed similarly. First, SNPs with missing values
212 and multi-allelic SNPs were removed. Also, SNPs with minor allele frequency (MAF) less than
213 0.05 were excluded. In the CLSA, we required an INFO score ≥ 0.8 to select well-imputed
214 SNPs. Table 1 reports the number of individuals in each population and the total number of
215 remaining SNPs post-filtering for each of the 1000 Genomes and CLSA populations.

216

217 **TABLE 1** Sample size, number of SNPs on chromosome 22, number of SNP sets of the 100
218 SNPs, number of SNPs in genes, and number of genes for each population dataset studied

Population	Sample size	Number of SNPs (total)	Number of SNPsets (100 SNPs per set)	Number of SNPs (total in genes)	Number of Genes
[†] EUR (1KG)	503	85,718	857	50,705	698
[†] EAS (1KG)	504	78,461	784	46,476	693
[§] AFR(1KG)	661	118,466	1,184	70,471	734
European (CLSA)	17,779	71,695	717	71,695	611

219 [†]EUR: European population; [†]EAS; East Asian population; [§]AFR: African population

220 **3.2 | Methods**

221 To examine the population-specific dimension reduction results, we created two types of SNP
222 sets from each population dataset: 1) a set of 100 consecutive SNPs and 2) a set of SNPs in
223 gene regions. For the 100 SNP sets, we partitioned all SNPs in chromosome 22 into sets of 100
224 consecutive SNPs. For gene-based datasets, we considered only the SNPs within gene regions,
225 based on the gene information obtained from the Ensemble BioMart database for NCBI hg19
226 Build 37 (GRCh37.p13) (<http://grch37.ensembl.org/biomart>). Table 1 reports the number of
227 SNPsets of 100 SNPs, the total number of SNPs in genes, and the number of genes with more
228 than one SNP for each population. Table 2 also reports summary statistics of the number of
229 SNPs in a gene for each population.

230 **TABLE 2** Summary statistics of numbers of SNPs per gene on chromosome 22 for each
231 population

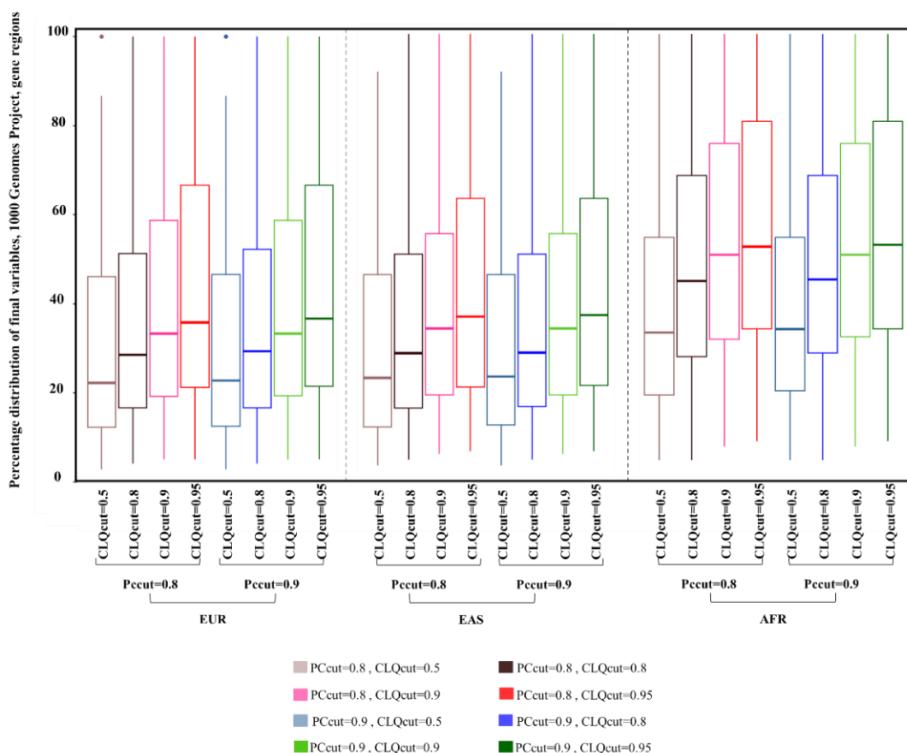
Population	Number of genes	Summary of the number of SNPs in a gene				
		Average	SD	Median	Min	Max
EUR	698	72.6	156.7	26	2	1875
EAS	693	67.1	142.1	24	2	1846
AFR	734	96.0	209.5	36	2	2764
European (CLSA)	611	71.8	151.0	27	2	1759

232 To assess the performance of the proposed method, we applied DRLPC to each SNP set with
233 several combinations of threshold values required for the algorithm. For CLQcut, which is the
234 threshold value for the clique-based clustering algorithm CLQD (Yoo et al., 2015) used to find
235 SNP clusters, we designated four values: 0.5, 0.8, 0.9, and 0.9. For VIFcut, which is the
236 threshold value for variable removal based on the variance inflation factor (VIF) to reduce
237 multi-collinearity, we assigned a fixed value of 20. For PCcut, which is the threshold value for
238 selecting additional PCs representing the removed SNPs at the final step of the algorithm, we
239 chose 0.8 and 0.9. Eight different combinations of threshold values were applied to obtain
240 dimension reduction results by DRLPC.

241 **3.3 | Results**

242 **3.3.1 | Dimension reduction results of 1000 Genomes Project dataset**

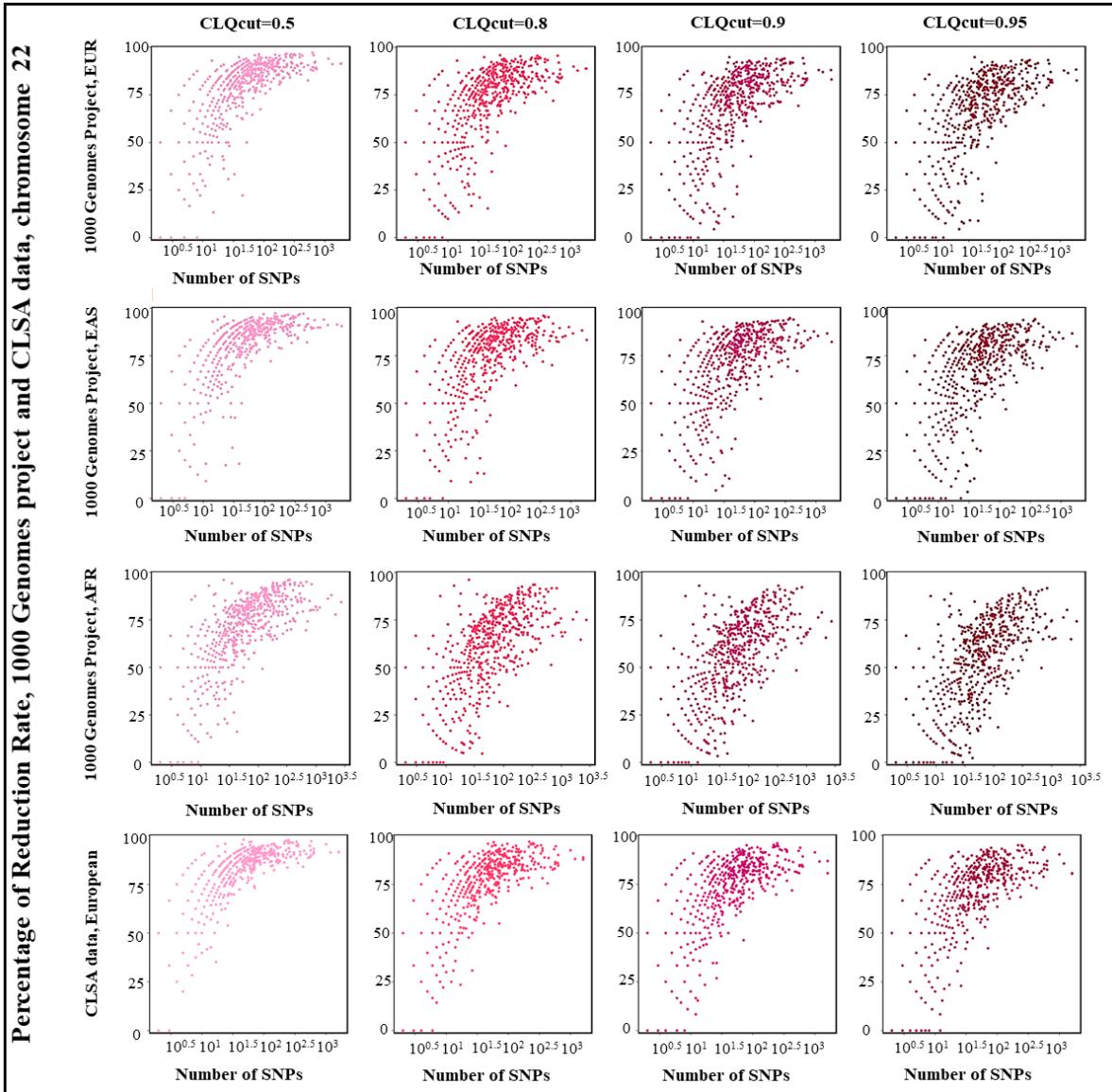
243 When the DRLPC algorithm is applied to the SNP sets in gene regions of chromosome 22, the
244 number of variables in genotype data was reduced to 8~16% in EUR and EAS and 18~31% in
245 AFR, depending on the threshold values used (Figure 2, and Supplementary Table S1). When
246 the DRLPC algorithm is applied to each of the 100 consecutive SNP sets, the dimension of
247 genotype data was reduced to 13-25% in EUR and EAS and 22-41% in AFR, depending on the
248 threshold values used (Figure S1, and Supplementary Table S2). The dimension reduction in
249 AFR by DRLPC was less than in EUR and EAS, which can be explained by weaker LD in the
250 AFR population, fewer sites being in LD, and divergent patterns of LD between AFR and non-
251 AFR (Tishkoff et al., 2002). In both types of SNP sets, it was observed that lower CLQ
252 threshold values led to greater dimension reduction. The percentages of the final number of
253 variables after the DRLPC process compared to the number of SNPs in the original dataset
254 were very slightly lower with PCcut value of 0.8, compared to a PCcut value of 0.9.



255 **FIGURE 2** The percentage distribution of final variables after the DRLPC process compared
256 to the number of SNPs in the original gene-based datasets of 1000 Genomes Project,
257 chromosome 22, with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95), two threshold
258 values (0.8, 0.9) for PCcut, and for three super-populations (EUR, EAS, AFR).

259 Figure 3 presents the relationship between gene size and the reduction rate across all 1000
260 Genomes super-populations and CLSA data European ancestry (considering a PCcut value of
261 0.8, a comparable plot for a PCcut value of 0.9 is provided in Supplementary Figure S2). The
262 reduction rate is defined as one minus the proportion of final variables after the DRLPC process

263 relative to the number of variables in the original data. An upward trend is observed, indicating
264 that the reduction rate also tends to increase the number of SNPs in a gene increase. Similar
265 trends are observed across all super-populations and different choices of threshold values. We
266 also compared the reduction rates resulting from the DRLPC process for each super-population
267 after dividing genes into two groups considering the number of SNPs: 1) genes with below-
268 average numbers of SNPs and 2) genes with above-average numbers of SNPs. The average
269 number of SNPs per gene for EUR, EAS, and AFR populations was 72.6, 67.1, and 96.0,
270 respectively. As presented in Table 3, the differences in average reduction rates are about 28~35%
271 between the genes with a larger number of SNPs (above average group) and those below the
272 average group. On average, the dimension reduction rates for genes with more SNPs were
273 around 83% for EUR and EAS populations and 75% for the AFR population. In comparison,
274 the corresponding rates for genes with fewer SNPs were around 53% for both the EUR and
275 EAS populations and 42% for the AFR population. These results align with African populations
276 exhibiting reduced levels of linkage disequilibrium (LD) compared to non-African populations
277 (Campbell et al., 2008).



278 **FIGURE 3** The reduction rates after the DRLPC process plotted with the number of SNPs
279 in the original dataset (gene size) for gene-based datasets of 1000 Genomes Project and CLSA
280 data, chromosome 22, with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95), a threshold
281 value 0.8 for PCCut, and for three super-populations (EUR, EAS, AFR) and European ancestry.

282 **TABLE 3** Average reduction rate after (percentage) in the number of variables after the
283 DRLPC process compared to the original number of SNPs in the gene regions of chromosome
284 22 for EUR, EAS, and AFR populations.

[†] CLQcut	[‡] PCcut	Average reduction rate (%), EUR		Average reduction rate (%), EAS		Average reduction rate (%), AFR	
		[§] Below average	[¶] Above average	Below average	Above average	Below average	Above average
		(522 genes)	(176 genes)	(526 genes)	(167 genes)	(553 genes)	(181 genes)
	0.8	61.2	89.3	62.8	89.9	53.3	83.2
0.5	0.9	60.9	88.9	62.4	89.5	52.9	82.3
	0.8	53.8	84.4	52.2	82.5	42.2	74.7
0.8	0.9	53.6	84.2	55.9	85.0	42.0	74.2
	0.8	49.9	81.8	48.5	80.1	37.8	71.5
0.9	0.9	49.8	81.7	52.1	82.3	37.6	71.0
	0.8	47.2	80.0	48.5	80.1	34.6	70.0
0.95	0.9	47.1	79.8	48.4	79.9	34.4	69.4

285 [†]CLQcut: the threshold values for clique-based clustering algorithm CLQD (Yoo et al., 2015) to find SNP clusters;
286 [‡]PCcut: the threshold value for selecting additional PCs representing the removed SNPs at the final step of the
287 algorithm; [§]Below: Below the average number of SNPs (The average number of SNPs is 72.6, 67.1, and 96.0 for
288 EUR, EAS, and AF, respectively); [¶]Above: Above the average number of SNPs (The average number of SNPs is
289 72.6, 67.1, and 96.0 for EUR, EAS, and AF, respectively).

290 In addition to dimension reduction, as previously noted, DRLPC aims to resolve multi-
291 collinearity. To demonstrate the effectiveness of DRLPC, we compared the highest VIF values
292 for the remaining variables at each step of DRLPC in gene regions. Table 4 illustrates the
293 average and standard deviation of the highest VIF values of each step of DRLPC over gene
294 regions of three super-populations. According to the DRLPC algorithm, at the first step, aliased
295 variables (variables with complete dependency) were removed from the data; as shown in Table
296 3, the average of VIF values remained significantly high, which is a warning sign of extreme
297 multi-collinearity. It is essential to highlight that the number of variables in steps 2 and 3
298 remains consistent; however, in step 3, bins(groups) are replaced by the first principal
299 component. DRLPC can effectively address the multi-collinearity by replacing highly
300 correlated SNPs with local PCs at step 3. As shown in Table 4, applying LPCA in step 3
301 partially resolves multi-collinearity. The average highest VIF values for CLQcut of 0.5 are
302 reduced to the values below the VIF threshold (VIFcut=20) for all three super-populations. The
303 VIF reduction³ of the highest VIF values from steps 1 to 3(2), ranging from 89.0% to 99.89%,
304 suggests that incorporating the LPC has effectively mitigated issues related to multi-
305 collinearity in the dataset. At step 4, the average of the highest VIF values is reduced to the
306 value below the VIF threshold for all three super-populations for all CLQcut and PCcut values,
307 underscoring DRLPC's capability to resolve multi-collinearity effectively. As indicated in
308 Table 4, the average of the highest VIF at step 5 with a PCcut value of 0.8 falls below the VIF
309 threshold value for EUR and AFR. However, with a PCcut of 0.9, the average of the highest
310 VIF increases and surpasses the threshold, particularly with CLQcut value of 0.5 for EUR and
311 EAS. It may be ascribed to the higher average number of new variables (RPCs) using a larger

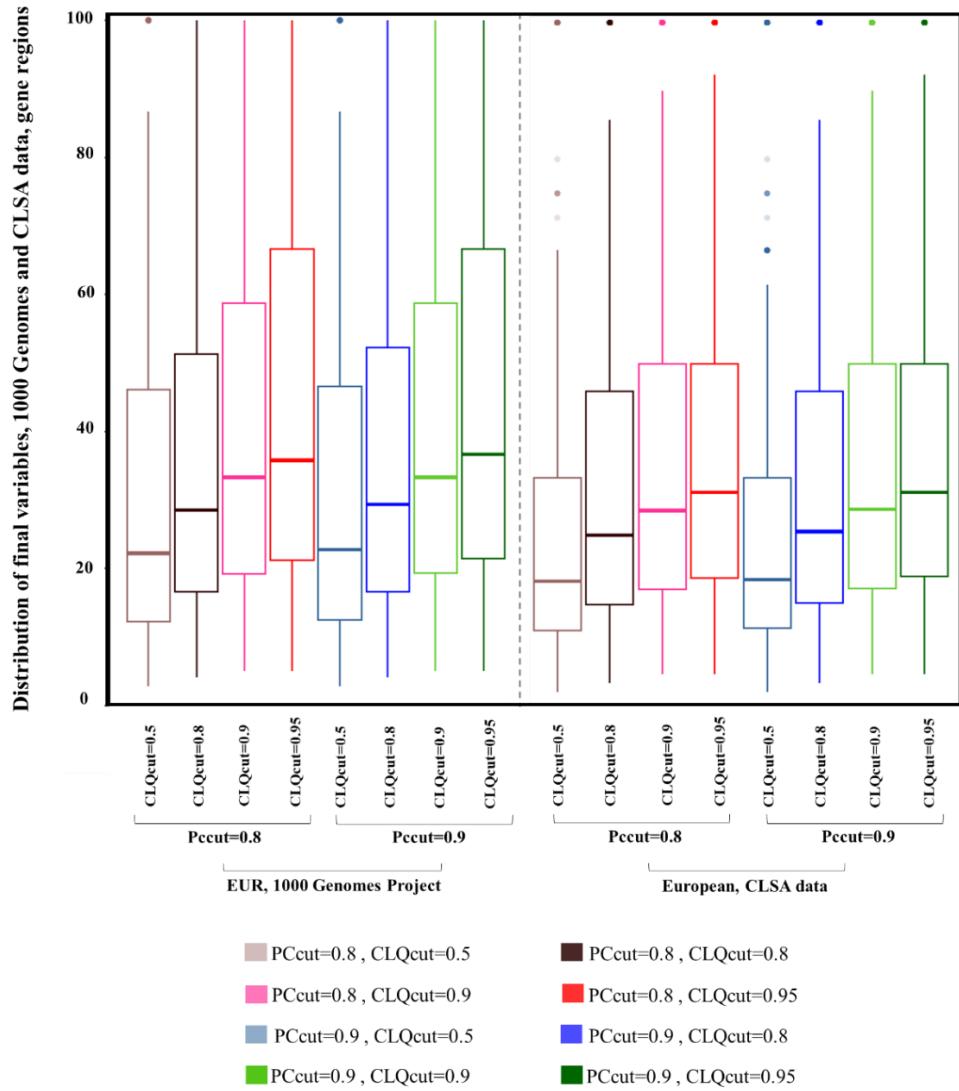
312 PCcut value (Supplementary Table S6). For AFR, the average of the highest VIF values remains
313 the VIF threshold when considering all CLQcut and PCcut values; however, similar to EUR
314 and EAS, an increase in PCcut value corresponds to a rise in the average of the highest VIF.
315 Elevating the average of the highest VIF by increasing the CLQcut values, can be attributed to
316 the clique-based clustering algorithm's tendency to form clusters with fewer SNPs, therefore
317 less dimension reduction, using a larger CLQ threshold (Yoo et al., 2015). No significant
318 difference was observed when using different PCcut values across populations for a specific
319 CLQcut value except for step 5. The findings underscore the effectiveness of DRLPC in
320 successfully mitigating multi-collinearity before conducting regression analysis (refer to
321 Supplementary Excel file, Table S24 to S47 for details).

322 **TABLE 4** The average and standard deviation of the highest VIF values after each DRLPC step obtained over gene regions in chromosome 22
 323 using 1000 Genomes Project data of three super-populations. The VIF (average, SD) of aliased variables at step 1 for EUR, EAS, and AFR are
 324 (10572.5, 175545.0), (16114.1, 371104.1), (11300.5, 93899.4), respectively, and are same for using all CLQcut and PCcut value combinations.

	CLQcut	PCcut	Steps 2 & 3		Step 4		Step5	
			Average	SD	Average	SD	Average	SD
EUR	0.5	0.8	11.3	21.1	5.6	5.6	8.6	13.2
		0.9	11.3	21.1	5.6	5.6	25.3	374.6
	0.8	0.8	60.0	117.8	8.7	6.6	9.4	8.0
		0.9	60.0	117.8	8.7	6.6	20.3	258.5
	0.9	0.8	214.2	2850.0	9.6	6.6	10.4	16.6
		0.9	214.2	2850.0	9.6	6.6	11.1	17.5
	0.95	0.8	1158.4	26297.8	10.9	6.7	11.8	23.2
		0.9	1158.4	26297.8	10.9	6.7	13.1	24.9
	EAS	0.5	9.5	17.5	4.6	5.1	21.3	322.2
		0.9	9.5	17.5	4.6	5.1	24.7	323.0
		0.8	53.0	88.0	8.5	17.1	9.1	17.4
		0.9	53.0	88.0	8.5	17.1	10.4	18.6
		0.9	89.2	126.9	9.2	6.6	9.8	12.7
		0.9	89.2	126.9	9.2	6.6	10.6	13.7
		0.95	133.4	249.4	11.5	22.9	11.8	23.2
		0.9	133.4	249.4	11.5	22.9	12.7	24.0
	AFR	0.5	18.9	40.3	8.3	15.8	12.7	27.5
		0.9	18.9	41.1	8.3	19.9	17.1	39.4
		0.8	112.0	539.5	12.4	22.1	14.5	31.0
		0.9	112.1	539.9	12.4	22.1	16.9	32.0
		0.9	200.1	850.8	14.2	23.7	16.3	36.6
		0.9	200.1	850.8	14.2	23.7	17.8	37.9
		0.95	354.6	1827.7	14.4	29.4	16.2	32.2
		0.9	354.6	1827.7	14.4	29.4	18.0	34.4

326 3.2.2 | Dimension reduction results of CLSA dataset

327 Application of the DRLPC algorithm to SNP sets in gene regions, reduced the average
328 dimension of genotype data to 7~14%, depending on the threshold values (Figure 4 and
329 Supplementary Table S3). We also observed that lower CLQ threshold values yield more
330 dimension reduction than higher CLQ cut points, and larger genes had greater reduction than
331 smaller genes (Figure 4, Table 5, Supplementary Table S4). The European ancestry results
332 obtained from the CLSA data align consistently with the findings from the 1000 Genomes
333 Project EUR population, revealing a comparable pattern. When the DRLPC algorithm is
334 applied to each of the 100 consecutive SNP sets, the dimension of genotype data was reduced
335 to 11~21% depending on the threshold values used (Supplementary Table S4). With lower
336 CLQcut threshold values, the dimension of 100 SNP sets was more reduced than with the
337 higher CLQcut values. With the lower PCcut value (0.8), the percentages of final variables
338 after the DRLPC process were applied were slightly lower than those with a PCcut of 0.9.
339 Similar to previous results for 1000 Genomes Project data, a noticeable ascending pattern
340 suggests a corresponding elevation in the reduction rate by increasing gene size (Figure S2).
341 Additionally, the choice of different CLQcut values has a negligible effect on the identified
342 pattern; moreover, regardless of CLQcut variations, the pattern remains steady.
343



344 **FIGURE 4** The percentage distribution of final variables after the DRLPC process compared
345 with the original data of gene regions, with four threshold values for CLQcut (0.5, 0.8, 0.9,
346 0.95) and two threshold values (0.8, 0.9) for PCcut, 1000 Genomes project for EUR and CLSA
347 data European ancestry.

348 Similar reduction rate patterns persist across various threshold values when examining both the
349 1000 Genomes Project EUR population and the CLSA data of European ancestry (Figure 3).
350 Following the approach used in the 1000 Genomes Project data, we also compared the
351 reduction rates resulting from the DRLPC process after dividing genes into two groups based
352 on the number of SNPs: genes with the number of SNPs below the average and those above
353 the average. As shown in Table 5, the average number of SNPs per gene was 71.6, the
354 differences in average reduction rates are about 23~28% between the bigger group (above the
355 size average) and the smaller group (below the size average), as presented in Table 5. On
356 average, the dimension reduction rates for genes with more SNPs were around 86%. The
357 corresponding rates for genes with fewer SNPs were around 60%. Based on the results
358 presented in Tables 2 and 5, it becomes evident that the EUR population in the 1000 Genomes
359 Project and the European ancestry within the CLSA dataset exhibit a striking similarity in the
360 observed reduction rates. Notably, this similarity holds across varying CLQcut and PCcut
361 thresholds, with the highest reduction rates consistently occurring when both groups (below
362 and above the size average) employ CLQcut 0.5 and PCcut 0.8. The values obtained for these
363 thresholds are not only in the same range but also reflect the maximum reduction rates among
364 the thresholds considered. The reduction rate for the smaller size group (below the size average)
365 is 47.1~61.2% and 53.2~67.3% for EUR 1000 Genomes Project and European CLSA data,
366 respectively. On the other hand, the reduction rate for the bigger group (above the size average)
367 is 79.8~89.3% and 82.1~90.6% for EUR 1000 Genomes Project and European CLSA data,
368 respectively. This close alignment of results underscores a similarity in the reduction rate trends
369 observed across these two datasets.

370 **TABLE 5** Average reduction rate (percentage) by DRLPC compared to the original number of
371 SNPs in the gene regions (average number of SNPs per gene is 71.6) of European ancestry for
372 CLSA population, chromosome 22.

Average reduction rate (%), European, CLSA			
CLQcut	PCcut	[†] Below average (454 genes)	[‡] Above average (157 genes)
0.5	0.8	67.3	90.6
	0.9	67.2	90.3
0.8	0.8	59.7	86.4
	0.9	59.6	86.2
0.9	0.8	56.0	83.9
	0.9	55.9	83.7
0.95	0.8	53.4	82.3
	0.9	53.2	82.1

373 [†]Below: Below the average number of SNPs (The average number of SNPs is 71.6); [‡]Above: Above the average
374 number of SNPs (The average number of SNPs is 71.6).

375 In evaluating the efficacy of DRLPC to address multi-collinearity within the CLSA data,
376 similar to our approach with the 1000 Genomes Project, we focused on the average of highest
377 VIF values on gene regions of chromosome 22 (refer to Supplementary Table S5 and
378 Supplementary Excel file Table S48 to S55). Our findings consistently correspond to those

379 obtained from the 1000 Genomes Project, specifically within the EUR population and CLSA
380 dataset. The VIF reduction from steps 1 to 3 (step 2) is around 99%, highlighting the
381 effectiveness of the local Principal Component in revolving multi-collinearity in the dataset.
382 Upon implementing LPCA at step 3, The average highest VIF values for CLQcut of 0.5 are
383 reduced to the values below the VIF threshold (VIFcut=20). However, in harmony with the
384 1000 Genomes Project data observations, the average of the highest VIF values at step 4
385 consistently are reduced to the values below the VIF threshold across all CLQcut and PCcut
386 values. In Step 5, the average of the highest VIF values remains below the threshold for both
387 CLQcut values. The difference observed between the CLSA data and the 1000 Genomes
388 Project data in Step 5 may be attributed to the lower average of adding new variables for the
389 CLSA data in this step. However, considering the results in steps 3 and 4, the VIF findings
390 substantiate the effectiveness of DRLPC in successfully mitigating multi-collinearity for both
391 datasets, emphasizing the significance of this approach before conducting regression analyses,
392 as detailed in earlier discussions. It should be mentioned that the average number of aliased
393 variables in the CLSA data is notably lower compared to the results observed for the EUR
394 population in the 1000 Genomes Project (Table S6 and S7). Several factors contribute to this
395 disparity. The CLSA dataset encompasses imputed genetic data for European ancestry. Imputed
396 genotype data undergoes rigorous quality control procedures to ensure high imputation
397 accuracy. By selecting the high-quality imputed variants, poorly imputed variants that would
398 have otherwise been aliased in the genotype data are effectively excluded from the analysis.
399 Furthermore, it is essential to note that our study exclusively considered well-imputed SNPs.
400 Another influential factor to consider is the discrepancy in the number of individuals between
401 the two datasets. The 1000 Genomes Project dataset is limited to 503 individuals within the
402 EUR population, while the CLSA dataset boasts a much larger cohort of 17,779 individuals.
403 The dimension reduction was higher for larger size genes across all three super-populations in
404 this study, although there is a complex relationship between gene size and recombination rate
405 since there are several factors that influence recombination rates, it could be attributed to the
406 construction of robust LD blocks of highly correlated SNPs by the clique-based algorithm (Yoo
407 et al., 2015). The structure of LD is influenced by various factors, including recombination,
408 mutation, selection and population history, and genetic drift (Pritchard et al., 2001; McVean et
409 al., 2004). Halldorsson et al., (2019) found that recombination rates are lower in genic regions
410 (defined by the beginning of the first exon of a gene to the end of the last) than in noncoding
411 regions. These results strongly contradict with earlier reports (Eyre-Walker, 1993; Kong et al.,
412 2002) of a positive correlation between gene density and recombination rate. The apparent
413 contradiction may be explained if recombination hotspots are more likely to occur near genes
414 than within them. The relationship between recombination rate and LD is generally inverse;
415 lower recombination rates are associated with higher LD.

416 4 | SIMULATION STUDY

417 4.1 | Methods

418 To investigate the impact of DRLPC on statistical performance in regression-based multi-SNP

419 statistics, we designed simulation studies based on observed human genotypes from the 1000
420 Genomes Project (phase 3 chromosome 22 for three super-populations (EUR, EAS, and AFR),
421 as in section 3). Quantitative traits were generated in three series of simulations of gene-level
422 association in 100 genes. One series assumed a global null effect model (Model 1) to evaluate
423 type I error, and two series assumed alternative trait models with one or two causal SNPs per
424 gene (Models 2 and 3) to evaluate power gene-based tests, with and without DRLPC processing.

425 4.1.1 | Genotype data

426 To identify genes for multi-SNP association test evaluation, we first excluded rare and low
427 frequency SNPs ($MAF < 0.05$), pruned SNPs in complete LD, and removed multi-allelic SNPs.
428 This produced 775, 759, and 803 genes for EUR, EAS, and AFR, respectively, each with at
429 least one SNP (<https://www.ensembl.org/>). From these, we selected genes with number of
430 SNPs per gene ranging from $m=11$ to 500, resulting in 462, 454, and 498 genes for EUR, EAS,
431 and AFR, respectively. Finally, we randomly selected 100 genes in common from 742 genes
432 across all three super-populations, to compare the performance of gene-based tests under
433 realistic gene structure by simulation studies (Supplementary Excel file Tables S21 to S23).
434 Considering EUR, EAS, and AFR separately, including 503, 504, and 661 individuals
435 respectively, the CLQD algorithm was applied with $CLQcut = 0.5$ threshold value to assign all
436 m SNPs in a gene into mutually-exclusive clusters of varying size and number, according to
437 the within-gene LD structure.

438 4.1.2 | Simulation model

439 To better understand the data and model characteristics that influence the performance of
440 DRLPC method, we conducted a simulation study based on observed human genotypes.
441 Quantitative trait Y values were generated for each gene under null and alternative hypotheses
442 using genotype data from the 1000 Genomes Project phase 3 for three super-populations
443 assuming an additive genetic model with t causal SNPs, as described below:

$$444 Y = \sum_{i=1}^t a_i X_i + \varepsilon$$

445 where t is the number of causal SNPs per gene, a_i is the effect of the i^{th} causal SNP, X_i is the
446 number of minor alleles at the i^{th} SNP, and ε is the error term considered to follow a normal
447 distribution with mean 0 and variance σ^2 . We considered three different quantitative trait
448 models for each gene, including 0, 1, or 2 causal SNPs per gene (Table 6). Under the null
449 hypothesis of no gene effect (Model 1), all a_i were specified to be null in the trait generation
450 model. Under the alternative hypothesis (Models 2 and 3), non-null SNP effects were specified
451 as: a) 1causal model with one causal SNP per gene has effect $a_1 = 1$ ($t=1$), or b) 2causal
452 model with two causal SNPs per gene has effects $a_1 = 1$ and $a_2 = 1$ ($t=2$). Under Model 2,
453 one SNP in a gene was randomly selected to be causal. Under Model 3, a second SNP was also
454 selected to be causal. If there was only one cluster in a gene, the second SNP was randomly
455 chosen from the same cluster, and if there was more than one cluster in a gene, the second SNP
456 was randomly selected from a different cluster.

457 **TABLE 6** Quantitative trait models used to generate phenotypes for type I error and power
458 comparisons of multi-SNP tests.

Model	Explanation	†Trait model parameters
1	No SNP association	All zero
2	One causal SNP within a gene (1causal)	$a_1 = 1$
3	Two causal SNPs, both deleterious (2causal)	$a_1 = 1, a_2 = 1$

459 [†]The trait model is $Y = \sum_{i=1}^t a_i X_i + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$, t is the number of causal SNPs, a_i is the effect of
460 the i^{th} causal SNP, and X_i is the number of risk alleles for the i^{th} causal SNPs. The variance σ^2 is selected to
461 maintain the power of the Wald test at 60% for each set of causal SNPs for 1causal and 2causal models.

462 To estimate empirical type I error, we generated 1000 replicated datasets for each gene under
463 Model 1, and applied the analysis methods described in section 4.1.3 in each replicate,
464 including all the SNPs and their cluster information in the regression analyses. The proportion
465 of replicates in which the null hypothesis was rejected was then averaged over all genes, and
466 then over subsets of genes stratified according to the original number of SNPs in the gene, and
467 for each gene, all SNPs were included in the regression analysis. For power estimation under
468 the alternative, we generated 1000 replicated datasets under Models 2 and 3, and similarly
469 tabulated and averaged the per gene rejection rates in analyses that considered all SNPs.
470 Assuming CLQcut 0.5 and PCcut 0.8, two causal SNPs were selected from different LPCs if
471 possible. In this study, the error variance σ^2 was adjusted separately for each gene and trait
472 model to achieve a 60% power in the Wald test. The error variance was estimated using the
473 original genotype variables in a set of 1,000 replicates under the alternative model, and
474 regressions that include all causal and non-causal SNPs.

475 4.1.3 | Multi-marker test statistics

476 Whenever a gene includes several SNPs, multi-SNP analysis can be applied by multiple
477 regression with multi-parameter hypotheses or by incorporating single-SNP marginal
478 regression analysis results. Both approaches demand coded genotype data. In order to evaluate
479 the impact of DRLPC on regression-based multi-SNP statistics, we selected several multi-
480 marker statistics based on joint or marginal regression to compare the power using original data
481 and dimension-reduced data by DRLPC. Among joint regression tests, Wald (Wald, 1943),
482 Multiple linear combination (MLC) (Yoo et al., 2017), and PC80 tests (Gauderman et al., 2007)
483 are evaluated in this study. Furthermore, the sequence kernel association (SKAT) and SKAT-O
484 tests (Ionita-Laza et al., 2013; Lee et al., 2012), are included as well-known gene-based tests
485 of SNP sets for gene-based association analysis. The MLC test is derived from the joint
486 regression Wald statistics by applying a set of linear contrasts to the multi-SNP regression
487 parameters that reduce the dimension (df) of the test statistic. The contrasts reflect the cluster
488 membership determined using the CLQ algorithm prior to regression estimation (Yoo et al.,
489 2015, Yoo et al., 2017). CLQ optimizes within-cluster correlation using pairwise correlation of
490 additively coded SNPs, with SNP recoding as necessary for positive within-cluster correlation.
491 The weights in the multiple linear combinations are derived from the regression variance-
492 covariance matrix which depends on MAFs and LD among the SNPs in the gene. We
493 considered two types of MLC tests: MLC-B (based on the beta coefficients) and MLC-Z

494 (comparable Z statistics test, $Z = (Z_1, Z_2, \dots, Z_m)^T$), considering two CLQcut threshold values,
495 0.5 and 0.8, respectively. The details of all tests are available in Supplementary Methods.

496 **4.2 | Results**

497 4.2.1 | Evaluation of type I error rate

498 We report the type I error estimates of each statistic using 10,000 replications considering two
499 nominal critical values for $\alpha = 0.05$ and 0.01 and averaging across 100 genes (Table 7,
500 Supplementary Table sS8 and S9, Figures S3 and S4). For the simulation study, two CLQcut
501 (0.5 and 0.8) and one PCcut (0.8) threshold values are selected to obtain type I error (and
502 empirical power) for all gene-based tests using the DRLPC method. As shown in Table 7, the
503 average empirical type I error for the Wald test was elevated in the original data and declined
504 from 0.07 by 0.02 in the DRLPC processed data, and close to the nominal 0.05 level for all
505 three super-populations under the 1causal model. The average standard deviation and average
506 df for the Wald test also decreased considerably with application of DRLPC for both CLQcut
507 points. On average, all other test statistics exhibited type I error control in original and DRLPC
508 analysis. We also observed greater type I error inflation with larger genes for some tests,
509 particularly for the Wald test (Supplementary Tables S10 to S12 and Figures S5 to S7).
510 However, applying the DRLPC decreased the inflation, resulting in values close to the nominal
511 0.05 level for three super-populations under the 1causal model. The average and SD of MLC-
512 B tests vary little across the CLQ threshold values, suggesting that clustering and dimension
513 reduction do not affect standard error estimates. Comparing the obtained empirical type I error
514 values between populations demonstrates a high similarity between the results. It can be
515 inferred that the implementation of DRLPC has reduced the type I error values for all three
516 super-populations.

517 **TABLE 7** Empirical type I error of gene-based statistics (N=10,000 replicates) at the nominal level $\alpha = 0.05$, averaged over 100 genes, using
 518 original data and two DRLPC processed data for three super-populations.

Population	Statistics	[†] Original data			[‡] CLQcut 0.5			[§] CLQcut 0.8		
		Average	SD	Average df	Average	SD	Average df	Average	SD	Average df
EUR	Wald	0.071	0.010	35.7	0.052	0.003	9.0	0.053	0.003	12.6
	PC80	0.051	0.002	4.2	0.051	0.002	4.8	0.052	0.002	5.3
	MLC-B5	0.053	0.003	8.9	0.052	0.003	7.3	0.052	0.003	8.1
	MLC-B8	0.055	0.004	14.5	0.052	0.003	8.7	0.053	0.003	11.9
	SKAT	0.049	0.003	-	0.049	0.003	-	0.050	0.002	-
	SKAT-O	0.052	0.003	-	0.052	0.003	-	0.052	0.003	-
EAS	Wald	0.069	0.012	33.3	0.053	0.002	7.9	0.053	0.003	11.2
	PC80	0.051	0.002	3.7	0.052	0.002	4.6	0.052	0.002	4.9
	MLC-B5	0.053	0.003	7.9	0.052	0.003	6.4	0.052	0.003	7.1
	MLC-B8	0.055	0.004	7.9	0.053	0.003	7.6	0.053	0.003	10.3
	SKAT	0.049	0.002	-	0.049	0.002	-	0.050	0.003	-
	SKAT-O	0.052	0.003	-	0.052	0.003	-	0.052	0.003	-
AFR	Wald	0.076	0.015	67.8	0.054	0.003	18.1	0.055	0.004	26.4
	PC80	0.052	0.002	7.4	0.052	0.002	7.9	0.052	0.002	8.8
	MLC-B5	0.054	0.003	18.6	0.053	0.003	14.0	0.053	0.003	16.2
	MLC-B8	0.057	0.005	31.5	0.054	0.003	17.8	0.055	0.004	25.4
	PC80	0.052	0.002	7.4	0.052	0.002	7.9	0.052	0.002	8.8
	SKAT	0.050	0.002	-	0.050	0.002	-	0.050	0.002	-
	SKAT-O	0.052	0.003	-	0.052	0.003	-	0.052	0.003	-

519 [†]Used data: Original data; [‡]CLQcut 0.5: DRLPC processed data using CLQ threshold value 0.5; [§]CLQcut 0.8: DRLPC processed data using CLQ threshold value 0.8. [¶]List
 520 of test statistics: Wald: generalized Wald test (Wald, 1943); PC80: global test on regression using the minimum number of principal components capturing 80% of variance
 521 (Gauderman et al, 2007); MLC test: Multi Linear combination test (Yoo et al, 2017); MLC-B5: MLC tests using beta coefficient by considering CLQcut equal to 0.5, MLC-
 522 B8: MLC tests using beta coefficient by considering CLQcut equal to 0.8; SKAT: sequence kernel associated tests for the common variants (Ionita-Laza et al, 2013); SKAT-
 523 O: a linear combination of SKAT and burden test with optimized mixing proportion (Lee et al, 2012).

524 4.2.2 | Comparison of empirical power values for original data versus DRLPC processed data

525 To evaluate the efficiency of the DRLPC method, empirical power values of each of the multi-

526 SNP statistics were estimated using 1000 replications for each of 100 genes using the original

527 data and two DRLPC processed data for two trait models (Table 8, Supplementary Table S13,

528 Supplementary Figures S8 to S10). We computed power as the proportion of replicates with p-

529 values below the threshold corresponding to a nominal critical value for $\alpha = 0.05$ and obtained

530 average and standard deviation of empirical power across all genes under two trait models in

531 three super-populations (Supplementary Table S14 provides similar results for 2causal model,

532 Supplementary Tables S56 to S61 provide results for each gene for three super-populations).

533 As shown in Table 8, it is noteworthy that Wald test average power remarkably improves by

534 20% using DRLPC processed data compared to using original data for all three super-

535 populations. As expected, CLQcut 0.5 produces larger clusters and smaller df than CLQcut 0.8.

536 The PC80 achieves similar power using the original data compared to DRLPC for both CLQcut

537 values in all three super-populations. The PC80 DRLPC processed data and original data results

538 are remarkably similar on average. Nevertheless, it is worth mentioning that not all (global)

539 principal components are readily interpretable in a biological context, and choosing a subset of

540 principal components might lead to the exclusion of meaningful information; hence, the results

541 obtained with the DRLLPC may offer a more dependable basis for interpretation.

542 MLC-B performs dimension reduction by constructing a weighted linear combination for each

543 cluster using the original multiple regression coefficients, while DRLPC reduces dimension by

544 constructing a new variable which is a weighted linear combination of the genotypes within

545 each cluster and then performs, multiple regression with the new variables, but the weights

546 differ. Nevertheless, the average power of MLC-B obtained using the original data is similar

547 to the power of Wald using DRLPC processed data for corresponding CLQcut values. The

548 DRLPC process slightly enhanced the power of MLC-B compared to using the original data in

549 every population when the CLQ threshold was 0.8.

550 For the 1 causal model, SKAT usually has higher average power than SKAT-O, especially using

551 CLQ cut-point 0.5 across three super-populations. While analyzing the 2causal model

552 (Supplementary Table S14), we observed that SKAT and SKAT-O had usually higher power

553 using the original data for all three populations. Since the effects of both causal variants for the

554 2causal model are in the same direction, SKAT usually has a higher average power than SKAT-

555 O for all populations.

556 The average power of each test by applying DRLPC was higher than 70% for three populations

557 under both trait models. Based on the result in Table 8, we can infer that the power of DRLPC

558 processed data tends to increase when the degrees of freedom (df) of each test decrease,

559 implying that DRLPC can enhance power by reducing the dimension of the data. The average

560 power obtained by DRLPC is higher considering CLQcut 0.5 than CLQcut 0.8. under each trait

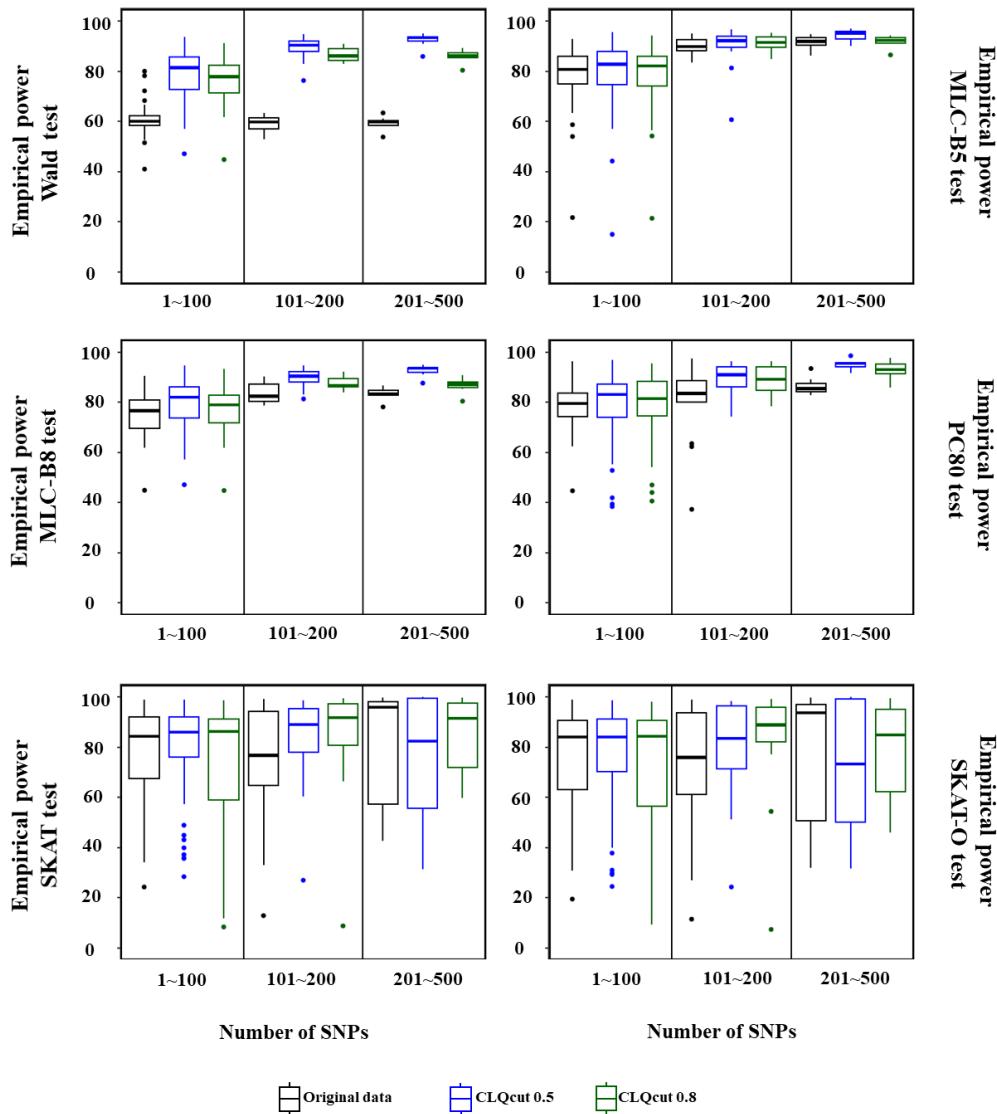
561 model for all tests (Table 8 and Supplementary Tables S13 and S14).

562

563 **TABLE 8** Empirical power (percentage) of gene-based statistics (N=1,000 replicates) at the 0.05 level for three populations, 1causal model,
 564 averaged over 100 genes.

Population	Statistics	Original data			CLQcut 0.5			CLQcut 0.8		
		Average	SD	Average df	Average	SD	Average df	Average	SD	Average df
EUR	Wald	60.3	4.6	35.7	81.3	9.5	9.0	78.7	8.2	12.6
	PC80	82.1	18.4	4.2	81.4	12.7	4.8	81.9	11.3	5.3
	MLC-B5	81.3	8.6	8.9	82.2	11.2	7.3	82.7	9.5	8.1
	MLC-B8	77.0	7.8	14.5	81.8	9.5	8.7	79.4	8.6	11.9
	SKAT	76.8	20.5	-	80.5	18.0	-	76.1	25.0	-
	SKAT-O	74.6	22.0	-	77.6	19.5	-	74.0	25.0	-
EAS	Wald	60.5	4.0	33.3	82.3	8.9	7.9	79.6	7.6	11.2
	PC80	84.5	14.0	3.7	81.5	13.4	4.6	82.9	12.2	4.9
	MLC-B5	81.3	11.5	7.9	81.1	14.8	6.4	81.0	13.3	7.1
	MLC-B8	78.2	7.7	7.9	82.8	8.6	7.6	80.4	7.9	10.3
	SKAT	79.5	18.5	-	80.0	18.2	-	74.6	22.2	-
	SKAT-O	76.6	20.6	-	78.1	18.8	-	73.0	22.8	-
AFR	Wald	60.5	3.9	67.8	82.8	8.7	18.1	79.3	8.0	26.4
	PC80	85.8	11.9	7.4	82.7	12.7	7.9	85.5	9.3	8.8
	MLC-B5	82.8	8.2	18.6	83.6	9.4	14.0	83.3	10.2	16.2
	MLC-B8	77.0	7.0	31.5	82.9	8.7	17.8	80.0	8.2	25.4
	SKAT	79.6	17.2	-	81.5	16.2	-	72.5	27.5	-
	SKAT-O	74.7	19.3	-	77.8	17.8	-	69.7	27.9	-

566 For each population, we also compared the median and interquartile range (IQR) of empirical
567 power for 100 genes, stratified into three groups based on the number of SNPs: genes with less
568 than 100 SNPs, 101~200 SNPs, and more than 200 SNPs (Figure S11 reports distributions of
569 the number of SNPs per gene). As shown in Figure 5 (Supplementary Tables S15 and S16),
570 DRLPC exhibited a strong enhancement in the power of the Wald test for larger genes, resulting
571 in an approximately 30% increase in power with type I error control (Table 7). Based on the
572 data application in section 3, in which the dimension reduction is greater in bigger-size genes,
573 such results are expected. Furthermore, in contrast to the Wald test, the average power of the
574 PC80 and MLC-B demonstrated a modest increase for larger gene sizes for CLQcut value 0.8.
575 The results of the DRLPC processed data using the CLQcut value 0.5 of the third group for
576 SKAT and SKAT-O have lower median the power than original data but with high variability
577 due to the small number of genes in that group, which is 7. The average power for SKAT and
578 SKAT-O tests using DRLPC processed data is higher than the original data using CLQcut 0.8
579 for the bigger-size genes; while for genes with less than 200 SNPs (groups 1 and 2), the average
580 power is higher for DRLPC processed data than original data using CLQcut 0.5. It is worth
581 noting that our finding remained consistent for another trait model and other populations
582 (Supplementary Tables S17 to S20 and Figures S12 to S17 for results in EAS and AFR
583 populations and the 2causal model), further substantiating the robustness and utility of DRLPC
584 in various genetic association scenarios.

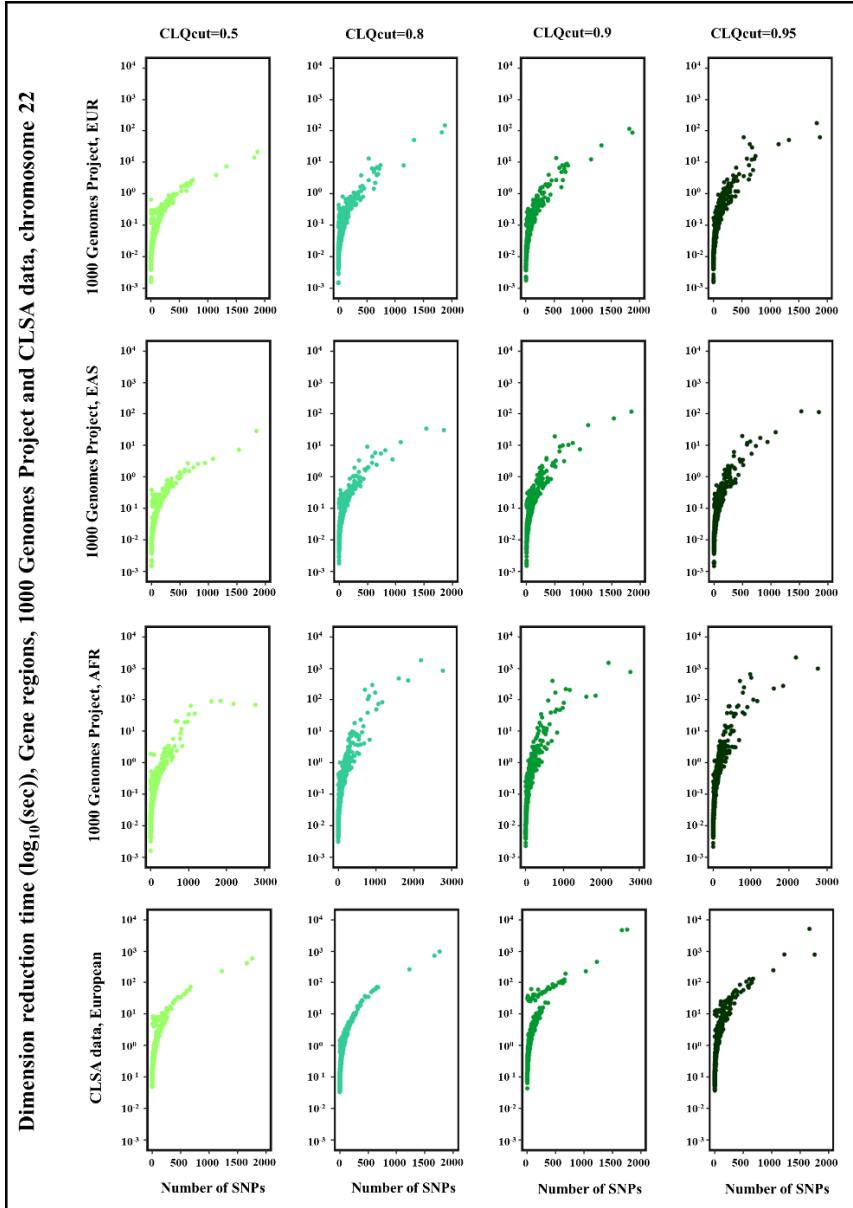


585 **FIGURE 5** Percentage of empirical power for gene-based statistics (N=1,000 replicate) at the
586 0.05 level for EUR population, 1causal model, averaged across three groups of 100 genes based
587 on the number of SNPs in the gene.

588 4.3 | Runtime evaluations for DRLPC

589 Figure 6 presents the run-time of DRLPC when applied to gene-based SNP-set genotype data
590 from the three super-populations in 1000 Genomes Project and the CLSA, after sorting genes
591 based on their size using four CLQcut thresholds of (0.5, 0.8, 0.9, 0.95), as well as PCcut
592 threshold of 0.8 (Supplementary Figure for same CLQcut values and PCcut of 0.9). It is
593 noteworthy that computational time for different CLQcut values shows little difference
594 between thresholds. We summarized the average run-time of DRLPC for several genes with
595 different sizes (refer to Supplementary Excel file, Table S62 to S65 for more information),
596 which demonstrated that the average computational time for genes with less than 500 SNPs, is
597 around 0.06 seconds while the average computational time for genes with more than 500 SNPs
598 is 3.41 seconds. Furthermore, the maximum run-time for larger genes (genes with more than

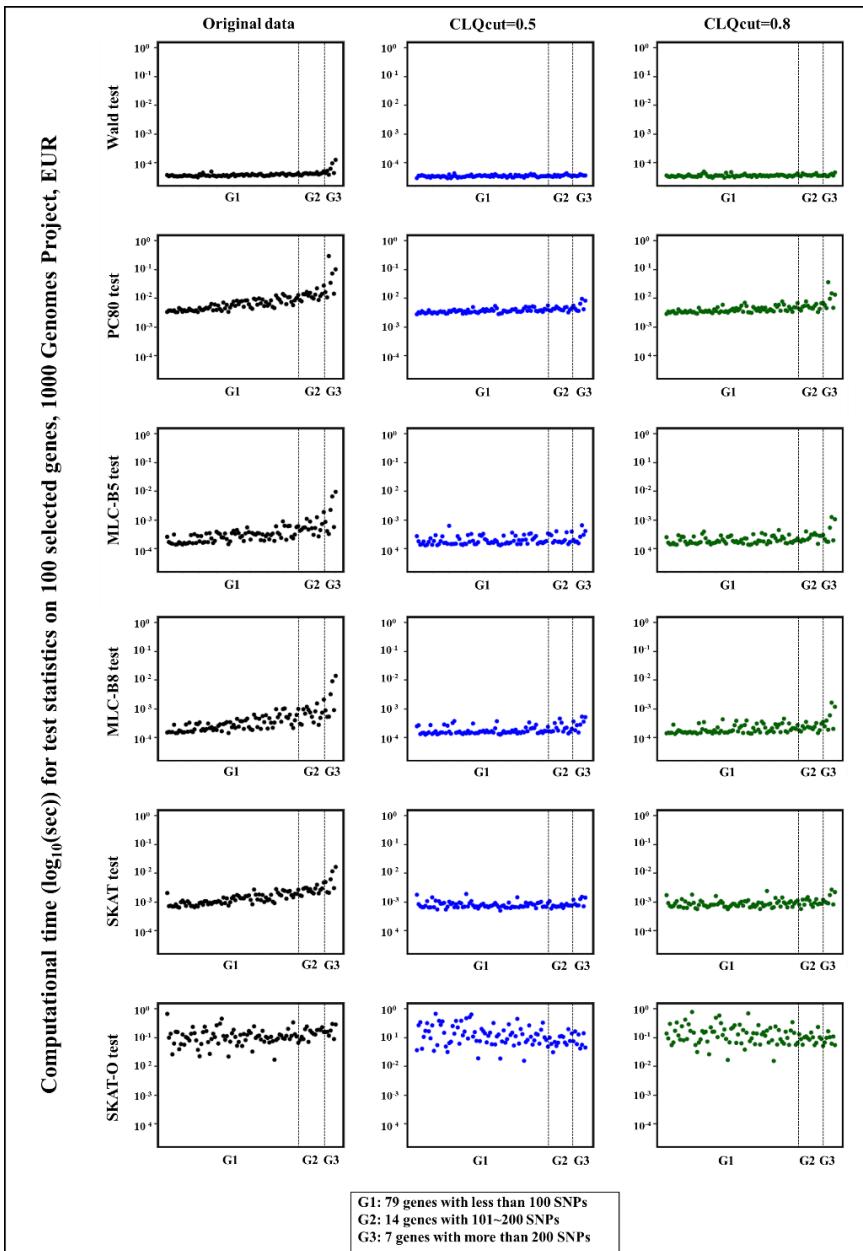
599 1000 SNPs) is less than 100 seconds for all three super-populations of 1000 Genomes Project
600 (sample size 503-661) and 1,000 seconds for CLSA European ancestry (sample size 17,965)
601 (Figure S18), underscoring the effectiveness of DRLPC in reducing the computational time.



602 **FIGURE 6** Computational time for dimension reduction using the DRLPC for gene regions
603 (chromosome 22), with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95) and a threshold
604 values 0.8 for PCcut, 1000 Genomes Project, three super-populations (sample size are 503-601)
605 and CLSA data European ancestry (sample size is 17,779).

606
607 As previously discussed, our simulation study applied the DRLPC to the 1000 Genomes Project
608 across three super-populations. Figure 7 illustrates the computational time for test statistics in
609 a single replication using the original data and two sets of DRLPC processed data for 1causal
610 model EUR population (Supplementary Figures S19 to S23 for 2causal model and other
611 populations). The genes were sorted based on their size, and two CLQcut thresholds (0.5, 0.8)
612 and a PCcut threshold of 0.8 were employed. Notably, the computational time using DRLPC

613 decreased as gene sizes increased, particularly for genes with more than 200 SNPs, since the
614 multiple regression dimension (df) has already been reduced by the DRLPC reduction within
615 the clusters. This trend is consistent across various tests and populations. Additionally, using a
616 CLQcut value of 0.5 demonstrated better computational performance, requiring approximately
617 10~30% less time for larger-sized genes, to the 0.8 threshold. The Intel(R) Core(TM) i5-4200U
618 CPU with 1.60GHz and a memory of 8.00 Gb DDR3 RAM and 238Gb local hard disk was
619 used for the calculation.



620 **FIGURE 7** The computational time for test statistics in a single replication of 1causal model
621 on 100 selected genes, chromosome 22: 79 genes with less than 101 SNPs, 14 genes with
622 101~200 SNPs, and seven genes with more than 200 SNPs, from 1000 Genomes Project, EUR.
623 The X-axis represents the original gene size, sorted by the number of SNPs. The original data
624 and the DRLPC processed data were examined at two threshold values for CLQcut (0.5, 0.8)
625 and a threshold value of 0.8 for PCcut.

626 **5 | DISCUSSION**

627 By jointly analyzing multiple variants within a gene, instead of one variant at a time, gene-
628 based multiple regression can improve power, robustness, and interpretation in genetic
629 association analysis. Yoo et al., (2017) proposed multiple linear regression with multi-
630 dimension Wald and reduced dimension multiple linear combination (MLC) test statistics and
631 demonstrated multi-SNP regression-based analysis can be a well-powered and robust choice
632 among the existing methods across a range of complex genetic architectures. Using the same
633 LD clique-based clustering implemented to define sets of related SNPs for MLC tests (Yoo et
634 al., 2015) and incorporating dimension reduction through LPCA in each cluster, we have
635 proposed the DRLPC algorithm to enhance statistical validity and power of multi-SNP tests
636 among multiple correlated genetic variants.

637 Dimension reduction is an approach to reduce the number of variables in a dataset while
638 retaining as much variation in the original dataset as possible. Kambhatla et al. (1997)
639 demonstrated that applying LPCA effectively reduces dimension in high-dimension data and
640 relieves concerns related to multi-collinearity. Multi-collinearity occurs when there is a high
641 level of linear dependency among regression variables. Methods proposed to resolve multi-
642 collinearity include ridge regression (Hoerl & Kennard, 1970), partial least squares (Wold et
643 al, 1984), lasso method (Tibshirani, 1997), principal component analysis (Pearson 1901,
644 Hotteling 1933). While acknowledging the potential of PCA and LPCA in addressing multi-
645 collinearity at least partially, it is important to note that these methods may not guarantee a
646 complete solution due to their limited effectiveness in providing a comprehensive diagnosis of
647 multi-collinearity. In this study, we introduced the DRLPC algorithm which reduces the
648 dimension of dense sequencing data by selecting clusters with high within-cluster correlation
649 and replacing each cluster with local principal components constructed locally among the SNP
650 in the cluster before the regression analysis. Dimension reduction is a crucial strength of
651 DRLPC, as it allows researchers to manage the difficulties of working with complex and highly
652 interrelated genomic data. Incorporating the Local Principal Component (Kambhatla et al. 1997)
653 in DRLPC facilitates the identification of the underlying genetic structure and improves the
654 accuracy and stability of regression models. Moreover, DRLPC directly addresses the issue of
655 multi-collinearity through a sequential two-step procedure. Initially, employing LPCA offers a
656 degree of relief from multi-collinearity and enhances the power of regression-based multi-SNP
657 genetic association analysis. This approach allows researchers to tackle two critical aspects
658 simultaneously, resulting in a more efficient and comprehensive solution.

659 To investigate the performance of DRLPC in dimension reduction, we applied it to genotypic
660 data from the 1000 Genomes Project for three super-populations (EUR, EAS, and AFR) and
661 the CLSA European ancestry subset. Considering results for nearly 200 SNP sets of varying
662 number obtained in chromosome 22, DRLPC effectively reduced dimension in all datasets. The
663 dimension reduction rate for larger genes was around 83% for EUR and EAS, and 74% for
664 AFR 1000 Genomes samples, and 85% for European ancestry CLSA samples. We observed
665 less dimension reduction in AFR compared to EUR and EAS due to weaker LD in AFR
666 (Supplementary Figures S24).

667 For some genes, there was a strong dependency between some SNPs before applying DRLPC,
668 and LPCA reduced the average of VIF for the remaining variables. However, in some instances,
669 VIF values exceeding the predefined threshold remained after applying LPCA. Subsequently,
670 removing variables with the highest VIF (step 4) ensures that the remaining variables maintain
671 VIF values below the threshold. By systematically eliminating high VIF values via the DRLPC
672 framework (step 4), the average VIF for all genes descended below the predetermined threshold.
673 The outcomes indicate that applying DRLPC yielded consistent results across populations.

674 To investigate the performance of DRLPC pre-processing in hypothesis testing for genetic
675 association, we conducted simulations based on the 1000 Genomes populations to assess
676 validity and power of several gene-level test statistics. Based on the simulation results, we
677 conclude that the multi-SNP Wald regression test applied to the DRLPC processed data
678 performs better than in the original data for genes with larger numbers of highly correlated
679 SNPs. On average over 100 genes, all test statistics based on DRLPC effectively control type
680 I errors near the nominal 0.05 level in all three super-populations. Moreover, DRLPC
681 processing removed type I error inflation for the Wald test. This finding underscores the validity
682 of the method.

683 Furthermore, the empirical power across 1,000 replications obtained for each of 100 genes in
684 three super-populations under two trait models, indicated that the genotypic dimension
685 reduction and the impact of DRLPC was almost identical in the two trait models for all tests.
686 In both trait models, the Wald test with DRLPC showed the most robust efficiency, with power
687 improved by around 20%, particularly for larger size genes. Use of the same clique-based
688 algorithm and the same CLQcut value to create SNPs clusters for Local PCs in DRLPC and
689 linear combination of SNPs within clusters in MLC, produces similar empirical power for the
690 DRLPC Wald test and original MLC test.

691 The effect of DRLPC on PC80 was not remarkable since PC80 already achieves an acceptable
692 power without DRLPC. Although constructing principal components from all SNP variables in
693 a region is a common approach, interpreting them as biological entities may be challenging. It
694 is possible that information may be lost by analyzing only a subset of principal components.
695 On the other hand, clusters of the highly correlated SNPs produced by the clique-based
696 algorithm and used by DRLPC and MLC retain their biological meaning.

697 The SKAT test is based on marginal beta coefficients and does not consider SNP covariance
698 directly in the test statistic. Moreover, SNP LD is not considered in the linear burden test
699 component of SKAT-O. Based on the results obtained in this study, the power for SKAT is often
700 greater than for SKAT-O. In general, the positive impact of the DRLPC on SKAT was greater
701 than that on SKAT-O. For SKAT and SKAT-O larger genes processed by DRLPC have lower
702 median power than the original data, with variability attributed to the limited number of genes
703 in this group, totaling 7. Although substantial differences were not observed between the three
704 super-populations for the SKAT test, the power of the SKAT test was higher using the DRLPC
705 processed data under the 1causal model compared to the 2causal model, particularly when
706 using a CLQcut point 0.5 across all three super-populations.

707 We also conducted a stratified analysis by grouping genes based on their size and computing

708 the type I error and average empirical power for each group using original data, and two
709 DRLPC processed datasets. Notably, the number of SNPs in the gene did not substantially
710 influence the type I error in the latter, resulting in the limited impact of this variation.
711 Remarkably, the Wald test exhibited the most improvement. The enhancement in power
712 through increased gene size was more conspicuous, especially with the CLQcut value set at
713 0.5. Therefore, we recommend the threshold value of 0.5 for DRLPC. In addition to reducing
714 dimensionality while maintaining the interpretability of localized effects, pre-processing with
715 DRPC offers the advantage of decreased computational time required for regression analysis.
716 The results demonstrate that applying DRLPC elevates the statistical power of Wald tests and
717 effectively reduces computational time.

718 Given mounting evidence for the role of LD structure in the effectiveness of gene-based tests,
719 it is prudent to consider approaches like DRLPC, explicitly tailored to leverage LD information,
720 as a viable alternative for genetic association analysis of dense genotyping data characterized
721 by correlated SNPs and intricate LD structure.

722 **6 | CONCLUSIONS**

723 In conclusion, our study has demonstrated that dimension reduction by local principal
724 components (DRLPC) effectively reduces the dimension of high-density DNA sequencing or
725 imputed array data and. Our results indicate that DRLPC significantly resolves multi-
726 collinearity prior to regression analysis and improves the power obtained for the Wald test,
727 making it an equivalent approach to the MLC test. By reducing the data dimension, DRLPC
728 has been shown to enhance the accuracy and efficiency of multi-marker methods such as the
729 Wald test. The simulation results strongly suggest that DRLPC has excellent potential for
730 improving the power of SNP-based association studies. Applying DRLPC improves type I error
731 control and enhances the statistical power of the Wald test especially (and potentially also for
732 the MLC test) when the number of SNPs per gene is large and the sample size is relatively
733 modest (i.e. low n/p ratio). Additionally, it reduces computational time. Our findings provide
734 valuable insights into the use of DRLPC as a promising tool for the analysis of complex genetic
735 data, and we hope that our study will inspire further research in this critical area.

736

737 **ACKNOWLEDGMENT**

738 This work was supported by the National Research Foundation of Korea (NRF) [NRF-
739 2018R1A2B6008016]. This research was made possible using the data collected by the
740 Canadian Longitudinal Study on Aging (CLSA). Funding for the Canadian Longitudinal Study
741 on Aging (CLSA) is provided by the Government of Canada through the Canadian Institutes
742 of Health Research (CIHR) under grant reference: LSA 94473 and the Canada Foundation for
743 Innovation, as well as the following provinces, Newfoundland, Nova Scotia, Quebec, Ontario,
744 Manitoba, Alberta, and British Columbia. This research has been conducted using the CLSA
745 dataset [Comprehensive Dataset version 4.0], under Application Number [1909028]. The
746 CLSA is led by Drs. Parminder Raina, Christina Wolfson and Susan Kirkland. This research

747 was partially funded by the CIHR Project Grant (#PJT-159463).

748 DATA AVAILABILITY

749 Data are available from the Canadian Longitudinal Study on Aging (www.clsalcv.ca) for
750 researchers who meet the criteria for access to de-identified CLSA data.

751 CONFLICT OF INTERESTS

752 The authors declare no conflict of interest. The opinions expressed in this manuscript are the
753 author's own and do not reflect the views of the Canadian Longitudinal Study on Aging.

754

755 REFERENCES

756 Abdi, H., & Williams, L. J. (2010). Principal component analysis (2010). *Computational
757 Statistic, Johns wiley and Sons*, 433-459.

758 Alin, A. (2010). Multi-collinearity. *Wiley interdisciplinary reviews: computational
759 statistics*, 2(3), 370-374.

760 Asimit, J. L., Yoo, Y. J., Waggott, D., Sun, L., & Bull, S. B. (2009, December). Region-based
761 analysis in genome-wide association study of Framingham Heart Study blood lipid phenotypes.
762 In *BMC proceedings* (Vol. 3, No. 7, pp. 1-5). BioMed Central.

763 Campbell, M. C., & Tishkoff, S. A. (2008). African genetic diversity: implications for human
764 demographic history, modern human origins, and complex disease mapping. *Annu. Rev.
765 Genomics Hum. Genet.*, 9, 403-433.

766 Chapman, J. M., Cooper, J. D., Todd, J. A., & Clayton, D. G. (2003). Detecting disease
767 associations due to linkage disequilibrium using haplotype tags: a class of tests and the
768 determinants of statistical power. *Human heredity*, 56(1-3), 18-31.

769 Chapman, J., & Whittaker, J. (2008). Analysis of multiple SNPs in a candidate gene or region.
770 *Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology
771 Society*, 32(6), 560-566.

772 Clayton, D., Chapman, J., & Cooper, J. (2004). Use of unphased multilocus genotype data in
773 indirect association studies. *Genetic Epidemiology: The Official Publication of the
774 International Genetic Epidemiology Society*, 27(4), 415-428.

775 Edgeworth, F. Y. (1884). XVII. On the reduction of observations. The London, Edinburgh, and
776 Dublin Philosophical Magazine and Journal of Science, 17(104), 135-141.

777 Eyre-Walker, A. (1993). Recombination and mammalian genome evolution. *Proceedings of the
778 Royal Society of London. Series B: Biological Sciences*, 252(1335), 237-243.

779 Farrar, D. E., & Glauber, R. R. (1967). Multicollinearity in regression analysis: the problem
780 revisited. *The Review of Economic and Statistics*, 92-107.

781 Forgetta V, Li R, Darmond-Zwaig C, Belisle, A., Balion, C., Roshandel, D., ... & Ragoussis, J.
782 (2022). Cohort profile: genomic data for 26 622 individuals from the Canadian Longitudinal
783 Study on Aging (CLSA). *BMJ Open*, 12(3), e059021.

784 Gauderman, W. Murcray, C., Gilliland. F., & Conti. D.V. (2007). Testing association between
785 disease and multiple SNPs in candidate gene. *Genetic Epidemiology: The Official Publication*
786 of the International Genetic Epidemiology Society, 31(5), 383-395.

787 Gwelo, A. S. (2019). Principal components to overcome multicollinearity problem. *Oradea
788 Journal of Business and Economics*, 4(1), 79-91.

789 Halldorsson, B. V., Palsson, G., Stefansson, O. A., Jonsson, H., Hardarson, M. T., Eggertsson,
790 H. P., ... & Stefansson, K. (2019). Characterizing mutagenic effects of recombination through
791 a sequence-level genetic map. *Science*, 363(6425), eaau1043.

792 Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
793 problems. *Technometrics*, 12(1), 55-67.

794 Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
795 components. *Journal of educational psychology*, 24(6), 417.

796 Ionita-Laza, I., Lee, S., Makarov, V., Buxbaum, J. D., & Lin, X. (2013). Sequence kernel
797 association tests for the combined effect of rare and common variants. *The American Journal
798 of Human Genetics*, 92(6), 841-853.

799 Kambhatla, N., & Leen, T. K. (1997). Dimension reduction by local principal component
800 analysis. *Neural computation*, 9(7), 1493-1516.

801 Kim, S., Morris, N. J., Won, S., & Elston, R. C. (2010). Single-marker and two-marker
802 association tests for unphased case-control genotype data, with a power comparison. *Genetic
803 Epidemiology: The Official Publication of the International Genetic Epidemiology Society*,
804 34(1), 67-77.

805 Kim, S. A., Cho, C. S., Kim, S. R., Bull, S. B., & Yoo, Y. J. (2018). A new haplotype block
806 detection method for dense genome sequencing data based on interval graph modeling of
807 clusters of highly correlated SNPs. *Bioinformatics*, 34(3), 388-397.

808 Kim, S. A., Brossard, M., Roshandel, D., Paterson, A. D., Bull, S. B., & Yoo, Y. J. (2019). gpart:
809 human genome partitioning and visualization of high-density SNP data by identifying
810 haplotype blocks. *Bioinformatics*, 35(21), 4419-4421.

811 Kong, A., Gudbjartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson,
812 B., ... & Stefansson, K. (2002). A high-resolution recombination map of the human
813 genome. *Nature genetics*, 31(3), 241-247.

814 Lafi, S. Q., & Kaneene, J. B. (1992). An explanation of the use of principal-components
815 analysis to detect and correct for multicollinearity. *Preventive Veterinary Medicine*, 13(4), 261-
816 275.

817 Lee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J., Nickerson, D. A., ... &
818 NHLBI GO Exome Sequencing Project. (2012). Optimal unified approach for rare-variant
819 association testing with application to small-sample case-control whole-exome sequencing
820 studies. *The American Journal of Human Genetics*, 91(2), 224-237.

821 Li, L. (2010). Dimension reduction for high-dimensional data. *Statistical methods in molecular
822 biology*, 417-434.

823 Lin, Z., & Altman, R. B. (2004). Finding haplotype tagging SNPs by use of principal
824 components analysis. *The American Journal of Human Genetics*, 75(5), 850-861.

825 McVean, G. A., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., & Donnelly, P. (2004).
826 The fine-scale structure of recombination rate variation in the human
827 genome. *Science*, 304(5670), 581-584.

828 Meng, Z., Zaykin, D. V., Xu, C. F., Wagner, M., & Ehm, M. G. (2003). Selection of genetic
829 markers for association analyses, using linkage disequilibrium and haplotypes. *The American
830 Journal of Human Genetics*, 73(1), 115-130.

831 Novembre, J., & Stephens, M. (2008). Interpreting principal component analyses of spatial
832 population genetic variation. *Nature genetics*, 40(5), 646-649.

833 Park, H., Yamaguchi, R., Imoto, S., & Miyano, S. (2020). Automatic sparse principal
834 component Raina Pearson, K. (1901). Principal components analysis. *The London, Edinburgh,
835 and Dublin Philosophical Magazine and Journal of Science*, 6(2), 559.

836 Pritchard, J. K., & Przeworski, M. (2001). Linkage disequilibrium in humans: models and
837 data. *The American Journal of Human Genetics*, 69(1), 1-14.

838 Raina P., Wolfson C., Kirkland S.A., Griffith L.E., Oremus M., Patterson C., Tuokko H., Hogan
839 D., Wister A., Payette H., Brazil K., Shannon H. (2009) The Canadian Longitudinal Study on
840 Aging (CLSA). *Canadian Journal on Aging*, Special Issue on the CLSA, Volume 28, Issue3,
841 221-229, <https://doi.org/10.1017/S0714980809990055>.

842 Sha, Q., Dong, J., Jiang, R., & Zhang, S. (2005). Tests of association between quantitative traits
843 and haplotypes in a reduced-dimensional space. *Annals of Human Genetics*, 69(6), 715-732.

844 Slavin, T. P., Feng, T., Schnell, A., Zhu, X., & Elston, R. C. (2011). Two-marker association
845 tests yield new disease associations for coronary artery disease and hypertension. *Human
846 genetics*, 130(6), 725-733.

847 Spencer, C. C., Su, Z., Donnelly, P., & Marchini, J. (2009). Designing genome-wide association

848 studies: sample size, power, imputation, and the choice of genotyping chip. *PLoS genetics*, 5(5),
849 e1000477.

850 Syvänen, A. C. (2001). Accessing genetic variation: genotyping single nucleotide
851 polymorphisms. *Nature Reviews Genetics*, 2(12), 930-942.

852 Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. *Statistics in
853 medicine*, 16(4), 385-395.

854 Tishkoff, S. A., & Williams, S. M. (2002). Genetic analysis of African populations: human
855 evolution and complex disease. *Nature Reviews Genetics*, 3(8), 611-621.

856 Tzeng, J. Y., Wang, C. H., Kao, J. T., & Hsiao, C. K. (2006). Regression-based association
857 analysis with clustered haplotypes through use of genotypes. *The American Journal of Human
858 Genetics*, 78(2), 231-242.

859 Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the
860 number of observations is large. *Transactions of the American Mathematical society*, 54(3),
861 426-482.

862 Wang, K., & Abbott, D. (2008). A principal components regression approach to multilocus
863 genetic association studies. *Genetic Epidemiology: The Official Publication of the
864 International Genetic Epidemiology Society*, 32(2), 108-118.

865 Wang, T., Zhu, X., & Elston, R. C. (2007). Improving power in contrasting linkage-
866 disequilibrium patterns between cases and controls. *The American Journal of Human
867 Genetics*, 80(5), 911-920.

868 Wang, X., Morris, N. J., Schaid, D. J., & Elston, R. C. (2012). Power of single-vs. multi-marker
869 tests of association. *Genetic epidemiology*, 36(5), 480-487.

870 Wold, S., Ruhe, A., Wold, H., & Dunn, Iii, W. J. (1984). The collinearity problem in linear
871 regression. The partial least squares (PLS) approach to generalized inverses. *SIAM Journal on
872 Scientific and Statistical Computing*, 5(3), 735-743.

873 Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. *Chemometrics and
874 intelligent laboratory systems*, 2(1-3), 37-52.

875 Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. (2011). Rare-variant association
876 testing for sequencing data with the sequence kernel association test. *American Journal of
877 Human Genetics*, 89, 82-93.

878 Xiong, M., Zhao, J., & Boerwinkle, E. (2002). Generalized T2 test for genome association
879 studies. *The American Journal of Human Genetics*, 70(5), 1257-1268.

880 Xue, Y., Ding, J., Wang, J., Zhang, S., & Pan, D. (2020). Two-phase SSU and SKAT in genetic

881 association studies. *Journal of Genetics*, 99(1), 1-10.

882 Yoo, Y. J., Sun, L., & Bull, S. B. (2013). Gene-based multiple regression association testing for
883 combined examination of common and low frequency variants in quantitative trait analysis.
884 *Frontiers in Genetics*, 4, 233.

885 Yoo, Y. J., Kim, S. A., & Bull, S. B. (2015). Clique-based clustering of correlated SNPs in a
886 gene can improve performance of gene-based multi-bin linear combination test. *BioMed
887 Research International*, 2015.

888 Yoo, J. Y., Lei, S., Poirier, J. G., Paterson, A. D., & Bull. S. B. (2017). Multiple linear
889 combination (MLC) regression tests for common variants adapted to linkage disequilibrium
890 structure. *Genetic Epidemiology*, 41,108-121.

891 Yu, J. (2012). Local and global principal component analysis for process monitoring. *Journal
892 of Process Control*, 22(7), 1358-1373.

893 1000 Genomes Project Consortium. (2015). A global reference for human genetic
894 variation. *Nature*, 526(7571), 68.

895 Sanger Imputation Service. <https://imputation.sanger.ac.uk>, May 2018. [Online; accessed 11.
896 May 2018].

897

898 **FOOTNOTES**

899 ¹ Dimension reduction refers to approaches to summarizing massive data such that most of
900 the information in the data is preserved even with a smaller number of variables.

901 ² In regression studies, alias variables refer to variables that are highly correlated or redundant
902 with each other.

903 ³ The reduction in VIF is calculated as the percentage of one minus the ratio of the highest VIF
904 at a specific step to the highest VIF at the preceding step.