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Abstract 

For genetic association analysis based on multiple SNP regression of genotypes obtained by 

dense DNA sequencing or array data imputation, multi-collinearity can be a severe issue 

causing failure to fit the regression model. In this study, we proposed a method of Dimension 

Reduction using Local Principal Components (DRLPC) which aims to resolve multi-

collinearity by removing SNPs under the assumption that the remaining SNPs can capture 

the effect of a removed SNP due to high linear dependency. This approach to dimension 

reduction is expected to improve the power of regression-based statistical tests. We apply 

DRLPC to chromosome 22 SNPs of two data sets, the 1000 Genomes Project (phase 3) and 

Canadian Longitudinal Study on Aging (CLSA), and calculated Variance Inflation Factors 

(VIF) in various SNP-sets before and after implementing DRLPC as a metric of collinearity. 

Notably, DRLPC addresses multi-collinearity by excluding variables with a VIF exceeding 

a predetermined threshold (VIF=20), thereby improving applicability for subsequent 

regression analyses. The number of variables in a final set for regression analysis is reduced 

to around 20% on average for larger-sized genes, whereas for smaller ones, the proportion is 

around 48%; suggesting that DRLPC is more effective for larger genes. We also compare the 

power of several multi-SNP statistics constructed for gene-specific analysis to evaluate 

power gains achieved by DRLPC. In simulation studies based on 100 genes with ≤500 SNPs 

per gene, DRLPC effectively increased the power of the multiple regression Wald test from 

60% to around 80%.  

KEYWORDS 

Dimension reduction, principal component analysis (PCA), multi-collinearity, variance 

inflation factor (VIF), multi-SNP statistics, Canadian Longitudinal on Aging (CLSA), 1000 
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Genomes Project (phase 3)  
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1 | INTRODUCTION 15 

Genetic association studies investigate associations between single nucleotide polymorphisms 16 

(SNPs) and a trait of interest (Yu, 2012; Yoo et al., 2017; Xue et al., 2020). High-density SNP 17 

genotypes generated from genome-wide genotyping arrays and imputed to a reference panel, 18 

or Next-Generation Sequencing (NGS) technologies are analyzed to detect SNP-trait 19 

association signals (Gauderman et al., 2007; Kim et al., 2010; Slavin et al., 2011; Wu et al., 20 

2011). A single-SNP analysis considers the association between a trait and one SNP at a time 21 

(Syvänen, et al., 2001; Spencer et al., 2009; Kim et al., 2010). On the other hand, multi-SNP 22 

analysis investigates the association between a trait and multiple SNPs simultaneously. In the 23 

multi-SNP approach, a set of SNPs is considered together in region-level analysis, e.g. SNPs 24 

within a region defined by gene boundaries, that obtain a global statistic to test for the combined 25 

effect of the SNP set. Global testing can yield robust, powerful, and informative results (Asimit 26 

et al., 2009; Chapman & Whittaker, 2008). In particular, SNP genotypes within a gene can be 27 

analyzed using a multi-SNP regression model, and joint effects of a SNP set tested by a large 28 

sample Wald statistic with multiple df (Clayton et al., 2004; Gauderman et al., 2007; Wang et 29 

al., 2012; Yoo et al., 2013).  30 

In multi-SNP joint regression analysis, issues with multi-collinearity can occur when there are 31 

a large number of predictors or when the ratio of number of observations relative to the number 32 

of predictors is not large. In regression, multi-collinearity means linear or near-linear 33 

dependency among two or more predictors, which corresponds to a lack of orthogonality 34 

among them (Alin, 2010). The linkage disequilibrium (LD) structure of high-density SNP 35 

genotype data often shows clusters of highly correlated SNP, which may or may not be 36 

consecutively located (Kim et al., 2018; Kim et al., 2019). High-density SNP genotype 37 

predictors in proximity often yield multi-collinearity due to LD (Wang et al., 2012). Multi-38 

collinearity can cause a singular covariance matrix due to independent variables. This 39 

singularity arises because the matrix’s determinant approaches zero, making it mathematically 40 

unstable for inversion (Farrar et al., 1967). Multi-collinearity can lead to misleading or 41 

unexpected signs of the regression coefficient, as their signs may deviate from the expected 42 

relationship between predictors and the response variable. The most severe effect of multi-43 

collinearity is the inflation of standard errors associated with regression coefficients, signifying 44 

large sampling variability (Alin, 2010). Ways to detect collinearity among predictors, include 45 

pairwise correlations, eigenvalues, and the Variance Inflation Factor (VIF). The correlation 46 

matrix and eigenvalues can provide indications of the existence of multi-collinearity; however, 47 

they cannot accurately measure the extent of multi-collinearity. The VIF, which measures how 48 

much the variance of the estimated regression coefficient is inflated due to collinearity among 49 

the variables, quantifies multi-collinearity and effects on computation and can be interpreted 50 

quickly and clearly (Gwelo et al., 2019). 51 

Applying Principal Component Analysis (PCA, Edgeworth, 1884) for both SNP genotype and 52 

haplotype-based approaches within multiple regression analysis is an efficacious dimension 53 
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reduction1 technique (Wang et al., 2008; Chapman et al., 2003; and Clayton et al., 2004). 54 

Moreover, this approach offers a valuable statistical technique for detecting, quantifying, and 55 

adjusting for multi-collinearity in a dataset (Lafi et al.,1992). Several methods have been 56 

developed to reduce the dimension of complex data; however, PCA is a conventional 57 

dimension reduction approach for multivariate data that depends on an orthogonal linear 58 

combination of variables, called principal components (PCs) (Li, 2010; Abdi & Williams, 2010; 59 

Park et al., 2020). Wang & Abbott (2008) have applied principal components regression 60 

(PCReg) to test for the association of a set of SNPs with the phenotype, assuming that a small 61 

number of variables can model a sufficient amount of variation in the joint distribution of all 62 

SNPs. As a result of this, a few PCs, which are computed from the sample covariance matrix 63 

of the SNP genotype, are used as regressors in multiple regression.  64 

In the context of high-dimensional genetic association analysis, when the number of genetic 65 

predictors exceeds the sample size, the model cannot be fit at all using standard least squares 66 

methods. It leads to overfitting, high variance stability, singular and collinearity, reduced 67 

statistical power, misleading interpretation, and inflated type II errors. Dimension reduction 68 

streamlines the model by focusing on a reduced set of features. This strategy counters the risk 69 

of overfitting, enhancing the power of statistical tests. Replacing SNP variables with principal 70 

components can improve the power of regression-based statistical tests by addressing the 71 

challenges associated with high dimensionality. Gauderman et al., (2007) highlighted the 72 

advantages of the PC approach over joint-SNP and haplotype tests. Their findings emphasized 73 

that PCs capture SNP variation within the genetic locus. Substantive dimension reduction was 74 

achieved by adopting an 80% explained variance threshold for the disease model, which gained 75 

statistical power. However, the PCs constructed from all SNP variables in a region are hard to 76 

interpret as biological entities and are not helpful for localization and fine mapping. 77 

While PCA can project high-dimensional data onto a lower-dimensional space that captures 78 

most of the original data’s variance using the variables’ correlation structure, it cannot represent 79 

local information for data with complicated distributions (Wold et al., 1987; Yu, 2012). If the 80 

variables have non-linear dependencies, PCA will require a more significant dimensional 81 

representation than would be found by a non-linear technique. Kambhatla & Leen (1997) 82 

introduced an extension to PCA using a local linear approach called Local PCA (LPCA). In 83 

contrast to global PCA, which projects an entire set of variables onto a low-dimensional space, 84 

LPCA focuses on subsets or "local" regions of the data to capture more nuanced or complex 85 

relationships that may be missed by global PCA. Similar to PCA, LPCA can relieve multi-86 

collinearity and reduce data dimensionality. The LPCA algorithm for n-dimensional input data 87 

can be stated as follows:  88 

Step 1. First, partition the input data into Q disjoint regions {𝑅(1), 𝑅(2), . . . , 𝑅(𝑄)}.  89 

Step 2. Compute the local covariance matrix 𝛴(𝑖) = 𝐸[(𝑥 − 𝐸𝑥)(𝑥 − 𝐸𝑥)𝑇|𝑥 ∈ 𝑅(𝑖)]; 𝑖 =90 

1, … , 𝑄, for the variables in region and their eigenvectors 𝑒𝑗
(𝑗)

, 𝑗 = 1, … , 𝑛. Without loss of 91 

generality, the eigenvectors can be relabeled so that the corresponding eigenvalues are in 92 

descending order 𝜆1
(𝑖)

> 𝜆2
(𝑖)

> . . . > 𝜆𝑛
(𝑖)

. 93 
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Step 3. Select a target dimension m and retain the leading m eigenvector directions for reducing 94 

the data dimension. 95 

In the present article, we propose a new approach to gene-level association analysis based on 96 

LPCA that aims to improve the power of global multi-SNP test statistics while preserving the 97 

interpretability of the localized effects. In regression analysis, Dimension Reduction using 98 

Local Principal Components (DRLPC) proceeds by first selecting clusters of SNPs in high 99 

correlation and replacing each cluster with a local principal component constructed from the 100 

SNPs in the cluster. DRLPC also aims to resolve multi-collinearity among the updated 101 

variables by removing variables with VIF values greater than a predefined threshold iteratively 102 

until the highest value of VIF falls under the threshold. DRLPC, using an LPCA technique and 103 

removing variables with a high VIF with the underlying assumption that the remaining 104 

variables possess the capacity to capture the impact of the removed variables due to their high 105 

linear dependency, can simultaneously reduce the dimensionality of the data and resolve multi-106 

collinearity.  107 

To examine the behavior of DRLPC in achieving dimension reduction, we applied the 108 

algorithm to SNP genotypes from two data sets. The first is the 1000 Genomes Project data 109 

(phase 3), chromosome 22 of three major super-populations: European, East Asian, and African. 110 

The second dataset is the European ancestry subset of the Canadian Longitudinal Study on 111 

Aging (CLSA), also for chromosome 22 SNPs. The dimension of each dataset was reduced 112 

separately, considering several choices of threshold values for clustering and principal 113 

components selection. We also designed simulation studies to generate quantitative trait values 114 

from the 1000 Genomes Projects genotype under gene-level regression models for genetic 115 

association. Analyses of the original SNP genotype variables and the DRLPC processed 116 

variables were then conducted to compare type I error and power of several multi-variable 117 

statistics including generalized linear regression Wald (Wald, 1943), multiple linear 118 

combination (MLC) (Yoo et al., 2017, generalized Wald with global principal components 119 

(Gauderman et al., 2007), and sequence kernel association (SKAT) and SKAT-O ((Ionita-Laza 120 

et al., 2013; Lee et al., 2012). 121 

The rest of the paper is organized into the following sections: Section 2 includes a description 122 

of the DRLPC method. Section 3 discusses the results obtained from the proposed method for 123 

actual data application using two different SNP sets for two datasets. Section 4 reports 124 

simulation study results for the power and type I error of multi-marker statistics obtained using 125 

DRLPC processed datasets. The discussion and conclusion are given in Section 5 and Section 126 

6, respectively. 127 

 128 

2 | MATERIALS AND METHODS 129 

2.1 | Dimension reduction using local principal components 130 

Suppose that the genotypes of m SNPs are coded as 0, 1, or 2 based on an additive genetic 131 

model and denoted by 𝑋 = (𝑋1 , 𝑋2, … , 𝑋𝑚). The multi-SNP joint regression model of m SNPs 132 

consider E[Y|𝑋] as the expected value of quantitative trait Y conditional on the given SNP 133 
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genotypes and is formulated as follows: 134 

𝐸[𝑌|𝑋] = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚              (1) 135 

Global test statistics based on the above regression analysis can be constructed from the beta 136 

estimates 𝛽̂ = (𝛽̂1, … , 𝛽̂𝑚)𝑇and the associated covariance matrix ∑𝐵. One of the objectives of 137 

the DRLPC technique is to reduce the dimension of data before conducting regression analysis. 138 

To achieve this, the DRLPC employs two strategies for dimension reduction: local PCs and 139 

filtering on VIF. These strategies are employed to reduce the number of regression variables 140 

and remove multi-collinearity.  141 

Figure 1 illustrates the steps in the DRLPC processing with an example region "SLC35E4" in 142 

chromosome 22 (bp position of 31,031,643 ~ 31,064,736), which includes 57 SNPs in 1000 143 

Genomes Projects (phase 3), EUR super-population. 144 

The DRLPC algorithm requires three thresholds:  a threshold (CLQcut) for pairwise 𝑟2 to 145 

construct clusters of highly correlated SNPs by the clique-based graph partitioning method 146 

(Yoo et al., 2015); a threshold (VIFcut) for variance inflation factor (VIF) values to remove 147 

variables with linear dependencies and reduce multi-collinearity; a threshold (PCcut) to select 148 

some PC variables that capture the variability of all the removed variables as the candidates for 149 

addition of variables at the last step of the algorithm. DRLPC also designates a value (Klim) 150 

as the partition limit for the alias2 removal step to apply this step separately for each subset of 151 

partitioned SNPs when the number of SNPs is greater than the sample size. The details of the 152 

DRLPC algorithm are explained as follows: 153 

Step 1. Removal of linearly dependent SNPs: Suppose that m SNPs in a gene are indexed with 154 

𝑉1 = {1,2, … , 𝑚}. Let 𝑉 ≔ 𝑉1 . First, SNPs with complete linear dependency (aliased SNPs) 155 

are detected, and one SNP per group of aliased SNPs forming each linear dependency 156 

relationship is removed. The set of SNPs removed by this process is denoted by 𝑊1. If the 157 

number of SNPs is greater than or close to the sample size, we partition SNPs into subsets, 158 

including fewer SNPs than the sample size. A partition limit (Klim) is set to partition the SNPs 159 

into sets with a size less than Klim in which the procedure of breaking the linear dependency 160 

is applied to each partition separately. Since the linear dependency may occur between 161 

partitioned parts, we apply this process repeatedly for the combined sets of the remaining SNPs 162 

until no completely dependent SNPs remain. In this way, the set of current SNPs 𝑉 is updated 163 

by 𝑉2 = 𝑉\𝑊1. 164 

Step 2. Clustering of highly correlated SNPs: Using the clique-based clustering algorithm 165 

CLQ-D in Kim et al., (2018), find the groups of SNPs in 𝑉2 that have pairwise 𝑟2 greater 166 

than the CLQcut. Some SNPs do not form groups and remain as singletons. Denote the groups 167 

(bins) with multiple SNPs found in this step by 𝐺 = {𝐺1, ⋯ , 𝐺𝐽}.  Also, denote the set of 168 

singleton SNPs by 𝑆. 169 

Step 3. Replacing each group with a local PC: Replace the SNPs in each 𝐺𝑗  by the first 170 

principal component obtained applying PCA only for the SNPs within the group, known as a 171 
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local PC (LPC), which is denoted by 𝐿𝑃𝐶𝑗. Now let 𝐿 = {𝐿𝑃𝐶1, ⋯ , 𝐿𝑃𝐶𝐽}. Then, update the 172 

current set of dimension-reduced variables 𝑉2  with 𝑉3 = 𝑆 ∪ 𝐿 = 𝑆 ∪ {𝐿𝑃𝐶1, ⋯ , 𝐿𝑃𝐶𝐽} . 173 

There is a possibility of no LPC replacing the SNPs when no cluster of multiple SNPs is found 174 

in Step 2.  175 

Step 4. Removal of variables to reduce multi-collinearity: Suppose the variables in 𝑉3 are 176 

indexed such that 𝑉3 = {𝑣1, 𝑣2, … , 𝑣𝐾}, regardless they are the original SNPs or LPCs. First, 177 

calculate VIFk= 1 (1 − 𝑅𝑘
2)⁄   for each variable in 𝑉3  where 𝑅𝑘

2  is the coefficient of 178 

determination obtained from the regression of 𝑣𝑘 on the other variables in 𝑉3. Next, remove 179 

the variable with the highest VIF value from 𝑉3. Repeat this procedure iteratively until the 180 

highest value of VIF becomes under the threshold for VIF (VIFcut). The set of removed 181 

variables in this step is named 𝑊2 . Update the current set of dimension-reduced variables 182 

𝑉 with 𝑉4 = 𝑉3\𝑊2. 183 

Step 5. Selective addition of PCs representing the removed SNPs: In the last step, another 184 

PCA step is applied to the set of SNPs removed in Steps 1 and 4. In Step 4, if an LPC is selected 185 

to be removed due to high VIF, the SNPs in the cluster corresponding to the LPC are all 186 

considered to be removed. Take the minimum number of PCs with their proportion of 187 

cumulative explained variance greater than the threshold value PCcut as the candidate for 188 

added variables. Then, examine if the variability of these PCs can be captured by the current 189 

set 𝑉 = 𝑉4 by regression each of these PC on the variables in 𝑉 and obtain the 𝑅2. If the 𝑅2 190 

is less than 1 (1 − 𝑉𝐼𝐹𝑐𝑢𝑡)⁄  add the corresponding PC into the current set 𝑉. The set of PCs 191 

selected to be added in this step is denoted as 𝑅, and they are called RPCs. Update the current 192 

set 𝑉 with 𝑉5 = 𝑉4 ∪ 𝑅. 193 

Final set of dimension-reduced variables. In this way, the dimension of high-density SNP data 194 

is reduced iteratively, and the final variables after the dimension reduction process are the union 195 

of singleton SNPs and LPCs that are not removed by step 4 and RPCs added by step 5. The 196 

intersection of these three sets is empty, and each of the three sets can also be an empty set.  197 
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FIGURE 1 Illustration of DRLPC algorithm applied for “SLC35E4” region (chromosome 22) 198 

data from 1000 Genomes Project, EUR population data. Blurred variables at Step 1 and Step 4 199 

denote those removed in that step. 200 

3 | APPLICATIONS of DRLPC to SNP GENOTYPES 201 

3.1 |  Datasets 202 

To evaluate the performance of the DRLPC algorithm, we applied it in two datasets: 203 

➢ the 1000 Genomes Project (phase 3) chromosome 22 data (1000 Genomes Project 204 

Consortium.,(2015)) from three super-populations: European (EUR), East-Asian (EAS), 205 

and African (AFR), from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.  206 

➢ the HRC-imputed SNP genotype datasets of the Canadian Longitudinal Study on Aging 207 

(CLSA) (Raina et al., 2009). QC was applied as described in Forgetta et al., (2022) and 208 

summarized in supplemental methods. 209 

We limited analysis to the data of European ancestry since other groups do not have large 210 

enough sample sizes. The datasets were preprocessed similarly. First, SNPs with missing values 211 

and multi-allelic SNPs were removed. Also, SNPs with minor allele frequency (MAF) less than 212 

0.05 were excluded. In the CLSA, we required an INFO score ≥ 0.8 to select well-imputed 213 

SNPs. Table 1 reports the number of individuals in each population and the total number of 214 

remaining SNPs post-filtering for each of the 1000 Genomes and CLSA populations.  215 

  216 
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TABLE 1 Sample size, number of SNPs on chromosome 22, number of SNP sets of the 100 217 

SNPs, number of SNPs in genes, and number of genes for each population dataset studied 218 

 Sample 

size 

Number 

of SNPs 

Number of    

SNPsets 

Number 

of SNPs 

Number of 

Genes 

Population  (total) (100 SNPs per set) (total in genes)  
†
EUR (1KG) 503 85,718 857 50,705 698 

‡EAS (1KG) 504 78,461 784 46,476 693 
§AFR(1KG) 661 118,466 1,184 70,471 734 

European 

(CLSA) 
17,779 71,695 717 71,695 611 

†
EUR: European population; ‡EAS; East Asian population; §AFR: African population  219 

3.2 |  Methods 220 

To examine the population-specific dimension reduction results, we created two types of SNP 221 

sets from each population dataset: 1) a set of 100 consecutive SNPs and 2) a set of SNPs in 222 

gene regions. For the 100 SNP sets, we partitioned all SNPs in chromosome 22 into sets of 100 223 

consecutive SNPs. For gene-based datasets, we considered only the SNPs within gene regions, 224 

based on the gene information obtained from the Ensemble BioMart database for NCBI hg19 225 

Build 37 (GRCh37.p13) (http://grch37.ensembl.org/biomart). Table 1 reports the number of 226 

SNPsets of 100 SNPs, the total number of SNPs in genes, and the number of genes with more 227 

than one SNP for each population. Table 2 also reports summary statistics of the number of 228 

SNPs in a gene for each population.  229 

TABLE 2 Summary statistics of numbers of SNPs per gene on chromosome 22 for each 230 

population  231 

 Number  Summary of the number of SNPs in a gene 

Population of genes Average SD Median  Min Max 

EUR 698 72.6 156.7 26 2 1875 

EAS 693 67.1 142.1 24 2 1846 

AFR 734 96.0 209.5 36 2 2764 

European (CLSA) 611 71.8 151.0 27 2 1759 

To assess the performance of the proposed method, we applied DRLPC to each SNP set with 232 

several combinations of threshold values required for the algorithm. For CLQcut, which is the 233 

threshold value for the clique-based clustering algorithm CLQD (Yoo et al., 2015) used to find 234 

SNP clusters, we designated four values: 0.5, 0.8, 0.9, and 0.9. For VIFcut, which is the 235 

threshold value for variable removal based on the variance inflation factor (VIF) to reduce 236 

multi-collinearity, we assigned a fixed value of 20. For PCcut, which is the threshold value for 237 

selecting additional PCs representing the removed SNPs at the final step of the algorithm, we 238 

chose 0.8 and 0.9. Eight different combinations of threshold values were applied to obtain 239 

dimension reduction results by DRLPC.  240 
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3.3 |  Results 241 

3.3.1 | Dimension reduction results of 1000 Genomes Project dataset 242 

When the DRLPC algorithm is applied to the SNP sets in gene regions of chromosome 22, the 243 

number of variables in genotype data was reduced to 8~16% in EUR and EAS and 18~31% in 244 

AFR, depending on the threshold values used (Figure 2, and Supplementary Table S1). When 245 

the DRLPC algorithm is applied to each of the 100 consecutive SNP sets, the dimension of 246 

genotype data was reduced to 13-25% in EUR and EAS and 22-41% in AFR, depending on the 247 

threshold values used (Figure S1, and Supplementary Table S2). The dimension reduction in 248 

AFR by DRLPC was less than in EUR and EAS, which can be explained by weaker LD in the 249 

AFR population, fewer sites being in LD, and divergent patterns of LD between AFR and non-250 

AFR (Tishkoff et al., 2002). In both types of SNP sets, it was observed that lower CLQ 251 

threshold values led to greater dimension reduction. The percentages of the final number of 252 

variables after the DRLPC process compared to the number of SNPs in the original dataset 253 

were very slightly lower with PCcut value of 0.8, compared to a PCcut value of 0.9.  254 

 

FIGURE 2 The percentage distribution of final variables after the DRLPC process compared 255 

to the number of SNPs in the original gene-based datasets of 1000 Genomes Project, 256 

chromosome 22, with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95), two threshold 257 

values (0.8, 0.9) for PCcut, and for three super-populations (EUR, EAS, AFR). 258 

Figure 3 presents the relationship between gene size and the reduction rate across all 1000 259 

Genomes super-populations and CLSA data European ancestry (considering a PCcut value of 260 

0.8, a comparable plot for a PCcut value of 0.9 is provided in Supplementary Figure S2). The 261 

reduction rate is defined as one minus the proportion of final variables after the DRLPC process 262 
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relative to the number of variables in the original data. An upward trend is observed, indicating 263 

that the reduction rate also tends to increase the number of SNPs in a gene increase. Similar 264 

trends are observed across all super-populations and different choices of threshold values. We 265 

also compared the reduction rates resulting from the DRLPC process for each super-population 266 

after dividing genes into two groups considering the number of SNPs: 1) genes with below-267 

average numbers of SNPs and 2) genes with above-average numbers of SNPs. The average 268 

number of SNPs per gene for EUR, EAS, and AFR populations was 72.6, 67.1, and 96.0, 269 

respectively. As presented in Table 3, the differences in average reduction rates are about 28~35% 270 

between the genes with a larger number of SNPs (above average group) and those below the 271 

average group. On average, the dimension reduction rates for genes with more SNPs were 272 

around 83% for EUR and EAS populations and 75% for the AFR population. In comparison, 273 

the corresponding rates for genes with fewer SNPs were around 53% for both the EUR and 274 

EAS populations and 42% for the AFR population. These results align with African populations 275 

exhibiting reduced levels of linkage disequilibrium (LD) compared to non-African populations 276 

(Campbell et al., 2008). 277 
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FIGURE 3  The reduction rates after the DRLPC process plotted with the number of SNPs 278 

in the original dataset (gene size) for gene-based datasets of 1000 Genomes Project and CLSA 279 

data, chromosome 22, with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95), a threshold 280 

value 0.8 for PCcut, and for three super-populations (EUR, EAS, AFR) and European ancestry.281 
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TABLE 3  Average reduction rate after (percentage) in the number of variables after the 282 

DRLPC process compared to the original number of SNPs in the gene regions of chromosome 283 

22 for EUR, EAS, and AFR populations. 284 

  Average reduction 

rate (%), EUR 

 Average reduction 

rate (%), EAS 

 Average reduction 

rate (%), AFR 
†
CLQcut ‡PCcut 

§Below 

average 

(522 

genes)  

¶Above 

average 

(176 

genes) 

 Below 

average 

(526 

genes) 

Above 

average 

(167 

genes) 

 Below 

average 

(553 

genes) 

Above 

average 

(181 

genes) 

  0.8 61.2 89.3  62.8 89.9  53.3 83.2 

0.5  0.9 60.9 88.9  62.4 89.5  52.9 82.3 

  0.8 53.8 84.4  52.2 82.5  42.2 74.7 

0.8  0.9 53.6 84.2  55.9 85.0  42.0 74.2 

  0.8 49.9 81.8  48.5 80.1  37.8 71.5 

0.9  0.9 49.8 81.7  52.1 82.3  37.6 71.0 

  0.8 47.2 80.0  48.5 80.1  34.6 70.0 

0.95  0.9 47.1 79.8  48.4 79.9  34.4 69.4 
†
CLQcut: the threshold values for clique-based clustering algorithm CLQD (Yoo et al., 2015) to find SNP clusters; 285 

‡PCcut: the threshold value for selecting additional PCs representing the removed SNPs at the final step of the 286 

algorithm; §Below: Below the average number of SNPs (The average number of SNPs is 72.6, 67.1, and 96.0 for 287 

EUR, EAS, and AF, respectively); ¶Above: Above the average number of SNPs (The average number of SNPs is 288 

72.6, 67.1, and 96.0 for EUR, EAS, and AF, respectively). 289 

In addition to dimension reduction, as previously noted, DRLPC aims to resolve multi-290 

collinearity. To demonstrate the effectiveness of DRLPC, we compared the highest VIF values 291 

for the remaining variables at each step of DRLPC in gene regions. Table 4 illustrates the 292 

average and standard deviation of the highest VIF values of each step of DRLPC over gene 293 

regions of three super-populations. According to the DRLPC algorithm, at the first step, aliased 294 

variables (variables with complete dependency) were removed from the data; as shown in Table 295 

3, the average of VIF values remained significantly high, which is a warning sign of extreme 296 

multi-collinearity. It is essential to highlight that the number of variables in steps 2 and 3 297 

remains consistent; however, in step 3, bins(groups) are replaced by the first principal 298 

component. DRLPC can effectively address the multi-collinearity by replacing highly 299 

correlated SNPs with local PCs at step 3. As shown in Table 4, applying LPCA in step 3 300 

partially resolves multi-collinearity. The average highest VIF values for CLQcut of 0.5 are 301 

reduced to the values below the VIF threshold (VIFcut=20) for all three super-populations. The 302 

VIF reduction3 of the highest VIF values from steps 1 to 3(2), ranging from 89.0% to 99.89%, 303 

suggests that incorporating the LPC has effectively mitigated issues related to multi-304 

collinearity in the dataset. At step 4, the average of the highest VIF values is reduced to the 305 

value below the VIF threshold for all three super-populations for all CLQcut and PCcut values, 306 

underscoring DRLPC's capability to resolve multi-collinearity effectively. As indicated in 307 

Table 4, the average of the highest VIF at step 5 with a PCcut value of 0.8 falls below the VIF 308 

threshold value for EUR and AFR. However, with a PCcut of 0.9, the average of the highest 309 

VIF increases and surpasses the threshold, particularly with CLQcut value of 0.5 for EUR and 310 

EAS. It may be ascribed to the higher average number of new variables (RPCs) using a larger 311 
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PCcut value (Supplementary Table S6). For AFR, the average of the highest VIF values remains 312 

the VIF threshold when considering all CLQcut and PCcut values; however, similar to EUR 313 

and EAS, an increase in PCcut value corresponds to a rise in the average of the highest VIF. 314 

Elevating the average of the highest VIF by increasing the CLQcut values, can be attributed to 315 

the clique-based clustering algorithm's tendency to form clusters with fewer SNPs, therefore 316 

less dimension reduction, using a larger CLQ threshold (Yoo et al., 2015). No significant 317 

difference was observed when using different PCcut values across populations for a specific 318 

CLQcut value except for step 5. The findings underscore the effectiveness of DRLPC in 319 

successfully mitigating multi-collinearity before conducting regression analysis (refer to 320 

Supplementary Excel file, Table S24 to S47 for details). 321 
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TABLE 4 The average and standard deviation of the highest VIF values after each DRLPC step obtained over gene regions in chromosome 22 322 

using 1000 Genomes Project data of three super-populations. The VIF (average, SD) of aliased variables at step 1 for EUR, EAS, and AFR are 323 

(10572.5, 175545.0), (16114.1, 371104.1), (11300.5, 93899.4), respectively, and are same for using all CLQcut and PCcut value combinations. 324 

          Steps 2 & 3  Step 4          Step5 

 CLQcut PCcut  Average         SD  Average          SD  Average         SD 

EUR 0.5 0.8  11.3 21.1  5.6 5.6  8.6 13.2 

  0.9  11.3 21.1  5.6 5.6  25.3 374.6 

 0.8 0.8  60.0 117.8  8.7 6.6  9.4 8.0 

  0.9  60.0 117.8  8.7 6.6  20.3 258.5 

 0.9 0.8  214.2 2850.0  9.6 6.6  10.4 16.6 

  0.9  214.2 2850.0  9.6 6.6  11.1 17.5 

 0.95 0.8  1158.4 26297.8  10.9 6.7  11.8 23.2 

  0.9  1158.4 26297.8  10.9 6.7  13.1 24.9 

EAS 0.5 0.8  9.5 17.5  4.6 5.1  21.3 322.2 

  0.9  9.5 17.5  4.6 5.1  24.7 323.0 

 0.8 0.8  53.0 88.0  8.5 17.1  9.1 17.4 

  0.9  53.0 88.0  8.5 17.1  10.4 18.6 

 0.9 0.8  89.2 126.9  9.2 6.6  9.8 12.7 

  0.9  89.2 126.9  9.2 6.6  10.6 13.7 

 0.95 0.8  133.4 249.4  11.5 22.9  11.8 23.2 

  0.9  133.4 249.4  11.5 22.9  12.7 24.0 

AFR 0.5 0.8  18.9 40.3  8.3 15.8  12.7 27.5 

  0.9  18.9 41.1  8.3 19.9  17.1 39.4 

 0.8 0.8  112.0 539.5  12.4 22.1  14.5 31.0 

  0.9  112.1 539.9  12.4 22.1  16.9 32.0 

 0.9 0.8  200.1 850.8  14.2 23.7  16.3 36.6 

  0.9  200.1 850.8  14.2 23.7  17.8 37.9 

 0.95 0.8  354.6 1827.7  14.4 29.4  16.2 32.2 

  0.9  354.6 1827.7  14.4 29.4  18.0 34.4 
 325 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.13.593724doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.13.593724
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

3.2.2 | Dimension reduction results of CLSA dataset 326 

Application of the DRLPC algorithm to SNP sets in gene regions, reduced the average 327 

dimension of genotype data to 7~14%, depending on the threshold values (Figure 4 and 328 

Supplementary Table S3). We also observed that lower CLQ threshold values yield more 329 

dimension reduction than higher CLQ cut points, and larger genes had greater reduction than 330 

smaller genes (Figure 4, Table 5, Supplementary Table S4). The European ancestry results 331 

obtained from the CLSA data align consistently with the findings from the 1000 Genomes 332 

Project EUR population, revealing a comparable pattern. When the DRLPC algorithm is 333 

applied to each of the 100 consecutive SNP sets, the dimension of genotype data was reduced 334 

to 11~21% depending on the threshold values used (Supplementary Table S4). With lower 335 

CLQcut threshold values, the dimension of 100 SNP sets was more reduced than with the 336 

higher CLQcut values. With the lower PCcut value (0.8), the percentages of final variables 337 

after the DRLPC process were applied were slightly lower than those with a PCcut of 0.9. 338 

Similar to previous results for 1000 Genomes Project data, a noticeable ascending pattern 339 

suggests a corresponding elevation in the reduction rate by increasing gene size (Figure S2). 340 

Additionally, the choice of different CLQcut values has a negligible effect on the identified 341 

pattern; moreover, regardless of CLQcut variations, the pattern remains steady. 342 

 343 
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FIGURE 4 The percentage distribution of final variables after the DRLPC process compared 344 

with the original data of gene regions, with four threshold values for CLQcut (0.5, 0.8, 0.9, 345 

0.95) and two threshold values (0.8, 0.9) for PCcut, 1000 Genomes project for EUR and CLSA 346 

data European ancestry. 347 
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Similar reduction rate patterns persist across various threshold values when examining both the 348 

1000 Genomes Project EUR population and the CLSA data of European ancestry (Figure 3). 349 

Following the approach used in the 1000 Genomes Project data, we also compared the 350 

reduction rates resulting from the DRLPC process after dividing genes into two groups based 351 

on the number of SNPs: genes with the number of SNPs below the average and those above 352 

the average. As shown in Table 5, the average number of SNPs per gene was 71.6, the 353 

differences in average reduction rates are about 23~28% between the bigger group (above the 354 

size average) and the smaller group (below the size average), as presented in Table 5. On 355 

average, the dimension reduction rates for genes with more SNPs were around 86%. The 356 

corresponding rates for genes with fewer SNPs were around 60%. Based on the results 357 

presented in Tables 2 and 5, it becomes evident that the EUR population in the 1000 Genomes 358 

Project and the European ancestry within the CLSA dataset exhibit a striking similarity in the 359 

observed reduction rates. Notably, this similarity holds across varying CLQcut and PCcut 360 

thresholds, with the highest reduction rates consistently occurring when both groups (below 361 

and above the size average) employ CLQcut 0.5 and PCcut 0.8. The values obtained for these 362 

thresholds are not only in the same range but also reflect the maximum reduction rates among 363 

the thresholds considered. The reduction rate for the smaller size group (below the size average) 364 

is 47.1~61.2% and 53.2~67.3% for EUR 1000 Genomes Project and European CLSA data, 365 

respectively. On the other hand, the reduction rate for the bigger group (above the size average) 366 

is 79.8~89.3% and 82.1~90.6% for EUR 1000 Genomes Project and European CLSA data, 367 

respectively. This close alignment of results underscores a similarity in the reduction rate trends 368 

observed across these two datasets. 369 

TABLE 5 Average reduction rate (percentage) by DRLPC compared to the original number of 370 

SNPs in the gene regions (average number of SNPs per gene is 71.6) of European ancestry for 371 

CLSA population, chromosome 22.  372 

  Average reduction rate (%), European, CLSA 

CLQcut 
PCcut 

†
Below average 

(454 genes) 

 ‡Above average 

(157 genes) 

0.5 0.8 67.3  90.6 

 0.9 67.2  90.3 

0.8 0.8 59.7  86.4 

 0.9 59.6  86.2 

0.9 0.8 56.0  83.9 

 0.9 55.9  83.7 

0.95 0.8 53.4  82.3 

 0.9 53.2  82.1 
†
Below: Below the average number of SNPs (The average number of SNPs is 71.6); ‡Above: Above the average 373 

number of SNPs (The average number of SNPs is 71.6). 374 

In evaluating the efficacy of DRLPC to address multi-collinearity within the CLSA data, 375 

similar to our approach with the 1000 Genomes Project, we focused on the average of highest 376 

VIF values on gene regions of chromosome 22 (refer to Supplementary Table S5 and 377 

Supplementary Excel file Table S48 to S55). Our findings consistently correspond to those 378 
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obtained from the 1000 Genomes Project, specifically within the EUR population and CLSA 379 

dataset. The VIF reduction from steps 1 to 3 (step 2) is around 99%, highlighting the 380 

effectiveness of the local Principal Component in revolving multi-collinearity in the dataset. 381 

Upon implementing LPCA at step 3, The average highest VIF values for CLQcut of 0.5 are 382 

reduced to the values below the VIF threshold (VIFcut=20). However, in harmony with the 383 

1000 Genomes Project data observations, the average of the highest VIF values at step 4 384 

consistently are reduced to the values below the VIF threshold across all CLQcut and PCcut 385 

values. In Step 5, the average of the highest VIF values remains below the threshold for both 386 

CLQcut values. The difference observed between the CLSA data and the 1000 Genomes 387 

Project data in Step 5 may be attributed to the lower average of adding new variables for the 388 

CLSA data in this step. However, considering the results in steps 3 and 4, the VIF findings 389 

substantiate the effectiveness of DRLPC in successfully mitigating multi-collinearity for both 390 

datasets, emphasizing the significance of this approach before conducting regression analyses, 391 

as detailed in earlier discussions. It should be mentioned that the average number of aliased 392 

variables in the CLSA data is notably lower compared to the results observed for the EUR 393 

population in the 1000 Genomes Project (Table S6 and S7). Several factors contribute to this 394 

disparity. The CLSA dataset encompasses imputed genetic data for European ancestry. Imputed 395 

genotype data undergoes rigorous quality control procedures to ensure high imputation 396 

accuracy. By selecting the high-quality imputed variants, poorly imputed variants that would 397 

have otherwise been aliased in the genotype data are effectively excluded from the analysis. 398 

Furthermore, it is essential to note that our study exclusively considered well-imputed SNPs. 399 

Another influential factor to consider is the discrepancy in the number of individuals between 400 

the two datasets. The 1000 Genomes Project dataset is limited to 503 individuals within the 401 

EUR population, while the CLSA dataset boasts a much larger cohort of 17,779 individuals. 402 

The dimension reduction was higher for larger size genes across all three super-populations in 403 

this study, although there is a complex relationship between gene size and recombination rate 404 

since there are several factors that influence recombination rates, it could be attributed to the 405 

construction of robust LD blocks of highly correlated SNPs by the clique-based algorithm (Yoo 406 

et al., 2015). The structure of LD is influenced by various factors, including recombination, 407 

mutation, selection and population history, and genetic drift (Pritchard et al., 2001; McVean et 408 

al., 2004). Halldorsson et al., (2019) found that recombination rates are lower in genic regions 409 

(defined by the beginning of the first exon of a gene to the end of the last) than in noncoding 410 

regions. These results strongly contradict with earlier reports (Eyre-Walker, 1993; Kong et al., 411 

2002) of a positive correlation between gene density and recombination rate. The apparent 412 

contradiction may be explained if recombination hotspots are more likely to occur near genes 413 

than within them. The relationship between recombination rate and LD is generally inverse; 414 

lower recombination rates are associated with higher LD.  415 

4 | SIMULATION STUDY 416 

4.1 | Methods  417 

To investigate the impact of DRLPC on statistical performance in regression-based multi-SNP 418 
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statistics, we designed simulation studies based on observed human genotypes from the 1000 419 

Genomes Project (phase 3 chromosome 22 for three super-populations (EUR, EAS, and AFR), 420 

as in section 3). Quantitative traits were generated in three series of simulations of gene-level 421 

association in 100 genes. One series assumed a global null effect model (Model 1) to evaluate 422 

type I error, and two series assumed alternative trait models with one or two causal SNPs per 423 

gene (Models 2 and 3) to evaluate power gene-based tests, with and without DRLPC processing. 424 

4.1.1 | Genotype data 425 

To identify genes for multi-SNP association test evaluation, we first excluded rare and low 426 

frequency SNPs (MAF< 0.05), pruned SNPs in complete LD, and removed multi-allelic SNPs. 427 

This produced 775, 759, and 803 genes for EUR, EAS, and AFR, respectively, each with at 428 

least one SNP ( https://www.ensembl.org/). From these, we selected genes with number of 429 

SNPs per gene ranging from m=11 to 500, resulting in 462, 454, and 498 genes for EUR, EAS, 430 

and AFR, respectively. Finally, we randomly selected 100 genes in common from 742 genes 431 

across all three super-populations, to compare the performance of gene-based tests under 432 

realistic gene structure by simulation studies (Supplementary Excel file Tables S21 to S23). 433 

Considering EUR, EAS, and AFR separately, including 503. 504, and 661 individuals 434 

respectively, the CLQD algorithm was applied with CLQcut = 0.5 threshold value to assign all 435 

m SNPs in a gene into mutually-exclusive clusters of varying size and number, according to 436 

the within-gene LD structure. 437 

4.1.2 | Simulation model 438 

To better understand the data and model characteristics that influence the performance of 439 

DRLPC method, we conducted a simulation study based on observed human genotypes. 440 

Quantitative trait Y values were generated for each gene under null and alternative hypotheses 441 

using genotype data from the 1000 Genomes Project phase 3 for three super-populations 442 

assuming an additive genetic model with t causal SNPs, as described below: 443 

𝑌 = ∑ 𝑎𝑖𝑋𝑖 + 𝜀

𝑡

𝑖=1

 444 

where t is the number of causal SNPs per gene, 𝑎𝑖  is the effect of the ith causal SNP, 𝑋𝑖  is the 445 

number of minor alleles at the ith SNP, and 𝜀 is the error term considered to follow a normal 446 

distribution with mean 0 and variance 𝜎2 . We considered three different quantitative trait 447 

models for each gene, including 0, 1, or 2 causal SNPs per gene (Table 6). Under the null 448 

hypothesis of no gene effect (Model 1), all 𝑎𝑖  were specified to be null in the trait generation 449 

model. Under the alternative hypothesis (Models 2 and 3), non-null SNP effects were specified 450 

as: a) 1causal model with one causal SNP per gene has effect 𝑎1 = 1 (t=1), or b) 2causal 451 

model with two causal SNPs per gene has effects 𝑎1 = 1 and 𝑎2 = 1 (t=2). Under Model 2, 452 

one SNP in a gene was randomly selected to be causal. Under Model 3, a second SNP was also 453 

selected to be causal. If there was only one cluster in a gene, the second SNP was randomly 454 

chosen from the same cluster, and if there was more than one cluster in a gene, the second SNP 455 

was randomly selected from a different cluster. 456 
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TABLE 6 Quantitative trait models used to generate phenotypes for type I error and power 457 

comparisons of multi-SNP tests. 458 

Model Explanation        †Trait model parameters 

  1 No SNP association               All zero 

  2 One causal SNP within a gene (1causal) 𝑎1 = 1 

  3 Two causal SNPs, both deleterious 

(2causal) 
𝑎1 = 1, 𝑎2 = 1 

†
The trait model is 𝑌 = ∑ 𝑎𝑖 𝑋𝑖

𝑡
𝑖=1 + 𝜀 where 𝜀 = 𝑁(0, 𝜎2), t is the number of causal SNPs, ai is the effect of 459 

the ith causal SNP, and Xi is the number of risk alleles for the ith causal SNPs. The variance 𝜎2 is selected to 460 
maintain the power of the Wald test at 60% for each set of causal SNPs for 1causal and 2causal models. 461 

To estimate empirical type I error, we generated 1000 replicated datasets for each gene under 462 

Model 1, and applied the analysis methods described in section 4.1.3 in each replicate, 463 

including all the SNPs and their cluster information in the regression analyses. The proportion 464 

of replicates in which the null hypothesis was rejected was then averaged over all genes, and 465 

then over subsets of genes stratified according to the original number of SNPs in the gene, and 466 

for each gene, all SNPs were included in the regression analysis. For power estimation under 467 

the alternative, we generated 1000 replicated datasets under Models 2 and 3, and similarly 468 

tabulated and averaged the per gene rejection rates in analyses that considered all SNPs. 469 

Assuming CLQcut 0.5 and PCcut 0.8, two causal SNPs were selected from different LPCs if 470 

possible. In this study, the error variance 𝜎2 was adjusted separately for each gene and trait 471 

model to achieve a 60% power in the Wald test. The error variance was estimated using the 472 

original genotype variables in a set of 1,000 replicates under the alternative model, and 473 

regressions that include all causal and non-causal SNPs.  474 

4.1.3 | Multi-marker test statistics 475 

Whenever a gene includes several SNPs, multi-SNP analysis can be applied by multiple 476 

regression with multi-parameter hypotheses or by incorporating single-SNP marginal 477 

regression analysis results. Both approaches demand coded genotype data. In order to evaluate 478 

the impact of DRLPC on regression-based multi-SNP statistics, we selected several multi-479 

marker statistics based on joint or marginal regression to compare the power using original data 480 

and dimension-reduced data by DRLPC. Among joint regression tests, Wald (Wald, 1943), 481 

Multiple linear combination (MLC) (Yoo et al., 2017), and PC80 tests (Gauderman et al., 2007) 482 

are evaluated in this study. Furthermore, the sequence kernel association (SKAT) and SKAT-O 483 

tests (Ionita-Laza et al., 2013; Lee et al., 2012), are included as well-known gene-based tests 484 

of SNP sets for gene-based association analysis. The MLC test is derived from the joint 485 

regression Wald statistics by applying a set of linear contrasts to the multi-SNP regression 486 

parameters that reduce the dimension (df) of the test statistic. The contrasts reflect the cluster 487 

membership determined using the CLQ algorithm prior to regression estimation (Yoo et al., 488 

2015, Yoo et al., 2017). CLQ optimizes within-cluster correlation using pairwise correlation of 489 

additively coded SNPs, with SNP recoding as necessary for positive within-cluster correlation. 490 

The weights in the multiple linear combinations are derived from the regression variance-491 

covariance matrix which depends on MAFs and LD among the SNPs in the gene. We 492 

considered two types of MLC tests: MLC-B (based on the beta coefficients) and MLC-Z 493 
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(comparable Z statistics test, 𝑍 = (𝑍1, 𝑍2 , … , 𝑍𝑚)𝑇 ), considering two CLQcut threshold values, 494 

0.5 and 0.8, respectively. The details of all tests are available in Supplementary Methods.  495 

4.2 | Results 496 

4.2.1 | Evaluation of type I error rate 497 

We report the type I error estimates of each statistic using 10,000 replications considering two 498 

nominal critical values for 𝛼 = 0.05 and 0.01 and averaging across 100 genes (Table 7, 499 

Supplementary Table sS8 and S9, Figures S3 and S4). For the simulation study, two CLQcut 500 

(0.5 and 0.8) and one PCcut (0.8) threshold values are selected to obtain type I error (and 501 

empirical power) for all gene-based tests using the DRLPC method. As shown in Table 7, the 502 

average empirical type I error for the Wald test was elevated in the original data and declined 503 

from 0.07 by 0.02 in the DRLPC processed data, and close to the nominal 0.05 level for all 504 

three super-populations under the 1causal model. The average standard deviation and average 505 

df for the Wald test also decreased considerably with application of DRLPC for both CLQcut 506 

points. On average, all other test statistics exhibited type I error control in original and DRLPC 507 

analysis. We also observed greater type I error inflation with larger genes for some tests, 508 

particularly for the Wald test (Supplementary Tables S10 to S12 and Figures S5 to S7). 509 

However, applying the DRLPC decreased the inflation, resulting in values close to the nominal 510 

0.05 level for three super-populations under the 1causal model. The average and SD of MLC-511 

B tests vary little across the CLQ threshold values, suggesting that clustering and dimension 512 

reduction do not affect standard error estimates. Comparing the obtained empirical type I error 513 

values between populations demonstrates a high similarity between the results. It can be 514 

inferred that the implementation of DRLPC has reduced the type I error values for all three 515 

super-populations. 516 
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TABLE 7 Empirical type I error of gene-based statistics (N=10,000 replicates) at the nominal level α= 0.05, averaged over 100 genes, using 517 

original data and two DRLPC processed data for three super-populations. 518 

†
Used data: Original data; ‡CLQcut 0.5: DRLPC processed data using CLQ threshold value 0.5; §CLQcut 0.8: DRLPC processed data using CLQ threshold value 0.8. ¶List 519 
of test statistics: Wald: generalized Wald test (Wald, 1943); PC80: global test on regression using the minimum number of principal components capturing 80% of variance 520 
(Gauderman et al, 2007); MLC test: Multi Linear combination test (Yoo et al, 2017); MLC-B5: MLC tests using beta coefficient by considering CLQcut equal to 0.5, MLC-521 
B8: MLC tests using beta coefficient by considering CLQcut equal to 0.8; SKAT: sequence kernel associated tests for the common variants (Ionita-Laza et al, 2013); SKAT-522 
O: a linear combination of SKAT and burden test with optimized mixing proportion (Lee et al, 2012).523 

  †
Original data   ‡CLQcut 0.5   §CLQcut 0.8 

Population ¶Statistics Average SD 
Average 

df 
 Average SD 

Average 

df 
 Average SD 

Average 

df 

EUR Wald 0.071 0.010 35.7  0.052 0.003 9.0  0.053 0.003 12.6 

 PC80 0.051 0.002 4.2  0.051 0.002 4.8  0.052 0.002 5.3 

 MLC-B5 0.053 0.003 8.9  0.052 0.003 7.3  0.052 0.003 8.1 

 MLC-B8 0.055 0.004 14.5  0.052 0.003 8.7  0.053 0.003 11.9 

 SKAT 0.049 0.003 -  0.049 0.003 -  0.050 0.002 - 

 SKAT-O 0.052 0.003 -  0.052 0.003 -  0.052 0.003 - 

EAS Wald 0.069 0.012 33.3  0.053 0.002 7.9  0.053 0.003 11.2 

 PC80 0.051 0.002 3.7  0.052 0.002 4.6  0.052 0.002 4.9 

 MLC-B5 0.053 0.003 7.9  0.052 0.003 6.4  0.052 0.003 7.1 

 MLC-B8 0.055 0.004 7.9  0.053 0.003 7.6  0.053 0.003 10.3 

 SKAT 0.049 0.002 -  0.049 0.002 -  0.050 0.003 - 

 SKAT-O 0.052 0.003 -  0.052 0.003 -  0.052 0.003 - 

AFR Wald 0.076 0.015 67.8  0.054  0.003 18.1  0.055 0.004 26.4 

 PC80 0.052 0.002 7.4  0.052 0.002 7.9  0.052 0.002 8.8 

 MLC-B5 0.054 0.003 18.6  0.053 0.003 14.0  0.053 0.003 16.2 

 MLC-B8 0.057 0.005 31.5  0.054 0.003 17.8  0.055 0.004 25.4 

 PC80 0.052 0.002 7.4  0.052 0.002 7.9  0.052 0.002 8.8 

 SKAT 0.050 0.002 -  0.050 0.002 -  0.050 0.002 - 

 SKAT-O 0.052 0.003 -  0.052 0.003 -  0.052 0.003 - 
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4.2.2 | Comparison of empirical power values for original data versus DRLPC processed data 524 

To evaluate the efficiency of the DRLPC method, empirical power values of each of the multi-525 

SNP statistics were estimated using 1000 replications for each of 100 genes using the original 526 

data and two DRLPC processed data for two trait models (Table 8, Supplementary Table S13, 527 

Supplementary Figures S8 to S10). We computed power as the proportion of replicates with p-528 

values below the threshold corresponding to a nominal critical value for 𝛼 = 0.05 and obtained 529 

average and standard deviation of empirical power across all gens under two trait models in 530 

three super-populations (Supplementary Table S14 provides similar results for 2causal model, 531 

Supplementary Tables S56 to S61 provide results for each gene for three super-populations). 532 

As shown in Table 8, it is noteworthy that Wald test average power remarkably improves by 533 

20% using DRLPC processed data compared to using original data for all three super-534 

populations. As expected, CLQcut 0.5 produces larger clusters and smaller df than CLQcut 0.8. 535 

The PC80 achieves similar power using the original data compared to DRLPC for both CLQcut 536 

values in all three super-populations. The PC80 DRLPC processed data and original data results 537 

are remarkably similar on average. Nevertheless, it is worth mentioning that not all (global) 538 

principal components are readily interpretable in a biological context, and choosing a subset of 539 

principal components might lead to the exclusion of meaningful information; hence, the results 540 

obtained with the DRLLPC may offer a more dependable basis for interpretation. 541 

MLC-B performs dimension reduction by constructing a weighted linear combination for each 542 

cluster using the original multiple regression coefficients, while DRLPC reduces dimension by 543 

constructing a new variable which is a weighted linear combination of the genotypes within 544 

each cluster and then performs, multiple regression with the new variables, but the weights 545 

differ. Nevertheless, the average power of MLC-B obtained using the original data is similar 546 

to the power of Wald using DRLPC processed data for corresponding CLQcut values. The 547 

DRLPC process slightly enhanced the power of MLC-B compared to using the original data in 548 

every population when the CLQ threshold was 0.8.  549 

For the 1 causal model, SKAT usually has higher average power than SKAT-O, especially using 550 

CLQ cut-point 0.5 across three super-populations. While analyzing the 2causal model 551 

(Supplementary Table S14), we observed that SKAT and SKAT-O had usually higher power 552 

using the original data for all three populations. Since the effects of both causal variants for the 553 

2causal model are in the same direction, SKAT usually has a higher average power than SKAT-554 

O for all populations.  555 

The average power of each test by applying DRLPC was higher than 70% for three populations 556 

under both trait models. Based on the result in Table 8, we can infer that the power of DRLPC 557 

processed data tends to increase when the degrees of freedom (df) of each test decrease, 558 

implying that DRLPC can enhance power by reducing the dimension of the data. The average 559 

power obtained by DRLPC is higher considering CLQcut 0.5 than CLQcut 0.8. under each trait 560 

model for all tests (Table 8 and Supplementary Tables S13 and S14). 561 

 562 
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TABLE 8 Empirical power (percentage) of gene-based statistics (N=1,000 replicates) at the 0.05 level for three populations, 1causal model, 563 

averaged over 100 genes. 564 

  Original data  CLQcut 0.5  CLQcut 0.8 

Population Statistics Average SD 
Average 

df 
 Average SD 

Average 

df 
 Average SD 

Average 

df 

EUR Wald 60.3 4.6  35.7  81.3 9.5 9.0  78.7 8.2 12.6 

 PC80 82.1 18.4 4.2  81.4 12.7 4.8  81.9 11.3 5.3 

 MLC-B5 81.3 8.6 8.9  82.2 11.2 7.3  82.7 9.5 8.1 

 MLC-B8 77.0 7.8 14.5  81.8 9.5 8.7  79.4 8.6 11.9 

 SKAT 76.8 20.5 -  80.5 18.0 -  76.1 25.0 - 

 SKAT-O 74.6 22.0 -  77.6 19.5 -  74.0 25.0 - 

EAS Wald 60.5 4.0 33.3  82.3 8.9 7.9  79.6 7.6 11.2 

 PC80 84.5 14.0 3.7  81.5 13.4 4.6  82.9 12.2 4.9 

 MLC-B5 81.3 11.5 7.9  81.1 14.8 6.4  81.0 13.3 7.1 

 MLC-B8 78.2 7.7 7.9  82.8 8.6 7.6  80.4 7.9 10.3 

 SKAT 79.5 18.5 -  80.0 18.2 -  74.6 22.2 - 

 SKAT-O 76.6 20.6 -  78.1 18.8 -  73.0 22.8 - 

AFR Wald 60.5 3.9 67.8  82.8 8.7 18.1  79.3 8.0 26.4 

 PC80 85.8 11.9 7.4  82.7 12.7 7.9  85.5 9.3 8.8 

 MLC-B5 82.8 8.2 18.6  83.6 9.4 14.0  83.3 10.2 16.2 

 MLC-B8 77.0 7.0 31.5  82.9 8.7 17.8  80.0 8.2 25.4 

 SKAT 79.6 17.2 -  81.5 16.2 -  72.5 27.5 - 

 SKAT-O 74.7 19.3 -  77.8 17.8 -  69.7 27.9 - 

 565 
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For each population, we also compared the median and interquartile range (IQR) of empirical 566 

power for 100 genes, stratified into three groups based on the number of SNPs: genes with less 567 

than 100 SNPs, 101~200 SNPs, and more than 200 SNPs (Figure S11 reports distributions of 568 

the number of SNPs per gene). As shown in Figure 5 (Supplementary Tables S15 and S16), 569 

DRLPC exhibited a strong enhancement in the power of the Wald test for larger genes, resulting 570 

in an approximately 30% increase in power with type I error control (Table 7). Based on the 571 

data application in section 3, in which the dimension reduction is greater in bigger-size genes, 572 

such results are expected. Furthermore, in contrast to the Wald test, the average power of the 573 

PC80 and MLC-B demonstrated a modest increase for larger gene sizes for CLQcut value 0.8. 574 

The results of the DRLPC processed data using the CLQcut value 0.5 of the third group for 575 

SKAT and SKAT-O have lower median the power than original data but with high variability 576 

due to the small number of genes in that group, which is 7. The average power for SKAT and 577 

SKAT-O tests using DRLPC processed data is higher than the original data using CLQcut 0.8 578 

for the bigger-size genes; while for genes with less than 200 SNPs (groups 1 and 2), the average 579 

power is higher for DRLPC processed data than original data using CLQcut 0.5. It is worth 580 

noting that our finding remained consistent for another trait model and other populations 581 

(Supplementary Tables S17 to S20 and Figures S12 to S17 for results in EAS and AFR 582 

populations and the 2causal model), further substantiating the robustness and utility of DRLPC 583 

in various genetic association scenarios. 584 
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FIGURE 5 Percentage of empirical power for gene-based statistics (N=1,000 replicate) at the 585 

0.05 level for EUR population, 1causal model, averaged across three groups of 100 genes based 586 

on the number of SNPs in the gene. 587 

4.3 | Runtime evaluations for DRLPC  588 

Figure 6 presents the run-time of DRLPC when applied to gene-based SNP-set genotype data 589 

from the three super-populations in 1000 Genomes Project and the CLSA, after sorting genes 590 

based on their size using four CLQcut thresholds of (0.5, 0.8, 0.9, 0.95), as well as PCcut 591 

threshold of 0.8 (Supplementary Figure for same CLQcut values and PCcut of 0.9). It is 592 

noteworthy that computational time for different CLQcut values shows little difference 593 

between thresholds. We summarized the average run-time of DRLPC for several genes with 594 

different sizes (refer to Supplementary Excel file, Table S62 to S65 for more information), 595 

which demonstrated that the average computational time for genes with less than 500 SNPs, is 596 

around 0.06 seconds while the average computational time for genes with more than 500 SNPs 597 

is 3.41 seconds. Furthermore, the maximum run-time for larger genes (genes with more than 598 
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1000 SNPs) is less than 100 seconds for all three super-populations of 1000 Genomes Project 599 

(sample size 503-661) and 1,000 seconds for CLSA European ancestry (sample size 17,965) 600 

(Figure S18), underscoring the effectiveness of DRLPC in reducing the computational time.  601 

 
FIGURE 6 Computational time for dimension reduction using the DRLPC for gene regions 602 

(chromosome 22), with four threshold values for CLQcut (0.5, 0.8, 0.9, 0.95) and a threshold 603 

values 0.8 for PCcut, 1000 Genomes Project, three super-populations (sample size are 503-601) 604 

and CLSA data European ancestry (sample size is 17,779). 605 

 606 

As previously discussed, our simulation study applied the DRLPC to the 1000 Genomes Project 607 

across three super-populations. Figure 7 illustrates the computational time for test statistics in 608 

a single replication using the original data and two sets of DRLPC processed data for 1causal 609 

model EUR population (Supplementary Figures S19 to S23 for 2causal model and other 610 

populations). The genes were sorted based on their size, and two CLQcut thresholds (0.5, 0.8) 611 

and a PCcut threshold of 0.8 were employed. Notably, the computational time using DRLPC 612 
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decreased as gene sizes increased, particularly for genes with more than 200 SNPs, since the 613 

multiple regression dimension (df) has already been reduced by the DRLPC reduction within 614 

the clusters. This trend is consistent across various tests and populations. Additionally, using a 615 

CLQcut value of 0.5 demonstrated better computational performance, requiring approximately 616 

10~30% less time for larger-sized genes, to the 0.8 threshold. The Intel(R) Core(TM) i5-4200U 617 

CPU with 1.60GHz and a memory of 8.00 Gb DDR3 RAM and 238Gb local hard disk was 618 

used for the calculation. 619 

 

FIGURE 7 The computational time for test statistics in a single replication of 1causal model 620 

on 100 selected genes, chromosome 22: 79 genes with less than 101 SNPs, 14 genes with 621 

101~200 SNPs, and seven genes with more than 200 SNPs, from 1000 Genomes Project, EUR. 622 

The X-axis represents the original gene size, sorted by the number of SNPs. The original data 623 

and the DRLPC processed data were examined at two threshold values for CLQcut (0.5, 0.8) 624 

and a threshold value of 0.8 for PCcut.  625 
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5 | DISCUSSION 626 

By jointly analyzing multiple variants within a gene, instead of one variant at a time, gene-627 

based multiple regression can improve power, robustness, and interpretation in genetic 628 

association analysis. Yoo et al., (2017) proposed multiple linear regression with multi-629 

dimension Wald and reduced dimension multiple linear combination (MLC) test statistics and 630 

demonstrated multi-SNP regression-based analysis can be a well-powered and robust choice 631 

among the existing methods across a range of complex genetic architectures. Using the same 632 

LD clique-based clustering implemented to define sets of related SNPs for MLC tests (Yoo et 633 

al., 2015) and incorporating dimension reduction through LPCA in each cluster, we have 634 

proposed the DRLPC algorithm to enhance statistical validity and power of multi-SNP tests 635 

among multiple correlated genetic variants. 636 

Dimension reduction is an approach to reduce the number of variables in a dataset while 637 

retaining as much variation in the original dataset as possible. Kambhatla et al. (1997) 638 

demonstrated that applying LPCA effectively reduces dimension in high-dimension data and 639 

relieves concerns related to multi-collinearity. Multi-collinearity occurs when there is a high 640 

level of linear dependency among regression variables. Methods proposed to resolve multi-641 

collinearity include ridge regression (Hoerl & Kennard, 1970), partial least squares (Wold et 642 

al, 1984), lasso method (Tibshirani, 1997), principal component analysis (Pearson 1901, 643 

Hotteling 1933). While acknowledging the potential of PCA and LPCA in addressing multi-644 

collinearity at least partially, it is important to note that these methods may not guarantee a 645 

complete solution due to their limited effectiveness in providing a comprehensive diagnosis of 646 

multi-collinearity. In this study, we introduced the DRLPC algorithm which reduces the 647 

dimension of dense sequencing data by selecting clusters with high within-cluster correlation 648 

and replacing each cluster with local principal components constructed locally among the SNP 649 

in the cluster before the regression analysis. Dimension reduction is a crucial strength of 650 

DRLPC, as it allows researchers to manage the difficulties of working with complex and highly 651 

interrelated genomic data. Incorporating the Local Principal Component (Kambhatla et al. 1997) 652 

in DRLPC facilitates the identification of the underlying genetic structure and improves the 653 

accuracy and stability of regression models. Moreover, DRLPC directly addresses the issue of 654 

multi-collinearity through a sequential two-step procedure. Initially, employing LPCA offers a 655 

degree of relief from multi-collinearity and enhances the power of regression-based multi-SNP 656 

genetic association analysis. This approach allows researchers to tackle two critical aspects 657 

simultaneously, resulting in a more efficient and comprehensive solution.  658 

To investigate the performance of DRLPC in dimension reduction, we applied it to genotypic 659 

data from the 1000 Genomes Project for three super-populations (EUR, EAS, and AFR) and 660 

the CLSA European ancestry subset. Considering results for nearly 200 SNP sets of varying 661 

number obtained in chromosome 22, DRLPC effectively reduced dimension in all datasets. The 662 

dimension reduction rate for larger genes was around 83% for EUR and EAS, and 74% for 663 

AFR 1000 Genomes samples, and 85% for European ancestry CLSA samples. We observed 664 

less dimension reduction in AFR compared to EUR and EAS due to weaker LD in AFR 665 

(Supplementary Figures S24).  666 
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For some genes, there was a strong dependency between some SNPs before applying DRLPC, 667 

and LPCA reduced the average of VIF for the remaining variables. However, in some instances, 668 

VIF values exceeding the predefined threshold remained after applying LPCA. Subsequently, 669 

removing variables with the highest VIF (step 4) ensures that the remaining variables maintain 670 

VIF values below the threshold. By systematically eliminating high VIF values via the DRLPC 671 

framework (step 4), the average VIF for all genes descended below the predetermined threshold. 672 

The outcomes indicate that applying DRLPC yielded consistent results across populations.  673 

To investigate the performance of DRLPC pre-processing in hypothesis testing for genetic 674 

association, we conducted simulations based on the 1000 Genomes populations to assess 675 

validity and power of several gene-level test statistics. Based on the simulation results, we 676 

conclude that the multi-SNP Wald regression test applied to the DRLPC processed data 677 

performs better than in the original data for genes with larger numbers of highly correlated 678 

SNPs. On average over 100 genes, all test statistics based on DRLPC effectively control type 679 

I errors near the nominal 0.05 level in all three super-populations. Moreover, DRLPC 680 

processing removed type I error inflation for the Wald test. This finding underscores the validity 681 

of the method. 682 

Furthermore, the empirical power across 1,000 replications obtained for each of 100 genes in 683 

three super-populations under two trait models, indicated that the genotypic dimension 684 

reduction and the impact of DRLPC was almost identical in the two trait models for all tests. 685 

In both trait models, the Wald test with DRLPC showed the most robust efficiency, with power 686 

improved by around 20%, particularly for larger size genes. Use of the same clique-based 687 

algorithm and the same CLQcut value to create SNPs clusters for Local PCs in DRLPC and 688 

linear combination of SNPs within clusters in MLC, produces similar empirical power for the 689 

DRLPC Wald test and original MLC test.  690 

The effect of DRLPC on PC80 was not remarkable since PC80 already achieves an acceptable 691 

power without DRLPC. Although constructing principal components from all SNP variables in 692 

a region is a common approach, interpreting them as biological entities may be challenging. It 693 

is possible that information may be lost by analyzing only a subset of principal components. 694 

On the other hand, clusters of the highly correlated SNPs produced by the clique-based 695 

algorithm and used by DRLPC and MLC retain their biological meaning.  696 

The SKAT test is based on marginal beta coefficients and does not consider SNP covariance 697 

directly in the test statistic. Moreover, SNP LD is not considered in the linear burden test 698 

component of SKAT-O. Based on the results obtained in this study, the power for SKAT is often 699 

greater than for SKAT-O. In general, the positive impact of the DRLPC on SKAT was greater 700 

than that on SKAT-O. For SKAT and SKAT-O larger genes processed by DRLPC have lower 701 

median power than the original data, with variability attributed to the limited number of genes 702 

in this group, totaling 7. Although substantial differences were not observed between the three 703 

super-populations for the SKAT test, the power of the SKAT test was higher using the DRLPC 704 

processed data under the 1causal model compared to the 2causal model, particularly when 705 

using a CLQcut point 0.5 across all three super-populations.  706 

We also conducted a stratified analysis by grouping genes based on their size and computing 707 
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the type I error and average empirical power for each group using original data, and two 708 

DRLPC processed datasets. Notably, the number of SNPs in the gene did not substantially 709 

influence the type I error in the latter, resulting in the limited impact of this variation. 710 

Remarkably, the Wald test exhibited the most improvement. The enhancement in power 711 

through increased gene size was more conspicuous, especially with the CLQcut value set at 712 

0.5. Therefore, we recommend the threshold value of 0.5 for DRLPC. In addition to reducing 713 

dimensionality while maintaining the interpretability of localized effects, pre-processing with 714 

DRPC offers the advantage of decreased computational time required for regression analysis. 715 

The results demonstrate that applying DRLPC elevates the statistical power of Wald tests and 716 

effectively reduces computational time. 717 

Given mounting evidence for the role of LD structure in the effectiveness of gene-based tests, 718 

it is prudent to consider approaches like DRLPC, explicitly tailored to leverage LD information, 719 

as a viable alternative for genetic association analysis of dense genotyping data characterized 720 

by correlated SNPs and intricate LD structure. 721 

6 | CONCLUSIONS 722 

In conclusion, our study has demonstrated that dimension reduction by local principal 723 

components (DRLPC) effectively reduces the dimension of high-density DNA sequencing or 724 

imputed array data and. Our results indicate that DRLPC significantly resolves multi-725 

collinearity prior to regression analysis and improves the power obtained for the Wald test, 726 

making it an equivalent approach to the MLC test. By reducing the data dimension, DRLPC 727 

has been shown to enhance the accuracy and efficiency of multi-marker methods such as the 728 

Wald test. The simulation results strongly suggest that DRLPC has excellent potential for 729 

improving the power of SNP-based association studies. Applying DRLPC improves type I error 730 

control and enhances the statistical power of the Wald test especially (and potentially also for 731 

the MLC test) when the number of SNPs per gene is large and the sample size is relatively 732 

modest (i.e. low n/p ratio). Additionally, it reduces computational time. Our findings provide 733 

valuable insights into the use of DRLPC as a promising tool for the analysis of complex genetic 734 

data, and we hope that our study will inspire further research in this critical area. 735 
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FOOTNOTES 898 

1 Dimension reduction refers to approaches to summarizing massive data such that most of 899 

the information in the data is preserved even with a smaller number of variables. 900 

2 In regression studies, alias variables refer to variables that are highly correlated or redundant 901 

with each other. 902 

3 The reduction in VIF is calculated as the percentage of one minus the ratio of the highest VIF 903 

at a specific step to the highest VIF at the preceding step. 904 
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