

1 Title: Total testosterone is not associated with muscle mass, function or exercise adaptations in
2 pre-menopausal females

3

4 Short title: Testosterone and muscle in females

5

6 Authors: Sarah E. Alexander^{1,2}, Briana Gatto¹, Olivia E. Knowles¹, Ross M. Williams¹, Kinga N.
7 Fiebig¹, Paul Jansons¹, Paul Della Gatta¹, Andrew Garnham¹, Nir Eynon³, Glenn D. Wadley¹, Brad
8 Aisbett¹ Danielle Hiam¹, and Séverine Lamon¹.

9

10 ¹Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin
11 University, Geelong, Australia

12 ² Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute,
13 Melbourne, Australia

14 ³ Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health
15 Sciences, Monash University, Melbourne, Victoria, Australia

16

17 Corresponding author:

18 Associate Professor Séverine Lamon

19 ORCID ID: 0000-0002-3271-6551

20 Institute for Physical Activity and Nutrition

21 Deakin University, 221 Burwood Hwy, Victoria 3125, Australia

22 Ph: (+61 3) 9244 5571

23 Email: severine.lamon@deakin.edu.au

24

25

26

27

28

29

30 **Key points**

31 • Bioavailable testosterone was positively related to exercise-induced muscle hypertrophy in
32 pre-menopausal females.

33 • Nuclear localisation of the androgen receptor was positively related to muscle mass in pre-
34 menopausal females before resistance training, but not with resistance-training induced
35 hypertrophy.

36 • Total testosterone is not related to muscle mass or strength in pre-menopausal females.

37 • Testosterone treatment induced androgen receptor nuclear translocation, but did not
38 induce mTOR signalling in myocytes from pre-menopausal females.

39 **Abstract**

40 Testosterone, the major androgen hormone, influences the reproductive and non-reproductive
41 systems in males and females via binding to the androgen receptor (AR). Both circulating
42 endogenous testosterone and muscle AR protein content are positively associated with muscle
43 mass and strength in males, but there is no such evidence in females. Here, we tested whether
44 circulating testosterone levels were associated with muscle mass, function, or the muscle
45 anabolic response to resistance training in pre-menopausal females.

46 Twenty-seven pre-menopausal, untrained females (aged 23.5 ± 4.8) underwent a 12-week
47 resistance training program. Muscle strength, size, power and plasma and urine androgen
48 hormone levels were measured. Skeletal muscle biopsies were collected before and after the
49 training program to quantify the effect of resistance training on AR protein and mRNA content,
50 and nuclear localisation. Primary muscle cell lines were cultured from a subset (n=6) of the
51 participants' biopsies and treated with testosterone to investigate its effect on myotube
52 diameter, markers of muscle protein synthesis and AR cellular localisation.

53 Total testosterone was not associated with muscle mass or strength at baseline or with the
54 changes in muscle mass and strength that occurred in response to resistance training. *In vitro*,
55 supra-physiological doses of testosterone increased myocyte diameter, but this did not occur
56 via the Akt/mTOR pathway as previously suggested. Instead, we show a marked increase in AR
57 nuclear localisation with testosterone administration. In conclusion, we found that, bioavailable
58 testosterone and the proportion of nuclear-localised AR, but not total testosterone, with skeletal
59 muscle mass and strength in pre-menopausal females.

60 **Key words:** androgens, sex hormones, muscle, female, women, exercise

61 **1. Introduction**

62 The maintenance of skeletal muscle mass and function is an essential component of health and
63 ageing (McLeod *et al.*, 2016; Tieland *et al.*, 2018). Muscle mass and function are also
64 performance-determining factors in many sporting disciplines that rely on speed, power or
65 strength, including sprinting (Barbieri *et al.*, 2017) or weightlifting (Zaras *et al.*, 2020). Skeletal
66 muscle dynamically reacts and adapts to external stimuli such as mechanical loading and
67 unloading, or internal stimuli such as the hormonal milieu (Schiaffino *et al.*, 2013). Testosterone
68 is an androgen (i.e., “male making”) sex hormone with anabolic properties. Females typically
69 exhibit testosterone concentrations that are 10-fold lower than male concentrations (0.5-2.5
70 nmol·L⁻¹ and 10-30 nmol·L⁻¹, respectively) (Burger, 2002). The majority of testosterone circulates
71 bound to carrier proteins, sex hormone binding globulin (SHBG; approximately 45%) or albumin
72 (approximately 50%) (Burger, 2002). Only a small fraction of testosterone (approximately 3-5%)
73 is “free” and unbound. When bound to SHBG, testosterone is not biologically active (Krakowsky
74 & Grober, 2015). In contrast, testosterone is weakly bound to albumin and can easily dissociate.
75 Therefore, albumin-bound and free testosterone are considered “bioavailable” and can enter
76 target cells and bind to the androgen receptor (AR) (Burger, 2002). The AR is ubiquitously
77 expressed and, as such, testosterone plays a role in many tissues throughout the body, including
78 skeletal muscle.

79 The AR exists either in the cytosol of cells bound to chaperone proteins (Berns *et al.*, 1986; Olea
80 *et al.*, 1990; de Launoit *et al.*, 1991), or in the sarcolemma of myocytes linked to a G-protein
81 coupled receptor (Dent *et al.*, 2012). AR exerts its effects via 2 known mechanisms: non-genomic
82 and genomic signalling. Non-genomic signalling refers to the process by which sarcolemma-
83 bound ARs activate the protein kinase B/mammalian target of rapamycin (Akt/mTOR) or mitogen-
84 activated protein kinase (MAPK) pathways to increase protein synthesis. This has been shown in
85 rat L6 (Wu *et al.*, 2010; White *et al.*, 2013) and mouse C2C12 (Basualto-Alarcón *et al.*, 2013)
86 myocytes *in vitro*, but it is unknown whether testosterone signals through these pathways in
87 humans. Genomic signalling is a process by which cytosolic AR become phosphorylated,
88 dissociate from chaperone proteins and translocate to the nucleus of the cell (nAR). nAR act as
89 a transcription factor that increases the expression of over 1000 target genes containing an
90 androgen response element (ARE) in their promoter (Jin *et al.*, 2013; Leung & Sadar, 2017).

91 Testosterone and its bioactive metabolite dihydrotestosterone (DHT) exhibit anabolic properties.
92 The administration of exogenous testosterone promotes a positive muscle protein turnover and
93 increased muscle mass and function in young (Bhasin *et al.*, 2001) or old males (Storer *et al.*,

94 2017) and in pre- (Hirschberg *et al.*, 2020) or post- menopausal females (Huang *et al.*, 2014).
95 Conversely, when testosterone concentrations are pharmacologically suppressed, the protein
96 balance switches in favour of protein degradation (Ferrando *et al.*, 1998; Sheffield-Moore *et al.*,
97 1999) and leads to reduced muscle mass and strength in males (Mauras *et al.*, 1998; Overkamp
98 *et al.*, 2023). There is evidence of positive associations between endogenous total testosterone
99 and muscle mass or strength in large male cohorts across the lifespan ($n=252$ (Mouser *et al.*,
100 2016), $n=3,875$ (Ye *et al.*, 2021)). Other, smaller studies refute the existence of such an
101 association ($n=49$ (Morton *et al.*, 2018), $n=23$ (Mitchell *et al.*, 2013), $n=67$ (Mobley *et al.*, 2018),
102 $n=49$ (Morton *et al.*, 2016)) and instead propose that increased skeletal muscle AR protein
103 content (Morton *et al.*, 2018), or nAR (Hatt *et al.*, 2024), but not total or bioavailable circulating
104 testosterone (Morton *et al.*, 2016; Morton *et al.*, 2018), is associated with increased muscle
105 hypertrophy and function in young males.

106 Our knowledge of the association between endogenous testosterone and muscle mass is limited
107 in females (Alexander *et al.*, 2022) and the available evidence stems from cross-sectional
108 cohorts. Evidence from murine (Yoshioka *et al.*, 2007) and human (Pataky *et al.*, 2023; Hatt *et al.*,
109 2024) models however suggest that there are sex-specific differences in androgen action on the
110 skeletal muscle transcriptome. We and others show that there is no association between
111 endogenous total testosterone or nAR and muscle mass and strength in pre- (Alexander *et al.*,
112 2021; Hatt *et al.*, 2024) or post-menopausal females (Gower & Nyman, 2000; Carmina *et al.*,
113 2009; van Geel *et al.*, 2009; Pöllänen *et al.*, 2011; Rariy *et al.*, 2011; Kogure *et al.*, 2015). Instead,
114 the free androgen index (FAI), which is indicative of the amount of bioavailable testosterone, is
115 weakly associated with muscle mass in pre-menopausal females (Carmina *et al.*, 2009;
116 Alexander *et al.*, 2021).

117 The aim of the current study was to investigate the association between total testosterone and
118 muscle mass, strength and power in pre-menopausal females at baseline or with the changes in
119 muscle mass, strength or power following a tightly controlled 12-week resistance exercise
120 training protocol. A secondary aim was to identify whether the FAI is more closely associated
121 with muscle mass, strength, power or anabolic potential. We also investigated whether markers
122 of AR expression, activity or localisation, or markers of muscle protein synthesis or degradation
123 were associated with muscle mass, strength, power or anabolic potential. An *in vitro* model was
124 used to further our mechanistic understanding of the role of testosterone in female human
125 primary myocytes.

126 **2. Methods**

127 *2.1 Ethical approval*

128 This research was granted ethical approval by the Deakin University Human Research Ethics
129 Committee (DUHREC 2018-388). All participants provided written, informed consent before
130 taking part in the study, which was conducted in accordance with the Declaration of Helsinki
131 (World Medical Organisation, 2018) and its later amendments.

132 *2.2 Participants and exclusion criteria*

133 Thirty-five healthy females aged 18-40 years were recruited from the general population. Four
134 participants were not able to continue the training program due to COVID-19-related
135 interruptions in 2020, 2 participants withdrew for health-related reasons and 2 participants
136 withdrew for personal reasons. Therefore, 27 females completed the training program.
137 Participants were not resistance-trained (defined as having performed structured resistance
138 training at least twice per week in the previous 6 months), pregnant or breastfeeding, did not
139 smoke and displayed no contraindications to exercise according to the Exercise and Sports
140 Science Australia adult pre-exercise screening system (Exercise and Sports Science Australia,
141 2019). Participants were excluded if they had a history of anabolic hormone use, used
142 medications or supplements that could affect the anabolic response to training, or if their daily
143 protein intake was outside the Australian dietary guidelines of 15-25% total macronutrient
144 intake, measured through a mobile phone application for 4 days including 1 weekend day (Easy
145 Diet Diary) (Xyris Software, 2019). The health, fitness and anabolic status of young, healthy
146 females are not expected to change over a 12-week period as a passage of time. Therefore, each
147 participant acted as her own control in a pre-post study design.

148 *2.3 Assessment of confounding factors*

149 Participants completed a chronotype questionnaire (Horne & Östberg, 1976) to assess the time
150 of day at which they are most alert. Participant chronotype was later tested as a potential
151 covariate in statistical analysis in case it was significantly associated with both the independent
152 and dependent variables of interest. To monitor sleep quantity and energy expenditure,
153 participants wore an activity monitor (Actical Z MiniMitter, Phillips Respironics Inc, Bend, OR) on
154 their non-dominant wrist for 7 days, accompanied by a sleep diary that incorporates several
155 validated sleep rating systems (Samn & Perelli, 1982; Jay *et al.*, 2006). Sleep quantity (total hours)
156 and total daily energy expenditure (metabolic equivalent; METs) measurements were repeated
157 for 24 hours on weeks 3, 6 and 9 of the trial to ensure participants' sleep and energy expenditure

158 remained consistent, as any changes to either of these variables could potentially affect the
159 outcome of this study. Sleep quantity and total daily energy expenditure (METs) were tested as
160 covariates in later statistical analysis and were added to the models if they were significantly
161 associated with both the independent and dependent variables of interest.

162 Protein intake, daily physical activity and sleep quantity were measured at baseline and every 3
163 weeks throughout the training program. Sleep and protein intake did not change significantly
164 during the program, suggesting the participants maintained their habitual diet, and sleep
165 patterns throughout the entire 12 weeks (Supplementary Figure 1A-B). Participants decreased
166 their total energy expenditure by 14% during week 6 ($p<0.001$) and by 10.5% during week 9
167 ($p=0.041$) when compared to baseline (Supplementary Figure 1C). Despite this change in total
168 energy expenditure, Akaike Information Criterion (AIC) tests revealed that total energy
169 expenditure was not a significant confounder of the linear models and was therefore not included
170 in subsequent analyses.

171 *2.4 Menstrual phase standardisation and hormonal contraception use*

172 The pre-post design of this study allowed each participant to act as her own control, therefore
173 we did not exclude participants based on hormonal contraceptive (HC) use. This study included
174 both normally menstruating females and females using HC. Some research suggests that
175 muscle strength may be greater in the late follicular phase (days 7-14) compared to other phases
176 (Knowles *et al.*, 2019). More recent research however suggests that there is no difference in
177 muscle strength between menstrual cycle phases (Colenso-Semple *et al.*, 2023). Despite this,
178 we aimed to minimise any potential confounding effect of the menstrual cycle on muscle
179 performance by avoiding the late follicular phase (days 7-14) of the menstrual cycle during pre-
180 and post-training testing in normally menstruating participants. The data collection period lasted
181 12 weeks, 3 full cycles of a typical menstrual cycle lasting 28 days, allowing each normally
182 menstruating participant to undergo pre- and post-testing during the same phase of their cycle.
183 Menstrual phases were verified through menstrual diaries and hormonal analysis, in line with
184 published guidelines for the inclusion of females in exercise physiology cohorts (Knowles *et al.*,
185 2019; Elliott-Sale *et al.*, 2021). Two separate researchers verified the menstrual phase of each
186 participant and consensus was reached in each case. The menstrual phase of each testing
187 timepoint is summarised in Supplementary Table 1. HC use and menstrual phase were tested as
188 covariates in all subsequent statistical analysis.

189 2.5 *Familiarisation to the training program*

190 Prior to beginning the training program, participants attended 3 familiarisation sessions at
191 Deakin University. During these sessions, the participants were coached through all training
192 exercises with little-to-no weight (Rate of Perceived Exertion (RPE) <3/10-“moderate” (Borg,
193 1982a; Borg, 1982b) to ensure all participants used the safe and correct technique for all
194 movements. These sessions also aimed to minimise any potential learning effects that may have
195 occurred due to the novelty of the exercises for some participants.

196 2.6 *Strength and power testing*

197 Peak muscle power was assessed using a portable force plate (AMTI, Watertown, MA).
198 Participants performed a countermovement jump (CMJ), without an arm swing. Four attempts
199 were made, separated by 3 minutes rest and the highest values were recorded as peak muscle
200 power.

201 Participants’ repetition maximum (RM) was assessed for leg press, as well as all the exercises
202 included in the training program. Leg press was included in the strength testing but not in the
203 training program and represents the major measure of muscle strength in this study. Using an
204 exercise that was not included in the training program minimised any learning effect, as
205 participants did not train and therefore, learn the movement. Lower body 1RM was calculated
206 from 5RM tests using the equation (Abadie & Wentworth, 2000): estimated 1RM = 4.67 + (1.14 ×
207 weight lifted. Upper body 1RM was calculated from 10RM tests using the equation (Abadie &
208 Wentworth, 2000): estimated 1RM = 1.43 + (1.20 × weight lifted).

209 2.7 *Plasma and urine collection*

210 Plasma was collected from participants in the fasted state before and after the training program,
211 as well as before exercise in weeks 2, 4, 6, 8 and 10. At 0700 h, 10 mL of venous blood was taken
212 from the antecubital vein in vacutainer tubes containing 7.2 mg K2 EDTA (Becton Dickinson,
213 Franklin Lakes, NJ). Blood was centrifuged immediately for 10 min at 1 500 g, 4°C and plasma
214 was stored at -80°C until further use. A first-void urine sample was collected at the same time
215 points and the urine was stored at -20°C until further use.

216 2.8 *Body composition analysis*

217 Participants’ body composition was assessed before and after the 12-week training program via
218 bioelectrical impedance analysis (BIA; Tanita, Kewdale, WA) and dual-energy X-ray

219 absorptiometry (DXA; Lunar Prodigy Advance, GE Healthcare, Madison, WI). At the time of
220 measurement, participants had abstained from vigorous exercise, caffeine, and alcohol for the
221 previous 48 hours, minimising the chances of water-retention or dehydration that may occur, as
222 per standard recommendations (Walter-Kroker *et al.*, 2011).

223 **2.9 Assessment of thigh muscle cross sectional area**

224 The cross-sectional area (CSA) of the thigh muscle groups (quadriceps and hamstrings) at 50%
225 of femur length were assessed via peripheral quantitative computed tomography (pQCT) (XCT
226 3000, Stratec Medizintechnik GmbH, Pforzheim, Germany).

227 **2.10 Collection of muscle tissue**

228 Participants abstained from caffeine, alcohol and vigorous activity for 48 hours prior to the
229 collection of muscle biopsies. The night before, participants consumed a low-protein,
230 standardised meal of pasta and tomato-based sauce as previously described (Lamon *et al.*,
231 2021). Portion size and water consumption were *ad libitum*. Participants recorded the portion
232 size and water consumption from the pre-training trial and replicated this for the post-training
233 trial.

234 Participants arrived at the testing facility at 0700 h after an overnight fast from 2100 h the previous
235 evening. A muscle biopsy of the *vastus lateralis* was performed via a percutaneous needle biopsy
236 technique modified to include suction (Bergstrom, 1962). Briefly, the skin over the *vastus*
237 *lateralis* was sterilised and the area anaesthetised with 1% Lidocaine without epinephrine. An
238 incision was made through the skin and muscle fascia. A muscle sample of 150-300 mg in size
239 (Russell *et al.*, 2013) was immediately snap frozen in liquid N₂-cooled isopentane and stored in
240 liquid N₂ until required.

241 **2.11 Training programs**

242 After all the baseline measures were assessed, the 12-week resistance training program
243 commenced. Every Monday, Wednesday and Friday, participants arrived at Deakin University
244 between 0600-0800 h after an overnight fast from 2100 h the previous evening. Due to the various
245 SARS-CoV-2-related lockdowns experienced throughout Victoria, Australia in 2020 and 2021
246 (Dunstan, 2021), there was a requirement for a sub-cohort of participants (*n*=11) to undertake a
247 portion of their training sessions online. These training sessions were delivered via
248 videoconferencing, replicating the time and days of the gym-based training sessions. Briefly, the
249 gym-based training program consisted of squats, leg extensions, hamstring curls, shoulder

250 press, biceps curls and seated row exercises. Participants were provided with weights and
251 performed 3 sets of 8-10 repetitions at 60-80% 1RM. Supplementary Table 2 outlines the 2
252 different training programs undertaken by participants. Both programs were designed by an
253 Exercise and Sports Science Australia-accredited exercise scientist and an Australian Strength
254 and Conditioning Association-accredited strength and conditioning coach. Progressive overload
255 (add 5% load) was applied to each exercise when an individual was able to complete 2 additional
256 repetitions in the last set of an exercise in 2 consecutive sessions.

257 All participants were given a 25-g protein supplement (Ascent Protein, Denver, CO) either
258 immediately before or after each training session to optimise the anabolic response to resistance
259 training. The protein supplement was approved by Informed Choice (Informed Choice, 2021),
260 thereby minimising the risk that the supplement contained any substances that are banned by
261 the World Anti-Doping Agency (WADA).

262 *2.12 Laboratory analysis*

263 *2.12.1 Hormone analysis*

264 Testosterone (sensitivity 0.18 ng·mL⁻¹, intra-assay coefficient of variation (CV) 3.1-5.4%, inter-
265 assay CV 4.2-7.4%), sex hormone binding globulin (SHBG; sensitivity 0.23 nmol·L⁻¹, intra-assay
266 CV 2.3-4.8%, inter-assay CV 5.2-6.3%), dehydroepiandrosterone (DHEA; sensitivity 0.03 ng·mL⁻¹,
267 intra-assay CV 3.9-7.6%, inter-assay CV 5.1-10.4%) and 5 α -dihydrotestosterone (DHT;
268 sensitivity 7.23 pg·mL⁻¹, intra-assay CV 3.33-6.25%, inter-assay CV 6.49-7.47%) were measured
269 via Enzyme-Linked Immunosorbant Assay (ELISA; #IBRE52151, #IB30176808, #IBRE52221,
270 #IBDB5202, Abacus Dx, Parkville, Australia), according to manufacturer's instructions.

271 The Free Androgen Index (FAI) in plasma was calculated as:
$$\frac{\text{total testosterone (nmol}\cdot\text{L}^{-1})}{\text{sex hormone binding globulin (nmol}\cdot\text{L}^{-1})} \times 100.$$

273 The full steroid profile in urine (including testosterone, its precursors and metabolites) was
274 measured via gas chromatography mass spectrometry (GC/MSⁿ) in a WADA-accredited
275 laboratory as described previously (Salamin *et al.*, 2022). Liquid chromatography mass
276 spectrometry (LC/MS) was used to exclude confounding factors having a potential impact on
277 endogenous testosterone production (e.g., alcohol, ketoconazole, aromatase inhibitors), while
278 also ensuring that the participants were not using exogenous testosterone. All hormonal markers
279 from urine were corrected for the specific gravity of urine, using the equation:

280
$$\text{Con}_{\text{adj}} = \frac{(1.020-1)}{\text{SG}_{\text{samplemax}}-1} \cdot \text{Con}_{\text{measured}}$$
, where $\text{SG}_{\text{samplemax}} = \text{SG}_{\text{sample}} + 0.002$

281 For validation of menstrual phase, oestradiol (E2; inter-assay CV 5.5-10.7%) and progesterone
282 (P; inter-assay CV 6.4-19.2%) were measured via a competitive binding immune-enzymatic assay
283 according to manufacturer's instructions (Beckman Coulter, Lane Cove, Australia). Luteinising
284 hormone (LH) was analysed via a sequential 2-step immune-enzymatic assay (inter-assay CV
285 5.2-7.8%) according to manufacturer's instructions (Beckman Coulter) and follicle stimulating
286 hormone (FSH) was analysed via a microparticle enzyme immunoassay (MEIA) (inter-assay CV
287 3.8-4.3%) according to manufacturer's instructions (Beckman Coulter).

288 *2.12.2 Protein extraction*

289 Protein was extracted from 20-25 mg of skeletal muscle tissue via manual homogenisation in 15
290 $\mu\text{L}\cdot\text{mg}^{-1}$ muscle 1× RIPA lysis buffer 1 (#J62524-AE, Thermo Fisher Scientific) containing 10 $\mu\text{L}\cdot\text{mL}^{-1}$
291 phosphatase inhibitor and 1 $\mu\text{L}\cdot\text{mL}^{-1}$ protease inhibitor cocktail (#78440, Thermo Fisher
292 Scientific). The homogenised protein lysates were then gently spun at 4°C for 1 hour. After 1 hour,
293 samples were centrifuged at 13,000 g for 15 min at 4°C. The protein concentration of each sample
294 was determined via Pierce Bicinchoninic Acid (BCA) assay (#23225, Thermo Fisher Scientific)
295 according to manufacturer's instructions. Absorbance of samples was read at 562 nm using
296 bovine serum albumin as a standard.

297 *2.12.3 Western blotting*

298 The total protein and phospho-protein levels of the AR as well as markers of skeletal muscle
299 protein synthesis were analysed via western blot. Following protein extraction, the samples were
300 denatured for 5 min at 95°C with 1× Nupage sample reducing agent (#NP0004, Thermo Fisher
301 Scientific) and 1× Nupage LDS sample buffer (#NP0007, Thermo Fisher Scientific). Thirty μg of
302 total protein from each sample was loaded into a 4–15% gradient Criterion Tris-Glycine extended
303 (TGX) Stain Free gel (#5678085, Bio-Rad, Gladesville, Australia), separated via electrophoresis at
304 200 V, 40 min and visualised on a Universal Hood II GelDoc (BioRad). The separated proteins
305 were transferred to an Immobilon PVDF-FL membrane (#IPFL00005, Millipore, Billerica, MA) at
306 100 V, 60 min and blocked for 1 hour in 5% skim milk in Tris buffered saline plus 0.1% Tween-20
307 (TBST; #P1379, Sigma-Aldrich, North Ryde, Australia). Membranes were incubated at 4°C
308 overnight in the primary antibody. The antibodies and conditions used were for Akt (#2920,
309 1:1000, mouse, Cell Signalling Technologies, Danvers, MA), p-Akt^{ser473} (#4060, 1:1000, rabbit,
310 Cell Signalling Technologies), AR (#5153, 1:500, rabbit, Cell Signalling Technologies), p-AR^{ser213}

311 (#PA537478, 1:500, rabbit, Thermo Fisher Scientific), p-AR^{ser650} (#537479, 1:500, rabbit, Thermo
312 Fisher Scientific), MAPK (#4696, 1:1000, mouse, Cell Signalling Technologies), p-MAPK^{thr202/tyr204}
313 (#9101, 1:500, rabbit, Cell Signalling Technologies), mTOR (#4517, 1:1000, mouse, Cell Signalling
314 Technologies), p-mTOR^{ser2448} (#5536, 1:1000, rabbit, Cell Signalling Technologies), Murf-1
315 (#MP3401, 1:1000, rabbit, ECM Biosciences), 4E-BP1 (#9452, 1:1000, rabbit, Cell Signalling
316 Technologies), p-4E-BP1^{thr37/46} (#2855, 1:500, rabbit, Cell Signalling Technologies), rpS6 (#2217,
317 1:1000, rabbit, Cell Signalling Technologies) and p-rpS6^{ser235/236} (#4856, 1:1000, rabbit, Cell
318 Signalling Technologies). The membranes were washed thrice for 10 min in TBST and incubated
319 with the corresponding secondary antibody (#5151, 1:10,000, anti-rabbit IgG Dylight 800 or
320 #5470, 1:10,000, anti-mouse IgG DyLight 680; Cell Signalling Technologies) for 1 hour at room
321 temperature. Following 2× 10-min washes in TBST and 1× 10-min wash in 1× phosphate buffered
322 saline (PBS), the proteins were exposed on an Odyssey® CLx Infrared Imaging System and
323 individual protein band optical densities were determined using the Odyssey® Infrared Imaging
324 System software (Image Studio V5.2, Licor Biosciences). All blots were normalized against total
325 protein load using the Bio-Rad Image Lab software (v6.0).

326 2.12.4 *Immunohistochemical staining*

327 Muscle fibre type composition and cross-sectional area were assessed via
328 immunohistochemistry (IHC), staining for myosin heavy chain (MHC I and IIx) and laminin. Eight-
329 micron cross sections of the muscle samples were cut on a microtome cryostat and loaded onto
330 glass slides. The muscle sections were blocked in 10% goat serum (#16210072, Thermo Fisher
331 Scientific) in 1× PBS for 1 hour at room temperature. The muscle sections were incubated for 1
332 hour at room temperature in a primary antibody cocktail containing antibodies specific to anti-
333 MHC I (#BA-F8, 1:20, Developmental Studies Hybridoma Bank; DSHB), anti-MHCIIx (#6H1, 1:20,
334 DSHB) and anti-laminin (#L9393, 1:100, Sigma Aldrich) in 10% goat serum/PBS. The muscle
335 sections were washed thrice in PBS and then incubated in a secondary antibody cocktail
336 containing goat anti-mouse IgG2b Alexa Fluor 647 (#A-21242, 1:500, Thermo Fisher Scientific),
337 goat anti-mouse IgM Alexa Fluor 555 (#A-21426, 1:500, Thermo Fisher Scientific) and Goat anti-
338 rabbit IgG Alexa Fluor 405 (#A-31556, 1:500, Thermo Fisher Scientific) in 10% goat serum/PBS for
339 1 hour at room temperature. The muscle sections were washed thrice in PBS and then mounted
340 using Vectashield fluorescent mounting medium (#H-1900, Vector Laboratories, Abacus Dx).
341 One image of the entire muscle section was visualised using a Fluoview fv0i confocal microscope
342 (Olympus) at 10× magnification and analysed using Semi-automatic Muscle Analysis using

343 Segmentation of Histology (SMASH) software (MATLAB application, Mathworks, USA) (Schneider
344 *et al.*, 2012). The average number of myofibres per section was 753.8 ± 370.6 .

345 *In vivo* AR localisation was also assessed via IHC. Eight-micron muscle sections were thawed for
346 10 minutes before they were fixed in 4% paraformaldehyde (PFA) for 10 min. The muscle sections
347 were washed thrice in PBS and permeabilised in 0.1% Triton-X 100 for 5 min. After
348 permeabilization, the muscle sections were blocked for 1 hour at room temperature in 5% bovine
349 serum albumin/PBS. Following blocking, the muscle sections were incubated in an antibody
350 against the androgen receptor (#5153, 1:50, Cell Signalling Technologies) in blocking buffer at
351 4°C overnight. The following day the sections were washed and incubated in a secondary
352 antibody cocktail containing goat anti-rabbit IgG Alexa Fluor 488 (#A-11008, 1:500, Thermo
353 Fisher Scientific) and wheat germ agglutinin (#W32466, 1:1000, Thermo Fisher Scientific) in
354 blocking buffer for 1 hour at room temperature. The cells were washed thrice in PBS and stained
355 with $0.1 \mu\text{g}\cdot\text{mL}^{-1}$ DAPI stain (#62248, 1:1000, Thermo Fisher Scientific) in PBS for 10 minutes and
356 mounted using Vectashield fluorescent mounting medium (#H-1900, Abacus Dx). Ten images of
357 each muscle section, with an average of 29.9 ± 8.6 fibres per image were obtained with dedicated
358 software at $40\times$ magnification (Eclipse Ti2, Nikon, Tokyo, Japan).

359 **2.12.5 RNA extraction and quantification**

360 Frozen skeletal muscle (~15 mg) was combined with lysis buffer (#1053393, Qiagen, Clayton,
361 Australia) and homogenised with 650-800 mg silica beads for 2×30 second homogenisation
362 steps at 6500 rpm (MagNA lyser, Roche Diagnostics, North Ryde, Australia). RNA was extracted
363 from the homogenised lysate using an Allprep DNA/RNA/miRNA Universal extraction kit (#80224,
364 Qiagen) according to manufacturer's instructions, including a proteinase K and DNase
365 treatment.

366 The quality and quantity of the RNA extracted was assessed using the TapeStation System
367 according to manufacturer's instructions (Agilent Technologies, Mulgrave, Australia). An RNA
368 integrity number (RIN) of >7 was considered acceptable for downstream analysis. The average
369 sample yield was $73.1 \text{ ng}\cdot\mu\text{L}^{-1} \pm 22.5 \text{ ng}\cdot\mu\text{L}^{-1}$ and the RIN average was 8.1 ± 0.8 .

370 **2.12.6 RNaseq**

371 The RNAseq libraries were prepared using the Illumina TruSeq Stranded Total RNA with Ribo-Zero
372 Gold protocol and sequenced with 150-bp paired-end reads on the Illumina Novaseq6000
373 (Macrogen Oceania Platform). Reads underwent quality check with FastQC (v0.11.9); Kallisto

374 (v0.46.1) was used to map reads to the human reference genome (*HomoSapien GRCh38*) and to
375 generate transcript counts. Genes with an average across all samples of 10 reads per million
376 (RPM) or less reads were removed (63%) from further analysis leaving a total of 14,979 for
377 analysis. All RNA sequencing data generated or analysed during this study are included in this
378 published article, its supplementary information files and publicly available repositories (GEO:
379 link pending). The R code used for the analysis is available at
380 https://github.com/DaniHiam/TESTO_RNAseq

381 2.13 *In vitro experiments*

382 2.13.1 *Isolation of primary myocytes*

383 To test whether there is a causal association between testosterone treatment and the Akt/mTOR
384 pathway, we isolated myocytes from a sub-cohort of participants ($n=6$) that underwent the 12-
385 week resistance training program. To ensure a heterogenous sample, we selected participants
386 from across a range of responses to the resistance training program. A third biopsy was collected
387 at rest from this subset of participants from the *vastus lateralis* in exactly the same manner as
388 described above approximately 6 months after the second muscle biopsy. Approximately 100-
389 200 mg of muscle was placed in ice-cold serum free Hams F10 nutrient mixture (#11550043,
390 Thermo Fisher Scientific). The muscle was washed thrice in ice-cold serum-free Hams F10
391 nutrient mixture. The tissue was minced manually and resuspended in serum-free Hams F10
392 media and centrifuged at room temperature for 5 min, 230 g. The supernatant was removed, and
393 the resulting pellet was resuspended in warm (37°C) 0.05% Trypsin/EDTA (#25300062, Thermo
394 Fisher Scientific) and dissociated thrice on an orbital shaker for 20 min at 37°C. After the final
395 dissociation, 10% v/v horse serum (#16050122, Thermo Fisher Scientific) was added to the tissue
396 slurry and cells were filtered through a 75 µm cell strainer. The resultant flow-through was
397 centrifuged at room temperature for 5 min, 530 g and the resulting pellet resuspended in
398 proliferation media containing Hams F10 nutrient mixture, 20% foetal bovine serum (FBS;
399 #10099141, Thermo Fisher Scientific), 1% penicillin-streptomycin (#15140122, Thermo Fisher
400 Scientific), 0.5% Amphotericin B (#15290018, Thermo Fisher Scientific) and 25 µg·mL⁻¹ fibroblast
401 growth factor (fGFb; #PHG0026, Thermo Fisher Scientific). The cells were plated in flasks pre-
402 coated with an extracellular matrix (ECM) gel from Engelbreth-Holm-Swarm murine sarcoma
403 (#E1270, Sigma-Aldrich). The cells were maintained in humidified air at 37°C, 5% CO₂.
404 Proliferation media was changed every 48 h and the cells passaged once they had reached 70-
405 80% confluence.

406 2.13.2 *Purification of cultured human myoblasts*

407 Once the cells had reached 70-80% confluence, myogenic satellite cells were purified using
408 Magnetic Activated Cell Sorting (MACS) with anti-CD56+ microbeads (#130-050-401, Miltenyi
409 Biotec, Bergisch Gladbach, Germany) as previously described (Agley *et al.*, 2013; McIlvenna *et*
410 *al.*, 2021).

411 2.13.3 *Differentiation of cultured human myoblasts*

412 Once the enriched myogenic cells reached 60-70% confluence, differentiation was induced by
413 replacing the proliferation medium with Dulbecco's Modified Eagle's Medium (DMEM) without
414 phenol red (#21063029, Thermo Fisher Scientific) supplemented with 2% horse serum
415 (#16050122, Thermo Fisher Scientific) and 1% penicillin-streptomycin (#15140122, Thermo
416 Fisher Scientific). DMEM without phenol red was used to eliminate the oestrogenic effects of
417 phenol red (Estrada *et al.*, 2003; Wannenes *et al.*, 2008; Eriksen *et al.*, 2014). Cells were
418 differentiated either in the presence of 100 nM testosterone dissolved in ethanol (#DRE-
419 C17322500, Novachem, Heidelberg West, Australia) (henceforth referred to as testosterone
420 treated, or TT) or the equivalent volume (2 $\mu\text{L}\cdot\text{well}^{-1}$) of the vehicle control, ethanol (henceforth
421 referred to as control, or CON).

422 The cells were harvested for protein extraction at baseline (Day 0) and after 1 (D1), 4 (D4) and 7
423 days (D7) of differentiation, using 150 $\mu\text{L}\cdot\text{well}^{-1}$ 1 \times RIPA lysis buffer (#J62524-AE, Thermo Fisher
424 Scientific) containing 10 $\mu\text{L}\cdot\text{mL}^{-1}$ phosphatase inhibitor and 1 $\mu\text{L}\cdot\text{mL}^{-1}$ protease inhibitor cocktail
425 (#78440, Thermo Fisher Scientific). The homogenised protein lysates were then gently spun at
426 4°C for 1 hour. Samples were centrifuged at 13 000 g for 15 min at 4°C and the protein
427 concentration of each sample determined via Pierce Bicinchoninic Acid (BCA) assay (#23225,
428 Thermo Fisher Scientific) according to manufacturer's instructions. Western blots were
429 completed under the same conditions as described above on the resultant cell protein lysate,
430 loading 10 μg total protein $\cdot\text{well}^{-1}$.

431 2.13.4 *Immunohistochemical analysis of AR location*

432 In addition to western blot analyses, we also investigated the effect of testosterone treatment on
433 the localisation of the AR in myocytes. At baseline, and after 1, 4 and 7 days of differentiation,
434 human primary myocytes were washed thrice for 5 min in PBS. The myocytes were fixed with 2%
435 paraformaldehyde (PFA)/PBS for 10 min and washed thrice for 5 min in PBS. The fixed cells were
436 permeabilised in 0.1% Triton X-100/PBS for 5 min and blocked with 3% BSA/PBS for 40 min at

437 room temperature. Cells were incubated for 1 hour at room temperature with the primary
438 antibody against total androgen receptor (#5153, 1:50 in blocking buffer, rabbit, Cell Signalling
439 Technologies). Following this, the cells were incubated with AlexaFluor 488 goat anti-rabbit IgG
440 (#A-11008, 1:5000, Thermo Fisher Scientific) and AlexaFluor 647 phalloidin (#A22287, 1:200,
441 Thermo Fisher Scientific) in 1% BSA/PBS for 1 hour at room temperature. The cells were washed
442 thrice in PBS and stained with $0.1 \mu\text{g}\cdot\text{mL}^{-1}$ DAPI (#62248, 1:1000, Thermo Fisher Scientific) stain
443 in PBS for 10 minutes. Cell images were obtained with dedicated software at $100\times$ magnification
444 (*Eclipse Ti2, Nikon, Tokyo, Japan*).

445 *2.13.5 Quantification of androgen receptor intensity*

446 Quantification of androgen receptor content was performed using the open-source image
447 analysis software *CellProfiler* (version 4.2.5) and an analysis pipeline developed within this study
448 (Stirling *et al.*, 2021). For *in vivo* analysis, 5-10 images per participant for each time point were
449 captured at $40\times$ magnification, imported into *CellProfiler* and split into individual grayscale
450 images of sarcolemma, nuclei and AR staining based on RGB channels. DAPI-stained myonuclei
451 were identified as objects with a diameter range between 8 and 50 pixels, as previously described
452 (Sanz *et al.*, 2019). To quantify the nAR/AR ratio, a binary mask of the DAPI-stained myonuclei
453 was applied to the AR-stained images and the total intensity of AR expression within the nuclei
454 was expressed as a ratio of total AR intensity per field. The percentage of nuclei positive for AR
455 expression was quantified by counting the number of DAPI-stained myonuclei encompassed
456 within a binary mask of the AR-stained images. The percentage of nuclei highly expressing AR
457 was determined by creating a binary mask of regions expressing 3x the mean intensity of AR
458 staining per field from the AR image and identifying the percentage of nuclei within this mask. The
459 total number of muscle fibres per field was quantified using the previously described
460 Muscle2View *CellProfiler* pipeline (Sanz *et al.*, 2019). Each binary mask was manually reviewed
461 by 2 independent analysts, and any masks containing apparent visual artifacts were excluded
462 from analysis (an average of 3.8 images per participant were excluded).

463 For *in vitro* analysis, images of 1 field per well from 6 wells were imported into *CellProfiler* and
464 split into individual grayscale images of actin, nuclei and AR staining based on RGB channels. A
465 binary mask of the myocytes was created using the actin images, and the total area within each
466 field occupied by this mask quantified. The total intensity of the androgen receptor stain was
467 measured and expressed relative to the area occupied by myocytes per each field, as the
468 measure "AR intensity". This *CellProfiler* pipeline was validated for the accurate and complete

469 identification of both myocytes and androgen receptor protein through a manual review of 20%
470 of the total images, performed by 2 independent analysts.

471 *2.14 Statistical analysis*

472 The statistical analyses for this study were performed using GraphPad Prism version 8 (*GraphPad*
473 *Software, La Jolla, CA*) and R software version 4.0.2 using the packages *lmerTest* (Kuznetsova et
474 *al., 2017*), *tidyverse* (Hadley Wickham *et al.*, 2019), *car* (Fox and Weisberg, 2019), *AICmodavg*
475 (Mazerolle, 2020).

476 Two-tailed, paired t-tests in GraphPad were used to assess the effect of a 12-week resistance
477 training program on the changes to participant anthropometric data, the protein expression of all
478 measured proteins and thigh muscle size, strength and power. Leg press strength and muscle
479 power were expressed as values relative to the individual's total body lean mass (kg) and the
480 changes to muscle size, strength and power were expressed as delta percent change (Δ%). The
481 phosphorylation status of all proteins is expressed as the amount of phosphorylation relative to
482 the total protein content of that protein (e.g., $p\text{-AR}^{\text{ser}213} = p\text{-AR}^{\text{ser}213}/\text{total AR content}$) and the
483 changes in protein content from pre- to post-training is expressed as fold-change from the pre-
484 training levels. If the protein content of a given protein did not change, the average of the pre- and
485 post-training values was used for all post-training (delta change) linear models.

486 One-way, repeated measures analyses of variance (ANOVA) were used in GraphPad to assess
487 the effect of 12 weeks of resistance training on the concentrations of testosterone, SHBG, DHT,
488 DHEA, E2 and P and changes in dietary protein intake and total energy expenditure. If hormone
489 concentrations did not significantly change, the area under the curve (AUC) using the trapezoidal
490 method was used for all post-training (delta change) linear models. The AUC provides a surrogate
491 measure for the total amount of hormone that participants were exposed to across the entire 12
492 weeks.

493 Linear models were used in Rstudio to examine whether the outcome (muscle size, strength and
494 power at baseline, or the delta change in these variables) was influenced by the independent
495 variables of serum testosterone concentrations, the FAI, DHT, DHEA, the protein expression of
496 AR or p-AR, the nAR/AR ratio, or the proportion of AR+ nuclei. The model was of the form:
497 *outcome = independent variable + covariate (if applicable)*. Before further analyses, the
498 normality of all variables was assessed, and variables were log-transformed if necessary.

499 Possible covariates included age, BMI, E2, P, luteinising hormone, follicle stimulating hormone,
500 chronotype, hormonal contraceptive use, average protein intake, average daily physical activity
501 and menstrual phase. Before fitting the linear models, Akaike Information Criterion (AIC) tests
502 were run on linear models containing all possible combinations of the covariates to establish
503 which covariates were required in the final model. The model with the lowest AIC that explained
504 the largest proportion of variance in the association was chosen as the final model. The
505 collinearity of linear models with appropriate covariates was assessed through variance inflation
506 factors (VIF), with a threshold of 3 set. The homoscedasticity of each model was assessed
507 through residual and QQ plots.

508 Transcriptomic data were analysed using Rstudio 4.1.3 (R Core Team, 2021). Differential gene
509 analysis was conducted using the R package DeSeq2 (Love *et al.*, 2014) using the model: Genes
510 ~ ID + timepoint. ID was used to account for repeated measurements. ChIP-X enrichment
511 analysis 3 (ChEA3) (<https://maayanlab.cloud/chea3/>) was used to perform transcription factor
512 (TF) enrichment analysis on the differentially expressed genes (Keenan *et al.*, 2019). The mean
513 rank integration method was used to calculate the ranking of the most enriched TFs.

514 We considered significant genes and transcription factors significant with an FDR adjusted p
515 value <0.05. The following packages were also used in our analysis; *tidyverse* (Wickham *et al.*,
516 2019), *superheat* (Barter & Yu, 2018), *biomaRt* (Durinck *et al.*, 2009).

517 Graphpad software was used to performed two-way ANOVAs with multiple comparisons to
518 assess the effect of 7 days of testosterone treatment on myocyte diameter and the effect of acute
519 testosterone treatment on the protein content of the androgen receptor and markers of protein
520 synthesis.

521 All values are presented and mean \pm SD, unless otherwise stated. Significance for all statistical
522 tests was set at $p < 0.05$.

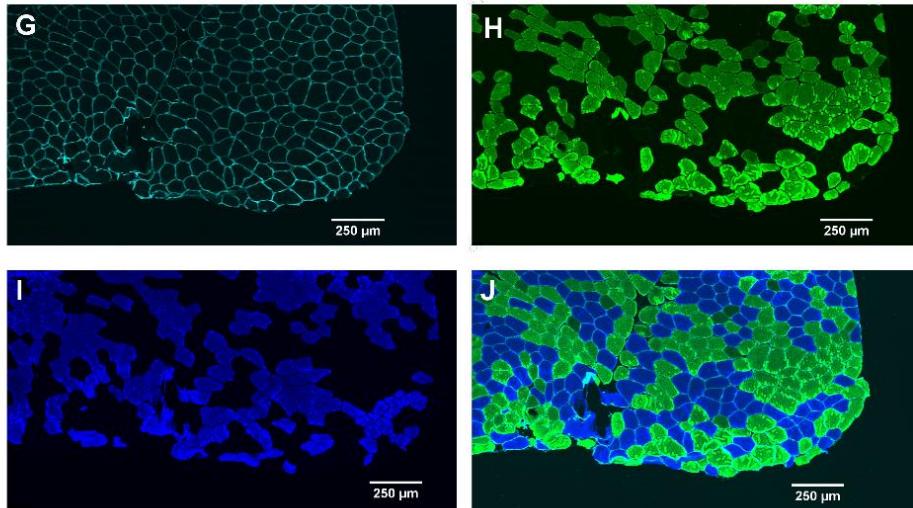
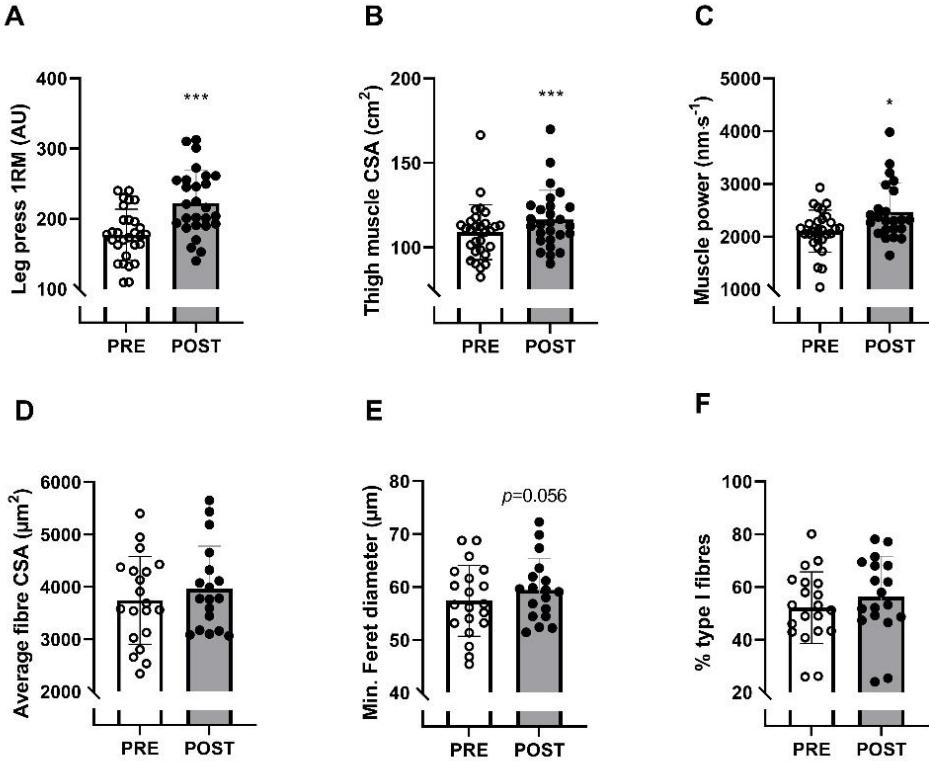
523 **3. Results**

524 Of the 35 females enrolled in the study, 27 females completed the 12-week resistance training
525 program. Due to the SARS-CoV-2-related lockdowns experienced throughout Victoria, Australia
526 in 2020 and 2021 (Dunstan, 2021), a sub-cohort of participants ($n=11$ of the 27 having completed
527 the study) undertook a portion of their 36 training sessions at home (range: 2 to 6 sessions,
528 average 4 sessions) delivered via videoconferencing. There were no differences in age, height,
529 weight, BMI, ratio of hormonal contraceptive users or calculated baseline 1RM for any exercise

530 between the participants who performed all of their training sessions in the gym and those that
531 performed some sessions via video conferencing (Table 1). There was no between-group
532 difference in the trajectory of working weight progression for any exercise (Supplementary Figure
533 2). There was also no between-group difference in training-induced changes in working weight
534 for any exercise, thigh muscle cross sectional area, power (Supplementary Figure 3), or pre- or
535 post-training hormone levels (Supplementary Figure 4). The 2 training regimes were therefore
536 considered equivalent and the results from both cohorts were pooled for all further analyses.

537 **Table 1.** Baseline anthropometric and strength data separated for all participants that completed the gym-
538 based training program ($n=16$) or participants who completed the blended gym- and home-based training
539 program ($n=11$) and for all participants combined ($n=27$).

	Participants undergoing normal training ($n=16$)	Participants spending 2-6 sessions at home ($n=11$)	All participants ($n=27$)
Age (years)	24.1 ± 5.0	21.9 ± 3.9 ($p = 0.24$)	23.5 ± 4.8
Height (m)	1.7 ± 0.1	1.6 ± 0.1 ($p = 0.62$)	1.7 ± 0.1
Weight (kg)	65.8 ± 13.1	66.3 ± 11.1 ($p = 0.92$)	65.9 ± 12.4
BMI ($\text{kg}\cdot\text{m}^{-2}$)	23.3 ± 3.7	24.5 ± 4.1 ($p = 0.42$)	23.6 ± 3.8
Hormonal contraceptive use	Users: 46% Non-users: 54%	Users: 67% Non-users: 33% ($p = 0.30$)	Users: 51% Non-users: 49%
Baseline testosterone concentrations ($\text{nmol}\cdot\text{L}^{-1}$)	2.1 ± 0.5	2.0 ± 0.6 ($p = 0.23$)	2.0 ± 0.6
Calculated squat 1RM (AU)	104.7 ± 31.4	105.4 ± 24.3 ($p = 0.97$)	104.8 ± 30.0
Calculated leg press 1RM (AU)	179.8 ± 42.3	180.1 ± 27.5 ($p = 0.89$)	179.3 ± 39.1
Calculated leg extension 1RM (AU)	52.8 ± 12.2	45.9 ± 13.0 ($p = 0.15$)	51.0 ± 12.9
Calculated hamstring curl 1RM (AU)	35.9 ± 6.4	36.9 ± 6.9 ($p = 0.74$)	36.1 ± 6.7



Calculated seated row 1RM (kg)	40.4 ± 7.5	38.4 ± 7.3 (<i>p</i> = 0.42)	39.7 ± 7.5
Calculated shoulder press 1RM (kg)	9.4 ± 2.9	8.7 ± 2.4 (<i>p</i> = 0.75)	9.3 ± 2.8
Calculated biceps curl 1RM (kg)	8.2 ± 1.4	8.4 ± 1.4 (<i>p</i> = 0.97)	8.2 ± 1.4

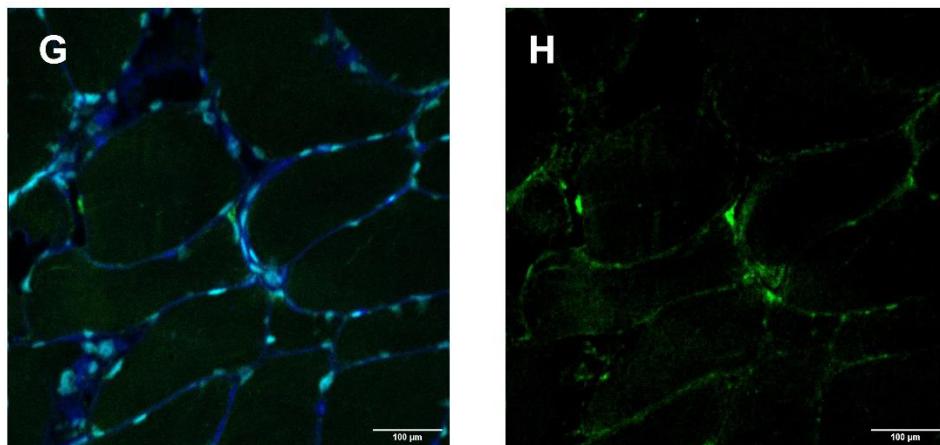
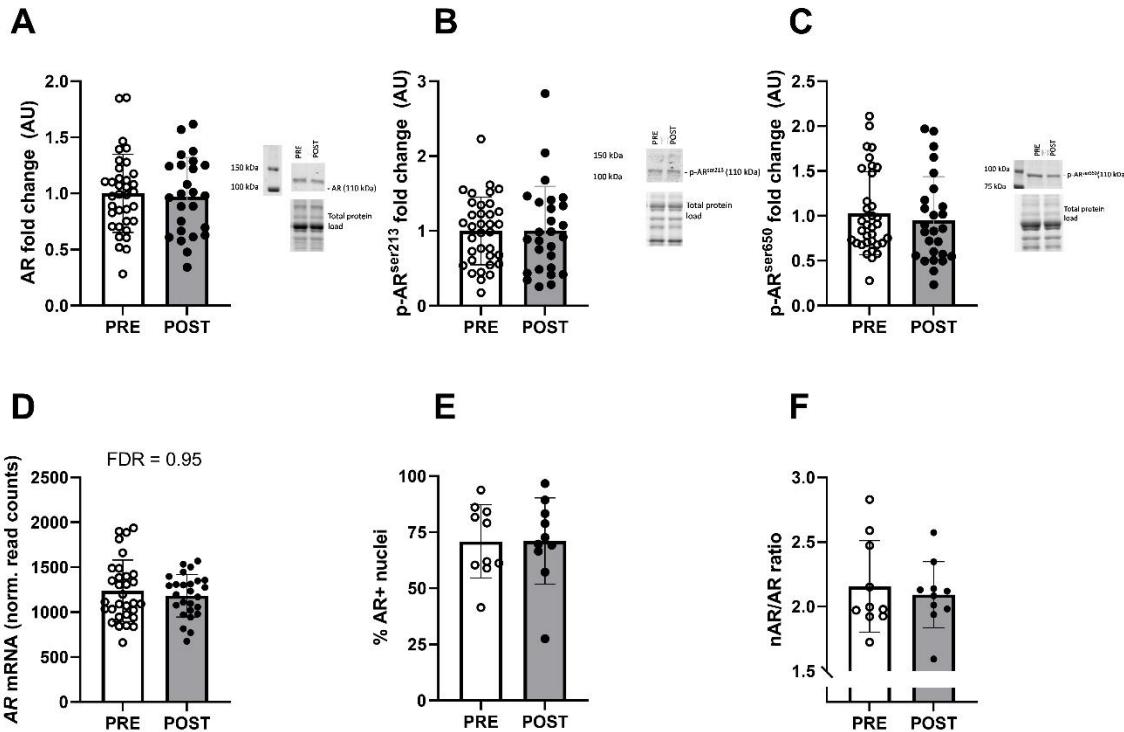
540 *Values are mean ± standard deviation. p-values shown in brackets are for pairwise comparisons to*
541 *participants having completed normal training using unpaired t-tests.*

542 3.1 *Effect of 12 weeks of resistance training on body composition and muscle mass and*
543 *function*

544 Twelve weeks of resistance training increased body mass by 1.4% (pre-training: 65.4 ± 10.9 kg,
545 post-training: 66.2 ± 10.5 kg, *p*<0.05). Total body lean mass increased by 1.9% (pre-training: 42.1
546 ± 5.5 kg, post-training: 42.9 ± 5.7 kg, *p*<0.01). Total body fat mass remained unchanged (pre-
547 training 21.0 ± 7.8 kg, post-training: 21.5 ± 7.7 kg, *p*=0.125).

548 Muscle strength (measured via leg press 1RM) increased by 27.3% (*p*<0.001), thigh muscle cross-
549 sectional area (CSA; measured via pQCT) by 5.9% (*p*<0.001) and muscle power (measured via
550 vertical jump) by 13.0% (*p*<0.05) (Figure 1A-C).

551 **Figure 1.** A) Leg press 1RM, B) (B) thigh muscle cross sectional area (CSA) (C) muscle power D) mixed
552 muscle myofibre CSA, E) minimum Feret diameter and F) percentage of type I fibres in untrained, pre-
553 menopausal females before and after 12 weeks of resistance training (n=27). G) Representative images
554 showing the laminin-stained sarcolemma of a muscle section, H) type I fibres, I) type II fibres and J) a
555 composite image of both. Scale for representative images is $1.24 \mu\text{m} \cdot \text{pixel}^{-1}$ for all images shown. $n=753.8$
556 ± 370.6 fibres per slice. White scale bar represents 250 µm. Pre-training (PRE) values are indicated by clear
557 bars and post-training (POST) values are indicated by dark bars. *indicates $p<0.05$, ***indicates $p<0.001$.
558 Data were analysed using two-tailed, paired t-tests. Values are represented as mean \pm SD.



559 3.2 *Effect of 12 weeks of resistance training on the cellular markers of muscle hypertrophy*

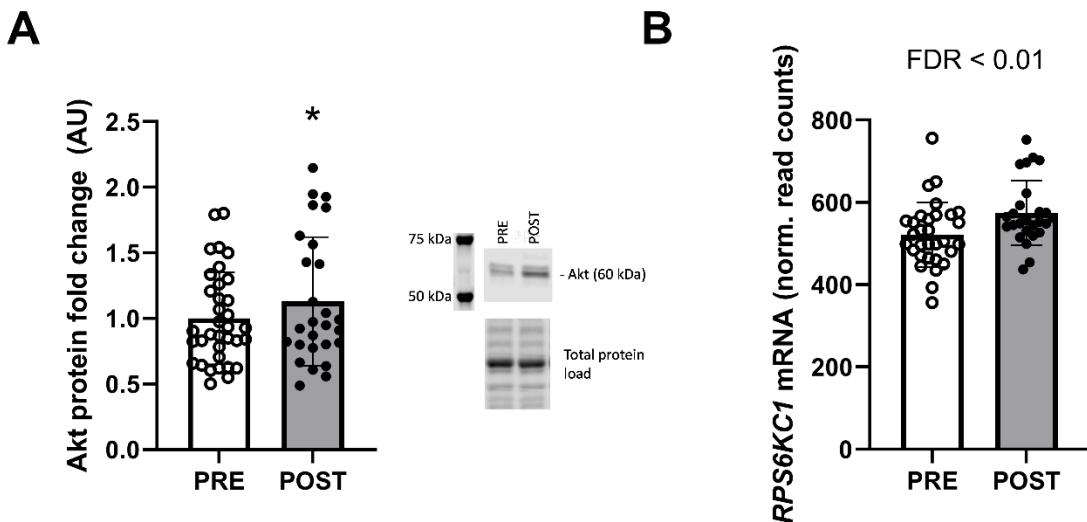
560 The average myofibre CSA (μm^2) did not change with resistance training (mixed fibre increase
561 7.7%, $p=0.100$; type I fibre CSA increase: 8.7%, $p=0.131$; type II fibre CSA increase: 5.7%,
562 $p=0.269$). Similarly, the minimum Feret diameter, which is indicative of the circularity of the fibre
563 and robust against experimental errors such as the orientation of the fibre upon cutting and
564 therefore a more reliable indication of fibre CSA, increased by 4% but did not reach statistical
565 significance ($p=0.056$). The percentage of type I and type II fibres did not change with training
566 (Figure 1D-F) ($p=0.725$). Representative images are shown in Figure 1G-J.

567 3.3 *Effect of 12 weeks of resistance training on androgen receptor protein content,
568 phosphorylation status and nuclear localisation*

569 Twelve weeks of resistance training did not induce any change in the protein ($p=0.672$) content
570 of the androgen receptor (Figure 2A), or its phosphorylation status at either serine residue 213 (p-
571 AR^{ser213}, $p=0.730$; Figure 2B) or serine residue 650 (p-AR^{ser650}, $p=0.750$; Figure 2C). AR mRNA
572 expression also did not change with 12 weeks of resistance training (FDR=0.956; Figure 2D).
573 Similarly, 12 weeks of resistance training did not induce any change in nAR *in vivo*. This was
574 shown in both the ratio of nAR to total AR stain (nAR/AR ratio; Figure 2E) and the percentage of
575 nuclei that were AR positive (%AR+; Figure 2F).

576

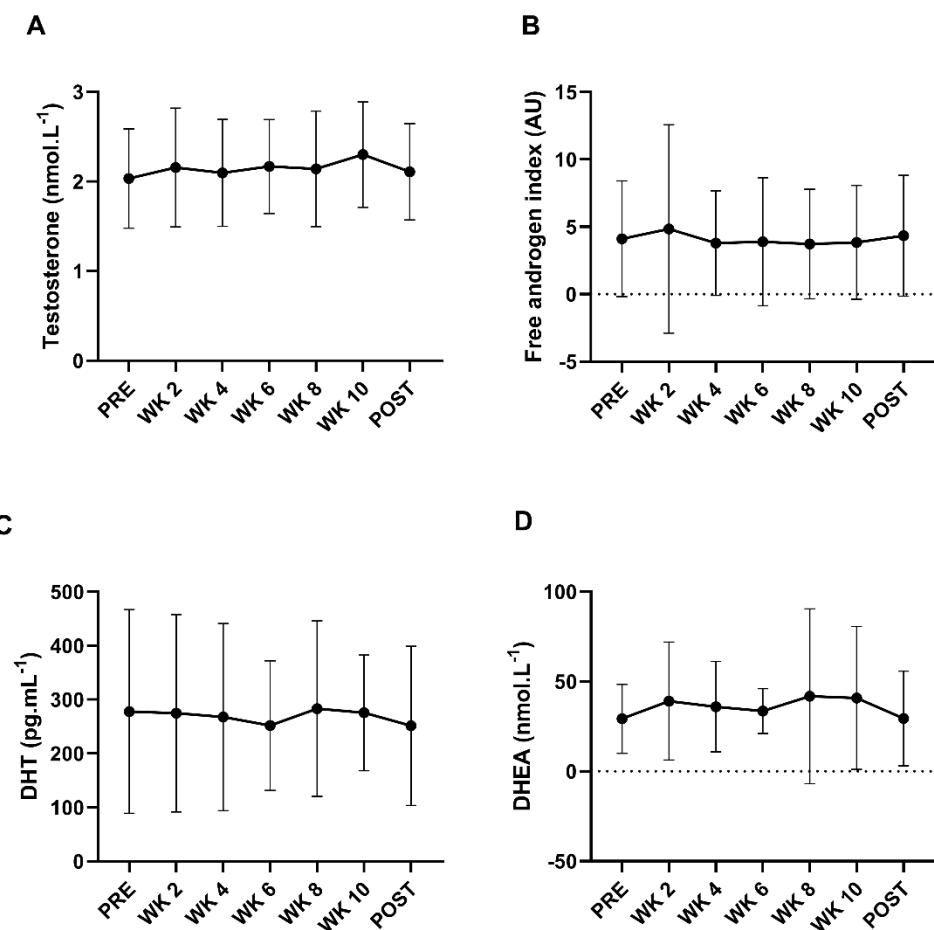
577 **Figure 2.** The protein content of A) total AR protein, B) p-AR^{ser213}, C) p-AR^{ser650}, D) AR mRNA expression
578 (n=27), E) the percentage of AR+ nuclei or F) the nAR/AR ratio (n=10 participants) before and after 12 weeks
579 of resistance training in previously untrained, pre-menopausal females. Western blots for each protein are
580 presented beside the corresponding graph. Pre-training (PRE) values are indicated by clear bars and post-
581 training (POST) values are indicated by dark bars. G) Representative composite image of a muscle section
582 stained with DAPI (cyan; stains the nucleus), wheat germ agglutinin (blue; stains the sarcolemma) and α-
583 AR (green) at 40x magnification. H) Representative image of α-AR (green) stain at 40x magnification. Scale
584 for representative images is $0.62 \mu\text{m} \cdot \text{pixel}^{-1}$. White scale bar represents 100 μm. n=5-10 images per


585 section, average 29.9 ± 8.6 fibres per image. Data were analysed via two-way, paired t-tests. Values are
586 represented as mean \pm SD.

587 **3.4 Effect of 12 weeks of resistance training on molecular markers of protein synthesis and**
588 **degradation**

589 Twelve weeks of resistance training increased the levels of muscle protein synthesis signalling
590 molecules total Akt protein by 13% ($p<0.05$) (Figure 3A). There was no change in the basal total
591 or phospho-protein content of other markers of protein synthesis or degradation p-Akt^{ser473}
592 ($p=0.972$), mTORC1 ($p=0.365$), p-mTORC1^{ser2448} ($p=0.976$), MAPK ($p=0.330$), p-MAPK<sup>thr202/tyr204
593 ($p=0.191$), rpS6 ($p=0.890$), p-rpS6^{ser235/236} ($p=0.533$), 4E-PB1 ($p=0.830$), p-4E-PB1^{thr37/46} ($p=0.977$),
594 and MuRF1 (TRIM63) ($p=0.209$) (Supplementary Figure 5).</sup>

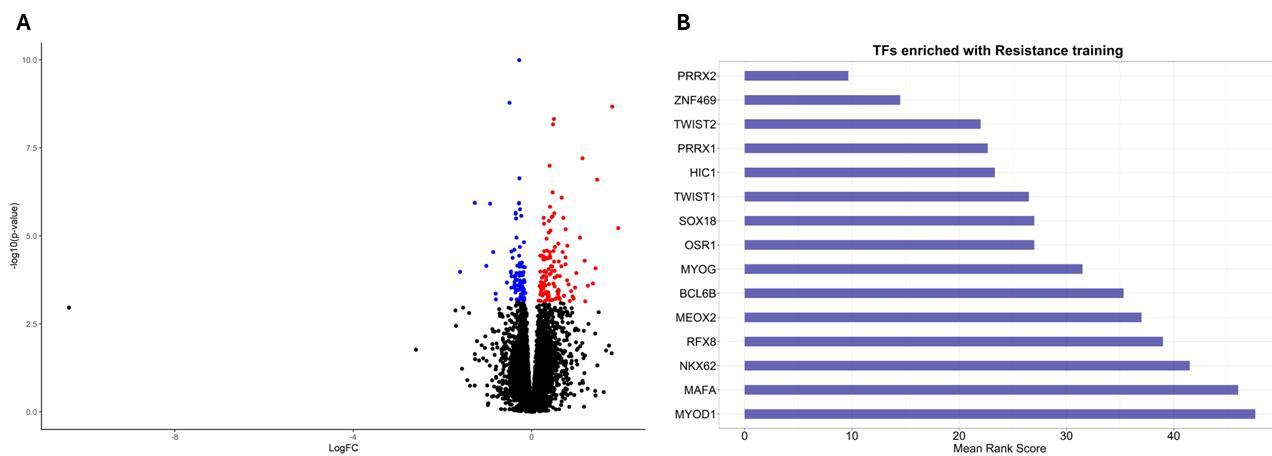
595 mRNA expression of *RPS6KC1* mRNA increased by 11% (FDR<0.01; Figure 3B). There was no
596 change in the mRNA levels of protein degradation markers *TRIM63* (FDR=0.688), *FBXO32*
597 (FDR=0.757), *TRAF6* (FDR=0.443), *FOXO1* (FDR=0.430) or *FOXO3* (FDR=0.268) (Supplementary
598 Figure 5).


599

600 **Figure 3.** (A) total Akt protein and (B) *RPS6Kc1* mRNA before and after 12 weeks of resistance training in
601 pre-menopausal, previously untrained females ($n=27$). Representative Western blots for total Akt are
602 presented beside the corresponding graph. Pre-training (PRE) values are indicated by clear bars and post-
603 training (POST) values are indicated by dark bars. Values are represented as mean \pm SD.

604 3.5 *Effect of 12 weeks of resistance training on plasma and urine sex hormone concentrations*

605 The average plasma testosterone concentration at baseline was $2.0 \pm 0.6 \text{ nmol}\cdot\text{L}^{-1}$, ranging
606 between 1.1 and $3.1 \text{ nmol}\cdot\text{L}^{-1}$. Twelve weeks of resistance training did not change the plasma
607 levels of testosterone, DHT, DHEA or the FAI (Figure 4A-D). The androgen profile from urine
608 measured via LC-MS, which included testosterone, epitestosterone, androsterone,
609 etiocholanolone, 5 α -adiol, 5 β -adiol, DHEA and DHT, did not change across 12 weeks of
610 resistance training and confirmed what was observed in plasma (Supplementary Figure 6). As
611 circulating hormones directly reflect the form that is utilised by the muscle, plasma hormone
612 concentrations were used over urine concentrations in all further analyses. Since there were no
613 training-induced changes at any time point, the AUC of these hormones, which is indicative of
614 the total exposure to this hormone during the 12-week training period, was used in subsequent
615 analyses, where stated.


616

617 **Figure 4.** Twelve weeks of resistance training did not affect concentrations of (A) total testosterone ($\text{nmol}\cdot\text{L}^{-1}$),
618 (B) the free androgen index (FAI; AU), (C) dihydrotestosterone (DHT; $\text{pg}\cdot\text{mL}^{-1}$) or (D)

619 dehydroepiandrosterone (DHEA; nmol·L⁻¹) in plasma of previously untrained, pre-menopausal females
620 (n=27). Data were analysed using a one-way ANOVA. Values are represented as mean ± SD.

621 **3.6 Effect of 12 weeks of resistance training on the muscle transcriptomic profile**

622 Two hundred and fourteen transcripts were differentially expressed between pre- and post-
623 training (122 up-regulated, 92 down-regulated, *FDR*<0.05) (Figure 5A). We then investigated the
624 putative role of androgens in the regulation of the muscle transcriptome, by conducting
625 transcription factor enrichment (TF) analysis on the differentially expressed genes using the
626 mean rank integration method to rank the most enriched TFs. The top-15 TFs included muscle-
627 specific transcription factors MYOG, MYOD1 and MEOX2 (Figure 5B). The AR was ranked 284 of
628 1632 TFs ranked, indicating that the androgen receptor and its binding to androgen response
629 elements (ARE) may only play a minor role, if any, in the female global muscle transcriptomic
630 response to anabolic stimulation. In line with this finding, none of the 14,979 individual detected
631 transcripts were significantly associated with total testosterone concentrations.

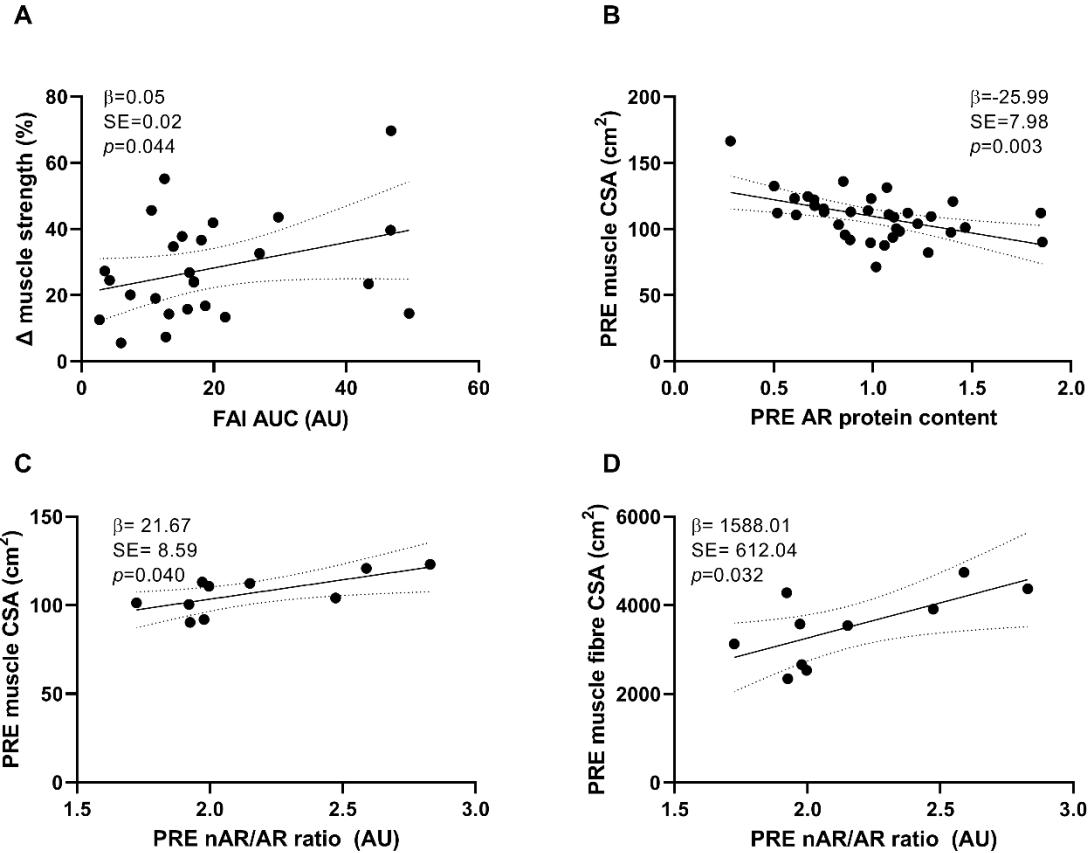
632 **Figure 5.** (A) Volcano Plot displaying 122 up-regulated and 92 down-regulated transcripts in response to
633 12 weeks of resistance training in pre-menopausal females (n=35 pre-training, 27 post training). Each point
634 represents a transcript. Red points indicate an increase in mRNA expression following exercise. Blue
635 points indicate a decrease in mRNA expression following exercise. Black dots represent genes which were
636 not significantly differentially expressed. Significance was set at a false discovery rate (FDR) adjusted p
637 value <0.05. (B) Top-15 transcription factors regulating the differentially expressed genes were ranked
638 according to ChIP-X enrichment analysis 3 (ChEA3) using the mean rank integration method. Significance
639 was set at FDR adjusted p value <0.05.

640 3.7 *Associations between androgen hormone concentrations and muscle strength, size and*
641 *power pre- and post-training*

642 We next used linear models to test the association between baseline androgen concentrations,
643 or total exposure to androgens during the 12-week training period, and baseline or training-
644 induced changes in muscle size and function, respectively. AIC tests were used to identify the
645 moderators to be included in each model. There was no evidence of an association between
646 baseline total testosterone and pre-training muscle strength ($p=0.445$), CSA ($p=0.417$), power
647 ($p=0.929$) and fibre CSA ($p=0.147$). Similarly, there was no evidence of an association between
648 the AUC of testosterone (indicative of the total exposure to testosterone across 12 weeks) and
649 the training-induced changes in muscle CSA ($p=0.969$), strength ($p=0.744$), power ($p=0.279$) and
650 muscle fibre CSA ($p=0.534$) (Table 2). These results were replicated with testosterone precursor
651 and metabolite DHEA and DHT, respectively (all p -values >0.05) (Supplementary Table 3).

652 The same model was then used to investigate the association between the FAI, indicative of the
653 amount of bioavailable testosterone, and whole thigh muscle CSA, strength, power and fibre
654 CSA. There was no evidence of an association between pre-training FAI and muscle CSA,
655 strength, fibre CSA and power at baseline (Table 2). The AUC of the FAI across 12-weeks of
656 resistance training was positively associated to the changes in muscle strength ($\beta=0.05$,
657 $SE=0.02$, $p=0.044$) that occurred with 12 weeks of resistance training (Figure 6A).

658 There were no correlations between total testosterone or the FAI and total or phospho-protein
659 content of markers of protein synthesis Akt, mTOR, MAPK, rpS6 or 4E-BP1 before or after 12
660 weeks of resistance training (data not shown).


661

662 **Table 2.** *Linear mixed models of the association between total testosterone, the free androgen index, and*
663 *markers of AR signalling and muscle size, strength and power before and after 12 weeks of resistance*
664 *training in pre-menopausal females. n=35 pre-training, 27 change with training.*

PRE-TRAINING					Δ% CHANGE WITH TRAINING				
Variable	β	SE	p	Model adjusted for	Variable	β	SE	p	Model adjusted for
TOTAL TESTOSTERONE					TESTOSTERONE AUC				
pre-training muscle CSA	-5.18	6.30	0.417	Pre-training E2	Δ% muscle CSA	0.00	0.00	0.207	E2 AUC
pre-training thigh muscle strength	0.25	0.32	0.445	Pre-training E2	Δ% thigh muscle strength	0.00	0.01	0.744	E2 AUC
pre-training muscle power	0.30	3.44	0.929	Pre-training E2	Δ% muscle power	0.02	0.02	0.279	-
pre-training muscle fibre CSA	514.20	336.10	0.147	-	Δ% muscle fibre CSA	0.08	0.12	0.534	-
FREE ANDROGEN INDEX					FREE ANDROGEN INDEX AUC				
pre-training muscle CSA	-1.05	3.05	0.734	Pre-training E2	Δ% muscle CSA	0.00	0.01	0.799	E2 AUC
pre-training thigh muscle strength	0.29	0.15	0.095	Pre-training E2	Δ% thigh muscle strength	0.05	0.02	0.044*	E2 AUC
pre-training muscle power	0.98	1.33	0.469	-	Δ% muscle power	-0.01	0.05	0.912	E2 AUC
pre-training muscle fibre CSA	2.94	159.2	0.985	-	Δ% muscle fibre CSA	0.03	0.03	0.378	E2 AUC

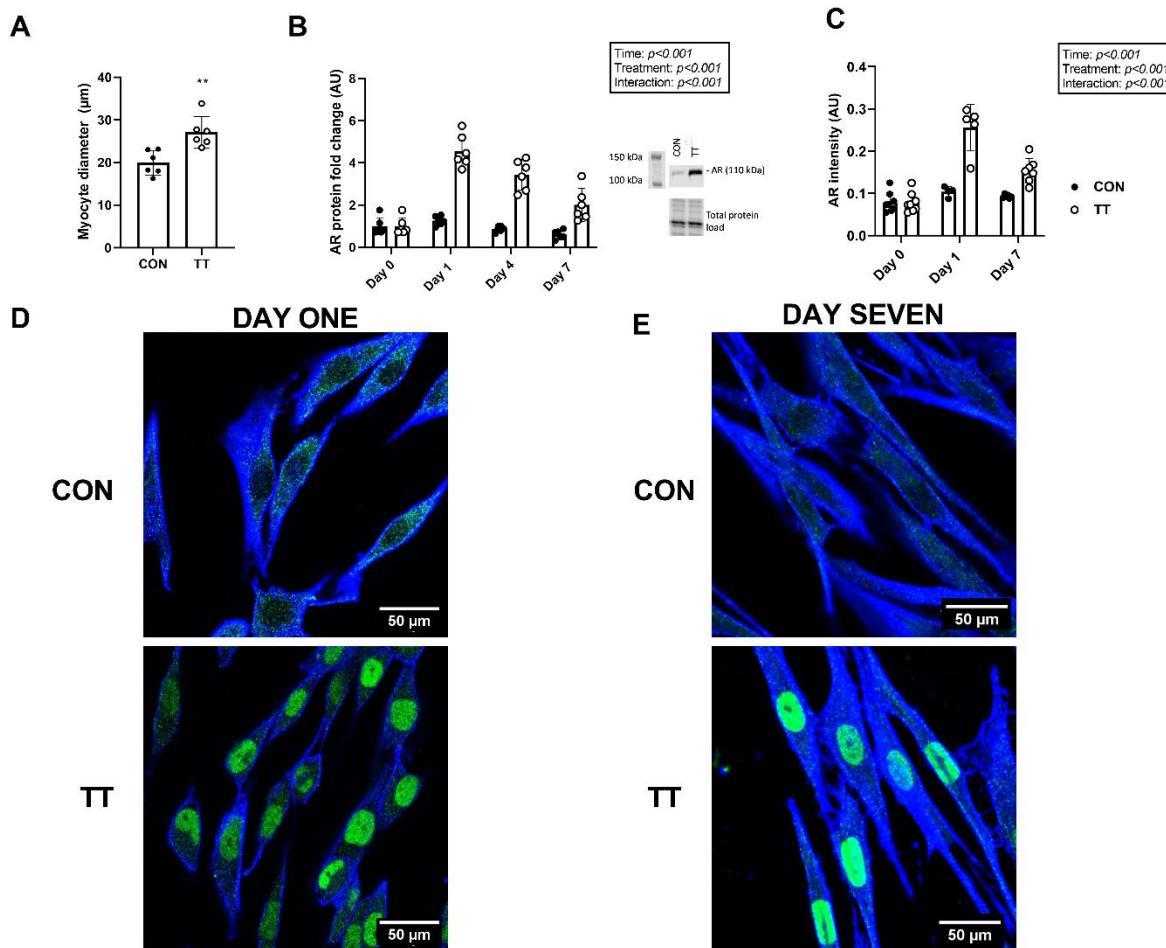
AR PROTEIN CONTENT					AVERAGE AR PROTEIN CONTENT				
pre-training muscle CSA	-25.99	7.98	0.003*	Pre-training TT	Δ% muscle CSA	0.01	0.04	0.202	TT AUC
pre-training thigh muscle strength	0.26	0.44	0.561	Pre-training TT	Δ% thigh muscle strength	0.01	0.09	0.943	TT AUC
pre-training muscle power	5.45	5.09	0.292	Pre-training TT	Δ% muscle power	-0.08	0.194	0.688	TT AUC
pre-training muscle fibre CSA	-552.7	522.9	0.305	-	Δ% muscle fibre CSA	-0.02	0.13	0.081	-
PRE-TRAINING nAR/AR RATIO					AVERAGE nAR/AR RATIO				
pre-training muscle CSA	21.67	8.59	0.040*	Pre-training E2	Δ% muscle CSA	-0.16	2.36	0.949	E2 AUC
pre-training thigh muscle strength	0.71	1.21	0.266	Pre-training E2	Δ% thigh muscle strength	-0.18	0.27	0.529	E2 AUC
pre-training muscle power	-9.50	4.42	0.075	Pre-training E2	Δ% muscle power	-0.17	0.36	0.655	E2 AUC
pre-training muscle fibre CSA	1588.01	612.04	0.032*	-	Δ% muscle fibre CSA	0.01	0.28	0.974	-

665 * indicates $p<0.05$. CSA: cross sectional area, E2: oestradiol, AUC: area under the curve, AR: androgen receptor,

666 **Figure 6.** Linear associations between A) the free androgen index area under the curve (FAI AUC; AU) and
667 the changes in muscle strength, (B) baseline AR protein content (AU) and baseline thigh muscle CSA (cm^2)
668 (C) pre-training nAR/AR ratio (AU) and pre-training muscle CSA (cm^2) and (D) pre-training nAR/AR ratio (AU)
669 and pre-training mixed muscle fibre CSA (cm^2) in pre-menopausal females. Dashed lines represent 95%
670 confidence intervals.

671 3.8 Associations between androgen receptor content and phosphorylation and muscle
672 strength, size and power

673 In young males, the protein content of the androgen receptor (AR) is positively associated with
674 resistance training-induced hypertrophy (Morton *et al.*, 2018). We therefore tested the
675 association between the total or phospho-protein content of the AR and muscle CSA, strength,
676 power and fibre CSA prior to, or in response to a 12-week resistance training program. Total
677 androgen receptor content was negatively associated with thigh muscle CSA pre-training ($\beta=-$
678 25.99, $SE=7.98$, $p=0.003$; Table 2, Figure 6B), but this association was not maintained after
679 resistance training. There was no significant association between the phospho-AR content and
680 any outcomes at any time point (Supplementary Table 3).


681 3.9 *Associations between androgen receptor nuclear localisation and muscle strength, size*
682 *and power*

683 Linear models assessed the association between AR cellular localisation and muscle mass,
684 strength and power prior to, or in response to a 12-week resistance training program (Table 2).
685 The ratio of nAR to total AR intensity (nAR/AR ratio) was positively associated with whole muscle
686 CSA ($\beta=21.67$, SE=8.59, $p=0.04$; Figure 6C) and muscle fibre CSA ($\beta=1588.01$, SE=612.04,
687 $p=0.032$; Figure 6D), but not strength or power pre-training. There were no significant
688 associations between the nAR/AR ratio and resistance-training induced changes in muscle
689 mass, strength or power (Table 2). There were trends ($p=0.05-0.08$) for the percentage of nuclei
690 that were AR+ to be positively associated with pre-training muscle CSA, strength and myofibre
691 CSA, but these did not reach statistical significance (Supplementary Table 3).

692 3.10 *Testosterone treatment increases female human primary myotube diameter through the*
693 *nuclear translocation of the AR but does not activate the Akt/mTOR pathway*

694 To further examine whether testosterone plays a direct, regulatory role in female skeletal muscle,
695 we cultured human primary myocytes from 6 donor participants from the human study. Seven
696 days of testosterone treatment increased myotube diameter by 37% compared to a vehicle
697 control ($p<0.01$) and increased total AR protein content by over 4-fold, 3-fold and 2-fold after 1,
698 4 and 7 days of testosterone treatment, respectively ($p<0.001$; Figure 7A-B). This result was
699 replicated using immunohistochemical staining, where the intensity of the AR (indicative of AR
700 content) was significantly greater after 1 and 7 days of testosterone treatment, compared to a
701 vehicle control ($p<0.01$; Figure 7C.) However, the protein content of Akt, p-Akt, mTOR, p-mTOR
702 and p-MAPK did not change with testosterone treatment at any time point, despite their
703 expression levels fluctuating across the differentiation time course ($p<0.05$; Supplementary
704 Figure 7). Instead, immunohistochemical staining showed that, in myocytes treated with a
705 vehicle control, the AR is distributed throughout the cytosol of the cell with no or little nuclear
706 localisation (Figure 7D, upper panel). After 24 hours of 100 nM testosterone treatment, there was
707 a striking translocation of the AR to the nucleus of myoblasts (Figure 7D, lower panel) paralleled
708 by an increase in AR protein content in the cell. The AR protein then remained in the nucleus
709 across the 7 days of differentiation of the testosterone treated myotubes (Figure 7E).

710

711 **Figure 7.** Testosterone treatment over 7 days of differentiation increased (A) myotube diameter, (B) AR
712 protein content and (C) AR intensity relative to the proportion of the visual field occupied by myocytes. AR
713 cellular localisation in primary muscle cell lines treated with vehicle (CON) or 100 nM testosterone (TT)
714 after D) 1 day or E) 7 days of treatment ($n=6$ female donors). Phalloidin (stains actin) appears in blue. AR
715 appears in green. Scale is $0.25 \mu\text{m}\cdot\text{pixel}^{-1}$ for all images. White scale bar represents 50 μm. Data were
716 analysed using two-tailed, paired t-tests and two-way ANOVA. Values are represented mean \pm SD.
717 **indicates $p<0.01$.

718 4. Discussion

719 We showed that total testosterone was not associated with muscle CSA, strength, power or the
720 muscle anabolic response to 12 weeks of resistance training in pre-menopausal females.
721 Transcriptomic data support the hypothesis that androgen genomic signalling, via the androgen
722 response element, does not play a significant role in determining the muscle transcriptomic
723 profile pre- or post-resistance training. In contrast, the bioavailable fraction of testosterone and
724 the nAR/AR ratio were positively associated with muscle mass and strength at baseline, but not

725 with resistance-training induced changes in muscle mass or strength. These findings shed light
726 on the limited body of knowledge regarding the role of testosterone in the regulation of female
727 skeletal muscle.

728 Our results demonstrate that total testosterone is not a direct determinant of muscle mass,
729 strength, or the muscle response to anabolic stimulation in pre-menopausal females. These
730 results are in accordance with previous cross-sectional data showing that total testosterone is
731 not associated with muscle mass or strength in pre- and post-menopausal females (Gower &
732 Nyman, 2000; Carmina *et al.*, 2009; van Geel *et al.*, 2009; Pöllänen *et al.*, 2011; Rariy *et al.*, 2011;
733 Kogure *et al.*, 2015). While there is some cross-sectional evidence of a positive relationship
734 between testosterone and muscle mass in males (Mouser *et al.*, 2016), there is also no
735 relationship between testosterone and resistance-training induced adaptations in training in
736 males (Morton *et al.*, 2016; Morton *et al.*, 2018). These results suggest that the association
737 between testosterone and skeletal muscle differs between endogenous and exogenous
738 testosterone. We posit that there are only positive associations between total testosterone and
739 muscle mass and function when homeostasis is perturbed and concentrations are manipulated
740 pharmacologically to above (Ferrando *et al.*, 1998; Sheffield-Moore *et al.*, 1999; Bhasin *et al.*,
741 2001; Sinha-Hikim *et al.*, 2004; Hirschberg *et al.*, 2020) or below (Mauras *et al.*, 1998; Overkamp
742 *et al.*, 2023) physiological concentrations in both males and females.

743 The bioavailable fraction of testosterone measured via the FAI was positively associated with
744 resistance training-induced muscle strength, suggesting that the bioavailable rather than the
745 total fraction of testosterone may play a regulatory role in the anabolic response of female
746 skeletal muscle. In line with these findings, the FAI was positively associated with resistance
747 training-induced thigh muscle hypertrophy in a small study of pre-menopausal females ($n=5$)
748 (Häkkinen *et al.*, 1992), and to muscle mass in a large cross-sectional cohort of pre-menopausal
749 females conducted by our group ($n=706$) (Alexander *et al.*, 2021). However, it is important to bear
750 in mind that the effect sizes in this study and our previous work were small ($\beta=0.05$ and 0.01,
751 respectively). While the association was significant, the bioavailable fraction of testosterone
752 only explains a small proportion of the variance in muscle mass in pre-menopausal females.

753 We show, for the first time, a negative association between total AR protein content and whole
754 muscle CSA in pre-menopausal females. This is in contrast to males, where the AR protein
755 content was positively associated with resistance training-induced hypertrophy and strength in
756 healthy young (Ahtiainen *et al.*, 2011; Mitchell *et al.*, 2013; Morton *et al.*, 2018) and older
757 (Ahtiainen *et al.*, 2011) males, further suggesting sex-specific differences in the role of the AR in

758 skeletal muscle regulation. In support of this finding, male AR knockout (ARKO) mice displayed
759 significant reductions in muscle mass and strength compared to their wildtype littermates
760 (MacLean *et al.*, 2008). Conversely, female ARKO mice did not display any differences in muscle
761 mass or strength compared to their wildtype controls (MacLean *et al.*, 2008), further
762 demonstrating sex-specific differences in the role of the AR in the maintenance of muscle mass
763 and function. We also confirm that resistance training does not affect AR protein content,
764 phosphorylation status or nuclear localisation in female skeletal muscle, in agreement with
765 previous work showing no change in AR protein content or nuclear localisation following 10
766 weeks of resistance training (n=13 females) (Hatt *et al.*, 2024). Males, in contrast, display
767 significant increases in both AR protein content and nuclear localisation after the same
768 resistance training program (Hatt *et al.*, 2024), suggesting further sex-specific AR regulation with
769 chronic resistance exercise.

770 The proportion of AR localised to the nucleus (nAR/AR ratio) was positively associated with
771 muscle size at both the fibre and whole-muscle level. Therefore, the ability to recruit the AR and
772 translocate it to the nucleus rather than total AR content or testosterone concentrations may be
773 more physiologically relevant to the maintenance of muscle mass in females. Taken together,
774 these results point towards a negative feedback loop between total AR and muscle mass
775 regulation. The positive association between nAR/AR and muscle size suggests that individuals
776 with increased AR sensitivity, and therefore a greater ability to recruit and translocate AR to the
777 nucleus, may require less total AR protein content to maintain their muscle mass. This is
778 supported by our *in vitro* findings showing that, after an initial increase in total AR protein content
779 with testosterone treatment, AR protein content begins to return to baseline levels after 4 and 7
780 days of treatment. Despite this decrease in total AR protein content, the amount of AR in the
781 nucleus was sustained across 7 days of treatment, suggesting a negative regulation of the AR by
782 testosterone or with increased AR sensitivity.

783 Our data showing a rapid increase in AR protein content and nAR within 24 hours of testosterone
784 treatment *in vitro* are in line with previous findings showing that 6 days of testosterone treatment
785 increased AR protein content in primary muscle cell cultures from male donors *in vitro* (Sinha-
786 Hikim *et al.*, 2004) and in muscle biopsies obtained from healthy, young males *in vivo* (n=6) after
787 20 weeks of treatment with 600 mg·week⁻¹ testosterone (Sinha-Hikim *et al.*, 2004). Taken
788 together, our data and others indicate that testosterone treatment primarily increases myotube
789 diameter through genomic AR signalling and induces a marked and sustained translocation of
790 the AR into myonuclei *in vitro* and *in vivo* (Bhasin *et al.*, 2001), rather than non-genomic signalling

791 pathways such as the Akt/mTOR or MAPK as previously suggested (Wu *et al.*, 2010; Basualto-
792 Alarcón *et al.*, 2013; White *et al.*, 2013).

793 No markers of protein synthesis or degradation were associated with total or bioavailable
794 testosterone in our human cohort. This is mirrored by our findings that testosterone treatment
795 did not promote Akt/mTOR or MAPK signalling in myocytes taken from female donors, despite
796 significant increases in myotube diameter with testosterone treatment. In support of this,
797 exogenous testosterone administration did not change molecular regulators of muscle mass and
798 mitochondrial biosynthesis, including markers of mTOR signalling from resting biopsies in males
799 ($n=50$) (Howard *et al.*, 2020) and females ($n=48$) (Horwath *et al.*, 2022) *in vivo*, or female primary
800 myocytes *in vitro* (Pataky *et al.*, 2023). Instead, testosterone administration to primary myotubes
801 from female donors induced changes of proteins within the sarcoplasmic compartment,
802 including myosin and titin, both of which play important roles in the contractile apparatus and
803 muscle hypertrophy (Pataky *et al.*, 2023). This suggests that, in contrast to *in vitro* data from rat
804 (Wu *et al.*, 2010; White *et al.*, 2013) and murine (Basualto-Alarcón *et al.*, 2013) myocytes, the
805 primary mechanism of action of testosterone in humans may not be through the upregulation of
806 the mTOR pathway. Instead, the changes in lean mass seen with exogenous testosterone
807 administration in males (Bhasin *et al.*, 2001; Howard *et al.*, 2020) and females (Horwath *et al.*,
808 2022) may stem from a net positive protein turnover in favour of protein accretion driven by an
809 increase in the genomic signalling of the AR rather than through activation of the Akt/mTOR non-
810 genomic signalling pathways. This genomic signalling may lead to an increase in transcription of
811 target genes and eventually in translational capacity, as evidenced by increases in total ribosome
812 number (Mobley *et al.*, 2018) and muscle RNA content (Howard *et al.*, 2020).

813 **4.1 Limitations**

814 While this study included 4 participants (~15%) who had been diagnosed with polycystic ovary
815 syndrome (PCOS), there was only 1 participant who consistently had total testosterone
816 concentrations above the typical female reference range (testosterone levels >2.5 nmol·L $^{-1}$
817 (Burger, 2002)). This limited range of testosterone concentrations restrict the generalisability of
818 these results. Our previous research (Alexander *et al.*, 2021) suggests that the association
819 between the FAI and lean mass is not linear but quadratic in nature, where the association
820 plateaus and eventually becomes negative with increasing testosterone concentrations.
821 Including females with a wider range of testosterone levels, including hyperandrogenic females
822 and individuals with DSD, would increase the generalisability of our findings and allow to validate

823 the association between testosterone and muscle across a larger spectrum of androgen
824 concentrations.

825 **4.2 Conclusions**

826 Our results suggest that, rather than total circulating testosterone concentrations, an
827 individual's sensitivity to bioavailable androgens and their ability to recruit the AR to the nucleus
828 plays a significant role in the maintenance of muscle mass and strength in pre-menopausal
829 females. This suggests that findings from studies demonstrating a large anabolic effect of
830 testosterone administration on muscle are not generalisable to the association between
831 endogenous testosterone concentrations and muscle mass and function and should therefore
832 be interpreted with caution.

833 **Availability of data and materials**

834 All RNA sequencing data generated or analysed during this study are included in this published article,
835 its supplementary information files and publicly available repositories (GEO: link pending). The R code
836 used for the analysis is available at https://github.com/DaniHiam/TESTO_RNAseq

837 **Acknowledgments**

838 SeL received the protein supplement used in this study as in-kind payment for consulting work
839 performed for Ascent Protein, Denver. The authors would like to acknowledge and thank Dr Raul
840 Nicoli, Dr Carine Schweizer and Dr Tia Kuuranne of the Swiss Laboratory for Doping Analysis for
841 their contribution to the hormone analysis and feedback on the document. The authors also wish
842 to thank Dr Jessica Silver and Ms Ashwinder Kaur Goshel for their help delivering the training
843 program. Finally, we would like to thank all our participants.

844 **Funding**

845 This study is part of a larger study supported by an International Olympic Committee Medical and
846 Scientific Research Fund awarded to SeL. SeL is supported by an Australian Research Council
847 Future Fellowship (FT10100278).

848 **Authors' contributions**

849 SEA was involved in the design and conception of the study, and performed data collection,
850 laboratory and scientific analyses and preparation the manuscript. OEK was involved in the
851 design of the training program and the delivery of the training program. RMW was involved with

852 laboratory and statistical analyses. BG and KF were involved with data collection. PJ performed
853 body composition scans. PDG was involved with laboratory analyses and the design of the *in vitro*
854 experiments. AG performed all muscle biopsies. SeL was involved in the design and conception
855 of the studies and preparation of the manuscript. DH performed statistical and transcriptomic
856 analyses. GDW and BA were involved in the design and conception of the study. All authors
857 contributed to the editing and reviewing of the manuscript. All authors approved the manuscript
858 in its final form.

859 **Competing interests**

860 The authors declare no competing interests.

861

862

863 **References**

864 Abadie BR & Wentworth MC. (2000). Prediction of one repetition maximal strength from a 5-10
865 repetition submaximal strength test in college-aged females. *Journal of Exercise Physiology
866 Online* **3**.

867

868 Agley CC, Rowlerson AM, Velloso CP, Lazarus NR & Harridge SDR. (2013). Human skeletal muscle
869 fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation. *Journal of Cell
870 Science* **126**, 5610-5625.

871

872 Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Nyman K, Selänne H, Alen M, Pakarinen A, Komulainen J,
873 Kovanen V, Mero AA & Häkkinen K. (2011). Heavy resistance exercise training and skeletal
874 muscle androgen receptor expression in younger and older men. *Steroids* **76**, 183-192.

875

876 Alexander SE, Abbott G, Aisbett B, Wadley GD, Hnatiuk JA & Lamon S. (2021). Total testosterone is not
877 associated with lean mass or handgrip strength in pre-menopausal females. *Scientific Reports*
878 **11**, 10226.

879

880 Alexander SE, Pollock AC & Lamon S. (2022). The effect of sex hormones on skeletal muscle adaptation
881 in females. *Eur J Sport Sci* **22**, 1035-1045.

882

883 Exercise and Sports Science Australia. (2019). Adult pre-exercise screening system.

884

885 Barbieri D, Zaccagni L, Babić V, Rakovac M, Mišigoj-Duraković M & Gualdi-Russo E. (2017). Body
886 composition and size in sprint athletes. *J Sports Med Phys Fitness* **57**, 1142-1146.

887

888 Barter RL & Yu B. (2018). Superheat: An R package for creating beautiful and extendable heatmaps for
889 visualizing complex data. *Journal of Computational and Graphical Statistics* **27**, 910-922.

890

891 Basualto-Alarcón C, Jorquera G, Altamirano F, Jaimovich E & Estrada M. (2013). Testosterone signals
892 through mTOR and androgen receptor to induce muscle hypertrophy. *Medicine and science in
893 sports and exercise* **45**, 1712-1720.

894

895 Bergstrom J. (1962). Muscle electrolytes in man. *Scandinavian Journal of Clinical and Laboratory
896 Investigation* **14**, 511-513.

897

898 Berns EM, de Boer W & Mulder E. (1986). Androgen-dependent growth regulation of and release of
899 specific protein(s) by the androgen receptor containing human prostate tumor cell line LNCaP.
900 *Prostate* **9**, 247-259.

901

902 Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X, Yarasheski KE, Magliano L,
903 Dzekov C, Dzekov J, Bross R, Phillips J, Sinha-Hikim I, Shen R & Storer TW. (2001). Testosterone
904 dose-response relationships in healthy young men. *American Journal of Physiology-Endocrinology and Metabolism* **281**, E1172-E1181.

906

907 Borg G. (1982a). A category scale with ratio properties for intermodal and interindividual comparisons.
908 *Psychophys Judg Proc Percept* 25-34.

909

910 Borg GA. (1982b). Psychophysical bases of perceived exertion. *J Med Sci Sports Exerc* **14**, 377-381.

911

912 Burger HG. (2002). Androgen production in women. *Fertility and Sterility* **77**, 3-5.

913

914 Carmina E, Guastella E, Longo RA, Rini GB & Lobo RA. (2009). Correlates of increased lean muscle mass
915 in women with polycystic ovary syndrome. *European journal of endocrinology* **161**, 583-589.

916

917 Informed Choice (2021). Informed Choice Certification Process.
918 <https://choice.wetestyourtrust.com/about/certification-process>

919

920 Colenso-Semple LM, D'Souza AC, Elliott-Sale KJ & Phillips SM. (2023). Current evidence shows no
921 influence of women's menstrual cycle phase on acute strength performance or adaptations
922 to resistance exercise training. *Front Sports Act Living* **5**, 1054542.

923

924 de Launoit Y, Veilleux R, Dufour M, Simard J & Labrie F. (1991). Characteristics of the biphasic action
925 of androgens and of the potent antiproliferative effects of the new pure antiestrogen EM-139
926 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. *Cancer Res* **51**, 5165-
927 5170.

928

929 Dent JR, Fletcher DK & McGuigan MR. (2012). Evidence for a Non-Genomic Action of Testosterone in
930 Skeletal Muscle Which may Improve Athletic Performance: Implications for the Female
931 Athlete. *J Sports Sci Med* **11**, 363-370.

932

933 Dunstan J. (2021). Melbourne marks 200 days of COVID-19 lockdowns since the pandemic began. In
934 *ABC news*. Melbourne.

935

936 Durinck S, Spellman PT, Birney E & Huber W. (2009). Mapping identifiers for the integration of genomic
937 datasets with the R/Bioconductor package biomaRt. *Nature protocols* **4**, 1184-1191.

938

939 Elliott-Sale KJ, Minahan CL, de Jonge X, Ackerman KE, Sipilä S, Constantini NW, Lebrun CM & Hackney
940 AC. (2021). Methodological Considerations for Studies in Sport and Exercise Science with
941 Women as Participants: A Working Guide for Standards of Practice for Research on Women.
942 *Sports Med* **51**, 843-861.

943

944 Eriksen MB, Glintborg D, Nielsen MF, Jakobsen MA, Brusgaard K, Tan Q & Gaster M. (2014).
945 Testosterone treatment increases androgen receptor and aromatase gene expression in
946 myotubes from patients with PCOS and controls, but does not induce insulin resistance.
947 *Biochemical and biophysical research communications* **451**, 622-626.

948

949 Estrada M, Espinosa A, Müller M & Jaimovich E. (2003). Testosterone stimulates intracellular calcium
950 release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal
951 muscle cells. *Endocrinology* **144**, 3586-3597.

952

953 Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J & Wolfe RR. (1998). Testosterone injection
954 stimulates net protein synthesis but not tissue amino acid transport. *Am J Physiol* **275**, E864-
955 871.

956

957 Gower BA & Nyman L. (2000). Associations among oral estrogen use, free testosterone concentration,
958 and lean body mass among postmenopausal women. *J Clin Endocrinol Metab* **85**, 4476-4480.

959

960 Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain
961 François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn, Thomas Lin
962 Pedersen, Evan Miller, Stephan Milton Bache, Kirill Müller, Jeroen Ooms, David Robinson,
963 Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke, Kara Woo &
964 Yutani H. (2019). Welcome to the Tidyverse. *Journal of Open Sources Software* **4**, 1686.

965

966 Häkkinen K, Pakarinen A & Kallinen M. (1992). Neuromuscular adaptations and serum hormones in
967 women during short-term intensive strength training. *European Journal of Applied Physiology*
968 and *Occupational Physiology* **64**, 106-111.

969

970 Hatt AA, Kamal M, Mikhail AI, Fortino SA, Wageh M, Kumbhare D & Parise G. (2024). Nuclear-localized
971 androgen receptor content following resistance exercise training is associated with
972 hypertrophy in males but not females. *The FASEB Journal* **38**, e23403.

973

974 Hirschberg AL, Elings Knutsson J, Helge T, Godhe M, Ekblom M, Bermon S & Ekblom B. (2020). Effects
975 of moderately increased testosterone concentration on physical performance in young
976 women: a double blind, randomised, placebo controlled study. *British journal of sports
977 medicine* **54**, 599-604.

978

979 Horne JA & Östberg O. (1976). A self-assessment questionnaire to determine morningness-
980 eveningness in human circadian rhythms. *International Journal of Chronobiology* **4**, 97-110.

981

982 Horwath O, Moberg M, Hirschberg AL, Ekblom B & Apró W. (2022). Molecular Regulators of Muscle
983 Mass and Mitochondrial Remodeling Are Not Influenced by Testosterone Administration in
984 Young Women. *Front Endocrinol (Lausanne)* **13**, 874748.

985

986 Howard EE, Margolis LM, Berryman CE, Lieberman HR, Karl JP, Young AJ, Montano MA, Evans WJ,
987 Rodriguez NR, Johannsen NM, Gadde KM, Harris MN, Rood JC & Pasiakos SM. (2020).
988 Testosterone supplementation upregulates androgen receptor expression and translational
989 capacity during severe energy deficit. *Am J Physiol Endocrinol Metab* **319**, E678-e688.

990

991 Huang G, Basaria S, Travison TG, Ho MH, Davda M, Mazer NA, Miciek R, Knapp PE, Zhang A, Collins L,
992 Ursino M, Appleman E, Dzekov C, Stroh H, Ouellette M, Rundell T, Baby M, Bhatia NN, Khorram
993 O, Friedman T, Storer TW & Bhasin S. (2014). Testosterone dose-response relationships in
994 hysterectomized women with or without oophorectomy: effects on sexual function, body
995 composition, muscle performance and physical function in a randomized trial. *Menopause* **21**,
996 612-623.

997

998 Jay SM, Dawson D & Lamond N. (2006). Train drivers' sleep quality and quantity during extended relay
999 operations. *Chrono Biol Int* **23**, 1241-1252.

1000

1001 Jin HJ, Kim J & Yu J. (2013). Androgen receptor genomic regulation. *Transl Androl Urol* **2**, 157-177.

1002

1003 Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E,
1004 Wang Z & Ma'ayan A. (2019). ChEA3: transcription factor enrichment analysis by orthogonal
1005 omics integration. *Nucleic acids research* **47**, W212-w224.

1006

1007 Knowles OE, Aisbett B, Main LC, Drinkwater EJ, Orellana L & Lamon S. (2019). Resistance Training and
1008 Skeletal Muscle Protein Metabolism in Eumenorrheic Females: Implications for Researchers
1009 and Practitioners. *Sports Med* **49**, 1637-1650.

1010

1011 Kogure GS, Silva RC, Picchi Ramos FK, Miranda-Furtado CL, Lara LA, Ferriani RA & Dos Reis RM. (2015).
1012 Women with polycystic ovary syndrome have greater muscle strength irrespective of body
1013 composition. *Gynecol Endocrinol* **31**, 237-242.

1014

1015 Krakowsky Y & Grober ED. (2015). Testosterone Deficiency - Establishing A Biochemical Diagnosis.
1016 *Ejifcc* **26**, 105-113.

1017

1018 Kuznetsova A, Brockhoff PB & Christensen RHB. (2017). lmerTest Package: Tests in Linear Mixed Effects
1019 Models. *2017* **82**, 26.

1020

1021 Lamon S, Morabito A, Arentson-Lantz E, Knowles O, Vincent GE, Condo D, Alexander SE, Garnham A,
1022 Paddon-Jones D & Aisbett B. (2021). The effect of acute sleep deprivation on skeletal muscle
1023 protein synthesis and the hormonal environment. *Physiological reports* **9**, e14660-e14660.

1024

1025 Leung JK & Sadar MD. (2017). Non-Genomic Actions of the Androgen Receptor in Prostate Cancer.
1026 *Front Endocrinol (Lausanne)* **8**, 2.

1027

1028 Love MI, Huber W & Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-
1029 seq data with DESeq2. *Genome Biology* **15**, 550.

1030

1031 MacLean HE, Chiu WS, Notini AJ, Axell AM, Davey RA, McManus JF, Ma C, Plant DR, Lynch GS & Zajac
1032 JD. (2008). Impaired skeletal muscle development and function in male, but not female,
1033 genomic androgen receptor knockout mice. *Faseb j* **22**, 2676-2689.

1034

1035 Mauras N, Hayes V, Welch S, Rini A, Helgeson K, Dokler M, Veldhuis JD & Urban RJ. (1998).
1036 Testosterone Deficiency in Young Men: Marked Alterations in Whole Body Protein Kinetics,
1037 Strength, and Adiposity. *The Journal of Clinical Endocrinology & Metabolism* **83**, 1886-1892.

1038

1039 McIlvenna LC, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK & Moreno-Asso A. (2021). Transforming
1040 Growth Factor Beta 1 Alters Glucose Uptake but Not Insulin Signalling in Human Primary
1041 Myotubes From Women With and Without Polycystic Ovary Syndrome. *Frontiers in
1042 Endocrinology* **12**.

1043

1044 McLeod M, Breen L, Hamilton DL & Philp A. (2016). Live strong and prosper: the importance of skeletal
1045 muscle strength for healthy ageing. *Biogerontology* **17**, 497-510.

1046

1047 Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK & Phillips SM. (2013). Muscular and
1048 systemic correlates of resistance training-induced muscle hypertrophy. *PLoS One* **8**, e78636.

1049

1050 Mazerolle MJ. (2020). *AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c)*. R
1051 package version 2.3-1, .

1052

1053 Mobley CB, Haun CT, Roberson PA, Mumford PW, Kephart WC, Romero MA, Osburn SC, Vann CG,
1054 Young KC, Beck DT, Martin JS, Lockwood CM & Roberts MD. (2018). Biomarkers associated
1055 with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of
1056 resistance training. *PLoS One* **13**, e0195203.

1057

1058 Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK &
1059 Phillips SM. (2016). Neither load nor systemic hormones determine resistance training-
1060 mediated hypertrophy or strength gains in resistance-trained young men. *Journal of Applied
1061 Physiology* **121**, 129-138.

1062

1063 Morton RW, Sato K, Gallaugher MPB, Oikawa SY, McNicholas PD, Fujita S & Phillips SM. (2018). Muscle
1064 Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance
1065 Training-Induced Skeletal Muscle Hypertrophy in Healthy, Young Men. *Frontiers in Physiology*
1066 **9**.

1067

1068 Mouser JG, Loprinzi PD & Loenneke JP. (2016). The association between physiologic testosterone
1069 levels, lean mass, and fat mass in a nationally representative sample of men in the United
1070 States. *Steroids* **115**, 62-66.

1071

1072 Olea N, Sakabe K, Soto AM & Sonnenschein C. (1990). The proliferative effect of "anti-androgens" on
1073 the androgen-sensitive human prostate tumor cell line LNCaP. *Endocrinology* **126**, 1457-1463.

1074

1075 World Medical Organisation. (2018). WMA Declaration of Helsinki - Ethical principles for medical
1076 research involving human subjects.

1077

1078 Overkamp M, Houben LHP, van der Meer S, van Roermund JGH, Bos R, Kokshoorn APJ, Larsen MS, van
1079 Loon LJC, Beelen M & Beijer S. (2023). Onset of androgen deprivation therapy leads to rapid
1080 deterioration of body composition, physical performance, cardiometabolic health and quality-
1081 of-life in prostate cancer patients. *Scand J Urol* **57**, 60-66.

1082

1083 Pataky MW, Dasari S, Michie KL, Sevits KJ, Kumar AA, Klaus KA, Heppelmann CJ, Robinson MM, Carter
1084 RE, Lanza IR & Nair KS. (2023). Impact of biological sex and sex hormones on molecular
1085 signatures of skeletal muscle at rest and in response to distinct exercise training modes. *Cell
1086 Metabolism* **35**, 1996-2010.e1996.

1087

1088 Pöllänen E, Sipilä S, Alen M, Ronkainen PH, Ankarberg-Lindgren C, Puolakka J, Suominen H,
1089 Hääläinen E, Turpeinen U, Konttinen YT & Kovanen V. (2011). Differential influence of
1090 peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal
1091 women. *Aging Cell* **10**, 650-660.

1092

1093 R Core Team. (2021). R: A Language and Environment for Statistical Computing.

1094

1095 Rariy CM, Ratcliffe SJ, Weinstein R, Bhasin S, Blackman MR, Cauley JA, Robbins J, Zmuda JM, Harris TB
1096 & Cappola AR. (2011). Higher Serum Free Testosterone Concentration in Older Women Is
1097 Associated with Greater Bone Mineral Density, Lean Body Mass, and Total Fat Mass: The
1098 Cardiovascular Health Study. *The Journal of Clinical Endocrinology & Metabolism* **96**, 989-996.

1099

1100 Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, Chibalin AV, Zierath JR, Snow RJ, Stepto N,
1101 Wadley GD & Akimoto T. (2013). Regulation of miRNAs in human skeletal muscle following
1102 acute endurance exercise and short-term endurance training. *591*, 4637-4653.

1103

1104 Fox J, Weisberg S. (2019). *An R companion to Applied Regression*. Sage, Thousand Oaks CA.

1105

1106 Salamin O, Nicoli R, Langer T, Boccard J, Grundisch CS, Xu C, Rudaz S, Kuuranne T, Pitteloud N & Saugy
1107 M. (2022). Longitudinal evaluation of multiple biomarkers for the detection of testosterone
1108 gel administration in women with normal menstrual cycle. *Drug Test Anal* **14**, 833-850.

1109

1110 Samn SW & Perelli LP. (1982). Estimating aircrew fatigue: a technique with application to airlift
1111 operations. School of Aerospace Medicine Brooks Afb tx.

1112

1113 Sanz G, Martínez-Aranda LM, Tesch PA, Fernandez-Gonzalo R & Lundberg TR. (2019). Muscle2View, a
1114 CellProfiler pipeline for detection of the capillary-to-muscle fiber interface and high-content
1115 quantification of fiber type-specific histology. *J Appl Physiol* (1985) **127**, 1698-1709.

1116

1117 Schiaffino S, Dyar KA, Ciciliot S, Blaauw B & Sandri M. (2013). Mechanisms regulating skeletal muscle
1118 growth and atrophy. *Febs j* **280**, 4294-4314.

1119

1120 Schneider CA, Rasband WS & Eliceiri KW. (2012). NIH Image to ImageJ: 25 years of image analysis.
1121 *Nature Methods* **9**, 671-675.

1122

1123 Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN, Wolfe RR & Ferrando AA.
1124 (1999). Short-term oxandrolone administration stimulates net muscle protein synthesis in
1125 young men. *J Clin Endocrinol Metab* **84**, 2705-2711.

1126

1127 Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W & Bhasin S. (2004). Androgen receptor in
1128 human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen
1129 treatment. *J Clin Endocrinol Metab* **89**, 5245-5255.

1130

1131 Xyris Software. (2019). Easy Diet Diary. FoodWorks.

1132

1133 Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA & Goodman A. (2021). CellProfiler
1134 4: improvements in speed, utility and usability. *BMC Bioinformatics* **22**, 433.

1135

1136 Storer TW, Basaria S, Traustadottir T, Harman SM, Pencina K, Li Z, Travison TG, Miciek R, Tsitouras P,
1137 Hally K, Huang G & Bhasin S. (2017). Effects of Testosterone Supplementation for 3 Years on
1138 Muscle Performance and Physical Function in Older Men. *J Clin Endocrinol Metab* **102**, 583-
1139 593.

1140

1141 Tieland M, Trouwborst I & Clark BC. (2018). Skeletal muscle performance and ageing. *J Cachexia*
1142 *Sarcopenia Muscle* **9**, 3-19.

1143

1144 van Geel TA, Geusens PP, Winkens B, Sels JP & Dinant GJ. (2009). Measures of bioavailable serum
1145 testosterone and estradiol and their relationships with muscle mass, muscle strength and
1146 bone mineral density in postmenopausal women: a cross-sectional study. *European journal of*
1147 *endocrinology* **160**, 681-687.

1148

1149 Walter-Kroker A, Kroker A, Mattiucci-Guehlke M & Glaab T. (2011). A practical guide to bioelectrical
1150 impedance analysis using the example of chronic obstructive pulmonary disease. *Nutr J* **10**,
1151 35-35.

1152

1153 Wannenes F, Caprio M, Gatta L, Fabbri A, Bonini S & Moretti C. (2008). Androgen receptor expression
1154 during C2C12 skeletal muscle cell line differentiation. *Molecular and cellular endocrinology*
1155 **292**, 11-19.

1156

1157 White JP, Gao S, Puppa MJ, Sato S, Welle SL & Carson JA. (2013). Testosterone regulation of
1158 Akt/mTORC1/FoxO3a signaling in skeletal muscle. *Mol Cell Endocrinol* **365**, 174-186.

1159

1160 Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, Grolemund G, Hayes A, Henry L
1161 & Hester J. (2019). Welcome to the Tidyverse. *Journal of Open Source Software* **4**, 1686.

1162

1163 Wu Y, Bauman WA, Blitzer RD & Cardozo C. (2010). Testosterone-induced hypertrophy of L6 myoblasts
1164 is dependent upon Erk and mTOR. *Biochem Biophys Res Commun* **400**, 679-683.

1165

1166 Ye J, Zhai X, Yang J & Zhu Z. (2021). Association between Serum Testosterone Levels and Body
1167 Composition among Men 20-59 Years of Age. *Int J Endocrinol* **2021**, 7523996.

1168

1169 Yoshioka M, Boivin A, Bolduc C & St-Amand J. (2007). Gender difference of androgen actions on
1170 skeletal muscle transcriptome. *Journal of Molecular Endocrinology* **39**, 119-133.

1171

1172 Zaras N, Stasinaki AN, Spiliopoulou P, Hadjicharalambous M & Terzis G. (2020). Lean Body Mass,
1173 Muscle Architecture, and Performance in Well-Trained Female Weightlifters. *Sports (Basel)* **8**.

1174

1175

1176

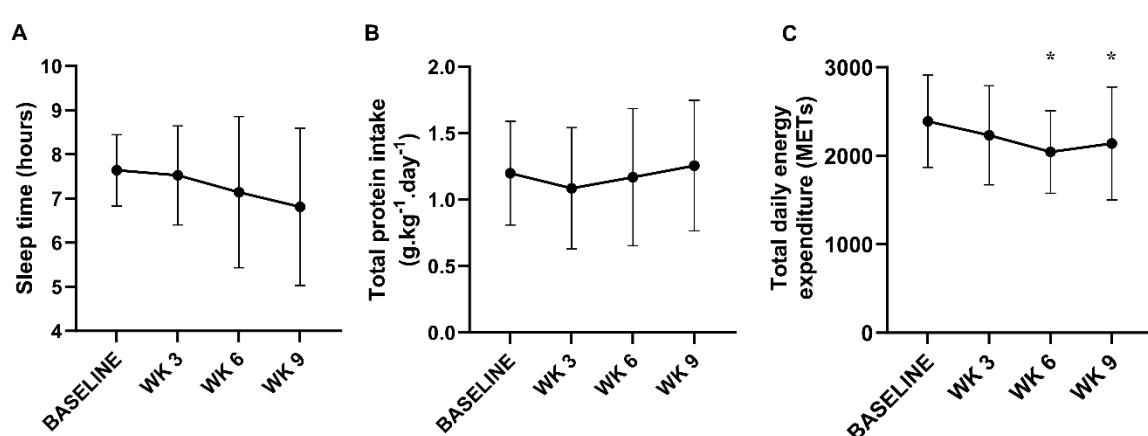
1177

1178

1179

1180

1181

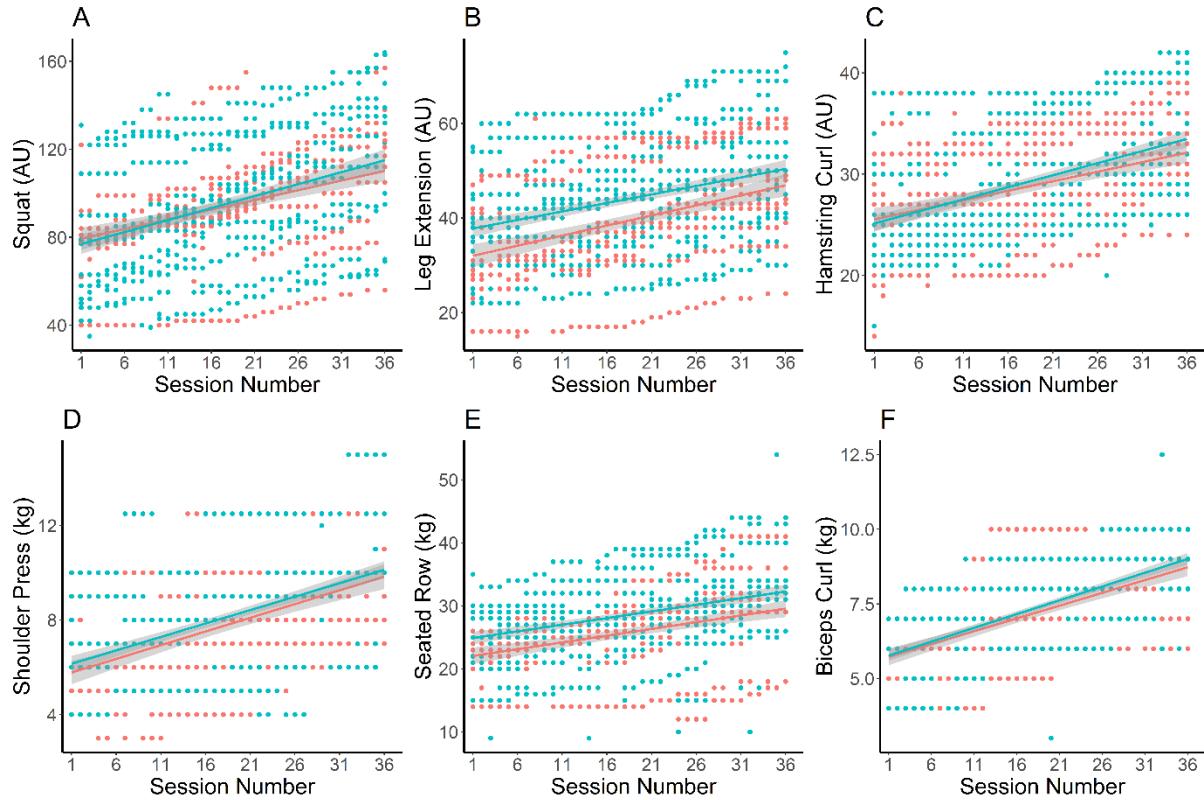

1182

1183

1184

1185

1186

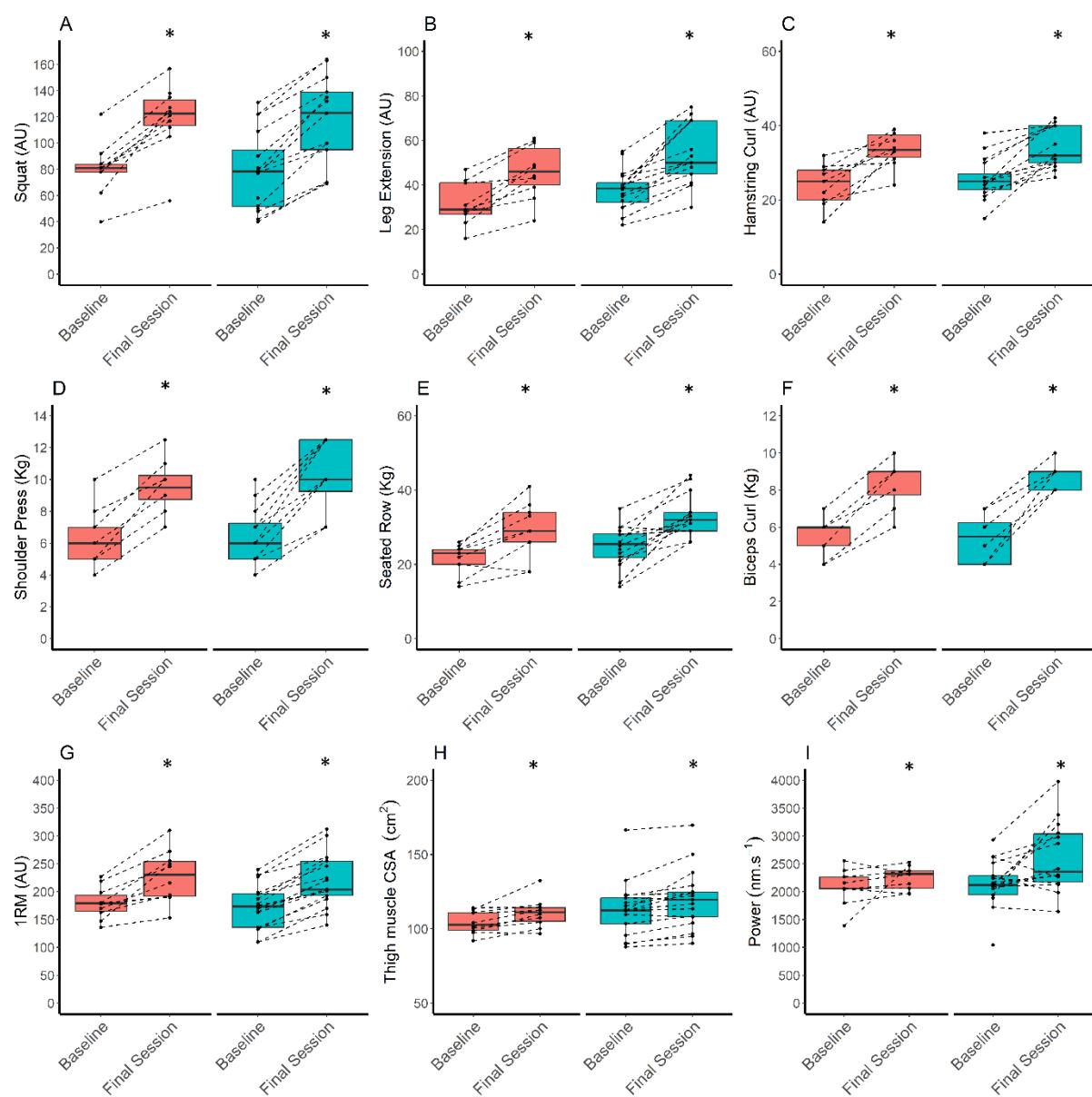


1187 **Supplementary Figure 1.** A) total sleep time did not differ across 12 weeks of resistance training
1188 in pre-menopausal females. B) Total protein intake ($\text{g} \cdot \text{kg}^{-1} \cdot \text{day}^{-1}$) did not fluctuate with 12 weeks
1189 of resistance training in pre-menopausal females. C) The total daily energy expenditure (METs)
1190 decreased at 6 weeks compared to baseline, but at no other timepoints across 12 weeks of

1191 resistance training in pre-menopausal females. Data were analysed via one-way ANOVA

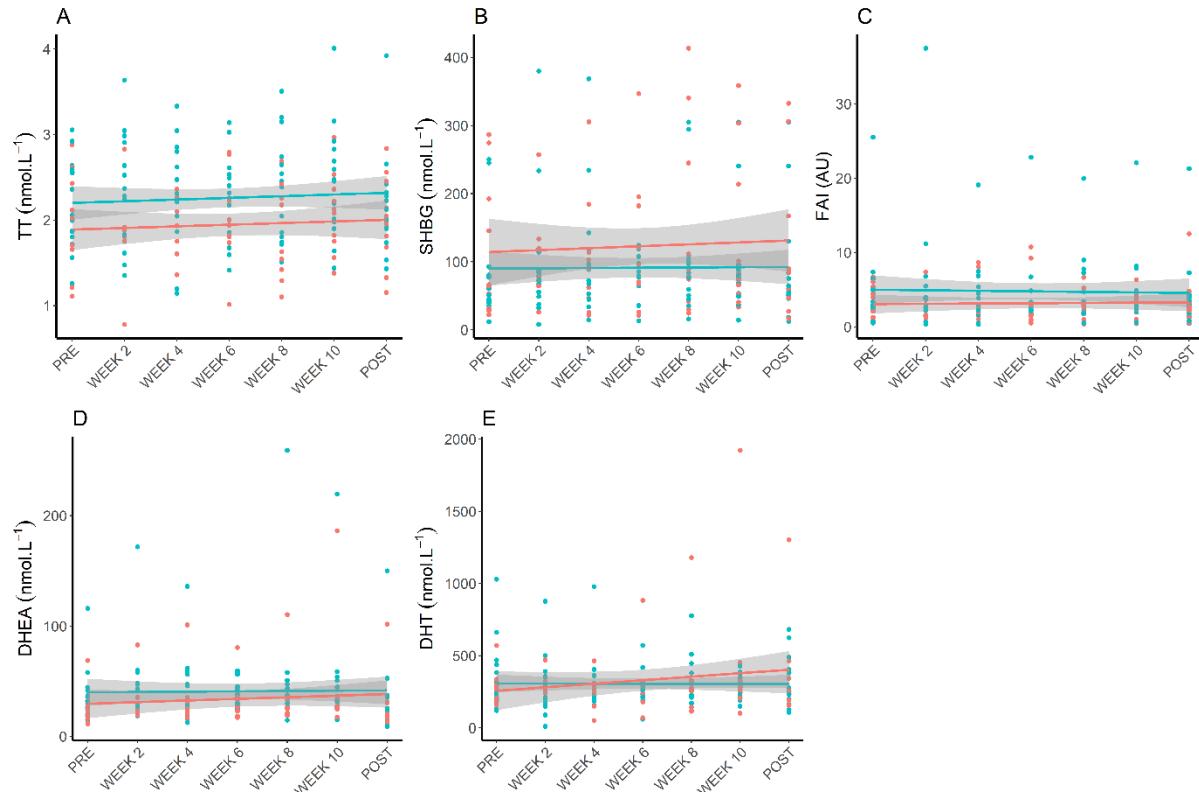
1192 *denotes significant post-hoc test ($p<0.05$ compared to baseline).

1193

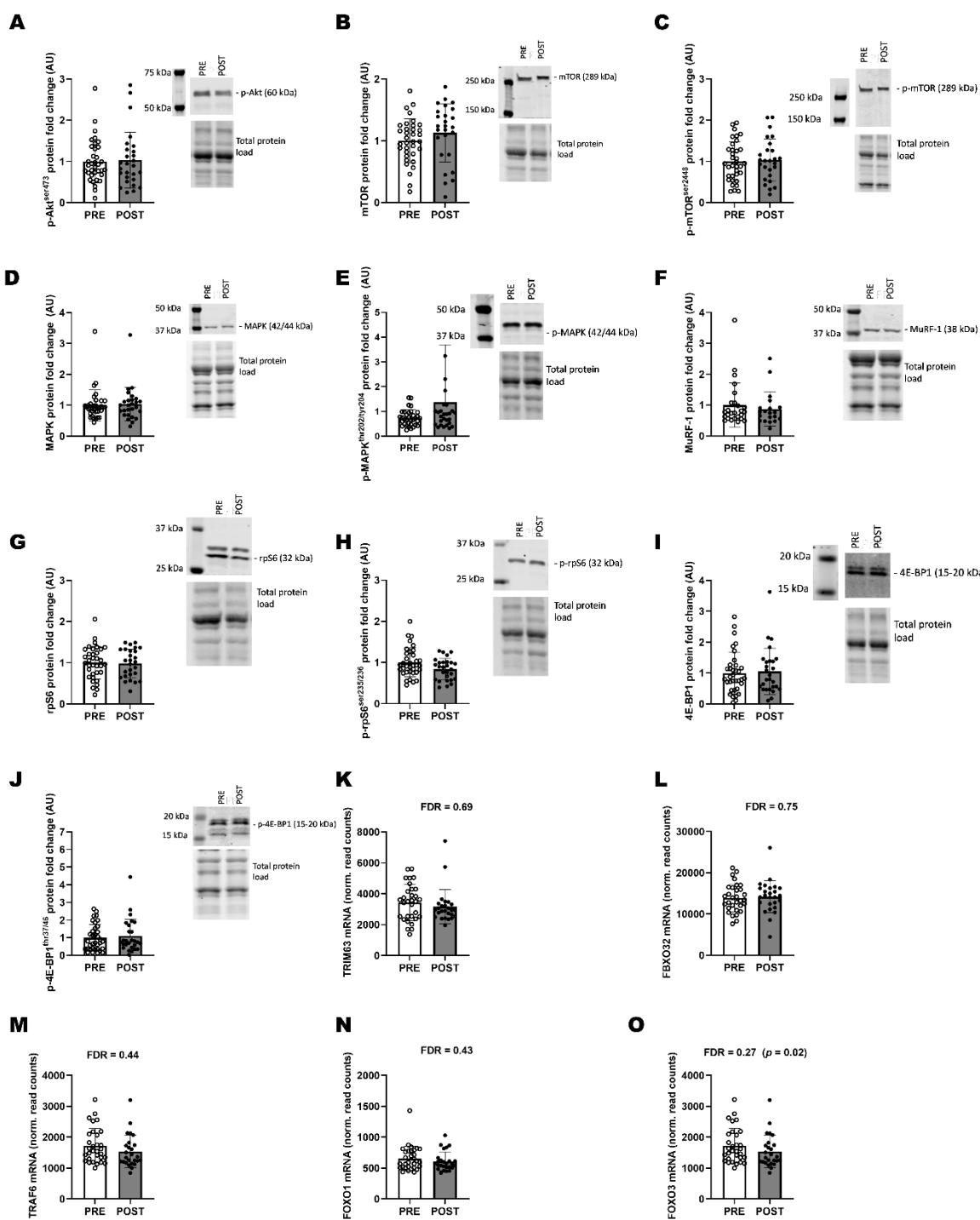

1194 **Supplementary Figure 2.** The trajectory of working weight progression for (A) squat, (B) leg

1195 extension, (C) hamstring curl, (D) shoulder press, (E) seated row and (F) biceps curl. Participants

1196 undertaking a 12-week gym-based training program are denoted in blue ($n=16$), and participants


1197 undertaking the blended resistance training program are denoted in red ($n=11$).

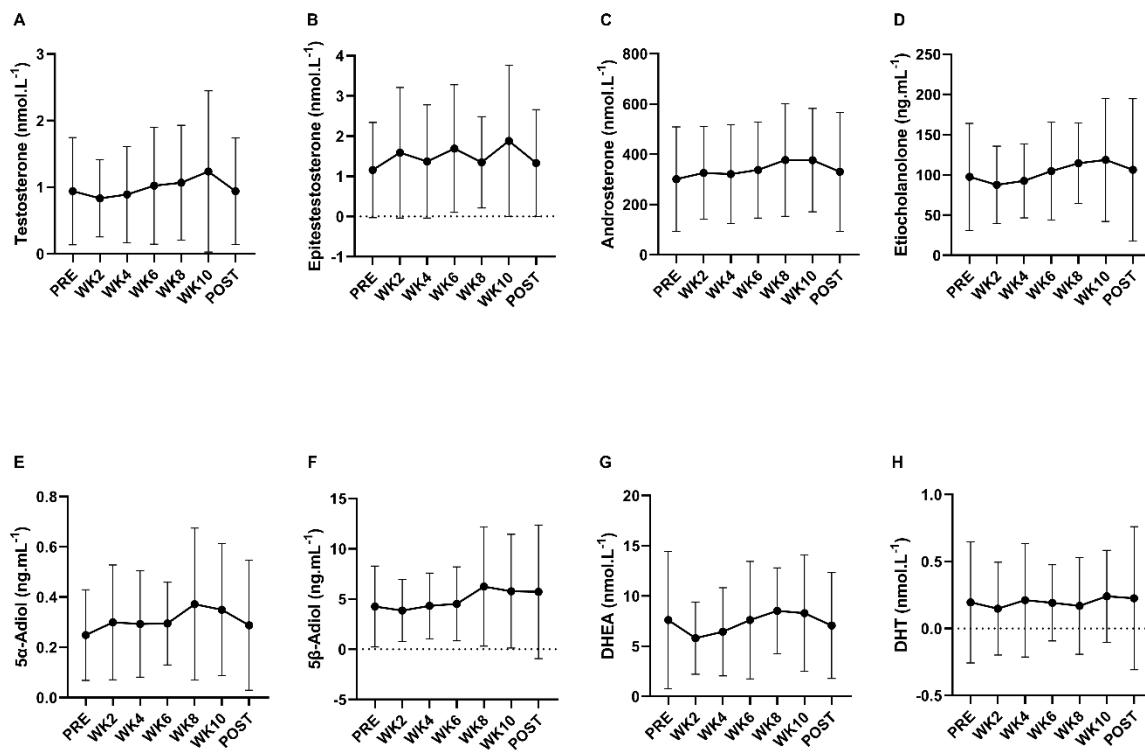
1198



1199 **Supplementary Figure 3.** Working weight used in the first and final session for each participant.
1200 (A) squat, (B) leg extension, (C) hamstring curl, (D) shoulder press, (E) seated row and (F) biceps
1201 curl. (G) Lower limb strength (measured via leg press 1RM), (H) thigh muscle cross sectional area
1202 (CSA; cm²) and (I) muscle power (measured via counter movement jump) increased with 12
1203 weeks of resistance training but this was not different between participants who undertook either
1204 a gym-based or blended training program. Participants undertaking a 12-week gym-based
1205 training program are denoted in blue (n=16), and participants undertaking the blended resistance
1206 training program are denoted in red (n=11). *indicates $p < 0.05$ compared to baseline.

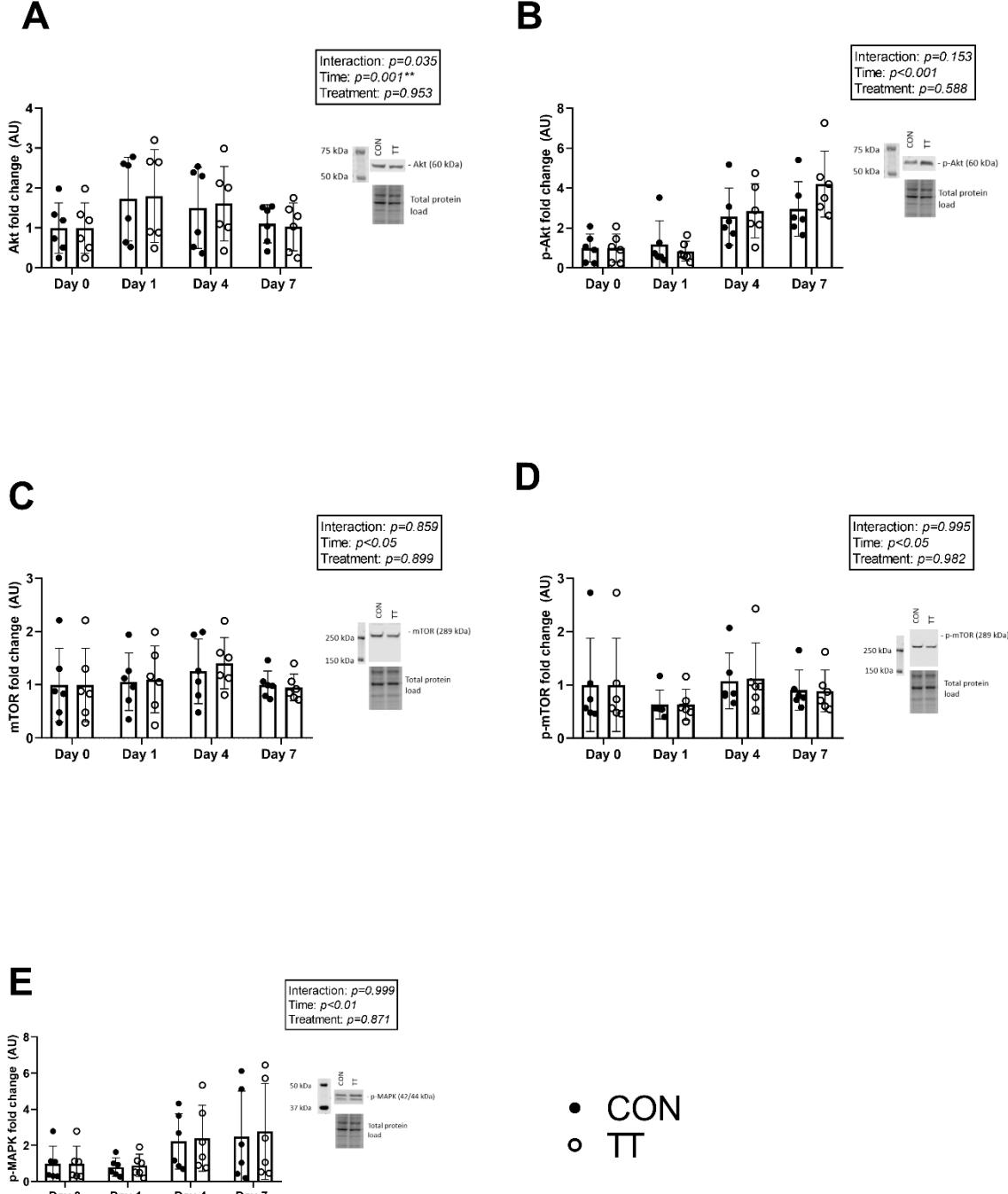
1207

1208 **Supplementary Figure 4.** Hormone levels across 12 weeks of resistance training. (A) Total
1209 testosterone (TT), (B) sex hormone binding globulin (SHBG) and (C) free androgen index (FAI), (D)
1210 DHEA, (E) DHT concentrations. Participants undertaking a 12-week gym-based training program
1211 are denoted in blue (n=16), and participants undertaking the blended resistance training program
1212 are denoted in red (n=10).



1213

1214 **Supplementary Figure 5.** Twelve weeks of resistance training did not influence the protein
 1215 content of markers of protein synthesis and degradation in (A) p-Akt^{ser473}, (B) total mTOR, (C) p-
 1216 mTOR^{ser2448}, (D) total MAPK, (E) p-MAPK^{thr202/tyr204}, (F) MuRF-1, (G) S6 ribosomal protein, (H) p-S6
 1217 ribosomal protein^{ser235/236}, (I) total 4E-BP, (J) p-4E-BP1^{thr37/46} or the mRNA content of markers of
 1218 protein degradation in (K) TRIM63, (L) FBXO32, (M) TRAF6, (N) FOXO1 and (O) FOXO3 in biopsies


1219 taken at rest from previously untrained, pre-menopausal females (n=35 baseline, n=27 post
1220 training). Data were analysed via two-tailed, paired t-tests. Representative western blots for each
1221 protein are presented next to the corresponding graph. All proteins were normalised against total
1222 protein content, mRNA was normalised to read counts per million. Pre-training (PRE) values are
1223 indicated by clear bars and post-training (POST) values are indicated by dark bars. Bars indicate
1224 mean \pm SD.

1225

1226 **Supplementary Figure 6.** The androgen profile measured by LC/MS from urine in pre-
1227 menopausal females is not influenced by resistance training. The concentrations of a)
1228 testosterone (nmol·L⁻¹), b) epitestosterone (nmol·L⁻¹), c) androsterone (nmol·L⁻¹), d)
1229 etiocholanolone (ng·mL⁻¹), e) 5 α -adiol (ng·mL⁻¹), f) 5 β -adiol (ng·mL⁻¹), g) DHEA (nmol·L⁻¹) and h)
1230 DHT (nmol·L⁻¹) were stable across twelve weeks of resistance training in our cohort (n=27). Data
1231 were analysed with one-way ANOVA. Bars indicate mean \pm SD.

1232

1233 **Supplementary Figure 7.** Treatment with 100 nM testosterone did not significantly change the
 1234 expression of A) Akt, B) p-Akt, C) mTOR, D) p-mTOR or E) p-MAPK compared to a vehicle control
 1235 across 1, 4 or 7 days of differentiation. Black circles represent vehicle control condition (CON),
 1236 white circles represent testosterone treated (TT) condition. Data were analysed via two-way,
 1237 repeated measures ANOVA. Bars represent mean \pm SD.

1238

1239 **Supplementary Table 1.** Summary of the menstrual phases of each participant at pre- and post-training testing timepoints. The menstrual phase was
 1240 informed by a menstrual calendar collected by the participant and circulating concentrations of oestradiol (E2), progesterone, luteinising hormone
 1241 (LH) and follicle stimulating hormone (FSH). Two independent researchers determined the menstrual phase for each entry and agreement was met
 1242 at each case. Note: This study aimed to avoid testing and biopsy times during the late follicular (LF) phase of the menstrual cycle. Seven out of 62
 1243 (11%) testing times were taken during the late follicular phase. Statistical analyses will include the menstrual phase as a covariate to account for
 1244 these times.

Participant	Timepoint	Menstrual calendar timepoint	E2 (pmol·L ⁻¹)	Progesterone (nmol·L ⁻¹)	LH (IU·L ⁻¹)	FSH (IU·L ⁻¹)	Menstrual phase (informed by calendar and hormones)
P01	PRE	Day 11 (out of 29)	514.1	6.7	5.3	4.5	LF
P01	POST	Day 18 (out of 26)	325.6	7.81	7.2	5.8	EL
P02	PRE	N/A	96.6	3.82	8.2	14	EF
P02	POST	N/A	169.5	4.337	1.2	5.7	EF
P03	PRE	N/A	92.3	7.62	9.6	8.3	ACTIVE PILL
P03	POST	N/A	28.3	7.3	2.4	2.9	ACTIVE PILL
P04	PRE	N/A	106.3	4.56	1.7	4.9	ACTIVE PILL
P04	POST	N/A	49.3	2.97	4.4	7.3	ACTIVE PILL
P05	PRE	N/A	111.6	4.36	3.6	8	ACTIVE PILL
P05	POST	N/A	127.1	4.58	3.1	7.5	ACTIVE PILL

P06	PRE	N/A	30.4	3.54	0	0.3	ACTIVE PILL
P06	POST	N/A	16.3	3.02	0	0.4	ACTIVE PILL
P07	PRE	Day 2 (out of 43)	158.3	5.11	6.5	7	EF
P07	POST	Day 22 (out of 30)	112.9	5.36	21.7	7.2	EL
P08	PRE	Day 31 (out of 34)	93.8	10.73	7.4	7	ML
P08	POST	Day 33 (out of 35)	526.1	67.83	6.8	2.2	ML
P09	PRE	Day 9 (out of 24)	287.4	10.13	3.6	5.9	LF
P09	POST	Day 22 (out of 27)	157.6	8.33	2.6	7.6	ML
P10	PRE	N/A	95.2	5	7.1	13.3	EF
P10	POST	N/A	433.7	64.5	1.1	3.9	ML
P11	PRE	Day 7 (out of 31)	248	6.44	7.2	4.7	LF
P11	POST	Day 26 (out of 29)	159.3	9.84	6.8	6	ML
P12	PRE	N/A	63.2	9.3	0	0.1	ACTIVE PILL
P12	POST	N/A	81.6	9.2	0	0	ACTIVE PILL
P13	PRE	Day 27 (out of 34)	955.5	14.7	71.1	10.6	EL
P13	POST	Day 14 (out of 30)	151	5.3	7.7	9.4	EF
P14	PRE	N/A	110	6.6	4.2	2	ACTIVE PILL
P14	POST	N/A	51.6	8.7	0	0.2	ACTIVE PILL

P15	PRE	Day 7 (out of 21)	215.3	8.5	4.7	6	LF
P15	POST	Day 20 (out of 22)	254.3	8.1	4.2	5.4	ML
P16	PRE	Day 48 (out of 84)	162.4	4.4	2	5.5	EF
P16	POST	Day 22 (out of 43)	218.7	5.1	3.1	7.2	EF
P17	PRE	N/A	50.3	13.4	0.2	0.2	ACTIVE PILL
P17	POST	N/A	71.3	10	0.4	0.4	ACTIVE PILL
P18	PRE	N/A	329.3	35.9	1.1	3.4	ML
P18	POST	N/A	765.6	8.4	10.1	6.1	LF
P19	PRE	N/A	81.9	8.3	8.9	4.9	ACTIVE PILL
P19	POST	N/A	152.2	7.8	8.7	5.7	ACTIVE PILL
P20	PRE	Day 7 (out of 25)	135.7	12.3	2.8	3.9	EF
P20	POST	Day 15 (out of 25)	725.3	10.9	8	2.6	LF
P21	PRE	N/A	107.4	16.4	6.5	7.3	ACTIVE PILL
P22	PRE	Day 20 (out of 28)	604.1	7.4	3.6	3.5	ML
P23	PRE	N/A	183.3	5.2	6.8	8.8	EF
P24	PRE	N/A	62.9	7.2	0.2	0.5	ACTIVE PILL
P25	PRE	Day 16 (out of 29)	N/A	N/A	N/A	N/A	EL
P26	PRE	N/A	50.7	12.9	0.2	0.6	ACTIVE PILL

P27	PRE	N/A	83.5	8.5421	0.2	0.5	ACTIVE PILL
P27	POST	N/A	62.1	9.8872	0.6	1.4	ACTIVE PILL
P28	PRE	Day 6 (of 28)	157.2	5.1909	9.6	6.7	EF
P28	POST	Day 5 (of 27)	1296.7	72.0561	8.1	2	LF
P29	PRE	N/A	183.5	4.189	4.1	7	PLACEBO PILL
P29	PRE	N/A	69.5	7.016	3.3	5.1	ACTIVE PILL
P30	PRE	Day 1 (out of 31)	438.3	10.3182	19.9	8.7	EF
P30	POST	Day 28 (out of 30)	175.1	5.4004	12.9	7.7	ML
P31	PRE	Day 3 (of 25)	85.6	7.77	5.6	5.6	EF
P31	POST	Day 3 (of 33)	84	5.8703	5.6	6.6	EF
P32	PRE	N/A	212.2	5.1581	11.9	7	EF
P33	PRE	N/A	273.1	29.3536	3.2	2.4	ML
P34	PRE	Day 4 (of 24)	140.1	6.1849	4.8	7.6	EF
P34	POST	Day 5 (of N/A)	112.9	5.0798	8.3	6.8	EF
P35	PRE	Day 29 (of 29)	107.2	7.9207	3.3	8.7	ML
P35	POST	Day 13 (of 29)	195.6	4.2692	3.2	5.4	EF

1246

1247

1248

1249

1250

1251

1252 **Supplementary Table 2.** The resistance training program prescribed to participants (n=27). The
1253 gym-based program was followed by all participants when access to the gym was possible. A
1254 sub-cohort of participants (n=10) performed a portion of their training programs using the home-
1255 based resistance training program when access to the training facility was not possible. *last set
1256 was prescribed as many repetitions as possible (AMRAP).

Gym-based resistance training program						
Exercise	Sets	Reps	Intensity (%RM)	Rest between sets (s)	Tempo (s)	Volume load (reps x sets x intensity)
Squat	3	8	80	90	2, 0, 2, 0	19.2
Leg extension	3	8	80	90	2, 0, 2, 0	19.2
Hamstring curl	3	8	80	90	2, 0, 2, 0	19.2
Seated shoulder press	3	9	70	90	2, 0, 2, 0	18.9
Seated row	3	10	60	90	2, 0, 2, 0	18.0
Seated biceps curl	3	9	70	90	2, 0, 2, 0	18.9
Home-based resistance training program						
Exercise	Sets	Reps	Intensity (%RM)	Rest between sets (s)	Tempo (s)	Volume load (reps x sets x intensity)
Squats	3	15*	Approximately 45% RM	90	2,0,2,0	20.25

Forward lunges	3	15-leg ^{-1*}	Approximately 45% RM	90	2,0,2,0	20.25
Hamstring sliders	3	10*	Body weight	90	2,0,2,0	N/A
Seated Shoulder press	3	9*	70% RM	90	2,0,2,0	18.9
Bent over row	3	9*	70% RM	90	2,0,2,0	18.9
Seated biceps curl	3	9*	70% RM	90	2,0,2,0	18.9

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273 **Supplementary Table 3.** Linear mixed models assessing the association between markers of the androgen profile and AR activity and muscle size,
 1274 strength and power before and after 12 weeks of resistance training in pre-menopausal females (n=35 pre-training, 27 change with training).

PRE-TRAINING					CHANGE WITH TRAINING				
Variable	β	SE	<i>p</i>	Model adjusted for	Variable	β	SE	<i>p</i>	Model adjusted for
DHEA					DHEA AUC				
pre-training muscle CSA	-6.05	4.23	0.162	Pre-training E2	$\Delta\%$ muscle CSA	0.47	0.32	0.159	-
pre-training thigh muscle strength	0.06	0.22	0.777	Pre-training E2	$\Delta\%$ thigh muscle strength	-0.02	0.04	0.623	-
pre-training muscle power	-1.648	2.31	0.481	Pre-training E2	$\Delta\%$ muscle power	0.09	0.07	0.208	-
pre-training muscle fibre CSA	22.76	243.60	0.927	-	$\Delta\%$ muscle fibre CSA	-0.08	0.05	0.157	-
DHT					DHT AUC				

pre-training muscle CSA	-3.81	4.86	0.439	Pre-training E2	Δ% muscle CSA	-0.47	0.270	0.097	-
pre-training thigh muscle strength	0.34	0.25	0.187	Pre-training E2	Δ% thigh muscle strength	0.00	0.03	0.980	-
pre-training muscle power	-1.37	2.58	0.600	Pre-training E2	Δ% muscle power	0.03	0.06	0.655	-
pre-training muscle fibre CSA	55.23	279.57	0.846	-	Δ% muscle fibre CSA	-0.02	0.05	0.607	-
p-AR (ser213) PROTEIN CONTENT					AVERAGE p-AR (ser213) PROTEIN CONTENT				
pre-training muscle CSA	-5.41	3.95	0.180	Pre-training TT	Δ% muscle CSA	-0.03	0.01	0.040*	TT AUC
pre-training thigh muscle strength	0.34	0.19	0.078	Pre-training TT	Δ% thigh muscle strength	-0.06	0.04	0.098	TT AUC
pre-training muscle power	2.78	2.28	0.736	Pre-training TT	Δ% muscle power	-0.01	0.07	0.938	TT AUC

pre-training muscle fibre CSA	- 352.70	233.10	0.148	-	$\Delta\%$ muscle fibre CSA	-0.08	0.04	0.087	-
p-AR (ser650) PROTEIN CONTENT					AVERAGE p-AR (ser650) PROTEIN CONTENT				
pre-training muscle CSA	-6.56	6.44	0.316	Pre-training TT	$\Delta\%$ muscle CSA	-0.03	0.02	0.116	TT AUC
pre-training thigh muscle strength	0.59	0.30	0.055	Pre-training TT	$\Delta\%$ thigh muscle strength	0.01	0.05	0.881	TT AUC
pre-training muscle power	-3.66	3.60	0.317	Pre-training TT	$\Delta\%$ muscle power	0.02	0.09	0.808	TT AUC
pre-training muscle fibre CSA	-76.05	482.13	0.876	-	$\Delta\%$ muscle fibre CSA	-0.08	0.10	0.443	-
AR+ nuclei (%)					AR+ nuclei (%)				
pre-training muscle CSA	1.12	0.49	0.058	Pre-training E2	$\Delta\%$ muscle CSA	0.06	0.13	0.654	E2 AUC

pre-training thigh muscle strength	0.06	2.01	0.085	Pre-training E2	Δ% thigh muscle strength	-0.03	0.01	0.059	E2 AUC
pre-training muscle power	-0.32	-1.01	0.353	Pre-training E2	Δ% muscle power	0.01	0.02	0.696	E2 AUC
pre-training muscle fibre CSA	99.19	49.06	0.078	-	Δ% muscle fibre CSA	0.01	0.28	0.974	-

1275