

1 **Analysis of differential expression of matrix metalloproteins and defensins in the**
2 **nasopharyngeal milieu of mild and severe COVID-19 cases**

3 Khekashan Imtiaz^{1,*}, Nida Farooqui^{2,*}, Khalid Ahmed², Alnara Zhamalbekova⁵, Muhammad
4 Faraz Anwar³, Khitab Gul⁴, Azhar Hussain², Antonio Sarria-Santamera⁵, Syed Hani Abidi ^{2,5}**

5

6 ¹Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan

7 ²Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan

8 ³Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan

9 ⁴Department of Biosciences, Muhammad Ali Jinnah University, Karachi, Pakistan

10 ⁵Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana,
11 Kazakhstan

12 *These authors contributed equally to this work.

13

14

15

16

17

18

19

20

21 ** Corresponding author

22 Syed Hani Abidi

23 Department of Biomedical Sciences,

24 Nazarbayev University School of Medicine,

25 Astana, Kazakhstan

26 Email: * m.haniabidi@gmail.com

27 **Abstract**

28 **Introduction:** A subset of COVID-19 disease patients suffers a severe form of the illness,
29 however, underlying early pathophysiological mechanisms associated with the severe form of
30 COVID-19 disease remain to be fully understood. Several studies showed the association of
31 COVID-19 disease severity with the changes in the expression profile of various matrix
32 metalloproteinases (MMPs) and defensins. However, the link between the changes in the
33 expression of matrix metalloproteinase (MMPs) and defensins (DA) in the nasopharyngeal milieu,
34 during early phases of infection, and disease severity remains poorly understood. Therefore, we
35 performed differential gene expression analysis of matrix metalloproteinases (MMPs) and
36 defensins in the nasopharyngeal swab samples collected from mild and severe COVID-19 cases
37 within three days of infection and examined the association between MMP and DA expression and
38 disease severity. **Material and Method:** A total of 118 previously collected nasopharyngeal
39 samples from mild and severe COVID-19 patients (as per the WHO criteria) were used in this
40 study. To determine the viral loads and assess the mRNA expression of matrix metalloproteinase
41 (MMPs) and defensins, a real-time qPCR assay was used. To assess statistically significant
42 differences in the mean expression of viral loads and the cytokines in between the severe and mild
43 groups, an unpaired T-test was applied. The Pearson correlation test was used to assess the
44 correlation between cytokine expressions. In addition, a multivariable logistic regression analysis
45 was carried out with all the variables from the data set using 'severity' as the outcome variable.
46 **Results:** Our results showed that the expression of DA3 and MMP2 to be considerably lower in
47 the severe group than in the mild group. Furthermore, there was a significant association between
48 MMP1 and DA4 and DA6 ($r=0.5$, $p=0.0001$); as well as between MMP7 and DA1 and DA6 ($r=0.5$,
49 $p=0.00$). Additionally, the regression analysis shows a significant correlation ($p < 0.05$) between
50 MMP2 and the severity of COVID-19 disease. **Conclusion:** The early detection of changes in the
51 expression of MMPs and defensins may act as a useful biomarker/predictor for possible severe
52 COVID-19 disease, which may be useful in the clinical management of patients to reduce COVID-
53 19-associated morbidity and mortality.

54

55 **Keywords:** COVID-19, SARS-CoV-2, matrix metalloproteinases, defensins, COVID-19 mild
56 and severity disease, biomarkers.

57 **Introduction**

58 SARS-CoV-2, although significantly controlled by vaccine, remains a continuous threat to
59 human health with substantial economic, social, and health implications [1-4]. Previous studies
60 have shown that the SARS-CoV-2 virus has two possible entry routes, via endolysosomal
61 cathepsins and the transmembrane serine protease 2 (TMPRSS2) [5].

62 The underlying pathophysiological mechanisms that are associated with the severe form of
63 COVID-19 disease and death due to COVID-19-associated complications remain to be fully
64 understood. The pre-existing comorbidities, e.g., diabetes, hypertension, compromised immune
65 system, etc. have been associated with increased severity of COVID-19 [6, 7]. For example, the
66 compromised immune system is associated with increased levels of metalloproteinases
67 gelatinases, such as MMP-2 in plasma [8]. Therefore, it has been hypothesized that depending on
68 the age and genetic polymorphisms, the pre-infection level of plasma matrix metalloproteinase
69 (MMPs) or the potential of the host cells to secrete these proteases may be associated with the
70 severe form of COVID-19 disease [9]. MMPs being proteolytic enzymes can damage various
71 extracellular matrix components and are associated with the modulation of various cytokines and
72 growth factors [10]. Recent data has also shown that increased plasma MMPs are associated with
73 the severity of COVID-19 disease [11]. Furthermore, COVID-19-associated lung damage has also
74 been shown to be associated with MMPs [12, 13], for instance, upregulation of gene expression of
75 MMP-2 and MMP-9 in COVID-19 patients is associated with increased risk of respiratory failure
76 [14, 15]. Additionally, it has been reported that MMPs can facilitate the viral entry and formation
77 of syncytia in the context of dysregulated immune response and hyperinflammation in COVID-19
78 patients. Therefore, MMPs such as cathepsins and serine proteases can be potential therapeutic
79 targets to treat severe COVID-19 patients.

80 Similar to MMPs, defensins (antimicrobial peptides), have been proposed as immunologic
81 factors in the pathophysiology of COVID-19 disease and its severity [16, 17]. Defensins can
82 be expressed by mucosal epithelial cells as part of the innate immune response against the
83 colonization of various pathogens [18]. Mild forms of COVID-19 disease may be associated with
84 effective expression of defensins, as it has been shown that the activity of α - and β -defensins play
85 a major role in controlling upper respiratory tract viral infections [19]. Recently, defensins have
86 been explored as potential antiviral therapeutic agents against SARS-CoV-2, however, the exact
87 relationship between various defensins and SARS-CoV-2 infection, especially during the early
88 days of infection, has yet to be elucidated [20, 21].

89 Thus, a detailed analysis of the expression profile of human defensin genes may be useful
90 to understanding the role of the viral infection patterns, innate immune response, and its
91 subsequent association with the COVID-19 disease. Therefore, we performed differential gene
92 expression analysis of matrix metalloproteinases (MMPs) and defensins in the nasopharyngeal
93 swab samples collected from mild and severe COVID-19 cases within three days of infection and
94 examined the association between MMP and DA expression and disease severity.

95 **Methodology**

96 **Sample collection and characterization of the sample as mild and severe based on the**
97 **patient's symptoms**

98 This was a retrospective, cross-sectional study, performed on a total of 118 SAR-CoV-2
99 PCR-positive nasopharyngeal swab samples. As described previously, using the WHO diagnostic
100 criteria, these samples were characterized as severe and mild, based on symptoms observed in the
101 patients [22-24]. These samples were obtained after written informed consent: the samples for the
102 mild group were taken within three days of symptoms appealing, while samples for the severe
103 group were taken within three days of admission to the hospital, and stored at -80°C until further
104 use [24, 25]. The study was approved by the Ethics Review Committee, Aga Khan University
105 Hospital (ERC#2021-5456-15382).

106

107 **RNA extraction, cDNA synthesis, estimation of viral loads, and gene expression analysis of**
108 **MMP and defensin genes**

109 Viral RNA was extracted from all the SARS-CoV-2 positive nasopharyngeal patient
110 samples using a QIAamp viral RNA kit (Qiagen, Hilden, Germany). For reverse transcription,
111 2.5ug RNA/20ul of cDNA synthesis reaction was carried out using ONE SCRIPT PLUS cDNA
112 Synthesis Kit (CAT # G236, ABM) as described previously [25]. The SARS-CoV-2 viral loads
113 were accessed using COVID-19 genesis Real-Time PCR assay on CFX96 Touch Real-Time PCR
114 System [25] using following thermocycling conditions: 55°C for 10 min, 95°C for 2 min followed
115 by 45 cycles of 95°C for 10s, 60°C for the 60s. The Ct values of Internal control and Target (RdRp)
116 genes were measured on Hex and FAM channels. The Ct values were used to assess viral load in
117 each sample [25].

118 A qPCR assay was used to assess the gene expression profiles of MMPs and defensins in
119 all samples employing gene-specific primers (Table 1), while beta-actin was used as a
120 housekeeping gene and for normalization of the gene expression data. For qPCR reaction, 2ul of
121 cDNA was mixed with 4ul of BlasTaq 2X qPCR Master mix (Cat # G891; ABM), and 0.5ul of
122 each reverse and forward primers. The qPCR was run using the following thermal cycling
123 conditions: 95°C for 3 minutes, 40 cycles of 95°C for 15 seconds, and 57.8°C to 64°C (depending
124 on the primer) for 1 minute with a melt curve at 55-95°C. All reactions were run in duplicate. To
125 compare/plot the expression of each cytokine in both groups, the delta Ct method was used, while
126 to estimate the relative expression/fold change of each MMP and defensins in the severe vs mild
127 group, $2^{(-\Delta\Delta Ct)}$ methods were used [26, 27].

128

129 **Statistical Analyses**

130 To assess statistically significant differences in the expression of viral loads and MMP and
131 defensin genes, between the severe and mild groups, an unpaired T test was applied. Additionally,
132 the Pearson correlation test was used to assess the correlation between cytokine expressions. In

133 addition, a multivariable logistic regression analysis was carried out with all the variables from the
134 data set using 'severity' as the outcome variable. For all statistical analyses, $p < 0.05$ was considered
135 significant. All statistical analyses were performed using the IBM SPSS software v20.

136

137 **Results**

138 **Patient characteristics, viral load distribution in mild and severe groups, and correlation 139 with disease severity**

140 A total of 118 nasopharyngeal swab samples were used in this study; out of which 71 and
141 47 were from patients with mild and severe COVID-19 disease, as described previously [25]. Of
142 these 47 patients with severe COVID-19 disease, 32 (68.0%) were male and 15 (31.25%) were
143 female. The results of the descriptive statistics show that the mild group had significantly
144 ($p=0.002$) lower age (mean = 44.1 years, SD = 18.03) than the severe group (mean = 54.61 years,
145 SD = 17.26). The mean viral loads for the mild and severe groups were 27.07 ± 5.22 and
146 26.37 ± 7.89 , respectively; however, no association was found between viral load and disease
147 severity ($p>0.05$).

148

149 **Analysis of differential expression of Defensins and MMPs in the mild and severe groups**

150 The gene expression analysis showed the expression of only DA3 and MMP2 (severe:
151 26.53 ± 3.358 STDEV, mild: 23.56 ± 2.740 STDEV; $p < 0.0001$) to be significantly different in mild
152 versus severe groups (Figure 1A). The fold change analysis showed the expression of DA1, DA3,
153 DA4, DA5, and DA6 to be, respectively, 1.82-fold lower, 3.90-fold lower, 6.39-fold higher, 1.33-
154 fold lower, 3.02-fold lower expression in the severe group as compared to the mild group.
155 Similarly, the fold change analysis of MMPs showed the expression of MMP1, MMP2, MMP7,
156 and MMP9 to be, respectively, 2.48-fold higher, 7.71-fold lower, 1.04-fold higher, 1.64-fold
157 lower, in the severe group as compared to the mild group (Figure 1B).

158

159 **Correlation between Defensins and Matrix Metalloproteinases expression in mild and severe 160 groups:**

161 In the next step, the Pearson correlation test was applied to investigate the relationship
162 between the expression of defensins and matrix metalloproteinase in mild and severe groups (Table
163 2).

164 In the mild group, a statistically significant, but moderate positive correlation was found
165 between DA3 and MMP1 ($r = 0.03$, $p = 0.02$), DA1 and MMP7 ($r = 0.3$, $p = 0.01$), and DA4 with the
166 matrix metalloproteinase MMP1 ($r = 0.3$, $p = 0.001$), MMP2 ($r = 0.03$, $p = 0.001$), MMP7 ($r = 0.3$, $p
167 = 0.001$), DA5 and MMP7 ($r = 0.3$, $p = 0.001$), DA6 and MMP9 ($r = 0.4$, $p = 0.001$) (Table 2). While
168 amongst defensins, a statistically significant strong correlation was observed amongst the

169 defensins DA1 and DA3 ($r=0.5$, $p=0.001$), DA1 and DA4 ($r=0.5$, $p=0.001$), DA1 and DA5 ($r=0.5$,
170 $p=0.001$), DA1 and DA6 ($r=0.6$, $p=0.001$), DA3 and DA4 ($r=0.6$, $p=0.001$), DA3 and DA5 ($r=0.5$,
171 $p=0.01$), DA3 and DA6 ($r=0.7$, $p=0.001$), DA4 and DA5 ($r=0.5$, $p=0.001$), DA4 and DA6 ($r=0.6$,
172 $p=0.001$), DA5 and DA6 ($r=0.8$, $p=0.001$) (Table 4b). Moreover, a statistically significant strong
173 positive correlation was only found between MMP2 and MMP9 ($r=0.4$, $p=0.001$).

174 In the severe group, there was a statistically significant and strong positive correlation
175 between MMP1 and the defensins DA6 ($r=0.5$, $p=0.001$) and DA4 ($r=0.5$, $p=0.001$), and MMP7
176 with the defensins DA1 ($r=0.5$, $p=0.001$) and DA6 ($r=0.5$, $p=0.001$). Further, a statistically
177 strong but moderate correlation was observed between MMP1 with DA1 ($r=0.4$, $p=0.001$), MMP7
178 with DA1 ($r=0.4$, $p=0.001$), DA5 ($r=0.4$, $p=0.001$) and DA4 ($r=0.4$, $p=0.001$), and MMP2 with
179 DA5 and DA6 ($r=0.4$, $p=0.001$). Amongst defensins, a statistically significant and strong positive
180 correlation between DA1 and DA3 ($r=0.9$, $p=0.001$), DA1 and DA6 ($r=0.7$, $p=0.001$), DA3 and
181 DA6 ($r=0.5$, $p=0.001$), DA4 and DA5 ($r=0.4$, $p=0.001$) was also observed (Table 2). Moreover,
182 among MMP genes statistically strong positive correlation was found only between MMP1 and
183 MMP2 ($r=0.6$, $p=0.001$), MMP1 and MMP7 ($r=0.9$, $p=0.001$), MMP1 and MMP9 ($r=0.3$,
184 $p=0.001$), MMP2 and MMP7 ($r=0.6$, $p=0.001$), MMP7 and MMP9 ($r=0.4$, $p=0.001$).

185

186 **Multivariate regression analysis**

187 Regression analysis was performed to examine the influence of all study variables with
188 outcome 'severity'. The results showed that the model as a whole was significant ($\text{Chi}^2(12) =$
189 53.04, $p < 0.001$, $n = 117$). Regression analysis also showed only age ($p=0.003$), and expression of
190 MMP1, and MMP2 ($p < 0.001$) to be significantly associated with severity (Table 3). The odds ratio
191 of 1.03 for the variable age suggests that a one-unit increase in the variable age will increase the
192 odds of getting the severe disease by 1.03 times. Similarly, the odds ratio of 1.68 for MMP2
193 suggests that a one-unit increase in MMP2 expression will increase the odds of severe disease by
194 1.68 times (Table 4). The odds ratio of 0.84 for MMP1 suggests that a one-unit increase in MMP1
195 expression will decrease the odds of severe disease by 0.84 times (Table 3).

196

197 **DISCUSSION**

198 Studies have shown that the COVID-19 disease course may vary from mild respiratory
199 disease to severe disease with associated complications and high mortality [28]. The severity of
200 the disease may be affected by several factors such as the viral load, age, gender, and dysregulated
201 expression of antiviral/proinflammatory cytokines [25, 29].

202 In our study, the expression of all tested defensins, except defensin 3, defensin 4, and
203 defensin 5 was found to be comparable between the two groups. Only defensin 3 and defensin 5
204 showed, respectively, 3.9 and 3-fold lesser expression, while defensin 4 showed 6-fold higher
205 expression in the severe group as compared to the mild group. Overall, defensins exhibit some

206 degree of antiviral properties, preventing the virus from entering the cell, thereby, inhibiting
207 infection of the virus [30]. However, it is still unclear how each specific defensins affect the
208 COVID-19 severity. Therefore, human defensins and their antiviral role are one of the major active
209 areas of investigation [31], with studies showing defensins 4/2 to be dysregulated in COVID-19
210 patients [17]. Defensin 5 has also been shown to impede the entry of SARS-CoV-2 into human
211 renal proximal tubular epithelial cells, potentially mitigating the severity of COVID-19 [32].
212 Studies have reported the possible inhibition of SARS-CoV-2 spike protein-mediated fusion by
213 the defensins, for instance, HNP1 was reported to have weak inhibition of the virus attachment
214 [33]. Furthermore, virus-mediated decreased expression of various defensin genes in COVID-19
215 patients may result in enhanced added bacterial infections in the upper respiratory tract; therefore,
216 agents that can enhance the expression of human defensin genes (HBD-1-3) may have a potential
217 therapeutic effect in these patients [34, 35].

218 In our study, the expression of all tested MMPs, except MMP1 and MMP2, was found to
219 be comparable between the two groups. MMP1 showed 2.48-fold higher, while MMP2 showed
220 7.7-fold lower expression in the severe group compared to the mild group, further confirmed by
221 logistic regression analysis. The role of the plasma levels of MMP2 has been reported in
222 hypertensive COVID-19 patients [36]. There are debates about which MMPs cause the more
223 severe COVID-19 disease. Some studies state that MMP1 impacts the disease severity by
224 damaging extracellular matrix (ECM) components that lead to tissue damage and inflammation
225 [37, 38]. On the other hand, other studies found that MMP2 is associated with severe COVID-19
226 due to hyperinflammation and lung tissue damage caused by the decrease in collagen levels [39].
227 Higher expression of MMP2 has been found in the tracheal-aspirate fluid samples of patients with
228 severe COVID-19 patients [40], however, we found decreased expression of MMP2 in the
229 nasopharyngeal milieu in patients with severe COVID-19, which may suggest differences in the
230 expression of MMPs in different anatomical location and/or cells [41, 42]. Studies have shown
231 that SARS-CoV-2 and SARS-CoV-1 use ACE2-dependent pathways involving an endosomal
232 cathepsin protease pathway and a surface serine protease pathway [43, 44]. In virus-producing
233 cells, the proteolytic processing at the S1/S2 boundary required a higher expression of MMP9 and
234 MMP2 proteases, which is associated with hyperinflammation and lung tissue damage in patients
235 with COVID-19 patients [45].

236 A significant correlation between the age of patients and SARS-CoV-2 infection was
237 observed, which aligns with previous research [46]. The severity of COVID-19 is influenced by
238 age: younger infected patients had milder disease due to protective mechanisms. In contrast, older
239 patients rely more on memory T cells for immune response, potentially leading to overreaction
240 and tissue damage, which makes the disease more severe [29].

241 We acknowledge certain limitations of our study. Firstly, the sample size was small to
242 establish predictors of severity, however, we believe it was sufficient to show the direct correlation
243 between the disease severity and defensins and MMP-2 expression, which also agrees with the
244 results of previous studies. Secondly, the other possible reasons for COVID-19 severity could not

245 be established due to the non-availability of clinical information about other co-existing medical
246 conditions that may be present in the study participants. Finally, the expression of MMPs was
247 analyzed only in the nasopharyngeal swab samples and not in the serums, which may result in
248 different expression profiles.

249 In conclusion, we found altered nasopharyngeal expression of certain defensins and MMPs
250 (MMP-2) in the severe group. These findings demonstrate that detection of dysregulated
251 expression of defensins and MMPs in the nasopharyngeal milieu, which can be observed as early
252 as three days (time of our sample collection) might be correlated with the severe form of the
253 disease. Therefore, the early estimation of the expression of these genes may act as a useful
254 biomarker/predictor for possible severe COVID-19 disease, which may be useful in the clinical
255 management of patients to reduce COVID-19-associated morbidity and mortality.

256

257 **Acknowledgment**

258 We are grateful to Dr Abid Jamal, Cancer Foundation Hospital, Karachi, Pakistan, for providing
259 access to the samples.

260

261 **Author Contributions**

262 Conceptualization: SHA; Methodology and formal analysis: KI, NF, KA, MFA, AH, ASS, KG;
263 Writing – original draft: KI, NF, KA, AZ; Review and Final draft: SHA. Supervision: SHA.
264 Funding acquisition: SHA.

265 **Disclosure**

266 The authors report no conflicts of interest in this work.

267 **References**

- 268 1. Hardy E, Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic
269 Tolerance to COVID-19 Pathologies: A Hypothesis. *Biomolecules*. 2021;11(3). Epub 2021/04/04. doi:
270 10.3390/biom11030390. PubMed PMID: 33800947; PubMed Central PMCID: PMCPMC7998259.
- 271 2. Ayres JS. Surviving COVID-19: A disease tolerance perspective. *Sci Adv.* 2020;6(18):eabc1518.
272 Epub 2020/06/05. doi: 10.1126/sciadv.abc1518. PubMed PMID: 32494691; PubMed Central PMCID:
273 PMCPMC7190329.
- 274 3. Ayres JS. A metabolic handbook for the COVID-19 pandemic. *Nat Metab.* 2020;2(7):572-85. Epub
275 2020/07/23. doi: 10.1038/s42255-020-0237-2. PubMed PMID: 32694793; PubMed Central PMCID:
276 PMCPMC7325641.
- 277 4. Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach
278 us about treating infectious diseases. *Nat Rev Immunol.* 2008;8(11):889-95. Epub 2008/10/18. doi:
279 10.1038/nri2432. PubMed PMID: 18927577; PubMed Central PMCID: PMCPMC4368196.
- 280 5. Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, et al. SARS-CoV-2
281 tropism, entry, replication, and propagation: Considerations for drug discovery and development. *PLoS*

282 Pathog. 2021;17(2):e1009225. Epub 2021/02/18. doi: 10.1371/journal.ppat.1009225. PubMed PMID: 33596266; PubMed Central PMCID: PMCPMC7888651 Co., Inc., Kenilworth, NJ, USA and may own stock or hold stock options in Merck & Co., Inc., Kenilworth, NJ, USA.

285 6. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med.* 2020;382(18):1708-20. Epub 2020/02/29. doi: 10.1056/NEJMoa2002032. PubMed PMID: 32109013; PubMed Central PMCID: PMCPMC7092819.

288 7. Xie J, Wu W, Li S, Hu Y, Hu M, Li J, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. *Intensive Care Med.* 2020;46(10):1863-72. Epub 2020/08/21. doi: 10.1007/s00134-020-06211-2. PubMed PMID: 32816098; PubMed Central PMCID: PMCPMC7439240.

292 8. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. *Front Biosci.* 2006;11:1696-701. Epub 2005/12/22. doi: 10.2741/1915. PubMed PMID: 16368548.

294 9. Salomão R, Assis V, de Sousa Neto IV, Petriz B, Babault N, Durigan JLQ, et al. Involvement of matrix metalloproteinases in COVID-19: molecular targets, mechanisms, and insights for therapeutic interventions. *Biology.* 2023;12(6):843.

297 10. Fernandez-Patron C, Kassiri Z, Leung D. Modulation of Systemic Metabolism by MMP-2: From MMP-2 Deficiency in Mice to MMP-2 Deficiency in Patients. *Compr Physiol.* 2016;6(4):1935-49. Epub 2016/10/27. doi: 10.1002/cphy.c160010. PubMed PMID: 27783864.

300 11. C DA-M, Couto AES, Campos LCB, Vasconcelos TF, Michelon-Barbosa J, Corsi CAC, et al. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. *Biomed Pharmacother.* 2021;142:112067. Epub 2021/08/28. doi: 10.1016/j.biopharm.2021.112067. PubMed PMID: 34449310; PubMed Central PMCID: PMCPMC8376652.

304 12. Davey A, McAuley DF, O'Kane CM. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. *Eur Respir J.* 2011;38(4):959-70. Epub 2011/05/14. doi: 10.1183/09031936.00032111. PubMed PMID: 21565917.

307 13. Fligiel SE, Standiford T, Fligiel HM, Tashkin D, Strieter RM, Warner RL, et al. Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. *Hum Pathol.* 2006;37(4):422-30. Epub 2006/03/28. doi: 10.1016/j.humpath.2005.11.023. PubMed PMID: 16564916.

310 14. Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. *Life Sci.* 2020;257:118096. Epub 2020/07/18. doi: 10.1016/j.lfs.2020.118096. PubMed PMID: 32679150; PubMed Central PMCID: PMCPMC7361122.

314 15. Ueland T, Holter JC, Holten AR, Muller KE, Lind A, Bekken GK, et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. *J Infect.* 2020;81(3):e41-e3. Epub 2020/07/01. doi: 10.1016/j.jinf.2020.06.061. PubMed PMID: 32603675; PubMed Central PMCID: PMCPMC7320854.

318 16. Cao X. COVID-19: immunopathology and its implications for therapy. *Nat Rev Immunol.* 2020;20(5):269-70. Epub 2020/04/11. doi: 10.1038/s41577-020-0308-3. PubMed PMID: 32273594; PubMed Central PMCID: PMCPMC7143200.

321 17. Al-Bayatee NT, Ad'hiah AH. Human beta-defensins 2 and 4 are dysregulated in patients with coronavirus disease 19. *Microbial Pathogenesis.* 2021;160:105205.

323 18. Laneri S, Brancaccio M, Mennitti C, De Biasi MG, Pero ME, Pisanelli G, et al. Antimicrobial peptides and physical activity: a great hope against COVID 19. *Microorganisms.* 2021;9(7):1415.

325 19. Banu S, Nagaraj R, Idris MM. Defensins: Therapeutic molecules with potential to treat SARS-CoV-2 infection. *Indian Journal of Medical Research.* 2022;155(1):83-5.

327 20. Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. *Molecular Biology Reports.* 2022;49(10):10039-50.

329 21. Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as
330 therapeutics to combat against viral infection. *Microbial pathogenesis*. 2021;155:104930.

331 22. Son KB, Lee TJ, Hwang SS. Disease severity classification and COVID-19 outcomes, Republic of
332 Korea. *Bull World Health Organ*. 2021;99(1):62-6. Epub 2021/03/05. doi: 10.2471/BLT.20.257758.
333 PubMed PMID: 33658735; PubMed Central PMCID: PMCPMC7924894.

334 23. Ghulam U, Nazim F, Farooqui N, Rizwan-ul-Hasan S, Anwar MF, Ahmed K, et al. Analysis of
335 differential gene expression of pro-inflammatory cytokines in the nasopharyngeal milieu of mild &
336 severe COVID-19 cases. *Plos one*. 2022;17(12):e0279270.

337 24. Zahid W, Farooqui N, Zahid N, Ahmed K, Anwar MF, Rizwan-ul-Hasan S, et al. Association of
338 Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-
339 Sectional Study. *Infection and Drug Resistance*. 2023:6619-28.

340 25. Ghulam U, Nazim F, Farooqui N, Rizwan-UI-Hasan S, Anwar MF, Ahmed K, et al. Analysis of
341 differential gene expression of pro-inflammatory cytokines in the nasopharyngeal milieu of mild &
342 severe COVID-19 cases. *PLoS One*. 2022;17(12):e0279270. Epub 2022/12/31. doi:
343 10.1371/journal.pone.0279270. PubMed PMID: 36584119; PubMed Central PMCID: PMCPMC9803207.

344 26. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. *Nat
345 Protoc*. 2008;3(6):1101-8. Epub 2008/06/13. doi: 10.1038/nprot.2008.73. PubMed PMID: 18546601.

346 27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative
347 PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25(4):402-8. Epub 2002/02/16. doi:
348 10.1006/meth.2001.1262. PubMed PMID: 11846609.

349 28. Gisondi P, S PI, Bordin C, Alaibac M, Girolomoni G, Naldi L. Cutaneous manifestations of SARS-
350 CoV-2 infection: a clinical update. *J Eur Acad Dermatol Venereol*. 2020;34(11):2499-504. Epub
351 2020/06/26. doi: 10.1111/jdv.16774. PubMed PMID: 32585074; PubMed Central PMCID:
352 PMCPMC7362144.

353 29. Brodin P. Immune determinants of COVID-19 disease presentation and severity. *Nat Med*.
354 2021;27(1):28-33. Epub 2021/01/15. doi: 10.1038/s41591-020-01202-8. PubMed PMID: 33442016.

355 30. Xu C, Wang A, Marin M, Honnen W, Ramasamy S, Porter E, et al. Human defensins inhibit SARS-
356 CoV-2 infection by blocking viral entry. *Viruses*. 2021;13(7):1246.

357 31. Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human Antimicrobial Peptides as
358 Therapeutics for Viral Infections. *Viruses*. 2019;11(8). Epub 2019/08/04. doi: 10.3390/v11080704.
359 PubMed PMID: 31374901; PubMed Central PMCID: PMCPMC6722670.

360 32. Wang C, Wang, S., Li, D., Wei, D. Q., Zhao, J., & Wang, J. Human Intestinal Defensin 5 Inhibits
361 SARS-CoV-2 Invasion by Cloaking ACE2. *Gastroenterology*. 2020;159(3):1145-7. doi:
362 10.1053/j.gastro.2020.05.015.

363 33. Xu D, Lu W. Defensins: A Double-Edged Sword in Host Immunity. *Front Immunol*. 2020;11:764.
364 Epub 2020/05/28. doi: 10.3389/fimmu.2020.00764. PubMed PMID: 32457744; PubMed Central PMCID:
365 PMCPMC7224315.

366 34. Krishnakumari V, Guru A, Adicherla H, Nagaraj R. Effects of increasing hydrophobicity by N-
367 terminal myristylation on the antibacterial and hemolytic activities of the C-terminal cationic segments
368 of human-beta-defensins 1-3. *Chem Biol Drug Des*. 2018;92(2):1504-13. Epub 2018/04/24. doi:
369 10.1111/cbdd.13317. PubMed PMID: 29682907.

370 35. Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J. Antimicrobial characterization of human beta-
371 defensin 3 derivatives. *Antimicrob Agents Chemother*. 2003;47(9):2804-9. Epub 2003/08/26. doi:
372 10.1128/AAC.47.9.2804-2809.2003. PubMed PMID: 12936977; PubMed Central PMCID:
373 PMCPMC182640.

374 36. Carolina D, Couto AE, Campos LC, Vasconcelos TF, Michelon-Barbosa J, Corsi CA, et al. MMP-2
375 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients.
376 *Biomedicine & Pharmacotherapy*. 2021;142:112067.

377 37. Herrera I CJ, Maldonado M, Ramírez R, Ortiz-Quintero B, Anso E, Chandel NS, Selman M, Pardo
378 A. Matrix metalloproteinase (MMP)-1 induces lung alveolar epithelial cell migration and proliferation,
379 protects from apoptosis, and represses mitochondrial oxygen consumption. *J Biol Chem.*
380 2013;288(36):25964-75. doi: 10.1074/jbc.M113.459784.

381 38. Chorenó-Parra JA J-ÁL, Cruz-Lagunas A, Rodríguez-Reyna TS, Ramírez-Martínez G, Sandoval-Vega
382 M, Hernández-García DL, Chorenó-Parra EM, Balderas-Martínez YI, Martínez-Sánchez ME, Márquez-
383 García E, Sciutto E, Moreno-Rodríguez J, Barreto-Rodríguez JO, Vázquez-Rojas H, Centeno-Sáenz GI,
384 Alvarado-Peña N, Salinas-Lara C, Sánchez-Garibay C, Galeana-Cadena D, Hernández G, Mendoza-Milla C,
385 Domínguez A, Granados J, Mena-Hernández L, Pérez-Buenfil L, Domínguez-Cheritt G, Cabello-Gutiérrez
386 C, Luna-Rivero C, Salas-Hernández J, Santillán-Doherty P, Regalado J, Hernández-Martínez A, Orozco L,
387 Ávila-Moreno F, García-Latorre EA, Hernández-Cárdenas CM, Khader SA, Zlotnik A, Zúñiga J. Clinical and
388 immunological factors that distinguish COVID-19 from pandemic influenza A (H1N1). *Front Immunol.*
389 2021;12:593595. doi: 10.3389/fimmu.2021.593595.

390 39. Gustavo R.M. LAJ, Alfredo C.L., Sergio I.C., Itzel A.G., Tatiana S.R., Jose A.C., & Joaquí Z. Possible
391 Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. *Journal of Interferon &*
392 *Cytokine Research.* 2022;42(8):352-68. doi: 10.1089/jir.2021.0222. PubMed PMID: 35647937.

393 40. da Silva-Neto PV, do Valle VB, Fuzo CA, Fernandes TM, Toro DM, Fraga-Silva TF, et al. Matrix
394 metalloproteinases on severe COVID-19 lung disease pathogenesis: cooperative actions of MMP-
395 8/MMP-2 axis on immune response through HLA-G shedding and oxidative stress. *Biomolecules.*
396 2022;12(5):604.

397 41. Miller TL, Touch SM, Shaffer TH. Matrix metalloproteinase and tissue inhibitor of matrix
398 metalloproteinase expression profiles in tracheal aspirates do not adequately reflect tracheal or lung
399 tissue profiles in neonatal respiratory distress: observations from an animal model. *Pediatr Crit Care
400 Med.* 2006;7(1):63-9. doi: 10.1097/01.pcc.0000192320.87416.1a. PubMed PMID: 16395077.

401 42. Brand KH, Ahout IM, de Groot R, Warris A, Ferwerda G, Hermans PW. Use of MMP-8 and MMP-9
402 to assess disease severity in children with viral lower respiratory tract infections. *J Med Virol.*
403 2012;84(9):1471-80. doi: 10.1002/jmv.23301. PubMed PMID: 22825827; PubMed Central PMCID:
404 PMCPMC7167016.

405 43. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2.
406 *Proc Natl Acad Sci U S A.* 2020;117(21):11727-34. Epub 2020/05/08. doi: 10.1073/pnas.2003138117.
407 PubMed PMID: 32376634; PubMed Central PMCID: PMCPMC7260975.

408 44. Hoffmann M, Hofmann-Winkler H, Smith JC, Kruger N, Arora P, Sorensen LK, et al. Camostat
409 mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts
410 antiviral activity. *EBioMedicine.* 2021;65:103255. Epub 2021/03/08. doi: 10.1016/j.ebiom.2021.103255.
411 PubMed PMID: 33676899; PubMed Central PMCID: PMCPMC7930809.

412 45. Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, et al. Identification of a SARS-CoV-2 host
413 metalloproteinase-dependent entry pathway differentially used by SARS-CoV-2 and variants of concern
414 Alpha, Delta, and Omicron. *bioRxiv.* 2022:2022.02.19.481107. doi: 10.1101/2022.02.19.481107.

415 46. Kim M-H SS, Wang JY, et al. Type I, II, and III interferon signatures correspond to coronavirus
416 disease 2019 severity. *J Infect Dis.* 2021;224(5):777-82. doi: 10.1093/infdis/jiab288.

417

418

419 **Figure 1.** Relative expression of defensins (DAs) and matrix metalloproteinases (MMPs) in mild
420 vs severe group. The figure shows the **A**) mean ΔCt values and **B**) fold change in the mild group
421 as compared to the severe group. **A)** The line above bars indicate a significant difference ($p < 0.05$)
422 in the expression of the tested genes between the mild and severe groups.

423

424 **Table 1: List of Primers used to measure the levels of matrix metalloproteinase and defensin**
425 **and β -actin.**

Genes Name	Sequences 5' – 3'	
DA 1	Fwd.: TCCCTTGCATGGGACGAAAG	Rev.: GGTTCCATAGCGACGTTCTCC
DA 3	Fwd.: TACCCACTGCTAACTCCATAC	Rev.: GAATGCCAGAGTCTTCCC
DA 4	Fwd.: CCTTGCATGGATAAAAGCTCT	Rev.: ACACCACCAATGAGGCAGTTC
DA 5	Fwd.: AGACAACCAGGACCTTGCTAT	Rev.: GGAGAGGGACTCACGGGTAG
DA 6	Fwd.: CTGAGCCACTCCAAGCTGAG	Rev.: GTTGAGCCAAAGCTCTAAGAC
MMP 1	Fwd.: AAAATTACACGCCAGATTGCC	Rev.: GGTGTGACATTACTCCAGAGTTG
MMP 2	Fwd.: TACAGGATCATTGGCTACACACC	Rev.: GGTCACATCGCTCCAGACT
MMP 7	Fwd.: GAGTGAGCTACAGTGGGAACA	Rev.: CTATGACGCGGGAGTTAACAT
MMP 9	Fwd.: TGTACCGCTATGGTTACACTCG	Rev.: GGCAGGGACAGTTGCTTCT
B-actin	Fwd.: CAACTTCATCCAGCTTCACC	Rev.: TCGAGGACGCCCTATCATGG

426

427 **Table 2: Correlation among Defensins and Matrix Metalloproteinase expressions in the mild**
428 **group. Statistically significant values are highlighted in bold.**

Mild group					
Gene Expression	DA1	DA3	DA4	DA5	DA6
DA1	-	r= 0.5	r= 0.5	r=0.5	r=0.60
DA3	r= 0.5	-	r =0.6	r=0.5	r=0.7
DA4	r= 0.5	r= 0.6	-	r=0.5	r =0.6
DA5	r= 0.5	r= 0.5	r= 0.5	-	r= 0.8
DA6	r =0.6	r=0.7	r =0.6	r= 0.8	-
MMP1	r= 0.2	r= 0.3	r= 0.4	r= 0.00	r= 0.1
MMP2	r= 0.2	r= 0.2	r= 0.3	r= 0.2	r= 0.00
MMP7	r= 0.3	r= 0.00	r= 0.3	r= 0.3	r= 0.2
MMP9	r= 0.1	r= 0.2	r= 0.2	r= 0.2	r= 0.4
	MMP1	MMP2	MMP7	MMP9	
MMP1	-	r=0.2	r=0.1	r=0.0	
MMP2	r=0.2	-	r=0.0	r=0.4	
MMP7	r=0.1	r=0.0	-	r=0.0	
MMP9	r=0.0	r=0.4	r=0.0	-	
Severe group					

Gene Expression	DA1	DA3	DA4	DA5	DA6
DA1	-	r= 0.9	r= 0.1	r=0.2	r=0.7
DA3	r= 0.9	-	r =0.1	r=0.1	r=0.5
DA4	r= 0.1	r= 0.1	-	r= 0.4	r= 0.0
DA5	r= 0.2	r= 0.1	r= 0.4	-	r= 0.1
DA6	r= 0.7	r= 0.5	r= 0.0	r= 0.1	-
MMP1	r= 0.4	r= 0.2	r= 0.4	r= 0.5	r= 0.5
MMP2	r= 0.3	r= 0.00	r= 0.3	r= 0.4	r= 0.4
MMP7	r= 0.5	r= 0.2	r= 0.4	r= 0.4	r= 0.5
MMP9	r= 0.2	r= 0.1	r= 0.2	r= 0.2	r= 0.1
	MMP1	MMP2	MMP7	MMP9	
MMP1	-	r= 0.6	r= 0.9	r= 0.3	
MMP2	r= 0.6	-	r= 0.6	r= 0.0	
MMP7	r= 0.9	r= 0.6	-	r= 0.4	
MMP9	r= 0.3	r= 0.0	r= 0.4	-	

429

430

Table 3. Multivariate logistic regression model in different variables

	Coefficient B	Standard error	z	p	Odds Ratio	95% conf. interval
Age	0.03	0.02	1.67	0.003	1.03	1 - 1.06
Gender	-0.48	0.57	0.86	0.393	0.62	0.2 - 1.87
Viral Ct value	0.05	0.05	1.07	0.283	1.05	0.96 - 1.15
DA1	0.09	0.09	0.98	0.33	1.09	0.91 - 1.31
DA3	0.15	0.08	1.84	0.066	1.16	0.99 - 1.37
DA4	-0.08	0.04	1.88	0.06	0.92	0.85 - 1
DA5	0.06	0.05	1.09	0.275	1.06	0.95 - 1.18
DA6	0.08	0.06	1.19	0.235	1.08	0.95 - 1.23
MMP1	-0.17	0.08	2.21	0.027	0.84	0.73 - 0.98

MMP2	0.52	0.14	3.65	<.001	1.68	1.27 - 2.22
MMP7	0.03	0.06	0.44	0.659	1.03	0.91 - 1.16
MMP9	0.03	0.04	0.71	0.479	1.03	0.95 - 1.11

431

432

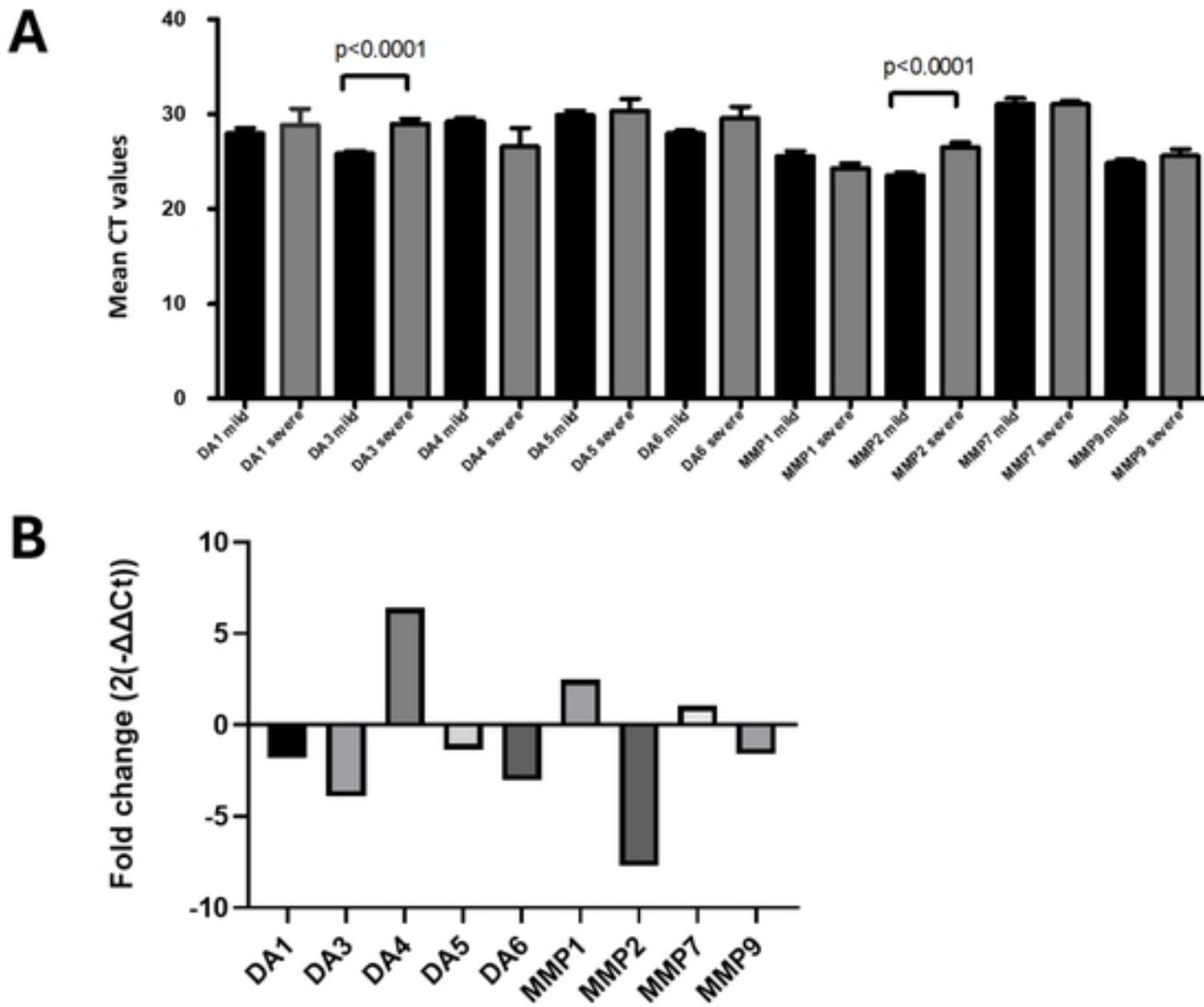


Figure 1