

18 **Abstract**

19

20 Subjective tinnitus is a phantom auditory perception in the absence of an actual acoustic
21 stimulus. It affects 15% of the global population and can be associated with disturbed sleep,
22 poor mental health and quality of life. To date, there is no effective treatment for tinnitus. We
23 used adult ferrets exposed to mild noise trauma as an animal model of tinnitus. We
24 assessed the phantom percept using two operant paradigms sensitive to tinnitus, silent gap
25 detection and silence detection, before and up to six months after the mild acoustic trauma.
26 The integrity of the auditory brainstem was assessed over the same period using auditory
27 brainstem response recordings.

28 Following noise overexposure, ferrets developed lasting, frequency-specific
29 impairments in operant behaviour and evoked brainstem activity. To explore the interaction
30 between sleep and tinnitus, in addition to tracking the behavioural markers of noise-induced
31 tinnitus and hearing impairment after noise overexposure, we evaluated sleep-wake
32 architecture and spontaneous and auditory-evoked EEG activity across vigilance states.
33 Behavioural performance and auditory-evoked activity measurements after noise
34 overexposure suggested distinct degrees of tinnitus and hearing impairment between
35 individuals. Animals that developed signs of tinnitus consistently developed sleep
36 impairments, suggesting a link between the emergence of noise-induced tinnitus and sleep
37 disruption. However, neural markers of tinnitus were reduced during sleep, suggesting that
38 sleep may transiently mitigate tinnitus.

39 These results reveal the importance of sleep-wake states in tinnitus and suggest that
40 understanding the neurophysiological link between sleep and tinnitus may provide a new
41 angle for research into the causes of phantom percepts and inform future treatments.

42

43 **Keywords:** subjective tinnitus; sleep; noise overexposure; hearing loss; operant conditioning;
44 auditory system; cortical plasticity; auditory evoked EEG activity; vigilance states.

45

46 Introduction

47

48 Sleep is a state of vigilance when neural activity is mainly generated endogenously while the
49 brain is relatively disconnected from the external sensory environment [1–3]. During
50 wakefulness, percepts arising from stimulus-independent neural activity, such as tinnitus or
51 hallucinations, are sometimes a reflection of neuronal malfunction ([4]; work of Ambroise
52 Paré reviewed in [5–7]). In contrast, during sleep, phantom percepts, such as imaginary
53 sensorimotor experiences during dreams, are considered normal. Very little is known,
54 however, about the relationship between the natural processes that take place during sleep
55 and the pathological processes that give rise to persistent phantom percepts. The most
56 prevalent phantom sensation is subjective tinnitus, or tinnitus for short, which affects an
57 estimated 15% of the population [8,9]. Tinnitus is commonly reported as the constant
58 perception of a hissing, ringing or buzzing sound without any identifiable acoustic source [8],
59 and is often associated with depression, anxiety [10–12] and disturbed sleep [13–21]. To
60 date, there is no available cure for tinnitus.

61 Tinnitus is associated with functional changes in widely distributed brain regions,
62 including both auditory and non-auditory areas [22–28], many of which exhibit a dramatic
63 modulation in their spatiotemporal activity across wakefulness and sleep [29–31]. We
64 recently proposed that the spatial overlap between brain areas affected by tinnitus and those
65 showing sleep-state dependent neural activity may lead to competition between pathological
66 and physiological drives determining cortical network activity [32]. If tinnitus-related activity
67 persists across vigilance states, it may result in a state of partial arousal during sleep similar
68 to that observed in some forms of insomnia and parasomnias [33–35], where the emergence
69 of global and local activation interferes with natural sleep-wake dynamics, potentially
70 causing sleep impairments. Yet, the possibility remains that local and global changes in
71 brain activity across vigilance states [30,36] may, in turn, interfere with tinnitus-related

72 activity. In particular, high-intensity sleep with high levels of cortical slow wave activity,
73 prompted by cellular and network-level drives for recovery sleep [37], such as after a period
74 of extended wakefulness [30,38,39], could potentially mitigate tinnitus temporarily. This leads
75 to the intriguing hypothesis that a dynamic modulation of the phantom sound sensation
76 occurs across the sleep-wake cycle, depending on the relative weighting of circadian and
77 homeostatic drives.

78 The aim of this study was to develop a new animal model for tinnitus, which will
79 enable addressing this relationship and then systematically assess the interaction between
80 sleep and tinnitus. The ferret is an attractive animal model that, due to its long lifespan,
81 enables longitudinal studies to be carried out. Ferrets further allow for detailed assessment
82 of operant behaviour, and are a valuable model for hearing research in particular, with a
83 hearing frequency range more similar to the human range than in case of rodents. We
84 tracked behavioural markers of noise-induced tinnitus and hearing impairment in a ferret
85 model over a period of six months after noise overexposure and, in parallel, assessed the
86 sleep-wake pattern, as well as spontaneous and auditory-evoked EEG activity across
87 vigilance states. Behavioural performance and auditory-evoked activity suggested distinct
88 differences in the degree of tinnitus and hearing impairment between individuals. Animals
89 developing tinnitus also exhibited sleep impairments, suggesting a link between the
90 emergence of noise-induced tinnitus and sleep disruption. Finally, neural markers of tinnitus
91 were reduced during sleep, suggesting that sleep may transiently mitigate tinnitus. Overall,
92 these results highlight the potential of measuring natural brain state dynamics to investigate
93 tinnitus and uncover new avenues for future treatments.

94

95

96 **Material and Methods**

97

98 **Animals**

99 All procedures were carried out in accordance with the Animal (Scientific Procedures) Act
100 1986 (amended in 2012) and authorised by a UK Home Office Project Licence following
101 approval by the Committee on Animal Care and Ethical Review of the University of Oxford.
102 Seven adult female pigmented ferrets (*Mustela putorius furo*) were used in this study.
103 Female ferrets are considered more suitable for neuroscientific studies than males because
104 the brain size is similar across adult individuals and the thinner skull and temporalis muscles
105 allow cranial implants to be attached more easily [40–42].

106 A subset of four animals were implanted for chronic recordings but only three were
107 used for long term assessment due to an acute clinical condition in one animal unrelated to
108 the implant. The animals were chronically implanted with cortical EEG and EMG electrodes
109 to assess sleep–wake architecture and spatiotemporal patterns of brain activity before and
110 after noise overexposure. The longitudinal design of this study spanning more than nine
111 months allowed each animal to act as its own control by comparing the results before and
112 after noise overexposure.

113 Animals were housed in small groups of at least three ferrets in standard laboratory
114 enclosures or large pens housing up to ten animals. Food and water were available *ad*
115 *libitum* except during periods of operant behavioural testing, where water access was mainly
116 limited to rewards received during behavioural testing. Periods of water access regulation
117 lasted for a maximum of five consecutive days before at least two days of *ad libitum* access
118 to water. While under water regulation, animals received performance–dependent amounts
119 of water during the behavioural task, topped up in the form of mashed food puree to an
120 amount of 60 ml/kg body weight per day, to ensure that animals maintained a body weight \geq
121 85% of their free–feeding weight.

122 Animals were housed under a 15/9h light–dark cycle from mid–March until mid–
123 November (summer light cycle) and otherwise under an 8/16 h light–dark cycle (winter light
124 cycle) to mimic natural seasonal changes in light exposure [43]. To suppress oestrus, ferrets
125 were routinely injected with Delvosteron (MSD Animal health, Proligestone 100mg/ml) one
126 month before the change to the summer light cycle. Behavioural experiments were
127 conducted predominantly during the light phase, and chronic EEG recordings took place only
128 during the summer light cycle.

129 During the periods of continuous EEG recordings (each lasting 2–3 days), animals
130 were single housed in a custom–made enclosure (LxWxH 60x60x70cm) within a double–
131 walled sound–attenuated chamber. Animals had *ad libitum* access to water and food.
132 Identical bedding and nesting material to their home cages were provided, and the lighting
133 and temperature conditions were the same as in the home enclosure. Before the first chronic
134 recordings, ferrets were progressively habituated to the recording enclosure and to the
135 tethering used for EEG recording. Recording enclosures were cleaned after each recording
136 period.

137 Body weight, fur appearance and social interactions were monitored weekly over the
138 course of the experiment to exclude any general change in animal behaviour due to the
139 surgical or noise overexposure procedure or the recording paradigms.

140

141 **Electrode implantation**

142 The aseptic surgical procedure largely followed the methodology previously described in
143 [41,44]. Anaesthesia was induced with a single intramuscular injection of medetomidine
144 hydrochloride (0.022 mg/kg BW; Domitor, Orion Pharma) and ketamine hydrochloride (5
145 mg/kg; Narketan10, Vetoquinol). Anaesthesia was maintained using Isofluorane (1-3%)
146 (IsoFlo, Abbot Laboratories) with 100% oxygen as a carrier. Atropine sulphate (0.06 mg/kg,
147 s.c.; Atrocare, Animalcare) was administered to minimise pulmonary secretions along with

148 dexamethasone (0.5 mg/kg, s.c.; Dexadreson, Intervet) to prevent cerebral oedema.
149 Doxapram hydrochloride (4 mg/kg, s.c.; Dopram-V Injection, Pfizer) was administered to
150 minimise respiratory depression. Perioperative analgesia was provided with buprenorphine
151 hydrochloride (0.01 mg/kg, s.c.; Vetergesic, Sogeval) and meloxicam (0.2 mg/kg, s.c.);
152 Metacam, Boehringer Ingelheim). Prophylactic antibiotics to prevent infections were
153 administered during the surgery (Augmentin: co-amyxoclav 0.02 mg/kg i.v. every 2 hours;
154 Bechaam) and once daily for five days after surgery (Xynulox: Amoxicillin trihydrate/Co-
155 amixoclav, 0.1 mg/kg i.m.; Zoetis). Depth of anaesthesia, respiratory rate, ECG, and end-
156 tidal CO₂ were monitored and maintained throughout the experiment. The animal's
157 temperature was monitored using a rectal probe and maintained at 38°C using a
158 homeothermic electrical blanket (Harvard Apparatus) and a forced-air warming system (Bair
159 Hugger, 3M Health Care).

160 The ferret was placed in a stereotaxic frame, the eyes were protected with a
161 carbomer liquid eye gel (Viscotears, Alcon Laboratories), and the skull was exposed.
162 Custom-made wired headmounts (Pinnacle Technology Inc. Lawrence) for EEG recordings
163 were attached to bone-anchored stainless steel screws in contact with the *dura mater*. They
164 acted as EEG electrodes, which were positioned unilaterally over the right frontal (AP 4 mm,
165 ML 4 mm) and occipital (AP 7mm, ML 5mm) cortical areas and over the cerebellum
166 reference electrode). Similar configurations of EEG electrodes have been used to provide
167 recordings suitable for vigilance state scoring across different mammalian species such as
168 ferrets, rats and mice [36,45,46]. Two tip-blunted stainless-steel wires were placed into the
169 nuchal muscle for electromyography (EMG). Wires and screws were secured to the skull
170 surface and protected by covering with bone cement (CMW1 Bone Cement, DePuy CMW,
171 Lancashire, UK). EEG head mounts were protected with accessible plastic enclosures
172 secured to the bone cement. The temporal muscle was temporarily detached at the dorsal
173 part to provide access to the skull so that the EEG electrodes could be fixed to it. At the end
174 of the surgery and to restore its function, the muscle was repositioned over the low profile

175 most lateral part of the cranial pedestal using resorbable sutures and covered with the skin
176 that was sutured independently around the most medial externalised part of the cranial
177 implant. To expedite recovery from anaesthesia at the end of the procedure, animals
178 received Antisedan (atipamezole hydrochloride, 0.06mg/kg, s.c., Vetoquinol). A minimum
179 two-week postsurgical recovery period was allowed prior to further procedures.

180 **Noise overexposure**

181 Noise (one octave narrowband noise centred at 8 kHz, 98 dB SPL at ear level) was
182 presented for 120 minutes unilaterally via an earphone (Sennheiser CX300 II earphone)
183 attached by a silicone tube to the entrance of the right ear canal while the left ear was fitted
184 with an earplug and silicone impression material (Otoform, Dreve Otoplastik) to minimise its
185 sound exposure. Closed-field calibrations of the sound-delivery system were performed
186 using an 1/8th-in condenser microphone (Brüel and Kjær) attached to the silicone tube. The
187 procedure was carried under general anaesthesia (assessed by immobility and absence of
188 the pedal reflex), which was induced through intramuscular injection of medetomidine
189 hydrochloride (0.022 mg/kg; Domitor, Orion Pharma) and ketamine hydrochloride (5 mg/kg;
190 Narketan10, Vetoquinol). Depth of anaesthesia and the respiratory rate were monitored
191 throughout the procedure. Anaesthesia was maintained by injection of half of the initial dose
192 after 60 minutes or when the animal showed signs of arousal. Body temperature was
193 maintained at 38°C using a homeothermic monitoring system (Harvard apparatus). To
194 reverse the effect of Domitor and expedite recovery from anaesthesia, animals received
195 Antisedan (atipamezole hydrochloride, 0.06mg/kg, s.c.). Noise overexposure (NOE) took
196 place during the light phase, and animals were given at least 48h of rest before any other
197 procedure.

198 **Auditory brainstem response measurements**

199 Auditory brainstem responses (ABRs) were obtained under anaesthesia (medetomidine/
200 ketamine as described in 'Noise overexposure', see above) using sterile subcutaneous

201 monopolar needle electrodes (0.35 x 12 mm, MN3512P150, Spes Medica). Body
202 temperature was maintained at 38°C using a forced-air warming system (Bair Hugger, 3M
203 Health Care). Stimuli were presented monaurally (left and right in subsequent recordings) via
204 earphones (Sennheiser CX300 II) inserted into the ear canal and fixed in place with silicone
205 impression material (Otoform, Dreve). Auditory stimuli were generated using an RP2.1
206 Enhanced Real-time processor (Tucker Davies Technologies, TDT) with a sampling
207 frequency of 100 kHz connected to a TDT PA5 programmable attenuator. The earphones
208 were calibrated using SigCalRP TDT calibration software to generate compensation filters
209 ensuring stable levels across a frequency range from 250 to 30,000 Hz. Click stimuli
210 (rarefaction click trains, rectangular voltage pulse, 100 µV, low-pass filtered) were presented
211 at a rate of 17/sec for 700 repetitions per level (40, 50, 60, 70, 80, 90 dB SPL). One octave
212 narrow-band noise stimuli (NBN, centred around 1, 4, 8 and 16 kHz) with a 5 ms duration
213 were presented at a rate of 21/sec for 700 repetitions per level-frequency combination.
214 Signals were recorded from two active subcutaneous electrodes, placed close to the left and
215 right auditory *bulvae*, respectively, and referenced to an electrode placed at the vertex of the
216 skull. A ground electrode was placed on the back of the animal. The signal was routed to a
217 low impedance preamplifier (TDT RA16PA) and headstage (TDT RA4LI) and recorded by an
218 RZ2 Bioamp Processor (25 kHz sampling rate) controlled by BioSigRP software (TDT).
219

220 **ABR signal analysis**
221 ABR thresholds were determined manually by an experienced experimenter through visual
222 assessment of ABR traces. This was conducted under blind conditions (enabled through a
223 randomisation process used to access the data) with respect to animal, stimulus and stage
224 of the experimental timeline (baseline, one week after noise overexposure (NOE) (Post1),
225 and six months after NOE (Post2)). Thresholds were defined as the lowest stimulus level
226 where an ABR wave was present if corresponding waves were also present at higher sound

227 levels. If no ABR wave was present for any sound level, the threshold was defined to be at
228 90 dB SPL (the highest sound intensity used).

229

230 Data analysis was performed offline based on the average ABR signals (averaged
231 over 700 individual ABR traces) for each stimulus type. As a readout for the magnitude of
232 the entire ABR signal across all waves, the root mean square (RMS) of the signal was
233 calculated by applying the MATLAB function *rms* on the signal in the predefined response
234 window, 1.6 ms to 4 ms, to include only the ABR signal. To account for longer response
235 latencies at low sound levels, the response window was shifted by 0.16 ms for each 10 dB
236 decrement. A level–response plot was computed for each animal, assessment and stimulus
237 and the area under the graph was calculated.

238 **Operant silent gap detection**

239 Ferrets were trained by operant positive reinforcement using water as a reward to carry out a
240 silent gap–detection task in an arena as described in previous work [47,48] (Fig S1A,B). The
241 setup consisted of a circular arena (radius, 75 cm) housed in a double–walled sound–
242 attenuated room. Animals were trained to initiate a trial by licking a spout, which activated
243 infrared sensors on a platform at the centre of the arena. This ensured that the animal was
244 facing the loudspeaker location at 0° azimuth at the time of sound delivery. Licking the
245 central spout triggered the presentation of one of two types of sound stimuli through a single
246 loudspeaker (Audax TW025MO). The two stimulus types were either a continuous sound or
247 the same sound including four silent gaps. Following stimulus presentation, the animal had
248 to leave the central platform and approach a peripheral response location at 30° to the left in
249 'gap trials' and 30° to the right in 'no gap trials' to obtain a water reward. Both types of stimuli
250 were pseudo randomly balanced to avoid response bias to either location. There was no
251 time limit for the animals to respond. Incorrect responses were not rewarded. After an
252 incorrect response, trial initiation triggered the identical sound stimulus up to two more times

253 (correction trials) before a new stimulus was presented. Correction trials were not included in
254 the data analysis.

255 Sound stimuli were generated by TDT System III hardware. The paradigm was
256 controlled by a custom MATLAB program that registered the position of the ferret at the
257 arena -centre and response locations, presented the stimuli and delivered the rewards
258 accordingly. Sound stimuli were broadband Gaussian noise bursts (BBN, 30 kHz lowpass)
259 and one octave narrowband noise bursts (NBN) centred at 1, 4, 8, and 16 kHz. In gap trials,
260 four equally spaced, identical silent gaps were introduced in the stimulus. Across trials, the
261 length of these gaps varied from 3, 5, 10, 20, 50, 100 to 270 ms in duration. Stimuli were
262 generated *de novo* for each trial, cosine ramped with a 10 ms rise/fall time and had a total
263 duration of 2080 ms. All stimuli were filtered using the inverse transfer function of the
264 loudspeaker to obtain stable sound intensity levels across the presented frequencies at 76±5
265 dB SPL.

266 Animals were tested twice daily in blocks of five consecutive days separated by at
267 least two days of *ad libitum* access to water. Within each session, gap lengths were
268 randomised across gap trials. Stimulus centre frequencies were identical across trials within
269 a given session but varied between sessions to obtain approximately equal numbers of trials
270 for all stimuli (1, 4, 8 and 16 kHz NBN and BBN). Procedural training, not included in the
271 analysis, was provided using only the longest gap length (270 ms) until the animals reached
272 ≥80% correct responses in two consecutive sessions, after which they were tested using all
273 gap lengths.

274 Animals had to complete 600-1000 trials for each stimulus type. Analysis was based
275 on the average performance for each session. Trials with response times of >5 seconds
276 were excluded from further analysis. Sessions with few trials (more than 5 gap lengths each
277 with <5 presentations) were also excluded from the analysis.

278 Since a constant phantom sound can fill a silent gap in a presented sound stimulus
279 (Fig. S1A), tinnitus may create a bias towards detecting non-gap sounds. Consequently,
280 lower FA and hit rates may occur with tinnitus, effectively compensating for each other when

281 d' is calculated. Therefore, we used hit rate or the proportion of correct gap responses rather
282 than calculating d' to quantify behavioural performance. Main effects on hit rate were
283 estimated by fitting a GLMM (target distribution: normal, link: identity) on approximately
284 normally-distributed hit rate data (repeated measures: gap length, testing session, stimulus
285 frequency). Note that the number of gap and no gap trials was equal to prevent animals from
286 developing a bias to one side in the paradigm. Therefore, no gap and gap trials contributed
287 equally to statistical analysis, and the contribution of each gap trial was equal.

288 For analysis of silent gap detection thresholds, a sigmoid function (*R P* (2022)).
289 *sigm_fit* (mathworks.com/matlabcentral/fileexchange/42641-sigm_fit, *MATLAB Central File
290 Exchange*) was fitted on hit rate (between 0 and 1) vs gap length, calculated for each animal,
291 stimulus (1, 4, 8 and 16 kHz NBN and BBN) and condition (baseline, Post1 (1 week post
292 NOE), Post2 (6 months post NOE)). Thresholds were defined as the gap length in closest
293 proximity to a hit rate of 0.5 (chance level) on the fitted function. Fits with slopes at threshold
294 of more than 10 times the median slope across all samples were excluded from the analysis
295 (this applied to 2 out of 78 samples).

296

297 **Operant silence detection**

298 Operant silence detection (modified from [49]) took place in the same testing arena as the
299 silent gap detection paradigm, and trials were initiated in the same way. In the silence
300 detection task, however, trial initiation triggered a light emitting diode facing the central
301 platform (signalling the start of the trial) and one of three sound stimulus types: narrowband
302 noise (NBN, one octave bandwidth with centre frequencies at 1, 4, 8, and 16 kHz
303 randomised across trials), a sinusoidally–amplitude modulated BBN (AM stimulus, 100%
304 modulation depth, 5 Hz modulation frequency) or silence (no sound). The proportions of
305 trials in which these stimuli were presented were 50% for NBN, 30% for AM, and 20% for
306 silence to ensure equal probability of reward in accordance with the following criteria. In AM
307 and silence trials, responses to a sensor located at +30° relative to the central platform were

308 rewarded with water, whereas in NBN trials responses to the -30° sensor were rewarded.
309 There was no time limit for the animals to respond and a trial was completed whenever the
310 animal responded to either of the two sensors.

311 During the training phase for this paradigm, reward probability for correct responses
312 was gradually reduced from 1 to 0.7. After animals reached the performance criterion ($>80\%$
313 correct in two consecutive sessions), the paradigm was altered in that silence trials were
314 never rewarded ('testing phase' of the paradigm) to measure the animals' performance
315 without a further training effect. To keep the overall reward probability consistent with the
316 training phase, the reward probability for non-silence trials was 0.9.

317 The animals completed a total of 1000 trials in this paradigm for each of the testing
318 blocks, baseline and the two assessment blocks at different intervals after noise
319 overexposure (Post1 and Post2). To reacquaint the animals with the paradigm before each
320 testing block, they undertook the training paradigm again until reaching the performance
321 criterion. While this retraining might have allowed animals to adjust to a new 'perceptual
322 baseline' after noise overexposure and therefore mask subtle effects of tinnitus or hearing
323 impairment on performance, it ensured that any variations in performance over time were
324 unlikely to be due to, e.g., the animal forgetting aspects of the paradigm, rather than an
325 effect of NOE. To assess performance, hit rates were compared across stimuli and
326 conditions (Baseline, Post1 and Post2). Sessions in which an animal completed less than 5
327 trials for one or more stimulus types were excluded from further analysis. Trials with long
328 response times ($>20\text{s}$) were also excluded.

329

330 **Definition of indices for tinnitus and for changes in auditory brainstem responses**

331 As a summary index for behavioural evidence for tinnitus a behavioural tinnitus index (TI,
332 see Eq(1) below) was defined. The TI was calculated as the sum of three metrics obtained
333 as indicators of tinnitus in the two operant tasks, by comparing the values in the baseline

334 condition (*BL*) and Post NOE (*Post*). Two of the metrics were based on the operant gap
335 detection task (*M(cont)* and *M(thresh)*) and one on the silent detection task (*M(silence)*).

336 For each metric, *M(silence)*, *M(cont)*, and *M(thresh)*, positive values describe changes in line
337 with tinnitus development (an impairment in silence detection, an increase in continuous
338 sound detection and an increase in gap detection threshold, respectively). The behavioural
339 tinnitus index (TI, see Eq(1)) is the sum of these metrics (Eq (2–4)), enabling the level of
340 tinnitus and hearing loss experienced by each animal to be parametrised after NOE.

341 Eq(1): $TI = M(silence) + M(cont) + M(thresh)$

342
343 The metric for operant gap detection performance refers to the change in ability to
344 detect the continuous sound (no gap) across all tested stimulus frequencies (Eq(2)) and to
345 the change in gap–detection threshold across all stimuli (Eq(3)).

346 Eq(2): $M(cont) = \frac{Post \% correct}{BL \% correct} - 1$

347 The metric for a change in gap detection threshold (Eq(2)) was based on a normalised
348 performance value instead of thresholds corresponding to different gap lengths. To establish
349 a normalised threshold, each gap length (3, 5, 10, 20, 50, 100, 270ms) was assigned a
350 performance value based on the assumption that a threshold at 3ms corresponds to 100%
351 performance and the remaining gap lengths correspond to evenly spaced decrements in
352 threshold (85.71%, 71.43%, 57.14%, 42.86%, 14.29%). This approach for defining threshold
353 changes results in a metric reflecting the direction of threshold change and its magnitude on
354 a scale between 0 and 1).

355 Eq(3): $M(thresh) = 1 - \frac{Post threshold(normalised)}{BL threshold(normalised)}$

356 The metric for operant silence detection Eq(4) refers to the change in silence detection
357 ability (percent correct in silence trials) after NOE.

358 Eq(4):
$$M(\text{silence}) = 1 - \frac{\text{Post \% correct}}{\text{BL \% correct}}$$

359 Thus, positive values describe the magnitude of a decrease in silence detection ability (and
360 therefore evidence for tinnitus) and negative values describe the magnitude of an increase in
361 silence detection ability. For example, a value of $M(\text{silence}) = 0.2$ would indicate a decrease
362 in performance by 20% relative to baseline performance. The magnitude is between 0 and 1,
363 the same scale as in the other defined metrics of the tinnitus index (Eq(2-3)).

364 Index for changes in ABRs

365 Changes in ABRs were summarised using two metrics: first, changes in ABR thresholds
366 relative to baseline (BL) and second, changes in ABR total magnitude relative to BL.

367 The metric for thresholds refers to the average change in thresholds across all tested stimuli
368 (in dB), defined as the difference between BL and Post NOE values:

369 Eq(5):

370
$$M(\text{Thresholds}) = (\text{avrg. threshold BL} - \text{avrg. threshold Post})$$

371
372 The metric for the ABR magnitude is defined as follows: first, the magnitude of the entire
373 ABR was defined as the root mean square of the signal in a predefined response window
374 (1.6-4ms, with a shift of 0.16ms for every decreasing step in sound level) following stimulus
375 presentation. The total magnitude was then calculated for each animal and each stimulus by
376 measuring the area under the level-response graph. The input 'ABRmag' used for the metric
377 below is the average over total ABR magnitudes for all stimuli (1, 2, 4, 8, 16 kHz NBN and
378 BBN) per animal. The metric for each animal is defined as

379 Eq(6):
$$M(\text{ABR magnitude}) = \left(\frac{\text{Post ABRmag}}{\text{BL ABRmag}} - 1 \right) \times 100$$

380 Positive values indicate the magnitude of a response increase (in %) whereas negative
381 values indicate a reduced response (evidence for hearing loss).

382

383 **EEG signal processing and vigilance state scoring**

384 Data acquisition was performed using a multichannel neurophysiology recording system
385 (TDT). Cortical EEG was recorded from frontal and occipital derivations. EEG/EMG data
386 were filtered between 0.1 and 100 Hz, amplified (PZ2 preamplifier, TDT) and stored on a
387 local computer at a sampling rate of 1017 Hz, and subsequently resampled offline at 256 Hz.
388 Signal conversion was performed using custom-written MATLAB (The MathWorks Inc.)
389 scripts. Signals were then transformed into European Data Format (EDF). Vigilance state
390 scoring was performed manually offline prior to spectral analysis and assessment of sleep
391 architecture.

392 Manual vigilance state scoring was based on visual inspection of consecutive 4-s
393 epochs of filtered EEG and EMG signals (SleepSign, Kissei Comtec Co). Frontal and
394 occipital EEG and neck muscle EMG channels were displayed simultaneously to aid manual
395 scoring and video recordings of the animal were consulted for further validation. Vigilance
396 states were classified as waking (low-voltage desynchronised EEG with high level EMG
397 activity), NREM sleep (presence of EEG slow waves, characterised by high amplitude and
398 low frequency EEG, 0.5–4 Hz), REM sleep (low-voltage, mid-frequency EEG, 4.5-8 Hz, with a
399 a low level of EMG activity) or REM2 (low-voltage, high-frequency EEG, 8.5-20 Hz, with a
400 low level of EMG activity). Epochs containing an EEG signal contaminated by artefacts (such
401 as due to gross movements of the animal, eating or drinking) were excluded from
402 subsequent analysis.

403 For each 24 h recording period, EEG power spectra were computed by a fast Fourier
404 transform (FFT) routine for 4-s epochs (Hanning window), with a 0.25-Hz resolution
405 (SleepSign Kissei Comtec Co). Artefacts in specific frequency bins that had remained

406 unnoticed during manual data scoring were excluded offline. For each 0.25 Hz frequency bin
407 of a given vigilance state during a 24 h recording period, the mean and standard deviation
408 across all epochs was calculated based on a 500-iteration bootstrap. Values outside the
409 mean \pm 600 standard deviations across all epochs were excluded from the analysis (to
410 exclude only extreme outliers). Exclusion in this case applied just to the specific frequency
411 bin identified as an outlier. The objective of this was to prevent extreme outliers from
412 distorting the spectral power estimate in particular frequency bins.

413 **Sound presentation during sleep and wakefulness**

414 Animals were housed individually in a custom-made recording chamber on a 15/9 h light–
415 dark cycle (summer cycle) as described above for the continuous EEG recordings. Frontal
416 and occipital EEG and neck–muscle EMG recordings were obtained over approximately 48–
417 72 hours (2–3 days) per recording session.

418 In the first 24 h per recording session, the animal was left undisturbed. Over the
419 course of the second 24 h of the session, auditory stimuli were presented via a free–field
420 loudspeaker installed on the ceiling of the double–walled sound–attenuated recording
421 chamber above the custom–made enclosure. Sounds were one octave narrowband stimuli
422 with centre frequencies of 1, 4, 8 and 16 kHz. Stimuli had a duration of 820 ms and included
423 a silent gap of 38 ms in the middle of the stimulus. Stimuli were presented at 40, 50, 60 and
424 65 dB SPL (as measured at floor level at the centre of the enclosure). Inter–stimulus
425 intervals had a random duration ranging from 10 to 42 s and each stimulus–level
426 combination was presented 200 times. Stimuli were generated via MATLAB and produced
427 using an RP2.1 Enhanced Real–Time Processor (TDT) and an Alesis RA150 Amplifier.
428 Stimulus presentation was controlled via a custom MATLAB script.

429 **Analysis of auditory evoked responses**

430 Raw EEG data were transformed into a MATLAB compatible format (.mat) using the
431 *tdtbin2mat* MATLAB function (provided by TDT). Evoked responses were analysed within a
432 time window set between -0.5 s and +5 s relative to sound stimulus onset. Each stimulus
433 presentation is referred to hereafter as a trial. Trials that fell into an epoch that contained an
434 artefact (as defined during the manual vigilance state scoring procedure) were excluded
435 from further analysis. To aid computing efficiency, the signal was downsampled by a factor
436 of 2 (from an original sampling rate of 24414 Hz). Trials were then sorted into groups based
437 on condition, stimulus frequency, level and vigilance state.

438 Due to marked inter-trial-variability in the EEG signal, conventional averaging across
439 trials did not allow to define peaks and troughs of auditory evoked potentials (AEPs) reliably.
440 To reduce the impact of noise on AEP detection, 20 bootstrapped means were drawn to
441 serve as a representative signal sample for subsequent analysis, allowing for detection of
442 peaks and troughs with minimal effect of noise while still reflecting the variability in the
443 original dataset. Bootstrapped means were drawn from each group of trials (all trials for the
444 same condition, vigilance state, stimulus and stimulus intensity), respectively. Peaks and
445 troughs of evoked potentials were detected after smoothing each of those signals using a
446 moving average of ~8 points (implemented by the MATLAB *smooth* function). Peaks and
447 troughs were automatically detected in a time window after stimulus onset that was
448 predefined using a custom written MATLAB script and the *findpeaks* function. Time windows
449 for early (R1), mid (R2) and late (R3) response components were defined based on the
450 average latency of peaks and troughs in the respective animal, as the shape of the evoked
451 potential was not uniform across animals. R1, R2 and R3 could each be identified in Ferret
452 2, R1 and R2 in Ferret 3, and just one response component, R1, in Ferret 1. Note that the
453 response windows for R1, R2 and R3 components of the response were defined for each
454 animal individually, depending on the latency of the respective deflection relative to stimulus
455 onset. Response magnitudes for each response component were then defined as the

456 difference between the maximum and subsequent minimum of the signal in the response
457 window for the respective response component. For each animal, magnitudes of all
458 response components were included (pooled, means \pm SEM) in the analysis.

459

460 **Figures and illustrations**

461

462 Figures and illustration were produced by using MATLAB and MS PowerPoint.

463

464 **Results**

465

466 **Ferrets develop long-term behavioural impairments indicative of
467 tinnitus after noise overexposure**

468 To establish an animal model of induced, persistent tinnitus, adult female ferrets (n=7) were
469 tested in two operant paradigms sensitive to tinnitus (silent gap detection and silence
470 detection) before (baseline, BL), starting one week (Post1) and, in a subgroup of ferrets
471 (n=3) six months (Post2) after unilateral noise exposure (Fig 1A). The protocol for noise
472 overexposure (2 hours of one octave narrowband noise centred at 8kHz at 98 dB SPL) was
473 similar to protocols used for tinnitus induction in other animal models [50–52]. Noise
474 overexposure triggers chronic tinnitus in human and animal models whereas salicylate
475 models evoke reversible tinnitus [7,53,54]. Our experimental design was combined with
476 regular assessment of auditory brainstem responses (ABRs, see Methods).

477 The primary operant paradigm was operant silent gap detection, which assessed the
478 animals' ability to detect short silent gaps in auditory stimuli [47] (Fig S1 A and S1B). Four

479 animals were implanted for chronic recordings but only three were used for long term
480 assessment. No behavioural differences were found between implanted (IM) and non-
481 implanted (NIM) animals in baseline assessments and therefore behavioural data from the
482 seven cases were analysed together (operant gap detection: BL threshold (IM) = 3.36 ± 0.81
483 ms; BL threshold (NIM) = 4.3 ± 2.0 ms. Effect of group $F_{(1,32)} = 0.04$, $p = 0.85$ (n.s.)).

484 In line with previous work on silent gap detection in ferrets [47], the animals'
485 performance declined as gap length was reduced (effect of gap length, GLMM,
486 $F_{(7,6752)} = 4489.37$, $p < 0.001$), an effect visible throughout the experiment (Figs 1A and S1C).
487 After noise overexposure (NOE), silent gap detection ability was impaired, as indicated by
488 the progressively lower percentage correct scores achieved at most gap lengths (Fig S2A)
489 and by progressively increasing silent gap detection thresholds measured across all stimulus
490 types (silent gap length at threshold, Baseline, BL: 4.0 ± 1.78 ms; Post1: 5.77 ± 2.68 ms; Post2:
491 10.45 ± 3.5 ms, means \pm SD; GLMM, BL vs Post1, $\beta = 1.69$, $t_{(75)} = 2.41$, $p = 0.018$; BL vs Post2,
492 $\beta = 5.95$, $t_{(75)} = 11.68$, $p < 0.001$; Post1 vs Post2 $\beta = 5.46$, $t_{(75)} = 2.24$, $p = 0.029$. Figs 1B and S2A).

493 The initial impairment observed (GLMM, effect of condition, $F_{(2,941)} = 32.31$, $p < 0.001$)
494 was mostly due to reduced silent gap detection ability for 8 kHz narrowband noise burst
495 (NBN) stimuli (probability of correct response, BL vs Post 1, 0.77 ± 0.26 vs 0.7 ± 0.27 , $\beta = -0.1$,
496 $t_{(943)} = -8.03$, $p < 0.001$), the NOE sound, whereas performance remained stable for other
497 stimuli ($p > 0.1$) (Fig 1C). Six months after NOE, the impairment was also present at
498 neighbouring frequencies (4 and 16 kHz NBN) (4 kHz BL vs Post2, 0.75 ± 0.27 vs 0.64 ± 0.35 ,
499 $\beta = -0.04$, $t_{(1319)} = -3.35$, $p < 0.001$; 16 kHz BL vs Post2, 0.76 ± 0.26 vs 0.6 ± 0.31 , $\beta = -0.14$, $t_{(1359)} = -11.79$,
500 $p < 0.001$. Fig 1C). The stimulus that differed most from the NOE sound in terms of
501 frequency composition (1 kHz NBN) was the least affected across the course of the
502 experiment ($p > 0.1$). Accordingly, the stimulus that comprises a broad range of frequencies
503 (BBN) was also less affected.

504 While silent gap detection ability progressively worsened after NOE, detection ability
505 for no gap stimuli improved over time (Figs 1D and S2B). Specifically, ferrets showed
506 statistically significant lower false alarm (FA) rates starting 1 week following NOE (Post 1) for
507 1, 4 and 16 kHz NBN (1 kHz, BL vs Post1, 0.36 ± 0.15 vs 0.27 ± 0.15 , $\beta = -0.1$, $t_{(162)} = -2.66$,
508 $p = 0.01$; 4 kHz, BL vs Post1, 0.34 ± 0.15 vs 0.24 ± 0.12 , $\beta = -0.12$, $t_{(162)} = -2.84$ $p = 0.01$; 16 kHz, BL
509 vs Post1, 0.34 ± 0.16 vs 0.26 ± 0.14 , $\beta = -0.08$, $t_{(169)} = -8.75$, $p < 0.001$) stimuli, but not for 8 kHz
510 NBN, the same stimulus as the NOE sound, and for BBN ($p > 0.1$) (Fig 1D). This suggests
511 that animals developed a temporary impairment in detecting both gap and no gap sounds
512 consisting of 8 kHz NBN, whereas in frequency ranges adjacent to the NOE stimulus, they
513 were more likely to respond to stimuli as if they were no gap sounds. In the longer term, six
514 months after NOE, the FA rates were significantly lower for all stimuli, including 8 kHz NBN
515 ($p < 0.001$, Fig 1D) whereas the proportion of correct responses for gap stimuli was further
516 impaired (Fig 1C). This improvement in FA rate over time, together with the gap detection
517 impairment, suggest a tendency of the animals towards interpreting sounds with silent gaps
518 as continuous sounds across all tested frequencies and could be an indication for tinnitus
519 development.

520 To assess whether the impairment in silent gap detection ability after NOE could be
521 attributed to diminished temporal resolution in auditory processing, the ferrets were tested in
522 a silence detection paradigm [49]. They were tested in the same operant arena as for silent
523 gap detection but had to discriminate NBN bursts of varying frequency compositions from
524 'silence', i.e. trials without any presented auditory stimulus, and from amplitude modulated
525 (AM) BBN (see Methods & Fig S1D). As with operant silent gap detection, no behavioural
526 differences were found between IM and NIM animals on silence detection and therefore
527 behavioural data from the seven cases were analysed together (Proportion of correct
528 responses: Amplitude modulated (AM) sound, IM vs NIM 0.99 ± 0.01 vs 0.98 ± 0.01 ,
529 $F_{(1,6)} = 4.03$, $p = 0.09$. Narrow band noise (NBN), IM vs NIM 0.99 ± 0.01 vs 0.96 ± 0.05 ,
530 $F_{(1,6)} = 1.76$, $p = 0.23$. Silence: IM vs NIM 0.92 ± 0.06 vs 0.91 ± 0.08 , $F_{(1,6)} = 0.05$, $p = 0.84$).

531 Animals were able to detect AM and NBN stimuli but less able to identify silence (Fig
532 1E and S1E). Animals with tinnitus might be expected to confuse NBN stimuli with an
533 internally generated percept and therefore show a bias towards responding during silence
534 trials as if NBN stimuli had been presented (Fig S1D).

535 At both timepoints following NOE, NBN detection performance on this task was
536 similar to baseline (NBN, BL vs Post1, 0.97 ± 0.04 vs 0.97 ± 0.02 , $\beta = 0.01$, $t_{(16)} = 0.32$, $p = 0.76$, BL
537 vs Post2, 0.97 ± 0.04 vs 0.91 ± 0.1 , $\beta = -0.03$, $t_{(16)} = -2.19$, $p = 0.05$) (Fig 1E), whereas a significant
538 decrease in AM detection performance was evident six months later (AM: $F_{(2,14)} = 6.57$,
539 $p = 0.01$, BL vs Post1, 0.99 ± 0.01 vs 0.99 ± 0.01 , $\beta = -0.001$, $t_{(16)} = -0.19$, $p = 0.86$; BL vs Post2,
540 0.99 ± 0.01 vs 0.98 ± 0.01 , $\beta = 0.004$, $t_{(16)} = 2.39$, $p = 0.03$). The animals also achieved lower
541 scores for silence trials following NOE, but this difference was not significant (Silence: BL vs
542 Post1, 0.91 ± 0.07 vs 0.8 ± 0.83 , $\beta = -0.17$, $t_{(16)} = -2.15$, $p = 0.05$; BL vs Post2, 0.91 ± 0.07 vs
543 0.83 ± 0.06 , $\beta = -0.06$, $t_{(16)} = -0.87$, $p = 0.4$) (Fig 1E). However, note the relatively high variability
544 in the NBN and silence trials, also in line with previous studies using the same paradigm
545 [49,55].

546 Response times for both correct and incorrect trials, although initially unchanged in
547 the trials in which auditory stimuli were presented (AM: BL vs Post1, 1.38 ± 0.12 s vs
548 1.5 ± 0.21 s, $\beta = 0.03$, $t_{(16)} = 2.2$, $p = 0.05$; NBN: BL vs Post1, 1.43 ± 0.1 s vs 1.49 ± 0.16 s, $\beta = 0.02$,
549 $t_{(16)} = 1.21$, $p = 0.25$), became significantly longer six months after NOE (AM: BL vs Post2,
550 1.38 ± 0.12 s vs 1.77 ± 0.26 , $\beta = 0.09$, $t_{(16)} = 6.61$, $p < 0.001$; BL vs Post2, 1.43 ± 0.1 s vs 1.94 ± 0.47 s,
551 $\beta = 0.1$, $t_{(16)} = 2.23$, $p = 0.04$) (Fig S2C and D). In silence trials, longer response times were
552 initially present in ‘correct’ trials (BL vs Post1, 3.16 ± 0.54 s vs 3.95 ± 0.95 s, $\beta = 0.1$, $t(16) = 3.08$,
553 $p = 0.01$) (Fig S2C), but had returned to baseline levels six months after NOE ($p = 0.1$) and
554 were unchanged in ‘incorrect’ trials ($p > 0.1$) (Fig S2D). Notably, response times in silence
555 trials six months after NOE were nearly identical between animals, which may indicate a
556 stereotyped response and possibly impaired decision making given an age effect is unlikely
557 (see Methods).

558 The increased response times after NOE in trials where a sound stimulus was
559 present may, in combination with the small bias of the animals to respond as if a sound was
560 presented in silence trials, indicate increased uncertainty in the animal's perception about
561 whether a sound was present or not. It seems unlikely that animals had difficulty
562 discriminating between the sound stimuli (AM and NBN) as performance was not affected for
563 NBN trials and only minimally so for AM trials (proportion of correct responses, Fig 1E).
564 Therefore, the long-term effects seen in this paradigm are consistent with the perception of
565 a phantom sound.

566 To assess the integrity of the auditory brainstem over time, ABRs were measured in
567 all animals one week after NOE (see Methods; Fig 1F). In agreement with previous studies
568 in ferrets [56–58], ABRs presented high variability across individual animals, which,
569 compared to rodents, is likely due to the increased thickness of the skull. However, ABRs
570 showed robust and reliable peaks and troughs with highest sensitivity between 8 and 16 kHz
571 (Fig 1G), corresponding to the highest sensitivity in the ferret audiogram [59].

572 Following NOE, ABR thresholds significantly increased for stimuli with 8 kHz centre
573 frequencies, the NBN NOE stimulus (BL vs Post1, $\beta = 15.71$, $t_{(16)} = 7.24$, $p < 0.05$), and above
574 (16 kHz, (BL vs Post1, $\beta = 15.71$, $t_{(16)} = 2.17$, $p < 0.05$) (Fig 1G, Table 1). In the late assessment
575 (Post2), thresholds were significantly elevated across all tested frequencies ($p < 0.05$), except
576 for 1 kHz NBN, suggesting a long-term degradation of auditory function.

Table 1. ABR thresholds across time. Different columns, from left to right, correspond to the thresholds of Ferret 1, 2, and 3. Each table shows thresholds for a given stimulus (1, 2, 4, 8, 16 kHz centred NBN and BBN). Each row depicts data from one animal. Note that only in a subgroup of ferrets (n=3), Post2 was assessed.

	1 kHz			2 kHz			4 kHz		
Threshold (dB SPL)	BL	Post1	Post2	BL	Post1	Post2	BL	Post1	Post2
80	80	70	90	60	50	90	60	50	90
	70	60	90	50	60	90	60	50	90
	80	80	70	70	60	80	60	60	60
	80	50		80	40		50	50	
	90	90		70	70		50	70	
	70	90		70	90		50	80	
	90	70		60	70		40	60	
	8 kHz			16 kHz			BBN		
Threshold (dB SPL)	BL	Post1	Post2	BL	Post1	Post2	BL	Post1	Post2
50	50	50	90	40	90	90	70	60	70
	40	50	90	40	40	90	50	70	90
	40	50	60	40	40	40	80	70	90
	50	40		40	40		70	70	
	50	80		40	50		70	90	
	40	90		40	80		70	90	
	40	60		40	50		60	80	

577

578 The temporally frequency-specific ABR impairment following NOE suggests that
579 behavioural changes affecting wider frequency ranges surrounding the NOE stimulus (such
580 as reduced false alarm rate in operant silent gap detection) cannot be entirely ascribed to
581 hearing loss. Therefore, the animals likely developed an initial NOE–frequency specific
582 hearing impairment and eventually hearing loss for the NOE stimulus and adjacent
583 frequencies, but also tinnitus affecting a wider range of frequencies in auditory silent gap
584 detection.

585 The seven animals presented specific behavioural and hearing impairment without
586 any noticeable general change in demeanor or wellbeing following noise overexposure. No
587 changes in body weight, bowel habits, fur aspect, or social interaction were observed that

588 could indicate potential noise overexposure related distress (see Methods). Although ABRs
589 were not performed in sham-operated control cases, previous results indicate no differences
590 in auditory cortical responses in adult ferrets of the same age as in the current study,
591 implanted 30 months before auditory brainstem recordings were obtained [44].

592

593

594 **Sleep-wake architecture following noise overexposure**

595 To assess changes in sleep–wake distribution in parallel with the emergence of tinnitus after
596 NOE (Fig 2), three adult female ferrets were implanted chronically with EEG electrodes
597 (frontal and occipital derivation, following standard configuration[36,45,60] (see Methods, Fig
598 2C), and brain activity was continuously recorded in freely behaving animals for periods of
599 48 h under baseline conditions, and, as before, one week and six months following NOE (Fig
600 2A and 2B). We identified four different vigilance states: wakefulness, NREM sleep, REM
601 sleep and a previously described secondary REM sleep, REM2 [45] (Fig 2D and 2E).

602 During undisturbed baseline days, the animals spent most of the time sleeping
603 (71.5%, 85.6% and 70.6%, Fig 2F), which is consistent with similar to previously reported
604 sleep amount in ferrets (70.34±1.69%, [45]). Sleep was dominated by non–rapid eye
605 movement (NREM) sleep in all individual animals (Fig 2F). The remaining sleep time was
606 predominantly spent in REM sleep, except in one animal, which spent more time in REM2
607 than in REM (Fig 2F). In line with previous experiments [45], animals did not manifest strong
608 diurnality and slept both during the light and dark periods (Fig 2G) although the animals'
609 activity typically increased after light onset for at least 2 hours (2–7 hours across animals;
610 Fig 2G).

611 Following NOE, all animals developed behavioural signs of tinnitus, as measured by
612 the tinnitus index, TI (see Methods) (Figs 3A and S3). In two animals, tinnitus was most

613 pronounced six months after NOE. In addition, animals developed progressive hearing
614 impairment, which was most pronounced in the animal with the least evidence for tinnitus
615 (Case 3, Fig 3A, S3).

616 The sleep pattern changed in all animals following NOE, although this differed
617 between individual ferrets: in both animals with strong signs of tinnitus and weak hearing
618 impairment, sleep became disturbed after NOE but at different time points (Ferret 1 and 2,
619 Fig 3B), while in the animal with weak indication of tinnitus but pronounced hearing
620 impairment (Ferret 3, Fig 3A and 3B) sleep became progressively more stable after NOE,
621 with fewer occurrences of wake episodes during sleep.

622 To evaluate the individual impact of tinnitus and hearing loss on sleep, each animal
623 was analysed independently with respect to changes in sleep–wake architecture before and
624 after NOE.

625

626 **Ferret 1: Progressive tinnitus, mildly raised auditory thresholds and long–term sleep
627 stability**

628

629 This animal showed marked signs of tinnitus in the first assessment following NOE (TI 0.5,
630 Post1) and a progressive increase towards a TI of 0.9 six months later (Figs 3A and S3). In
631 addition, it showed progressive mild hearing impairment following NOE with threshold
632 elevations of 10 dB (Post1) and 11.7 dB (Post2) (Figs 3A and S3) and a reduction of total
633 ABR magnitude by 4.1% (Post1) and 17.7% (Post2) (Fig S3).

634 Sleep amount increased transiently following NOE (Figs 3B and S4), in combination
635 with elevated NREM EEG slow–wave activity (SWA, EEG power density between 0.5–4 Hz)
636 (Figs S5 and S6). It is possible that a change in sensory experience following NOE results in
637 compensatory plasticity that is associated with increased sleep need, although increased
638 sleep disruption (Fig 3B) may have contributed to the elevated sleep need in this animal. In

639 the longer term the animal showed a reduction in sleep amount (Wake BL vs Post2, 29.1%
640 vs 34.2% of recording time, Fig S4, grey bars) but also showed reduced sleep disruption (Fig
641 3B). Note that despite the strong behavioural indication for tinnitus in this animal six months
642 following NOE, sleep amount was largely unchanged as compared to baseline conditions.

643

644 **Ferret 2: Stable tinnitus, progressive changes in brainstem activity and long-term
645 disturbed sleep**

646

647 Ferret 2 showed evidence for stable tinnitus, which emerged soon after NOE (Fig 3A) and
648 was initially (in Post1) of similar intensity to Ferret 1. In parallel, the animal initially showed
649 evidence of increased sleep propensity, with less disrupted sleep than before NOE (70 wake
650 episodes in baseline versus 49 in Post1). However, six months following NOE (Post2), sleep
651 disruption was markedly increased with almost double the number of wake episodes (136 vs
652 70 wake episodes in BL, Fig 3B), most of which were rather brief (<5 minutes, Fig.3B).

653 Hearing impairment following NOE was reflected in a progressive ABR threshold
654 elevation (Post1: 13.3 dB, Post2: 25 dB, Figs 3A and S3), suggesting an impairment in
655 auditory sensitivity. Furthermore, total ABR magnitude was temporarily reduced in Post1 (-
656 31.2%), but partially recovered subsequently (Post2: -7.7%, Figs 3A and S3). This later
657 recovery may indicate a long-term compensation following reduced peripheral input through
658 central or peripheral gain elevation.

659 The initial changes in brainstem evoked activity after NOE were paralleled by a
660 temporary reduction in time spent awake (BL vs Post1: 15.1% vs 12.9%, Fig S4, grey bars)
661 and reduced sleep disruption (Fig 3B). This could be due to temporarily increased sleep
662 pressure following NOE, as also indicated by significantly increased EEG slow-wave activity
663 during NREM sleep (BL vs Post1, Two-way ANOVA, Tukey's multiple comparisons, $p < 0.05$,
664 Figs S5 and S6) and during REM sleep (BL vs Post1, $p < 0.05$, Fig S5). As in Ferret 1, it is

665 possible that compensatory plasticity after NOE led to increased sleep need reflected in
666 SWA elevation during sleep. The animal's sleep subsequently became markedly more
667 disrupted, with nearly twice the amount of wake episodes (Post2, Fig 3B) and with overall
668 less sleep than in the baseline condition (Wake BL vs Post2: 15.1% vs 24.0% of recording
669 time, Fig S4). This suggests that the animal may have become more sensitive to external
670 stimuli (hyperacusis) or to internal triggers for arousal, such as tinnitus.

671

672 **Ferret 3: Mild tinnitus with progressive, pronounced hearing loss and progressive**
673 **sleep stability**

674

675 Ferret 3 showed the most pronounced hearing impairment and the least indications of
676 tinnitus. Even though the TI increased over time, it was generally low (Post1 TI = 0.2, Post2
677 TI = 0.4, Figs 3A and S3). ABR thresholds were markedly elevated following NOE (Post1: by
678 30 dB, Post2: by 33.3 dB, Figs 3A and S3) and a progressively reduced total ABR
679 magnitude (Post1: -44.7%, Post2: -52.9%, Fig S3) further indicated the presence of more
680 severe hearing loss in this animal.

681 There were no signs of increased sleep disruption following NOE (based on the
682 number of wake episodes, Fig 3B). To the contrary, in parallel to progressively impaired
683 hearing, sleep became progressively less disrupted (Fig 3B) and the amount of time the
684 animal spent asleep increased (Wake amount in BL 28.2%; Post 1 20.3%, Post2 23.1%, Fig
685 S4). The decrease in sleep disruption following NOE may be linked to an elevation of the
686 auditory arousal threshold due to hearing loss.

687 Different from the other animals, sleep in this animal was characterised by lower
688 SWA following NOE than during BL, possibly suggesting more superficial sleep (Figs S5 and
689 S6). The increased sleep amount is unlikely to be a compensatory response to reduced

690 sleep intensity. Instead, this was potentially a consequence of the animal's ability to maintain
691 consolidated sleep for longer, accumulate a large amount of sleep overall and therefore
692 experience less homeostatic sleep pressure, which is determined predominantly by the time
693 spent awake.

694 In summary, while all three animals showed a progressive increase in ABR
695 thresholds after NOE, the magnitude of this impairment differed across individuals, as did
696 the emergence of behavioural signs of tinnitus and changes in sleep–wake architecture.
697 Both animals with strong behavioural signs of tinnitus (Ferrets 1 and 2) showed initially
698 higher sleep need after the noise trauma. In the longer term, sleep was disrupted to varying
699 degrees. In the animal with severe hearing impairment and little evidence for tinnitus (Ferret
700 3), the number of sleep episodes (maintenance) improved following noise overexposure.

701

702 **Increased evoked activity in tinnitus is modulated during sleep**

703

704 To assess whether changes in cortical excitability or responsiveness correlate with tinnitus
705 and might underlie the observed differences in sleep pattern after NOE, auditory evoked
706 activity was evaluated across all vigilance states using free–field sound presentation (see
707 Methods). Briefly, after collecting undisturbed EEG recordings for 24 h, auditory stimuli were
708 presented via a free–field speaker during the subsequent 24 h (Fig 4A). Sounds were one
709 octave narrow band stimuli with centre frequencies of 1, 4, 8 and 16 kHz (820 ms duration,
710 central gap 38 ms, see details in Methods). EEG auditory evoked responses (AERs) were
711 obtained as shown previously in other animal models [61] during wakefulness and in all
712 sleep states under baseline conditions (Figs 4B, C, and S7, S8–10).

713 All animals spent the majority of time asleep while sounds were presented without
714 marked differences according to whether sounds were presented or not (Fig 4D). These

715 results indicate that the presented sounds were of sufficient intensity to trigger evoked EEG
716 responses but did not disrupt sleep.

717 There was a statistically significant interaction between the magnitude of the AER
718 (pooled across all response components per animal, Figs 4C, S7, see Methods) and the
719 vigilance state in both the frontal and the occipital EEG (*Frontal EEG*: Ferret1,
720 $F_{(1,956)}=1.874E+30$, $p<0.001$, Ferret2, $F_{(1,1915)}=1.364E+31$, $p<0.001$, Ferret3,
721 $F_{(1,1276)}=1.423E+32$, $p<0.001$; *Occipital EEG*, Ferret1, $F_{(1,956)}=8.092E+30$, $p<0.001$), Ferret2,
722 $F_{(1,1916)}=7.802E+24$, $p<0.001$, Ferret3, $F_{(1,1276)}=4.892E+29$, $p<0.001$). AER magnitudes were
723 lowest during NREM sleep and highest during Wake and REM2 sleep (Figs 4E and 4F, blue
724 symbols), suggesting that NREM sleep may reduce sound-evoked activity. The modulation
725 of AERs by the vigilance state was similar across sound intensities.

726 When tinnitus was more severe and hearing loss mild (Ferrets 1 and 2, Fig 3A),
727 AERs during wakefulness increased after NOE (Figs 4E, F). This increase in responsiveness
728 was attenuated during sleep, which could explain differences in sleep disturbance (number
729 of wake episodes, Fig 3B) across ferrets with tinnitus. In Ferret 3, which showed pronounced
730 and progressive hearing loss and less severe tinnitus, evoked activity was reduced across
731 all vigilance states after NOE.

732

733 **Ferrets 1 and 2: increased evoked activity in tinnitus is reduced during sleep**

734

735 Ferret 1 showed a progressive increase in evoked activity (pooled across all response
736 components, Figs 4C, S7), mostly in the occipital EEG derivation (Fig 4E,F), alongside
737 behavioural evidence for tinnitus and little change in ABRs (Fig 3A). Elevation of evoked
738 activity was less pronounced or absent during sleep (Figs 4E, 4F and S8).

739 The initial increase in evoked activity during wakefulness after NOE (Post1) relative
740 to BL was especially pronounced in the frontal EEG derivation (Fig S8) and evident for all
741 stimuli ($p<0.001$, GLMM). Nevertheless, evoked activity was still significantly elevated in the
742 occipital EEG ($p<0.001$, GLMM), except for 4kHz NBN (Fig S11, Ferret 1).

743 The increase in evoked activity after NOE depended on the vigilance state: it was
744 most pronounced during wakefulness in both EEG derivations (Frontal EEG, BL vs Post1,
745 31.17 ± 0.7 vs 47.53 ± 1.0 μ V; Occipital EEG, 28.47 ± 0.5 vs 33.11 ± 0.7 μ V means \pm SEM; Fig
746 4E and F). During NREM sleep, the increase was less pronounced (Frontal EEG, BL vs
747 Post1, 23.52 ± 0.35 vs 27.43 ± 0.43 μ V; Occipital EEG, 19.88 ± 0.27 vs 20.77 ± 0.26 μ V) or, as in
748 the occipital EEG, even absent for REM and REM2 sleep (Fig 4E and 4F). Note that in the
749 frontal EEG, while evoked activity remained lowest during NREM sleep even after NOE, it
750 was still elevated compared to baseline.

751 In the late assessment, six months after NOE (Post2), the change in frontal evoked
752 activity reversed and AERs for all stimuli approached baseline levels or below in the frontal
753 derivation (Fig S11), which was largely due to drastically reduced AERs during NREM and
754 REM sleep (Frontal EEG: NREM, BL vs Post2, 23.52 ± 0.35 vs 16.3 ± 0.32 μ V; REM, BL vs
755 Post2, 31.64 ± 0.74 vs 26.69 ± 0.66 μ V, Fig 4E). This could explain why the animal showed
756 prolonged and less disrupted sleep six months after NOE. In the occipital derivation on the
757 other hand, evoked activity increased further for all stimuli (Fig S11). Note that this
758 pronounced increase in occipital evoked activity six months after NOE coincided with the
759 largest behavioural tinnitus index of 0.9 among all animals (Figs 3A and S3) but was not
760 associated with disrupted sleep.

761 In Ferret 2, AERs were increased relative to baseline in the first assessment after
762 noise overexposure (Post1) ($p<0.001$, GLMM) at both frontal and occipital EEG derivations
763 (Figs 4E, 4F, and S8) for all sound stimuli (Fig S11). This supports the notion that the gain of
764 auditory evoked responses increased following NOE.

765 As in Ferret 1, while the increase in evoked activity was evident in both EEG
766 derivations, this was locally modulated across vigilance states: in the frontal EEG signal
767 (measured across all components of the AER), NREM sleep was associated with a reduced
768 evoked response after NOE relative to baseline (BL vs Post1, 15.14 ± 0.7 vs 13.19 ± 0.62 μ V,
769 $p < 0.001$, GLMM), whereas in the occipital EEG, the increase in evoked responses was
770 evident in all vigilance states ($p < 0.001$, GLMM, Figs 4E and F). Notably, the reduced frontal
771 NREM AER was present for all frequency stimuli (Fig S11). It is possible, therefore, that
772 NREM sleep had a suppressing effect on frontal evoked activity after NOE.

773 Six months after NOE, Ferret 2 showed qualitative evidence for further increased
774 auditory evoked activity in both frontal and occipital derivations (Fig S13). Due to decreased
775 signal quality in the Post2 assessment, this could not be quantitatively verified. However,
776 even without sound presentation, the animal showed an ~60% increase in the amount of
777 time awake in the Post2 assessment (BL vs Post2, 15.1% vs 24.0%, Fig 4G). With sound
778 stimulation, this effect was amplified (time awake, BL vs Post2, 15.8% vs 44%, Fig 4G),
779 while the amount of sleep was reduced (Fig S4), indicating that increased cortical
780 responsiveness may have led to long-term sleep disturbance.

781

782 **Ferret 3: generally decreased evoked activity after NOE and profound hearing loss**

783

784 Ferret 3 showed reduced cortical evoked activity after NOE during all vigilance states (Fig
785 4E and 4F), in line with marked progressive hearing impairment (Fig 3A).

786 In the first assessment after NOE, auditory evoked activity (pooled across all
787 response components; Fig S7) was lower than in the baseline assessment ($p < 0.001$, GLMM,
788 Figs 4E and 4F; Figs S10 and S14). This was the case for all sound stimuli and for both the
789 frontal and occipital EEG signals ($p < 0.001$, GLMM, Fig S11). The reduction in AERs was
790 evident during all vigilance states for most stimuli. During REM2 and REM sleep, there were

791 signs of elevated evoked activity for 8 and 16 kHz stimuli, respectively, but only in the frontal
792 EEG signal (Fig S15). Six months after NOE, there were signs of signs of increased evoked
793 activity in the occipital derivation (Fig S14), but this could not be quantitatively analysed due
794 to reduced signal quality.

795 While the progressive hearing loss in this animal after NOE in undisturbed condition
796 (without sound stimulation) was associated with less time spent awake, a similar trend over
797 time was not apparent with sound stimulation (Fig 4G).

798 In summary, the two animals that showed greater behavioural signs of tinnitus also
799 developed increased neural evoked activity after NOE although at different time points. The
800 animal with less evidence for tinnitus but severe hearing loss showed reduced auditory
801 evoked activity after NOE. When tinnitus was more severe and frontal evoked activity was
802 elevated, sleep was disturbed, but not when occipital evoked activity was elevated. This
803 might have important implications for the notion of frontal or brain-wide tinnitus
804 representation playing a role in sleep disruption. In both animals with strong evidence for
805 tinnitus, auditory evoked activity was lowest during sleep, suggesting a role for natural brain
806 state dynamics in modulating tinnitus-related activity.

807
808

809 **Discussion**

810
811 In this case study, we introduced a new animal model of tinnitus, the ferret, which enabled
812 us to track tinnitus development over a period of several months following noise
813 overexposure, concomitant with sleep monitoring. By combining this with the assessment of
814 sleep architecture and spatiotemporal brain activity, this model provided initial evidence
815 supporting the idea that tinnitus emergence, but not hearing impairment, coincides with

816 emergence of sleep disruption. Furthermore, increased auditory evoked activity in tinnitus
817 animals was reduced during sleep, suggesting a potent role for natural brain state dynamics
818 in modulating aberrant brain activity associated with the effects of noise trauma.

819 In the first part of this study, we characterised the ferret as a novel animal model of
820 tinnitus allowing for the investigation of long-term effects of noise overexposure on
821 behaviour and brain activity. Ferrets offer particular advantages compared to most rodents
822 since their hearing range overlaps with that of humans [62]. Moreover, ferrets can learn
823 sophisticated behavioural tasks [47,63,64], which widens the scope for behavioural tinnitus
824 assessment. The lifespan of ferrets (6–8 years, [65]) and the age of senescence [66]
825 considerably surpass that of mice (1–2 years, [46,67]) and rats (2.5–3.5 years, [68]). This
826 allows for longitudinal assessment without age-dependent degeneration, which is essential
827 for investigating the time course of persistent tinnitus and its comorbidities. Furthermore, as
828 shown in this study, ferrets are readily trained on operant tasks suitable for detecting the
829 presence of tinnitus.

830 We demonstrated that noise overexposure in ferrets is not only associated with
831 hearing impairment, but also with changes in behavioural performance that are indicative of
832 tinnitus. Further, we show that measures of the degree of tinnitus and hearing impairment
833 following noise overexposure are highly idiosyncratic, in line with variable effects of noise
834 trauma seen in other animal models [69] and the tinnitus heterogeneity characteristic for
835 humans [70]. Our findings show that the ferret could provide a potent model for studying
836 persistent tinnitus on a case-by-case basis and for assessing aspects of tinnitus that have
837 so far been beyond reach due to the limitations of the animal models used and the
838 constraints of human studies. Future work with larger groups with tinnitus, hearing loss
839 alone, and tinnitus plus hearing loss should lead to the consolidation of the ferret as a
840 valuable animal model in tinnitus research.

841 In the second part of this study, we obtained chronic EEG recordings to investigate
842 changes in evoked activity and sleep-wake pattern in parallel to emerging tinnitus and

843 hearing impairment. Evoked potentials were recorded with EEG electrodes implanted
844 frontally and occipitally, as is standard for sleep recordings [71], which makes it likely that
845 the measured signals originated in the auditory cortex but were possibly influenced by
846 activity in cortico-cortical connections. As in a recent study on tinnitus conducted in
847 macaques [72], we prioritised conducting comprehensive behavioural and
848 electrophysiological paradigms for each animal for an extended period over shorter and less
849 detailed testing of a larger number of animals.

850 Interestingly, REM2 sleep amount increased in the three cases followed noise
851 overexposure (Post1) regardless of their different initial magnitude of tinnitus, although only
852 transiently for ferrets 1 and 3 (Fig S4). This may suggest that brain activity characteristic for
853 this state, in particular oscillations in the beta and possibly gamma range, may be a marker
854 for consequences of NOE. In humans exhibiting residual inhibition, gamma activity is
855 positively correlated with tinnitus [73]. Future investigation may explore whether changes in
856 cortical activity reflected by the REM2 state in the ferret also reflect initial tinnitus activity
857 during sleep or the initial brain response to the noise overexposure.

858 We found that the single case developing severe and progressively worse hearing
859 impairment after noise overexposure also developed progressively stable, prolonged and
860 lighter NREM sleep. Building on previous findings showing that cochlear lesions can reduce
861 wakefulness and prolong sleep [74], our results indicate that hearing impairment may
862 increase sleep maintenance and lead to fewer awake episodes, likely as a result of
863 increased sensory disconnection. This differed in cases where tinnitus accompanied hearing
864 impairment. Animals displaying more severe tinnitus following noise overexposure
865 developed reduced and more disrupted sleep. While these results do not demonstrate a
866 causal relationship between tinnitus-related aberrant brain activity and impaired sleep, the
867 parallel emergence of tinnitus and sleep disturbance over time is highly suggestive of such a
868 connection. Indeed, the elevated auditory evoked cortical activity in animals with signs of
869 severe tinnitus supports this possibility.

870 Although cochlear damage after noise overexposure can lead to a compensatory
871 increase in excitability that restores evoked activity [75,76], previous studies have shown
872 that increased activity and excitability along the auditory pathway may be a correlate of
873 tinnitus [23,77–80]. More specifically, elevated cortical activity has been reported in humans
874 [81,82] and in a range of animal models of induced tinnitus (chinchillas: [80], cats: [83],
875 guinea pigs: [84,85], rats: [86], and mice: [87]).

876 Even local hotspots of raised cortical activity can have a widespread effect on the
877 sleeping brain due to the extensive interconnectivity between cortical areas [37]. And since
878 stimulation in the auditory modality is a particularly potent trigger for arousal from sleep [88],
879 increased spontaneous and evoked neural activity in tinnitus may not only explain the sleep
880 impairment observed in ferrets with tinnitus in this study, but also the sleep disturbance so
881 widely reported in human tinnitus sufferers [13–21], which may itself contribute to the
882 distress tinnitus sufferers experience. Further support for this notion may be provided by
883 assessing tinnitus–related changes in local brain activity in regions that are sensitive to shifts
884 in vigilance state, such as the auditory cortex [23,78,80]. Manipulations that alleviate tinnitus
885 in animal models, e.g. multisensory [89,90] or vagus nerve stimulation [78,91], before, during
886 or after sleep may uncover the causality in this relationship. The ferret model of noise
887 induced tinnitus will be valuable for detailed long–term investigation and manipulation of
888 tinnitus and will also help to answer the question of whether altered sleep contributes to
889 tinnitus comorbidities, such as distress, depression and anxiety [10].

890 It is possible that animals displaying signs of tinnitus in our study also developed
891 other noise–induced conditions, such as elevated sensitivity to environmental sounds or
892 hyperacusis [69,87,92]. Although this would not account for all the behavioural deficits
893 observed in this study, such as impaired silent gap detection, it cannot be ruled out that
894 hyperacusis was an additional consequence of noise overexposure and contributes to sleep
895 impairments. Hyperacusis has been suggested as common factor in both tinnitus and
896 insomnia [93].

897 The results of this study point to a potential role for sleep in the transient relief from
898 tinnitus. Increased evoked activity induced by noise overexposure, which is associated with
899 tinnitus [78], was less pronounced during sleep. Therefore, naturally occurring brain states
900 that are known to interfere with sensory signal processing [3,94] may also mitigate the
901 effects of altered excitability following noise trauma. This may be due to sleep of increased
902 intensity after noise overexposure reflecting elevated sleep drive produced by persistent
903 tinnitus-related brain activation in the waking stage [95–98]. Previous studies indicated that
904 prolonged brain activation raises the internal and network drive of neurons to engage in
905 sleep-specific firing patterns reflected by slow-wave activity [60,99], producing a functional
906 state with the potential to override aberrant brain activity associated with tinnitus [32]. It
907 remains to be seen whether sleep also interferes with aberrant spontaneous activity in
908 individuals with tinnitus.

909 Following progress in identifying behavioural and physiological changes in awake or
910 anaesthetised animal models of tinnitus [78,79,95,97,100–104], it is now possible to track
911 such objective tinnitus markers, for example via high-resolution recordings in brain regions
912 of interest [78,105]. Extension of such recordings across sleep and wake states should help
913 identify the distinct role of natural brain state dynamics in the modulation of tinnitus markers,
914 especially if sleep is manipulated in parallel, such as through artificial enhancement of slow
915 waves [106,107] or homeostatic increase of sleep pressure after periods of extended
916 wakefulness [30,38,60]. Our results suggest that such approaches for modulating sleep
917 might provide a route towards controlled relief from tinnitus.

918 Although tinnitus is the most prevalent sensory phantom percept in humans, it is not
919 the only one. The phantom limb syndrome in the somatosensory system (the work of
920 Ambroise Paré reviewed in [6], also [5,7]) and the Charles–Bonnet syndrome in the visual
921 system [108] are well recognised phenomena where phantoms are perceived in the absence
922 of the correspondent sensory stimuli. Since sleep attenuates sensory evoked responses

923 (e.g. [109] in the visual cortex, [3] in the perirhinal cortex), sleep–related modulation of
924 sensory phantoms might extend to multiple modalities.

925 The most widely accepted theory for the basis of phantom percepts, the deprivation
926 theory [110,111], postulates that a reduction in sensory input is an essential trigger, while
927 more recent findings suggest that further changes in sensory precision and predictive coding
928 are necessary for tinnitus to develop [27]. In both models, the most potent risk factors for
929 tinnitus remain clinically identifiable hearing loss, hidden hearing loss [76,92] and
930 subsequent brain plasticity. Therefore, tinnitus provides a unique model to study brain
931 plasticity outside of the homeostatic range and its relationship with hearing impairments. The
932 dynamics of natural brain states may be a major player in the modulation of either or both
933 conditions and the study of sleep could lead towards new therapeutic avenues in tinnitus, in
934 particular, and in sensory impairments, in general.

935 Conclusion

936 We investigated the interaction between sleep and tinnitus in a novel ferret model of noise
937 overexposure–induced tinnitus. A combination of tinnitus and hearing assessments,
938 vigilance state analysis, and the measurement of spontaneous and auditory–evoked EEG
939 activity across vigilance states provided evidence for a bi–directional interaction between
940 tinnitus and natural brain state dynamics. Cases developing tinnitus also exhibited sleep
941 impairments, suggesting a link between noise–induced tinnitus and sleep disruption. Neural
942 markers of tinnitus were reduced during sleep, suggesting that the sleep state may
943 transiently mitigate tinnitus. This reveals a new angle to tinnitus research, which could prove
944 fruitful in explaining tinnitus comorbidities and offer opportunities for new experimental
945 approaches. Most importantly, these results demonstrate that sleep has the potential to
946 explain and, ultimately, help to mitigate the neural consequences of phantom percepts.

947

948

949 **Declarations**

950 **Availability of data and materials:** The raw data and code used in this study are available
951 from https://github.com/l-milinski/Code_for_Milinski_et_al_2023. Scripts and data related to
952 spectral analysis will be made available upon request as the data size is too large for github.

953

954 **Competing interests:** The authors declare that they have no competing interests.

955

956 **Funding:** This research was funded By the Royal National Institute for Deaf People (RNID,
957 Grant S52_Bajo) and by the Wellcome Trust [WT108369/Z/2015/Z]. For the purpose of
958 Open Access, the author has applied a CC BY public copyright licence to any Author
959 Accepted Manuscript version arising from this submission.

960

961 **Authors' contributions:** L.M. conceived, performed and interpreted experiments, analysed
962 the data, and wrote and edited the manuscript; F.R.N. conceived, performed and interpreted
963 experiments, contributed to data analysis and edited the manuscript; M.K.J.E. assisted in
964 performing experiments and contributed to data analysis; A.J.K. contributed to data analysis
965 and edited the manuscript; V.V.V. conceived and interpreted experiments, contributed to
966 data analysis and edited the manuscript. V.M.B. conceived, performed and interpreted
967 experiments, contributed to data analysis, and wrote and edited the manuscript.

968 **Acknowledgements:** We are grateful to Susan Spires and Ana Sánchez for their support in
969 conducting ferret operant behaviour experiments.

970

971

972

973 **Figure Legends**

974

975 **Fig 1. Behaviour and auditory brainstem responses are impaired after noise
976 overexposure.**

977 **(A)** Experimental timeline. Animals were assessed in behavioural paradigms (operant silent
978 gap detection, silence detection), and auditory brainstem responses (ABRs) were obtained.
979 Assessments of all these metrics took place once under baseline conditions and on two
980 occasions after noise overexposure (NOE), starting one week after NOE and within two
981 months (Post1) and six months following NOE (Post 2). ABRs were always tested on one
982 day in the first week following NOE and again 6 months later, whereas it took two months to
983 complete behavioural testing at each of the three time points. **(B)** Mean operant gap
984 detection thresholds across all narrowband (NBN) and broadband noises (BBN). Error bars
985 represent standard deviation (SD) **(C)** Operant gap detection, proportion of gap trial correct
986 responses for each one-octave NBN centred at 1, 4, 8, 16 kHz frequencies and BBN. Error
987 bars represent 95% confidence intervals. **(D)** Operant gap detection, false alarm (FA) rate by
988 stimulus type across time. FA = 1 - proportion of correct responses in no gap trials.
989 Individual data points depict animal means. **(E)** Operant silence detection. Proportion of
990 correct responses for AM, NBN and silence trials (see Fig S1D for setup). Box plots depict
991 interquartile ranges across sessions. **(F)** Auditory brainstem response (ABR). Example

992 traces showing 40-90 dB SPL click responses in one animal. Green markers depict peaks
993 and troughs of ABR waves I to V, note the latency increase with intensity reduction. (G) ABR
994 thresholds, defined as the lowest intensity where a significant response – local peaks of
995 waves I-IV – were identified as in F by a trained experimenter under blind conditions. Data
996 points in panels C to E represent the mean values from individual animals. Asterisks
997 represent statistical significance, p values * <0.05 , ** <0.01 , *** <0.001 . Triangle, square and
998 circle symbols in panels C, D and E represent the three cases in which cortical recordings
999 were obtained during sleep (i.e. animals 1-3), also in Figs S1C and S2.

1000

1001 **Fig 2. Chronic recordings during sleep and wakefulness.**

1002 (A) Experimental timeline. Ferrets were assessed for tinnitus, hearing loss, EEG brain
1003 activity and sleep-wake behaviour before and after noise overexposure (NOE). Assessments
1004 of all these metrics took place once under baseline conditions (BL) and on two occasions
1005 after NOE, the first assessment (Post1) commencing one week following NOE and the
1006 second (Post2) starting six months following NOE. In addition to the 'tinnitus assessment',
1007 (Fig. 1), EEG using a frontal and occipital configuration, EMG from nuchal muscles along
1008 video recording (B) were recorded in the freely behaving animals for approximately 48 hours
1009 in each condition (BL, Post1, Post2). (C) Positions of implanted EEG electrodes for
1010 recordings (frontal and occipital), the ground reference electrode implanted over the
1011 cerebellum and the EMG wire electrodes on a schematic ferret head. (D) Example EEG
1012 traces during wakefulness (Wake), non-rapid eye movement sleep (NREM), rapid eye
1013 movement sleep (REM) and REM2 sleep (REM2). EEG signals displayed in this panel are
1014 band-pass filtered (0.5-30 Hz) and were obtained under baseline conditions (before NOE).
1015 (E) EEG vigilance state spectra in the ferret (example based on Ferret 3). Data are means
1016 across EEG spectra (bin size 0.25 Hz) of the frontal derivation calculated for two
1017 consecutive 24 hour recordings. Shading depicts the standard error. Vigilance states
1018 (Wake, NREM, REM and REM2) are colour-coded (see inset figure legend). (F) Amount of

1019 wakefulness and sleep under baseline conditions for each ferret. M, movement artefacts
1020 within sleep episodes. (G) Time course of wakefulness and sleep under baseline conditions
1021 for each ferret in zeitgeber time (ZT) represent the start of light period.

1022

1023 **Fig 3. Tinnitus development, hearing loss and sleep disruptions assessed over time.**

1024 (A) Tinnitus and hearing loss development over time in three different ferrets (Cases 1-3).
1025 Yellow bars depict behavioural evidence for tinnitus (the tinnitus index, TI, for each animal
1026 based on operant gap and silence detection performance; see Methods for details). Grey
1027 bars represent the hearing loss after NOE. Light grey bars show the differences from
1028 baseline in ABR thresholds while dark grey bars show the change in ABR total RMS
1029 magnitude, respectively. The bars are a depiction of the metrics for TI and ABR changes
1030 displayed in Fig S3. The size of each bar indicates the change relative to BL of the
1031 corresponding measure at Post 1 and Post 2. Each panel represents a different ferret. Light
1032 red/light brown shading for Ferret 1 highlight measurements conducted in Post 1 (1 week)
1033 and Post 2 (6 months). Plots for Ferrets 2 and 3 have identical layout. Panels left to right:
1034 Case 1, Case 2, Case 3. (B) Number of wake episodes during 48 hours of baseline
1035 recording, one week, and 6 months following noise overexposure. Large panels are
1036 histograms depicting the number of wake episodes organised by episode duration and the
1037 insets histograms are the total number of wake episodes for baseline (BL), one week (Post
1038 1) and 6 months after NOE (Post 2). The y-axis and the number displayed in the bars in the
1039 inset panels depict the number of wake episodes. Note the difference in y-axis scale for
1040 Case 3. Note that in Case 2 the number of wake episodes of nearly all durations increases
1041 six months following NOE and overlap the other bars (baseline and 1 week post NOE) in the
1042 panel.

1043

1044 **Fig 4. Sound-evoked cortical activity across vigilance states before and after NOE.**

1045 **(A)** Experimental paradigm. Sounds were presented through a single loudspeaker located at
1046 the top of the enclosure over a period of 24 hours subsequent to 24 hours of undisturbed
1047 recordings. Sounds were one octave narrow band noise (NBN) bursts centred at 1, 4, 8, and
1048 16 kHz, at a stimulus level of 40, 50, 60, and 65 dB SPL, with a duration of 820 ms that
1049 included a silent gap of 38 ms. Stimuli were randomly presented with an interstimulus
1050 intervals of 10-42 seconds for a total number of 200 presentations per stimulus-level
1051 combination. **(B)** Exemplar average EEG evoked responses (case 3) during Wake, NREM,
1052 REM and REM2 sleep during the baseline condition. **(C)** Quantification of EEG evoked
1053 response magnitude. Evoked responses of each animal were partitioned into components
1054 defined by the negative and positive peaks in the signal. Response magnitude was defined
1055 as the difference between a negative peak and the precedent positive peak for each
1056 response component (R1 and R2 in this example, see Fig S7 for Cases 1-3). **(D)** Sleep
1057 durations (percent of recording time) in undisturbed conditions and with sound presentation
1058 measured in basal conditions before NOE. Each panel depicts one ferret. Panels left to right:
1059 Case 1, Case 2, Case 3. **(E)** Frontal EEG auditory evoked response (AER) across vigilance
1060 states before and after NOE (colour coded). Data are averages across response
1061 components, sound level and stimulus type based on bootstrap means \pm standard errors
1062 (see methods). **(F)** AER for occipital EEG configuration. Asterisks for panels E-F represent
1063 statistical significance p values * <0.05 , ** <0.01 , *** <0.001 (GLMM). **(G)** Amount of
1064 wakefulness in baseline (BL), Post 1 and Post 2 recordings with sound presentation
1065 (coloured bars) and without sound presentation (grey bars), depicted as percent of recording
1066 time. In D-G, each panel depicts one ferret; left to right: Case 1, Case 2, Case 3.

1067

1068

1069 References

1070

- 1071 1. Casey CP, Tanabe S, Farahbakhsh Z, Parker M, Bo A, White M, et al. Distinct EEG
1072 signatures differentiate unconsciousness and disconnection during anaesthesia and
1073 sleep. *Br J Anaesth.* 2022;128: 1006–1018. doi:10.1016/j.bja.2022.01.010
- 1074 2. Nir Y, Tononi G. Dreaming and the brain: from phenomenology to neurophysiology.
1075 *Trends in Cognitive Sciences.* 2010;14: 88–100. doi:10.1016/j.tics.2009.12.001
- 1076 3. Sela Y, Krom A, Bergman L, Regev N, Nir Y. Sleep differentially affects early and late
1077 neuronal responses to sounds in auditory and perirhinal cortices. *J Neurosci.* 2020
1078 [cited 5 Aug 2020]. doi:10.1523/JNEUROSCI.1186-19.2020
- 1079 4. De Ridder D, Vanneste S, Langguth B, Llinas R. Thalamocortical Dysrhythmia: A
1080 Theoretical Update in Tinnitus. *Front Neurol.* 2015;6. doi:10.3389/fneur.2015.00124
- 1081 5. Ramachandran VS, Rogers-Ramachandran D, Cobb S. Touching the phantom limb.
1082 *Nature.* 1995;377: 489–490. doi:10.1038/377489a0
- 1083 6. Finger S, Hustwit MP. Five Early Accounts of Phantom Limb in Context: Paré,
1084 Descartes, Lemos, Bell, and Mitchell. *Neurosurgery.* 2003;52: 675.
1085 doi:10.1227/01.NEU.0000048478.42020.97
- 1086 7. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and
1087 perception. *Neuroscience Research.* 1990;8: 221–254. doi:10.1016/0168-
1088 0102(90)90031-9
- 1089 8. Baguley D, McFerran D, Hall D. Tinnitus. *The Lancet.* 2013;382: 1600–1607.
1090 doi:10.1016/S0140-6736(13)60142-7
- 1091 9. McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the
1092 reporting of tinnitus prevalence and severity. *Hear Res.* 2016;337: 70–79.
1093 doi:10.1016/j.heares.2016.05.009
- 1094 10. Bhatt JM, Bhattacharyya N, Lin HW. Relationships Between Tinnitus And The
1095 Prevalence Of Anxiety And Depression. *Laryngoscope.* 2017;127: 466–469.
1096 doi:10.1002/lary.26107
- 1097 11. Gomaa MAM, Elmagd MHA, Elbadry MM, Kader RMA. Depression, Anxiety and Stress
1098 Scale in patients with tinnitus and hearing loss. *Eur Arch Otorhinolaryngol.* 2014;271:
1099 2177–2184. doi:10.1007/s00405-013-2715-6
- 1100 12. Salazar JW, Meisel K, Smith ER, Quiggle A, McCoy DB, Amans MR. Depression in
1101 Patients with Tinnitus: A Systematic Review. *Otolaryngol Head Neck Surg.* 2019;161:
1102 28–35. doi:10.1177/0194599819835178
- 1103 13. Alster J, Shemesh Z, Ornan M, Attias J. Sleep disturbance associated with chronic
1104 tinnitus. *Biological Psychiatry.* 1993;34: 84–90. doi:10.1016/0006-3223(93)90260-K
- 1105 14. Attanasio G, Russo FY, Roukos R, Covelli E, Cartocci G, Saponara M. Sleep
1106 Architecture Variation in Chronic Tinnitus Patients. *Ear & Hearing.* 2013;34: 503–507.
1107 doi:10.1097/AUD.0b013e31827bc436

1108 15. Burgos I, Feige B, Hornyak M, Härter M, Weske-Heck G, Voderholzer U, et al. Chronic
1109 tinnitus and associated sleep disturbances. *Somnologie*. 2005;9: 133–138.
1110 doi:10.1111/j.1439-054X.2005.00056.x

1111 16. Folmer RL, Griest SE. Tinnitus and insomnia. *American Journal of Otolaryngology*.
1112 2000;21: 287–293. doi:10.1053/ajot.2000.9871

1113 17. Hallam RS. Correlates of sleep disturbance in chronic distressing tinnitus. *Scand
1114 Audiol*. 1996;25: 263–266. doi:10.3109/01050399609074965

1115 18. Hébert S, Fullum S, Carrier J. Polysomnographic and quantitative
1116 electroencephalographic correlates of subjective sleep complaints in chronic tinnitus.
1117 *Journal of Sleep Research*. 2011;20: 38–44. doi:10.1111/j.1365-2869.2010.00860.x

1118 19. Izuhara K, Wada K, Nakamura K, Tamai Y, Tsuji M, Ito Y, et al. Association between
1119 Tinnitus and Sleep Disorders in the General Japanese Population. *Ann Otol Rhinol
1120 Laryngol*. 2013;122: 701–706. doi:10.1177/000348941312201107

1121 20. Koning HM. Sleep Disturbances Associated With Tinnitus: Reduce the Maximal
1122 Intensity of Tinnitus. *The International Tinnitus Journal*. 2019;23: 64–68.

1123 21. Schecklmann M, Pregler M, Kreuzer PM, Poepll TB, Lehner A, Crönlein T, et al.
1124 Psychophysiological Associations between Chronic Tinnitus and Sleep: A Cross
1125 Validation of Tinnitus and Insomnia Questionnaires. *Biomed Res Int*. 2015;2015.
1126 doi:10.1155/2015/461090

1127 22. Elgoyhen AB, Langguth B, De Ridder D, Vanneste S. Tinnitus: perspectives from
1128 human neuroimaging. *Nature Reviews Neuroscience*. 2015;16: 632–642.
1129 doi:10.1038/nrn4003

1130 23. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP. Dysregulation
1131 of limbic and auditory networks in tinnitus. *Neuron*. 2011;69: 33–43.
1132 doi:10.1016/j.neuron.2010.12.002

1133 24. Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: Limbic-auditory
1134 interactions in tinnitus. *Neuron*. 2010;66: 819–826. doi:10.1016/j.neuron.2010.04.032

1135 25. Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N. Mapping cortical hubs in
1136 tinnitus. *BMC Biol*. 2009;7: 80. doi:10.1186/1741-7007-7-80

1137 26. Sedley W, Parikh J, Edden RAE, Tait V, Blamire A, Griffiths TD. Human Auditory
1138 Cortex Neurochemistry Reflects the Presence and Severity of Tinnitus. *J Neurosci*.
1139 2015;35: 14822–14828. doi:10.1523/JNEUROSCI.2695-15.2015

1140 27. Sedley W, Friston KJ, Gander PE, Kumar S, Griffiths TD. An Integrative Tinnitus Model
1141 Based on Sensory Precision. *Trends Neurosci*. 2016;39: 799–812.
1142 doi:10.1016/j.tins.2016.10.004

1143 28. Vanneste S, Heyning PV de, Ridder DD. Contralateral parahippocampal gamma-band
1144 activity determines noise-like tinnitus laterality: a region of interest analysis.
1145 *Neuroscience*. 2011;199: 481–490. doi:10.1016/j.neuroscience.2011.07.067

1146 29. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and
1147 wakefulness. *Physiol Rev*. 2012;92: 1087–1187. doi:10.1152/physrev.00032.2011

1148 30. Huber R, Deboer T, Tobler I. Effects of sleep deprivation on sleep and sleep EEG in
1149 three mouse strains: empirical data and simulations. *Brain Res.* 2000;857: 8–19.
1150 doi:10.1016/s0006-8993(99)02248-9

1151 31. Tinguely G, Finelli LA, Landolt H-P, Borbély AA, Achermann P. Functional EEG
1152 topography in sleep and waking: state-dependent and state-independent features.
1153 *Neuroimage*. 2006;32: 283–292. doi:10.1016/j.neuroimage.2006.03.017

1154 32. Milinski L, Nodal FR, Vyazovskiy VV, Bajo VM. Tinnitus: at a crossroad between
1155 phantom perception and sleep. *Brain Communications*. 2022;4: fcac089.
1156 doi:10.1093/braincomms/fcac089

1157 33. Castelnovo A, Lopez R, Proserpio P, Nobili L, Dauvilliers Y. NREM sleep parasomnias
1158 as disorders of sleep-state dissociation. *Nature Reviews Neurology*. 2018;14: 470–481.
1159 doi:10.1038/s41582-018-0030-y

1160 34. Castelnovo A, Ferri R, Punjabi NM, Castronovo V, Garbazza C, Zucconi M, et al. The
1161 paradox of paradoxical insomnia: A theoretical review towards a unifying evidence-
1162 based definition. *Sleep Medicine Reviews*. 2019;44: 70–82.
1163 doi:10.1016/j.smrv.2018.12.007

1164 35. Riemann D, Spiegelhalder K, Feige B, Voderholzer U, Berger M, Perlis M, et al. The
1165 hyperarousal model of insomnia: A review of the concept and its evidence. *Sleep
1166 Medicine Reviews*. 2010;14: 19–31. doi:10.1016/j.smrv.2009.04.002

1167 36. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Local sleep in awake
1168 rats. *Nature*. 2011;472: 443–447. doi:10.1038/nature10009

1169 37. Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow
1170 oscillations in individual cell rest. *Nat Rev Neurosci*. 2013;14: 443–451.
1171 doi:10.1038/nrn3494

1172 38. Tobler I, Borbély AA. Sleep EEG in the rat as a function of prior waking.
1173 *Electroencephalogr Clin Neurophysiol*. 1986;64: 74–76. doi:10.1016/0013-
1174 4694(86)90044-1

1175 39. Guillard R, Korczowski L, Léger D, Congedo M, Londere A. REM Sleep Impairment
1176 May Underlie Sleep-Driven Modulations of Tinnitus in Sleep Intermittent Tinnitus
1177 Subjects: A Controlled Study. *Int J Environ Res Public Health*. 2023;20: 5509.
1178 doi:10.3390/ijerph20085509

1179 40. Atiani S, David SV, Elgueda D, Locastro M, Radtke-Schuller S, Shamma SA, et al.
1180 Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. *Neuron*.
1181 2014;82: 486–499. doi:10.1016/j.neuron.2014.02.029

1182 41. Homma NY, Happel MFK, Nodal FR, Ohl FW, King AJ, Bajo VM. A Role for Auditory
1183 Corticothalamic Feedback in the Perception of Complex Sounds. *J Neurosci*. 2017;37:
1184 6149–6161. doi:10.1523/JNEUROSCI.0397-17.2017

1185 42. Town SM, Poole KC, Wood KC, Bizley JK. Reversible Inactivation of Ferret Auditory
1186 Cortex Impairs Spatial and Nonspatial Hearing. *J Neurosci*. 2023;43: 749–763.
1187 doi:10.1523/JNEUROSCI.1426-22.2022

1188 43. Lewington JH, editor. Preface to second edition. *Ferret Husbandry, Medicine and*
1189 *Surgery (Second Edition)*. Edinburgh: W.B. Saunders; 2007. p. viii. doi:10.1016/B978-
1190 0-7020-2827-4.50004-8

1191 44. Bajo VM, Nodal FR, Korn C, Constantinescu AO, Mann EO, Boyden ES, et al.
1192 Silencing cortical activity during sound-localization training impairs auditory perceptual
1193 learning. *Nat Commun*. 2019;10: 3075. doi:10.1038/s41467-019-10770-4

1194 45. Jha SK, Coleman T, Frank MG. Sleep and sleep regulation in the ferret (*Mustela*
1195 *putorius furo*). *Behav Brain Res*. 2006;172: 106–113. doi:10.1016/j.bbr.2006.05.001

1196 46. McKillop LE, Fisher SP, Cui N, Peirson SN, Foster RG, Wafford KA, et al. Effects of
1197 Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice. *J Neurosci*.
1198 2018;38: 3911–3928. doi:10.1523/JNEUROSCI.2513-17.2018

1199 47. Gold JR, Nodal FR, Peters F, King AJ, Bajo VM. Auditory Gap-in-Noise Detection
1200 Behavior in Ferrets and Humans. *Behav Neurosci*. 2015;129: 473–490.
1201 doi:10.1037/bne0000065

1202 48. Nodal FR, Kacelnik O, Bajo VM, Bizley JK, Moore DR, King AJ. Lesions of the auditory
1203 cortex impair azimuthal sound localization and its recalibration in ferrets. *J*
1204 *Neurophysiol*. 2010;103: 1209–1225. doi:10.1152/jn.00991.2009

1205 49. Stolzberg D, Hayes SH, Kashanian N, Radziwon K, Salvi RJ, Allman BL. A novel
1206 behavioral assay for the assessment of acute tinnitus in rats optimized for simultaneous
1207 recording of oscillatory neural activity. *Journal of Neuroscience Methods*. 2013;219:
1208 224–232. doi:10.1016/j.jneumeth.2013.07.021

1209 50. Dehmel S, Eisinger D, Shore SE. Gap prepulse inhibition and auditory brainstem-
1210 evoked potentials as objective measures for tinnitus in guinea pigs. *Front Syst*
1211 *Neurosci*. 2012;6: 42. doi:10.3389/fnsys.2012.00042

1212 51. Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation
1213 of hyperacusis or tinnitus? *Journal of Neurophysiology*. 2014;111: 552–564.
1214 doi:10.1152/jn.00184.2013

1215 52. Cai R, Ling L, Ghimire M, Brownell KA, Caspary DM. Tinnitus-related increases in
1216 single-unit activity in awake rat auditory cortex correlate with tinnitus behavior. *Hear*
1217 *Res*. 2024;445: 108993. doi:10.1016/j.heares.2024.108993

1218 53. Puel J-L, Guitton MJ. Salicylate-induced tinnitus: molecular mechanisms and
1219 modulation by anxiety. *Prog Brain Res*. 2007;166: 141–146. doi:10.1016/S0079-
1220 6123(07)66012-9

1221 54. Salvi R, Radziwon K, Manohar S, Auerbach B, Ding D, Liu X, et al. Review: Neural
1222 Mechanisms of Tinnitus and Hyperacusis in Acute Drug-Induced Ototoxicity. *Am J*
1223 *Audiol*. 2021;30: 901–915. doi:10.1044/2020_AJA-20-00023

1224 55. Hayes SH, Beh K, Typlt M, Schormans AL, Stolzberg D, Allman BL. Using an appetitive
1225 operant conditioning paradigm to screen rats for tinnitus induced by intense sound
1226 exposure: Experimental considerations and interpretation. *Front Neurosci*. 2023;17:
1227 1001619. doi:10.3389/fnins.2023.1001619

1228 56. Kelly JB, Kavanagh GL, Picton TW. Brainstem auditory evoked response in the ferret
1229 (Mustela putorius. *Hearing Research*. 1989;39: 231–240. doi:10.1016/0378-
1230 5955(89)90043-9

1231 57. Moore DR, Hine JE. Rapid development of the auditory brainstem response threshold
1232 in individual ferrets. *Brain Res Dev Brain Res*. 1992;66: 229–235. doi:10.1016/0165-
1233 3806(92)90084-a

1234 58. Buran BN, Elkins S, Kempton JB, Porsov EV, Brigande JV, David SV. Optimizing
1235 Auditory Brainstem Response Acquisition Using Interleaved Frequencies. *J Assoc Res*
1236 *Otolaryngol*. 2020;21: 225–242. doi:10.1007/s10162-020-00754-3

1237 59. Kavanagh GL, Kelly JB. Hearing in the ferret (Mustela putorius): effects of primary
1238 auditory cortical lesions on thresholds for pure tone detection. *J Neurophysiol*. 1988;60:
1239 879–888. doi:10.1152/jn.1988.60.3.879

1240 60. Milinski L, Fisher SP, Cui N, McKillop LE, Blanco-Duque C, Ang G, et al. Waking
1241 experience modulates sleep need in mice. *BMC Biol*. 2021;19: 65. doi:10.1186/s12915-
1242 021-00982-w

1243 61. Nir Y, Vyazovskiy VV, Cirelli C, Banks MI, Tononi G. Auditory responses and stimulus-
1244 specific adaptation in rat auditory cortex are preserved across NREM and REM sleep.
1245 *Cereb Cortex*. 2015;25: 1362–1378. doi:10.1093/cercor/bht328

1246 62. Kelly JB, Kavanagh GL, Dalton JCH. Hearing in the ferret (Mustela putorius):
1247 Thresholds for pure tone detection. *Hearing Research*. 1986;24: 269–275.
1248 doi:10.1016/0378-5955(86)90025-0

1249 63. Fritz JB, Elhilali M, Shamma SA. Adaptive changes in cortical receptive fields induced
1250 by attention to complex sounds. *J Neurophysiol*. 2007;98: 2337–2346.
1251 doi:10.1152/jn.00552.2007

1252 64. Yin P, Fritz JB, Shamma SA. Do ferrets perceive relative pitch? *J Acoust Soc Am*.
1253 2010;127: 1673–1680. doi:10.1121/1.3290988

1254 65. Fox JG, Marini RP, editors. *Biology and diseases of the ferret*. Third edition. Ames,
1255 Iowa: Wiley Blackwell; 2014.

1256 66. Bakthavatchalu V, Muthupalani S, Marini RP, Fox JG. Endocrinopathy and Aging in
1257 Ferrets. *Vet Pathol*. 2016;53: 349–365. doi:10.1177/0300985815623621

1258 67. Yanai S, Endo S. Functional Aging in Male C57BL/6J Mice Across the Life-Span: A
1259 Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an
1260 Aging Phenotype. *Frontiers in Aging Neuroscience*. 2021;13. Available:
1261 <https://www.frontiersin.org/articles/10.3389/fnagi.2021.697621>

1262 68. Sengupta P. The Laboratory Rat: Relating Its Age With Human's. *Int J Prev Med*.
1263 2013;4: 624–630.

1264 69. Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus-triggers,
1265 mechanisms and treatment. *Nat Rev Neurol*. 2016;12: 150–160.
1266 doi:10.1038/nrneurol.2016.12

1267 70. Beukes EW, Manchaiah V, Allen PM, Andersson G, Baguley DM. Exploring tinnitus
1268 heterogeneity. *Prog Brain Res*. 2021;260: 79–99. doi:10.1016/bs.pbr.2020.05.022

1269 71. Gurevicius K, Lipponen A, Tanila H. Increased cortical and thalamic excitability in freely
1270 moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer's
1271 disease. *Cereb Cortex*. 2013;23: 1148–1158. doi:10.1093/cercor/bhs105

1272 72. Rogenmoser L, Kuśmierk P, Archakov D, Rauschecker JP. The blinking eye as a
1273 window into tinnitus: A new animal model of tinnitus in the macaque. *Hear Res*.
1274 2022;420: 108517. doi:10.1016/j.heares.2022.108517

1275 73. Sedley W, Teki S, Kumar S, Barnes GR, Bamiou D-E, Griffiths TD. Single-subject
1276 oscillatory gamma responses in tinnitus. *Brain*. 2012;135: 3089–3100.
1277 doi:10.1093/brain/aws220

1278 74. Pedemonte M, Peña JL, Torterolo P, Velluti RA. Auditory deprivation modifies sleep in
1279 the guinea-pig. *Neurosci Lett*. 1997;223: 1–4. doi:10.1016/s0304-3940(97)13392-4

1280 75. Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through
1281 homeostatic plasticity after hearing loss: a computational model. *Eur J Neurosci*.
1282 2006;23: 3124–3138. doi:10.1111/j.1460-9568.2006.04774.x

1283 76. Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for
1284 hidden hearing loss and computational model. *J Neurosci*. 2011;31: 13452–13457.
1285 doi:10.1523/JNEUROSCI.2156-11.2011

1286 77. Asokan MM, Williamson RS, Hancock KE, Polley DB. Sensory overamplification in
1287 layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic
1288 damage. *Nat Commun*. 2018;9: 2468. doi:10.1038/s41467-018-04852-y

1289 78. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al.
1290 Reversing pathological neural activity using targeted plasticity. *Nature*. 2011;470: 101–
1291 104. doi:10.1038/nature09656

1292 79. Kalappa BI, Brozoski TJ, Turner JG, Caspary DM. Single unit hyperactivity and bursting
1293 in the auditory thalamus of awake rats directly correlates with behavioural evidence of
1294 tinnitus. *The Journal of Physiology*. 2014;592: 5065–5078.
1295 doi:10.1113/jphysiol.2014.278572

1296 80. Salvi R, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear
1297 damage. 2000 [cited 14 Apr 2022]. doi:10.1016/S0378-5955(00)00136-2

1298 81. Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T. High frequency localised
1299 “hot spots” in temporal lobes of patients with intractable tinnitus: a quantitative
1300 electroencephalographic (QEEG) study. *Neurosci Lett*. 2007;426: 23–28.
1301 doi:10.1016/j.neulet.2007.08.034

1302 82. Sedley W, Gander PE, Kumar S, Oya H, Kovach CK, Nourski KV, et al. Intracranial
1303 Mapping of a Cortical Tinnitus System using Residual Inhibition. *Curr Biol*. 2015;25:
1304 1208–1214. doi:10.1016/j.cub.2015.02.075

1305 83. Noreña AJ, Tomita M, Eggermont JJ. Neural changes in cat auditory cortex after a
1306 transient pure-tone trauma. *J Neurophysiol*. 2003;90: 2387–2401.
1307 doi:10.1152/jn.00139.2003

1308 84. Coomber B, Berger JI, Kowalkowski VL, Shackleton TM, Palmer AR, Wallace MN.
1309 Neural changes accompanying tinnitus following unilateral acoustic trauma in the
1310 guinea pig. *Eur J Neurosci*. 2014;40: 2427–2441. doi:10.1111/ejn.12580

1311 85. Syka J, Rybalko N, Popelář J. Enhancement of the auditory cortex evoked responses in
1312 awake guinea pigs after noise exposure. *Hearing Research*. 1994;78: 158–168.
1313 doi:10.1016/0378-5955(94)90021-3

1314 86. Syka J, Rybalko N. Threshold shifts and enhancement of cortical evoked responses
1315 after noise exposure in rats. *Hearing Research*. 2000;139: 59–68. doi:10.1016/S0378-
1316 5955(99)00175-6

1317 87. McGill M, Hight AE, Watanabe YL, Parthasarathy A, Cai D, Clayton K, et al. Neural
1318 signatures of auditory hypersensitivity following acoustic trauma. *Elife*. 2022;11:
1319 e80015. doi:10.7554/elife.80015

1320 88. Rechtschaffen A, Hauri P, Zeitlin M. Auditory Awakening Thresholds in Rem and Nrem
1321 Sleep Stages. *Percept Mot Skills*. 1966;22: 927–942. doi:10.2466/pms.1966.22.3.927

1322 89. Conlon B, Hamilton C, Meade E, Leong SL, O Connor C, Langguth B, et al. Different
1323 bimodal neuromodulation settings reduce tinnitus symptoms in a large randomized trial.
1324 *Sci Rep*. 2022;12: 10845. doi:10.1038/s41598-022-13875-x

1325 90. Marks KendraL, Martel DavidT, Wu Calvin, Basura GregoryJ, Roberts LarryE,
1326 Schwartz-Leyzac KaraC, et al. Auditory-somatosensory bimodal stimulation
1327 desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. *Sci Transl
1328 Med*. 2018;10: eaal3175. doi:10.1126/scitranslmed.aal3175

1329 91. De Ridder D, Schlee W, Vanneste S, Londero A, Weisz N, Kleinjung T, et al. Chapter 1
1330 - Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international
1331 multidisciplinary proposal). In: Schlee W, Langguth B, Kleinjung T, Vanneste S, De
1332 Ridder D, editors. *Progress in Brain Research*. Elsevier; 2021. pp. 1–25.
1333 doi:10.1016/bs.pbr.2020.12.002

1334 92. Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing
1335 loss: Manifestations and mechanisms. *Hear Res*. 2017;349: 138–147.
1336 doi:10.1016/j.heares.2017.01.003

1337 93. Wallhäuser-Franke E, Schredl M, Delb W. Tinnitus and insomnia: Is hyperarousal the
1338 common denominator? *Sleep Medicine Reviews*. 2013;17: 65–74.
1339 doi:10.1016/j.smrv.2012.04.003

1340 94. Neckelmann D, Ursin R. Sleep stages and EEG power spectrum in relation to
1341 acoustical stimulus arousal threshold in the rat. *Sleep*. 1993;16: 467–477.

1342 95. Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ. Tinnitus and inferior
1343 colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. *J
1344 Neurosci Res*. 2008;86: 2564–2578. doi:10.1002/jnr.21699

1345 96. Brozoski TJ, Bauer CA, Caspary DM. Elevated Fusiform Cell Activity in the Dorsal
1346 Cochlear Nucleus of Chinchillas with Psychophysical Evidence of Tinnitus. *J Neurosci*.
1347 2002;22: 2383–2390. doi:10.1523/JNEUROSCI.22-06-02383.2002

1348 97. Manzoor NF, Chen G, Kaltenbach JA. Suppression of noise-induced hyperactivity in
1349 the dorsal cochlear nucleus following application of the cholinergic agonist, carbachol.
1350 *Brain Res*. 2013;1523: 28–36. doi:10.1016/j.brainres.2013.05.025

1351 98. Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GMG, Tzounopoulos T.
1352 Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity

1353 because of decreased GABAergic inhibition. *Proc Natl Acad Sci USA*. 2011;108: 7601–
1354 7606. doi:10.1073/pnas.1100223108

1355 99. Huber R, Tononi G, Cirelli C. Exploratory Behavior, Cortical BDNF Expression, and
1356 Sleep Homeostasis. *Sleep*. 2007;30: 129–139. doi:10.1093/sleep/30.2.129

1357 100. Berger JI, Coomber B. Tinnitus-related changes in the inferior colliculus. *Front Neurol*.
1358 2015;6: 61. doi:10.3389/fneur.2015.00061

1359 101. Kaltenbach JA, Zacharek MA, Zhang J, Frederick S. Activity in the dorsal cochlear
1360 nucleus of hamsters previously tested for tinnitus following intense tone exposure.
1361 *Neuroscience Letters*. 2004;355: 121–125. doi:10.1016/j.neulet.2003.10.038

1362 102. Noreña Arnaud J, Tomita M, Eggermont JJ. Neural Changes in Cat Auditory Cortex
1363 After a Transient Pure-Tone Trauma. *Journal of Neurophysiology*. 2003;90: 2387–
1364 2401. doi:10.1152/jn.00139.2003

1365 103. Seki S, Eggermont JJ. Changes in spontaneous firing rate and neural synchrony in cat
1366 primary auditory cortex after localized tone-induced hearing loss. *Hear Res*. 2003;180:
1367 28–38. doi:10.1016/s0378-5955(03)00074-1

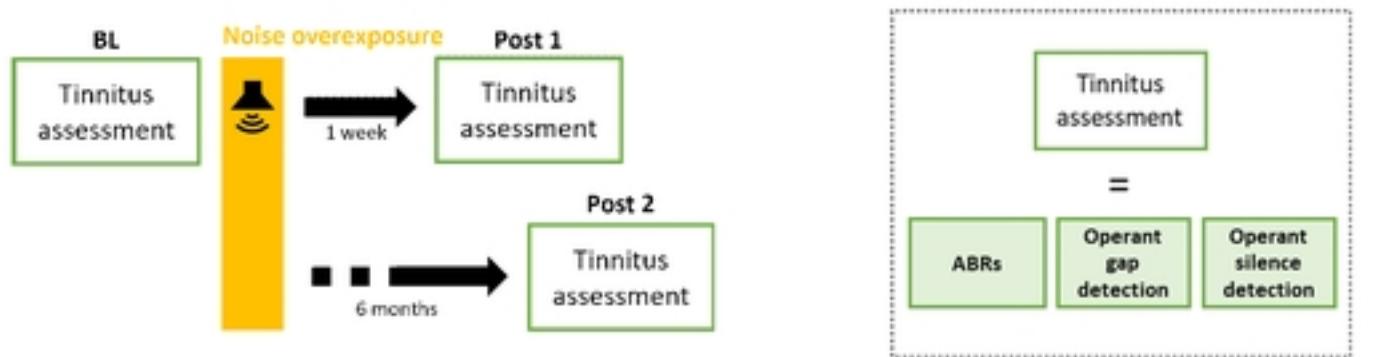
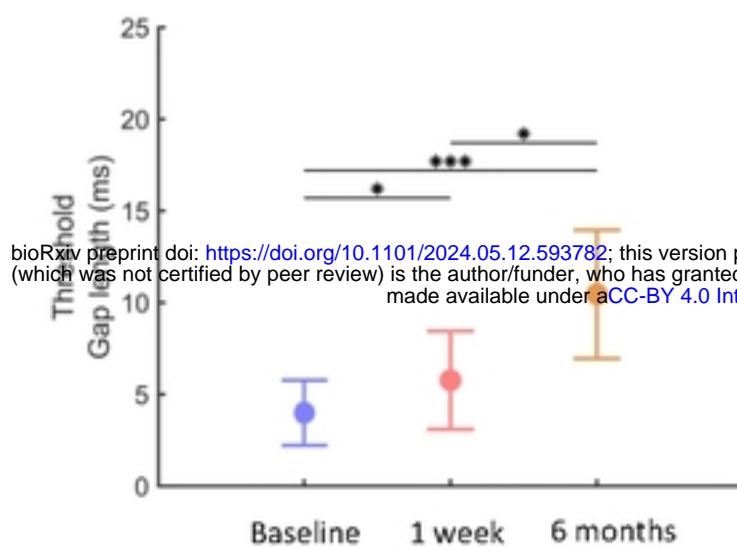
1368 104. Wu C, Martel DT, Shore SE. Increased Synchrony and Bursting of Dorsal Cochlear
1369 Nucleus Fusiform Cells Correlate with Tinnitus. *J Neurosci*. 2016;36: 2068–2073.
1370 doi:10.1523/JNEUROSCI.3960-15.2016

1371 105. Noreña AJ, Eggermont JJ. Enriched acoustic environment after noise trauma abolishes
1372 neural signs of tinnitus. *NeuroReport*. 2006;17: 559–563.

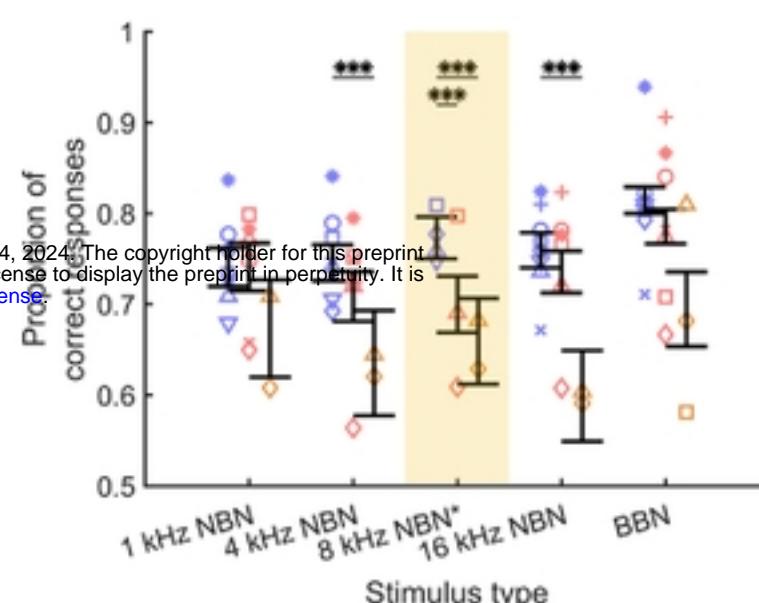
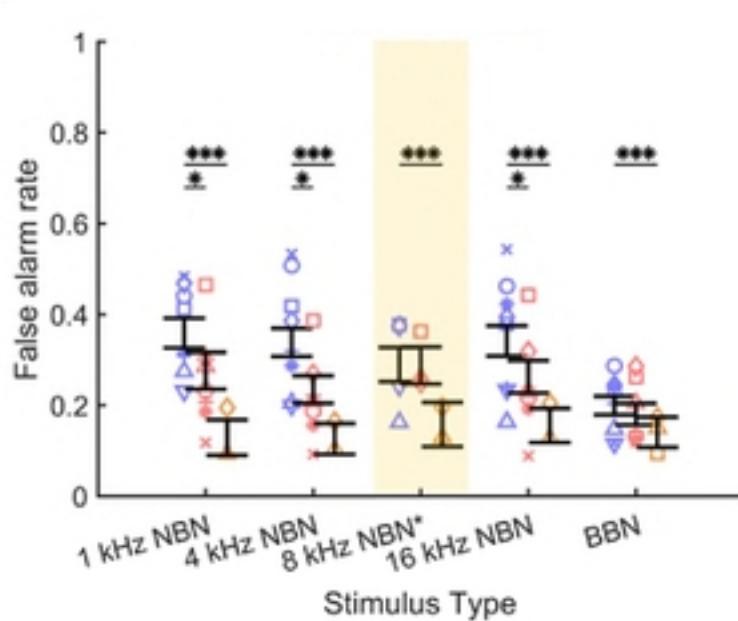
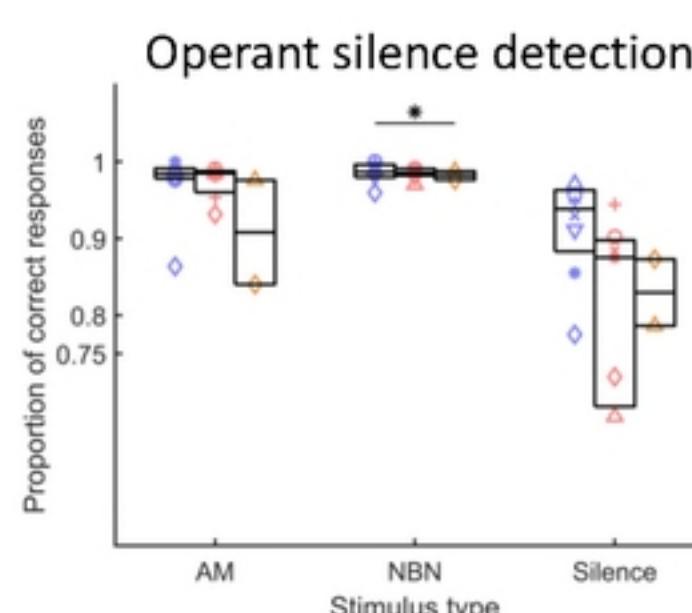
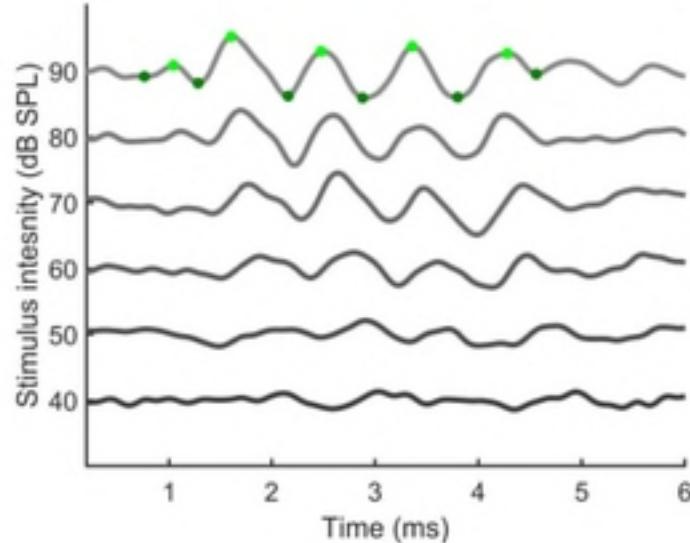
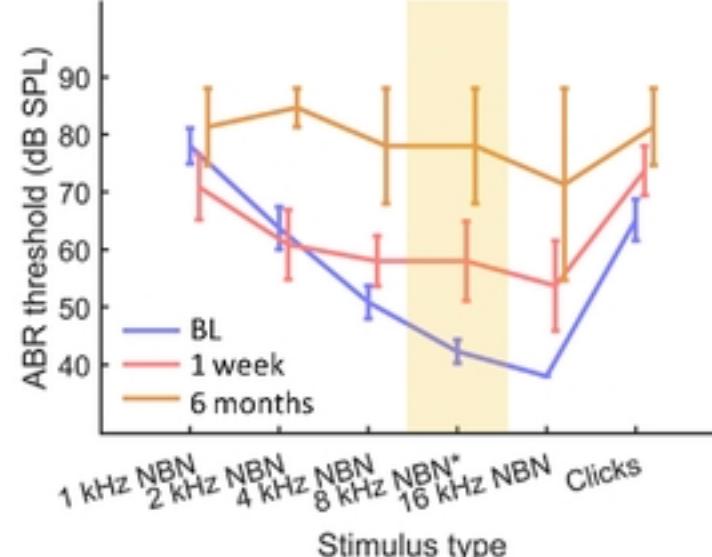
1373 106. Ngo H-VV, Martinetz T, Born J, Mölle M. Auditory closed-loop stimulation of the sleep
1374 slow oscillation enhances memory. *Neuron*. 2013;78: 545–553.
1375 doi:10.1016/j.neuron.2013.03.006

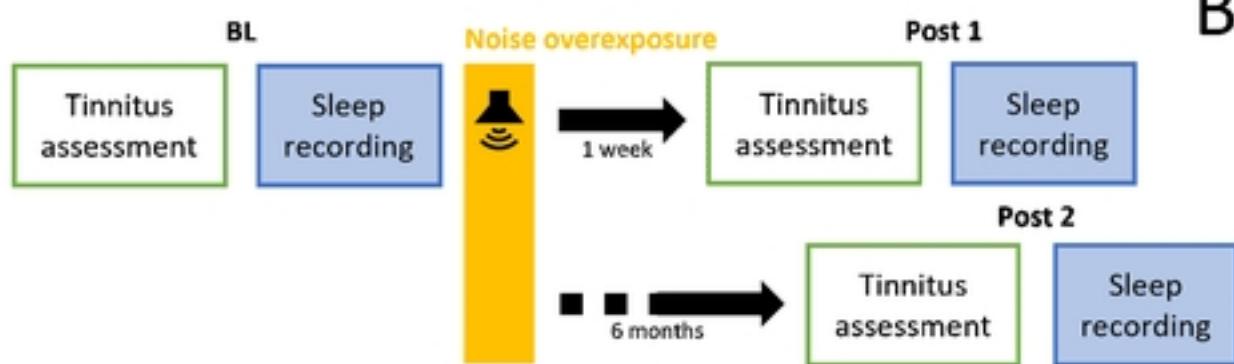
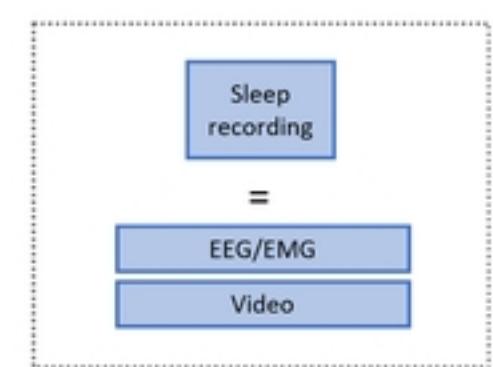
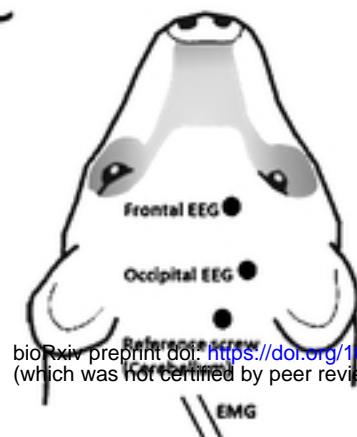
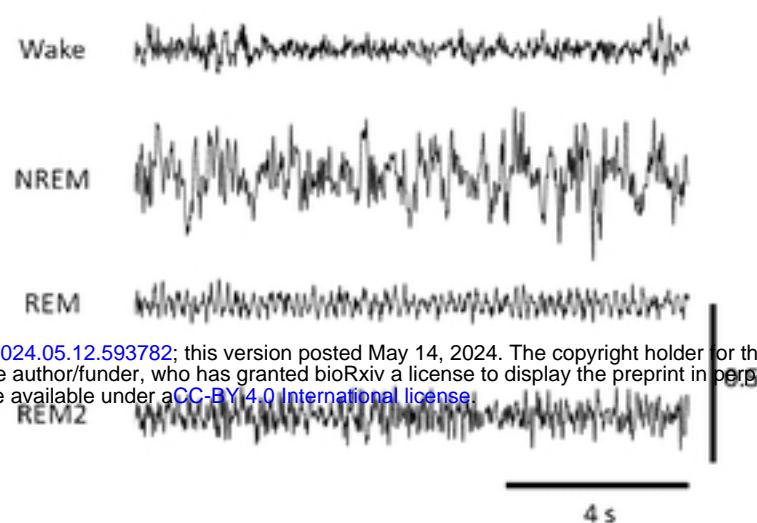
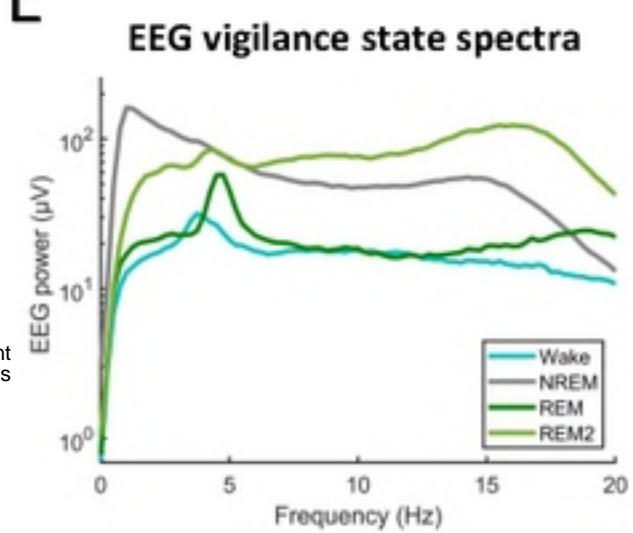
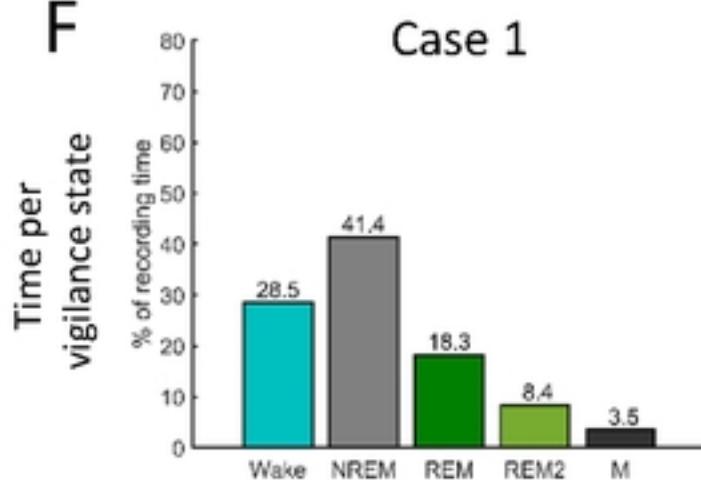
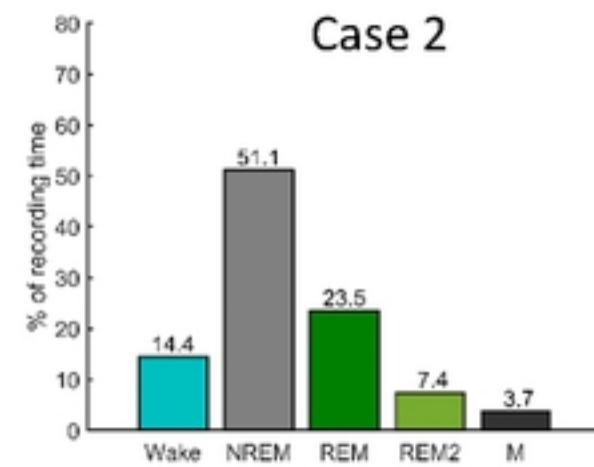
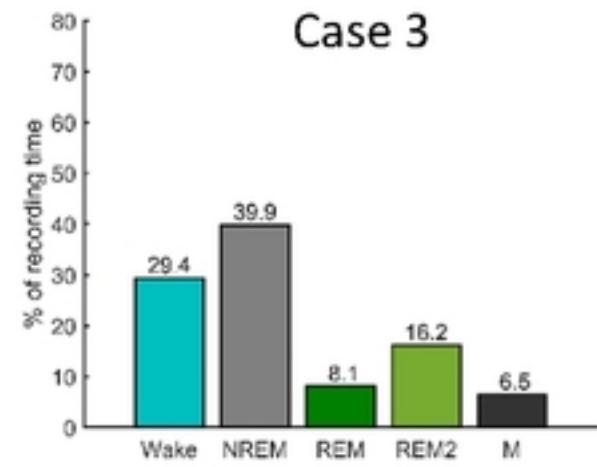
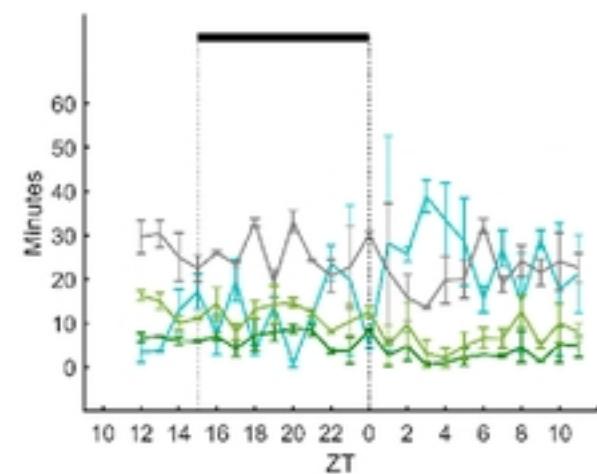
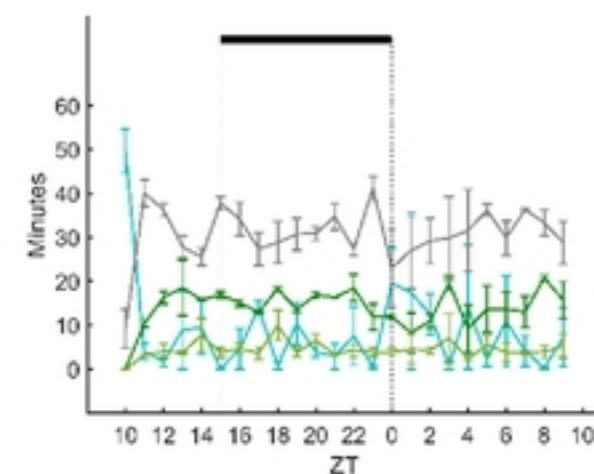
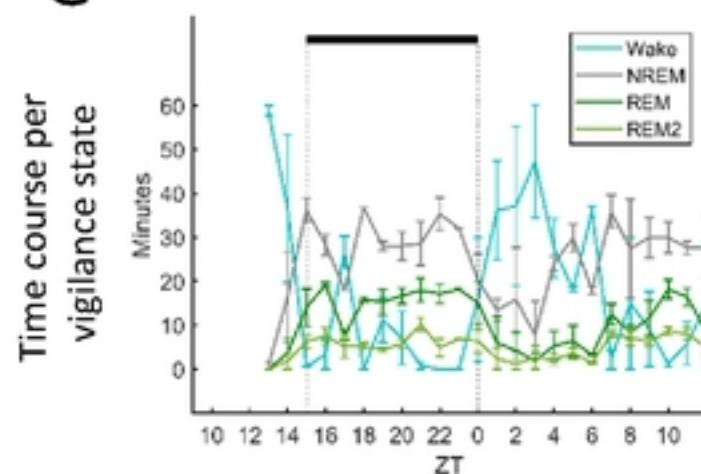
1376 107. Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, et
1377 al. The hypothalamic link between arousal and sleep homeostasis in mice. *Proc Natl
1378 Acad Sci U S A*. 2021;118: e2101580118. doi:10.1073/pnas.2101580118

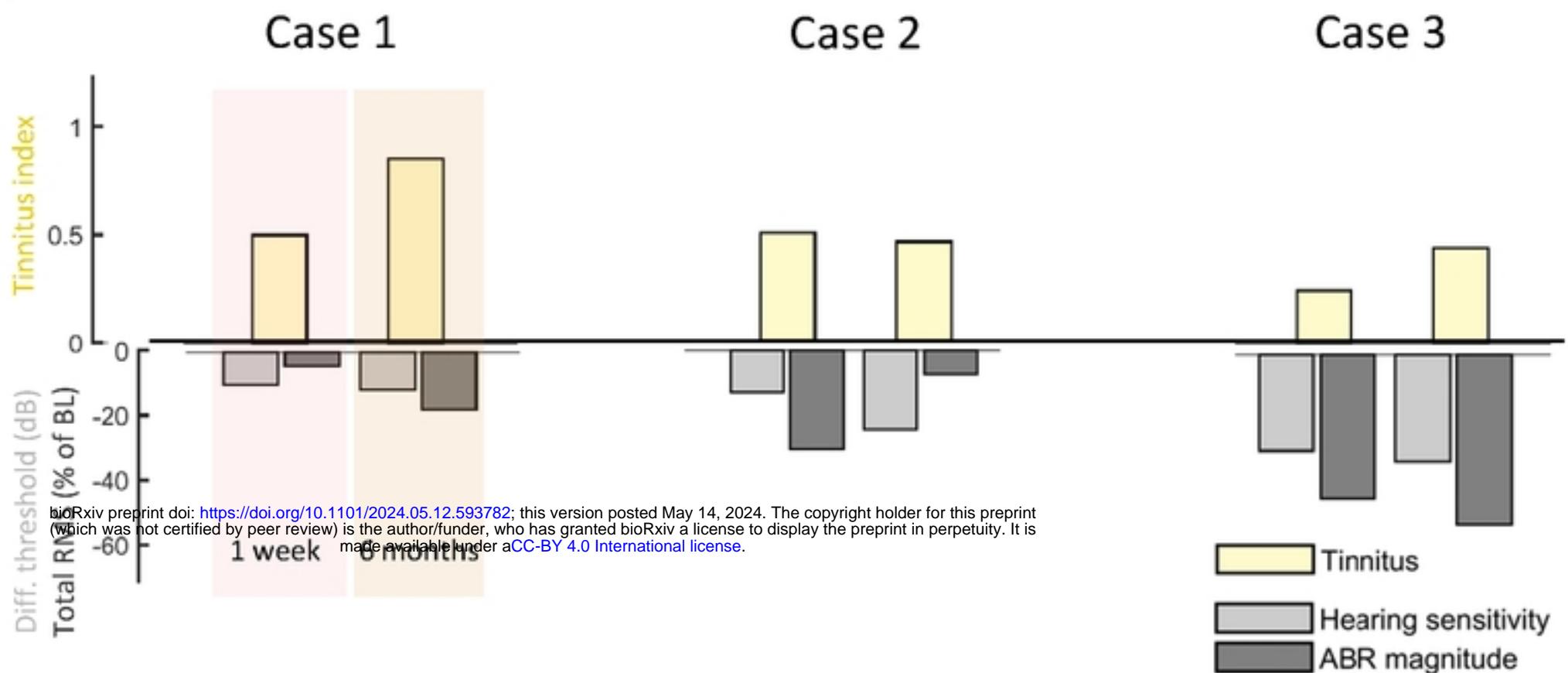
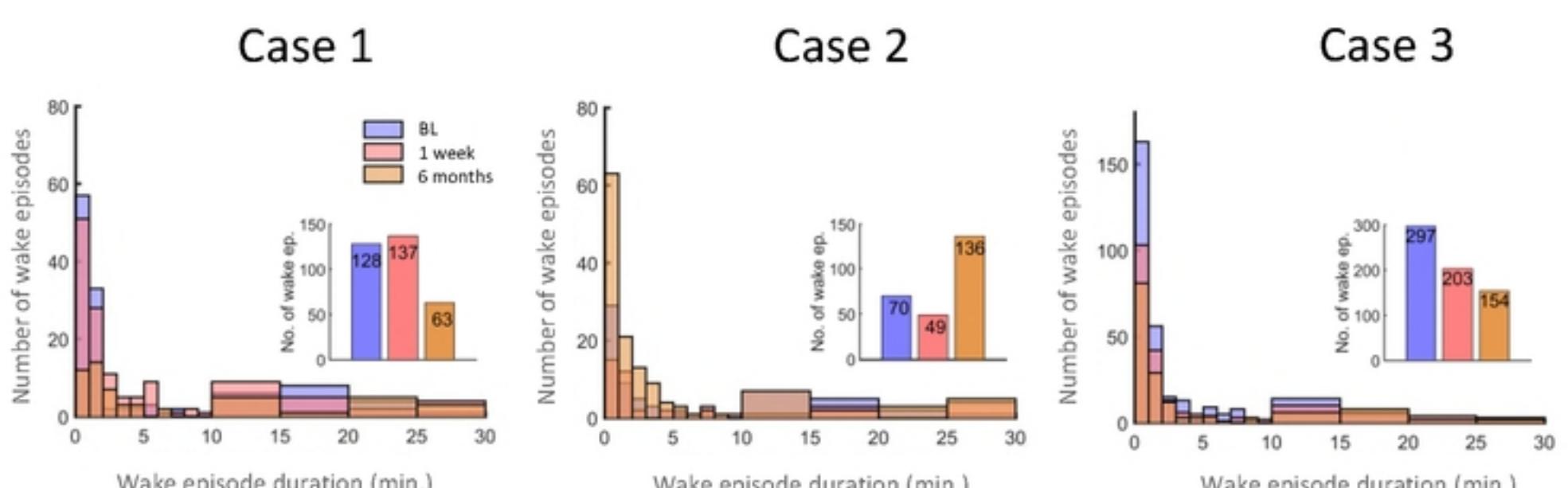
1379 108. Schadlu AP, Schadlu R, Shepherd JB. Charles Bonnet syndrome: a review. *Curr Opin
1380 Ophthalmol*. 2009;20: 219–222. doi:10.1097/ICU.0b013e328329b643



1381 109. Sharon O, Nir Y. Attenuated Fast Steady-State Visual Evoked Potentials During Human
1382 Sleep. *Cereb Cortex*. 2018;28: 1297–1311. doi:10.1093/cercor/bhx043

1383 110. De Ridder D, Joos K, Vanneste S. The Enigma of the Tinnitus-Free Dream State in a
1384 Bayesian World. *Neural Plast*. 2014;2014. doi:10.1155/2014/612147






1385 111. Mohan A, Vanneste S. Adaptive and maladaptive neural compensatory consequences
1386 of sensory deprivation-From a phantom percept perspective. *Prog Neurobiol*. 2017;153:
1387 1–17. doi:10.1016/j.pneurobio.2017.03.010












1388



1389

A**Experimental timeline****B****Operant gap detection**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.05.12.593782>; this version posted May 14, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C**D****E****F****Auditory brainstem response****G****Figure 1**

A**B****C****D****E****F****Case 2****Case 3****G****Figure 2**

A**B****Figure 3**

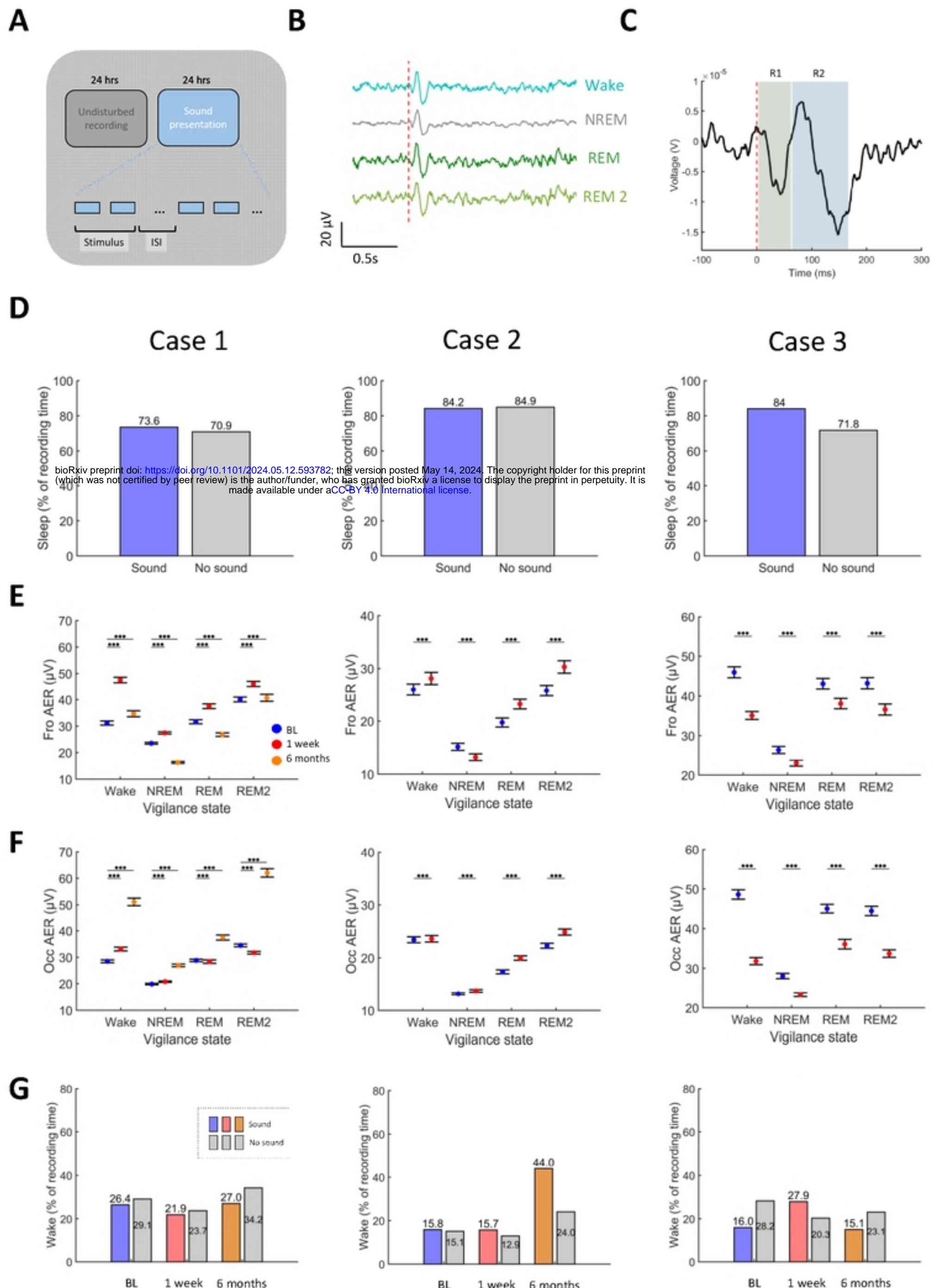


Figure 4