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Abstract 24 

Natural killer (NK) cells have great potential as allogeneic immune cell therapy due to their 25 

natural ability to recognize and kill tumor cells, and due to their apparent safety. This study 26 

describes the development of an immunotherapy option tailored for high-risk acute myeloid 27 

leukemia (AML) in adults and neuroblastoma in children. A GMP-compliant manufacturing 28 

protocol for the local production of functionally potent NK cells is detailed in the study, 29 

including a comprehensive description of the quality control strategy and considerations for 30 

product batch specifications in early clinical development. The protocol is based on the closed, 31 

automated CliniMACS Prodigy® platform (Miltenyi Biotec) and a modified Natural Killer 32 

Cell Transduction (NKCT) process without transduction and expansion. NK cells are isolated 33 

from leukapheresis through CD3 depletion and CD56 enrichment, followed by a 12-hour 34 

activation with cytokines (500 IU/ml IL-2, 140 IU/ml IL-15).  35 

Three CliniMACS Prodigy® NKCT processes were executed, demonstrating the feasibility 36 

and consistency of the modified NKCT process. A three-step process without expansion, 37 

however, compromised the NK cell yield. T cells were depleted effectively, indicating 38 

excellent safety of the product for allogeneic use. Phenotypic and functional characterization 39 

of the NK cells before and after cytokine activation revealed a notable increase in the 40 

expression of activation markers, particularly CD69, consistent with enhanced functionality. 41 

Intriguingly, even following a brief 12-hour activation period, the NK cells exhibited increased 42 

killing efficacy against CD33+ AML blasts isolated from patients and against SH-SY5Y 43 

neuroblastoma (NBL) target cells in vitro, suggesting a potential therapeutic benefit for AML 44 

and NBL patients. 45 

 46 
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Introduction 48 

Acute myeloid leukemia (AML) stands as the predominant form of acute 49 

leukemia in adults marked by significant clinical and genetic heterogeneity. While a subset of 50 

patients achieves a cure through a multidisciplinary approach combining chemotherapy, 51 

antibody-based treatment, and allogeneic hematopoietic stem cell transplantation (HSCT), the 52 

prognosis remains particularly poor for older individuals or those with relapsed or refractory 53 

AML (1). Neuroblastoma (NBL), on the other hand, is a challenging solid extracranial tumor 54 

in children. NBL is an extremely diverse disease, and for those with low or intermediate-risk 55 

NBL, the prognosis is generally favorable when treated with surgery and low-intensity 56 

chemotherapy (2). Despite high-risk NBL patients initially responding well to traditional 57 

therapy, a proportion of them ultimately succumb to recurrent disease (3). Therefore, there is a 58 

high demand to explore novel treatment options for both high-risk AML and NBL patients. 59 

Natural killer (NK) cells are cytotoxic lymphocytes that hold great promise as an 60 

allogeneic immune cell therapy option. NK cell-based immunotherapy exploits their natural 61 

antitumoral activity (4). Importantly, as NK cells appear not to elicit graft-versus-host (GvH) 62 

reactivity, they are considered safe in allogeneic transplantation, even in the non-HLA-matched 63 

setting (5,6).  64 

Many clinical trials in hematological malignancies using allogeneic NK cells 65 

have been published demonstrating a good safety profile and promising preliminary treatment 66 

responses. NK cells have been administered either alone (7–9) or in the HSCT setting (6,10–67 

12). Cytokine activation has been included in the manufacturing protocol to improve the 68 

efficacy of NK cells. A landmark study by Miller et al. (13) already showed the feasibility and 69 

safety of CD3-depleted, overnight (O/N) IL-2 stimulated cells in AML. After that, NK cells or 70 

cell products with different stimulation protocols, mostly IL-2 (14–17) or a cytokine 71 

combination O/N (18,19) have been used in clinical trials, again along with HSCT or without 72 
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it. Moreover, longer cultures with cytokines (20) or feeder cells have been used in the clinical 73 

setting (21–25). There are also a few clinical studies reporting on the treatment of NBL using 74 

haploidentical, enriched NK cells, demonstrating some therapeutic potential when combined 75 

with modern immunotherapy (dinutuximab/GM-CSF/IL-2) (26) or chemotherapy (27,28). The 76 

feasibility of treatment with IL-2-activated or expanded NK cells has also been demonstrated 77 

in NBL (29,30). 78 

Taken together from published clinical trial papers, several hundred patients, both 79 

adult and pediatric, have been treated with NK cells in hematological malignancies, of which 80 

AML has been the most common diagnosis. Over 200 patients have received cytokine-81 

activated NK cells. Moreover, over 100 NBL patients have received NK cells, either with or 82 

without an antibody targeted at GD2. These studies have demonstrated the convincing 83 

feasibility and safety of allogeneic NK cell therapy in AML and NBL. 84 

In this manuscript, we describe the setup of a manufacturing protocol and quality 85 

control analytics for a locally produced, minimally manipulated, freshly administered NK cell 86 

product designed as a new immunotherapy option for Finnish cancer patients. We isolated and 87 

activated NK cells from healthy donor-derived leukapheresis products using an automated, 88 

closed, CliniMACS Prodigy® platform (Miltenyi Biotec) -based process, including CD3+ cell 89 

depletion, CD56+ cell enrichment, and cytokine stimulation (12-h) steps. Moreover, we 90 

isolated AML blasts from whole blood samples and assessed the efficacy of the activated NK 91 

cell products. The planned patient groups consist of adult high-risk R/R AML patients, and 92 

later on, pediatric poorly responding or relapsed NBL patients, i.e., cases where traditional 93 

treatment options are not available. 94 

 95 

Materials and methods 96 
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Ethics statement 97 

Donors and patients have given their written informed consents to participate and 98 

the study was conducted according to the principles of the Declaration of Helsinki.  The starting 99 

materials for production were collected by leukapheresis at the Finnish Red Cross Blood 100 

Service (FRCBS, Helsinki, Finland) from healthy voluntary donors. The study protocol was 101 

reviewed and approved by the Regional Committee on Medical Research Ethics, Helsinki 102 

University Central Hospital (ethical approval number: HUCH/1492/2020). Batches of primary 103 

NK cells not produced in Prodigy® were obtained from surplus buffy coats from healthy, 104 

anonymous blood donors. Research permission was obtained from the local Blood Service 105 

Review Board (permission no.178-06/2023-01/2024, FRCBS, Finland). Whole blood (WB) 106 

samples from AML patients were collected at the Comprehensive Cancer Center, HUCH 107 

(ethical approval number: HUCH/12335/2022). 108 

 109 

Manufacturing and quality control workflow of NK cells in 110 

CliniMACS Prodigy® 111 

The starting materials for production were collected by leukapheresis using the 112 

Spectra Optia® 61000 Apheresis System using a continuous mononuclear cell protocol 113 

(Version 11) (Terumo BCT). Donor eligibility was determined according to standard 114 

procedures defined in EU legislation for blood establishments. The leukapheresis products 115 

were stored at room temperature before further processing on the same day. 116 

The workflow, including a sampling plan and a QC scheme are presented in Fig. 117 

1. The manufacturing process, analytical tests, and tentative release criteria (S1 Table) for the 118 

different process steps and the end product lot specifications were designed based on the EMA 119 

guideline (31), the European Pharmacopoeia (Ph.Eur.), and on published literature. NK cell 120 
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processing was performed at the Advanced Cell Therapy Centre grade D cleanrooms at the 121 

FRCBS.  122 

The open phases of the process, i.e., the preparation of media and buffers, were 123 

performed in a grade A isolator (Extract Technology Ltd) in grade D background according to 124 

GMP regulations. The isolator chamber was sterilized with vaporized H2O2, and particle 125 

monitoring was carried out during the whole operation time. For monitoring of aseptic 126 

conditions during the process, settle plates and glove prints were prepared on Tryptic Soy Agar 127 

(TSA) plates (Heipha) according to local standard operating procedures. 128 

 129 

Fig 1. The workflow for the activated NK cell product in the CliniMACS Prodigy®. Manufacturing 130 

steps, sampling points and quality control (QC) analysis scheme are shown. Open phases are performed 131 

in the grade A isolator. *In the set-up phase, the sterility analysis was performed on the leukapheresis 132 

sample directly. **Analyses designed to be performed for the products proceeding to clinical studies 133 

but not performed in this study. IPC: in-process-control; NTCB-D: Non-Target Cell Bag Depletion; 134 

NTCB: Non-Target Cell Bag; NC: Nucleocounter; RAB: Re-Application Bag; TCB: Target Cell Bag  135 

 136 

CE-marked reagents and consumables were used when available and all 137 

production materials were evaluated as suitable for manufacturing clinical products. The NK 138 

cell products were manufactured with the CliniMACS Prodigy® device using a modified, 139 

NKCT software program (at the time unpublished) and CliniMACS® TS310 and TS520 tubing 140 

sets (Miltenyi Biotec). Depletion and enrichment were carried out using CliniMACS® CD3 and 141 

CD56 reagents (Miltenyi Biotec), respectively, and published CliniMACS Prodigy® protocols. 142 

The NK cells were activated overnight (12-h) in the NK MACS®™ GMP Medium containing 143 

5 % GMP human AB serum (Zentrum für Klinische Transfusionsmedizin Tübingen, 144 

Germany), 140 IU/mL MACS®™ GMP recombinant human IL-15 and 500 IU/mL MACS®™ 145 

GMP recombinant human IL-2. Activation was performed in a Prodigy CentriCultTM chamber 146 
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(part of the TS520 tubing set) under gentle shaking. The instrument setup for the activation 147 

utilized the NKCT protocol intended for CAR transduction and subsequent cultivation of NK 148 

cells, but only the cultivation, wash and harvest steps were used. The cells were harvested in 149 

saline containing 0.5% human serum albumin (Albunorm 200 g/l). The collected and analyzed 150 

cell fractions are outlined in Fig. 1. Aliquots of the NK cell end product were cryopreserved 151 

for later analyses.  152 

   153 

Sterility testing 154 

After leukapheresis, 1 ml samples from the starting material, and at the end of the 155 

manufacturing process, 1 mL samples from the end products and 10 mL samples from the O/N 156 

culture media were analysed with BacT/ALERT VirtuO Microbial Detection System 157 

(BioMerieux) for aerobic and anaerobic bacterial growth.  158 

 159 

Cell count and viability 160 

Cell samples were analyzed for the cell number and viability either with 161 

Nucleocounter NC-100 (Chemometec) or with trypan blue and TC-20 (Bio-Rad) automated 162 

cell counter. The complete blood cell counts of the leukapheresis starting materials were 163 

analyzed with Sysmex pocH 100i™ Hematology Analyzer (Sysmex Corporation).  164 

From the GMP manufacturing process steps, samples were analyzed in duplicates 165 

and averaged. Log depletion was calculated as: log(# of T-cells/B-cells/monocytes in the start 166 

product / # of T-cells/B-cells/monocytes in the end product). The percentage cell recovery was 167 

calculated as: (total count of cells in target fraction / total count cells in original fraction) × 168 

100%. 169 

 170 
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Cell lines and primary NK cells 171 

The cell lines used in this study, i.e., the K562-Luc2 cell line (ATCC® 172 

CCL243LUC2) and the SH-SY5Y NBL cell line (CRL-2266™), were obtained from the 173 

American Type Culture Collection (ATCC). 174 

To confer luciferase expression, the SH-SY5Y cells were transduced with a 175 

lentiviral vector carrying the genes for enhanced green fluorescent protein (eGFP) and 176 

luciferase (Firefly luciferase, GenBank ID: M15077.1) separated by a P2A ribosomal skip 177 

sequence. The DNA was synthesized and cloned into the pLV-plasmid at Genewiz in Leipzig, 178 

Germany. Subsequently, 3rd generation lentiviral vectors carrying the luciferase-eGFP gene 179 

were produced at the National Virus Vector Laboratory (the A.I. Virtanen Institute for 180 

Molecular Sciences, the University of Eastern Finland). The efficiency of transduction was 181 

assessed using flow cytometry. 182 

The K562-Luc2 cell line was cultured in the IMDM medium, supplemented with 183 

10% fetal bovine serum (FBS) and 8 µg/mL of blasticidin (all Gibco brand, from Thermo 184 

Fisher Scientific). The SH-SY5Y cell line was cultured in the minimum essential medium 185 

Eagle (EMEM, Merck) and F-12 nutrient mix (Gibco) medium, supplemented with 10% FBS, 186 

2 mM L-glutamine, and 100 U/mL penicillin-streptomycin (Life Technologies). 187 

Primary NK cells were isolated from peripheral blood mononuclear cells 188 

(PBMCs) in the laboratory (non-GMP) in order to add replicates for the cytotoxicity studies 189 

against AML blasts. First, PBMCs were separated from buffy coats using Ficoll-Paque 190 

Premium (GE Healthcare) density gradient separation. Subsequently, NK cells were isolated 191 

from PBMCs using Miltenyi Biotec’s NK Cell Isolation Kit  following the manufacturer’s 192 

protocol. NK cells were cryopreserved for later use. 193 

The isolated NK cells were maintained in the NK MACS Basal medium 194 

supplemented with NK MACS supplement (Miltenyi Biotec), 5% human AB serum (Sigma), 195 
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500 IU/mL of IL-2 (Proleukin S, 1 x 106 IU/mL), and 140 IU/mL of IL-15 (Miltenyi Biotec). 196 

For experiments, NK cells were seeded at a density of 0.5 million cells per mL of media. 197 

 198 

Isolation and culture of AML blasts 199 

The AML blast cells were isolated from whole blood (WB) utilizing 200 

MACSprep™ Chimerism CD33 MicroBeads (Miltenyi Biotec), following the manufacturer’s 201 

protocol. Concisely, 10 mL of blood was passed through a 30 μm nylon mesh to create a single-202 

cell suspension. Subsequently, 500 μl of CD33 microbeads were added, and the mixture was 203 

incubated for 30 minutes at 4°C. Following incubation, CD33+ cells were isolated using the 204 

magnetic CD33 beads and eluted using an elution buffer obtaining the positively selected cell 205 

fraction.  206 

CD33+ AML blast cells were cultured in the RPMI-1640 medium (Gibco), 207 

supplemented with a cytokine cocktail consisting of IL-3, IL-6, TPO, G-CSF, and SCF at a 208 

concentration of 20 ng/mL each (all cytokines from Miltenyi Biotec), along with 5% human 209 

AB serum (Sigma) (32–35). The culture was maintained by refreshing the culture media every 210 

2-3 days. The cells were cryopreserved in a culture media containing 60% FBS and 10% 211 

DMSO (WAK Chemie medicals GmBH). The schematic diagram (Fig. 2) shows the overall 212 

procedure. 213 

 214 

Fig 2: Flowchart illustration of the AML blast isolation process. The AML blasts are isolated from 215 

the whole blood (WB) of an AML patient for the in vitro experiments. Created with Biorender.com. 216 

 217 

Flow cytometry 218 
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QC panels: The NK cells from different manufacturing steps were characterized 219 

with flow cytometry (DxFLEX, Beckman Coulter Inc.) as indicated in Fig 1. using three 220 

antibody panels (S2 and S3 Tables). Antibody staining (all from Miltenyi Biotec) was 221 

performed according to the manufacturer’s instructions. Briefly, for starting material and in-222 

process-control (IPC 1 and IPC 2) samples, 1x106 cells were stained with the panel of 223 

antibodies in 100 µl of staining buffer containing 0.5 % human serum albumin (HSA, 224 

Albunorm, Octapharma) and 2 mM EDTA (ThermoFisher Scientific) in PBS (Invitrogen). For 225 

the starting material and the end product, duplicate samples were analyzed. For the end product, 226 

2 x 106 cells were stained and 1 x 106 cells were collected for analysis. Moreover, CD3+ T cells 227 

were used as a positive control to set the gate when analyzing the NK cells from the end 228 

product. After runs 2 and 3, a T cell spike-in dilution series was performed to show the 229 

detection limit of the flow cytometry assay for residual T cells in the end product.  230 

Cells were stained with isotype control antibodies to serve as a baseline for 231 

comparison in the analysis. For CD69 expression analysis, a fluorescence minus one (FMO) 232 

control was performed. To correct for spectral overlap between different fluorochromes the 233 

MACS® Comp Bead Kit for anti-REA antibodies was used. Additionally, 7-AAD staining 234 

(Miltenyi Biotec) was used to identify and exclude dead cells from the analysis. 235 

Phenotype markers: The phenotype of NK cells was assessed immediately after 236 

the collection of the samples (before activation and after activation, i.e., after the CD56-237 

enrichment phase and from the end product, respectively) with flow cytometry (S2 and S3 238 

Tables). The staining protocol was essentially the same as for the QC panels, except that only 239 

0.1 x 106 cells were stained.  240 

AML blasts: The purity of the AML blast cell fraction after isolation was 241 

examined by analyzing the expression of CD33 antigen on the surface of the blast cells. The 242 

flowthrough samples from the isolation columns (cells negative for CD33) were included for 243 
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comparison. The studied surface markers are presented in the ‘AML blast phenotype’ panel 244 

(S2 Table). Blast cells (0.1-0.2 x 106) were washed and blocked with Human TruStain Fc 245 

blocker (BioLegend) for 15 minutes at 4 °C. The samples were then stained with the 246 

fluorophore-conjugated antibodies or isotype controls in a flow cytometry buffer for 30 247 

minutes at 4 °C in the dark and analyzed with the FACS symphony A1 (BD Biosciences). 248 

Analysis: Flow cytometry results were analyzed with the FlowJo® version 10.0.7 249 

or 10.8.0. software (FlowJo LLC, BD Biosciences). Results are shown as the percentage of 250 

positive cells from the parent population or as fluorescence intensity (for CD69). For the 251 

markers analyzed in duplicates, the averages were calculated. Examples of the gating strategies 252 

for leukapheresis starting material and activated NK cells (i.e., end product) QC analyses are 253 

shown in S1 and S2 Fig. Phenotype and activation markers were gated from the CD56-positive 254 

NK cells (gated from lymphocytes) based on their corresponding isotype controls. 255 

 256 

Cytotoxicity assay with cell lines and AML blasts 257 

To measure the cytotoxic efficacy of the NK cells, the cells were co-cultured with 258 

K562-luc2+, or with luciferase-transduced SH-SY5Y NBL target cells, at several effector-to-259 

target (E:T) ratios for 16-18 hours. The luciferin reagent (ONE-Glo luciferase reagent, 260 

Promega) was added and live target cells were quantified according to the manufacturer’s 261 

protocol with a Victor Nivo® multimode plate reader (Perkin Elmer). An equal number of the 262 

target cells alone was used to denote ‘hundred percent luminescence activity’.  263 

Following the thawing of the AML blast target cells, a recovery period of 2-3 264 

days was allowed in culture before proceeding with the cytotoxic assay. Both activated and 265 

non-activated NK cells produced in the lab and CliniMACS Prodigy® were employed as 266 

effectors. Effector cells were retrieved from liquid nitrogen storage. For non-activated 267 

conditions, NK cells were rested for 2 hours. For activated conditions, NK cells were incubated 268 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.12.593780doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.12.593780
http://creativecommons.org/licenses/by/4.0/


12 
 

with cytokines overnight. The effector and target cells at various E:T ratios were co-cultured 269 

for 4 hours, after which the live cells were quantified using the CellTiter-Glo reagent 270 

(Promega). The cell titer reagent, measuring ATP, an indicator of cellular metabolic activity, 271 

was analyzed using a CLARIOstar Plus microplate reader (BMG Labtech), software version 272 

5.20 R5. The resulting luminescent signal, directly proportional to ATP quantity, enables 273 

precise evaluation of cell viability. 274 

 275 

Degranulation assay 276 

For the detection of target cell-induced degranulation of the NK cells, the cells 277 

were co-cultured with K562 or SH-SY5Y (NBL) target cells at a ratio of  2:1 for 4 hours in the 278 

presence of the degranulation marker lysosomal-associated membrane protein 1 (LAMP-1, 279 

CD107a) antibody (PE Vio-615 conjugated, clone REA792, Miltenyi Biotech) and after 1 hour 280 

of co-incubation, the GolgiStop™ protein transport inhibitor (BD Biosciences) was added. 281 

Surface expression of CD107a on NK cells was measured by flow cytometry. NK cells alone 282 

were employed as the reference for assessing the expression activation markers.  283 

 284 

Results 285 

 286 

Automated, three-step manufacturing process generated 287 

consistent yields of pure NK cells 288 

We established a short, three-step production method for clinical production of 289 

activated NK cell product with the corresponding sampling scheme and quality control 290 
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analyses for each process step (Fig. 1). The preliminary tests and specifications for the product 291 

designed for a clinical phase I/II trial are shown in Table S1.   292 

Results of the flow cytometry analysis of the starting materials and corresponding 293 

CD3-depleted, CD56-enriched intermediate products as well as the end products are shown for 294 

three individual manufacturing processes P_NK1-3 (Fig. 3). 295 

Fig 3. The distribution of cell populations at different process stages. The frequencies of different 296 

cell populations within CD45+ cells were assessed by flow cytometry at four distinct process stages: 297 

starting material, CD3-depleted, CD56-enriched, and end product. Different symbols represent the cell 298 

types: T cells (CD3+CD56-), monocytes (CD14+), B cells (CD19+), NK cells (CD3-CD56+) and two 299 

subsets of NK cells characterized by the presence or absence of CD16. The black, purple and blue color 300 

represent the three individual Prodigy® processes (P_NK1-3). The bars represent means ±SD.   301 

  The number of different cell types and NK cell recovery percentage (yields)  from 302 

the different process steps are shown in detail in Table 1. As a summary of three different 303 

manufacturing runs, the processes were very consistent yielding similar recovery percentages 304 

for NK cells (16.4%; 16.1%; 16.3 %, respectively), although the leukapheresed starting 305 

materials had very different cell compositions, representing donors having a high, low or 306 

medium frequency of NK cells (22.2%, 4.5%, 12.8%, respectively). The total NK cell numbers 307 

obtained from the processes, thus, varied (2.57 x 108; 4.98 x 107; 1.33 x 108, respectively). The 308 

viability of the cells in the NK cell products were 95.4%, 88.6%, 93.5%, respectively.309 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.12.593780doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.12.593780
http://creativecommons.org/licenses/by/4.0/


14 
 

Table 1. Cell numbers and NK cell recovery percentages from different process steps. 310 

WBC: white blood cell 311 
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The purity of the final NK cell product was high (CD3-CD56+ cells average 312 

98.4%, SD 0.2) and the cells were mostly CD16-positive (average 90.3%; SD 1.6) (Fig. 3). T 313 

cells were depleted effectively (CD3+ cells average 0.01%; SD 0.007) (Fig. 3 and Table 1), as 314 

indicated also by log depletions (logP) of T cells (4.75; 6.05; 5.59, respectively) (Table 1). 315 

Thus, if dosing of NK cells would be 1 x 106 cells /kg of the patient, the final T cell numbers 316 

would be clearly < 1000 cells /kg of the patient body weight in all the products. In addition to 317 

CD3-CD56+ NK cells, there were some monocytes (average 0.73 %; SD 0.48) and B cells left 318 

in the end products (average 0.36%; SD 0.15 ) (Table 1).  319 

 320 

Microbiological quality of NK cell production 321 

No growth in either aerobic or anaerobic BactAlert cultivation was detected in 322 

any of the samples from the starting materials, final products or O/N culture media. No growth 323 

in any of the in-process control settle plates (9-12 plates/batch) from the isolator was detected, 324 

however, one single bacterial colony grew on one of the glove prints (8 plates/batch) from one 325 

process. The isolate was identified as Rhodococcus sp. The results from regular monthly 326 

environmental monitoring (active air samples and surface samples) of the isolator and the grade 327 

D background were all compliant with the requirements of ATMP-GMP. Likewise, non-viable 328 

particle monitoring and other monitoring of the clean room conditions revealed no other 329 

relevant non-conformances during the three NK cell production processes. 330 

 331 

 332 

Overnight activation protocol conserved a favorable NK 333 

phenotype 334 
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The NK cells were characterized extensively with flow cytometry for phenotype and activation 335 

markers both before and after the 12-h cytokine activation. The phenotype of the NK cells was 336 

not heavily affected by the 12-h cytokine activation based on the markers studied (Fig. 4), but 337 

donor-dependent changes in the expression levels of particularly CD57, NKG2A and NKG2D 338 

were observed. The expression of LAG3 and NKG2C was low in all samples. 339 

 340 

Fig 4. Phenotype marker expression in activated and non-activated NK cells. The expression of 341 

selected phenotype markers was assessed by flow cytometry from the CD56-positive lymphocytes. The 342 

black, purple and blue colors represent the three individual Prodigy® processes (P_NK1-3) and the circle 343 

and star symbols stand for the non-activated and 12-h cytokine-activated NK cells. The bars represent 344 

means ± SD. 345 

Early activation marker CD69 was upregulated in NK cells after the 12-h 346 

cytokine activation (Fig. 4). The expression of CD69 varied between donors before cytokine 347 

activation but showed upregulation in all processes after activation compared to the starting 348 

level. The expression of almost all activation markers was donor-dependent, as well as their 349 

reaction to cytokine activation. Donor NK2 had a higher expression of the activation markers 350 

in general, than donors NK1 or NK3. 351 

Based on the activation marker expression of donor NK1, CD69 was chosen as a 352 

marker for successful cytokine activation and included in the QC panel from process 2 353 

onwards. As CD69 was expressed also in the unactivated NK cells (from the CD56 enrichment 354 

phase), the increase in the fluorescence intensity was a more suitable indicator the activation 355 

of the NK cells (Fig. 5). 356 

 357 

Fig 5. CD69 expression in non-activated and activated NK Cells. NK cells were produced in the 358 

CliniMACS Prodigy® and the expression was studied with flow cytometry from CD56+ NK cells, as 359 
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part of the quality control panel. The fluorescence histograms for activated NK cells (end product), 360 

corresponding non-activated NK cells (after CD56-enrichment), and FMO control are shown.  361 

 362 

Successful isolation of AML blasts 363 

Magnetic CD33 microbeads were chosen to facilitate the AML blast isolation. 364 

CD33 expression levels pre- and post-isolation were assessed with flow cytometry. The purity 365 

of CD33 was over 80% in both isolations (Fig. 6). Additionally, we analyzed the expression of 366 

other membrane molecular markers, including CD34, CD15, CD14, CD45, and CD45RA 367 

characteristic for AML blasts (Fig. 6). Intriguingly, differences in CD14 and CD45RA 368 

expression were observed between patients 1 and 2, potentially reflecting variation in the 369 

disease phenotype (36). 370 

 371 

Fig 6. Expression of cell surface markers in AML blasts. The expression of cell surface markers was 372 

analysed with flow cytometry from cells collected from whole blood (WB) and after CD33 bead 373 

isolation from acute myeloid leukemia (AML) patient samples. The orange and blue colors represent 374 

the patients and the symbol expresses the sample type.   375 

 376 

Patient selection for isolation and subsequent in vitro assays relied on a peripheral 377 

blood white blood cell count (WBC) threshold of ≤ 5x109 cells per liter. This threshold was 378 

established after encountering difficulties in isolating CD33+ AML blasts, particularly in cases 379 

where the patient's WBC count was less than 4 x 109 cells per liter. Cell viability and growth 380 

were closely monitored every 2-3 days, although specific data are not presented here. 381 

Cryopreservation was performed with an expansion medium containing 60% fetal bovine 382 

serum (FBS) and 10% dimethyl sulfoxide (DMSO). This method yielded an AML blast 383 

viability of around 80%.   384 
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 385 

NK cells showed high cytotoxicity against leukemia and 386 

neuroblastoma cell lines as well as primary AML blasts 387 

The functional potential of NK cells from the manufacturing processes P_NK1-388 

3 was analyzed using a luminescence-based cytotoxicity assay with the non-HLA-expressing 389 

universal K562 and the NBL-derived SH-SY5Y target cell lines. Intriguingly, even a short 12-390 

h activation led to a higher NK cell killing efficacy against the SH-SY5Y and K562 target cells 391 

in vitro. Functionality was preserved even after a freeze/thaw cycle of the cells, although not 392 

on as high a level as that of fresh cells (Fig 7A,B).  393 

Next, the degranulation of the 12-h cytokine-activated NK cells was measured 394 

from co-cultures with K562 and with SH-SY5Y target cells. We observed a higher expression 395 

of CD107a in NK cells co-cultured with K562 cells for 4 hours than those co-cultured with 396 

neuroblastoma cells (Fig 7D). 397 

Subsequently, the pivotal question was addressed of whether cytokine-activated 398 

NK cells possess the capability to target and eliminate blast cells derived from AML patients. 399 

To investigate this, AML blast cells were employed as the target, with non-activated NK cells 400 

obtained from anonymous healthy donors serving as the negative control in this experimental 401 

setup. Our findings revealed that the NK cells, whether activated in CliniMACS Prodigy® or 402 

in a non-GMP laboratory setting following a similar protocol, exhibited enhanced efficacy in 403 

eliminating AML blasts of two distinct patients when compared to non-activated NK cells (Fig 404 

7C).  405 

 406 

Fig 7. Functional assessment of NK cells post-production and activation. The luminescence-based 407 

assays compare the cytotoxic response of non-activated NK cells (‘non-act’) and 12-h cytokine 408 
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activated NK cells (‘act') against (A) K562 and (B) SH-SY5Y NBL targets at different effector to target 409 

ratios. Additionally, the P_NK3_act sample underwent post-activation characterization after a 410 

freeze/thaw cycle, denoted by an asterisk*. The P_NK1_act* sample was exclusively assessed post-411 

freeze/thaw, with no corresponding non-activated control for comparison. The reported percentage of 412 

cell lysis represents the average of five replicates, with standard deviation (SD) indicated by error bars. 413 

C) The cytotoxicity of cytokine-activated NK cells targeting AML blast cells from patient samples. D) 414 

The degranulation response of NK cells following a 4-hour co-culture with K562 and SH-SY5Y cell 415 

lines, compared to NK cells cultured in the media alone (n=2). P_NK: NK cells were produced in the 416 

GMP CliniMACS Prodigy® conditions. R_NK and non-activated NK cells were produced in a non-417 

GMP condition. AML blast_P denotes AML patient.  418 

 419 

Discussion 420 

The objective of this study was to introduce a locally produced NK cell 421 

immunotherapy option tailored for Finnish cancer patients. Initially focusing on adult high-risk 422 

AML, we sought to extend this therapeutic approach to later include also pediatric 423 

neuroblastoma patients—addressing individuals with notably unfavorable prognoses. Utilizing 424 

the automated and well-established CliniMACS Prodigy® platform, we implemented a short 425 

cytokine stimulation (12-h) strategy for the NK cell activation, minimizing manual handling 426 

and mitigating potential sterility risks associated with open phases. Central to our approach 427 

was preserving the NK cells minimally manipulated prior to their potential administration to 428 

the patient, i.e., avoiding transduction procedures, freeze-thaw cycles, or long culturing 429 

periods. 430 

The manufacturing process generating activated NK cells demonstrated 431 

substantial consistency and reproducibility across the three independent runs. Despite 432 

variations in the leukapheresis starting materials the processes consistently yielded similar 433 
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recoveries of NK cells (16.1 - 16.4%). However, the three-step manufacturing protocol 434 

compromises the NK cell yield, which is in line with previous findings by others (16,37). The 435 

CliniMACS Prodigy® NKCT process is optimized for the transduction and 14-day expansion 436 

of NK cells (38,39), and not for a short period of cytokine activation only, which may also 437 

lower the cell yield. The optimal dose of NK cells remains unestablished and those in published 438 

clinical trials have ranged from 106 to 108 cells/kg of body weight. Some studies have shown 439 

a trend for a better outcome in patients receiving higher numbers of NK cells (8,16), which has 440 

recently nudged the consensus towards higher NK cell doses. In a large clinical study by 441 

Bachanova and coworkers (15), the total NK cell dose did not correlate with the clinical 442 

response, nor did it in a smaller study by Romee et al. (18). However, in clinical trials studying 443 

NK cells, different manufacturing methods and distinct treatment regimens have been applied, 444 

rendering dosing correlations complicated. It is important to note that the optimal cell dose 445 

most likely depends on various factors such as the type and stage of cancer, source and quality 446 

of NK cells, conditioning regimen, cytokine support, and combination with other treatments. 447 

The possibility for an optimal, alloreactive donor selection for more efficacious NK cells might 448 

mitigate the need for a high number of cells (40,41).  449 

The purity of the NK cell product was consistently high with CD3-CD56+ cells 450 

averaging 98.4%. Effective depletion of T cells minimizes the potential for untoward immune 451 

responses (6). The purity of the final product was considered essential, as we were also aiming 452 

at treating pediatric neuroblastoma and wanting to eliminate T cell or B cell–related 453 

complications. Depletion of T cells was indeed very effective in all the production runs, 454 

average residual T cell percentage being 0.01%. With dosing of 1 x 106 cells/kg patient weight 455 

the average residual T cell number would be 100 cells/kg, which based on published clinical 456 

trials can be considered very low. 457 
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The observed expression patterns of phenotype markers, including CD16, CD57, 458 

NKG2A, NKG2D, LAG3, and NKG2C, suggest a stable phenotype of the NK cells throughout 459 

the manufacturing process (42). Donor-dependent variation in the activation marker expression 460 

was evident, already before cytokine activation. There was also variation in the CD69 461 

expression, nevertheless, CD69 was systematically upregulated already after 12-h cytokine 462 

activation. Thus, CD69 was included as a surrogate marker of successful activation in the QC 463 

panel of the final product, as due to time restraints, potency assay cannot be conducted for a 464 

freshly administered product before release for infusion. The measurement of NK activity 465 

through CD69 upregulation has been shown to correlate with NK cytotoxicity and 466 

degranulation (43,44).  467 

Following a short 12-hour cytokine activation, the cytotoxicity assays conducted 468 

on the NK cells produced in the three CliniMACS Prodigy® runs revealed a notable 469 

enhancement in the killing efficacy against the NBL-derived SH-SY5Y and K562 target cells. 470 

The functionality of these activated NK cells was retained over a freeze/thaw cycle, albeit not 471 

at the same level as observed in fresh cells (Fig. 7A, B). IL-2 and IL-15 are known for their 472 

vital role in NK cell biology and are known to promote the maturation and survival of NK cells. 473 

Specifically, the in vitro exposure of NK cells to these cytokines, either alone or in various 474 

combinations, has been shown to enhance their cytotoxic activity against various target cells 475 

(37,45–50), which is in line with our results using a short cytokine activation. 476 

The expression of CD107a in NK cells has been linked to NK cell degranulation 477 

and cytotoxic activity, particularly in response to IL-2 stimulation. The degranulation response 478 

is stable over time and does not affect the long-term viability or killing potential of NK cells 479 

(51). The higher expression of CD107a in NK cells during interactions with K562 cells 480 

compared to the neuroblastoma-derived SH-SY5Y cells in a 4-hour co-culture suggests a 481 

differential degranulation response based on the target cell type. As our NK cells readily killed 482 
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the SH-SY5Y target cells at the later time point with the longer (16-18h) co-incubation, the 483 

lower level of degranulation at 4 hours may reflect diverse reaction kinetics in cell recognition 484 

and granule release, or imply NK cells relying on distinct killing mechanisms when 485 

encountering different target cell types (52). 486 

A central aspect of the characterization methodology in this study was the 487 

isolation of AML blasts from the whole blood samples using CD33 microbeads, as well as 488 

subsequent cryopreservation and successful resuscitation of the isolated blasts. The use of 489 

CD33 microbeads for AML blast isolation is substantiated by the prevalent expression of CD33 490 

in AML blast cells and its distinct nature as an AML antigen (53). The consistent CD33 purity 491 

levels obtained (over 80%) emphasize the efficacy of our isolation method (Fig. 6). This 492 

method provides an employable opportunity to investigate the killing efficacy of an NK cell 493 

product in a clinically relevant context using the actual donor-patient pairs from the clinical 494 

phase. CD33 bead selection from a whole blood sample offers convenience, decreases 495 

processing time and resource requirements as well as diminishes unwanted interference from 496 

other cell types, compared to previously used AML blast collection methods (18,54), e.g. blast 497 

cell aspiration from the bone marrow of AML patients, or sorting of blast cells from Ficoll-498 

isolated PBMCs.  499 

Investigation of cytokine-activated NK cells to target isolated AML blasts from 500 

patients demonstrated markedly enhanced efficacy compared to non-activated NK cells, 501 

supporting their therapeutic utility in AML treatment (Fig. 7C). Although statistical 502 

significance could not be established due to a limited number of replicates, the consistent trend 503 

across multiple runs supports the observed effect.  504 

This study also served as an initial characterization of the aseptic process of NK 505 

cell production. The main part of the production process was completed in the CliniMACS 506 

Prodigy® equipment, which is a closed system optimized for preserving aseptic conditions. The 507 
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short open phases were performed in an isolator, which, according to process controls, 508 

completely retained class A requirements except in one process, where we detected a single 509 

Rhodococcus sp. colony in one glove print sample. Rhodococcus species are common 510 

environmental microbes, and as corrective and preventive actions, we improved our 511 

disinfection procedures during the uptake of production material into the isolator. Results from 512 

BactAlert cultivation showed that after each process, microbiological quality of the final 513 

product and the O/N culture media were according to specifications, as no growth of bacteria 514 

was detected. The automated growth-based BactAlert method (Ph Eur 2.6.27) is highly 515 

sensitive in microbial detection, but requires a 7 day-incubation period, and thus, release of the 516 

NK cell product would need to be done before obtaining the final results from sterility testing. 517 

It is therefore pivotal to optimize and control the aseptic process at all levels. As a next step, 518 

complete validation of clinical-grade production would require aseptic process simulation 519 

(APS), a routine procedure in ATMP validation. Readiness for clinical-grade production would 520 

also need the establishment of endotoxin and mycoplasma testing of the final product. 521 

Limitations in the study include the low number of replicates. Only three product 522 

manufacturing runs in GMP conditions were conducted. The results from the quality control 523 

analyses were, however, consistent, including the composition, purity and cell yield. Moreover, 524 

to mitigate the lack of GMP NK cell samples, non-GMP-produced NK cells from buffy coats 525 

were additionally studied to address the effect of cytokine activation on the efficacy of NK 526 

cells against AML blasts. Our emphasis was on streamlined manufacturing process and purity. 527 

Due to low NK yield achieved with our protocol, modifications to the manufacturing are 528 

required to achieve sufficient cell numbers for adult patients. For future applications, one 529 

option to increase the cell yield could be NK cell expansion, doable in the closed CliniMACS 530 

Prodigy® system, with the production protocol we have used here. It is good to acknowledge, 531 

however, that there are indications that long expansion, either with cell lines or cytokines, 532 
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might make NK cells quickly dysfunctional of exhausted in vivo, despite being highly active 533 

in vitro (55). To produce optimal NK cells for patients, further understanding on NK cell 534 

physiology and culture conditions is thus required. 535 

 536 

Conclusion 537 

In this study, we established a GMP protocol for the local manufacturing of 538 

functionally efficient NK cells utilizing the CliniMACS Prodigy® platform. Moreover, a 539 

comprehensive description of the QC strategy, including the analytical tests, sampling points, 540 

and considerations for product batch specifications in early clinical development are described. 541 

Our detailed characterization, including the established CD33+ AML blast in vitro method, 542 

show that the NK cells obtained were activated and efficacious in vitro, and their phenotype 543 

remained substantially unaltered. Due to the fairly low total cell number in the final product, 544 

effective doses could only be achieved for pediatric patients and further protocol improvements 545 

would be needed. 546 
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