
Temporal prediction captures key differences

between spiking excitatory and inhibitory V1

neurons

Luke Taylor1*, Friedemann Zenke2, 3, Andrew J. King1,
Nicol S. Harper1*

1Department of Physiology, Anatomy, and Genetics, University of
Oxford, Sherrington Rd, Oxford, OX1 3PT, UK.

2Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse
66, Basel, 4058, Switzerland.

3Faculty of Science, University of Basel, Peterspl. 1, Basel, 4001,
Switzerland.

*Corresponding author(s). E-mail(s): luke.taylor@hertford.ox.ac.uk;
nicol.harper@dpag.ox.ac.uk;

Contributing authors: friedemann.zenke@fmi.ch;
andrew.king@dpag.ox.ac.uk;

Abstract

Neurons in primary visual cortex (V1) respond to natural scenes with a sparse
and irregular spike code that is carefully balanced by an interplay between
excitatory and inhibitory neurons. These neuron classes differ in their spike
statistics, tuning preferences, connectivity statistics and temporal dynamics. To
date, no single computational principle has been able to account for these prop-
erties. We developed a recurrently connected spiking network of excitatory and
inhibitory units trained for efficient temporal prediction of natural movie clips.
We found that the model exhibited simple and complex cell-like tuning, V1-like
spike statistics, and, notably, also captured key differences between excitatory
and inhibitory V1 neurons. This suggests that these properties collectively serve
to facilitate efficient prediction of the sensory future.
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Introduction

Our visual system allows us to navigate the world and interpret the most unlikely
of scenes, like a toy brachiosaurus sitting atop a brick wall. The primary visual cor-
tex (V1) plays a central role in processing diverse and complex stimuli, with neurons
tuned to the orientation and motion of moving edges and shapes [1–3]. These features
are communicated by a sparse and irregular spike code [4] that is carefully balanced
by interactions between the cortex’s excitatory and inhibitory neural subpopulations
[5–8]. There is growing evidence for the idea that visual perception arises from the
brain engaging in predictive processing [9]. In particular, recent research suggests
that neurons in sensory brain areas, such as V1, may have evolved to represent fea-
tures in natural stimuli that are predictive of the immediate sensory future [10, 11].
Such representations are evolutionary advantageous, since they allow inferences about
the underlying causes of sensory signals, which may help to guide future action, and
eliminate unnecessary sensory information [12].

Recent computational studies have demonstrated that feedforward artificial neural
networks (ANNs) trained for temporal prediction using natural movies develop units
with receptive field properties that resemble those of V1 neurons [10, 11]. Specifically,
these units replicate the spatial tuning of V1 neurons and notably also their temporal
dynamics - a property not readily captured by other models [10]. However, while
feedforward ANNs loosely resemble V1’s biological circuit [13], they omit several key
features, including the recurrent connectivity of the cortex; they do not conform to
Dale’s law [14], where neurons are either excitatory or inhibitory; and they omit the
brain’s key physiological unit of computation: the spike. It therefore remains unclear
to what extent - if at all - a biologically detailed model of V1 optimized for temporal
prediction would capture the physiological properties of its neurons.

To bridge this shortcoming, we developed a spiking model of recurrently-connected
excitatory and inhibitory units trained on natural movies under metabolic-like con-
straints to predict the sensory future from recent spike activity. We found the units
in our model to exhibit simple and complex cell-like tuning. Extending beyond prior
results, the spike statistics of our model resembled those of V1 neural responses to nat-
ural stimuli. Notably, the excitatory and inhibitory units in our model captured the
differences in spike statistics, tuning preferences, connectivity statistics and temporal
dynamics between excitatory and inhibitory V1 neurons.

Results

The spiking V1 model

We implemented our model as a population of recurrently-connected spiking units
and adopted the leaky integrate-and-fire (LIF) model to mimic real neural spiking
dynamics [15] (Figure 1A). Similar to the ratio of excitatory-to-inhibitory neurons in
V1 [5–8], we set 85% of these units as excitatory and the remaining 15% as inhibitory.
The model’s input consists of a sequence of 20 × 20px patches obtained from retina-
filtered natural movies recorded at 120 frames-per-second. At each time step, the model
linearly translates a 126ms (15 frames) span of stimulus history into a distinct input
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Fig. 1: The spiking temporal prediction model with recurrently connected excitatory
and inhibitory units. A. Schematic of our model, which at every time step linearly
maps a 126ms span of natural movie frame patches of the past into a distinct input
current value to every spiking unit. A 16ms span of population output spikes is linearly
mapped to create a prediction of the spatial movie patch 42ms into the future. Red
units are excitatory and blue units are inhibitory. B. An example movie frame of
a toy dinosaur sitting on a brick wall, which was not included in the training data
(top), with the model’s reconstruction using multiple patch predictions across different
spatial locations (bottom).

current to each unit. The 126ms duration covers the potential integration span and
spread of latencies of the incoming thalamocortical input [16]. The model was trained
to linearly predict the spatial movie patch 42ms (5 frames) into the future using a
16ms (2 frames) span of past population spike activity (Figure 1B). We chose the 42ms
prediction target to be of similar duration to the minimum latency of visual input to
V1 [17–20] and of similar duration to the response latency of the fastest visuomotor
actions [21].

To emulate the metabolic energy constraints of the brain, we also trained our
model to reduce a metabolic-like cost whilst performing the frame prediction (see
Methods). This approximated the activity-induced cost at the model weights, simi-
larly to the energy expenditure of neural synapses. We made an assumption about the
brain in our metabolic-like cost function, namely that inhibitory V1 neurons consume
less energy than their excitatory counterparts per spike. We found this assumption to
be important for obtaining all of the V1-like tuning differences between the excita-
tory and inhibitory model units. Lastly, training was performed using a variant of the
backpropogation algorithm [22], known as surrogate gradient learning [23], which per-
mits gradient descent in non-differentiable spiking networks. This optimization process
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determined the model’s connectivity and the membrane time constant of each spiking
unit. We remain agnostic about the biological plausibility of this training method, and
how cortex might optimize for the objective of temporal prediction.

Emergence of a V1-like spike code
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Fig. 2: Spiking statistics of the model resemble those of V1. A. Input movie clip
(left) and resulting model spike raster (right). Red and blue dots correspond to the
excitatory and inhibitory units, respectively. B. Firing rate distribution of the trained
and untrained model units and monkey V1 neurons. C. Difference in the model’s firing
rates between the inhibitory (In) and excitatory (Ex) units in the trained (left) and
untrained model (right). Bars plot the mean and standard error over units and input
clips, with statistical significance assessed using the Mann-Whitney U test (***p <
0.001). D. Coefficient of variation of the interspike intervals CV(ISI) distribution of
the trained and untrained model units and monkey V1 neurons. E. Cross-correlogram
of the trained and untrained model units and monkey V1 neurons. Monkey V1 data
in all plots were obtained from [4] in response to monkey’s watching segments of the
Star Wars movies.

We examined the model’s spike activity in response to retina-filtered clips taken
from the Star Wars movies that were not used for training, and found a number of
V1-like response characteristics to emerge. We observed the model’s spike responses to
be sparse and diverse, with variability in the number and timing of spikes across units
(Figure 2A). Further quantifying the spike responses revealed a firing rate distribution
with an exponential fall-off (Figure 2B), as has similarly been reported in monkey
[4] and cat V1 [24]. The average model’s firing rate was also comparable to mean
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V1 firing rates observed across different animal species in response to natural stimuli
(model 6.57 ± 14.68Hz; anesthetized monkey V1: 5.06 ± 0.75Hz [4]; anesthetized cat
V1: 3.96± 3.61Hz [24] and awake cat V1:8.9± 7Hz [25]). Additionally, the inhibitory
model units exhibited a higher mean firing rate compared to the excitatory model
units (Figure 2C). Such differences in firing rates between excitatory and inhibitory
neurons to visual stimulation have also been reported in mouse V1 [26].

The model’s spike responses were highly variable, exhibiting a low degree of cor-
relation between the units. We examined the variability in the spike responses using
the coefficient of variation of the interspike intervals CV(ISI) (Figure 2D), which is
defined as the ratio of the ISI standard deviation to the ISI mean. A spike train with
a CV(ISI) below unity is more regular than a spike train with a CV(ISI) above unity.
We observed a large range of variability in the spike trains, with sampled spike trains
exhibiting more irregular (65% with CV(ISI)≥ 1) than regular (35% with CV(ISI)< 1)
firing patterns, reminiscent of the spike variability observed in cat [27] and monkey
V1 [4, 28].

We quantified the correlation between the different unit spike trains by calculating
the spike train cross-correlogram, which measures the correlation between randomly-
sampled unit pairs at different time lags (Figure 2E). We found the model units to
have a low peak correlation (CC = 0.07 at lag 0s), with the correlation symmetrically
decaying for increasing and decreasing lag. Similar correlation statistics have also
been reported in anesthetized monkey [4] and in awake mouse V1 [29]. Lastly, the
resemblance of the model’s spiking statistics to the biology appeared to be a direct
consequence of optimizing the model for efficient temporal prediction, as evident by
the untrained model’s firing rates (Figure 2B and C) and spike correlations (Figure
2E) being less similar to V1 than the trained model. However, we did notice a slight
divergence in the trained model’s spike variability compared to V1 (Figure 2D).

Emergence of simple and complex cell-like tuning

We obtained model unit receptive fields (RFs) using a spike-triggered average to spa-
tiotemporal white-noise input clips, and observed a considerable number of similarities
between the model unit RFs and the RFs of V1 neurons across different animal species.
Qualitatively, we found many units that resemble simple cells [1, 3], with stereotyped
RFs consisting of varying number of excitatory and inhibitory subfields tuned to a
particular orientation and spatial frequency [32, 33] (Figure 3A). The temporal struc-
ture of these RFs also resemble those of V1 neurons, as evident in their decay into the
past (Figure 3B); their polarity profile, with RF polarity either changing (Figure 3B
units 1, 4 and 5) or remaining fixed over time (Figure 3B units 2 and 3) [35–37]; and
their spatiotemporal structure, with RFs either being space-time separable (Figure 3B
units 1, 2 and 3) or space-time inseparable (Figure 3B units 4 and 5) [35].

We fit each model unit’s spatial RF at the time with the highest power using a
Gabor function to further quantify its shape, orientation and spatial frequency. The
distribution over RF shape characteristics, as defined by the width nx and height ny

of the RF relative to its spatial frequency, matches the neural data (Figure 3C). We
found the RF shapes to extend along a 1D-curve, from blob-like RFs at the origin
(Figure 3A first row) to elongated bars with multiple subfields that are located further
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Fig. 3: Spatial and temporal receptive field properties of the model resemble V1.
A. Example spatial RFs with varying number of subfields of macaque V1 neurons
[30], mouse V1 neurons [26] and model units. B. 1− 2: example space-time separable
spatiotemporal RFs of mouse V1 neurons [31]. 3 − 5: example spatiotemporal RFs
of model units (3: space-time separable and 4 − 5: space-time inseparable). Right
column: corresponding spatiotemporal RFs obtained by summing along the RFs’ axis
of orientation (see Methods). C. Distribution of spatial RF shapes from V1 neurons
in cats [32], mice [26], monkeys [33] and model units. Each model unit’s spatial RF
was taken at its time point of highest power. The x-axis (nx) and y-axis (ny) are a
measure proportional to the number of RF subfields and their respective lengths [33].
D. Temporal RF power profile of model units and V1 cat neurons [34], quantified as
the sum of squared weights over space and averaged across the population over ∼ 40ms
time bins. E. Scatter plot of the spatial RF power (largest mean squared values of a
spatial RF in time) and membrane time constant of the model units. Dark line is the
fitted negative exponential curve (R2 = 0.85).

away from the origin (Figure 3A last row). Our model captures a large portion of the
blob-like RFs, which constitute a substantial part of the neural data (with nx and
ny <∼ 0.25). It also captures units with multiple subfields (nx >∼ 0.25), although
the subfields are typically less elongated than in the biology. We found the model
RFs to be most similar to the mouse V1 RFs, as measured by the Euclidean distance
between the model RF-shape centroid and the different animal RF-shape centroids
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Fig. 4: Units resembling simple and complex cells are found in the model. A. Example
simple cell-like unit, including its RF (I); optimal grating (II); response to its optimal
grating (III); and the average response of the unit over time plotted in relation to
grating orientation (in degrees) for gratings presented at the unit’s preferred spatial
and temporal frequency (IV). The optimal grating is defined as the full-field moving
grating with an orientation and spatial and temporal frequency that give the highest
average spike rate. B. Example complex cell-like unit.

(cat [32] centroid (0.26, 0.46) with distance 0.31; mouse [26] centroid (0.25, 0.24) with
distance 0.09; monkey [33] centroid (0.33, 0.43) with distance 0.29; model centroid
(0.26, 0.15)). The temporal profile across all model RFs also exhibited clear similarities
to the neural data, as characterized by a decaying power profile (mean squared RF
values over space, units and ∼ 40ms time bins) (Figure 3D).

We made an additional observation in our model, for which we found no prior
reports in V1, by identifying a negative exponential relationship between the maxi-
mum spatial RF power and the membrane time constant of a unit (Figure 3E). The
membrane time constant determines the operational timescale of a neuron, where
neurons with smaller membrane time constants operate on shorter timescales than
neurons with larger membrane time constants. Thus, translating our finding to the
biology suggests that V1 neurons with a greater sensitivity to visual input operate on
shorter timescales than neurons that exhibit a weaker stimulus sensitivity.

In addition to simple cells, V1 is also distinguished by another significant category
of cells known as complex cells [2]. Like simple cells, complex cells are tuned for oriented
edges and gratings. Unlike simple cells, however, complex cells are spatially invariant
and respond to an oriented pattern regardless of its precise location in the neuron’s
RF. Using full-field drifting sinusoidal gratings, we qualitatively identified units with
response characteristics reminiscent of both simple and complex cells. We observed
unit responses to oscillate over time to the movement of their optimal grating. Like
simple cells, some model units displayed a high phase dependence with pronounced
variations in their response to grating movement [38] (Figure 4A). In contrast, other
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units exhibited a larger mean response over time and were less influenced by the
grating phase, consistent with the description of complex cells [39] (Figure 4B).
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Fig. 5: Tuning measures of the model bear resemblance to those in V1.A. Distribution
of modulation ratios F1/F0. B. Distribution of orientation selectivity. C. Distribution
of direction selectivity. A-C showing tuning properties of mouse V1 neurons [26]
(top) and model units (bottom) to drifting gratings. D. Distribution of functional
response categories for excitatory and inhibitory neurons in mouse V1 [26] (left) and
for excitatory and inhibitory model units (right).

We further quantified the distribution of simple and complex cell-like units in
our model by calculating their modulation ratio F1/F0. This ratio is defined as the
quotient between the amplitude of the first harmonic (F1) and the mean value (F0) of
a unit’s response to its optimal grating, with a value below one classifying a response
as complex cell-like [40, 41]. The distribution of modulation ratios in our model is
bimodal (Figure 5A), which has similarly been reported in V1 neurons of monkeys [42]
and mice [26, 43]. Intriguingly, we found the inhibitory units (median F1/F0 = 0.20)
to exhibit more complex cell-like responses compared to the excitatory units (median
F1/F0 = 1.62) (p = 3.59 × 10−37; Mann-Whitney U test), a difference also found
between inhibitory and excitatory V1 neurons in mice [26].
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The model units exhibited similar orientation and direction preferences to those
observed in V1 neurons in mice, as measured by the orientation selectivity index (OSI)
and direction selectivity index (DSI), respectively [26, 44] (see Methods). Both mea-
sures range between zero and one, with a value of one corresponding to maximum
selectivity. We found most units to have a strong preference for particular orienta-
tions (OSI > 0.5: 68%), with many units exhibiting near complete selectivity, as has
similarly been reported in mouse V1 neurons (OSI > 0.5: 74%) [26] (Figure 5B).
Capturing another difference between inhibitory and excitatory mouse V1 neurons
[26], we found the inhibitory units (median OSI = 0.03) to be more broadly tuned
than the excitatory units (median OSI = 1.00) (p = 2.14× 10−43; Mann-Whitney U
test). Additionally, we found the model units to have limited selectively for direction
(DSI < 0.5: 97%), as has similarly been reported for mouse V1 neurons (DSI < 0.5:
77%) [26] (Figure 5C).

We classified units into different functional response categories, classifying a unit as
linear (F1/F0 ≥ 1) or non-linear (F1/F0 < 1), and as orientation selective (OSI ≥ 0.5)
or non-orientation selective (OSI < 0.5) using the modulation ratio and OSI, respec-
tively. The largest functional response categories in the model for both the inhibitory
and excitatory units were the same as the largest functional response categories for
inhibitory and excitatory neurons in mouse V1 [26] (Figure 5D). Specifically, most
inhibitory model units are non-linear and non-orientation selective (91%), as are most
inhibitory neurons in mouse V1 (60%), while most excitatory model units are linear
and orientation selective (66%), as are most excitatory neurons in mouse V1 (40%).

Mirroring V1-cell physiology: membrane dynamics,
connectivity and EI balance

V1 is characterized by distinct physiological differences between inhibitory and exci-
tatory neurons, such as the timescales they operate at [45] and their connectivity
statistics [8]. We found our model units to mirror these key differences between
the inhibitory and excitatory neurons. Inhibitory neurons tend to operate at shorter
timescales than excitatory neurons, as captured by differences in their membrane time
constants. Mouse V1 inhibitory neurons exhibit a median membrane time constant of
9.76ms, whilst excitatory mouse V1 neurons have a notably longer median membrane
time constant of 21.10ms [45] (p = 3.43 × 10−47; Mann-Whitney U test). Similar to
mouse V1, we found the inhibitory and excitatory model units to operate at different
timescales, with the inhibitory and excitatory units having a median membrane time
constant of 12.64ms and 22.33ms, respectively (p = 1.46 × 10−30; Mann–Whitney U
test) (Figure 6A).

Excitatory V1 neurons have been shown to synapse more strongly onto inhibitory
V1 neurons than other excitatory neurons in mice [8] and rats [46], as measured by their
excitatory postsynaptic potential (EPSP) amplitude. We made a similar observation
in our model, with the excitatory units connecting more strongly with the inhibitory
units than with other excitatory units, as measured by their absolute connection weight
(p = 0; Mann-Whitney U test) (Figure 6B).

A fundamental aspect in neurophysiology is the concept of cortical neurons receiv-
ing a balance of excitatory and inhibitory (EI) synaptic currents, as reported in
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Fig. 6: Inhibitory and excitatory model units operate at different temporal scales, with
distinct connectivity statistics and balanced excitatory and inhibitory currents, like in
V1. A. Membrane time constant distribution of inhibitory and excitatory neurons in
mouse V1 (layer 4) [45] (top), and of inhibitory and excitatory model units (bottom).
Membrane time constants of 122 excitatory model units with a value above 80ms
are not shown. B. Top: EPSP amplitudes between excitatory neurons (Ex→Ex) and
from excitatory neurons to inhibitory neurons (Ex→In) in mouse V1 (black lines plot
median amplitudes) [8]. Bottom: model weight values between excitatory units and
from excitatory to inhibitory units. Bars plot the median and bootstrapped standard
error, with statistical significance assessed using the Mann-Whitney U test (***p <
0.001). C. Net-excitatory (top) and net-inhibitory (bottom) currents of an example
model unit whilst inputting natural movie clips into the model. D. Distribution of
global EI balance in the model. E. Distribution of precise EI balance in the model.
Insets in D. and E. showcase the EI balances in the untrained model.

somatosensory cortex [47], primary auditory cortex [48] and V1 [49–51]. This equilib-
rium is crucial for ensuring stability in neural activity [52] and proper cortical function
[53]. We qualitatively observed a balance between the excitatory and inhibitory cur-
rents in the model units to held-out natural input movie clips (Figure 6C). EI balance
can be quantified as global when the average excitatory and inhibitory currents are
equal over time, and as precise, when the excitatory and inhibitory currents are cou-
pled in time, in which each excitatory input to a neuron arrives simultaneously with
an inhibitory counterpart [54]. We found the model units to exhibit a median global
EI ratio of 0.67 over the held-out natural input movie clips (Figure 6D), where an EI
ratio below unity has similarly been reported in mouse V1 [51, 55, 56]. Furthermore,
we found the model units to exhibit a precise EI balance, as indicated by a notable
correlation between the net-excitatory and net-inhibitory currents over clips and time
across the model units (median: 0.73) (Figure 6E). Lastly, we found the excitatory
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and inhibitory currents in the model became more balanced during training for effi-
cient temporal prediction, as evident in the untrained model having a notably larger
median EI ratio of 4.04 (Figure 6D).

Discussion

Temporal prediction has been shown to capture the spatial and temporal tuning char-
acteristics of V1 simple [10] and complex cells [11]. However, these prior modeling
studies used feedforward ANNs that omitted recurrence, Dale’s law and all-or-nothing
spiking. We explored whether a recurrently-connected, temporal-prediction spiking
model incorporating Dale’s law would better replicate the functional properties of V1
neurons, particularly the differences known to exist between excitatory and inhibitory
neuron subclasses. Our model captured simple and complex cell-like tuning and V1-
like spike statistics to natural stimuli. Notably, the excitatory and inhibitory units in
the model exhibited several properties that match their biological counterparts in V1.
The much greater explanatory power of the recurrent, spiking model provides strong
evidence that temporal prediction may be critical to the function of V1 and potentially
other sensory brain areas.

A major goal of computational neuroscience is to develop models that help to inter-
pret the vast amount of experimental data obtained from studies of regions such as
V1. This requires creating biologically-realistic models with a functional objective that
stipulates how neurons transform visual input [57]. Some previous studies have devel-
oped spiking models of V1 with distinct subpopulations of excitatory and inhibitory
units. These models have demonstrated V1-like spike statistics and motion tuning
[4, 58–61]. However, their parameters were hard-coded to produce these phenomena,
rather than being trained to achieve a particular goal like temporal prediction. Con-
sequently, they have provided limited insight into the functional principles underlying
the transformation of visual signals in the cortex.

Other studies have shown how specific functional objectives can account for sim-
ple cell-like and in some cases complex cell-like properties. These objectives include
efficient [62, 63] and sparse coding [64–66], which assume that V1 efficiently encodes
sensory input under certain metabolic constraints; independent component analysis
[67], which stipulates that V1 reduces input redundancies by encoding independent fea-
tures within sensory stimuli [68, 69]; predictive coding, which also posits that neurons
remove statistical redundancies but in this case by signalling unpredictable features
within sensory input [70–73]; temporal coherence [74], slow subspace analysis [75]
and slow feature analysis [76, 77], which hypothesize that V1 encodes slowly-varying
features within the stimulus; and the information bottleneck hypothesis [78], which
suggests that V1 encodes sensory features with maximum mutual information about
the future, whilst minimizing information about the past [79]. However, these studies
all used non-spiking models and did not include Dale’s law. An exception are sparse
coding models that have been extended to be spiking [30, 80, 81] and to include Dale’s
law [81]. Although these spiking sparse coding models successfully capture V1 spatial
RF properties, they ignore their temporal tuning since the models were trained on
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images. Temporal prediction has also previously been explored in a spiking form [82],
but this study focused on the retina and did not explore Dale’s law.

Whilst the inclusion of spikes and Dale’s law increased the biological realism of
our model over prior studies, there remains scope to include additional cortical circuit
motifs. The cortex is a 6-layered structure, with layer 4 being the main target for sen-
sory inputs from the thalamus [83, 84]. We currently envisage the units of our model
comprising those over all layers. Sub-dividing our model units into a similarly multi-
layered structure would allow us to examine further phenomena, like the layer-specific
tuning characteristics found in V1 [26]. Additionally, our model could be extended to
operate over an entire visual scene instead of patches, by jointly training multiple ver-
sions of the model at different spatial locations within the visual frame. Incorporating
cross-spatial connectivity may segregate the tuning statistics in this model to capture
the canonical columnar organization of V1 [2], where neurons with similar orientation
preference cluster together [85, 86], or the lateral connectivity statistics, where differ-
ent neurons are more likely to be connected if they share similar tuning preferences
[87, 88]. The optimization of cortex for temporal prediction, at least for the non-hard-
wired aspects of cortical tuning, could be guided by the error-sensitive neurons found
in cortex [9], or possibly by hypothesized error-sensitive dendrites [89]. These error-
sensitive components could compare long (such as from layer 2/3) and short (such
as from layers 4 or 5/6) latency neural activity [90] to provide a temporal-prediction
error signal [11, 91]. Modeling the learning using more biologically-based local learn-
ing mechanisms [92] and structures that are congruent with these phenomena would
be another valuable future avenue.

Although our model exhibits V1-like firing dynamics, modelling the units using
the adaptive leaky integrate-and-fire model would better match the adaptive spiking
dynamics of V1 neurons [15], for example, the decrease in firing observed in response to
a constant input stimulus [93]. This would also allow differences in adaptation between
excitatory and inhibitory V1 neurons [94, 95] to be explored. In our model, we assumed
the effect of input current from one unit to another to be instantaneous. However,
synapses conduct current with a temporally-decaying profile, where different types of
synapses are governed by a fast or slow decay [96]. Extending our model to include
learnable synaptic-like temporal profiles may capture these synaptic phenomena. This
would ideally require training our model at a finer temporal resolution than ∼ 8.33ms
per time step, which remains a challenge for spiking networks due to speed and memory
constraints (although see [97, 98]).

Our temporal prediction model makes several biological predictions. First, based
on our finding of a negative exponential relationship between the highest spatial RF
power and the membrane time constant across the model units, V1 neurons that are
more sensitive to visual input may operate at faster timescales. Second, our findings
have implications for calculating the exact energy demands of neurons, which remains
an ongoing area of research [99–102]. Specifically, the model predicts that inhibitory
V1 neurons may consume less energy per spike than their excitatory counterparts, as
we found this assumption to be important for obtaining our results. Third, our results
are relevant to the long-standing question of the extent to which visual processing is
hierarchical [103, 104] - transforming through sequential layers - or shallow - emerging
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through recurrent processes. Our model is consistent with the shallow brain hypothesis
[105], as it showcases how a single layer of recurrently-connected spiking units captures
non-linear phenomena like complex cell-like responses, which have otherwise been
argued to emerge from hierarchical processing [106]. This may inspire new computer
vision models that favor recurrence over standard hierarchical architectures [107].

In conclusion, we have shown how efficient temporal prediction in a spiking model
accounts for simple and complex cell-like tuning, V1-like spike statistics and, notably,
key differences between excitatory and inhibitory V1 neurons. Our findings contribute
to the growing evidence that visual cortex supports prediction of the sensory future [10,
11]. Although predictive processing is increasingly widely recognized [9], it is perhaps
surprising that this single computational principle accounts for several key differences
between excitatory and inhibitory V1 neurons. Perhaps many more of the brain’s
perplexing phenomena may be explained by the principle of temporal prediction.

Methods

Spiking V1 model

Training data

We used a publicly available dataset of natural movie recordings to train and test
our model [108]. This dataset consists of 39 clips, of 9.6 second duration, of everyday
objects and scenes (e.g. a dog walking, a fish swimming, or a human’s view walking
through nature), recorded using different camera movements (e.g. moving forwards or
sideways, panning or still). We used 31 clips for training and 8 clips for testing. All
clips are grayscale, with a temporal resolution of 120Hz and a spatial resolution of
140× 240px. To emulate the transformation of the retina and thalamus, we bandpass
filtered all clips, as done in other studies [10, 109]. We also normalized the training and
test data by subtracting the pixel mean and dividing by the pixel standard deviation of
the training data, and finally clipped the absolute pixel values to be no larger than 3.5
standard deviations. Training was performed using clips consisting of 20×20px spatial
patches of 350ms duration (i.e. 42 frames). The spatial position of each patch were
randomly sampled on each training batch. Clips were also randomly flipped around
the vertical axis to artificially increase the training data [110].

Spiking neurons

We modeled the V1 cortical neurons as a population of N = 600 recurrently-connected
excitatory and inhibitory spiking units. The input current Ii[t] ∈ R to unit i at time
step t is derived from the bandpass-filtered input movie stimulus x ∈ RT×H×W (of
T = 42 frames, and spatial height H = 20px and spatial width W = 20px); model
output spikes S[t− 1] ∈ RN from the previous time step; and a bias term bini ∈ R.

Ii[t] = bini +

TE∑
t′=1

H∑
h=1

W∑
w=1

W in
it′hwxhw[t− t′ + 1]︸ ︷︷ ︸

Feedforward current

+

N∑
j=1,j ̸=i

W rec
ij Sj [t− 1]︸ ︷︷ ︸

Recurrent current

(1)
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The feedforward connectivity W in ∈ RN×TE×H×W (of TE = 15 temporal frame
span) linearly maps the input movie stimulus into a feedforward current contribution
(capturing the transformation of the retina and thalamus); the recurrent connectivity
W rec ∈ RN×N maps previous output spikes into a recurrent current contribution. We
implemented all spiking units using the normalized and discretized leaky integrate-
and-fire (LIF) model, which evolves the model membrane potential Vi[t] ∈ R of unit i
at time step t using the following difference equation:

Vi[t] =
(
βiVi[t− 1] + (1− βi)Ii[t]

)(
1− Si[t]

)
(2)

During each time step, the membrane potential undergoes a decay governed by a
factor βi. We let each neuron learn its decay factor, and bounded values into the range
(0, 1) to enforce correct LIF dynamics [111]. Ii[t] was replaced with Ĩi[t] when synaptic
noise was included. The membrane potential resets to zero in the event of a spike
occurring in the preceding time step, which happens when the membrane potential
reaches the firing threshold (equal to one).

Si[t] =

{
1 if Vi[t] > 1

0 otherwise
(3)

Finally, at every time step t, a prediction of the future spatial movie frame ŷ[t] ∈
RH×W was generated (with ŷhw[t] ∈ R denoting the predicted pixel value). This was
achieved by linearly mapping a span of TD = 2 temporal frames of proceeding spike
activity using projection weights W out ∈ RN×TD×H×W , plus a bias bout ∈ R.

ŷhw[t] = bout +

N∑
i=1

TD∑
t′=1

W out
it′hwSi[t− t′ + 1] (4)

V1 latencies

V1 neurons have a response latency of at least ∼ 30 − 40ms in mice and monkeys
[17–20], and these latencies can vary substantially between neurons [112]. We modeled
the transduction and transmission latency to V1, by zero-masking the first 5 spatial
frames (i.e. 42ms) within the feedforward connectivity tensor W in. This length is the
temporal prediction span.

Neural noise

Cortical V1 neurons do not respond with identical spike trains to repeated visual
stimulus presentations. One of the reasons for this is neural noise. We include two
neural noise sources within our model. First, we modeled the noisy photoreceptors
in the retina [113], by adding Gaussian noise to the bandpass-filtered movie clips
ϵp ∼ N (0, 0.22). Second, we modeled the synaptic noise of cortical V1 neurons [114],
by multiplicatively perturbing the input current Ii[t] of every unit i at time step t
using Gaussian sampled noise ϵg ∼ N (0, 0.62).

Ĩi[t] = Ii[t](1 + ϵg) (5)
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Dale’s law: Enforcing units to be inhibitory or excitatory

Approximately 15−20% of cortical V1 neurons are inhibitory in mice, cats, and mon-
keys [5–8]. We assigned 15% of the model unit population to be inhibitory, resulting
in NI = 90 inhibitory units and NE = 510 excitatory units. We enforced a neuron
to be excitatory (or inhibitory), by taking the absolute value of every weight in the
unconstrained recurrent weight matrix W̃ rec , and appropriately negating connection
weights from unit j to i. All outwards connection weights from unit j are either positive
(i.e. excitatory) or negative (i.e. inhibitory).

W rec
ij =

{
−|W̃ rec

ij | if j < NI

|W̃ rec
ij | otherwise

(6)

Weight initialization

The initial weights for feedforward (W in), recurrent (W rec), and projection (W out - i.e.
the readout weights) connections were randomly initialized from a uniform distribution
U(−k, k), where k was determined as k = 1√

TEHW
for the feedforward weights, k = 0.1√

N

for the recurrent weights, and k = 1√
NTD

for the projection weights. Additionally, all

initial membrane time constants were uniformly initialized to 20ms (i.e. βi ≈ 0.81 for
all units). Lastly, the input bias terms were initialized to 0.2 and the output bias term
to 0.

Loss function

We trained the model by minimizing loss Ltotal, comprised of prediction loss Lnormative

and metabolic loss Lmetabolic, with respect to W in, W rec, W out, bin, bout, and β. The
prediction loss measures the similarity between the predicted and target future movie
frames, and the metabolic loss measures the approximated physiological energy use of
the network. We weighted this loss by hyperparameter λ = 10−2.75, which we selected
to produce the most V1-like receptive fields.

Ltotal = Lprediction + λ
(
γtransmissionLinput + (1− γtransmission)Lspiking

)
︸ ︷︷ ︸

Metabolic loss Lmetabolic

(7)

We computed the prediction loss Lprediction as the mean squared error (MSE)
between all predicted spatial movie frames ŷ and target spatial movie frames y ∈
RH×W . The calculation was performed by taking the average over all batch samples B
(omitted here for brevity), simulation steps T (starting from simulation step t0 = 5 to
allow unit membrane potentials to depolarize sufficiently, i.e. to enable network warm-
up), and spatial dimensions H (height) and W (width), both which were cropped by
c pixels on all sides.
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Lprediction =
1

(T − t0)(H − c)(W − c)

T∑
t=t0

H−c∑
h=c

W−c∑
w=c︸ ︷︷ ︸

Avg. over time and space

(ŷhw[t]− yhw[t])
2

︸ ︷︷ ︸
MSE

(8)

We defined our metabolic-like loss Lmetabolic as the average synaptic-like trans-
mission over all the model weights, where synaptic transmission has been noted to
require significant energy within cerebral cortex [102]. We defined the energy cost of
the synaptic-like transmission of a single model weight as its absolute value, multiplied
by the absolute value of every input value, summed over all time steps. We weighted
the recurrent transmission (Lspiking) relative to the input transmission (Linput) using
hyperparameter γtransmission = 0.3. We also assumed the metabolic-like cost of the exci-
tatory and inhibitory units to differ, with the inhibitory units consuming less energy
than excitatory units, captured by hyperparameter γtype = 0.1.

Linput = γtypeLinhibitory-input + (1− γtype)Lexcitatory-input (9)

Lspiking = γtypeLinhibitory-spiking + (1− γtype)Lexcitatory-spiking (10)

Linhibitory-input =
1

NIT

NI∑
i=1

T∑
t=1︸ ︷︷ ︸

Avg. over inhibitory units and time

(
|bi|+

TE∑
t′=1

H∑
h=1

W∑
w=1

|Wit′hw||xhw[t− t′ + 1]|
)

︸ ︷︷ ︸
Afferent synaptic cost

(11)

Lexcitatory-input =
1

NET

N∑
i=NI

T∑
t=1︸ ︷︷ ︸

Avg. over excitatory units and time

(
|bi|+

TE∑
t′=1

H∑
h=1

W∑
w=1

|Wit′hw||xhw[t− t′ + 1]|
)

︸ ︷︷ ︸
Afferent synaptic cost

(12)

Linhibitory-spiking =
1

NIT

NI∑
i=1

T∑
t=1︸ ︷︷ ︸

Avg. over inhibitory units and time

( N∑
j=1,j ̸=i

|W rec
ij |Sj [t− 1]

)
︸ ︷︷ ︸

Recurrent synaptic cost

(13)

+
1

THW

T∑
t=1

H∑
h=1

W∑
w=1︸ ︷︷ ︸

Avg. over time and space

( NI∑
i=1

TD∑
t′=1

|Pit′hw|Si[t− t′ + 1]
)

︸ ︷︷ ︸
Efferent synaptic cost

Lexcitatory-spiking =
1

NET

N∑
i=NI

T∑
t=1︸ ︷︷ ︸

Avg. over excitatory units and time

( N∑
j=1,j ̸=i

|W rec
ij |Sj [t− 1]

)
︸ ︷︷ ︸

Recurrent synaptic cost

(14)
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+
1

THW

T∑
t=1

H∑
h=1

W∑
w=1︸ ︷︷ ︸

Avg. over time and space

( N∑
i=NI

TD∑
t′=1

|Pit′hw|Si[t− t′ + 1]
)

︸ ︷︷ ︸
Efferent synaptic cost

Surrogate gradient descent

We trained the spiking models using a variation of the backpropagation algorithm [22]
called surrogate gradient descent [23]. Here, to enable smooth gradient flow during
training, a well-behaved function was employed as a replacement for the gradient of
the non-differentiable Heaviside step function. We adopted the fast sigmoid function,
which has been shown to perform well in practice [115, 116].

∂Si[t]

∂Vi[t]
= (10|Vi[t]− 1|+ 1)−2 (15)

We conducted all training using the Adam optimizer [117], employing its default
parameters. The training spanned 1200 epochs with an initial learning rate set to 10−4,
which was subsequently reduced by a factor of 0.2 at epoch count 200, 600, and 800.
We performed training using a batch size of 1024 and saved model weights whenever
a new minimum training loss was achieved.

Spike analysis

For all the spike analysis, we used the model output spike trains resulting from 8000
different retina-filtered movie patches taken from the Star Wars movies. We used these
natural movies in our spiking analyses to be comparable to [4], where they calculated
V1 spiking statistics in monkeys watching segments of the Star Wars movies. For
additional comparability with the analysis of [4], we calculated all spike statistics using
a time window of 2s with a step size of 0.2s.

Coefficient of variation

We quantified the variability of the spike pattern in each spike train by calculating
the coefficient of variation of the interspike interval CV(ISI), which is defined as the
ratio between the standard deviation and the mean of the interspike intervals [15]. A
CV (ISI) < 1 corresponds to a more regular firing pattern than a CV (ISI) > 1, and
a Poisson process has CV (ISI) = 1. As done in [4], we only calculated CV(ISI) values
for a given spike train if it had at least three spikes.

Neuron synchronization

We quantified the correlation between different unit spike trains by calculating the
mean cross-correlogram between the spike trains of randomly-sampled unit pairs. This
measures the average Pearson correlation coefficient ρ̂[τ ] between the spike trains s1
and s2 of different units for varying temporal lag τ , defined as:

ρ̂[τ ] = Es1,s2

[E[(s1[t]− µs1)(s2[t− τ ]− µs2)]

σs1σs2

]
(16)
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We sampled 400 random unit pairs for this calculation. Furthermore, we binned the
spike trains with a bin size of 25ms before calculating the correlations, in order for
our analyses to be comparable to [4].

Receptive field analysis

Spike-triggered average

We estimated the spatiotemporal receptive field of every unit using a spike-triggered
average [96], using responses to 1000 spatiotemporal white-noise input clips of 100-
frame duration. Clips were generated by sampling each pixel from a Gaussian
distribution with a standard deviation of σ = 10.

Fitting Gabors

We fitted a Gabor function [118] to the RF of every unit to quantify its tuning prop-
erties. The Gabor function has been shown to provide a good approximation for most
RF spatial aspects [32, 33] and provides a quantitative measure to compare the RFs
of the model with the RFs of V1 neurons. The 2D Gabor function is defined as:

G(x̂, ŷ) = A exp

(
−
(

x̂√
2σx

)2

−
(

ŷ√
2σy

)2
)
cos(2πfx̂+ ϕ) (17)

where spatial coordinates (x̂, ŷ) are obtained by translating the center of the RF
(x0, y0) to (0, 0) and rotating the RF by its orientation θ:

x̂ = (x− x0) cos(θ) + (y − y0) sin(θ) (18)

ŷ = −(x− x0) sin(θ) + (y − y0) cos(θ) (19)

The amplitude of the Gaussian envelope is defined by A, whereas parameters σx and
σy define the Gaussian envelope width along the x̂ and ŷ axes, respectively. Parameters
f and ϕ define the spatial frequency (in cycles/pixel) and phase of the sinusoidal
grating along x̂. We optimized the Gabor parameters for each model unit RF by
minimizing the mean squared error between the corresponding Gabor function and
its respective model RF. To avoid local minima during fitting, we performed each
Gabor fit in the spectral domain, by transforming the model RFs and Gabors using a
2D Fourier transform [10, 32]. We then used the resulting parameters to continue the
fitting procedure in the spatial domain. We excluded units in Figure 3C which had a
poor fit (correlation coefficient < 0.6, 381 units), whose fit was based on very few pixel
values (Gaussian envelopes σx < 0.5 or σy < 0.5, 382 units), and whose center position
(x0, y0) of the Gabor was outside the RF (9 units). This resulted in 141 out of 519
active units with a sufficient fit, having a median pixel-wise correlation coefficient of
0.83 (81 out of the 600 model units were deemed inactive, see Motion tuning section).
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Spatial receptive field properties

Power. The power of a RF is defined as the mean of the squared values of the RF
over a span of time (as in Figure 3D) or at a point in time (as in Figure 3E) [10].

Structure. The structure of a RF is characterized by two variables nx = σxf
and ny = σyf , which give a measure of the number of oscillations of its sinusoidal
component and the length of the bars in the RF, respectively [33]. Blob-like RFs lie
close to the origin in the nx by ny plane, the number of bars increases along the nx

axis, and the RF bar-length increases along the ny axis.

Estimating space-time separability

Spatiotemporal RFs are either space-time separable or inseparable, with space-time
separable RFs tuned to phenomena such as bars flashing or moving regardless of
direction, and space-time inseparable RFs tuned to direction of movement. Space-
time separable spatiotemporal RFs can be represented as a product of a spatial and
temporal function while space-time inseparable spatiotemporal RFs cannot [96]. We
classified the space-time separability of model unit RFs using the singular values of a
singular value decomposition (SVD), as done in [10]. We flattened the spatial dimen-
sions and removed the transmission latency time steps for each model unit RF, and
took the SVD of the resulting matrix. If the ratio between the second and first singu-
lar value was < 0.5, the RF was deemed space-time separable; otherwise, the RF was
deemed space-time inseparable.

2D spatiotemporal receptive fields

The 2D spatiotemporal RF illustrates the temporal evolution of the spatiotemporal
RF [35]. This view was constructed by translating and rotating every spatial RF by
the position and rotation that centers the spatial RF of the largest power, placing
all oriented bars parallel to the y-axis. Next, all spatial RFs were flattened along the
y-axis and concatenated, resulting in a 2D spatiotemporal RF. This new view can
qualitatively inform us about the temporal phase (through polarity changes in the
flattened spatial structure) and separability (through shifts in the flattened spatial
structure) of a spatiotemporal RF.

Motion tuning

Virtual physiology

We constructed model unit responses to drifting full-field sinusoidal gratings, varying
in orientation (from 0◦ to 360◦ in 5◦ increments), spatial frequency (ten values evenly
spaced from 0.01 to 0.2 cycles per pixel), and temporal frequency (1, 2, 4, and 8Hz),
each with an amplitude of one. Each grating clip, lasting 3 seconds, was presented to
the model four times. We calculated the firing rate of each model unit by averaging
responses over clip repeats and convolving with a Gaussian kernel (σ = 72ms) [96].
For each model unit, we computed its mean firing rate over each grating clip, and
constructed a 3D mean-firing tuning space (over orientation, spatial, and temporal
frequency), with the optimal grating (defined by its orientation, spatial and temporal
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frequency) eliciting the largest mean firing rate. We only included responsive units in
the tuning analysis of Figure 5 (519 out of 600 units) that had an optimal response
no less than 10% of the mean optimal response over all model units.

Modulation ratio

Wemeasured the modulation ratio F1/F0 of each model unit by taking the Fast Fourier
Transform (FFT) of each unit’s response to its optimal grating and calculating the
ratio between the amplitude of the first harmonic (F1) and DC component (F0). A
unit with a modulation ratio below one is considered complex cell-like, whereas a unit
with a modulation above one is considered simple cell-like [26, 40, 41].

Orientation and direction selectivity

We calculated the orientation selectivity index (OSI) and direction selectivity index
(DSI) for each unit, which quantify a unit’s preference for stimulus orientation and
direction of motion, respectively [26, 44]:

OSI =
Rorient

pref −Rorient
orth

Rorient
pref +Rorient

orth

(20)

DSI =
Rdir

pref −Rdir
non-pref

Rdir
pref +Rdir

non-pref

(21)

Both metrics are calculated using the mean unit responses to gratings at a unit’s
preferred spatial and temporal frequency. Rorient

pref = Rdir
pref is a unit’s mean response to

a stimulus in its preferred orientation and direction, and Rorient
orth and Rdir

non-pref are the
mean responses in the orthogonal orientation and opposite direction to the preferred
direction, respectively. A value close to zero corresponds to less selective responses,
and a value closer to one corresponds to greater selectivity for both measures.

Physiology analysis

Calculating membrane time constants

The membrane time constant τ of every model unit is obtained from the decay factor
β in the LIF Equation using the following relation:

τ =
−∆t

ln(β)
(22)

EI balance

Using the held-out test dataset of natural movie stimuli, we calculated the net-
excitatory (Exi) and net-inhibitory (Ini) input current to each model unit i at time
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step t as:

Exi[t] = max(0, Ii[t]) +

N∑
j=NI ,j ̸=i

W rec
ij Sj [t− 1] (23)

Ini[t] = min(0, Ii[t]) +

NI∑
j=1,j ̸=i

W rec
ij Sj [t− 1] (24)

The net-excitatory and net-inhibitory currents were derived from the excitatory
and inhibitory units, respectively, with the feedforward current Ii[t] being classed as
either excitatory or inhibitory at a given time step, depending on its sign value. From
this, we calculated the global EI balance of a model unit as:∑

t

Exi[t]∑
t

|Ini[t]|
(25)

with the excitatory and inhibitory current time series for each input clip concatenated
over time.

We calculated the precise EI balance of every model unit by first convolving each
current time series using a Gaussian kernel (σ = 72ms) [96] and then calculating
the resulting correlation between the smoothed (negative) inhibitory and (positive)
excitatory current time series (with both time series concatenated over time for each
input clip). We smoothed the current time series to emulate synaptic conductance
[15], finding the non-smoothed excitatory and inhibitory current time series of units
to otherwise be uncorrelated (median CC of 0.04).
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Data availability

The natural movie training data can be downloaded from https://figshare.com/
articles/dataset/Natural movies/24265498 and movie test data used in the spik-
ing analyses can be downloaded at https://github.com/webstorms/V1Model. The
untrained and pre-trained spiking models can be found at https://github.com/
webstorms/V1Model. Experimental data in Fig. 5 was extracted using an online tool
available at https://apps.automeris.io/wpd/.
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Code availability

The code of the spiking V1 model and the code for reproducing the results can be
found at https://github.com/webstorms/V1Model.
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