

1 Opto-chemogenetic inhibition of L-type Cav1 channels in neurons
2 through a membrane-assisted molecular linkage

3 Jinli Geng^{1,4}, Yaxiong Yang^{1,4}, Boying Li^{2,4}, Zhen Yu^{1,4}, Shuang Qiu^{1,4}, Wen Zhang¹, Shixin Gao¹,
4 Nan Liu³, Yi Liu¹, Bo Wang¹, Yubo Fan^{1*}, Chengfen Xing^{2*} and Xiaodong Liu^{1*,#}

5

6 ¹Advanced Innovation Center for Biomedical Engineering, School of Biological Science and
7 Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and
8 Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China;

9 ²School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China;

10 ³School of Life Sciences, Yunnan University, Kunming Yunnan 650091, China

11 ⁴These authors contributed equally

12 * Corresponding authors

13 # Lead contact: liu-lab@buaa.edu.cn

14

15

16 **Summary**

17 Acute, specific, and robust inhibition of L-type Ca^{2+} (Cav1) channels has been sought after for
18 both research and therapeutic applications. Compared to other available Cav1 antagonists,
19 genetically-encoded modulators, such as CMI (C-terminus mediated inhibition) peptides encoded
20 by Cav1 DCT (distal C-terminus), hold great potentials due to its affirmative mechanisms of action
21 on both gating and signaling. Here, we find that membrane-anchoring with a Ras tag could
22 essentially help form a type of intramolecular-equivalent linkage, by which the tag anchored-
23 peptide appears to dimerize with another protein or peptide on the membrane, supported by the
24 evidence from patch-clamp electrophysiology and FRET imaging. We then design and implement
25 the constitutive and inducible CMI modules, with appropriate dynamic ranges targeting the short
26 and long variants of Cav1.3, both naturally occurring in neurons. Upon optical (infrared-
27 responsive nanoparticles) and/or chemical (rapamycin) induction of FRB/FKBP binding, DCT
28 peptides with no CMI in the cytosol acutely translocate onto the membrane via FRB-Ras, where
29 the physical linkage requirement could be fulfilled. The peptides robustly produce acute and
30 potent inhibitions on both recombinant Cav1.3 channels and neuronal Cav1 activities, and thus
31 the Ca^{2+} influx-neuritogenesis coupling. Validated through opto-chemogenetic induction, this
32 prototype demonstrates channel modulation via membrane-assisted molecular linkage, promising
33 broad applicability to diverse membrane proteins.

34

35 **Keywords:** voltage-gated calcium channels, C-terminus mediated inhibition, membrane-
36 anchoring Ras tag, rapamycin-mediated heterodimerization, opto-chemogenetics

37

38 **Introduction**

39 L-type voltage-gated (Cav1.1-1.4) calcium channels are membrane proteins that mediate Ca^{2+}
40 influx into excitable cells in response to transmembrane potentials ^{1,2}. Cav1 channels play critical
41 roles in a variety of pathophysiological processes related to muscle contraction, vesicle secretion,
42 and gene transcription in cardiomyocytes or neurons ³. In particular, Cav1.3 and its close relative
43 Cav1.2 are involved in the diseases (channelopathy) such as sinoatrial node dysfunction and
44 deafness (SANDD) syndrome ^{4,5}, adrenal hypertension ⁶, and Timothy syndrome ^{7,8}, all of which
45 are due to the mutations on these channel genes. Cav1.3 and Cav1.2 are also implicated in
46 neurodegenerative diseases including Parkinson's disease and Alzheimer's disease ^{9,10}.
47 Therefore, Cav1 agonists and antagonists have drawn significant interest and attention in both
48 fundamental research and therapeutic development ¹¹⁻¹³.

49 C-terminus mediated inhibition (CMI) is one emerging modality of Cav1 antagonism ¹⁴⁻¹⁷,
50 which is closely related to calmodulin (CaM) modulation of the channels ¹⁵. Calmodulin, a Ca^{2+} -
51 binding protein containing EF-hands, is the molecular moderator of Ca^{2+} -dependent inactivation
52 (CDI); and its Ca^{2+} -free form (apoCaM) is able to upregulate channel activation. Upon
53 depolarization, the apoCaM-bound channel opens to induce Ca^{2+} influx and subsequently
54 inactivates by conformational rearrangements associated with Ca^{2+} -bound CaM ($\text{Ca}^{2+}/\text{CaM}$). It
55 has been proposed that the Cav1 channel is switched between the two states of high- versus low-
56 opening controlled by apoCaM and $\text{Ca}^{2+}/\text{CaM}$ respectively ^{14,18,19}. In this context, CMI sets the
57 channel to its low-opening state, which is functionally and quantitatively equivalent to CDI or the
58 low-opening state ¹⁴. In detail, two key motifs of distal C-terminus (DCT) in the pore-forming
59 subunit (e.g., α_{1D} of Cav1.3), the proximal and distal C-terminal regulatory domains (PCRD and
60 DCRD, respectively), compete against CaM by cooperatively binding the IQ domain (also known
61 as CaM-binding domain, CaMBD) of the channel, where apoCaM is otherwise pre-associated
62 ^{14,19}. Such competitive binding underlying CMI serves as a unified principle applicable to all the
63 DCT variants across the Cav1 family, only varying in their binding affinities ¹⁷. As one central
64 principle of CMI, a physical linkage of any two modules among PCRD, DCRD and CaMBD
65 (representing the channel with no DCT) is required and sufficient to induce CMI when the third
66 module is present in the cell. The requirement of physical inter-module connection could be
67 fulfilled either by constitutive linkage such as the fusion of PCRD with CaMBD or with DCRD, or
68 by acute connection such as rapamycin-induced FRB/FKBP binding ¹⁴.

69 In this study, we aim to employ the above knowledge and tools to develop applicable CMI-
70 based antagonists, for which high inhibition potency and ample dynamic range with acute
71 induction are desired. However, such task is challenging in several aspects. Firstly, both short
72 (without DCT) and long (with DCT) Cav1.3 variants are expressed in brain and heart cells ²⁰⁻²⁴.
73 For the short variant of Cav1.3 (42A or α_{1DS}), to achieve high CMI potency, it is necessary to

74 utilize an engineered form of the channel, rather than its native form ¹⁴, to fulfill the requirement of
75 “three-module principle” as mentioned above. Meanwhile, for the long form Cav1.3 ($\alpha_{1\text{DL}}$), the
76 dynamic range is rather limited as DCT peptides directly result in either potent inhibition or
77 no/minor CMI ^{14,17}. The breakthrough began with our discovery of an unexpected, effective
78 membrane-assisted connection between CMI modules. With the aid of the membrane-targeting
79 CAAX tag from the Ras protein ²⁵, aforementioned bottleneck problems could all be resolved by
80 bringing the CMI modules onto the membrane. Lastly, for acute CMI induction, our previous
81 rapamycin-inducible system or chemo-genetics in general provides a strong foundation for the
82 development of the prototype ¹⁴, but with intrinsic limitations in spatiotemporal resolution, for
83 which we proposed an approach by integrating with near infrared (NIR)-responsive nanoparticles,
84 to release rapamycin and thus induce CMI.

85 In this work, we have developed a prototype of opto-chemogenetics, which consists of NIR-
86 responsive rapamycin-encapsulated nanoparticles, and FRB/FKBP- and Ras-tagged peptides.
87 Induction of membrane translocation helps form equivalent linkages to the targeted Cav1
88 channels, which potently inhibits Cav1 activities and neuronal development.

89

90

91 **Results**

92

93 **Unexpected CMI on $\alpha_{1\text{DS}}$ by membrane-anchored P+D peptides**

94 For the representative channel of short Cav1.3 (splice variant 42A, i.e., $\alpha_{1\text{DS}}$) (Figure 1A, top), due
95 to the lack of DCT, each channel (around IQ) is bound with apoCaM, thus supposedly having the
96 maximum opening and ensuing inactivation ^{14,18}, the latter of which was verified by examining the
97 CDI strength of the whole-cell Ca^{2+} current (Figure 1A, middle). Briefly, the Ca^{2+} current (I_{Ca} , in
98 red) of $\alpha_{1\text{DS}}$ upon depolarization reached its instantaneous peak, and rapidly (within tens of
99 milliseconds) inactivated until reaching its steady-state plateau. In contrast, nearly no or rather
100 weak inactivation/decay was observed from the Ba^{2+} current (I_{Ba} , in gray) during the 300 ms
101 depolarization step. The differences between Ca^{2+} currents and Ba^{2+} currents reflect the
102 dependency of inactivation on Ca^{2+} , quantified by the index of CDI or S_{Ca} (Figure 1A, bottom).
103 According to the prerequisite of CMI, both PCRD and DCRD are required to be present for
104 eventual association with the channel at the IQ domain as the trio complex; moreover, if there is
105 no physical linkage among the three modules, no CMI would be produced ^{14,17}. As expected,
106 when PCRD and DCRD (encoding corresponding motifs of Cav1.3/1.4 DCT, denoted as P+D)
107 were co-expressed with $\alpha_{1\text{DS}}$, the Ca^{2+} currents were indistinguishable from the control group
108 (Figure 1B). Next, the Ras tag, as the membrane-targeting signal ²⁵, was fused onto PCRD,
109 DCRD or both, which were then co-expressed with the other untagged modules for further

110 examination. Unexpectedly, when PCRD was anchored to the membrane (by CAAX motif of the
111 Ras tag), CDI was significantly reduced (Scheme I, Figure 1C), compared to the control level of
112 CDI obtained from α_{1DS} alone (Figure 1A). Similar results of strong CMI effects on CDI were
113 obtained with Ras-tagged DCRD (Scheme II, Figure 1D), and with co-expression of both Ras-
114 tagged PCRD and Ras-tagged DCRD (Scheme III, Figure 1E). To quantify the inhibitory effects
115 on α_{1DS} , *CMI* (in percentage) is defined as the normalized fraction of channels that switch from
116 apoCaM-bound to DCT-bound according to our previous study ¹⁷. *CMI* is inversely proportional to
117 S_{Ca} , therefore substantial reduction of S_{Ca} corresponds to high *CMI*. All three schemes exhibited
118 remarkable *CMI* (Figure 1F), apparently breaking the rule of CMI in that no bipartite linkage
119 seemed to exist among the modules expressed in the cell. Meanwhile, except for the leakage
120 requirement, the 'trio' working model of CMI is still valid. If only the PCRD or DCRD peptides
121 were expressed alone, even if tagged with Ras—thereby lacking the third party—the channels did
122 not exhibit any significant change in CDI (Figure S1). Taken together, these results regarding
123 P+D peptides led us to hypothesize that the bipartite linkage requirement could be met by way of
124 the Ras tag and the membrane, presumably as an unconventional type of 'physical' linkage
125 allowing the CMI modules to form effective inter-module connections.

126 Additional evidence from FRET supports the effective membrane-assisted linkage

127 Although electrophysiological recordings for P+D peptides have already strongly suggested that
128 the membrane-targeting CAAX motif is critical to effectively link PCRD to DCRD or the channel,
129 more direct evidence was sought after, for which Förster resonance energy transfer analysis
130 (FRET) would serve as one suitable tool to address the molecular interactions in the cytosol or
131 membrane ^{26,27} (Figure 2A-2C). Cytosolic peptides of P+D were co-expressed as a FRET pair,
132 i.e., YFP-PCRD and CFP-DCRD, which resulted in low FRET efficiency (indexed by FRET ratio,
133 *FR*), consistent with the weak *CMI* (Figure 1). By employing the membrane-targeting Ras tag,
134 PCRD-YFP-Ras and DCRD-CFP-Ras peptides were constitutively expressed on the membrane
135 (Figure 2A and 2B). Notably, Ras-tagged P+D peptides exhibited much higher *FR* than the
136 cytosolic peptides (Figure 2C), indicating that a substantial number of donor and acceptor
137 molecules are within the distance of 50Å according to the r_0 (Förster radius of FRET pair)
138 between CFP and YFP ²⁸. For the pair of membrane-anchored P+D that exhibited high *FR*, the
139 PCRD and DCRD peptides are in such close proximity that they seem to be physically connected,
140 apparently by a linkage equivalent to the one in the fusion protein of P-D. As expected,
141 membrane-anchored CFP-YFP-Ras dimer resulted in high *FR*. Notably, after inserting an ER/K
142 linker ²⁹ into such dimer, i.e., CFP-ER/K-YFP-Ras, only produced low FRET thus serving as an
143 important negative control (Figure 2D-2F). Assured by these control groups, intriguing results
144 were obtained from CFP-Ras and YFP-Ras. This Ras-tagged FRET pair exhibited high *FR* on the

145 membrane, mirroring the high *FR* observed from the PCRD-YFP-Ras and DCRD-CFP-Ras pair
146 (Figure 2C). The similar results between Figure 2C and Figure 2F (indicated by the pink areas)
147 argue no or ultraweak interaction present between PCRD and DCRD¹⁹ consistent with our earlier
148 reports (but see³⁰); otherwise, overall higher *FR* in Figure 2C should be expected because of
149 additional PCRD/DCRD interactions. Combining electrophysiology and FRET results, we
150 conclude that the P+D peptides with no cytosolic CMI, when anchored onto the membrane,
151 effectively connect α_{1DS} channels, thus fulfilling the physical linkage requirement for strong CMI
152 on α_{1DS} channels.

153 **Design of P-D peptides for α_{1DL} inspired by membrane-assisted CMI on α_{1DS}**

154 So now we have partially achieved our goal by providing P+D peptides which, with the assistance
155 of the membrane, target α_{1DS} with high potency. With respect to α_{1DL} , which is the full-length
156 variant of Cav1.3, the potency of CMI is expected to correlate quantitatively with the affinity
157 between DCT peptides and α_{1DL} channels. Accordingly, in contrast to the DCT peptides encoded
158 by Cav1.3 or Cav1.4, the DCT peptides encoded by Cav1.1- or Cav1.2 such as CCAT_C containing
159 the linked PCRD_C and DCRD_C of Cav1.2 are barely able to produce any inhibition on α_{1DL} ¹⁷. This
160 type of peptide is denoted as P-D (to compare with P+D), since PCRD and DCRD are physically
161 linked together. Consistent results were achieved that CDI of the CCAT_C group is
162 indistinguishable from the α_{1DL} control (Figure 3A and 3B). Inspired by the discovery that
163 membrane-assisted molecular linkage significantly enhances CMI, we then proposed the design
164 of Ras-mRuby-CCAT_C, where the Ras is fused, as a novel type of applicable P-D peptides. In
165 contrast to cytosolic CCAT_C (or Cav1.2-encoded P-D), membrane-anchored CCAT_C significantly
166 attenuated CDI of α_{1DL} (Figure 3C), resulting in potent CMI of 57 ± 9% (Figure 3D). A major
167 feature of CMI effects is the concurrent inhibition of both inactivation and activation processes. In
168 support of this notion, membrane-anchored P-D exhibited smaller Ca^{2+} currents (pA/pF) in
169 comparison with cytosolic P-D producing nearly no effect on α_{1DL} (Figure S2). Thus, we have
170 designed and implemented the Cav1.2-encoded P-D peptides that are highly applicable to α_{1DL} .
171 They produce nearly no inhibition in the cytosol, yet exhibit potent CMI effects when translocated
172 onto the membrane.

173 **Chemical and optical induction of rapid cytosol-membrane peptide translocation**

174 In the context of membrane-assisted physical linkage for CMI, the induction method is crucial for
175 CMI peptides to acutely translocate onto the membrane. Following the previous design of acute
176 CMI¹⁴, a series of chemical/rapamycin-inducible versions targeting α_{1DS} were developed by
177 introducing rapamycin binding peptides of FRB/FKBP alongside the membrane-anchoring Ras
178 tag. The primary rationale behind such a design is to swiftly fulfill the requirement of physical

179 linkage to the peptides (Figure 4A). By design, various DCT-encoded motifs in the cytosol are
180 able to acutely translocate onto the membrane through the tight binding of rapamycin to FKBP-
181 tagged peptides which would eventually form the complex with FRB-Ras on the membrane^{14,31}.
182 YFP-FKBP-DCRD, YFP-FKBP-PCRD, and FRB-CFP-Ras were expressed in HEK293 cells.
183 Time-lapse imaging by confocal microscopy was conducted to monitor the process of membrane
184 translocation at the interval of 30 s (Figure 4B). To quantify the membrane translocation, a red
185 line was drawn to cross the whole cell from which the ratio of fluorescence intensity between
186 membrane (Fm) versus cytosol (Fc) was calculated as a quantitative index. Direct application of 1
187 μ M rapamycin to the bath induces the binding of FRB fused in the membrane by Ras tag and
188 FKBP, leading to translocation of YFP-FKBP-PCRD and YFP-FKBP-DCRD on the membrane,
189 while treatment with 0.1% DMSO, serving as a vehicle control, did not cause any membrane
190 association with FKBP (Figure 4B and 4C).

191 Our strategy for achieving optical induction fully leverages the previously established
192 method. NIR-responsive nanoparticles encapsulating rapamycin (rapamycin@PDPP) may
193 provide additional benefits in spatial control, tissue penetration, biocompatibility and drug release.

194 As shown in Figure S3, rapamycin@PDPP nanoparticles were prepared via the
195 nanoprecipitation of PDPP, DPPC, DSPE-PEG2000-NH₂ and rapamycin. PDPP cores convert
196 NIR light into heat, triggering a phase-transition of DPPC lipid coating at a temperature of 41°C.
197 An additional lipid coating, DSPE-PEG2000-NH₂, enhances the biocompatibility of the
198 nanoparticles. Encapsulated rapamycin is released from the nanoparticles under 808nm NIR
199 irradiation. The NIR-responsive nanoparticles have been proven to be biocompatible in HEK293
200 cells and tissues^{32,33}. To approach the design goals, rapamycin@PDPP nanoparticles were then
201 deployed to gain opto-chemical control of membrane translocation of CMI modules. The first key
202 step was to develop NIR-responsive binding between FRB-Ras and FKBP. Fluorescent tag YFP
203 was fused onto FKBP to visualize its subcellular distribution. As illustrated in the design scheme
204 (Figure 4A), NIR light triggers the release of rapamycin from rapamycin@PDPP nanoparticles,
205 and subsequently induces the binding (heterodimerization) of Ras-tagged FRB and cytosolic
206 FKBP in the cell, leading to translocation of YFP-FKBP-PCRD and/or YFP-FKBP-DCRD onto the
207 membrane. The concentration of rapamycin@PDPP nanoparticles was calibrated according to
208 the UV standard curve of conjugated polymer PDPP. Considering the efficacies of drug loading
209 and release of nanoparticles, cells were incubated with 25 μ g/ml rapamycin@PDPP and
210 irradiated by NIR for 5 min to release the rapamycin resulting in a final concentration of 1 μ M
211 rapamycin in the bath solution. No basal leakage of rapamycin from rapamycin@PDPP was
212 detected without NIR stimulation during the 15-minute imaging period. After 5 minutes of *in situ*
213 NIR exposure to trigger rapamycin release, we observed rapid mobilization of the YFP-tagged
214 proteins (Figure 4D). As demonstrated by histogram analyses of positions along the red line,

215 distinct intensity profiles were observed at 0 or 15 minutes (prior to NIR exposure) compared to
216 37 minutes (following NIR exposure) (Figure 4E). This temporal analysis of the Fm/Fc ratio further
217 underscored the stability of rapamycin encapsulated within PDPP in the absence of NIR
218 stimulation, and its rapid membrane translocation triggered by opto-chemical activation of
219 FRB/FKBP dimerization (Figure 4F).

220 **Chemically and optically inducible membrane-assisted CMI peptides of P+D.** Leveraging
221 the membrane-assisted peptide linkage (Figure 1) and rapid induction of cytosol-membrane
222 translocation (Figure 4), we designed a prototype of membrane-assisted Cav1.3-encoded P+D
223 peptides, enabling CMI on α_{1DS} (Figure 5A). Following our design, we used rapamycin or
224 rapamycin@PDPP to acutely induce the translocation of YFP-FKBP-PCRD or YFP-FKBP-DCRD
225 onto the membrane via Ras-tagged FRB. As anticipated, Ca^{2+} currents of α_{1DS} were potently
226 inhibited upon 1 μM rapamycin, demonstrated by the time-dependent inactivation (S_{Ca}) and
227 activation (indexed by the current amplitude, I_{peak}) (Figure 5B and 5C). In control α_{1DS} channels
228 lacking P+D expression, 1 μM rapamycin had no effect, as shown by unchanged S_{Ca} and I_{peak}
229 values (Figure S4A-S4C). Vehicle control (0.1% DMSO) did not impact Ca^{2+} currents when α_{1DS}
230 was co-expressed with inducible P+D peptides (Figure S4D-S4F).

231 In principle, three possible schemes can be deployed according to the particular peptides
232 translocated onto the membrane: PCRD (Scheme I), DCRD (Scheme II) or both (Scheme III).
233 According to the first scheme (Figure S5A-S5C), the two DCT modules of FKBP-PCRD and
234 DCRD were co-expressed with the third module, IQ-containing membrane channels. Upon
235 administration of rapamycin, both inactivation and activation as indexed by S_{Ca} and I_{peak} , were
236 gradually attenuated, causing clear CMI effects (potency $14 \pm 1\%$). Presumably, an effective
237 connection formed between the channel and FKBP-PCRD, the latter of which was rapidly
238 mobilized onto the membrane through rapamycin-triggered FKBP binding to membranous FRB-
239 Ras. In the presence of cytosolic DCRD, the effectively-connected IQ (channel) and PCRD would
240 further form a ternary complex according to the established principle of CMI. Consistently, despite
241 the apparent contradiction of concurrent attenuation on both activation and inactivation, the net
242 reduction of Ca^{2+} influx was ensured by the stereotypical I_{300} (current amplitude at 300 ms), which
243 remained unaltered (Figure S5A).

244 In the second scheme, similar rapamycin-induced CMI effects were observed from Ca^{2+}
245 current recordings (Figure S5D-S5F), with FKBP-DCRD and cytosolic PCRD co-expressed
246 alongside α_{1DS} . Consistent with the data and interpretation from the first scheme, effective
247 connections between FKBP-tagged DCRD and α_{1DS} presumably formed in response to
248 rapamycin, leading to cooperative binding and channel inhibition.

249 Notably, in the third scheme (Figure 5B and 5C), both PCRD and DCRD were recruited to
250 the membrane, directly corresponding to its constitutive version (Figure 1E). The CMI potency of

251 this scheme appeared relatively more pronounced than the other schemes. This was evident from
252 the exemplar Ca^{2+} current traces before and after rapamycin stimuli, and from the temporal
253 profiles of inactivation (S_{Ca}) and activation (I_{peak}).

254 We then explored the optical induction of CMI, following our strategy of NIR-responsive
255 rapamycin release and subsequent peptide translocation onto the membrane.
256 Rapamycin@PDPP nanoparticles without NIR light did not cause any significant effect, indicated
257 by unaltered CDI (S_{Ca}) and peak current (I_{peak}) during the whole time-course (Figure S6A and
258 S6B). Five minutes of NIR irradiation successfully induced inhibitory effects on Ca^{2+} currents
259 (Figure 5D), presumably by triggering the release of rapamycin, leading to typical attenuation on
260 both inactivation (S_{Ca}) and activation (I_{peak}) (Figure 5E). Moreover, the CMI potency associated
261 with optical induction here was close to the potency of CMI by direct rapamycin induction (cyan
262 lines based on Figure 5B and 5C), further confirming the effectiveness of the combined
263 optical/chemical induction as proposed in our design. As a negative control, rapamycin@PDPP
264 nanoparticles with NIR light had no significant effect on HEK293 cells only expressing $\alpha_{1\text{DS}}$
265 (Figure S6C and S6D).

266 Lastly, detailed profiles of S_{Ca} and I_{peak} across the full range of membrane potentials were
267 measured for Ca^{2+} currents toward the protocol's end (Figure S7), yielding consistent conclusions
268 in all cases, including the three basic schemes and the optical induction design (P+D) (Figure 5;
269 Figure S5). The potencies for the Scheme I, II and III are $19 \pm 2\%$, $36 \pm 15\%$ and $67 \pm 9\%$,
270 respectively, in addition to opto-chemogenetic CMI of $56 \pm 9\%$.

271 **P-D peptides inducibly suppressed the Cav1 activity-neuritogenesis coupling**

272 According to our newly designed P-D peptides (Figure 3), the Cav1.2-encoded P-D peptides of
273 PCRD_C-DCRD_C (P_CD_C) on the membrane are able to produce CMI effects. An inducible version of
274 P-D was developed using the rapamycin/FRB/FKBP module similar to what is depicted in Figure
275 5A. First, FKBP-YFP-P_CD_C and FRB-CFP-Ras were tested for the inducible CMI effects on $\alpha_{1\text{DL}}$.
276 P_CD_C was recruited by acute induction to the membrane resembling its constitutive version
277 (Figure 6A-6C). Upon rapamycin, both inactivation and activation as indexed by S_{Ca} (Figure 6B)
278 and I_{peak} (Figure 6C; Figure S8A) were gradually attenuated, causing unambiguous CMI effects
279 (CMI $44 \pm 7\%$), further confirmed by the full voltage-dependent profiles (Figure S8B).
280 Interestingly, FKBP-YFP-P_CD_C also significantly induced strong CMI inhibition ($41 \pm 6\%$) on $\alpha_{1\text{DS}}$,
281 evidenced by gradual attenuations in inactivation (S_{Ca}) and activation (I_{peak}) (Figure 6D-6F).
282 Toward the ending point of the time course, attenuated CDI of $\alpha_{1\text{DS}}$ was close to that of $\alpha_{1\text{DL}}$
283 (Figure 6A-6C). The affinity of P_CD_C for the channel should be enhanced by about two orders of
284 magnitude before and after membrane-translocation ¹⁷, which could be well accounted for by a
285 membrane-assisted dimerization-like linkage as proposed earlier.

286 Our next step was to investigate inducible membrane-assisted P-D peptides in live neurons
287 under physiological conditions, following the validation of CMI impacts on recombinant Cav1.3
288 channels. Furthermore, peptides encoded by DCT, including CCAT_C, are endogenously present
289 in native cells, playing pivotal roles in the regulation of channels and neurons. Subsequently,
290 FKBP-CFP-P_CD_C and FRB-mRuby-Ras were virally introduced into cultured cortical neurons. An
291 improved version of GCaMP, jGCaMP7b-X_C³⁴, was utilized to monitor neuronal Ca²⁺ dynamics.
292 Following rapamycin induction, P_CD_C translocated onto the cortical neuron membrane (Figure 6G-
293 6I). In cortical neurons expressing FKBP-CFP-P_CD_C and FRB-mRuby-Ras, we observed
294 spontaneous Ca²⁺ oscillations, quantified using the indices of frequency (mHz), amplitude ($\Delta F/F_0$)
295 and influx (AUC, or Area Under the Curve). Oscillatory Ca²⁺ activities post 10 and 20 minutes of
296 rapamycin treatment were compared to pre-treatment levels (Figure 6J-6M). In control neurons
297 not expressing FKBP-CFP-P_CD_C, no perceptible difference was observed (Figure 6J and 6I).
298 Conversely, the membrane-anchored P-D type peptides of P_CD_C significantly reduced Ca²⁺
299 oscillations, as indicated by all three major indices (Figure 6K and 6M). Following rapamycin
300 induction, hippocampal neurons also exhibited a similar reduction in spontaneous Ca²⁺ activities
301 (Figure S9).

302 Neurite outgrowth and neuronal development are closely related to Ca²⁺, particularly due to
303 Cav1 channels^{17,35}. To explore the Cav1 activity-neuritogenesis coupling in the context of
304 inducible CMI, we examined cultured cortical neurons at different timepoints (days *in vitro*, DIV)
305 after rapamycin treatment (Figure 7A and 7B). As expected, both neuritogenesis (total length)
306 and Ca²⁺ influx (AUC) of cortical neurons expressing FKBP-CFP-P_CD_C and FRB-mRuby-Ras
307 were significantly attenuated compared to the control group not expressing the CMI modules.
308 Consistent with previous results³⁴, the neurite length of each neuron in accordance to its DIV
309 followed a sigmoidal-like curve, as evidenced from the control (Figure 7C). We qualitatively
310 assumed that Cav1 influx to be the key factor responsible for neuritogenesis, despite the
311 complexity of frequency, amplitude and other parameters of Ca²⁺ dynamics³⁴. In this study, Ca²⁺
312 influx was explicitly quantified as AUC, represented as a bell-shaped curve (Figure 7D), aligning
313 well with the two-phase trend of neurite growth rate (NGR, $\mu\text{m}/\text{day}$) (Figure 7E), thereby directly
314 supporting a clear yet simple correlation between Ca²⁺ influx and neurite outgrowth (Figure 7F).

315 Our earlier data demonstrate that cultured cortical neurons go through an initial phase (~14
316 days) of rapid outgrowth before entering into the plateau phase, forming a monotonic increasing
317 curve (Figure 7C, sigmoidal-like curve in solid black), of which the first derivative indicates NGR
318 of cultured cortical neurons (Figure 7E, bell-shaped curve in solid black). Inducing CMI by
319 membrane association of P_CD_C led to reduction of Ca²⁺ oscillations, causing significant changes
320 in neurite length, AUC and NGR, reflected as abrupt and large deviations from the curves of
321 control neurons (Figure 7C-7E). Notably, the correlation between NGR of neuronal development

322 and AUC of Ca^{2+} activities appeared to be a phase-plane plot that the trajectory for the control
323 neurons was suddenly dragged down by CMI induction to the negative range of growth rate
324 (Figure 7F).

325 Hippocampal neurons, well known for oscillatory activities, play vital roles in brain functions
326 ³⁶. We speculated that the CMI effects on the Cav1 activities-neuritogenesis coupling in cortical
327 neurons should be generalizable, e.g., onto hippocampus. Membrane-anchored P-D peptides of
328 Ras-YFP-PcDc significantly reduced oscillatory Ca^{2+} activity in hippocampal neurons, as
329 quantified by AUC (Figure S9A and S9B). Meanwhile, the neurite length of hippocampal neurons
330 expressing Ras-YFP-PcDc was significantly shorter than the control group of cytosolic peptides
331 (Figure S9C and S9D).

332

333 **Discussion**

334

335 In this study, we have developed a prototype of membrane-assisted CMI with opto-chemogenetic
336 induction. It comprises NIR-responsive nanoparticles encapsulating rapamycin and peptides
337 tagged with FRB/FKBP and Ras, encoding the DCT of Cav1.2 (P-D) or Cav1.3/1.4 (P+D) (Figure
338 8). Upon induction of membrane translocation, the peptides can form molecular-scale linkages to
339 the targeted Cav1 channels, whether in long or short variants. Robust and potent inhibitory effects
340 on Cav1 activities and neuronal development were acutely induced with ample dynamic range.

341

342 **Insights into protein-protein interaction facilitated by membrane-anchoring**

343 Besides ion channels, certain membrane proteins are known to interact with each other to form
344 dimers or even oligomers, as the prerequisite of their subsequent signaling and activities ^{25,37,38}. A
345 prominent example is the Ras protein, whose dimerization on plasma membrane promotes RAF
346 and MAPK cell signaling ²⁵. In fact, the C-terminal domain containing CAAX as the membrane-
347 anchoring tag in this study was adopted from H-Ras, one isoform of the Ras family ^{14,31}. The G
348 domain is critical to Ras dimerization, for which membrane-anchoring is also required in the first
349 place ³⁹. Our data, from both electrophysiology and FRET on the peptides tagged with Ras CAAX
350 box, suggest that similar membrane-facilitated physical linkages and protein interactions may
351 underlie Ras dimerization. This implies that CAAX-assisted translocation onto the membrane
352 could increase the proximity of the molecules to a scale of 50 Å or less (Förster Radius),
353 equivalent to a physical linkage (as required by our CMI principle) which enhances effective
354 affinity or relative concentration (between intramolecular binding partners) and thus promotes the
355 interaction/dimerization of the binding domains (e.g., G domain) ^{40,41}. Another potential factor is
356 via the lateral interactions between the transmembrane domains of membrane proteins ⁴², which,
357 however, is unlikely the case of Ras/CAAX. Here, we quantitatively examined the equivalent

358 peptide-channel dimerization using reliable biophysical methods (patch-clamp and 3-cube FRET)
359 and mechanisms (DCT/CMI), which are readily expandable onto other membrane proteins
360 including Ras. Interventions of Ras overactivation have been actively pursued as potential cancer
361 therapeutics by targeting its membrane anchoring and dimerization, for which membrane-assisted
362 CMI here may help develop (compound) screening assays, by taking advantage of the
363 quantitative assays for CDI (electrophysiology) and Ca^{2+} dynamics (fluorescence imaging). The
364 membrane-association tag of the tyrosine kinase Lyn and other c-Src family members is also
365 important to dimerization and functions⁴³⁻⁴⁵. We expect that Ras and Lyn (and potentially other
366 membrane proteins) would share similar membrane (anchoring tag)-assisted linkage to enhance
367 protein-protein interaction or dimerization, all awaiting future investigations to explore.

368 When we revised and finalized this manuscript, another study reported a similar strategy of
369 utilizing the CAAX tag to demonstrate that Rad (small RGK G-protein) regulation of Cav1.2
370 channels is critically dependent on membrane-association⁴⁶. Ras tag was also proved by their
371 FRET data to have the capability to bring the donor and acceptor close enough to yield high
372 FRET efficiency. However, a few points are worth mentioning here. First of all, we reached our
373 conclusion of the equivalent physical linkage based on the 3-component principle of CMI we
374 established in earlier independent studies mainly with electrophysiology^{14,17}. Therefore, the core
375 mechanism should be the membrane/Ras-assisted linkage in our view, leading to elevated
376 effective concentration or enhanced apparent affinity as the consequences secondary to the
377 formation of 'physical' linkage. In support, even Ras-tagged fluorophores could produce high FRET
378 in both our study (cellular FRET with membrane-anchored CFP/YFP) and their report
379 (flowcytometric FRET with Cer/Ven). In addition, our experiments and analyses on membrane-
380 assisted linkage, interaction and dimerization were restricted within the proteins or peptides on
381 the membrane, different from their study heavily based on cytosolic/dispersed β_2 .

382

383 **Hints on mechanistic details of DCT, CaM and CMI**

384 Before this work, only DCRD showed an appreciable (channel) affinity whereas the binding of
385 PCRD/channel has not been detected yet, and thus the nature of their cooperativity still remains
386 elusive. In the context of membrane-assisted linkage and CMI, membrane-anchored PCRD
387 should also bind the channel when its effective concentration gets high enough, due to the fact
388 that PCRD behaves similarly as DCRD (Figure 1C; Figure S5A; Figure S7A). Our data provide
389 the missing piece of evidence critical to a unified mechanism of cooperative binding.

390 To date, the consensus holds that both the proximal and distal regions (PCRD and DCRD)
391 are crucial for modulating Cav1 channels. For Cav1.2, PCRD and DCRD may have some
392 electrostatic interactions according to *in silico* modeling³⁰, whereas for Cav1.3 no direct
393 interaction could be detected between PCRD and DCRD^{14,19}. Later reports systematically

394 comparing DCT across Cav1.1-1.4 demonstrate that a set of common principles are likely shared
395 to induce inhibitory effects (CMI) on channel gating and Ca^{2+} influx ^{14,17}. For instance, DCRD
396 modules/motifs contribute more significantly than PCRD in CMI and related interactions. In
397 support, FRET binding data suggest that DCRD itself could bind the CaM-binding IQ domain in
398 contrast to PCRD that has no detectable binding; and PCRD and DCRD cooperate with each
399 other to form the ternary complex of PCRD/DCRD/IQ ¹⁴. Meanwhile, the DCT peptide, as
400 suggested, might behave as an apoCaM, the latter of which is known to bear intrinsic
401 cooperativity between its two lobes ⁴⁷. In light of this view and our data, one would postulate that
402 PCRD by itself (just resembling DCRD) is also able to bind the channel/IQ, but with even lower
403 affinity than DCRD. When present in the cytosol, the concentrations of PCRD or DCRD are way
404 below the levels for any discernable binding with the channel to actually happen, thus no
405 cooperative binding or CMI. However, once PCRD and/or DCRD translocate onto the membrane,
406 the membrane-assisted linkage and the consequent (local) concentrations relative to each other
407 (PCRD, DCRD and IQ/channel) are increased by orders of magnitudes to the levels of realistic
408 binding. In this context, the observed cooperativity between PCRD and DCRD would resemble
409 the two lobes of CaM: once one lobe/module is bound, the consequent allosteric changes
410 facilitate the target binding of the other lobe/module, as the underlying principles for all the
411 scenarios of P+D or P-D (e.g, Figure 1 and Figure 3). Not only to elucidate the molecular details
412 of CMI/DCT but also to gain insights into the binding mechanisms related to CaM, the results and
413 hints from this study merit further investigation.

414

415 **The development of molecular tools for protein dimerization**

416 Controllable protein heterodimerization allows to modulate diverse biological processes such as
417 protease activity, transcription and translocation ⁴⁸⁻⁵¹, thus applicable to a broad spectrum of
418 scenarios as powerful molecular tools ^{52,53}. Rapamycin-inducible FKBP/FRB heterodimerization
419 has been widely applied due to its ultra-high affinity of rapamycin towards its protein binding
420 partners FKBP and FRB ($K_d = 12 \text{ nM}$ for FKBP-rapamycin-FRB), with a clear baseline (no
421 detectable binding) in the absence of rapamycin ^{54,55}. To improve the spatial control of rapamycin
422 system, photocaged rapamycin analogues have been developed, such as cRb, which features a
423 nitrobenzyl cage linked to a rapamycin analogue ⁵⁶, dRap, a photo-cleavable rapamycin dimer ⁵⁷,
424 pRap, a caged rapamycin with nitro-piperonyloxycarbonyl N-hydroxysuccinimide carbonate
425 (NPOC-NHS) ⁵⁸, DMNB caged rapamycin ⁵⁹, and arylazopyrazole rapamycin analogs ⁶⁰.
426 However, all of these photocaged rapamycin variants are triggered by the ultraviolet light (UV),
427 unfavored by biological applications. In fact, most approaches for optical control of protein-protein
428 interaction by photocaged drugs are limited by the short wavelength stimulation ^{61,62}. In
429 comparison, NIR light has less cell damage and deeper tissue penetration. Moreover, unlike

430 rapamycin analogues, our design of rapamycin@PDPP does not change the skeleton of
431 rapamycin, thus relieving the concerns regarding potential reduction in membrane permeability
432 and increase in cellular toxicity due to covalent modifications of rapamycin. And nanoparticles are
433 recognized as a well-established platform for controlled drug delivery, which promises extra
434 benefits for *in vivo* applications³².

435 Besides opto-chemogenetics based on rapamycin@PDPP and FKBP/FRB in this work, other
436 optically-controlled dimerization methods (such as CRY2/CIB, UVR8/UVR8, and light-switchable
437 nanobodies) are commonly triggered by blue light or UV light⁶³⁻⁶⁵. Some newly designed
438 optogenetic systems could be triggered by NIR light but suffer from low efficacy when compared
439 to the FKBP/rapamycin/FRB system in practice^{66,67}. Here in this work, by taking advantage of two
440 separate but established lines of work, we designed and implemented a prototype of NIR-
441 triggered heterodimerization, as a feasible strategy of optogenetics.

442 Moreover, the membrane-assisted molecular linkage as proposed in this work opens up new
443 avenue to design dimerization tools. The first step is to adopt or devise cytosolic modules with no
444 or low weak affinities to dimerize; then, the cytosolic modules need to translocate onto the
445 membrane, e.g., by attaching membrane-anchoring tags such as Ras CAAX to monomeric
446 proteins or peptides. Combining with other molecular tools (such as rapamycin@PDPP in this
447 work), a general platform with controllable binding/dimerization can be achieved. It is a
448 challenging task to specifically design and implement optical control within each particular
449 molecule, considering the diverse interactions and mechanisms often difficult to intervene/control.
450 Instead, through a more universal strategy as demonstrated in this work, the desired dimer or
451 even binding complex can be achieved on the membrane with high spatiotemporal resolutions
452 without having to dig into the binding details.

453 **Insights into the coupling of Cav1 activities with neuronal development**

454 Cellular Ca²⁺ signals, especially transmembrane Ca²⁺ influx, play a central role in neural
455 development^{35,68}. Spontaneous, regenerative and correlated or even synchronized Ca²⁺ activities
456 are particularly important to neurite outgrowth, presumably owing to enhanced efficiency in gene
457 transcription in the nucleus and related downstream events⁶⁹. In addition, L-type Ca²⁺ channels
458 are proposed as the core mediator to specifically and mechanistically link Ca²⁺ oscillations, the
459 CaMKII-CREB signaling pathway, and also neuritogenesis altogether, i.e., the Cav1 activity-
460 neuritogenesis coupling¹⁷. However, due to multiple complications, this coupling needs additional
461 evidence before it can be fully established. The first complication is that transmembrane Ca²⁺ has
462 an array of sources, e.g., N-Methyl-D-aspartate (NMDA) receptors, TRP channels, Orai/STIM,
463 and Cav2⁷⁰. Another complication comes from the molecular tools that most studies are relying
464 on: pharmaceutical interventions based on DHP derivatives. Both Cav1 inhibitors and potentiators
465 have generated the data supporting the proposed coupling, but also encountered with many

466 complicated scenarios, e.g., the unexpected neuroprotection by DHP inhibitors, the differential
467 effects of Cd²⁺ and nimodipine on transcription signaling, and the off-target effects and
468 neurotoxicity of Bay-K-8644⁷¹⁻⁷³. Moreover, knock-out mice of Cav1.3-/- and Cav1.2-/- could also
469 provide useful information^{69,74}; however, they may not be suitable to certain studies on neural
470 development due to compensatory effects as reported^{75,76}. CMI peptides stand out as a
471 promising toolset to explore the molecular physiology of Cav1¹⁷. Now in this study, with optimized
472 P-D peptides and membrane-assisted inducible CMI, unprecedented evidence has been provided
473 to quantitatively characterize the coupling and its modulation. In this work, we not only validate
474 our design in both recombinant and neuronal systems, but also provide the direct evidence
475 strongly supporting that (apoCaM-bound) Cav1 is the molecular basis of the oscillatory Ca²⁺
476 signals in tight coupling with neurite outgrowth in cultured cortical neurons (Figure 7). We expect
477 that future studies deploying the findings and tools from this study will greatly help elucidate the
478 signaling pathways, mechanistic details and relevant pathophysiology of Cav1 in neurons.

479 **Therapeutic potentials of opto-chemogenetics and rapamycin@PDPP nanoparticles**

480 The proof-of-concept of opto-chemogenetic CMI highlights the therapeutic potential of CMI-based
481 antagonism in Cav1-related disorders, such as Parkinson's disease¹⁴. In fact, some subtypes of
482 congenital long QT syndromes are genetically associated with Cav1 and CaM, both of which lead
483 to alternations in channel activities and severe cardiac arrhythmias^{77,78}. Thus, Cav1 antagonisms
484 based on CMI may serve as the candidate treatments for LQT or like diseases. Moreover, NIR-
485 controlled CMI may enable noninvasive, high spatiotemporal, and tissue compatible interventions
486 of Cav1 in the heart and the brain. Notably, our design targets Cav1.3 as the representative
487 subtype, presumably expandable on Cav1.2 due to their shared CMI effects and mechanisms¹⁷.
488 Multiple variants and isoforms are expressed in the brain and heart^{20,22,23,79-82}. As demonstrated,
489 P+D and P-D peptides have differential capabilities to deal with Cav1.3 variants, which include
490 both the long and short α_{1D} in cortical and hippocampal neurons (Figure 8). For any particular
491 type of primary cells, it is necessary to conduct tests and analyses on each channel variant with
492 different peptides before proceeding further. Cav1.2-encoded P-D peptides derived from this work
493 have displayed excellent performance and characteristics, which invite additional optimizations
494 and further explorations with healthy and diseased neurons.

495 Enlightened and encouraged by optogenetics (e.g., channelrhodopsin), an increasing number of
496 optical tools have been developed for precise spatiotemporal control of physiological processes in
497 living cells, which are designated as 'optophysiology'⁸³. Optically-controlled and genetically-
498 encoded Ca²⁺ channel actuators/modulators are promising research directions in 'optophysiology'
499⁸⁴. In parallel, chemogenetics provides potent and robust control of physiological processes⁸⁵.
500 Development of chemogenetic Ca²⁺ channel modulators has also been actively pursued to
501 facilitate both basic and therapeutic research³¹. Our NIR-triggered CMI has seamlessly

502 integrated rapamycin@PDPP with chemogenetics, offering at least three aspects of advantages:
503 1. effective and robust control of FRB/FKBP binding (rapamycin); 2. high precision of
504 spatiotemporal control at single-cell resolution (photosensitive nanoparticles); 3. deep tissue
505 penetration with long-wavelength photostimulation (NIR) and high biocompatibility (nanomaterials
506 and genetically-encoded modulators). With all these benefits including the unique feature of NIR
507^{86,87}, we expect that our opto-chemogenetics prototype would be applicable broadly and
508 particularly beneficial to future *in vivo* applications.

509 **Author Contributions**

510 X.D.L. conceived, designed and supervised the project; Y.B.F. and C.F.X. helped organize and
511 oversee the project. J.L.G., Y.X.Y., B.Y.L., Z.Y., S.Q., W.Z., S.X.G., Y.L. and B.W. performed
512 the experiments and analyzed the data. N.L. provided preliminary patch-clamp data on peptide
513 effects. X.D.L. wrote and finalized the manuscript. All authors contributed to writing and revising
514 the manuscript

515 **Acknowledgments**

516 We thank all X-Lab members for discussions and help. This work is supported by the grants from
517 the National Natural Science Foundation of China (81971728 and 22077025), the Natural
518 Science Foundation of Hebei Province (B2023202030) and the China Postdoctoral Science
519 Foundation (2023M740968).

520

521 **Declaration of interest**

522 The authors declare no competing interests.

523

524 **Main figure titles and legends**

525 **Figure 1.** CMI effects on α_{1DS} by P+D peptides.

526 (A) Top: cartoon illustration of the Cav1.3 (splice variant 42A, denoted as α_{1DS}) channel. Middle:
527 representative current traces of α_{1DS} at the membrane potential (V) of -10 mV. Ca^{2+} current (I_{Ca} ,
528 with the scale bar on the left) and Ba^{2+} current (I_{Ba} , rescaled to I_{Ca}) are colored in red and gray,
529 respectively. The peak current (I_{peak} representing the peak amplitude in pA or alternatively the
530 current density in pA/pF) and the current at 50 ms (I_{50}) are to calculate r_{50} (ratio between I_{50} and
531 I_{peak} for both I_{Ca} and I_{Ba} , i.e., r_{Ca} and r_{Ba}). Bottom: inactivation (r_{50}) profiles across the full range of
532 V . The differences between r_{Ca} and r_{Ba} reflect CDI (Ca^{2+} -dependent inactivation), for which S_{Ca}
533 (defined as $1-r_{Ca}$ at -10 mV) serves as the major index of CDI strength.

534 (B) The negative control: two separate DCRD and PCRD (i.e., P+D) peptides in the cytoplasm.
535 Both CFP-DCRD and YFP-PCRD were expressed together with α_{1DS} channels. The schematic
536 illustration, current traces and r_{50} profiles are shown. The inactivation r_{Ca} profiles of the α_{1DS} group
537 (in pale red) versus the group of cytosolic P+D peptides (in red) are compared.
538 (C) The design scheme (Scheme I) of PCRD on the membrane anchored by the Ras/CAAX tag
539 while DCRD in the cytosol. The inactivation r_{Ca} profiles of the control group (in pale red) versus
540 the peptide group (in red) are compared, for which their differences are highlighted by green
541 shade.
542 (D) The design scheme (Scheme II) of DCRD on the membrane while PCRD in the cytosol.
543 (E) The design scheme (Scheme III) of anchoring both DCRD and PCRD on the membrane.
544 (F) Statistical summary of CDI strength (S_{Ca}) and CMI potency (CMI in percentage). CMI potency
545 is defined as the change in CDI: $(S_{Ca,Control} - S_{Ca,Peptide})/S_{Ca,Control}$, where the control is α_{1DS} . All
546 statistical data are given as mean \pm SEM (Standard Error of the Mean), with One-way ANOVA
547 followed by Dunnett for post hoc tests: **, $p<0.01$; n.s., or not significant, $p>0.05$.
548 See also Figure S1.

549 **Figure 2.** High FRET efficiency promoted by membrane-anchoring Ras/CAAX tag.
550 (A) Schematic diagram of cytosolic and membrane-anchored FRET pairs of CFP-DCRD and
551 YFP-PCRD. Once DCRD-CFP and PCRD-YFP are anchored onto the membrane by the
552 Ras/CAAX tag, a putative molecular linkage (pink area) appears to be formed.
553 (B) FRET imaging to examine the relationship between DCRD-CFP-Ras and PCRD-YFP-Ras.
554 (C) Quantitative 2-hybrid 3-cube FRET describing the relationship between the FRET ratio (FR)
555 and the donor fluorescence intensity (or concentration, *Donor*). Each dot indicates one HEK293
556 cell. The two FRET pairs of co-expressed P+D, i.e., Ras-tagged (pink) versus cytosolic (green)
557 CFP-DCRD and YFP-PCRD, were compared. The CFP-YFP dimer and CFP/YFP co-expression
558 serve as the positive (blue) and negative (gray) control, respectively.
559 (D) Schematic diagram of cytosolic and membrane-anchored FRET pairs of CFP and YFP. The
560 pink area indicates potential linkage between CFP and YFP.
561 (E) FRET imaging to examine the relationship between CFP-Ras and YFP-Ras.
562 (F) The FRET pairs were examined including CFP-Ras and YFP-Ras (co-expression, red), CFP-
563 YFP-Ras (dimer, cyan), CFP-ER/K-Ras (dimer, dark green). The two control lines (gray and blue)
564 are directly adopted from (C).
565

566 **Figure 3.** CMI effects of Cav1.2-encoded peptides (P-D) on α_{1DL} .

567 (A) Top: illustration of Cav1.3 long (denoted as α_{1DL}). Middle: representative I_{Ca} and I_{Ba} traces of
568 α_{1DL} at the membrane potential (V) of -10 mV. Bottom: voltage-dependent inactivation profiles of
569 r_{50} .

570 (B) The design scheme for the P-D type of peptide CCATc (P-D) encoded by Cav1.2 DCT. The
571 inactivation r_{Ca} profiles of the α_{1DL} group (in pale red) versus the group of cytosolic P-D peptides
572 (in red) are compared.

573 (C) The design scheme of membrane-anchored P-D peptides. α_{1DL} channels were co-expressed
574 with Ras-mRuby-CCATc. The inactivation r_{Ca} profiles of the group of P-D peptides (in red) versus
575 the α_{1DL} control group (in pale red) are compared, for which their differences are highlighted by
576 green shade.

577 (D) Statistical summary of the strength of CDI (S_{Ca}) and CMI potency (CM_I). Data points are
578 presented as mean \pm SEM, with the corresponding significance: ***, $p<0.001$; n.s., $p>0.05$.

579 See also Figure S2.

580

581 **Figure 4.** Chemical and optical induction of rapid cytosol-membrane translocation.

582 (A) The general design scheme for chemical or optical induction of membrane translocation.
583 Rapamycin or encapsulated rapamycin releasing from rapamycin@PDPP nanoparticles after 808
584 nm NIR laser irradiation induces FRB/FKBP heterodimerization. In response to chemical or
585 optical induction, YFP-FKBP-DCRD and YFP-FKBP-PCRD (P+D) rapidly translocate from cytosol
586 to the plasma membrane, where FRB-CFP-Ras is constitutively anchored on the membrane.

587 (B) Representative confocal images to illustrate the rapid translocations of cytosolic DCRD and
588 PCRD onto the plasma membrane within 5 min upon rapamycin induction. HEK293 cells were
589 transfected with YFP-FKBP-DCRD, YFP-FKBP-PCRD, and FRB-CFP-Ras. 1 μ M rapamycin or
590 vehicle (0.1% DMSO, negative control) was applied. The scale bar is 5 μ m.

591 (C) The representative fluorescence intensity profiles before or 300 s after induction, based on
592 the cross sections (red lines) in the images. Fm and Fc represent membranal fluorescence and
593 cytosolic fluorescence, respectively.

594 (D) Representative confocal images to illustrate NIR induction of translocations of cytosolic YFP-
595 FKBP-DCRD and YFP-FKBP-PCRD (P+D) to the plasma membrane in real-time and *in situ*. 25
596 μ g/ml rapamycin@PDPP nanoparticles were incubated with cells for 15 min and irradiated by NIR
597 for 5 min to release the rapamycin reaching the final concentration of 1 μ M *in situ*, then imaged
598 for 22 min to monitor peptide translocations. The concentration of rapamycin@PDPP
599 nanoparticles was calibrated according to the UV standard curve of conjugated polymer PDPP.

600 The scale bar is 5 μ m.

601 (E) The representative fluorescence intensity profiles at 0 min, 15 min and 37 min.

602 (F) Temporal profiles of the ratio of membranal fluorescence to cytosolic fluorescence (Fm/Fc).

603 The red bar indicates 5 min of NIR exposure.

604 All statistical data are given as mean \pm SEM.

605 See also Figure S3.

606

607 **Figure 5.** Opto-chemogenetics of membrane-assisted CMI on α_{1DS} by P+D peptides.

608 (A) The design scheme of chemogenetic or opto-chemogenetic CMI. Rapamycin or opto-
609 chemical control of rapamycin releasing from rapamycin@PDPP nanoparticles is intended to
610 induce rapid translocation of YFP-FKBP-DCRD and YFP-FKBP-PCRD from the cytosol to the
611 plasma membrane.

612 (B, C) Rapamycin-induced CMI through translocation of P+D peptides onto the membrane. YFP-
613 FKBP-DCRD and YFP-FKBP-PCRD were co-expressed with FRB-CFP-Ras. Exemplars of Ca^{2+}
614 current traces demonstrate effective inhibition by 1 μ M rapamycin, where both the peak (I_{peak}) and
615 steady-state amplitude (at 300 ms, i.e., I_{300}) are indicated by the dashed lines (B). Temporal
616 profiles of S_{Ca} along with CMI (left) and normalized I_{peak} (right) demonstrate rapamycin-induced
617 attenuation in comparison with α_{1DS} control (C). Data points connected by lines (in green and
618 blue) represent the values of S_{Ca} or I_{peak} before and after rapamycin application, respectively.

619 (D) Opto-chemogenetic CMI for α_{1DS} . HEK293 cells expressing recombinant α_{1DS} , FRB-CFP-Ras,
620 YFP-FKBP-PCRD, and YFP-FKBP-DCRD were treated with rapamycin@PDPP nanoparticles.
621 NIR irradiation for 5 min to trigger the release of rapamycin reaching the final concentration of 1
622 μ M. Representative Ca^{2+} traces at different timepoints are featured with a declining trend of I_{peak}
623 and the characteristic stable I_{300} .

624 (E) Temporal profiles of inactivation S_{Ca} along with potency CMI (left) and normalized I_{peak} (right).

625 Before (green) and after 5-min NIR exposure (blue), I_{Ca} currents were recorded every 30 s.

626 Dotted lines in black and cyan represent the control groups of the vehicle (0.1% DMSO, details in
627 Figure S4D-S4F) or rapamycin (direct application, adapted from Figure 5C).

628 All statistical data are given as mean \pm SEM.

629 See also Figure S4-S7.

630

631 **Figure 6.** P-D peptides inducibly suppress recombinant Cav1.3 channels and neuronal Ca^{2+}
632 oscillations.

633 (A-C) Rapamycin-induced membrane-targeting of Cav1.2 DCT-encoded PCRD_C-DCRD_C (P_CD_C)
634 and effective CMI for Cav1.3 long (α_{1DL}). Membrane-anchored FRB-CFP-Ras recruited FKBP-
635 YFP-P_CD_C onto the membrane by rapamycin-mediated FRB/FKBP binding (A). CMI was induced
636 presumably by effective linkage between membrane-anchored P_CD_C and α_{1DL} . Exemplars of Ca^{2+}

637 current traces demonstrate the reduction in the peak amplitude (I_{peak} , dotted line) by 1 μ M
638 rapamycin (A). Temporal files of S_{Ca} along with CMI potency (CMI) (B) and normalized I_{peak} (C)
639 are to show rapamycin-induced attenuation. Data points in green and blue (connected by lines)
640 represent the values of S_{Ca} or I_{peak} before and after rapamycin administration, respectively.
641 (D-F) Rapamycin-induced membrane-targeting of P_cD_c and effective CMI for α_{1DS} . Membrane-
642 anchored FRB-CFP-Ras recruited FKBP-YFP-P_cD_c to the membrane by rapamycin-mediated
643 FRB/FKBP binding (D). Effective CMI was induced presumably by effective connection between
644 membranous P_cD_c and α_{1DS} . Exemplars of Ca^{2+} current traces demonstrate the effective
645 inhibition on I_{peak} by 1 μ M rapamycin (D). Temporal files of S_{Ca} and CMI (E) and normalized I_{peak}
646 (F) are shown, where data points in green and blue (connected by lines) represent the values of
647 S_{Ca} or I_{peak} before and after rapamycin application, respectively.
648 (G) Experimental protocol for acute inhibition on cultured cortical neurons. 10 μ M rapamycin was
649 added to neurons expressing membrane-anchored FRB-mRuby-Ras and cytosolic FKBP-CFP-
650 P_cD_c by lentivirus transfection at DIV 11. Confocal imaging was performed before and after
651 rapamycin treatment at the indicated timepoints.
652 (H) The Ca^{2+} probes, P-D peptides and induction modules were co-expressed in neurons, subject
653 to confocal fluorescence imaging: jGCaMP7b-X_C (green), FRB-mRuby-Ras (red), and FKBP-CFP-
654 P_cD_c (blue).
655 (I) Time-lapse confocal images of Ca^{2+} dynamics in cortical neurons at DIV 11. Color-coded
656 fluorescence intensities (as shown in the scale bar) of jGCaMP7b-X_C reflect the concentrations of
657 cellular Ca^{2+} signals.
658 (J, K) Spontaneous Ca^{2+} activities in a control neuron (J) or a neuron with rapamycin-inducible
659 CMI (K).
660 (L, M) Key indices to quantify Ca^{2+} dynamics in the control group (L) and the neurons expressing
661 CMI modules (M), including the average frequency (mHz) (left), the peak amplitude ($\Delta F/F_0$)
662 (middle), and the Ca^{2+} influx AUC (calculated as $\Delta F/F_0$ per min) (right).
663 All statistical data are given as mean \pm SEM. One-way ANOVA followed by Dunnett for post hoc
664 test is used for L, M: ***, $p<0.001$; n.s., $p>0.05$.
665 See also Figure S8 and S9.
666

667 **Figure 7.** Inducible inhibition of the Cav1 influx-neuritogenesis coupling in cortical neurons.
668 (A, B) Neurite tracing and fluorescence Ca^{2+} imaging, before (DIV 11) and after (represented by
669 DIV 12 and DIV 18) 10 μ M rapamycin induction, from the control neurons (A) versus the neurons
670 expressing FRB-mRuby-Ras and FKBP-CFP-P_cD_c (B).

671 (C) Time-dependent profiles of neurite outgrowth, described by the correlation between the total
672 length per single neuron (μm) and the development stage (DIV), corresponding to the control
673 neurons and the neurons subject to rapamycin-induced inhibition.
674 (D) Time-dependent profiles of Ca^{2+} influx, described by the correlation between AUC ($\Delta F/F_0$ per
675 min) of Ca^{2+} oscillations and the development stage (DIV).
676 (E) Temporal profiles of NGR (neurite growth rate, μm per day), which is derived from the total
677 length-DIV curve (C). The dotted line represents the process of CMI induction.
678 (F) Relationships between AUC (D) and NGR (E). The arrows indicate the temporal trends of
679 neuronal development and its inhibition.
680 All data points are calculated by mean \pm SEM.
681 See also Figure S10.
682

683 **Figure 8.** Summary of membrane-assisted molecular linkage and Cav1 inhibition with opto-
684 chemogenetic induction.
685 In neurons, Cav1 channels of two particular subgroups are targeted by CMI, represented by $\alpha_{1\text{DS}}$
686 channels (without DCT) or a fraction of $\alpha_{1\text{DL}}$ channels (containing the DCT domain but not auto-
687 inhibited). This study designs and implements two major types of CMI peptides: P+D, represented
688 by PCRD and DCRD peptides derived from Cav1.3/1.4 DCT; and P-D, represented by Cav1.2-
689 encoded PCRD-DCRD. These peptides are devised mainly based on our data suggesting that
690 the Ras/CAAX tags are able to form a type of effective linkage between the Ras-anchored
691 peptides and the proteins on the membrane (indicated by pink shade). For $\alpha_{1\text{DS}}$, the P+D peptide
692 has proven effective in creating a linkage; and for apoCaM-bound $\alpha_{1\text{DL}}$, P-D serves as the
693 suitable solution, achieving minimum CMI at the basal state and potent CMI upon induction. The
694 induction method is a combination of rapamycin-mediated FRB/FKBP binding and NIR-
695 responsive rapamycin@PDPP nanoparticles, as our practical solution for opto-chemogenetics
696 targeting Cav1. As proof of principle, P-D peptides are able to induce acute, specific and potent
697 inhibitions on channels and neurons. This provides new evidence from a unique perspective,
698 supporting the notion that Cav1-dependent Ca^{2+} oscillations and neurite outgrowth are tightly
699 coupled.
700

701 **Methods**

702

703 **Molecular biology.** YFP-FKBP-DCRD (Addgene ID: 87453), YFP-FKBP-PCRD (Addgene ID: 704 87452), and FRB-CFP-Ras (Addgene ID: 87451) are available on Addgene. YFP-PCRD, YFP- 705 DCRD, CFP-DCRD, YFP-CCAT_C, Cav1.3 α_{1DS} (AF370009.1) and Cav1.3 α_{1DL} (NM_001389225.2) 706 are from previous study^{14,17}. PCRD-CFP-Ras and DCRD-CFP-Ras were generated by replacing 707 the FRB in FRB-CFP-Ras with PCRD or DCRD, respectively. Constructs of PCRD-YFP-Ras, 708 CFP-Ras, YFP-Ras and CFP-YFP-Ras were made by appropriate design. For CFP-ER/K-YFP- 709 Ras, ER/K α -helix (206 a.a.) were inserted between CFP and YFP sequence of CFP-YFP-Ras 710 with BspEI sites²⁹. For Ras-mRuby-CCAT_C, the Ras tag (KLNPPDESGPGCMSCKCVLS) was 711 PCR-amplified and fused to the N-terminus of mRuby, then inserted into YFP-CCAT_C with KpnI 712 and NotI to replace YFP. For FKBP-YFP-PcDc, the FKBP was PCR-amplified with KpnI and 713 BamHI sites and fused to the N-terminus of YFP-PcDc and then cloned into pcDNA4 vector. Ras- 714 FKBP-YFP-PcDc, with PCR-amplified Ras tag was fused to the N-terminus of FKBP-YFP-PcDc, 715 inserting into a customized pcDNA3 vector via unique KpnI and XbaI sites.

716 **Transfection of cDNA constructs in HEK293 cells.** HEK293 cell line (ATCC) was free of 717 mycoplasma contamination, checked by PCR with primers 5'- GGCAGATGGGTGAGTAACACG - 718 3' and 5'- CGGATAACGCTTGCACCTATG -3'. For electrophysiology recording, cells were 719 cultured in 60 mm dishes. Recombinant channels were transiently transfected according to an 720 established calcium phosphate protocol¹⁹. We applied 4 μ g-5 μ g of cDNA encoding the desired 721 channel α_{1D} subunit, along with 4 μ g of rat brain β_{2a} (NM_053851.2) and 4 μ g of rat brain $\alpha_{2\delta}$ 722 (NM_012919.3) subunits. Additional 2 μ g of cDNA was added as required in co-transfections. 723 cDNA for simian virus 40 T antigen (1 μ g) was also co-transfected to enhance the expression of 724 channels. Cells were washed with PBS 6 hours after transfection and maintained in culture 725 medium of supplemented DMEM, then incubated for at least 48 hours in a water-saturated 5% 726 CO₂ incubator at 37°C before whole-cell recordings. For confocal fluorescence imaging, HEK293 727 cells were cultured in 35 mm confocal dishes. 2 μ g of desired cDNA was transfected by 728 lipofectamine 2000 (Invitrogen) for 6 hours. Cells were used after 2 days.

729 **Whole-cell electrophysiological recording.** Whole-cell recordings of transfected HEK293 cells 730 were obtained at room temperature (25°C) using an Axopatch 700B amplifier (Axon Instruments). 731 Electrodes were pulled with borosilicate glass capillaries by a programmable puller (P-1000, 732 Sutter Instruments, Novato, CA) and heat-polished by a microforge (MF-830, Narishige, Japan), 733 resulting in 3-5 M Ω resistances, before series resistance compensation of about 70%. The 734 internal solutions contained (in mM): CsMeSO₃, 135; CsCl, 5; MgCl₂, 1; MgATP, 4; HEPES, 5; 735 and EGTA, 5, adjusted to 290~300 mOsm with glucose and pH 7.3 with CsOH. The extracellular

736 solutions contained (in mM): TEA-MeSO₃, 135; HEPES, 10; CaCl₂ or BaCl₂, 10, adjusted to
737 300~310 mOsm with glucose and pH 7.3 with TEAOH. Whole-cell currents were generated from
738 a family of step depolarization (-60 to +50 mV from a holding potential of -70 mV) or a series of
739 repeated step depolarization (-10 mV from a holding potential of -70 mV). Currents were recorded
740 at 2 kHz low-pass filtering. Traces were acquired at a minimum repetition interval of 30 s. P/8 leak
741 subtraction was used throughout. Rapamycin (Solarbio, or Aladdin) was dissolved in DMSO as
742 10 mM or 1 mM stock solution, stored at -20°C, and then diluted to 1 μM using extracellular Ca²⁺
743 solution before electrophysiological recordings.

744 **2-hybrid 3-cube FRET.** All the FRET experiments were performed in Tyrode's buffer containing
745 2 mM Ca²⁺. An inverted epi-fluorescence microscope (Ti-U, Nikon) was used with computer-
746 controlled filter wheels (Sutter Instrument) to coordinate with dichroic mirrors for appropriate
747 imaging at excitation, emission, and FRET channels. The following filters sets were utilized:
748 excitation: 438/24 nm and 480/30 nm; emission: 483/32 nm and 535/40 nm; dichroic mirrors: 458
749 nm and 505 nm. Fluorescence images were acquired with a Neo sCMOS camera (Andor
750 Technology), which were analyzed with 3³-FRET algorithms coded in Matlab (Mathworks).

751 **Confocal fluorescence imaging.** Fluorescence images were obtained in HEK293 cells
752 expressing membrane-localized CFP-tagged FRB and with YFP-tagged cytoplasmic FKBP-
753 PCRD/DCRD on 30 mm confocal dishes. The images were captured at 30 s intervals. Cells were
754 applied with 1 μM rapamycin, 0.1% DMSO (vehicle), and 25 μg/ml rapamycin@PDPP with or
755 without the stimuli of 808 nm near-infrared laser using a Hi-Tech high power laser generator.
756 Images were recorded with Olympus Fluoview FV300 or Zeiss LSM710 laser scanning confocal
757 microscopes. Images were analyzed using Imaris 7.7.2 and ImageJ. Fluorescence imaging of
758 cultured neurons was performed on Dragonfly High Speed Confocal Microscope (Dragonfly 200,
759 Andor, England) and with Fusion software. Measurement of the total length for neurites was
760 performed with Imaris 7.7.2 (Bitplane). Only non-overlapping neurons were selected for analysis
761 and images of at least 21 neurons from two independent culture preparations were analyzed.

762 **Preparation of drugs@PDPP nanoparticles.** PDPP (0.5 μμ), DSPE-PEG2000-NH₂ (3 mg,
763 Tansh-Tech Technology Company, Guangzhou, China) and rapamycin (0.5 mg) were dissolved
764 in 1 ml of THF (tetrahydrofuran) and sonicated for 30 min, then DPPC (8 mg, Rowen) was
765 dissolved in 200 μl of dichloromethane and sonicated. The two solutions were mixed and
766 sonicated again for 30 min, and the mixture was quickly transferred to 9 ml of ultrapure water until
767 the ultrasonic solution became clear, and then placed on a stirring table to stir for 8 hours. Argon
768 was blown into the solution for 1.5 hours, and then the solution was placed on a stirring table to
769 stir for 8 hours to obtain the rapamycin@PDPP solutions. The preparation of Cy5@PDPP
770 solutions was similar to rapamycin@PDPP solutions. Briefly, rapamycin was not added to THF at

771 the first step. The mixture solution containing PDPP, DSPE-PEG2000-NH₂ and DPPC was
772 heated to 65°C and then added with Cy5. After stirring for 10 min, the solution was ultrasonic for
773 30 min to get Cy5@PDPP solution. In addition, the solution was transferred to a 3500k dialysis
774 bag, and the excess organic solvent was removed by dialysis for two days to obtain the final
775 rapamycin@PDPP or Cy5@PDPP nanoparticles. For Cy5&rapamycin@PDPP nanoparticles,
776 rapamycin@PDPP solution was mixed with Cy5 (0.5 mg), heated to 65°C, stirred for 10 min, and
777 sonicated for 30 min to obtain the Cy5&rapamycin@PDPP nanoparticles. All nanoparticle
778 solutions were centrifuged at 6,500 rpm for 20 min to obtain concentrated solutions after
779 ultrafiltration, and the concentration of nanoparticles was determined by ultraviolet absorption
780 spectrum for subsequent experiments.

781 **Determination of UV absorption spectra of drug@PDPP nanoparticles.** Rapamycin@PDPP,
782 Cy5@PDPP, and Cy5&rapamycin@PDPP nanoparticles were concentrated to a concentration
783 greater than 500 µg/ml using a 100k ultrafiltration tube. The concentrated solution of 30 µl
784 nanoparticles was diluted 20 times, then the sample was scanned by UV absorption spectrum.
785 The UV absorbance of nanoparticles at 808 nm was recorded to calculate the concentration
786 according to the standard curve equation of PDPP.

787 **Particle size measurement of drug@PDPP nanoparticles.** Ultrapure water was used to dilute
788 the nanoparticles to an appropriate concentration for reserve. The dynamic light scattering
789 particle size meter was turned on and preheated for 20 min in advance. 1 ml of the nanoparticle
790 solution was added to the dedicated particle size colorimeter and put into the detection tank to
791 measure the particle sizes.

792 **Analysis of temperature rise curve of rapamycin@PDPP nanoparticles.** 200 µl of ultra-pure
793 water was added to a 96-well plate, and the temperature of the solution was recorded under near-
794 infrared laser irradiation (808 nm, 5 min, Hi-Tech high power laser generator). Subsequently,
795 rapamycin@PDPP nanoparticles with concentrations of 5 µg/ml, 10 µg/ml and 20 µg/ml were
796 irradiated according to the requirements of sample addition and irradiation, and the change in
797 solution temperature was recorded. The obtained data were imported into the drawing software
798 for analysis, and the temperature rise statistics of nanoparticles were completed.

799 **Photothermal stability analysis of rapamycin@PDPP nanoparticles.** Rapamycin@PDPP
800 (200 µl) nanoparticles were added to the 96-well plate and irradiated with a laser at 808 nm for 5
801 min to achieve the highest temperature. Then the laser was turned off to allow cooling for 15 min
802 to return to its original temperature. Real-time readings were taken every 30 seconds during
803 heating and cooling cycles. This procedure was repeat 3 times to complete the whole cycle of
804 heating and cooling.

805 **Near-infrared photothermal imaging analysis of rapamycin@PDPP nanoparticles.**

806 Rapamycin@PDPP (200 μ l) nanoparticles were placed in a 96-well plate, and the nanoparticles
807 solution was irradiated by a laser at 808 nm. Photos were taken by a near-infrared imager (FLIR
808 T420 infrared thermal imager camera) every 60 s, and the images were processed by data
809 processing software to complete the near-infrared thermal imaging analysis of nanoparticles.

810 **Confocal fluorescence imaging of Cy5 released from Cy5&rapamycin@PDPP**

811 **nanoparticles.** 2 ml of prepared nanoparticles were dropped onto confocal dishes and
812 irradiated with 808 nm laser for 0, 0.5, 1, 2, 3, 4 or 5 min, respectively. Then samples were dried
813 and imaged with a Leica SP5 confocal laser scanning microscope to capture the fluorescence of
814 Cy5.

815 **Dissection and culturing of cortical and hippocampus neurons.** Cortical neurons or
816 hippocampus neurons were dissected from newborn ICR mice or SD rat, respectively. The
817 tissues of cortex or hippocampus were isolated and then digested with 0.25% trypsin without
818 EGTA for 15 min at 37°C. Then digestion was terminated by Dulbecco's modified Eagle medium
819 (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics. The cell
820 suspension was sieved through a filter and centrifuged at 1,000 rpm for 5 min. The cell pellet was
821 resuspended in DMEM supplemented with 10% FBS and were plated on poly-D-lysine-coated 35
822 mm No. 0 confocal dishes (In Vitro Scientific). After 4 hours, neurons were maintained in
823 Neurobasal medium supplemented with 2% B27 and 1% GlutaMAX-I (growth medium), and
824 cultured in the incubator with temperature of 37°C and 5% CO₂. All animals were obtained from
825 Beijing Vital River Laboratory Animal Technology Co., Ltd. Procedures involving animals were
826 approved by local institutional ethical committees (Beihang University).

827 **Virus infection on cultured neurons.** AAV2/DJ-*hSyn*-jGCaMP7b-X_C virus was used for
828 infection of cultured neurons (Hanbio Biotechnology, China). Other viruses include pSLenti-*hSyn*-
829 FKBP-CFP-P_cD_c-WPRE, pSLenti-*hSyn*-FRB-mRuby-Ras-WPRE and pAAV2/9 -*hSyn*-NES-
830 jRGECO1a-WPRE viruses (OBiO Technology, China). 1 μ l of 1 \times 10¹² v.g./ml of the desired
831 adeno-associated virus or 1-2 μ l of 1 \times 10⁸ TU/ml of the desired lentivirus were added to growth
832 medium at DIV 0 unless otherwise indicated. Neuronal experiments were repeated independently
833 at least twice.

834 **Transfection of cDNA constructs in neurons.** 1 μ g of cDNA mixed with 1 μ l PLUSTM reagent
835 were transiently transfected into DIV 3-7 cultured neurons by LipofectamineTM LTX (Invitrogen)
836 with a typical protocol according to the manual. The Opti-MEM containing plasmids and
837 LipofectamineTM LTX was added to the Neurobasal medium for transfection. After 2 hours,

838 neurons were maintained in Neurobasal medium supplemented with 2% B27 and 1% GlutaMAX-I
839 for at least 2 days before imaging.

840 **Data analysis and statistics.** Data were analyzed in Matlab, OriginPro and GraphPad Prism
841 software. The values of standard error of mean (S.E.M) or standard derivation (S.D.) were
842 calculated. Two-tailed Student's *t*-test, paired *t*-test, or One-way ANOVA followed by Dunnett for
843 post hoc test were applied when applicable. *, $p<0.05$; **, $p<0.01$; ***, $p<0.001$; n.s. or not
844 significant, $p>0.05$.

845

846

References

847 1. Striessnig, J., Pinggera, A., Kaur, G., Bock, G., and Tuluc, P. (2014). L-type Ca(2+) channels
848 in heart and brain. Wiley interdisciplinary reviews. Membrane transport and signaling 3,
849 15-38. 10.1002/wmts.102.

850 2. Xu, W., and Lipscombe, D. (2001). Neuronal Ca(V)1.3alpha(1) L-type channels activate at
851 relatively hyperpolarized membrane potentials and are incompletely inhibited by
852 dihydropyridines. The Journal of neuroscience : the official journal of the Society for
853 Neuroscience 21, 5944-5951. 10.1523/jneurosci.21-16-05944.2001.

854 3. Catterall, W.A. (2011). Voltage-gated calcium channels. Cold Spring Harbor perspectives
855 in biology 3, a003947. 10.1101/csdperspect.a003947.

856 4. Mesirca, P., Fedorov, V.V., Hund, T.J., Torrente, A.G., Bidaud, I., Mohler, P.J., and
857 Mangoni, M.E. (2021). Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu
858 Rev Pharmacol Toxicol 61, 757-778. 10.1146/annurev-pharmtox-031120-115815.

859 5. Baig, S.M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nürnberg, G., Ali, A., Ahmad,
860 I., Sinnegger-Brauns, M.J., Brandt, N., et al. (2011). Loss of Ca(v)1.3 (CACNA1D) function
861 in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14,
862 77-84. 10.1038/nn.2694.

863 6. Azizan, E.A., Poulsen, H., Tuluc, P., Zhou, J., Clausen, M.V., Lieb, A., Maniero, C., Garg, S.,
864 Bochukova, E.G., Zhao, W., et al. (2013). Somatic mutations in ATP1A1 and CACNA1D
865 underlie a common subtype of adrenal hypertension. Nature genetics 45, 1055-1060.
866 10.1038/ng.2716.

867 7. Splawski, I., Timothy, K.W., Sharpe, L.M., Decher, N., Kumar, P., Bloise, R., Napolitano,
868 C., Schwartz, P.J., Joseph, R.M., Condouris, K., et al. (2004). Ca(V)1.2 calcium channel
869 dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119,
870 19-31. 10.1016/j.cell.2004.09.011.

871 8. Han, D., Xue, X., Yan, Y., and Li, G. (2019). Dysfunctional Cav1.2 channel in Timothy
872 syndrome, from cell to bedside. Exp Biol Med (Maywood) 244, 960-971.
873 10.1177/1535370219863149.

874 9. Chan, C.S., Guzman, J.N., Ilijic, E., Mercer, J.N., Rick, C., Tkatch, T., Meredith, G.E., and
875 Surmeier, D.J. (2007). 'Rejuvenation' protects neurons in mouse models of Parkinson's
876 disease. Nature 447, 1081-1086. 10.1038/nature05865.

877 10. Cross-Disorder Group of the Psychiatric Genomics, C. (2013). Identification of risk loci
878 with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet
879 381, 1371-1379. 10.1016/S0140-6736(12)62129-1.

880 11. Ortner, N.J., and Striessnig, J. (2016). L-type calcium channels as drug targets in CNS
881 disorders. Channels (Austin) 10, 7-13. 10.1080/19336950.2015.1048936.

882 12. Striessnig, J., Bolz, H.J., and Koschak, A. (2010). Channelopathies in Cav1.1, Cav1.3, and
883 Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch 460, 361-374.
884 10.1007/s00424-010-0800-x.

885 13. Zamponi, G.W., Striessnig, J., Koschak, A., and Dolphin, A.C. (2015). The Physiology,
886 Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future
887 Therapeutic Potential. Pharmacological reviews 67, 821-870. 10.1124/pr.114.009654.

888 14. Liu, N., Yang, Y., Ge, L., Liu, M., Colecraft, H.M., and Liu, X. (2017). Cooperative and acute
889 inhibition by multiple C-terminal motifs of L-type Ca(2+) channels. eLife 6.
890 10.7554/eLife.21989.

891 15. Ben-Johny, M., and Yue, D.T. (2014). Calmodulin regulation (calmodulation) of voltage-
892 gated calcium channels. *J Gen Physiol* **143**, 679-692. 10.1085/jgp.201311153.

893 16. Sang, L., Vieira, D.C.O., Yue, D.T., Ben-Johny, M., and Dick, I.E. (2021). The molecular
894 basis of the inhibition of CaV1 calcium dependent inactivation by the distal carboxy tail.
895 *J Biol Chem*, 100502. 10.1016/j.jbc.2021.100502.

896 17. Yang, Y., Yu, Z., Geng, J., Liu, M., Liu, N., Li, P., Hong, W., Yue, S., Jiang, H., Ge, H., et al.
897 (2022). Cytosolic peptides encoding Ca(V)1 C-termini downregulate the calcium channel
898 activity-neuritogenesis coupling. *Communications biology* **5**, 484. 10.1038/s42003-022-
899 03438-1.

900 18. Adams, P.J., Ben-Johny, M., Dick, I.E., Inoue, T., and Yue, D.T. (2014). Apocalmodulin
901 itself promotes ion channel opening and Ca(2+) regulation. *Cell* **159**, 608-622.
902 10.1016/j.cell.2014.09.047.

903 19. Liu, X., Yang, P.S., Yang, W., and Yue, D.T. (2010). Enzyme-inhibitor-like tuning of Ca(2+)
904 channel connectivity with calmodulin. *Nature* **463**, 968-972. 10.1038/nature08766.

905 20. Bock, G., Gebhart, M., Schäringer, A., Jangsangthong, W., Busquet, P., Poggiani, C.,
906 Sartori, S., Mangoni, M.E., Sinnegger-Brauns, M.J., Herzig, S., et al. (2011). Functional
907 properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.
908 *J Biol Chem* **286**, 42736-42748. 10.1074/jbc.M111.269951.

909 21. Tan, B.Z., Jiang, F., Tan, M.Y., Yu, D., Huang, H., Shen, Y., and Soong, T.W. (2011).
910 Functional characterization of alternative splicing in the C terminus of L-type CaV1.3
911 channels. *J Biol Chem* **286**, 42725-42735. 10.1074/jbc.M111.265207.

912 22. Singh, A., Gebhart, M., Fritsch, R., Sinnegger-Brauns, M.J., Poggiani, C., Hoda, J.C., Engel,
913 J., Romanin, C., Striessnig, J., and Koschak, A. (2008). Modulation of voltage- and Ca2+-
914 dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-
915 terminal regulatory domain. *J Biol Chem* **283**, 20733-20744. 10.1074/jbc.M802254200.

916 23. Abele, K., and Yang, J. (2012). Regulation of voltage-gated calcium channels by
917 proteolysis. *Sheng li xue bao : [Acta physiologica Sinica]* **64**, 504-514.

918 24. Lu, L., Sirish, P., Zhang, Z., Woltz, R.L., Li, N., Timofeyev, V., Knowlton, A.A., Zhang, X.D.,
919 Yamoah, E.N., and Chiamvimonvat, N. (2015). Regulation of gene transcription by
920 voltage-gated L-type calcium channel, Cav1.3. *J Biol Chem* **290**, 4663-4676.
921 10.1074/jbc.M114.586883.

922 25. Zhou, Y., Prakash, P., Gorfe, A.A., and Hancock, J.F. (2018). Ras and the Plasma
923 Membrane: A Complicated Relationship. *Cold Spring Harb Perspect Med* **8**.
924 10.1101/cshperspect.a031831.

925 26. Algar, W.R., Hildebrandt, N., Vogel, S.S., and Medintz, I.L. (2019). FRET as a biomolecular
926 research tool - understanding its potential while avoiding pitfalls. *Nat Methods* **16**, 815-
927 829. 10.1038/s41592-019-0530-8.

928 27. Duan, Z., Li, K., Duan, W., Zhang, J., and Xing, J. (2022). Probing membrane protein
929 interactions and signaling molecule homeostasis in plants by Forster resonance energy
930 transfer analysis. *J Exp Bot* **73**, 68-77. 10.1093/jxb/erab445.

931 28. Bajar, B.T., Wang, E.S., Zhang, S., Lin, M.Z., and Chu, J. (2016). A Guide to Fluorescent
932 Protein FRET Pairs. *Sensors (Basel)* **16**. 10.3390/s16091488.

933 29. Sivaramakrishnan, S., and Spudich, J.A. (2011). Systematic control of protein interaction
934 using a modular ER/K alpha-helix linker. *Proc Natl Acad Sci U S A* **108**, 20467-20472.
935 10.1073/pnas.1116066108.

936 30. Hulme, J.T., Yarov-Yarovoy, V., Lin, T.W., Scheuer, T., and Catterall, W.A. (2006).
937 Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-
938 terminal domain. *The Journal of physiology* 576, 87-102. 10.1113/jphysiol.2006.111799.
939 31. Yang, T., Suhail, Y., Dalton, S., Kernan, T., and Colecraft, H.M. (2007). Genetically
940 encoded molecules for inducibly inactivating CaV channels. *Nature chemical biology* 3,
941 795-804. 10.1038/nchembio.2007.42.
942 32. Li, B., Wang, Y., Gao, D., Ren, S., Li, L., Li, N., An, H., Zhu, T., Yang, Y., Zhang, H., and Xing,
943 C. (2021). Photothermal Modulation of Depression-Related Ion Channel Function
944 through Conjugated Polymer Nanoparticles. *Advanced Functional Materials* 31,
945 2010757. <https://doi.org/10.1002/adfm.202010757>.
946 33. Li, N., Gao, D., Li, C., Wang, B., Li, B., Bao, B., Wu, M., Li, M., and Xing, C. (2022). Polymer
947 Nanoparticles Overcome Drug Resistance by a Dual-Targeting Apoptotic Signaling
948 Pathway in Breast Cancer. *ACS applied materials & interfaces*. 10.1021/acsami.1c23146.
949 34. Geng, J., Tang, Y., Yu, Z., Gao, Y., Li, W., Lu, Y., Wang, B., Zhou, H., Li, P., Liu, N., et al.
950 (2022). Chronic Ca(2+) imaging of cortical neurons with long-term expression of GCaMP-
951 X. *eLife* 11. 10.7554/eLife.76691.
952 35. Brini, M., Cali, T., Ottolini, D., and Carafoli, E. (2014). Neuronal calcium signaling:
953 function and dysfunction. *Cell Mol Life Sci* 71, 2787-2814. 10.1007/s00018-013-1550-7.
954 36. Buzsaki, G. (2002). Theta oscillations in the hippocampus. *Neuron* 33, 325-340.
955 10.1016/s0896-6273(02)00586-x.
956 37. Schlessinger, J. (2002). Ligand-induced, receptor-mediated dimerization and activation
957 of EGF receptor. *Cell* 110, 669-672. 10.1016/s0092-8674(02)00966-2.
958 38. Lunz, V., Romanin, C., and Frischauf, I. (2019). STIM1 activation of Orai1. *Cell Calcium* 77,
959 29-38. 10.1016/j.ceca.2018.11.009.
960 39. Lin, W.C., Iversen, L., Tu, H.L., Rhodes, C., Christensen, S.M., Iwig, J.S., Hansen, S.D.,
961 Huang, W.Y., and Groves, J.T. (2014). H-Ras forms dimers on membrane surfaces via a
962 protein-protein interface. *Proceedings of the National Academy of Sciences of the
963 United States of America* 111, 2996-3001. 10.1073/pnas.1321155111.
964 40. Mori, M.X., Vander Kooi, C.W., Leahy, D.J., and Yue, D.T. (2008). Crystal structure of the
965 CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic
966 implications for channel regulation by Ca2+. *Structure* 16, 607-620.
967 10.1016/j.str.2008.01.011.
968 41. Krishnamurthy, V.M., Semetey, V., Bracher, P.J., Shen, N., and Whitesides, G.M. (2007).
969 Dependence of effective molarity on linker length for an intramolecular protein-ligand
970 system. *J Am Chem Soc* 129, 1312-1320. 10.1021/ja066780e.
971 42. Psachoulia, E., Marshall, D.P., and Sansom, M.S. (2010). Molecular dynamics simulations
972 of the dimerization of transmembrane alpha-helices. *Accounts of chemical research* 43,
973 388-396. 10.1021/ar900211k.
974 43. McCabe, J.B., and Berthiaume, L.G. (1999). Functional roles for fatty acylated amino-
975 terminal domains in subcellular localization. *Mol Biol Cell* 10, 3771-3786.
976 10.1091/mbc.10.11.3771.
977 44. Spassov, D.S., Ruiz-Saenz, A., Piple, A., and Moasser, M.M. (2018). A Dimerization
978 Function in the Intrinsically Disordered N-Terminal Region of Src. *Cell Rep* 25, 449-463
979 e444. 10.1016/j.celrep.2018.09.035.
980 45. Thomas, S.M., and Brugge, J.S. (1997). Cellular functions regulated by Src family kinases.
981 *Annu Rev Cell Dev Biol* 13, 513-609. 10.1146/annurev.cellbio.13.1.513.

982 46. Papa, A., Del Rivero Morfin, P.J., Chen, B.X., Yang, L., Katchman, A.N., Zakharov, S.I., Liu, G., Bohnen, M.S., Zheng, V., Katz, M., et al. (2024). A membrane-associated phosphoswitch in Rad controls adrenergic regulation of cardiac calcium channels. *J Clin Invest.* 10.1172/JCI176943.

983 47. Newman, R.A., Van Scyoc, W.S., Sorensen, B.R., Jaren, O.R., and Shea, M.A. (2008). Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II. *Proteins* 71, 1792-1812. 10.1002/prot.21861.

984 48. Williams, D.J., Puhl, H.L., 3rd, and Ikeda, S.R. (2009). Rapid modification of proteins using a rapamycin-inducible tobacco etch virus protease system. *PloS one* 4, e7474. 10.1371/journal.pone.0007474.

985 49. Zetsche, B., Volz, S.E., and Zhang, F. (2015). A split-Cas9 architecture for inducible genome editing and transcription modulation. *Nature biotechnology* 33, 139-142. 10.1038/nbt.3149.

986 50. Funnell, A.P., and Crossley, M. (2012). Homo- and heterodimerization in transcriptional regulation. *Advances in experimental medicine and biology* 747, 105-121. 10.1007/978-1-4614-3229-6_7.

987 51. Putyrski, M., and Schultz, C. (2012). Protein translocation as a tool: The current rapamycin story. *FEBS letters* 586, 2097-2105. 10.1016/j.febslet.2012.04.061.

988 52. Di Stasi, A., Tey, S.K., Dotti, G., Fujita, Y., Kennedy-Nasser, A., Martinez, C., Straathof, K., Liu, E., Durett, A.G., Grilley, B., et al. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. *The New England journal of medicine* 365, 1673-1683. 10.1056/NEJMoa1106152.

989 53. Zhou, X., and Brenner, M.K. (2016). Improving the safety of T-Cell therapies using an inducible caspase-9 gene. *Experimental hematology* 44, 1013-1019. 10.1016/j.exphem.2016.07.011.

990 54. Banaszynski, L.A., Liu, C.W., and Wandless, T.J. (2005). Characterization of the FKBP.rapamycin.FRБ ternary complex. *Journal of the American Chemical Society* 127, 4715-4721. 10.1021/ja043277y.

991 55. Choi, J., Chen, J., Schreiber, S.L., and Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. *Science (New York, N.Y.)* 273, 239-242. 10.1126/science.273.5272.239.

992 56. Umeda, N., Ueno, T., Pohlmeyer, C., Nagano, T., and Inoue, T. (2011). A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. *Journal of the American Chemical Society* 133, 12-14. 10.1021/ja108258d.

993 57. Brown, K.A., Zou, Y., Shirvanyants, D., Zhang, J., Samanta, S., Mantravadi, P.K., Dokholyan, N.V., and Deiters, A. (2015). Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. *Chemical communications (Cambridge, England)* 51, 5702-5705. 10.1039/c4cc09442e.

994 58. Karginov, A.V., Zou, Y., Shirvanyants, D., Kota, P., Dokholyan, N.V., Young, D.D., Hahn, K.M., and Deiters, A. (2011). Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. *Journal of the American Chemical Society* 133, 420-423. 10.1021/ja109630v.

995 59. Sadovski, O., Jaikaran, A.S., Samanta, S., Fabian, M.R., Dowling, R.J., Sonenberg, N., and Woolley, G.A. (2010). A collection of caged compounds for probing roles of local translation in neurobiology. *Bioorganic & medicinal chemistry* 18, 7746-7752. 10.1016/j.bmc.2010.04.005.

1028 60. Courtney, T.M., Horst, T.J., Hankinson, C.P., and Deiters, A. (2019). Synthesis and
1029 application of light-switchable arylazopyrazole rapamycin analogs. *Organic &*
1030 *biomolecular chemistry* **17**, 8348-8353. 10.1039/c9ob01719d.

1031 61. Hansen, M.J., Feringa, F.M., Kobauri, P., Szymanski, W., Medema, R.H., and Feringa, B.L.
1032 (2018). Photoactivation of MDM2 Inhibitors: Controlling Protein-Protein Interaction with
1033 Light. *J Am Chem Soc* **140**, 13136-13141. 10.1021/jacs.8b04870.

1034 62. Mogaki, R., Okuro, K., Ueki, R., Sando, S., and Aida, T. (2019). Molecular Glue that
1035 Spatiotemporally Turns on Protein-Protein Interactions. *J Am Chem Soc* **141**, 8035-8040.
1036 10.1021/jacs.9b02427.

1037 63. Tucker, C.L., Vrana, J.D., and Kennedy, M.J. (2014). Tools for controlling protein
1038 interactions using light. *Curr Protoc Cell Biol* **64**, 17.16.11-20.
1039 10.1002/0471143030.cb1716s64.

1040 64. Huang, P., Zhao, Z., and Duan, L. (2022). Optogenetic activation of intracellular signaling
1041 based on light-inducible protein-protein homo-interactions. *Neural Regen Res* **17**, 25-30.
1042 10.4103/1673-5374.314293.

1043 65. Gil, A.A., Carrasco-Lopez, C., Zhu, L., Zhao, E.M., Ravindran, P.T., Wilson, M.Z., Goglia,
1044 A.G., Avalos, J.L., and Toettcher, J.E. (2020). Optogenetic control of protein binding using
1045 light-switchable nanobodies. *Nature communications* **11**, 4044. 10.1038/s41467-020-
1046 17836-8.

1047 66. Redchuk, T.A., Omelina, E.S., Chernov, K.G., and Verkhusha, V.V. (2017). Near-infrared
1048 optogenetic pair for protein regulation and spectral multiplexing. *Nature chemical
1049 biology* **13**, 633-639. 10.1038/nchembio.2343.

1050 67. Leopold, A.V., Chernov, K.G., Shemetov, A.A., and Verkhusha, V.V. (2019). Neurotrophin
1051 receptor tyrosine kinases regulated with near-infrared light. *Nature communications* **10**,
1052 1129. 10.1038/s41467-019-08988-3.

1053 68. Konur, S., and Ghosh, A. (2005). Calcium signaling and the control of dendritic
1054 development. *Neuron* **46**, 401-405. 10.1016/j.neuron.2005.04.022.

1055 69. Kamijo, S., Ishii, Y., Horigane, S.I., Suzuki, K., Ohkura, M., Nakai, J., Fujii, H., Takemoto-
1056 Kimura, S., and Bito, H. (2018). A Critical Neurodevelopmental Role for L-Type Voltage-
1057 Gated Calcium Channels in Neurite Extension and Radial Migration. *The Journal of
1058 neuroscience : the official journal of the Society for Neuroscience* **38**, 5551-5566.
1059 10.1523/JNEUROSCI.2357-17.2018.

1060 70. Arjun McKinney, A., Petrova, R., and Panagiotakos, G. (2022). Calcium and activity-
1061 dependent signaling in the developing cerebral cortex. *Development* **149**,
1062 10.1242/dev.198853.

1063 71. Barger, S.W. (1999). Complex influence of the L-type calcium-channel agonist
1064 BayK8644(+-) on N-methyl-D-aspartate responses and neuronal survival. *Neuroscience*
1065 **89**, 101-108. 10.1016/s0306-4522(98)00312-1.

1066 72. Jinnah, H.A., Sepkuty, J.P., Ho, T., Yitta, S., Drew, T., Rothstein, J.D., and Hess, E.J. (2000).
1067 Calcium channel agonists and dystonia in the mouse. *Mov Disord* **15**, 542-551.
1068 10.1002/1531-8257(200005)15:3<542::AID-MDS1019>3.0.CO;2-2.

1069 73. Li, B., Tadross, M.R., and Tsien, R.W. (2016). Sequential ionic and conformational
1070 signaling by calcium channels drives neuronal gene expression. *Science (New York, N.Y.)*
1071 **351**, 863-867. 10.1126/science.aad3647.

1072 74. Kim, S.H., Park, Y.R., Lee, B., Choi, B., Kim, H., and Kim, C.H. (2017). Reduction of Cav1.3
1073 channels in dorsal hippocampus impairs the development of dentate gyrus newborn

1074 neurons and hippocampal-dependent memory tasks. *PLoS one* 12, e0181138.
1075 10.1371/journal.pone.0181138.

1076 75. Namkung, Y., Skrypnyk, N., Jeong, M.J., Lee, T., Lee, M.S., Kim, H.L., Chin, H., Suh, P.G.,
1077 Kim, S.S., and Shin, H.S. (2001). Requirement for the L-type Ca(2+) channel alpha(1D)
1078 subunit in postnatal pancreatic beta cell generation. *J Clin Invest* 108, 1015-1022.
1079 10.1172/JCI13310.

1080 76. Xu, M., Welling, A., Paparisto, S., Hofmann, F., and Klugbauer, N. (2003). Enhanced
1081 expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-
1082 deficient mice. *J Biol Chem* 278, 40837-40841. 10.1074/jbc.M307598200.

1083 77. Splawski, I., Timothy, K.W., Decher, N., Kumar, P., Sachse, F.B., Beggs, A.H., Sanguinetti,
1084 M.C., and Keating, M.T. (2005). Severe arrhythmia disorder caused by cardiac L-type
1085 calcium channel mutations. *Proceedings of the National Academy of Sciences of the
1086 United States of America* 102, 8089-8096; discussion 8086-8088.
1087 10.1073/pnas.0502506102.

1088 78. Crotti, L., Spazzolini, C., Tester, D.J., Ghidoni, A., Baruteau, A.E., Beckmann, B.M., Behr,
1089 E.R., Bennett, J.S., Bezzina, C.R., Bhuiyan, Z.A., et al. (2019). Calmodulin mutations and
1090 life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy
1091 Registry. *European heart journal* 40, 2964-2975. 10.1093/eurheartj/ehz311.

1092 79. Zhang, Z., He, Y., Tuteja, D., Xu, D., Timofeyev, V., Zhang, Q., Glatter, K.A., Xu, Y., Shin,
1093 H.S., Low, R., and Chiamvimonvat, N. (2005). Functional roles of Cav1.3(alpha1D)
1094 calcium channels in atria: insights gained from gene-targeted null mutant mice.
1095 *Circulation* 112, 1936-1944. 10.1161/circulationaha.105.540070.

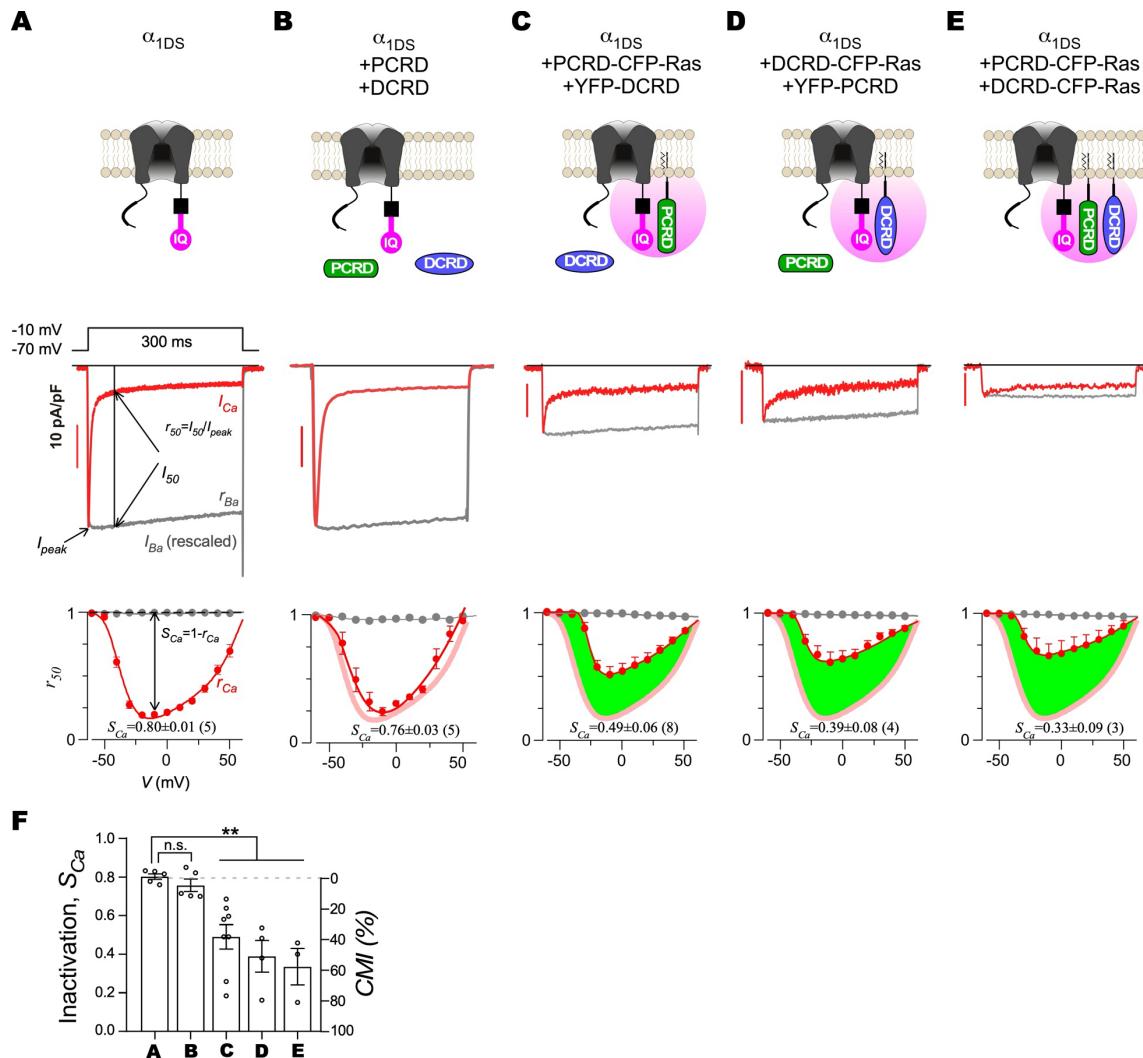
1096 80. Christel, C.J., Cardona, N., Mesirca, P., Herrmann, S., Hofmann, F., Striessnig, J., Ludwig,
1097 A., Mangoni, M.E., and Lee, A. (2012). Distinct localization and modulation of Cav1.2 and
1098 Cav1.3 L-type Ca²⁺ channels in mouse sinoatrial node. *The Journal of physiology* 590,
1099 6327-6342. 10.1113/jphysiol.2012.239954.

1100 81. Louradour, J., Bortolotti, O., Torre, E., Bidaud, I., Lamb, N., Fernandez, A., Le Guennec,
1101 J.Y., Mangoni, M.E., and Mesirca, P. (2022). L-Type Ca(v)1.3 Calcium Channels Are
1102 Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial
1103 Pacemaker Cells. *Cells* 11. 10.3390/cells11071114.

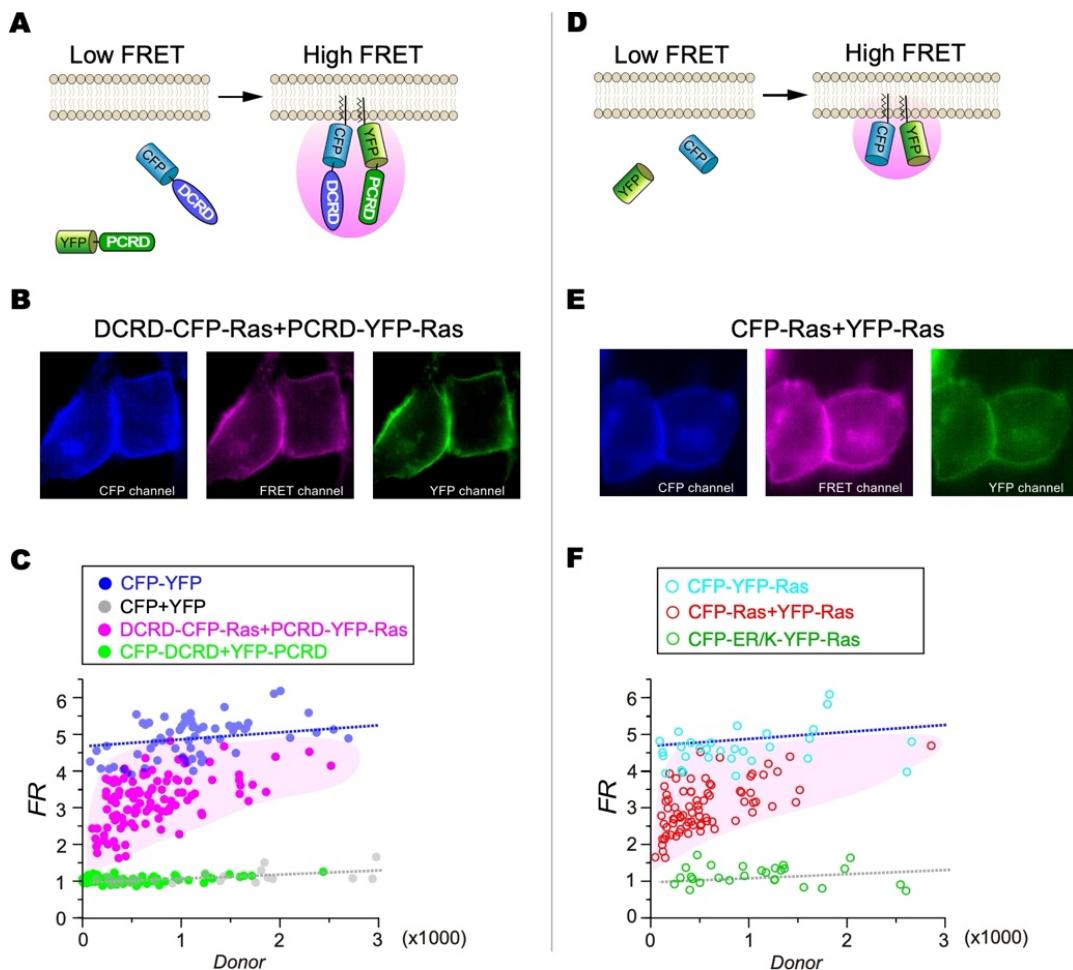
1104 82. Llach, A., Molina, C.E., Fernandes, J., Padró, J., Cinca, J., and Hove-Madsen, L. (2011).
1105 Sarcoplasmic reticulum and L-type Ca²⁺ channel activity regulate the beat-to-beat
1106 stability of calcium handling in human atrial myocytes. *J Physiol* 589, 3247-3262.
1107 10.1113/jphysiol.2010.197715.

1108 83. Tan, P., He, L., Huang, Y., and Zhou, Y. (2022). Optophysiology: Illuminating cell
1109 physiology with optogenetics. *Physiological reviews* 102, 1263-1325.
1110 10.1152/physrev.00021.2021.

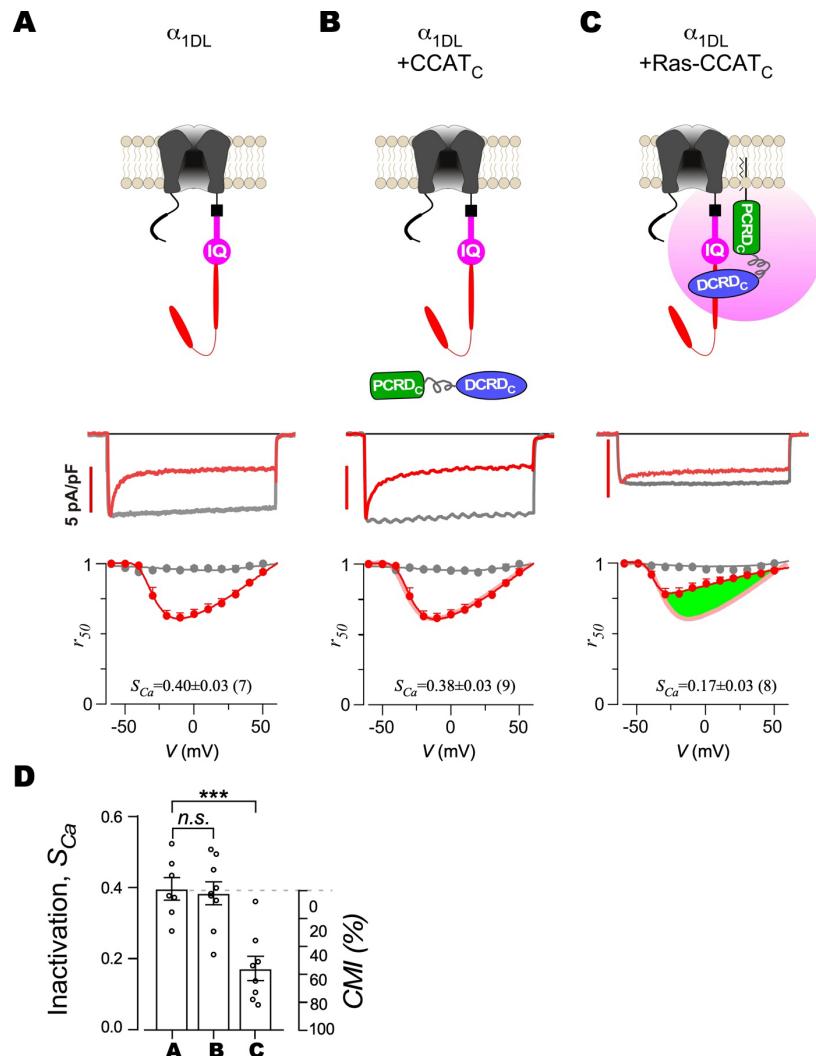
1111 84. Nguyen, N.T., Ma, G., Zhou, Y., and Jing, J. (2020). Optogenetic approaches to control
1112 Ca(2+)-modulated physiological processes. *Current opinion in physiology* 17, 187-196.
1113 10.1016/j.cophys.2020.08.004.

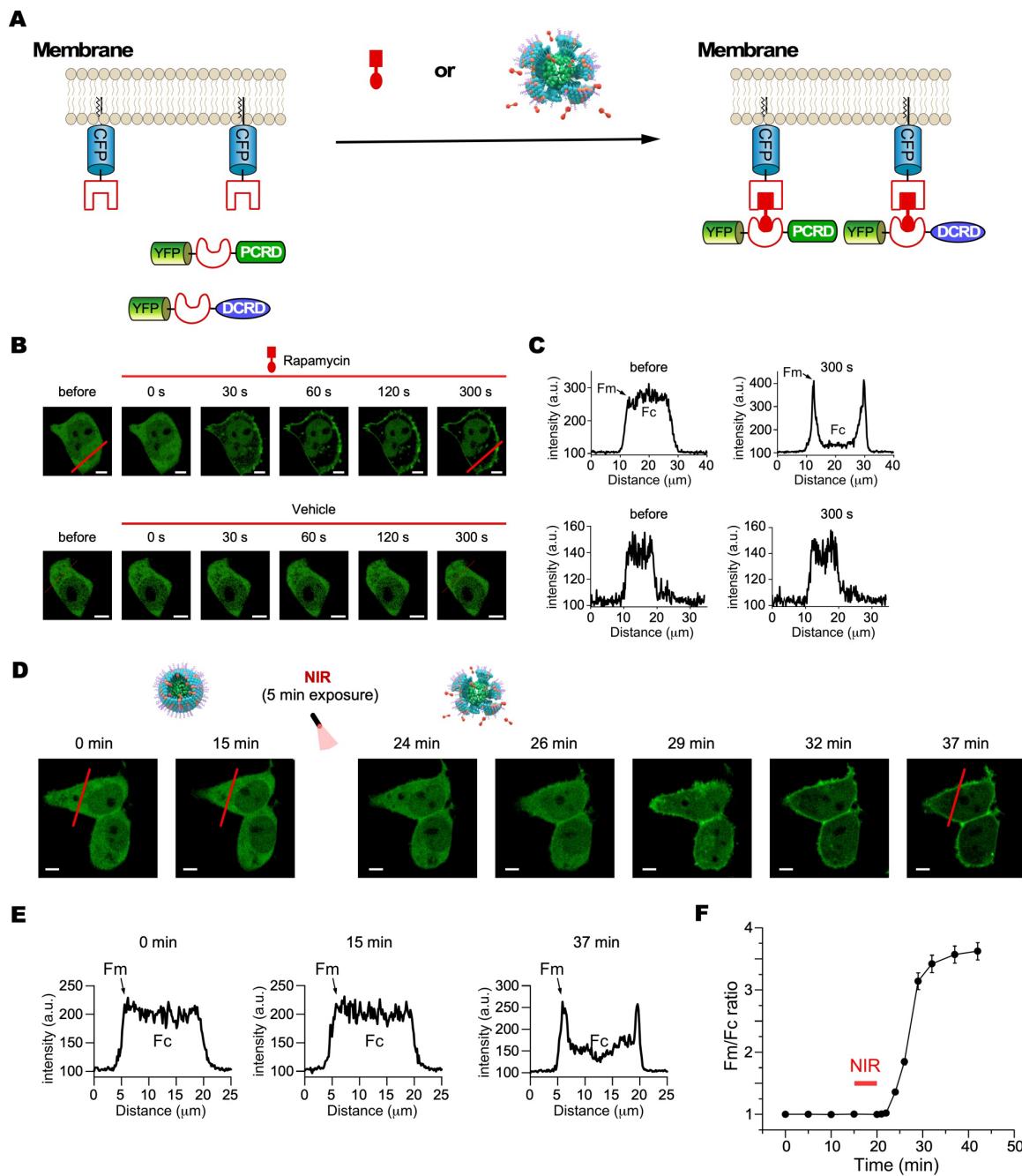

1114 85. Vlasov, K., Van Dort, C.J., and Solt, K. (2018). Optogenetics and Chemogenetics. *Methods
1115 in enzymology* 603, 181-196. 10.1016/bs.mie.2018.01.022.

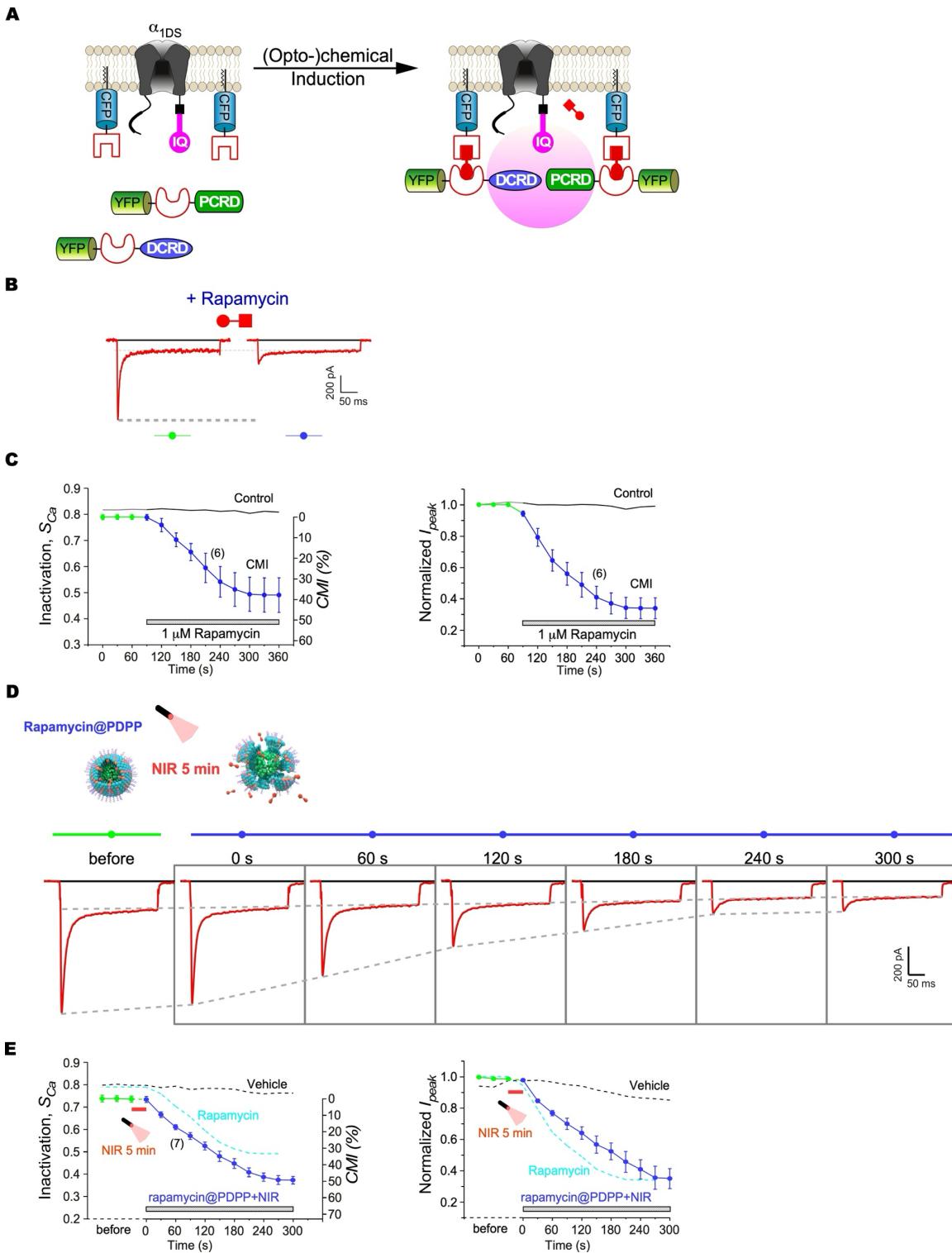
1116 86. Baumschlager, A., Rullan, M., and Khammash, M. (2020). Exploiting natural chemical
1117 photosensitivity of anhydrotetracycline and tetracycline for dynamic and setpoint
1118 chemo-optogenetic control. *Nature communications* 11, 3834. 10.1038/s41467-020-
1119 17677-5.

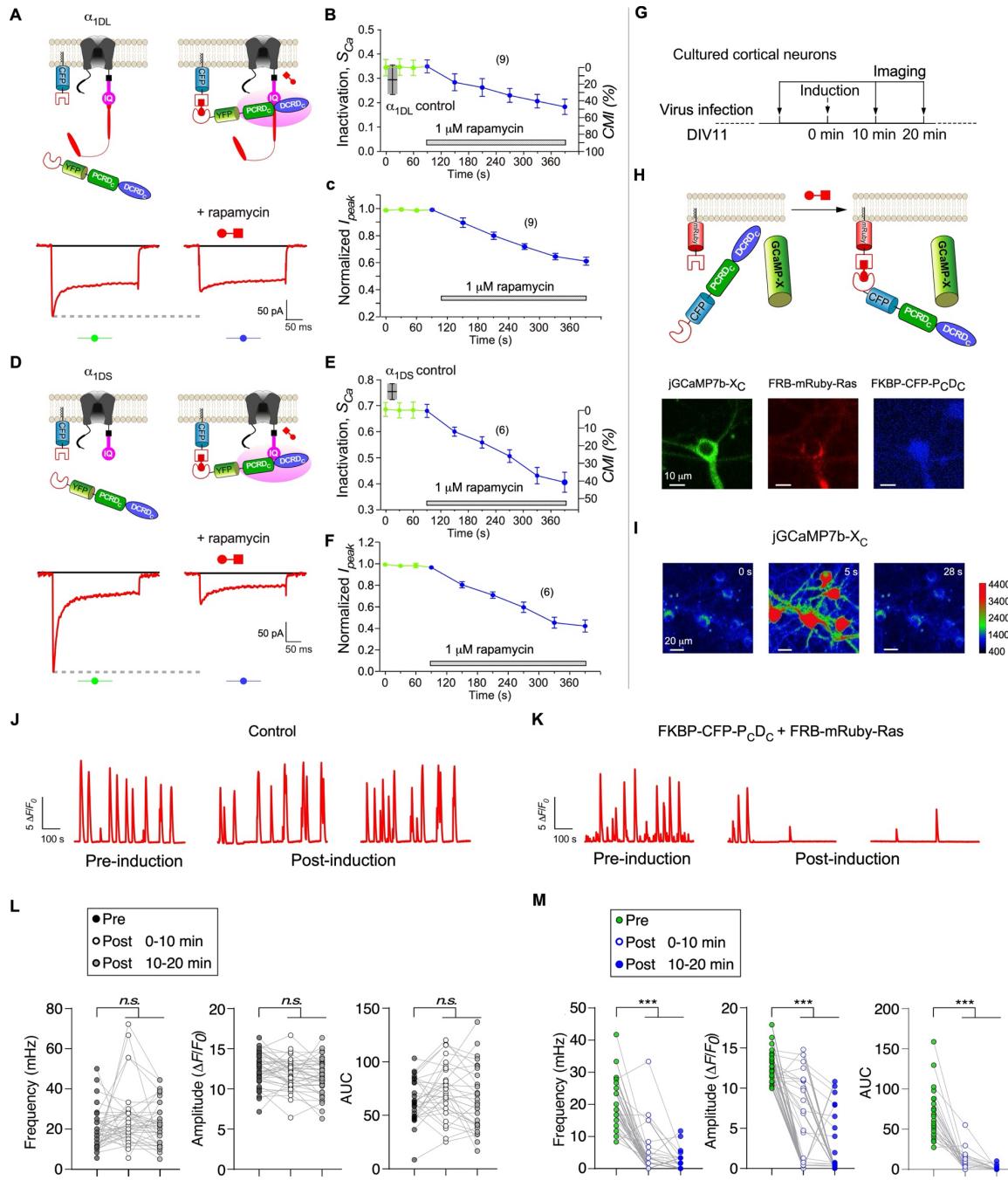

1120 87. Berglund, K., and Gross, R.E. (2020). Opto-chemogenetics with luminopsins: A novel
1121 avenue for targeted control of neuronal activity. *Journal of neuroscience research* 98,
1122 407-409. 10.1002/jnr.24473.

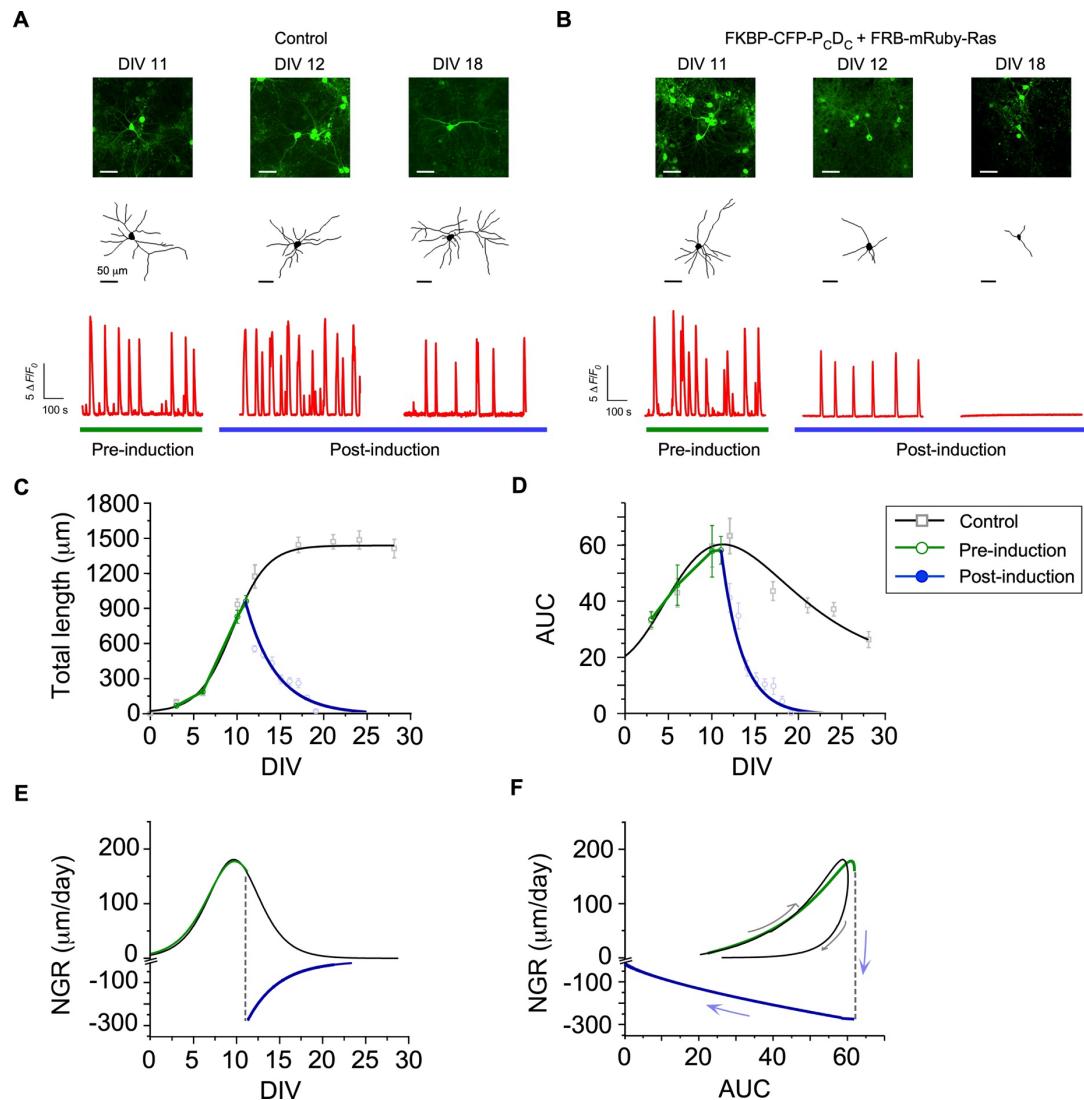
1123


Figure 1


Figure 2


Figure 3


Figure 4


Figure 5

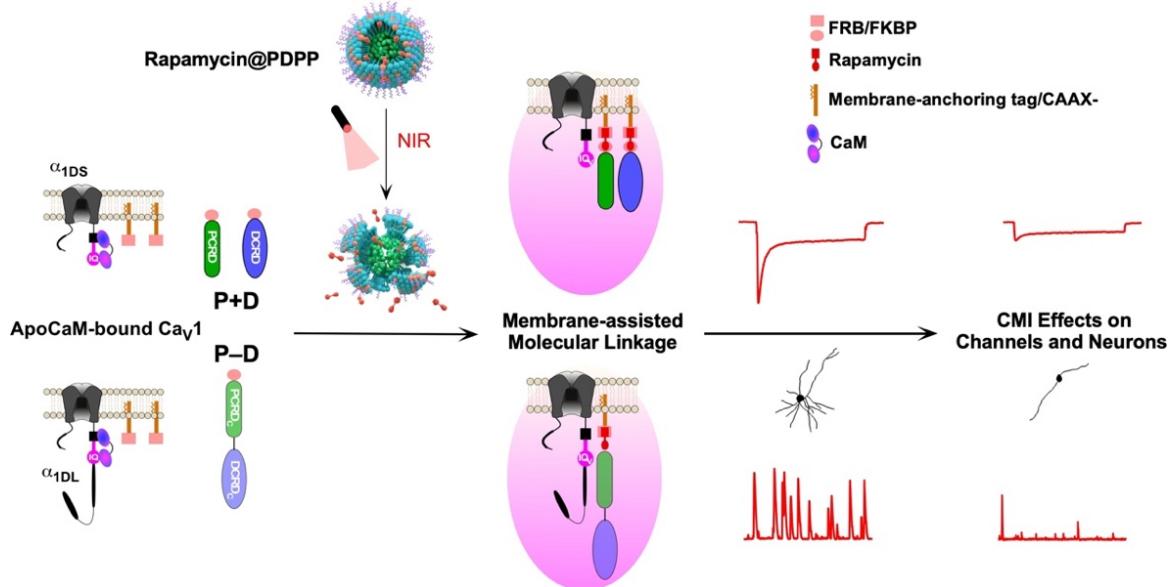

Figure 6

Figure 7

Figure 8

