

1 Post-translational digital data encoding into the genomes of mammalian cell populations

2

3 Alec Callisto¹, Jonathan Strutz¹, Kathleen Leeper^{2,3}, Reza Kalhor^{2,3,4,5,6,7}George Church⁸,
4 Keith E.J. Tyo^{1*}, Namita Bhan^{1,9*}

5

- 6 1. Department of Chemical and Biological Engineering, Northwestern University,
7 Evanston, IL, USA
- 8 2. Department of Biomedical Engineering, Johns Hopkins University School of Medicine,
9 Baltimore, MD 21205, USA
- 10 3. Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD
11 21205, USA
- 12 4. Department of Genetic Medicine, Johns Hopkins University School of Medicine,
13 Baltimore, MD 21205, USA
- 14 5. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore,
15 MD 21205, USA
- 16 6. Department of Molecular Biology and Genetics, Johns Hopkins University School of
17 Medicine, Baltimore, MD 21205, USA
- 18 7. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
19 21205, USA
- 20 8. Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- 21 9. Biomedical Research at Novartis, Cambridge, MA, USA

22

23

24

25

26

27

28

29

30

*Corresponding author:

31 Telephone: +1 847 868 0319

32 Fax: +1 847 491 3728

33 email: k-tyo@northwestern.edu

34

35 **Abstract**

36 High resolution cellular signal encoding is critical for better understanding of complex
37 biological phenomena. DNA-based biosignal encoders alter genomic or plasmid DNA in a
38 signal dependent manner. Current approaches involve the signal of interest affecting a
39 DNA edit by interacting with a signal specific promoter which then results in expression
40 of the effector molecule (DNA altering enzyme). Here, we present the proof of concept of
41 a biosignal encoding system where the enzyme terminal deoxynucleotidyl transferase
42 (TdT) acts as the effector molecule upon directly interacting with the signal of interest. A
43 template independent DNA polymerase (DNAp), TdT incorporates nucleotides at the 3'
44 OH ends of DNA substrate in a signal dependent manner. By employing CRISPR-Cas9 to
45 create double stranded breaks in genomic DNA, we make 3'OH ends available to act as
46 substrate for TdT. We show that this system can successfully resolve and encode different
47 concentrations of various biosignals into the genomic DNA of HEK-293T cells. Finally,
48 we develop a simple encoding scheme associated with the tested biosignals and encode the
49 message “HELLO WORLD” into the genomic DNA of HEK-293T cells at a population
50 level with 91% accuracy. This work demonstrates a simple and engineerable system that
51 can reliably store local biosignal information into the genomes of mammalian cell
52 populations.

53

54

55

56

57

58

59 **Introduction**

60 As the medium of information exchange and heredity in biological systems, DNA
61 evolved to be an elegant information storage substrate, capable of information densities
62 exceeding 200 Pbytes/g¹. While organisms encode peptide sequences and regulatory
63 topologies, among other data, in their genomes, biological systems can also be repurposed
64 to write data into cellular DNA for technological applications. A variety of enzymatic data
65 encoding systems have been applied to DNA-based data storage and cellular biosignals.
66 Generally, these systems employ recombinases^{2,3}, nucleases⁴⁻⁷, base editors⁸, or spacer
67 acquisition enzymes⁹⁻¹² as the effector molecules encoding the signal of interest to
68 predetermine loci on plasmid or genomic DNA. Often, these systems encode information
69 with defined changes to DNA sequences in response to inputs of interest¹³, however some
70 systems instead use the accumulation of stochastic mutations^{5,6,14} or insertions⁹ at said loci.

71 Recently, we demonstrated an alternative biorecording modality *in vitro* that encodes
72 information in the overall distribution of bases in DNA rather than as defined sequences¹⁵.
73 In this modality, data is not encoded in the precise sequence of bases, but by the average
74 composition in a stretch of bases. For example, an AT-rich stretch of DNA might encode
75 a different signal state than a GC-rich stretch of DNA. To achieve this, we used a template-
76 independent DNA polymerase, terminal deoxynucleotidyl transferase (TdT) as the effector
77 molecule. During *in vitro* single-stranded DNA (ssDNA) synthesis, relevant signals alter
78 nucleotide selectivity of TdT, thus encoding sequential signal changes in the nucleotide
79 composition along the synthesized ssDNA.

80 Here, we demonstrate the feasibility of adapting this DNA composition-based system
81 for encoding information in living mammalian cell populations. By employing self-
82 targeting CRISPR-Cas9 (also known as homing guide RNA, hgRNA) system^{6,14} to
83 generate multiple and continuous double-stranded breaks at randomly distributed genomic
84 hgRNA sites, we are able to provide the 3'OH ends needed as substrate for TdT. TdT-
85 catalyzed untemplated ssDNA is synthesized at these hgRNA sites during each round of
86 Cas9 induced DNA break and repair cycle. Much like *in vitro* extensions with TdT, we
87 observed that the DNA synthesized at such genomic sites exhibited a distinct, reproducible
88 composition of bases. Further, the perturbation of the intracellular nucleotide pools by
89 treatment with different nucleosides resulted in altered distribution of bases incorporated
90 by TdT at these hgRNA sites. Six different cellular treatment conditions that resulted in
91 statistically distinguishable base distributions at hgRNA sites were identified.

92 To demonstrate that these differences in DNA composition can be used to encode
93 digital data, we developed a simple alphanumeric encoding scheme. We treated pairs of
94 barcoded hgRNA expressing cell populations with nucleosides at various concentrations
95 to encode data. The information at each site was recovered by sequencing and classifying
96 the distribution of bases synthesized in each barcoded population. Using this method, we
97 successfully decoded 10 out of 11 characters. This proof of concept demonstrates a novel
98 data encoding modality, showing that information can be encoded and decoded into base
99 distributions of DNA in cellular contexts with high accuracy. Unlike previously described
100 cellular encoding systems our approach obviates the need for donor plasmid DNA or
101 pegRNAs^{16,17} and makes the encoding transcription independent and post-translational. We
102 believe the salient parameters of a single effector molecule combined with transcription
103 independent signal capture can unleash a future of new tools for better understanding fast
104 cellular events^{18,19}.

105 **Materials and Methods**

106

107 **Plasmids and cloning**

108 All PCR reactions were performed using Takara PrimeStar Max DNA Polymerase
109 using primer sequences noted in Table S1 unless otherwise noted. Primers and gBlocks
110 were obtained from Integrated DNA Technologies (IDT). Gibson assemblies were
111 performed using the NEB Gibson Assembly Master Mix according to the manufacturer's
112 protocol. Unless otherwise noted, plasmid cloning and maintenance were performed in *E.*
113 *coli* DH5 α . Bacterial cultures were maintained in LB Miller Broth (10 g/L casein peptone,
114 5 g/L yeast extract, 10 g/L NaCl) supplemented with appropriate antibiotics.

115 Plasmids used in this study are noted in Table S2. hgRNA-D21_pLKO-Hyg
116 (Addgene Plasmid #100562), hgRNA-E21_pLKO-Hyg (Addgene Plasmid #100563), and
117 hgRNA-A21_pLKO-Hyg (Addgene Plasmid # 100559) were ordered from Addgene⁶.
118 pcDNA-Cas9-T2A-TdT (Addgene Plasmid #126424) and pcDNA-Cas9-T2A-STOP-TdT
119 (Addgene Plasmid #126425) were ordered from Addgene⁹. hgRNA-D21-BCLib_pLKO-
120 Hyg was constructed by Gibson assembly of a gBlock encoding the D21 spacer sequence
121 and hgRNA scaffold and a 10 bp degenerate site downstream of the U6 terminator (Fig
122 S1). To isolate individually barcoded variants, hgRNA-D21-BCLib_pLKO-Hyg was
123 transformed into NEB Stable *E. coli* cells and plated on LB agar supplemented with 100
124 μ g/mL ampicillin. Individual colonies were isolated, and the integrity and uniqueness of
125 the barcoded sites was assessed by Sanger sequencing. Barcode sequences isolated and
126 used in this study are compiled in Table S3.

127

128 **Cell Culture**

129 All cells were cultured at 37 °C and 5% CO₂. HEK293T cells and hgRNA cell lines
130 were maintained in DMEM, high glucose, GlutaMAX Supplement, HEPES (Gibco
131 10564011) supplemented with 10% FBS (Gibco A3160401) and 50 U/mL penicillin and
132 50 μ g/mL streptomycin (Gibco 15070063). Lenti-X 293T (Takara 632180) cells were
133 maintained in DMEM, high glucose, pyruvate (Gibco 11995040) supplemented with 10%
134 FBS (Gibco A3160401).

135

136 **Genomic integration of hgRNA sites**

137 Approximately 0.3x10⁶ lenti-X cells per well were seeded into 6-well plates and
138 cultured to 70% confluency. Lentivirus was produced using a second-generation packaging
139 system; each well was transfected with 380 ng psPAX2 (Addgene Plasmid #12260), 140
140 ng pMD2.G (Addgene Plasmid #12259), and 480 ng of pLKO (Addgene Plasmid #10878)
141 transfer plasmid using 10 μ L Lipofectamine 2000 (Thermo Fisher 11668) according to the
142 manufacturer's protocol. For barcoded cell lines, lentivirus was prepared using a hgRNA-
143 D21-BCLib_pLKO-Hyg transfer plasmid with a unique barcode sequence for each
144 barcoded variant. For the AED21-hgRNA cell line, three preparations of lentivirus were
145 made using hgRNA-D21_pLKO-Hyg, hgRNA-E21_pLKO-Hyg, and hgRNA-
146 F21_pLKO-Hyg transfer plasmid. After 12 h, the growth medium was exchanged for fresh
147 media, and the cells were cultured an additional 48 h. Lentivirus was harvested by
148 collecting the media from each well and centrifuging for 2 minutes at 500 xg. The
149 supernatant was filtered through a 0.45 μ m filter and stored on ice at 4°C. Lentivirus was
150 used within 3 days of isolation.

151 HEK293T cells were passaged in to 6-well plates and cultured to 70% confluence.
152 For barcoded cell lines, each well was transduced with 350 μ L of the barcoded lentivirus
153 and 1 μ g/mL polybrene. For the AED21-hgRNA cell line, the cells were transduced with
154 100 μ L each of A21, D21, and E21 lentivirus and 1 μ g/mL polybrene. After 24 h, the media
155 was refreshed and supplemented with 200 μ g/mL hygromycin. Cells were cultured for
156 approximately 2 weeks under hygromycin selection before any subsequent experiments.
157 Media was supplemented with hygromycin for the duration of all experiments. The barcode
158 sequence of barcoded hgRNA sites was validated by deep sequencing.
159

160 **hgRNA site extension and nucleotide precursor treatment**

161 Approximately 0.05×10^6 AED21-hgRNA HEK293T cells were seeded to a poly-D
162 lysine coated 24-well plate and cultured to 70% confluence. Cells were transfected with
163 500 ng of pcDNA-Cas9-T2A-STOP-TdT (for NHEJ-mediated additions) or pcDNA-Cas9-
164 T2A-TdT (for TdT-mediated additions) using 2 μ L Lipofectamine 2000 according to the
165 manufacturer's protocol. Approximately 4 h after transfection, the media was replaced with
166 fresh media supplemented with nucleotide precursors to the noted final concentration.
167 Working stock solutions were prepared to the following concentrations: 10 mM dGuo (2'-
168 Deoxyguanosine monohydrate, Sigma D7145), 50 mM dThd (2'-Deoxythymidine, Sigma
169 T1895), 100mM dCyd (2'-Deoxycytidine, Sigma D3897), 3mM dAdo (2'-
170 Deoxyadenosine monohydrate, Sigma D7400). Stock solutions were prepared fresh for
171 each experiment in nuclease-free water or DMSO, depending on nucleoside solubility.
172 Cells treated with dAdo were simultaneously treated with dCF (Deoxycoformycin, Sigma
173 SML0508) to a final concentration of 3 μ M (add citation). Cells were cultured for 72 h
174 after initial treatment, with media replaced every 24 h. After 72 h, cells were trypsinized,
175 resuspended in 1 mL DMEM, and washed once with PBS. Cells were pelleted, decanted,
176 and stored at -80°C.
177

178 **Cellular data encoding**

179 Alphanumeric data was converted into a series of paired nucleotide treatment
180 conditions using the encoding table (Fig 2A). Barcodes were assigned to conditions
181 randomly. Barcoded cell lines were treated with the assigned conditions according to the
182 protocol above, using barcoded hgRNA cell lines and the treatment concentrations in
183 Figure 2B. In parallel, a set of control cells were treated with each of the encoding
184 conditions in triplicate. Cells were trypsinized after 72 h of culturing with the assigned
185 media treatment condition and resuspended in 1mL DMEM. An 850 μ L aliquot of each
186 suspension was washed once with PBS and stored at -80°C for subsequent DNA recovery.
187

188 **DNA library preparation and sequencing**

189 Sequencing methods were adapted from Kalhor *et al*⁶. Genomic DNA was
190 recovered from frozen cell pellets using the Qiagen DNeasy Blood & Tissue kit according
191 to the manufacturer's protocol. Recovered genomic DNA was eluted in nuclease free
192 water. The hgRNA locus was amplified using the appropriate primer pair as noted in Table
193 S1 using the Biorad iQ SYBR Green Supermix and approximately 4-8 ng of the genomic
194 DNA. Reactions were amplified by an initial 3 min, 95°C denaturing step followed by
195 cycles of 10 s at 95 °C and 30 s at 60°C. Reactions were monitored in real time and cycling
196 was stopped at mid-exponential amplification, typically 25 cycles. The products of the first

197 reaction were used as a template for a second amplification with NEBNext Dual Indexing
198 Primers. Each sample received a unique index. Reactions were amplified using the same
199 cycling conditions until mid-exponential phase, typically 7 cycles. An equal volume of
200 each sample was pooled into a QC pool. The length distribution and concentration of the
201 library was determined using an Agilent 4200 Tapestation. Pool concentrations were
202 further characterized by Qubit and qPCR methods. Sequencing was performed on an
203 Illumina MiniSeq Mid Output flow cell. Libraries were supplemented with 15-20% phiX
204 control library to increase clustering diversity. After demultiplexing, read counts for each
205 sample were used to re-pool samples for a final sequencing run with evenly balanced
206 indexing across all samples. The balanced pool was sequenced using the methods as before.
207 Library preparation and sequencing were performed at the Rush University Genomics and
208 Microbiome Core Facility.

209

210 **Deep sequencing preprocessing**

211 Illumina sequencing data was preprocessed using a custom python script locally
212 (Windows Surfacebook 2, Intel i7-8650U CPU, 1.90 GHz, 16 GB RAM). The inserted
213 sequence as well as the barcode was extracted from each sequence. The barcode was
214 extracted by searching the reverse (R2) reads for the reverse primer sequence
215 (GCCATACCAATGGGCCCGAATT) allowing for up to 6 errors (insertions, deletions,
216 and/or substitutions). If this sequence was found, we then searched for the post-barcode
217 sequence (CCTGCAGGAAAAAAA) allowing up to 2 errors (insertions, deletions, and/or
218 substitutions). If both of these sequences were found, the barcode was extracted starting
219 right after the end of the reverse primer sequence and ending at the base preceding the post-
220 barcode sequence. Because these are reverse reads, the barcode was reverse complemented
221 to obtain the final barcode sequence.

222

223 The inserted sequence was also extracted from each read. This was done by
224 searching for the D21 hgRNA reverse complement sequence
225 (CTTGGCCGTAGCGTGAC) in the reverse (R2) reads, allowing for no errors. We then
226 searched for TCTAACCCAC, which is the post-insert sequence directly after the cut site
227 in the R2 reads, allowing for no errors. We then extracted the sequence (if any) inserted
228 between the hgRNA sequence and this post-insert sequence. This insert was reverse
229 complemented to obtain the final insert sequence. This resulted in a set of insert-barcode
230 pairs for each sample.

231

232 For the mock pool, all insert-barcode pairs across all control samples were
233 combined into a single pool before All insert-barcode pairs for all encoded samples were
234 combined into a separate pool. This resulted in two mock pools: a mock control pool and
235 a mock encoded pool.

236

237 **Cellular data decoding**

238 All decoding was performed locally (Windows Surfacebook 2, Intel i7-8650U
239 CPU, 1.90 GHz, 16 GB RAM). The unpooled samples and mock pooled samples were
240 decoded using the same workflow, except for how the insert sequences were assigned to
241 either (1) a nucleotide treatment condition (for control samples) or (2) each position in the
242 encoded message (for encoded samples). For the unpooled samples, insert sequences were
243 assigned a condition/position based on the associated sample (i.e., based on filename of the
244 fastq file for those sequences). For the mock pooled samples, insert sequences were

243 assigned a condition/position based on the barcode extracted from the same full sequence
244 (Table S4). No insertion, deletion, or substitution errors were allowed when matching
245 sequences to condition/position based on barcode.

246 Next, the average length and nucleotide compositions were calculated across all
247 sequences for each control condition, c , ($X_{cA}, X_{cC}, X_{cG}, X_{cT}$) or message position, m
248 ($X_{mA}, X_{mC}, X_{mG}, X_{mT}$). When comparing nucleotide compositions for each message
249 position, m , against those for each control condition, c , we cannot perform most statistical
250 tests as we would violate the principle of normality due to the total sum rule (all elements
251 of the composition add up to 100% so are not independent). Thus, the data is first
252 transformed by using the center log-ratio (clr) transformation which maps this 4-
253 component composition from a 3-dimensional space to a 4-dimensional space, as done in
254 Bhan *et al*¹⁵ (Equation 1). This is also known as Aitchison space²⁰.
255

$$256 \quad X_{aitch,cn} = \ln \left(\frac{X_{cn}}{g(X_c)} \right) \quad (1)$$

257

258 Here, X_{cn} is composition of nucleotide, n , at control condition, c . $X_{aitch,cn}$ is the
259 respective X_{cn} converted into Aitchison space. $g(X_c)$ is the geometric mean for condition,
260 c , across all four bases in $N = \{A, C, G, T\}$ (Equation 2).
261

$$262 \quad g(X_c) = \sqrt[4]{\prod_{n \in N} X_{cn}} \quad (2)$$

263

264 Analogous equations are used for message position, m , rather than control
265 condition, c :

266

$$267 \quad X_{aitch,mn} = \ln \left(\frac{X_{mn}}{g(X_m)} \right) \quad (3)$$

268

$$269 \quad g(X_m) = \sqrt[4]{\prod_{n \in N} X_{mn}} \quad (4)$$

270

271 To decode the condition at each position in the encoded samples, we performed
272 statistical tests between the encoded and control samples to calculate the likelihood of each
273 of the six possible conditions, $c \in \{1, 2, 3, 4, 5, 6\}$. Specifically, we created five probability
274 density functions (PDFs) for each of the six control conditions. Each control condition's
275 PDFs were generated as normal distributions with the mean and standard deviation of that
276 condition's three replicates for the respective variables, average length (L_c) and the four
277 nucleotide compositions in Aitchison space ($X_{aitch,cn}$). Next, the likelihood of each
278 encoded sample's average length and four base compositions were calculated for each of
279 the six conditions, c , at each message position, m . To choose the most likely condition at
280 each message position, we used Equation 5 to calculate the final likelihood, $P_f(c, m)$, at
281 each condition, c , and message position, m , equally weighting the average length PDF

282 value ($P_{L,c}(L_m)$) with the sum of the PDF values for each nucleotide, n ($P_{X,cn}$, $N =$
283 $\{A, C, G, T\}$).

284

285
$$P_f(c, m) = P_{L,c}(L_m) \left(\sum_{n \in N} P_{X,cn}(X_{aithc,mn}) \right) \quad (5)$$

286

287 The condition, $c \in \{1, 2, 3, 4, 5, 6\}$, with the highest $P_f(c, m)$ was then determined
288 to be the decoded condition for each message position, m . Each $P_f(c, m)$ was divided by
289 the maximum $P_f(c, m)$ for that position, m , to calculate a final normalized value between
290 0 and 1, $\hat{P}_f(c, m)$ (Equation 6). The encoding table (Table 2A) was then used to decode the
291 entire message based on these decoded condition numbers.

292

293
$$\hat{P}_f(c, m) = \frac{P_f(c, m)}{\max_{1 \leq c' \leq 6} (P_f(c', m))} \quad (6)$$

294

295 Additionally, reads were subsampled from mock pool samples and Equation 6 was
296 used to decode the message for each subsample. To account for variability in subsampling,
297 multiple replicates were performed by varying the random seed. Specifically, five
298 conditions were tested: (1) all reads (153k for control pool, 244k for message pool) for 1
299 replicate, (2) 100,000 reads for each pool for 5 replicates, (3) 10,000 reads for each pool
300 for 15 replicates, (4) 1,000 reads for each pool for 30 replicates, and (5) 100 reads for each
301 pool for 50 replicates.

302 **Results**

303 **TdT catalyzed dNTP additions at hgRNA sites are dependent on the intracellular**
304 **nucleotide pool**

305 To investigate the nucleotide composition of TdT-catalyzed genomic additions *in*
306 *vivo*, we used HEK293T cells hosting three previously characterized homing CRISPR-
307 Cas9 sites⁶. Homing guide RNA are designed to contain a protospacer adjacent motif
308 (PAM) between the spacer and the scaffold resulting in Cas9 being targeted to the genomic
309 locus expressing the guide RNA itself. This allows sequential double stranded breaks at
310 this sites and thus longer TdT-catalyzed base additions⁹. Cells were transfected with a
311 plasmid either expressing just functional SpCas9 (the start codon of the TdT gene was
312 replaced with a stop codon in this construct) or both SpCas9 and TdT. After 72 hours of
313 culturing, genomic DNA was extracted from the cells and the hgRNA sites were selectively
314 sequenced by Illumina amplicon sequencing. Additions made at hgRNA sites were
315 analyzed for nucleotide composition and length of the inserts (Fig 1, Figure S2). In the
316 absence of TdT expression, approximately 5% of reads showed nucleotide additions while
317 in the presence of TdT approximately 19% of the reads showed additions (Figure S3).
318 Moreover, both nucleotide composition and lengths of the insertions were significantly
319 altered upon coexpression of TdT with SpCas9, (with frequency of dATP incorporation
320 increasing from 0.18 to 0.39 and insert length increasing from approximately 1.8 nts to 3.2
321 nts) (Fig 1B, C). Insertions made in the absence of TdT, likely catalyzed by non-
322 homologous end joining (NHEJ) repair, were predominantly adenosines, consistent with
323 previous observations²¹. In contrast, insertions made in the presence of TdT exhibited a
324 distinct composition of primarily C and G, again consistent with previous observations of
325 TdT additions in cellular contexts (Figure S2)^{9,22,23}. After confirming that TdT added
326 nucleotides to genomic DNA in a cellular context, we then tested the effect of perturbing
327 intracellular nucleotide pools on insertion composition.

328 Gangi-Peterson *et al.* previously reported that changes in the base composition of
329 TdT-mediated additions at V(D)J junctions depend on intracellular dATP pools²². Thus,
330 we hypothesized that altered nucleotide pools would similarly bias the composition of
331 DNA synthesized by TdT at hgRNA sites. Cells hosting hgRNA sites were transfected with
332 a plasmid coexpressing SpCas9 and TdT. Cellular nucleotide pools were altered by daily
333 treatment with deoxyribonucleosides (dNs: deoxyadenosine (dAdo), deoxycytidine
334 (dCyd), deoxythymidine (dTd), or deoxyguanosine (dGuo)) for the 72-hour culture
335 period. Cells were treated with the adenosine deaminase inhibitor, dCF, for 20 minutes
336 before dAdo addition to prevent conversion of dAdo to deoxyinosine^{22,24}. Upon
337 extracellular dosing with dNs, we observed significant changes in the composition of
338 additions at the hgRNA sites in a dose dependent manner, with the exception of dCyd
339 which resulted in no significant difference at the concentrations tested (Fig 1B). One of the
340 potential reasons for poor response to dCyd perturbation could be that dCTP has been
341 shows to be the least favored TdT substrate *in vitro*, especially if the 3' OH base is a dC²⁵.
342 We observed a significant increase in G incorporation and a decrease in T incorporation
343 frequency upon treatment with 30 μ M dAdo, and a significant increase in G and C
344 incorporation frequencies upon treatment with 100 μ M dGuo (Fig 1B). We also observed
345 a significant increase in A and T incorporation frequencies when the cells were dosed with
346 0.5 mM dTd, with an even larger shift occurring when treated with 5 mM dTd. After

347 observing these significant shifts in nucleotide composition, we sought to employ these
348 cellular states to encode digital information.

349

350 **Post-translational digital data encoding into genomes of mammalian cell population**
351 **with high accuracy**

352 Having established which cellular nucleoside perturbation states could be encoded at
353 the hgRNA sites we identified conditions that would maximize the differences in the
354 distribution of bases added (Fig 2B). We tested 0.025, 0.05 and 0.1 mM dGuo, and
355 ascertained that 4 nucleoside treatment conditions (0.025, 0.1 mM dGuo, 0.5 and 5 mM
356 dThd) could be mutually differentiated from each other and from an untreated condition.
357 Additionally, we determined that we could differentiate between conditions with and
358 without TdT expression largely due to a significant difference in insertion length (Fig 1C).
359 Collectively, we found 6 differentiable conditions (Fig 2B, S4, S5), and devised an
360 alphanumeric encoding scheme (Fig. 2A, B) allowing a maximum of approximately 2.6
361 bits to be encoded in a single population of hgRNA expressing cells.

362 To expand the encoding capacity further, we reasoned that we could barcode cellular
363 populations so that a combination of two barcoded populations act as a single memory
364 address. To accomplish this, we created DNA cassettes that encoded both hgRNA
365 expression and specified barcodes, packaged them into lentiviral particles and generated
366 24 populations of HEK293T with unique barcodes (Fig. S6). In this case, two barcoded
367 populations when treated with two nucleoside perturbation states would result in the
368 encoding of a single alphanumeric character at a particular position in our digital
369 information.

370 As a proof of concept for composition-based data encoding, we assigned a single
371 character from the message “HELLO WORLD” to ordered pairs of memory addresses.
372 Cell populations were transfected and treated according to the assigned conditions (Fig.
373 3A). The cells were harvested, and barcoded hgRNA sites were sequenced as before.
374 Individual sequencing reads were assigned to a memory address using indexing barcodes
375 or locus barcode sequences. For each memory address, the length and composition of
376 additions made at the corresponding hgRNA sites was calculated, and a custom likelihood
377 function was used to estimate the most probable treatment condition (Equation 5). 21/22
378 addresses were correctly decoded, yielding the message “HELLO WORLV” (Fig. 3A).
379 While one of the values was incorrectly decoded, the correct value was the second most
380 likely (Fig. 3A).

381 Next, we investigated the effect of read counts on decoding accuracy. Specifically,
382 sequencing reads for all samples were pooled and subsampled to generate smaller datasets.
383 Multiple replicates were performed to account for variability in subsampling. Again, the
384 message was decoded from the subsampled pools using hgRNA locus barcodes and the
385 number of correctly decoded addresses/characters was calculated (Fig. 3B, C). We found
386 that having greater than 10^5 reads for both the control and message pools resulted in similar
387 performance as using all reads. Overall, this shows that information can be encoded in the
388 genome as nucleotide compositions generated via TdT.

389

390 **Discussion**

391 Recording cellular signals that alter at minutes' time scale with high temporal
392 resolution can only be achieved by employing a post-translational enzymatic recording
393 system. As a first step towards achieving this we theorized we needed to prototype a
394 recording system where the enzymatic effector molecule is independent of signal-induced
395 expression. In various mammalian cells average transcription time is 10 minutes/gene(for
396 a 10kb gene, average size of mammalian genes) and the average translation time is 1
397 minute/300aa protein²⁶. On the other hand, an expressed protein can last in the cell for
398 about 24 hours while a metabolite of interest lasts only about 1 minute, depending on the
399 identity of the metabolite²⁶. The average turnover number for TdT is between 0.0925-1.2
400 s⁻¹, and TdT has been shown to be able to record various biologically relevant molecules²⁷.
401 Thus, deploying TdT as the effector molecule a post-translational signal recording system
402 possible.

403 To better understand the characteristics of such a system, we encoded predetermined
404 digital information into the genomes of mammalian cells. We were able to do so with high
405 accuracy (91%), using just 6 treatment conditions ("signals").

406 While we used only 4 nucleoside treatment conditions for encoding, using larger and/or
407 intermediate concentrations of each nucleoside could increase the data encodable at each
408 barcoded locus as well as decoding accuracy. Additionally, TdT can incorporate unnatural
409 nucleotides²⁸⁻³¹ which would significantly expand the set of accessible nucleotide
410 compositions. Altering intracellular nucleotide pools for information storage has the
411 advantage of being highly multiplexable: except for dCyd, each nucleoside yields a distinct
412 DNA composition in a dose-dependent manner with no modifications of the encoding
413 apparatus (TdT+Cas9+hgRNA locus) itself.

414 This system also shows potential in physiological applications. While modifications to
415 intracellular nucleotide pools using nucleoside treatment was a convenient proof of
416 concept, imbalanced nucleotide pools may also arise physiologically in neurological
417 disorders and immunodeficiencies that result from errors in nucleotide metabolism^{32,33}.
418 Applied to model organisms, the method described here may be useful as a means to
419 characterize nucleotide imbalances *in situ* among heterogenous cell populations.

420 By coupling the catalytic characteristics of TdT(s) to other signals of interest,
421 information about cellular states other than nucleotide imbalance could also be encoded in
422 DNA composition. Previously, we have shown that the composition of DNA synthesized
423 by TdT could be modulated by using *in vitro* reactions with two distinct TdT variants with
424 different nucleotide selectivity: one unmodified, and the other engineered to deactivate in
425 the presence of calcium. A similar approach could be used to engineer a two-polymerase
426 system responsive to alternative inputs by fusing sensing domains to TdT that respond to
427 inputs such as light³⁴, small molecules³⁵, or temperature³⁶.

428 This single enzyme dependent DNA synthesis-based *in vivo* encoding system
429 circumvents the need for transcription and translation, making its response to biosignals
430 inherently faster than previously described systems^{3,7-10,12,14,16,17}. We hope this proof of
431 concept will pave the way for development of similar post-translational systems making
432 high resolution recording of cellular biosignals and metabolic states possible.

433
434

435 **Acknowledgements**

436 The authors would like to acknowledge Dr. Neha Kamat and Dr. Curt Horvath for
437 generously sharing cell culture equipment and space. Haley Edelstein provided helpful
438 discussion regarding lentivirus production and transduction. Dr. Jean-Patrick Parisien
439 provided helpful discussion regarding cell culture. Real time PCR was supported by the
440 Northwestern University Keck Biophysics Facility, a shared resource of the Robert H.
441 Lurie Comprehensive Cancer Center of Northwestern University supported in part by
442 the NCI Cancer Center Support Grant #P30 CA060553. Illumina sequencing was
443 performed with the help of the Next Generation Sequencing Core Facility at University of
444 Illinois at Chicago and the Rush Genomics and Microbiome Core Facility. Sanger
445 sequencing was supported by the Northwestern University NUSeq Core Facility. This work
446 was funded by the National Institutes of Health grants R01MH103910 and UF1NS107697
447 and National Institutes of Health Training Grant (T32GM008449) through Northwestern
448 University's Biotechnology Training Program (to JS and AC).

449

450 **References**

451

452 1. Erlich, Y. & Zielinski, D. DNA Fountain enables a robust and efficient storage
453 architecture. *Science* (1979) **355**, 950–954 (2017).

454 2. Weinberg, B. H. *et al.* Large-scale design of robust genetic circuits with multiple
455 inputs and outputs for mammalian cells. *Nat Biotechnol* **35**, 453–462 (2017).

456 3. Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic
457 recombinase-based state machines in living cells. *Science* (1979) **353**, (2016).

458 4. McKenna, A. *et al.* Whole-organism lineage tracing by combinatorial and
459 cumulative genome editing. *Science* (1979) **353**, (2016).

460 5. Kalhor, R. *et al.* Developmental barcoding of whole mouse via homing CRISPR.
461 *Science* (1979) **361**, (2018).

462 6. Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes.
463 *Nat Methods* **14**, 195–200 (2016).

464 7. Frieda, K. L. *et al.* Synthetic recording and in situ readout of lineage information in
465 single cells. *Nature* **541**, 107–111 (2016).

466 8. Tang, W. & Liu, D. R. Rewritable multi-event analog recording in bacterial and
467 mammalian cells. *Science* (1979) **360**, (2018).

468 9. Loveless, T. B. *et al.* Molecular recording of sequential cellular events into DNA.
469 (2021) doi:10.1101/2021.11.05.467507.

470 10. Choi, J. *et al.* A temporally resolved, multiplex molecular recorder based on
471 sequential genome editing. (2021) doi:10.1101/2021.11.05.467388.

472 11. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR–Cas encoding
473 of a digital movie into the genomes of a population of living bacteria. *Nature* **547**,
474 345–349 (2017).

475 12. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by
476 directed CRISPR spacer acquisition. *Science* (1979) **353**, (2016).

477 13. Sheth, R. U. & Wang, H. H. DNA-based memory devices for recording cellular
478 events. *Nat Rev Genet* **19**, 718–732 (2018).

479 14. Perli, S. D., Cui, C. H. & Lu, T. K. Continuous genetic recording with self-targeting
480 CRISPR-Cas in human cells. *Science* (1979) **353**, (2016).

481 15. Bhan, N. *et al.* Recording Temporal Signals with Minutes Resolution Using
482 Enzymatic DNA Synthesis. *J Am Chem Soc* **143**, 16630–16640 (2021).

483 16. Choi, J. *et al.* A time-resolved, multi-symbol molecular recorder via sequential
484 genome editing. *Nature* **608**, 98–107 (2022).

485 17. Yim, S. S. *et al.* Robust direct digital-to-biological data storage in living cells. *Nat*
486 *Chem Biol* **17**, 246–253 (2021).

487 18. Kording, K. P. Of Toasters and Molecular Ticker Tapes. *PLoS Comput Biol* **7**,
488 e1002291 (2011).

489 19. Marblestone, A. H. *et al.* Physical principles for scalable neural recording. *Front*
490 *Comput Neurosci* **7**, (2013).

491 20. Aitchison, J. Principles of compositional data analysis. in *Multivariate analysis and*
492 *its applications* 73–81 (Institute of Mathematical Statistics, 1994).
493 doi:10.1214/lnms/1215463786.

494 21. van Overbeek, M. *et al.* DNA Repair Profiling Reveals Nonrandom Outcomes at
495 Cas9-Mediated Breaks. *Mol Cell* **63**, 633–646 (2016).

496 22. Gangi-Peterson, L., Sorscher, D. H., Reynolds, J. W., Kepler, T. B. & Mitchell, B.
497 S. Nucleotide pool imbalance and adenosine deaminase deficiency induce
498 alterations of N-region insertions during V(D)J recombination. *Journal of Clinical*
499 *Investigation* **103**, 833–841 (1999).

500 23. Pryor, J. M. *et al.* Ribonucleotide incorporation enables repair of chromosome
501 breaks by nonhomologous end joining. *Science* (1979) **361**, 1126–1129 (2018).

502 24. Li, G., Nakagome, I., Hirono, S., Itoh, T. & Fujiwara, R. Inhibition of adenosine
503 deaminase (ADA)-mediated metabolism of cordycepin by natural substances.
504 *Pharmacology Research & Perspectives* **3**, (2015).

505 25. Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free
506 template-independent enzymatic DNA synthesis for digital information storage. *Nat*
507 *Commun* **10**, 2383 (2019).

508 26. Shamir, M., Bar-On, Y., Phillips, R. & Milo, R. SnapShot: Timescales in Cell
509 Biology. *Cell* vol. 164 Preprint at <https://doi.org/10.1016/j.cell.2016.02.058> (2016).

510 27. Chang, A. *et al.* BRENDA, the ELIXIR core data resource in 2021: New
511 developments and updates. *Nucleic Acids Res* **49**, (2021).

512 28. Tauraitė, D., Jakubovska, J., Dabužinskaitė, J., Bratchikov, M. & Meškys, R.
513 Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase.
514 *Molecules* **22**, 672 (2017).

515 29. Jarchow-Choy, S. K., Krueger, A. T., Liu, H., Gao, J. & Kool, E. T. Fluorescent
516 xDNA nucleotides as efficient substrates for a template-independent polymerase.
517 *Nucleic Acids Res* **39**, 1586–1594 (2010).

518 30. Motea, E. A., Lee, I. & Berdis, A. J. A Non-natural Nucleoside with Combined
519 Therapeutic and Diagnostic Activities against Leukemia. *ACS Chem Biol* **7**, 988–
520 998 (2012).

521 31. Lu, X. *et al.* Enzymatic DNA Synthesis by Engineering Terminal Deoxynucleotidyl
522 Transferase. *ACS Catal* **12**, 2988–2997 (2022).

523 32. Fasullo, M. & Endres, L. Nucleotide salvage deficiencies, DNA damage and
524 neurodegeneration. *Int J Mol Sci* **16**, 9431–9449 (2015).

525 33. Azhar, A., Begum, N. A. & Husain, A. Nucleotide pool imbalance and antibody
526 gene diversification. *Vaccines (Basel)* **9**, 1–14 (2021).

527 34. Mathony, J. & Niopek, D. Enlightening Allostery: Designing Switchable Proteins
528 by Photoreceptor Fusion. *Adv Biosyst* **2000181**, (2020).

529 35. Ostermeier, M. Engineering allosteric protein switches by domain insertion. *Protein*
530 *Engineering, Design and Selection* **18**, 359–364 (2005).

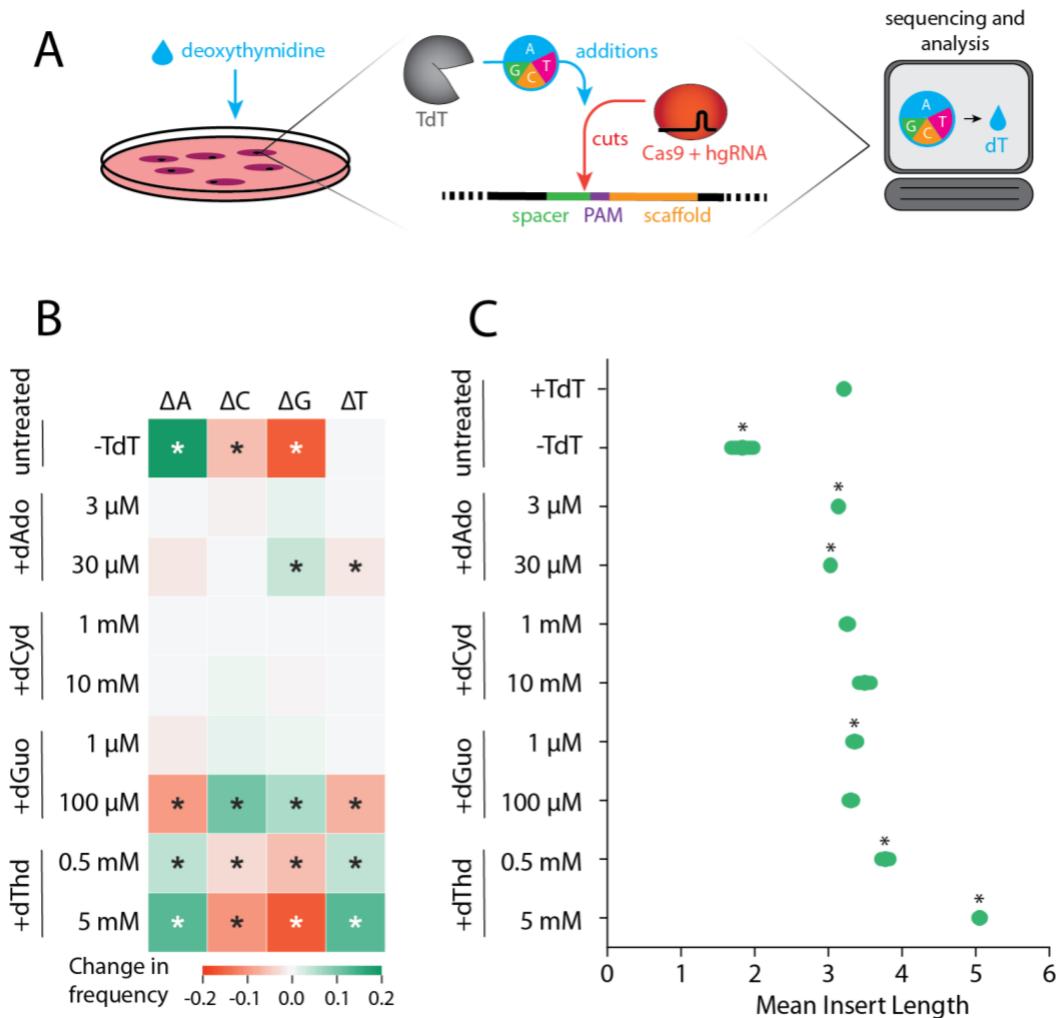
531 36. Choi, J. H., Laurent, A. H., Hilser, V. J. & Ostermeier, M. Design of protein switches
532 based on an ensemble model of allostery. *Nat Commun* **6**, (2015).

533

534

535

536


537

538

539

540

541 **Figures**

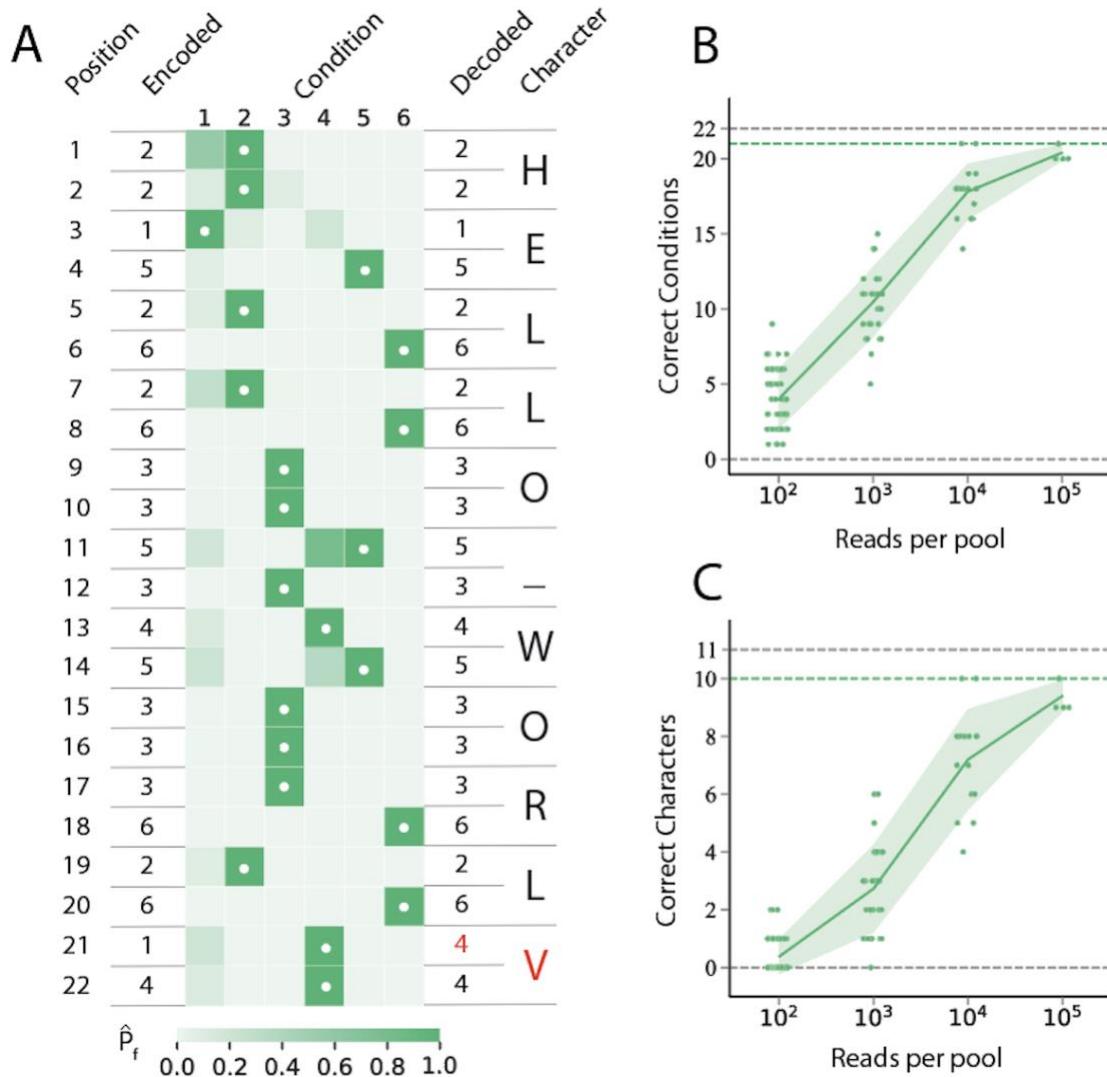
542
543

544 **Figure 1: The composition and lengths of inserted nucleotide sequences significantly**
545 **change in the absence of TdT and upon nucleoside supplementation.** (A) Schematic
546 representation of digital data recording experiments. Cells expressing hgRNA, TdT and
547 Cas9 are treated with various nucleosides. Resulting in altered cellular nucleotide pools.
548 This altered condition is encoded into the hgRNA sites by TdT catalyzed DNA strands.
549 Computational analysis of bases added by TdT at cut sites across a population of cells
550 allows *post hoc* inference of the original treatment condition. (B) The composition of
551 inserted sequences changes across conditions (rows), including a large change in the
552 absence of TdT (top row) as well as different nucleoside environments, especially when
553 supplementing dGuo and dThd (last 4 rows). The four columns represent the changes in
554 the four base (A, C, G, and T) frequencies. The color of cells represents the change in
555 frequency of each nucleotide (column) in inserted sequences across conditions (rows)
556 compared to the +TdT condition with no nucleoside treatment (e.g., the inserted dATP
557 frequency increased from 0.18 in the +TdT condition to 0.37 in the -TdT condition,

558 resulting in an increase of 0.19, which is the plotted value for -TdT and ΔA). See Fig S2
559 for absolute A, C, G, and T frequency values for each condition. Positive changes are
560 shown in green and negative changes are shown in red. Asterisk symbols are displayed for
561 statistically significant changes (compositions were first transformed into Aitchison space
562 before performing two-sample independent t-test with Bonferroni correction: $\alpha < 0.05/36$
563 = 0.00139). (C) The mean length of inserted sequences in each sample decreases in the
564 absence of TdT (first and second row) and varies across nucleoside treatments (all other
565 rows). Green bars are one standard deviation on either side. Asterisk symbols are displayed
566 for statistically significant changes in mean length from the +TdT condition (first row)
567 (two-sample independent t-test with Bonferroni correction: $\alpha < 0.05/9 = 0.0056$). Zero-
568 length inserts were not included in mean length calculations (see Fig S3 for insertion rates).
569
570
571

A

Population 2


	1	2	3	4	5	6
1	A	B	C	D	E	F
2	G	H	I	J	K	L
3	M	N	O	P	Q	R
4	S	T	U	V	W	X
5	Y	Z	_	0	1	
6						

Population 1

B

Condition Number	TdT Expression	Nucleotide Treatment
1	+	NONE
2	+	0.025 mM dGuo
3	+	0.10 mM dGuo
4	+	0.50 mM dThd
5	+	5.00 mM dThd
6	-	NONE

572
573 **Figure 2: Data encoding scheme and barcoded locus design.** (A) Encoding table for
574 representing data. Each character is encoded via two cell populations, each population
575 encoded as one of six conditions (Fig 2B). (B) Six distinguishable conditions are used for
576 data encoding with varied TdT expression and nucleoside treatment.
577
578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

Figure 3: The encoded message, “HELLO WORLD”, was decoded with one error as “HELLO WORLV”. Decoding was performed again after subsampling insert sequences *in silico* to assess performance with less data. (A) “HELLO WORLD” was encoded as a string of 22 numbers (two per character, including a space). The length and nucleotide composition of the inserts of each encoded sample were compared to controls for each condition to calculate \hat{P}_f the normalized likelihood of that condition (Equations 5 and 6). \hat{P}_f values are shown in the heatmap. White dots indicate the decoded condition (highest \hat{P}_f). The table in Figure 2A was used to decode each ordered pair of decoded values into characters shown at the right. One error was found at position 21 (red value). (B, C) Insert sequence data was repeatedly subsampled *in silico* to estimate the impact that the quantity of sequence data had on decoding performance. Decoding performance was measured as the number of correctly decoded conditions (B) or correctly decoded characters (C). The control pool and message pool were each subsampled to have the number of reads shown on the x-axis. Each green dot shows the performance of a different (random) subsample. Some horizontal jitter is applied to these values to better visualize the distribution. The solid green lines show the mean values with green shading extending one

596 standard deviation on either side. Dotted gray lines denote the required value for 100%
597 decoding accuracy and dotted green lines show the value obtained with all data (roughly
598 153k reads for the message pool and 244k for the control pool).

599
600