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Summary

Identifying functionally important cell states and structure within a heterogeneous tumor remains a significant
biological and computational challenge. Moreover, current clustering or trajectory-based computational models
are ill-equipped to address the notion that cancer cells reside along a phenotypic continuum. To address this, we
present Archetypal Analysis network (AAnet), a neural network that learns key archetypal cell states within
a phenotypic continuum of cell states in single-cell data. Applied to single-cell RNA sequencing data from
pre-clinical models and a cohort of 34 clinical breast cancers, AAnet identifies archetypes that resolve distinct
biological cell states and processes, including cell proliferation, hypoxia, metabolism and immune interactions.
Notably, archetypes identified in primary tumors are recapitulated in matched liver, lung and lymph node
metastases, demonstrating that a significant component of intratumoral heterogeneity is driven by cell intrinsic
properties. Using spatial transcriptomics as orthogonal validation, A Anet-derived archetypes show discrete spatial
organization within tumors, supporting their distinct archetypal biology. We further reveal that ligand:receptor
cross-talk between cancer and adjacent stromal cells contributes to intra-archetypal biological mimicry. Finally,
we use AAnet archetype identifiers to validate GLUT3 as a critical mediator of a hypoxic cell archetype harboring
a cancer stem cell population, which we validate in human triple-negative breast cancer specimens. AAnet is a
powerful tool to reveal functional cell states within complex samples from multimodal single-cell data.

Introduction

Cancer cells can dynamically change their functional state to facilitate survival [8,15,31]. This creates a
phenotypic continuum of cell states within a tumor that can be viewed as a cell state landscape. In this model,
dynamic gene expression changes enable movement about the landscape. Defining the breadth of cell states and
their structural organization within a tumor is currently a significant biological and computational challenge, yet
is likely to reveal critical opportunities to perturb cancer progression.

The two predominant approaches for characterizing cell state heterogeneity from single-cell transcriptomic
data are clustering and trajectory inference [24,50]. Clustering partitions the cellular state space into discrete cell
types, and trajectory inference identifies continuous paths that define a pattern of cellular dynamics. However,
when there are no clear delineations between cellular states, nor clear trajectories or lineage structure on the data
manifold, neither approach suffices to map the cellular state space. Thus, to define biological similarities and
differences within and between these tumors, there is a need for a method that can dissect cellular heterogeneity
at single-cell resolution while maintaining continuous variation along the cell state continuum. For this purpose,
we turn to archetypal analysis, a factor analysis technique first introduced by Cutler and Breiman [11]|. Archetypal
analysis first extracts factors that represent the "archetypes", or extreme states, of a dataset. Then, all datapoints
can be described as a convex combination of archetypes. In other words, archetypal analysis models the data
as a simplex, where the extreme points are corners and other points are on the faces or are internal to the
simplex (Figure 1). However, viewing this technique geometrically makes it clear that most datasets would not
be accurately described by such a simplex in the ambient data space.

This motivated the development of our approach — Archetypal Analysis network (AAnet) — which performs
archetypal analysis by learning a simplicial representation of the data. AAnet is implemented as an autoencoder,
i.e. a neural network that learns meaningful representations of the given data, but is regularized to perform
archetypal analysis. Instead of fitting a simplex on the data space, the AAnet encoder learns the optimal
transformation from the data space to a latent space bound by a simplex, and the decoder learns the transformation
back to the data space. This means that AAnet learns archetypes and a representation of each datapoint as
convex combination of archetypes through nonlinear dimensionality reduction. This adds flexibility to archetypal
detection while preserving data geometry.

Triple-negative breast cancer (TNBC) is a particularly heterogeneous subtype of breast cancer as it is an
amalgamation of all "other" breast cancers that cannot be classified as ER+, PR+, or HER2+. With a lack of
specific markers to characterize TNBC, there are consequently a paucity of effective targeted therapies to treat
it. Here, we use AAnet to deconvolute TNBC heterogeneity into biologically interpretable archetypes. Using
novel single-cell RNA sequencing (scRNAseq) and spatial transcriptomics datasets modeling tumor formation
and metastasis in vivo, AAnet identifies five archetypes in primary tumors, demonstrating they are reproducibly
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defined by distinct cancer hallmarks. These include a proliferative archetype associated with cell cycle progression;
an oxidative archetype associated with oxidative phosphorylation, ROS production, and adipogenesis; a hypoxic
archetype enriched for enzymes associated with oxygen-independent glycolysis; a cell damage/death archetype
that captures variation introduced by technical factors; and an immune-stimulatory archetype with enriched
expression of HLA genes and cytokines. We validate these archetypes by showing they are recapitulated in
metastases, are spatially organized, and colocalize with distinct microenvironmental cells types and metabolic
niches. Moreover, in a cohort of 34 human TNBC samples, AAnet reveals significant archetypal heterogeneity
between patients. Notably, we identify a subset of patients defined by the hypoxic archetype favoring residence in
a cancer stem cell niche, and we validate GLUT3 as a critical regulator of that archetypal cell state. These findings
highlight the powerful ability of AAnet to define biological function and organization within cancer, potentially
aiding in classifying patients according to biological similarities within and across patient samples. Furthermore,
AAnet defines core transcriptional programs driving distinct archetypes, thereby suggesting potential therapeutic
opportunities to target them.
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Figure 1. Overview of experimental design, A Anet, and downstream analyses.
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Overview of AAnet
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Figure 2. Overview of AAnet architecture. (a) Primary tissue visualization is a continuum of cells.
Clustering the data with standard clustering tools 100 times (with no parameters changed) results in shifting
boundaries between adjacent clusters. (b) i. AAnet learns transformation of data into a latent space shaped as a
simplex. ii. Archetypal loss enforces that data lies in a latent space shaped like an k-dimensional simplex. iii.
Diffusion extrema loss infers the extrema from the data geometry. The diffusion extrema also inform the number
of archetypes for downstream analysis. (c) AAnet is initialized with diffusion extrema and learns affinity to each
archetype and decoding of archetypes the data space. (d) Manifold distance preservation score (DEMaP) [32]
of cluster representation versus AAnet representation. (e) AAnet latent space can be used to characterize
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continuous gene trends not easily characterizable with clustering.

We, and others, have shown that cancer cells reside along a phenotypic continuum [8]. The ability to identify
critical cell states along the continuum will garner insight into the molecular programs enabling cell state
adaptation, thereby facilitating therapeutic strategies to prevent it. For characterizing cell state heterogeneity
from scRNAseq data, clustering and trajectory inference are considered a standard part of single-cell workflows
and best practices [30]. However, we show that when the data lies on a continuum without latent cluster structure
(e.g., discrete cell types) or latent lineage structure (e.g., development axis), these approaches lack concordance
across methods and are limited in their ability to meaningfully characterize the cellular state space (Figure 2a,
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Supplementary Figure la-c).

Archetypal analysis provides a framework to identify "archetypes", or extreme states, in a dataset and
characterize the datapoints as a convex combination of archetypes [2,11,21,38|. Currently, the biggest challenge
of archetypal analysis is identifying the correct and relevant archetypes. Linear archetypal analysis methods,
such as Principal Convex Hull Analysis (PCHA), fit a linear simplex onto the data in the ambient space [11]
but fail to correctly identify the extrema when the extrema in the ambient space do not conform to the data
geometry. These methods thus prove inflexible to more complex datasets, such as scRNAseq data.

To this end, we developed AAnet, a neural network for nonlinear archetypal analysis (Methods). AAnet
learns a low-dimensional latent representation of the data as a regular simplex (Figure 2b i). This is achieved
by regularizing the encoding layer of the neural network to encode points as convex or barycentric coordinates
based on the archetypal points (Figure 2b ii). The autoencoder-style (i.e. encoder-decoder) architecture and
the archetypal regularization together ensure that the model learns an accurate transformation to a simplex
representation of the data, and it can decode data from the simplicial space to generate new data. In order to add
further robustness to noise and accuracy to the model, we developed an approach (Methods) to identify extreme
points based on the underlying data geometry, termed diffusion extrema (Figure 2b iii). We then use geodesic
distances between diffusion extrema to choose the number of archetypes k, and we initialize the archetypes to
the first k£ diffusion extrema at the beginning of training.

Once the model is trained, the simplicial latent representation can be used for exploration of the dataset.
The vertices in the latent space, encoded by standard basis vectors, can be decoded to the archetypes in the gene
space, enabling characterization and comparison of their expression profiles. Furthermore, the archetypal space
coordinates provide an interpretable measure of each cell’s affinity to each archetype (Figure 2c, Supplementary
Figure 1g). Importantly, these archetypal affinities retain more information about cellular relationships than
clustering while maintaining the interpretability of cell types. We show that the simplicial latent representation
better preserves geodesic distances [32]| than the cluster representation (Figure 2d), suggesting it could prove
useful in tasks that depend on cluster annotations (e.g. [17,27]). Finally, we can also represent signals, including
gene expression, with respect to archetypal affinities, which allows characterization of continuous signals not
possible with cluster-based enrichment analysis (Figure 2e).

Comparison of AAnet to other approaches on simulated data

To compare AAnet with existing approaches for characterizing cell state heterogeneity and archetypal analysis,
we generated a nonlinearly-transformed tetrahedron, or a simplex with four vertices that are "ground truth"
archetypes. We also simulated a nonlinear signal based on the true archetypal affinity to vertex four (Supple-
mentary Figure 1a). Clustering (Supplementary Figure 1b) and trajectory inference (Supplementary Figure
1c) approaches show disagreement in cluster and pseudotime assignments respectively and fail to capture the
underlying relationship between the simulated signal and vertex four. Additionally, existing archetypal analysis
methods cannot correctly infer the vertices of the tetrahedron and show worsening performance as we increase
the nonlinearity of the tetrahedron transformation, suggesting that the linearity of these approaches is their
major limitation (Supplementary Figure 1d).

By contrast, AAnet is able to infer the true vertices with nearly perfect performance at all levels of nonlinearity
(Yextrema = 5, Supplementary Figure le). Without the diffusion extrema loss (Vegtrema = 0), AAnet shows
better average performance than existing methods, though lacks robustness at very high degrees of nonlinearity
(Supplementary Figure le). The approach to identify the number of archetypes based on diffusion extrema
correctly identifies four vertices (Supplementary Figure 1f). Finally, AAnet captures interpretable archetypal
affinities, and plotting the simulated signal against the inferred vertex 4 archetypal affinity shows AAnet is able
to recapitulate the sinusoidal relationship (Supplementary Figure 1g).

Validation of AAnet on an antigen-specific CD8+ T cell dataset

To validate our method on real biological data, we leveraged a published single-cell dataset of tumor-specific
CD8+ T cells [10]. (Supplementary Figure 2a).

Using a mouse model of lung adenocarcinoma designed to express neoantigens, Connolly et al. identified a
reservoir of antigen-specific stem-like T cells in the tumor-draining lymph node (dLN), which then migrated to
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the site of the tumor to terminally differentiate. Tumor-specific CD8+ T cells from early (8 weeks p.i.) and late
(17 weeks p.i.) dLNs (top left), early and late tumors (top right), early dLNs and early tumors (bottom left),
and late dLNs and late tumors (bottom right) (Supplementary Figure 2a) were co-embedded with PHATE [32].
"Flags" (blue, white, green) were hand-annotated based on a continuum of expression of key immune-related
marker genes in distinct regions of the single-cell embeddings. Given the utility of these flags to characterize
the heterogeneity of the state space without demarcating boundaries between points, we refer to these flags as
archetypes.

The white archetype was characterized by a naive CD8+ T cell signature based on high expression of Sell,
Lef1, and Cecr7. The green archetype was characterized by a stem-like signature, defined by high expression of
Tcf7, Xcll, Slamf6. The blue archetype was characterized by an exhausted signature, with high expression of
Pdcd1, Haver2, and Cd101.

Here, we ran AAnet separately on each of the paired embeddings to determine if it could recapitulate these
archetypes (Supplementary Figure 2b). First, we compared expression of each marker gene to characterize the
archetypes. This resulted in annotation of one archetype in each of the paired embeddings as a naive archetype,
one archetype in three out of four paired embeddings as stem-like, and one archetype in three out of four paired
embeddings as exhausted (Supplementary Figure 2c). Three archetypes (LN AT2, Week 8 AT2, and Lung AT3)
did not strongly express any of the markers. These correspond to the hand-annotated exhausted archetype in the
lymph node, an uncharacterized part of the manifold, and the hand-annotated stem-like archetype in the lung,
respectively. The authors note in the text that, while annotated, there was no prominent population of exhausted
T cells in the lymph node and no prominent population of stem-like T cells in the lung. The uncharacterized
archetype does not correspond to these three cell state extremes, possibly corresponding to an uncovered cell
state.

With the archetypes expressing the markers of interest, we computed pairwise cosine similarity across
all measured genes (not only the markers of interest, as in the original work). This showed clear clustering
corresponding to the naive, exhausted, and stem-like archetypes (Supplementary Figure 2d). This bolsters the
finding in the paper by suggesting that these cell states share broader transcriptomic similarity not limited to
the nine markers known to be associated with CD8+ T cell states.

Finally, to highlight the utility of the latent space learned by AAnet, we plotted the marker expression versus
the latent space score for each archetype in the week 17 embedding (Supplementary Figure 2e). In all cases, the
corresponding marker genes are upregulated, and the other marker genes are downregulated. Furthermore, we
see non-linear dynamics of gene patterns corresponding to distance in the latent space, adding an additional
layer of information through which to interpret the results.

Together, this analysis corroborates the use of AAnet for characterizing datasets with continuous and nonlinear
structure with respect to archetypes. Furthermore, it validates the ability to compare archetypes across datasets
to identify unified signatures of response.
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A Anet identifies five major archetypal expression states in primary tumor of triple-negative

breast cancer model

Figure 3
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Figure 3. (a) Experimental approach used to identify tumor archetypes in TNBC with AAnet. (b) Embedding
of TNBC tumor cells (all tumors combined) with archetypes indicated by colored circles. (c) Heatmap of cosine
similarity between archetypal expression vectors determined in each individual tumor (numbered) and all tumors
combined (all). Orthologous archetypes between samples are indicated with colors. (d) Enriched HALLMARK
genesets associated with each archetype in each tumor (colors indicate AT, numbers indicate tumor). P-value is
false discovery rate corrected, gene sets where p > 0.05 are shown in gray. Enrichment represents log2 fold-change.
(e) The percentage of cells in each sample committed to each archetype (colored) or uncommitted to an archetype

(gray).

Having demonstrated the power of AAnet to deconstruct single cell data into meaningful archetypes (ATs), we
sought to use AAnet to address a critical question in cancer biology — how does the cell state landscape change
across primary and metastatic tumors? Resolving this question may lead to new strategies to prevent non-genetic
adaptation that facilitates cancer progression.

To answer this, we generated a new scRNAseq dataset using an in vivo model of triple-negative breast cancer.
Highly metastatic MDA-MB-231 breast cancer cells were injected into the mammary fat pad of NSG mice and
left to grow (6-8week, Female, n—4; Figure 1). At 12 weeks, mice underwent survival surgery to remove primary
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tumors and allow metastases to develop further. Primary tumors were dissociated into single cells, sorted by flow
cytometry to capture the human cancer cells only (CD298+ cells [26]) and immediately captured for scRNAseq.
After an additional 4 weeks in vivo, lung, liver and lymph nodes were harvested and CD298+ human tumor
cells were sorted and captured for scRNAseq. This hybrid human-mouse model has a number of important
strengths that are well suited for this study: 1) the confident delineation of tumor cells from the surrounding
microenvironment 2) the capture of matched tumors and metastases and 3) a homogeneous starting population
to control for cell intrinsic differences such as genetic clonality. With this model, we used AAnet to deconvolute
the archetypes underlying heterogeneity in primary tumors. A total of 28,478 cells were analyzed from four
primary-tumors (5,118-8,163 cells) after quality control (Methods).

We first examined the archetypes contributing to cellular heterogeneity within primary tumors (Figure 3a).
Each primary tumor was analyzed with AAnet individually (Tumor 1-4), as well as for all primary tumors
combined (All). As hypothesized, each dataset showed a continuum of cellular expression states with multiple
extrema, rather than discrete clusters or unidirectional trajectories (Figure 3b, Supplementary Figure 3, Supple-
mentary Figure 4a). Five archetypes were identified in each dataset, representing distinct biological roles (Figure
3b, Supplementary Figure 3). To elucidate the biology underlying these archetypes, marker genes were defined
and used to identify hallmark genesets upregulated in each archetype and conserved between replicates (FDR <
0.05) (Figure 3d, Supplementary Table 1, Methods). These genes and genesets summarize the biology of each
archetype as follows:

Proliferative archetype (blue) This archetype is enriched for hallmarks of cell proliferation (Hallmark
genesets G2M checkpoint, E2F targets) and growth (MYC Targets V1/2, mTORCI signaling). The top markers
of this cluster include CDC20, CDK1 and CDK4, key regulators of phase transitions during the cell cycle [47].
Concomitantly, analysis of cell cycle in the cells most strongly associated with this archetype revealed that >95%
were in either the S or G2M phase (Supplementary Figure 5a-b).

Oxidative/adipogenic archetype (yellow) This archetype is associated with hallmarks of oxidative
metabolism and stress. Oxidative phosphorylation (OXPHOS) is the most strongly enriched hallmark geneset
across all replicates, driven by electron transport chain components which couple ATP-synthesis to oxygen
availability in the mitochondria (Supplementary Table 1, [5]). MYC targets are also overrepresented, including
many nuclear genes involved in mitogenesis. Genes in the reactive oxygen species (ROS) pathway are among the
top markers of this archetype, including the 4/6 peroxiredoxin family of antioxidant enzymes (PRDX1/2/4/6),
regulated by cancer cells in response to oxidative stress [36]. Genes involved in adipogenesis are also significantly
overrepresented in all replicates, suggesting fatty acid synthesis may be important for this archetype.

Hypoxic archetype (orange) This archetype was significantly associated with the hypoxia hallmark in all
replicates. While the canonical regulator of hypoxia HIF1A (hypoxia inducible factor 1) was not among the
markers of this archetype, likely because it is degraded post-translationally in the presence of oxygen, CITED2, a
HIF1A induced regulator of hypoxia known to promote both breast cancer, was one of the top markers associated
with this archetype (Supplementary Table 1, [16]). Enrichment of this geneset was also driven by glycolytic
enzymes among marker genes (the glycolysis hallmark enriched in 3/4 replicates). These included class 1 glucose
transporters SLC2A1, SLC2A3 as well as genes linked to oxygen-independent energy production in cancer ENO2,
HK2, LDHA, GAPDH [1]. Ribosomal subunits also featured prominantly among marker genes, suggesting a
relationship between ribosome biogenesis and hypoxia.

Cell damage/death archetype (amber) The top markers for this archetype were genes encoded on the
mitochondrial genome, for which enrichment is associated with cell damage or death (Supplementary Table
1, [30]). Indeed, analysis of the cells most strongly influenced by this archetype showed high expression of
mitochondrially encoded components of the electron transport chain (ETC), yet limited expression of somatically
encoded ETC components (Supplementary Figure 6). In addition to mitochondrial genes, TNF signaling via
NF-xB and the epithelial-to-mesenchymal transition (EMT) hallmark genesets, both associated with cell stress,
were also enriched. This associates this archetype with damaged and dying cells, potentially arising from technical
variables.

Immune-stimulatory archetype (purple) Immune stimulatory proteins were among the top markers of
this archetype, including CXCL1, IFITM2/3, BST2, HLA-A/B/C, B2M and ICAM1 (Supplementary Table 1).
Concordantly, Hallmark analysis showed enriched genesets related to immune signaling (IFN-v, IFN-o, TNF-a,
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and TGF-$ pathways), and apoptosis (Apoptosis, p53). Analysis of cell cycle among the cells most strongly
influenced by this archetype showed 96% percent of cells in G1, perhaps suggestive of a G1 arrest (Supplementary
Figure 5a-b). These analyses indicate this archetype describes an apoptotic, immune-stimulatory expression
pattern in tumor cells.

Archetypes were highly conserved between primary tumors (Figure 3c). All archetypes had an orthologous
archetype in each individual primary tumor and the combined dataset, with a mean cosine similarity 0.77-0.97.
In contrast, individual archetypes showed modest pairwise cosine similarity (between -0.15 and -0.2), consistent
with their classification of representing distinct cell states.

Having deconvoluted tumor cell heterogeneity into five biologically meaningful archetypes, we then determined
the association of each cell with each archetype using AAnet. AAnet encodes a representation of each cell based
on its relative association to each archetype, where the coordinates of each cell are non-negative and sum to
one. We term this association "archetypal affinity" and define cells with affinity for one archetype greater than
the sum of all other archetypal affinities (i.e. affinity > 0.5) as "committed". Cells that do not surpass this
affinity threshold for any archetype can be considered "uncommitted". Using archetypal commitment to analyze
the cellular composition of primary tumors, the abundance of cells committed to an archetype was consistently
above 60% in all tumors (62%-67.8%), yet the abundance of committed cells varied between archetypes (Figure
3e). The proliferative archetype was the most abundant archetype in the combined analysis and in two of four
individual tumors, and the immune-stimulatory archetype was the second most abundant archetype in the
combined analysis and in two of four individual tumors. The oxidative/adipogenic archetype represented a minor
fraction of tumor cells across all samples, and the hypoxic archetype was among the most variable. Together,
these analyses show that AAnet deconvolutes cancer cell heterogeneity into biologically meaningful archetypes
that are reproducibly detected in discrete tumors.
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260 A Anet reveals conserved and de novo heterogeneity across distinct metastatic sites

261 Figure 4
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Figure 4. (a) Approach to define tumor archetypes in TNBC metastases from the lymph node (LN), liver and
lung. (b) Embedding of tumor cells from each tissue with ATs indicated by colored circles. (c) Representative
histological sections of tumors and metastases taken for single-cell sequencing. (d) Stacked barplot showing
percentage of tumor cells in each tissue committed to each archetype (colored) or uncommitted to an archetype
(gray). (e) Stacked bar plot showing the cell cycle phase of cells committed to each archetype. (f) Enriched
HALLMARK genesets associated with ATs from each tissue (indicated by colors). P-value is false discovery rate
corrected, genesets where p > 0.1 are shown in gray. Enrichment represents log2 fold-change. P = primary, LN
= lymph node, LI = liver, LU = lung.
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Next, we used AAnet to identify archetypes in metastases. scRNAseq was performed on matched lymph node
(LN), liver, and lung metastases that were collected four weeks after resection of the primary tumor (Figure
da-c). A total of 42,250 metastatic cells were analyzed from LN (n = 4,6604-19,224 cells per tumor), 42,647 cells
from liver (n = 4,7136-18,671 cells per tumor), and 17,687 cells from the lung (n = 3,5599-6,379 cells per tumor)
after removal of one outlier lung sample during QC (Methods, Supplementary Figure 7a). We combined data
from metastases per tissue separately and defined archetypes in each site using AAnet.

Cellular heterogeneity in metastases followed a phenotypic continuum akin to that observed in primary
tumors (Figure 4b, Supplementary Figure 4b-d). To characterize this continuum, AAnet defined five archetypes
in the lymph node, four in the liver, and five in the lung, where all archetypes detected in the primary had an
ortholog in at least two metastatic sites (Supplementary Figure 7b-c). Moreover, a highly conserved pattern
of hallmark enrichment was observed in orthologous archetypes from different sites (Figure 4f, Supplementary
Table 2). This demonstrates that the factors of variation contributing to cancer cell heterogeneity were largely
recapitulated in primary tumors and metastases.

While orthologous archetypes were identified in many different metastases, analysis of archetypal affinity
indicated their relative contribution to cellular heterogeneity in each tissue was somewhat distinct.

Lymph node metastases showed the strongest resemblance to primary tumors. All five archetypes identified
in the lymph node had an ortholog in the primary tumor (Figure 4d-f). The proportions of cells committed to
each archetype were also highly conserved, with the proliferative and immune-stimulatory archetypes the most
abundant in both tissues (Figure 4d). Moreover, the changes in the relative abundance of the oxidative, hypoxic
and cell death archetypes were marginal, collectively indicating cell heterogeneity is very similar between primary
tumors and lymph node metastases.

Liver metastases differed from the primary and lymph node in the number and abundance of archetypes.
Only four of the five archetypes identified in the primary tumor were detected in the liver, and more cells were
committed to an archetype than in other tissues (Figure 4d-f). The absence of cells committed to the oxidative
archetype was replaced by a greater proportion of cells committed to the proliferative and immune stimulatory
archetypes, both nearly double their proportions in the primary tumor (32.94% and 23.54% respectively). Overall,
while the archetypes were somewhat conserved with primary tumors and lymph node metastases, their relative
contribution to cellular heterogeneity distinguished liver metastases from the other tissues.

Lung metastases showed the greatest difference from primary tumors and the other metastases. Five archetypes
were detected in the lung, four of which were orthologous to archetypes in the primary tumor (Figure 4d-f).
While still the most abundant, the proportion of cells committed to the proliferative archetype were significantly
lower than in other tissues (18.36%). The oxidative archetype, enriched for OXPHOS and ROS hallmarks, was
the second most abundant and almost equal to the proliferative archetype (17.72%). Conversely, the hypoxic
archetype was not detected in the lung metastases. This is consistent with cancer cellular heterogeneity in these
metastases being shaped by a oxygen-rich lung microenvironment.

The remaining archetype was unique to the lung. Markers of this archetype were significantly enriched
for the cancer hallmarks of an oxidative metabolism (OXHPOS and ROS pathway) driven by genes encoding
ETC components (ATP5F1A,B, NDUFA4,8,9, COX7C) and antioxidant enzymes (PRDX2,4,6) respectively
(Supplementary Table 2). Additionally, hallmarks of TNF signaling via NF-xB, apoptosis, hypoxia, protein
secretion, and coagulation were overrepresented, a profile of pathways indicating similarity to the immune
stimulatory archtype. Importantly, enrichment of hypoxia was driven by a separate subset of glycolytic enzymes
to those associated with the hypoxic archetype in other tissues, and did not include markers of HIF1A induction
such as CITED2 (Supplementary Table 2).

Together, these analyses show that AAnet-defined archetypes in primary tumors are also identified in
metastases. This suggests that factors influencing cellular heterogeneity are highly conserved between primary
tumors and metastases. Differences between tissues were largely driven by the differential influence of these
archetypes, potentially due to interactions with the metastatic microenvironment.
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Spatial Transcriptomics reveals organization and distinct cellular morphology of A Anet
archetypes
Figure 5
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Figure 5. (a) Approach used to define a spatial map of TNBC tumor archetypes using scMMGAN and AAnet.
(b) Histological sections of TNBC xenografts used for spatial transcriptome sequencing (n=2). (c) Spatial voxels
with a strong affinity (>0.3) for each archetype (colored) as determined by scMMGAN and AAnet. (d) Spatial
plots colored by marker geneset score for archetype. (e) Density resampled estimate of Mutual Information
(DREMI) score between archetypal affinity and marker geneset scores.

To further validate the significance and biology of the archetypes identified by AAnet, we sought to investigate
their structural organization within tumors. Thus, we performed spatial transcriptomics (Visium 10X) on tissue
sections from two primary tumors that were grown in vivo for 8 weeks. These samples were collected from two
of the tumors used for scRNAseq, with parts of these tumors frozen in OCT for sectioning. Gene expression was
measured at 2,275 spatially distributed voxels in the two samples after QC (1,170 and 1,105 voxels respectively),
with each voxel assaying expression in an area approximately 3-10 cells in size.

To map the archetypes from the scRNAseq to the spatial transcriptomic data, we first had to overcome
the intrinsic differences in the data generated by these modalities. Raw data from these technologies is not
directly comparable as they have very different sample processing protocols (digestion and droplets vs freezing
and sectioning) and biological resolutions (single cells vs multiple cells). These differences create batch effect,
where noise introduced in the process of data generation dominates the biological differences between samples.
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This batch effect was evident when spatial voxels were embedded with the scRNAseq data from the primary
tumor, as there was little alignment between the modalities despite being generated from matched biological
samples (Supplementary Figure 8a).

To address this, we leveraged our single-cell multi-modal generative adversarial network (scMMGAN) [4]
(Methods). This approach uses adversarial learning to align data between modalities, enabling integrated
downstream analysis while preserving data geometry (Figure 5a). We used scMMGAN to generate a scRNAseq
measurement for each spatial voxel (scVoxels) that is aligned to our primary scRNAseq dataset. We can then
input the aligned spatial data into the AAnet encoder trained on the primary scRNAseq data. This provides an
archetypal representation for each spatial voxel based on our previously characterized primary archetypes (Figure
5c, Supplementary Figure 8b-c). The ability to extend archetypal analysis to previously unseen data through the
neural network framework is an important feature of AAnet versus existing archetypal analysis approaches.

With spatial transcriptomic data embedded as scVoxels in the AAnet latent space, we calculated their
affinity to each archetype which was mapped back to their corresponding spatial location in the primary tumor
(Methods, Supplementary Figure 8). Archetypal affinities and marker geneset expression scores shared high
mutual information across voxels (Methods, Figure 5d-e). This indicates that biology that defined each archetype
had been retained in the spatial mapping process.

Archetypes showed spatial organization and were associated with distinct cell morphologies in primary tumors:

Proliferative archetype (blue) Voxels with high affinity for the proliferative archetype (affinity > 0.3)
formed the bulk of the tumor yet were markedly absent from the central areas of each tumor section. Areas with
high affinity for this archetype were enriched for cycling cells (Supplementary Figure 5¢). These findings were
consistent with the scRNAseq commitment analysis (Figure 3e) indicating that proliferation was a dominant
factor of cell heterogeneity in the primary samples.

Oxidative/adipogenic archetype (yellow) Areas of the tumor with high affinity for the oxidative
archetype were located in close proximity to the proliferative archetype (Figure 5d). The affinity scores and
expression of marker genesets were also significantly correlated (Figure 5e-f), indicating a relationship between
oxidative metabolism and a proliferative cell state.

Hypoxic archetype (orange) Strikingly, areas with a strong affinity for the hypoxic archetype were
localized to central and peripheral regions of primary tumors, devoid of the proliferative and oxidative archetypes
(Figure 5c). These areas showed enriched expression of markers associated with oxygen-independent glycolysis
and ribosomal subunits (Figure 5d-e).

Cell damage/death archetype (amber) The cell death archetype localized to areas with high expression
of mitochondrial genes and was strongly correlated with the proliferative and oxidative archetypes (Figure
5c-e). While preferential enrichment of mitochondrially encoded genes is often used as a marker of cell death,
mitochondrial genes encode critical components of the electron transport chain necessary for oxidative energy
production. Consequently, the association between this archetype and the proliferative/oxidative archetypes may
identify oxygen-rich areas within primary tumors rather than cell death.

Immune-stimulatory archetype (purple) Notably, affinity for the immune-stimulatory archetype was
highest surrounding the hypoxic archetype within the tumor. These areas showed enriched expression (Figure 5¢)
of cytokines and antigen presenting proteins, such as CXCL1 and HLA-A/B/C/B2M (Figure 5d-e), consistent
with the hallmark associations of this archetype. Interestingly, the immune-stimulatory archetype appears to
demarcate the hypoxic and proliferative cancer cell archetypes.

Together, this analysis shows identified archetypes have unique and distinct spatial organization within the
tumor, further validating the ability of AAnet to identify unique cellular biology and structure of cancer cells
within a phenotypic continuum of cell states. Further, the organization of the AAnet archetypes is consistent
with a model whereby the local microenvironment may play a critical role in determining the organization of
cellular heterogeneity in primary tumors.
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Figure 6. (a) Approach to defining tumor microenvironments (ME) associated with key archetypes (AT) using
AAnet. (b) Microenvironment-archetype (ME-AT) affinity scores for each spatial voxel. (c) Enrichment of
cell-types associated with each ME-AT. P-value is false discovery rate corrected. Enrichment represents log2
fold-change. (d) Enrichment of top 2 biological processes from the gene ontology (GO) associated with each
ME-AT. Processes are ranked by FDR (-logl0). (e) ME-ATs (y-axis) significantly associated with each tumor AT
(x-axis). Color reflects tumor AT, enrichment represents log2 fold-change. (f) Top ranked ligand-receptor pairs
expressed in spatial voxels with a strong affinity for each archetype and their colocalized microenvironments.
Capitalized gene symbols indicate genes with expression in tumor cells (human). Title case symbols indicate
genes with expression in ME cells (mouse). Pairs are ranked by FDR (-logl0). (g) Ligand-receptor interaction
score across spatial voxels for top pairs associated with each archetype.

374 With clear spatial organization of cancer cell archetypes derived by AAnet within the tumor, we next sought
375 to determine if, beyond spatial location, the tumor microenvironment may also be playing a role in archetypal
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development and commitment. We therefore assessed if microenvironmental cells were spatially structured into
meaningful microenvironmental archetypes (ME-ATs) (Figure 6a). The xenograft model enabled separation of
expression at each voxel into tumor and ME data based on alignment to the human or mouse genome, respectively.
Then, we used AAnet to deconvolute the murine data into ME-ATs to investigate archetype-specific cell types
and biological processes.

AAnet defined six ME-ATs with unique patterns of spatial organization (Figure 6b, Methods). Each ME-AT
is enriched for specific cell types and biological processes (Figure 6¢-d). These include a ductal ME-AT with high
enrichment of mammary epithelial cell markers in voxels overlaying to breast ducts, as well as an adipocyte ME-AT
enriched for adipocyte markers and most highly expressed on the margins of the tumor sections with residual
mammary fat pad. This correspondence with underlying histological features provides orthogonal validation for
AAnet. AAnet also identified a stromal ME-AT, enriched for fibroblasts, capillary-lining pericytes, and stromal
cells, as well as biological processes related to ECM organization, oxidative phosphorylation and angiogenesis; a
neutrophil ME-AT, enriched for neutrophils and biological processes related to glycolysis, leukocyte chemotaxis
and hypoxia; a myeloid ME-AT enriched for markers of monocytes, macrophages and dendritic cells, with an
enriched response to interferon-gamma, immune effector processes and leukocyte mediated cytotoxicity; and an
antigen-response ME-AT enriched for macrophages and genes involved in antigen processing and presentation of
exogenous peptide antigen via MHC class 11, and immunoglobulin-mediated immune response (Figure 6¢-d).
Therefore, AAnet deconvolutes expression in the microenvironment into stromal and immune components.

Next, we explored the spatial relationship of the ME-ATs to the cancer cell ATs and uncovered specific
associations (Figure 6e, Methods). Areas of the tumor with a high affinity for the proliferative AT were strongly
associated with the myeloid and stromal ME-ATs, while the oxidative/adipogenic AT showed preferential
enrichment for the stromal ME-AT. This suggests these archetypes colocalize with highly metabolic and
vascularized microenvironments. Both of these archetypes were also associated with the ductal and fat-pad
ME-ATs, concordant with the localization of these normal mammary gland structures in the histological sections.
Notably, the hypoxic AT colocalized specifically with the neutrophil ME-AT. These interactions occurred at
internal parts of the tumor section, indicating that these archetypes are associated with decreased oxygen
availability and increased neutrophil chemotaxis. The cell death AT was strongly associated with the antigen
ME-AT, indicating an active presentation of cancer cells to the immune system, cancer cell death and phagocytosis
of dead and dying cells by macrophages. Interestingly, the immune-stimulatory cancer cell AT, defined by its
enrichment for gene sets related to immune signaling, was associated with the antigen and neutrophil ME-ATs,
indicating a strong overlap in signaling and cell phenotype between the cancer and microenvironmental cells. Thus,
we observed multiple examples of spatially-localized phenotypic mimicry between cancer and microenvironmental
cells, most notably in metabolic and immune signaling.

To investigate direct cell-cell signaling mechanisms for phenotypic mimicry, we analyzed ligand-receptor
pairs (LR-pairs) for evidence of paracrine interactions (Methods). We again used our hybrid model system to
delineate between tumor (human) and ME (mouse) expression, allowing us to establish the direction of signaling.
Specifically, LR~pairs with a ligand expressed in the human data and its cognate receptor expressed in the mouse
data indicate signaling from the tumor to the microenvironment, and vice versa (Figure 6f). We first determined
the coexpression of annotated LR-pairs across all voxels and calculated their enrichment in areas with a high
affinity for each archetype. For all archetypes, the proportion of ligands originating from the tumor and the
microenvironment were approximately 50%. However, the strongest LR-pairs that localized to high affinity
regions differed between archetypes.

Tumor cells expressed stromal growth factors in areas with a high affinity for proliferative and oxida-
tive /adipogenic archetypes. These included platelet-derived growth factor (AT Ligand: PDGFC, ME Receptor:
Pdgfrb) and fibroblast growth factor (AT Ligand: FGF12, ME Receptor: Fgfrl) pathways that promote blood
vessel formation [12]. The hypoxic archetype was characterized by interactions between CD44 expressed in tumor
cells and a variety of ligands expressed in the microenvironment, including Mif, which may enhance neutrophil
accumulation within the hypoxic AT. Examples of cancer-microenvironmental cross talk in the cell death AT
are evidenced by App-Cd74, where Cd74 is an MHCII molecule, and sema7a-ITGA1, where sema7a is a potent
immune modulator. We also observe strong overlap in LR-pairs regulating immune-cancer cell crosstalk in the
immune-stimulatory AT including MMP-itgam, IL1A-Ilrlrap, and Hmgb1-TLR2. (Figure 6g).

Together, these results highlight the spatial colocalization of distinct cancer archetypes with unique microen-
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vironments, where paracrine interactions that may enhance phenotypic mimicry are an important determinant of
intratumoral heterogeneity.

Intratumoral metabolic heterogeneity in TNBC and alignment to human breast cancers

Figure 7
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Figure 7. (a) Heatmap showing expression of metabolic genes (glycolysis and oxidative phosphorylation) across
cancer archetypes and associated microenvironmental cells. (b) i. Cell growth of HCC1806, SUM159 and
HCC38-CD44 Hi cells treated with either control siRNA (siCTRL) or siRNA targeting SLC2A3 (siSLC2A3-1,
siSLC2A3-2) over a 96-hour period. n = 3 independent experiments, triplicate wells analyzed per condition.
Statistical significance defined by one-way ANOVA. ii. Representative images of SUM159 tumorspheres treated
with control or SLC2A3 targeted siRNA. iii. Quantitation of tumorsphere-forming capacity in control (siCTRL)
and SLC2A3 knockdown cells (siSLC2A3-1 or siSLC2A3-2) in SUM159, HCC1806 an HCC38-CD44 Hi cells. n
=3 independent experiments, 12 wells analyzed per condition, statistical significance defined by ordinary one-way
ANOVA with Tukey’s multiple comparison post-hoc analysis. (c) i. Diagrammatic representation of human
breast cancer sample single-cell analysis. ii. Visualization of cancer epithelial cells from two patients, colored by
markers for oxygen-independent glycolysis (SLC2A3) and entry into the TCA cycle (PDHA1). (d) Heatmap
showing expression of metabolic genes from (a) across 26 human cancer archetypes, 18 (left) associated with the
hypoxic archetype and 8 (right) associated with the proliferative archetype. Archetypes are from breast cancer
samples across three different breast cancer subtypes.
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432 The discrete localization of distinct metabolic phenotypes within the tumor, including the oxidative phosphorylation-
433 enriched proliferative AT versus the glycolytic-enriched hypoxic AT (Figure 3d and Figure 4f), as well as the
432 metabolic mimicry of the microenvironmental cells in those regions (Figure 6d), led us to ask if targeting a specific
435 metabolic program might impact tumor growth. To delve into this question, we first examined the metabolic state
436 of the microenvironments colocalized with each archetype by comparing genes associated with glycolysis and the
437 TCA cycle in each cancer AT and associated microenvironment. Indeed, the concordance between the cancer AT
a3s  and the microenvironment was driven by the correlation in expression of metabolic enzymes (Figure 7a). Enzymes
430 in the tricarboxylic acid cycle (TCA-cycle), a pathway which requires oxygen to generate energy, were uniformly
as0  highly expressed in the tumor and ME of the proliferative, oxidative and cell death archetypes. In contrast,
a1 glycolytic enzymes were clearly enriched in the hypoxic AT and associated ME cells (Figure 7a). Enzymes most
a2 highly enriched in the hypoxic area were associated with oxygen-independent glycolysis in tumors [1| and include
a3 PDK1, an inhibitor for the entry of pyruvate into the TCA cycle. This indicates that the metabolic heterogeneity
424 in primary tumor archetypes is mirrored in their local microenvironments, and the intratumoral hypoxic regions
425 of the tumor are driven by glycolysis ending in the accumulation of lactate. Interestingly, hypoxic niches are
a6 known to provide a permissive environment for maintenance of both pluripotent stem cell and cancer stem cell
447 populations [34,53]. AAnet identified that SLC2A1 (GLUT1) and SLC2A3 (GLUTS3) are enriched in cancer cells
a8 that reside in that niche.

449 Given that GLUT1 is ubiquitously expressed in normal cells throughout the body, we asked if ablating GLUT3,
450 whose expression is largely confined to the brain and sperm in normal tissues, could eradicate the aggressive
451 phenotype of the cancer cells in the hypoxic niche. In addition, GLUT3 expression is increased in TNBC and
a2 associated with metastasis and poor prognosis [44]. Three TNBC cancer stem cell-enriched cell lines (SUM159,
453 HCC1806 and HCC38-CD44Hi) were treated with a control siRNA (siCTRL) or two independent siRNAs
asa targeting SLC2A3/GLUT3 (siSLC2A3-1 and siSLC2A3-2). Efficient knockdown of SLC2A3 was confirmed
ass by qPCR (Supplementary Figure 9). SLC2A3 knockdown significantly inhibited cell proliferation in all cell
as6  lines tested (Figure 7b, Supplementary Figure 9). Excitingly, we confirm that SLC2A3 knockdown significantly
457 inhibits tumorsphere formation, an in wvitro surrogate assay for in vivo tumor-initiating ability (Figure 7b).
458 Together, these results suggest that SLC2A3 is critical for maintenance of the cancer stem cell phenotype in
aso TNBC and add to previous data indicating a role for GLUT3 in EMT and migration [44].

460 To examine the clinical relevance of the identified archetypes, we analyzed single-cell transcriptomes from
461 human breast cancer cells across four distinct studies, corresponding to 34 samples from three major breast
a2 cancer subtypes (ER+, HER2+, TNBC) (Figure 7c) [6,35,51|. First, AAnet identifies 155 archetypes across
463 the 34 samples and shows interesting similarities and differences across samples, cohorts, and breast cancer
64 subtypes (Methods, Supplementary Figure 10). To further investigate the association of human archetypes with
aes  the proliferative AT (blue) and hypoxic AT (orange), we identify 18 archetypes across all human tumors that
466 have transcriptomic profiles similar to AT3 (cosine similarity > 0.25) and dissimilar to AT1 (cosine similarity <
a7 -0.25), as well as 8 archetypes similar to AT1 and dissimilar to AT3 (Figure 7d). These metabolic archetypes are
468 common in breast cancer, represented in 26 archetypes spanning 20 human tumors. Similar to the xenograft
460 model, 6 tumors contain both a hypoxic AT and a proliferative AT within the same sample. Together, these
470 results show correspondence between the metabolic profiles of archetypes identified by our model and human
an1 breast cancer tumors, and further, the identified archetypes are relevant across breast cancer subtypes.

472 Visualization of the metabolic markers from Figure 7a reveals, for human archetypes associated with hypoxia,
473 enrichment for the hypoxic signature within the glycolysis pathway and low expression of genes related to the
472 TCA cycle. Conversely, human archetypes similar to the proliferative archetype showed low expression for
475 hypoxic genes and higher enrichment for TCA cycle genes.

476 Notably, there is no significant enrichment for a particular cancer subtype and association with AT1 or AT3
a7 (KS test p>0.05 for all tests), nor significant difference between cancer subtypes in proportion of cells committed
a7s to hypoxic or proliferative archetypes (Wilcoxon rank sums test p>0.05 for all tests). These data show that
479 AAnet can be used to identify phenotypic similarities across cancer subtypes, and thereby offers a functional
as0  method beyond hormone and molecular subtyping to classify breast cancers for therapeutic targeting.
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Discussion

It is now recognized that non-genetic programs (e.g., epigenetic, transcriptional, translational) are a major driver
of tumor heterogeneity. The dynamic and reversible nature of non-genetic heterogeneity likely favors rapid
evolution of cancer cell states (e.g., seconds, minutes or hours) to enable survival in unfavorable microenvironments
encountered throughout the metastatic cascade and in response to therapy. Thus, as single-cell technologies
continue to resolve the breadth and structure of non-genetic heterogeneity in cancer and stromal cells within
and across patient tumors, developing strategies to identify and validate the specific cell states and molecular
mechanisms that fuel cancer progression remains a significant technological and biological challenge.

To address this knowledge gap, we developed AAnet, an archetypal analysis method to identify archetypal cell
states within and between samples and their associated biological processes. Archetypal analysis is a framework
to describe a dataset as a convex combination of extreme, or archetypal, observations. In contrast to other
unsupervised approaches to characterize such data, archetypal analysis is aptly suited for both identifying key
cell states reflecting distinct biological processes and analyzing the cellular state space as a continuum of cells
committed to these processes. However, identifying the archetypal states remains a fundamental challenge of
archetypal analysis. In particular, nonlinearities can worsen the performance of existing archetypal analysis tools,
as the extreme states of the data geometry do not conform to the extreme states of the data space.

AAnet solves this problem by learning a transformation of the data into a simplex, rather than fitting a
simplex on the data directly. The latent space of the autoencoder thus preserves relationships between cells and
characterizes cells by their commitment to each archetype. We further regularize the latent space to initialize the
archetypes to diffusion extrema (inferred from the cell-cell affinity graph) for improved accuracy and robustness.

Applied here to single-cell data from pre-clinical and clinical breast cancer samples, we have shown that
A Anet enabled the discovery of biologically and functionally-distinct archetypes within a phenotypic continumm
of cell states within the tumor and captured their associated molecular drivers. First, in a pre-clinical xenograft
model comprising primary tumors matched with lung, liver, and lymph node metastases, we identify six unique
archetypes across primary and metastatic tissues, with each archetype defining unique biology of cells committed
to that extrema. Interestingly, we show that the number and distribution of cells committed to archetypes in
primary tumors is remarkably similar to those found in lymph node metastases, yet liver metastases differ by
the loss of one archetype, and the lung metastases deviate from primary, lymph node and liver metastases via
the emergence of one new archetype. These analyses demonstrate that AAnet can reveal the emergence of new
cell states, the number of cells committed to a specific archetype, and the underlying biology that facilitate
site-specific metastatic adaptation.

Critically, we validate the significance of the archetypes identified by mapping the scRNAseq data to matched
spatial transcriptomic data via scMMGAN [4]. These data confirm that AAnet-defined archetypes resolve
into distinct spatially-localized regions within the tumor. Further, we show that AAnet has revealed a unique
perspective on the organization of the associated microenvironments. Specifically, each archetype is enriched
with distinct stromal cell types; for example, the proliferative archetype is enriched with fibroblasts, hypoxic
archetype with neutrophils, and immune-stimulatory archetype with macrophages and dendritic cells. Thus,
A Anet robustly identifies functional and spatially distinct cellular archetypes within a tumor.

Of note, we uncovered metabolic heterogeneity not seen before in TNBC, where cells in discrete archetypes
utilize distinct metabolic programs. We have recently analyzed bulk RNA-seq data (METABRIC and TCGA)
and shown that TNBC exhibit a unique highly metabolic gene expression phenotype, upregulating a range of
pathways,including glycolysis, compared to other breast cancer subtypes such as Luminal A [37]. Our archetypal
analysis provides further granularity to these data, showing the individual contributions of each archetype to
this unique TNBC metabolic signature. For example, the hypoxic archetype clearly contributes to the high
expression of SLC2A1, SLC2A3 (GLUT3), HK1, HK2, ALDOA, ALDOC, TPI, GAPDH, PGK1, ENO1, PDK1
and LDHA in the bulk RNAseq data, with contributions also from the immune-stimulatory archetype but not
from the most abundant proliferative archetype. By comparison, these findings reveal that different regions
of the tumor uniquely invoke glycolysis or oxidative phosphorylation, which could not be determined when
analyzing existing bulk RNA-seq data. Furthermore, we show that we could use our identified archetypes to
predict novel therapeutic targets within distinct cellular subsets, such as the glucose transporter GLUT3 in stem
cells within the hypoxic archetype. Interestingly, we also discovered that the distinct metabolic phenotypes of two
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archetypes are strikingly reflected in the microenvironmental cells associated with those archetypes. Importantly,
we also found these distinct archetypes are present in human breast cancer samples. GLUT3/SLC2A3 expression
was present at highest levels in the hypoxic archetype, with high levels also seen in the surrounding immune
archetype. A previous study has suggested a role for GLUT3 in regulating the inflammatory microenvironment
in TNBC [44], which may also play a role in the matched metabolic phenotypes of the tumor and surrounding
microenvironment cells.

Tumor heterogeneity remains a significant clinical challenge for diagnosis and therapeutic management. The
discovery of the AAnet archetypes in scRNAseq data has enabled segmentation of tumors into functionally
distinct regions comprising cancer cell states associated with unique cellular microenvironments. Together,
these data resolve tumor heterogeneity to a level not yet achieved with previous computational tools. In the
future, classifying patients according to biological archetypes with tools like AAnet is likely to improve tumor
sub-classifications. Applied to samples before and after specific treatment, we can begin to learn how archetypes
change over time, in response to specific therapies, and in different metastatic sites. Moreover, this approach will
reveal the molecular programs driving each cellular archetype, as well as when and how they emerge. Ultimately,
these tools will deliver the knowledge to enable the development of improved and effective therapeutic strategies.

Importantly, AAnet is a flexible framework that can be used both independently and as a part of a large
single-cell analysis pipeline to interpret the archetypal distribution underlying any single-cell dataset. Given its
widespread utility and generalizability to characterize cells, AAnet is a valuable tool for the single-cell community.
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Supplementary Figure 1. Curved Tetrahedron example. (a) Simulated curved tetrahedron, colored
by signal defined with respect to affinity to archetype 4 (vertex at top). (b) Cluster assignments and signal
comparison for 10 clustering algorithms. (c) Trajectories and signal comparison from Slingshot with KMeans
clusters as input (left) and diffusion pseudotime (right). (d) Inferred archetypes from each archetypal analysis
method (black) versus ground truth archetypes (red) and mean squared error between real and ground truth
archetypes over increasing curvature. (e) AAnet-learned archetypes and mean squared error between real and
ground truth archetypes over increasing curvature. (f) AAnet-inferred number of archetypes. (g) AAnet-learned
archetypal coordinates. AAnet recapitulates sine signal with respect to archetype 4’s latent coordinates.
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Supplementary Figure 2. AAnet on CD8-+ T cells. (a) Hand-annotated archetypes from [10]. (b) AAnet-
learned archetypes for each embedding. (c) Normalized expression for each archetype for key annotation genes.
(d) Cosine similarity between archetypes for all measured genes. (e) Expression over archetypal coordinates for

Week 17 embedding.
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ssa - Supplementary Figure 3

Primary Tumor 1 Primary Tumor 2 Primary Tumor 3 Primary Tumor 4

Supplementary Figure 3. Primary tumor replicates independently characterized with A Anet.
Archetypes colored based on orthologous archetype in combined embedding (Figure 3).
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Supplementary Figure 4. Cell embedding rotation. PCA embedding rotated around PC3 for (a) Primary
(b) LN (c) Liver (d) Lung.
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Supplementary Figure 5. Cell cycle characterization. (a) Cell cycle commitment based on competitive
gene set enrichment from scRNAseq data. (b) Cell cycle commitment of cells closest to each archetype. (c)
Commitment of each spatial voxel to each cell cycle phase.
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Supplementary Figure 6. Mitochondrial expression. Expression of mitochondrially and somatically-
encoded electron transport chain genes in cell damage/death (amber) archetypes from primary replicates.
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Supplementary Figure 7. Comparison with metastatic tumor samples. (a) Number of cells from each
tumor for each tissue. (b) Number of archetypes for each tissue. (c) Cosine similarity characterizing relationships

between archetypes.
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Supplementary Figure 8. Spatial archetypal and gene set characterization. (a) Embedding without
scMMGAN alignment shows batch effect. (b) Overall commitment, where voxels that remained uncommitted
colored gray. (c) Archetypal affinity for each archetype after scMMGAN alignment. (d) Core gene set enrichment
for each archetype. (e) Commitment of each spatial voxel to each archetype.
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Supplementary Figure 9. Metabolic heterogeneity and alignment to human breast cancers. (a)
Quantitative PCR analysis of SLC2A3 mRNA expression following control or SLC2A3 targeted siRNA treatment
in SUM159, HCC1806 and HCC38-CD44 Hi cell lines. n=3 independent experiments each with triplicate technical
replicates analysed, significance measured using one-way ANOVA. (b) Representative images of proliferation
analyses following control or SLC2A3 targeted siRNA treatment in SUM159, HCC1806 and HCC38-CD44 Hi
cells. Tmages shown taken at experimental endpoint of 96 hours. (c) Representative images of tumorspheres
derived from HCC1806 and HCC38-CD44 Hi cell lines following control or SLC2A3 targeted siRNA treatment.
Images taken at experimental endpoint of 21 and 14 days for HCC1806 and HCC38-CD44 Hi respectively.
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ses  Supplementary Figure 10

Supplementary Figure 10. Cosine similarity across human breast cancer tumor archetypes.
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Supplemental Table Legends

Supplementary Table 1.

Enriched marker genes and corresponding statistics from Wilcoxon rank sum test. Sheets correspond to genes
associated with each archetype identified in each Primary tumor replicate.

Supplementary Table 2.

Enriched marker genes and corresponding statistics from Wilcoxon rank sum test. Sheets correspond to genes
associated with each archetype identified in each tissue (Primary, LN, Liver, Lung).
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Methods

Background on cell state heterogeneity analysis
Clustering-based approaches unreliably identify clusters when data is a continuum of cells

Clustering is the most commonly used technique for characterizing cell state heterogeneity in single-cell data,
and is considered a standard part of single-cell workflows and best practices [30]. However, clustering can be a
nontrivial task, both with computational challenges and challenges with interpretation and annotation [23]. This
is in part due to the fact that clustering assumes that data is composed of biologically distinct groups, such as
discrete cell types.

After embedding the primary scRNA-seq data into 3-dimensions, it is evident that for the primary tumor,
the cells are forming a connected manifold along the cellular state space, rather than separating into clusters
(Figure 2a). After running Leiden clustering 100 times with default parameters, the cluster assignments changed
at the boundaries, indicating that these cells are not strongly committed to one cluster.

We hypothesized that the cells at cluster boundaries are intermediate cells between the more distal extreme
states. To test the ability of clustering-based analysis to characterize such datasets, we simulated a curved
tetrahedron, where the datapoints are defined as a continuum between the vertices. We also defined a signal on
the tetrahedron as a function of the affinity to one vertex (Supplementary Figure 2a). Clustering the simulated
data with ten different clustering algorithms reveals (1) the lack of concordance across clustering methods when
there is no latent cluster structure in the dataset and (2) the limitations of discretizing the cellular state space in
characterizing continuous signals (Supplementary Figure 2b).

Trajectory-based approaches enforce lineage structure that do not accurately capture simulated
signal

On the other hand, trajectory inference methods are commonly used to identify continuous paths in the datasets
in order to define pseudotemporal ordering of cells, often for learning developmental decisions [20, 39,42, 43].
We show that, without clear lineage structure in the dataset, trajectory-based methods are not able to learn an
intelligible ordering of cells or meaningfully characterize the defined signal (Supplementary Figure 2c).

Background on Archetypal Analysis
Archetypal Analysis Overview

Archetypal analysis (AA) is an unsupervised learning method that aims to find extremal points, called archetypes,
such that every point in a dataset can be approximated as a mixture of these archetypes [11]. Given a dataset
X ={x1,...,zn} C R™, the archetypes {z1,..., 2} C R™ are chosen so that for each data point x; there exists
Q1,...,q;) € [0,1] such that

k
Zamzk ~ X; (1)
j=1

k
Zai’j =1. (2)
7=1

This type of linear combination where the coefficients are non-negative and sum to 1 is called a convex combination.
The set of all such convex combinations of the archetypes {z1, ..., 2} isa (k—1)-simplez. Note that the archetypes
are not constrained to be points from the dataset.
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Principal Convex Hull Analysis (PCHA)

One of the first AA algorithms was principal convex hull analysis (PCHA), proposed in [11]. PCHA constrains
the archetypes to be convex combinations of the input data points. It finds these archetypes through the following
optimization problem:
min || X7 - X"WH|?,
W.H (3)
st. 1"TW=1,1"TH=1,C>0, W >0.

where W € RYXP maps the data to the archetypes and H € RP*¥ contains the coordinates of the archetypes in
the feature space. The constraints on W guarantee that the archetypes are convex combinations of the data
points while the constraints on H guarantee that the data points are convex combinations of the archetypes. [11]
also defines an optimization algorithm for the expression above using alternating convex least-squares. This
algorithm seeks solutions that satisfy the constraints 17 W = 1 and 17H = 1 by adding auxiliary terms to the
objective function. [33] builds on this work by modifying the optimization algorithm to use projected gradient in
the alternating optimization steps to find solutions that satisfy the constraints.

Non-linear archetypal analysis variants (kPCHA, Javadi et al, Chen et al)

[33] also proposes kernel principal convex hull analysis (kPCHA), which is analogous to kernel principal
components analysis (kPCA). PCHA is rotation equivariant, meaning that applying a rotation to the input
dataset effectively results in the same rotation being applied the output features and archetypes. This implies that
the output of PCHA only depends on the kernel matrix X7 X rather than the actual input dataset X. kPCHA
takes advantage of this fact by computing this kernel matrix in a possibly-infinite dimensional reproducing kernel
Hilbert space (RKHS), then running PCHA on this kernel matrix instead of X7 X. The mapping from the
input feature space into the RKHS is typically non-linear, allowing kPCHA to potentially take advantage of the
manifold geometry of the underlying dataset.

Several other works have also extended the algorithm proposed by [11]. In [22|, the requirement that the
archetypes are convex combinations of input data is relaxed. The archetypes are found by optimizing an objective
function with two terms. The first term is similar to the objective function in 3 above and captures how well the
convex hull of the archetypes aligns with the dataset. The second term reflects how close the archetypes are to
the convex hull of the dataset. Meanwhile 9] proposes an algorithm to optimize 3 using an active-set approach.

Background on Machine Learning
Autoencoders

An autoencoder is a type of neural network that is used to learn compressed representations of data. Autoencoders
are comprised of two separate networks: an encoder and a decoder. The encoder network maps the input data
into a low-dimensional feature space or latent space, while the decoder tries to reconstruct the original data
from this low-dimensional representation. Through minimizing the error between the original data and the
reconstruction, termed reconstruction loss, autoencoders have been shown to successfully learn the structure of
data, and have had particular utility in capturing a meaningful representation of single-cell data [3,14,19,29,46].

Manifold learning

Manifold learning is a subfield of machine learning built around the manifold hypothesis, which asserts that
high-dimensional datasets are sampled from low-dimensional manifolds that lie in the high-dimensional space.
Here a manifold refers to a space that is locally isomorphic to a Euclidean space. Many methods in unsupervised
learning attempt to implicitly or explicitly capture the structure of the underlying data manifold. For instance,
the latent space of an autoencoder can be viewed as a parameterization of the data manifold.
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A Anet Overview
A Anet architecture

AAnet is designed to have a flexible number and size of layers depending on the complexity for the task. For our
purposes, we found that a 2-layer (256 nodes, 128 nodes) encoder and (128 nodes, 256 nodes) 2-layer decoder
worked well. The batch size was 256, the optimizer was ADAM, the learning rate was set to le-3, and the weight
initialization was Xavier. All hidden layers contain Tanh nonlinear activations, besides layers directly before
and after archetypal layer which are linear so that each point is a linear combination of archetypes. The default
weight on extrema 10Ss Yeztrema 1S set to 1. To encourage the archetypes to be tight, i.e. close to the data, we can
add Gaussian noise ~ N(0,0.05) in the latent layer during training. For all datasets, we reduced dimensionality
using PCA before running AAnet and inverse-transformed the learned archetypes to the ambient space.

Reconstruction Loss

The main loss function for the autoencoder seeks to minimize the difference between the original input fed into
the encoder z = F(x) and the reconstructed input produced by the decoder & = D(z), termed reconstruction
loss. Standardly, autoencoders use the mean squared difference of these two terms:

Reconstruction MSE = Egcx [[|z — 5U||2] =Euex [z — D(E(:U)||2]

Archetypal Loss

In addition to the reconstruction loss, we want to enforce the latent space of the autoencoder to learn the
structure of the data with respect to the archetypes. To this end, we convert the coordinates from Cartesian to
barycentric after the encoder learns the transformation. The barycentric coordinate system, related to Cartesian
coordinates, is a system in which each point is specified by reference to a simplex. When coordinates are
normalized to sum to 1, the vertices of the simplex are denoted by k+1 one-hot vectors of length k+1 for a
k-simplex. For example, a triangle is a 2-simplex with 3 vertices, where the 3 vertices are (1,0,0), (0,1,0), and
(0,0,1). All coefficients of point P are positive if and only if P is inside the simplex.

As this coordinate system describes points with respect to a k-simplex, it is well-suited to be the latent space
for k archetypes.

To enable interpretation of points as convex combinations of archetypes, we enforce each point stays within
the simplex by adding an archetypal loss term, the mean squared error of the negative coefficients:

AfChetypal MSE = Ezeneg‘ coef ficients [quz]

Extrema Loss

We developed a novel method to identify k plausible archetypes prior to model training. This method, explained
in detail below, builds a graph from the data and then uses the eigenvectors of the Laplacian matrix to find
extreme points in the datasets; these points will be refered to as diffusion extrema. We then include an extrema
loss term that penalizes large distances in the latent space between the diffusion extrema and the vertices of the
simplex. If the diffusion extrema and standard basis vectors in the latent space R* are labelled as {Ei}le and
{ei}le, respectively, then this loss term can be calculated as

k
. . 1
Diffusion extrema MSE = Z ;HE(&) - 6¢H§

Let {x1,...,2n} € R™ be the points in the dataset. Then the procedure for finding these diffusion extrema
is as follows:
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(1) Construct a graph G from the dataset. This can be done by computing a symmetrized k-nearest neighbors
graph from the dataset and then weighting the edges with a Gaussian kernel, as is done in [32].

(2) Let 41, ..., %, denote the eigenvectors of the combinatorial Laplacian L of G with corresponding eigenvalues
A< < )\, Compute

i1 = arg max [y2(i)],
i€{1,...,n}

where 1p2(i) is the ith entry of 1ps.

(3) Let LU1) denote L with the entries in the ith row and ith column replaced by zeros. Likewise let

¢§i1), . ,¢7(Z1) denote the eigenvectors of L) again ordered in an ascending fashion by corresponding
eigenvalue. Compute

6.

19 = argmax
ie{l,...,n}

(4) Let L(i1-im) denote L with the entries in the iith, ..., 4m_1st, and i,,th rows and columns replaced
by zeros. Likewise let 1/)§i1""’im), ceey q(fl’“"im) denote the eigenvectors of L(i1+im) Tteratively for each
7 =3,...,k compute
1; = arg max
i€{l,...,n}

o)

(5) The diffusion extrema are z;,, ..., z;,.

The intuition behind this algorithm comes from an application of Courant-Fischer theorem for symmetric

matrices. Given an n X n symmetric matrix A with eigenvectors ai, ..., ar, Courant-Fischer tells us that
a; = argminz’ Az and a; = argminz’ Ax
llzl[=1 ll)=1
<w7a1>:0

If A is the Laplacian matrix L for some weighted graph G = (V, E, w) then

' L = Z w; j(z(i) — z(5))?

(3,7)EE

Intuitively the quadratic form x’ Lx captures how smoothly x varies over the edges of G. Hence 1) is the
(normalized) constant vector, while 1)1 can be viewed as a smooth signal on G that is orthogonal to the constant
vector. Now if we consider the matrix L we see that minimizing the quadratic form &7 L) can be recast as
minimizing 7 Lz with the additional constraint that x(i) = 0, i.e.

gi) = min 2'LWz = min 2" LVg
ll||=1 ll||=1
(2,1)=0 x(i)=0
This is because 1/)9 = ¢;, the ith standard basis vector. Extending this reasoning to LU1-im) where iy, ..., iy €
e are unique but arbitrary, we see that 1 =¢;, for 1 < j < m. Hence
1 1% ique but arbitrary that """ = ¢; for 1 < j <m. H
POt = min gTLein)g

This tells us that the mth eigenvector of L(i1-Im) is a signal on G that is as smooth as possible while also
having the value 0 on vertices iy, ..., 4m. Then we should expect L(1-+bm) to attain its largest absolute value
at a vertex that is far from the vertices i1, ...,4,. This is the guiding principle behind the above diffusion
extrema method. Step (2) takes advantage of the fact that )9 is smooth on G and therefore is likely to attain
its maximum absolutely value at extremal points in the graph. The vertex at which )2 has its largest absolute
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value is chosen to be the first diffusion extrema. Steps (3) and (4) then use the properties of 7,[;7(;#'1“’@”) discussed
above to iteratively find vertices in the graph that are far away from the extrema that have already been chosen.

It has not been conclusively proven that the eigenvectors of the Laplacian L and Laplacian variant L(@1-im)
attain their maximum /minimal values at extremal points in the graph, nor is it entirely clear which vertices in a
graph can be called in extremal. However through our experiments on both toy data and real biological data we
believe this diffusion extrema method to be robust and effective in identify reasonable archetypes in a dataset.

Choosing number of archetypes

To choose the number of archetypes, we first define a range of possible archetype counts m = 2,3, ..., n4¢. Then,
we calculate ng diffusion extrema. For the m!? diffusion extremum, we calculate the geodesic distance of that
extremum to all previous extremum (first to m — 1**) and take the mean of all the distances. Intuitively, this
score tells how transcriptionally distinct archetype m is from all existing archetypes, and if it is very similar,
it is likely not a new archetype. Thus, we take the knee point of this score as the number of archetypes k for
downstream analysis.

-1
1's .
Sm = — El geodesic distance(lp,, {;) for m = 2, 3, ..., ngs

Comparative Analysis
Simulated Datasets

To generate a simulated dataset for comparisons, we sample non-uniformly from a k-simplex projected onto a
k-dimensional sphere using a stereographic projection. This enables comparisons on a dataset with nonlinear
geometry and known vertices.

For comparisons in Supplementary Figure 1, we sample 10,000 points from a 3-simplex (a tetrahedron)
projected onto a hypersphere. This results in a curved tetrahedron, where the ground truth archetypes do not
correspond to the extrema in the data space (as they would for a classic tetrahedron). We embed the curved
tetrahedron with PHATE [32], a dimensionality reduction tool designed to capture nonlinear local and global
variation.

Next, we simulated a signal, defined by the sine of the affinity between vertex 4 and all other points in the
tetrahedron based on data geometry. The ground truth signal is thus a sinusoidal function. This signal is defined
by its relation to a ground truth archetype, and is designed to model biological processes that are enriched with
respect to a cellular archetype.

Comparison to clustering methods

To compare archetypal analysis to clustering on the curved tetrahedron, we clustered the data using default
parameters for 10 different clustering algorithms in sklearn.cluster. Five methods required the number of
clusters to be specified, and for these we specified four clusters, the ground truth number of vertices for a
tetrahedron.

We ran clustering using ten different clustering algorithms: five that require the number of clusters to be
specified (KMeans, Agglomerative Clustering (Ward), Agglomerative Clustering (Single Linkage), Agglomerative
Clustering (Complete Linkage), and Spectral Clustering), and five that infer the number of clusters from the
data (Affinity Propagation, Mean Shift, DBSCAN, OPTICS, and BIRCH).

Comparison to trajectory-inference methods

For trajectory inference comparisons, we ran Slingshot and diffusion pseudotime (DPT). Slingshot requires
cluster labels and a dimensionality-reduced representation. We used the PHATE embedding and the KMeans
cluster labels as input for Figure 2, as KMeans is a popular method for clustering that produced stable results.
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Besides these two inputs, all other parameters were default. DPT was also run with default parameters, with the
required starting cell chosen randomly from cluster 3 of KMeans (the cluster containing extremum 4).

Comparison to archetypal analysis methods

All archetypal analysis methods require input of the number of archetypes, so we specified four archetypes for
each method, otherwise running with default parameters. To generate MSE calculations between the ground
truth vertices and inferred archetypes, we ran each method 5 times and visualized the first run for each method.

By the definition of barycentric coordinates, a point has a value closer to 1 for dimension k if it has a high
affinity to the k-th vertex, and a value closer to 0 if it has a low affinity to the k-th vertex. Therefore, we color
the dataset with the latent coordinates for each dimension to determine if the latent space has semantic structure,
and if AAnet is effectively learning affinity relative to each extremum.

A Anet for published antigen-specific CD8+ T cells

For each dataset, we ran TruncatedSVD to reduce the dimensionality to 100, and then ran AAnet with default
parameters. The expression levels in Supplementary Figure 2 were z-score normalized and archetypes were
clustered based on cosine similarity.

Computational Methods for TNBC
Single-cell RN A preprocessing

The CellRanger Analysis Pipeline (v3.0.2) was used to align the sequencing reads (fastq) to a pre-built reference
genome (10x Genomics) containing both the human and mouse genomes (GRCh38 + mm10) and gene expression
quantified in each cell. Cells from four primary tumors were sequenced (T1-T4) with a total of 33,938 cells
sequenced (T1 = 8707, T2 = 5951, T3 = 8934, T4 = 10346). Gene expression data was loaded into Python
(v3.8) and quality-control (QC) statistics were computed using the scanpy.pp.calculate_qgc_metrics function
(v1.9.1, [49]). To ensure only human tumor cells were taken for downstream archetypal analysis, cells with
less than 99% of data aligning to the human genome were removed. Mouse genes were also removed prior to
calculating library size. Cells with a total library size between 2000-50,000 UMI and expressing at least 1000
genes were retained for downstream analysis. A total of 28,478 primary tumor cells passed QC filtering (T1 =
7606, T2 = 5118, T3 = 8163, T4 = 7591). Remaining tumor cells were normalized to 10,000 reads per cell and
square-root transformed using the scprep package (v1.2.3, github.com/krishnaswamylab /scprep). To correct
for dropout data were smoothed with the manifold smoothing method MAGIC (v3.0.0, [45]). Cell numbers
remaining after QC were visualized using the R package ggplot2 (v3.4.2, [48]). Cell-cycle phase assignment
was performed using the scanpy.tl.score_genes_cell_cycle function with previously defined S-phase and
G2M-phase gene lists [41].

Highly variable genes were detected within each sample using the scprep function
scprep.select.highly_variable_genes and a cellular graph constructed based on KNN and alpha decay
kernel using graphtools
(v1.5.3, github.com /krishnaswamylab/graphtools). For the combined analysis of all tumors we used an MNN
kernel to build a cellular graph with batch correction between the replicates. We then used MAGIC (v3.0.0, [45])
to transform each graph into the gene space, and ran TruncatedSVD to reduce the dimensionality to 100 and
visualize samples in reduced dimensions.

AT similarity, affinity and commitment

AAnet was run on both individual samples and a combined dataset using default parameters. Data archetypes
were defined for each dataset using AAnet and archetypal expression vectors were generating by transforming
archetype coordinates back into the gene space. Cosine similarity was calculated between expression vectors
and hierarchical clustering used to identify five orthologous expression states between datasets. The affinity of
each cell to each archetype was calculated based on the distance of each cell to each archetype in the AAnet
latent embedding. As the combined affinity of each cell to all archetypes is regularized to 1, cells with an affinity
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to single archetype greater than the sum of their affinity to all other archetypes (i.e. with an affinity >0.5 for
any archetypes) were defined as committed to that archetype. The archetypal composition of each sample was
determined by summing the number of committed cells per archetype and assigning cells with affinity for all
archetypes <0.5 as uncommitted.

Biological characterization of archetypal states

Marker genes upregulated in each archetype were calculated by comparing gene expression between cells that
were the most committed to each archetype. The top 125 cells with the strongest affinity for each archetype
in the combined AAnet latent space were selected from each replicate (500 cells per archetype), as well as the
125 cell per replicate furthest from any archetype as the uncommitted populations (500 cells uncommitted).
Genes that were upregulated in any group relative to all other groups (FDR < 0.05) were determined using the
FindMarkers function from the Seurat R package (v4.0, [40]). Cancer hallmark gene sets [28| overrepresented
(FDR < 0.1) in markers associated with each archetype were determined by 1-sided Fisher’s exact test using the
clusterProfiler R-package (v3.16.1, [52]) and visualized using ggplot2.

Spatial RN A data generation

Spatial transcriptomics was conducted using 10X Visium Spatial Gene Expression Slide and Reagent Kit,
16 rxns (PN-1000184), according to the protocol detailed in document CG000239RevD for the TNBCs and
CGO000239RevE for the Xenografts, available in 10X Genomics demonstrated protocols. Cryo-sectioning was
done on OCT embedded and snap frozen tissue samples at 10um thickness and placed on cold Visium slide
arrays. The sections were adhered by swiftly warming of the backside of the slide. The slides were then kept in
-80°C less than 4 weeks before processing accordingly.

In short, the slides were first warmed at 37°C for one minute and then immersed in pre-chilled methanol
(VWR EU, 20847.307) for 30 minutes at -20°C for fixation. Staining with hematoxylin and eosin was carried
out by one min of drying of the tissues with 500ul. of isopropanol (Fisher Scientific, A461-1) followed by air
drying until sections turned white. Around 1 mL of with Mayer’s hematoxylin (Agilent, S23309) was pipetted
onto the slides and treated for four minutes. The slides were then washed in nuclease free water followed by a
two-minute incubation with bluing buffer (Agilent, CS702), washed again and then counterstained with buffered
eosin (Sigma-Aldrich, HT110216, 1:10 dilution in Tris-Acetic Acid Buffer). The slides were air dried for about 2
minutes and then warmed for 5 minutes at 37°C before mounting using 85percent Glycerol (Merck, 104094) and
a coverslip.

Bright field histology images were obtained using a 20X objective on Zeiss microscope using the Metafer
VSlide system and the images were processed by the VSlide software. The images were extracted as jpgs for
downstream analysis.

After imaging, the coverslip and the remaining glycerol was washed off in Milli-QQ water and the slides were
attached in plastic cassettes included in the reagent kit and first subjected to 20 minutes of permeabilization at
37°C to let the mRNA reach the probes on the slide surface for binding.

The protocol was then followed without deviations to create amplified libraries which in the end were
individually indexed using the Dual Index Kit TT SetA, (PN-1000215, 10X Genomics), quality controlled on a
BioAnalyzer instrument and concentrations were measured using Qubit DNA HS. The libraries were pooled
equimolarly (2nM) and sequenced on the Nextseq 500 (Illumina platform) for the tnbcs and Nextseq 2000
(Ilumina platform) for the xenografts. To reach the appropriate read depth the recommended number of reads
per ST spot were applied according to the protocol.

Spatial RNA preprocessing

The SpaceRanger Analysis Pipeline (v2.0.0, 10x Genomics) was used to align the sequencing reads (fastq) to a
pre-built reference genome (10x Genomics) containing both the human and mouse genomes (GRCh38 + mm10)
and gene expression quantified in each cell. Quality-control (QC) statistics were computed using the STutility
package [7]. Voxels with a library size < 3000 UMI were removed and remaining voxels manually curated to
remove those that were disconnected from the main tissue section. Human and mouse genes were separated
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to create two datasets per sample, one measuring the expression of human genes at each voxel, pertaining to
tumor cells, and the other measuring expression of mouse genes, pertaining to cells from the microenvironment.
Genes were removed if they were detected in less than 10 voxels. Finally each dataset was filtered to remove
voxels with low library diversity for a given genome (<1000 human genes detected, <300 mouse genes detected).
After QC filtering, the human dataset comprised of 14,819 genes measured at 1170 and 1105 voxels for each
tumor, while the mouse dataset comprised of 12,119 genes measured at 1150 and 1079 voxels in TX and TX
section respectively. Remaining datasets were each normalized to 10,000 reads per voxel and log transformed.
To correct for dropout (human dataset = 69.8% zeros, mouse dataset = 90.6% zeros) data were smoothed with
the manifold smoothing method MAGIC. Cell-cycle phase assignment was performed using the CellCycleScoring
function in Seurat [40| with previously defined S-phase and G2M-phase gene lists [41]. Spatial plots throughout
the manuscript were generated using STUtility.

Mapping of archetypes to spatial transcriptomics with scMMGAN

To map archetypes identified in the single-cell data from primary tumors to voxels in the spatial transcriptomic
samples we used sScMMGAN [4]. Smoothed expression data were zero-centered and unit scaled each dimension,
and reduce to 50 principal components used as input to the scMMGAN generator, with the combined scRNAseq
data described above used as input for the discriminator layer. sSceMMGAN was run with a generator consisting
of three internal layers of 128, 256, and 512 neurons with batch norm and leaky rectified linear unit activations
after each layer, and a discriminator consisting of three internal layers with 1,024, 512, and 256 neurons with the
same batch norm and activations except with minibatching after the first layer. We use the geometry-preserving
correspondence loss with a coefficient of 10, cycle-loss coefficient of 1, learning rate of 0.0001, and batch size of
256. This network was used to generate a single-cell-like representation of each spatial voxel. These generated
single -cell values were then embedded into the AAnet latent space trained using the combined single-cell RNAseq
dataset. The affinity of each voxel to each archetype was then determined based on the distance of its generated
single-cell values to each archetype in the trained AAnet latent space. Each voxel was then assigned to an
archetype to which it had the highest affinity, or uncommitted in the case the maximum affinity corresponded to
more than one archetype. It is important to note that the resolution of spatial transcriptomics voxels above the
single-cell level (estimated between 3-10 cells per voxel), thus archetypes represent the dominant expression state
among cells in the voxel. We also scored voxels based on the expression of the marker gene sets associated with
each archetype in the single-cell data using on the first principal component of gene set expression, analogous
to the eigengene metric used to summarize gene coexpression networks [25]. Scores were calculated based on
expression of the top 50 marker genes with the highest log fold enrichment per archetype, excluding mitochondrial
and ribosomal genes.

Microenvironment mapping and enrichment

We used data aligning to the mouse genome at each voxel to analyze the microenvironment associated with each
archetype. Based on the archetypal assignment of voxels using tumor data, as described above, we identified
differentially expressed genes between microenvironment spatially colocalized with each archetype using the
FindMarkers function in Seurat (LFC >0.1, FDR<0.05) [40]. Enrichment of Gene Ontology Biological Processes
and cell-types markers associated with "Connective tissue", "Immune system", "Smooth muscle", "Epithelium",
"Vasculature", "Blood", "Mammary gland" or "Skeletal muscle" in the Pangloa database (v27,/03/2020) [18§]
among differentially expressed genes was determined with a 1-sided Fisher’s exact test using the clusterProfiler
R-package [54]. Putative ligand-receptor interactions between archetypes were identified using CellPhoneDB
(v2) [13]. Human orthologs to mouse genes were idenitfied in biomaRt and counts matrices were merged based
on gene id prior to running CellPhoneDB using parameters —iterations 1000 —threshold 0.2. and identifying
significant interactions (FDR < 0.05). The metabolism between archetypes and microenvrionment was compared
based expression of key enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle in each archetype
and associated microenvironment. Glycolytic enzymes were designated as either hypoxic based on their enriched
expression (LFC > 0) in voxels assigned to the hypoxic AT5 archtype. Heatmaps were generated based on the
mean of scaled values for voxels associated with each archetype (human genes) or microenvironment (orthologous
mouse genes).
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Cell Culture

SUM159 cells were cultured in Ham’s F12 + 1% (v/v) hydrocortisone, HCC1806 and HCC38-CD44 Hi cells
were cultured in RPMI media. Media were supplemented with 10% (v/v) fetal bovine serum (GE healthcare)
and 1% (v/v) pencillin-streptomycin. To isolate CD44Hi cells from the parental HCC38 cell line, cells were
expanded in vitro in 150 mm tissue culture-treated culture dish (Corning). For the initial FACS rounds, cells
were trypsinized and 1-2 x 107 cells were stained for the membrane marker CD44 (BD anti-human CD44-PE-cy7
(1:800)) for 25 min at 4C. Antibody titration was previously determined staining a battery of breast cancer cell
lines. Pure CD44H cells were collected and replated for expansion in culture. Following sorting purification,
cultures were supplemented with 0.1% (v/v) gentamicin and 1% (v/v) antibiotic-antimycotic for 2 passages to
avoid contamination. Sequential rounds of FACS enrichment were performed until 100% pure populations were
isolated. Data collection was performed using a BD Aria III and FACSDiva software (BD Biosciences). Flowjo
X10.7.1 was used for data analysis.

siRINA treatment

Cells were plated, allowed to grow for 24h then transfected with either 20nM siRNA Silencer™ Select negative
control (Invitrogen, 4390843) or SLC2A3 directed siRNA (Invitrogen, 4390824). siRNAs were transfected using
Optimem Reduced Serum Media (ThermoFisher 31985070) and Lipofectamine 3000 (ThermoFisher scientific
L3000015#) as per standard protocol. Cells were harvested at 24h for qPCR analysis or trypsinized and re-seeded
for proliferation and/or tumorsphere assay.

qRT-PCR

Total RNA was extracted and purified using the RNeasy micro kit (Qiagen). Reverse transcription was performed
from 1 pg of total RNA with Superscript IV reverse transcriptase (Life Technologies, CA, USA) according to the
manufacturer’s instructions. The reverse transcription product was diluted 1:10 with TagMan Fast Advanced
Master Mix (Invitrogen, 4444556) and used as a cDNA template for gPCR analysis. Real-time quantitative PCR,
was performed using the QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystems, CA, USA). Results
are represented as mean values normalised to controls.

Proliferation

Following 24 hours of treatment of control or SLC2A3 targeted siRNA treatment, cells were seeded (1000 per
well) in a 96-well plate. Proliferation was determined by confluence (%) per well, measured every 24 hours over a
96-hour using an Incucyte (Sartorius).

Tumorsphere-forming assay

After 24 hours of treatment of control or SLC2A3 targeted siRNA treatment, cells were trypsinized and seeded
in an ultra-low attachment 96 well plate (Corning) (300 cells per well) at 1000 cells per well. Tumorsphere
media was comprised of methylcellulose (Sigma, m-7027) and basal media supplemented with 20ng/ml basic
fibroblast growth factor (Millipore, GF003), 20ng/ml human epidermal growth factor (Sigma, E1264), B27 (Life
Technologies, 17504-044) and 4pg/ml heparin (Sigma, H3149). 50ul additional tumorsphere media was added
every 5 days and tumorspheres were counted and imaged at 14 or 21 days.

Human scRNA-seq data preprocessing

For experiments from [6,35,51], the datasets were first subset to cancer epithelial cells based on prior annotation,
and only samples with > 1000 cells were analyzed with AAnet. We then further preprocessed the data by
removing genes expressed in fewer than 5 cells, filtering library size to between 1500 and 60000 UMI counts,
and L1 normalizing for library size. We then square-root transformed the data, and filtered any remaining
contaminating cells based on marker gene expression. Finally, we embedded the data with MAGIC and PCA
before identifying archetypes with AAnet. For experiments based on the PDX model, the same pipeline was
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followed, where additionally cells with less than 99% of reads aligning to human cells were removed, and mouse
genes were removed.

Data Availability

The accession codes to the newly generated single-cell and spatial data will be provided before publication.
Public CD8+ T cell data can be accessed at GEO under accession number GSE182509. Processed scRNA-seq
data from [35] is available as GEO series GSE161529. Raw sequencing reads of all single-cell experiments from [6]
have been deposited in the European Genome-phenome Archive (EGA) under study no. EGAS00001004809.
Processed scRNA-seq data from [51] are also available through the Gene Expression Omnibus under accession
number GSE176078.

Code Availability

The source code is available at https://github.com/KrishnaswamyLab/A Anet.
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