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Summary18

Identifying functionally important cell states and structure within a heterogeneous tumor remains a significant19

biological and computational challenge. Moreover, current clustering or trajectory-based computational models20

are ill-equipped to address the notion that cancer cells reside along a phenotypic continuum. To address this, we21

present Archetypal Analysis network (AAnet), a neural network that learns key archetypal cell states within22

a phenotypic continuum of cell states in single-cell data. Applied to single-cell RNA sequencing data from23

pre-clinical models and a cohort of 34 clinical breast cancers, AAnet identifies archetypes that resolve distinct24

biological cell states and processes, including cell proliferation, hypoxia, metabolism and immune interactions.25

Notably, archetypes identified in primary tumors are recapitulated in matched liver, lung and lymph node26

metastases, demonstrating that a significant component of intratumoral heterogeneity is driven by cell intrinsic27

properties. Using spatial transcriptomics as orthogonal validation, AAnet-derived archetypes show discrete spatial28

organization within tumors, supporting their distinct archetypal biology. We further reveal that ligand:receptor29

cross-talk between cancer and adjacent stromal cells contributes to intra-archetypal biological mimicry. Finally,30

we use AAnet archetype identifiers to validate GLUT3 as a critical mediator of a hypoxic cell archetype harboring31

a cancer stem cell population, which we validate in human triple-negative breast cancer specimens. AAnet is a32

powerful tool to reveal functional cell states within complex samples from multimodal single-cell data.33

Introduction34

Cancer cells can dynamically change their functional state to facilitate survival [8, 15, 31]. This creates a35

phenotypic continuum of cell states within a tumor that can be viewed as a cell state landscape. In this model,36

dynamic gene expression changes enable movement about the landscape. Defining the breadth of cell states and37

their structural organization within a tumor is currently a significant biological and computational challenge, yet38

is likely to reveal critical opportunities to perturb cancer progression.39

The two predominant approaches for characterizing cell state heterogeneity from single-cell transcriptomic40

data are clustering and trajectory inference [24,50]. Clustering partitions the cellular state space into discrete cell41

types, and trajectory inference identifies continuous paths that define a pattern of cellular dynamics. However,42

when there are no clear delineations between cellular states, nor clear trajectories or lineage structure on the data43

manifold, neither approach suffices to map the cellular state space. Thus, to define biological similarities and44

differences within and between these tumors, there is a need for a method that can dissect cellular heterogeneity45

at single-cell resolution while maintaining continuous variation along the cell state continuum. For this purpose,46

we turn to archetypal analysis, a factor analysis technique first introduced by Cutler and Breiman [11]. Archetypal47

analysis first extracts factors that represent the "archetypes", or extreme states, of a dataset. Then, all datapoints48

can be described as a convex combination of archetypes. In other words, archetypal analysis models the data49

as a simplex, where the extreme points are corners and other points are on the faces or are internal to the50

simplex (Figure 1). However, viewing this technique geometrically makes it clear that most datasets would not51

be accurately described by such a simplex in the ambient data space.52

This motivated the development of our approach — Archetypal Analysis network (AAnet) — which performs53

archetypal analysis by learning a simplicial representation of the data. AAnet is implemented as an autoencoder,54

i.e. a neural network that learns meaningful representations of the given data, but is regularized to perform55

archetypal analysis. Instead of fitting a simplex on the data space, the AAnet encoder learns the optimal56

transformation from the data space to a latent space bound by a simplex, and the decoder learns the transformation57

back to the data space. This means that AAnet learns archetypes and a representation of each datapoint as58

convex combination of archetypes through nonlinear dimensionality reduction. This adds flexibility to archetypal59

detection while preserving data geometry.60

Triple-negative breast cancer (TNBC) is a particularly heterogeneous subtype of breast cancer as it is an61

amalgamation of all "other" breast cancers that cannot be classified as ER+, PR+, or HER2+. With a lack of62

specific markers to characterize TNBC, there are consequently a paucity of effective targeted therapies to treat63

it. Here, we use AAnet to deconvolute TNBC heterogeneity into biologically interpretable archetypes. Using64

novel single-cell RNA sequencing (scRNAseq) and spatial transcriptomics datasets modeling tumor formation65

and metastasis in vivo, AAnet identifies five archetypes in primary tumors, demonstrating they are reproducibly66
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defined by distinct cancer hallmarks. These include a proliferative archetype associated with cell cycle progression;67

an oxidative archetype associated with oxidative phosphorylation, ROS production, and adipogenesis; a hypoxic68

archetype enriched for enzymes associated with oxygen-independent glycolysis; a cell damage/death archetype69

that captures variation introduced by technical factors; and an immune-stimulatory archetype with enriched70

expression of HLA genes and cytokines. We validate these archetypes by showing they are recapitulated in71

metastases, are spatially organized, and colocalize with distinct microenvironmental cells types and metabolic72

niches. Moreover, in a cohort of 34 human TNBC samples, AAnet reveals significant archetypal heterogeneity73

between patients. Notably, we identify a subset of patients defined by the hypoxic archetype favoring residence in74

a cancer stem cell niche, and we validate GLUT3 as a critical regulator of that archetypal cell state. These findings75

highlight the powerful ability of AAnet to define biological function and organization within cancer, potentially76

aiding in classifying patients according to biological similarities within and across patient samples. Furthermore,77

AAnet defines core transcriptional programs driving distinct archetypes, thereby suggesting potential therapeutic78

opportunities to target them.79
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Results80

Defining in vivo cellular heterogeneity in scRNAseq data of triple-negative breast cancer81

Figure 1. Overview of experimental design, AAnet, and downstream analyses.
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Overview of AAnet82

Figure 283

Figure 2. Overview of AAnet architecture. (a) Primary tissue visualization is a continuum of cells.
Clustering the data with standard clustering tools 100 times (with no parameters changed) results in shifting
boundaries between adjacent clusters. (b) i. AAnet learns transformation of data into a latent space shaped as a
simplex. ii. Archetypal loss enforces that data lies in a latent space shaped like an k-dimensional simplex. iii.
Diffusion extrema loss infers the extrema from the data geometry. The diffusion extrema also inform the number
of archetypes for downstream analysis. (c) AAnet is initialized with diffusion extrema and learns affinity to each
archetype and decoding of archetypes the data space. (d) Manifold distance preservation score (DEMaP) [32]
of cluster representation versus AAnet representation. (e) AAnet latent space can be used to characterize
continuous gene trends not easily characterizable with clustering.

We, and others, have shown that cancer cells reside along a phenotypic continuum [8]. The ability to identify84

critical cell states along the continuum will garner insight into the molecular programs enabling cell state85

adaptation, thereby facilitating therapeutic strategies to prevent it. For characterizing cell state heterogeneity86

from scRNAseq data, clustering and trajectory inference are considered a standard part of single-cell workflows87

and best practices [30]. However, we show that when the data lies on a continuum without latent cluster structure88

(e.g., discrete cell types) or latent lineage structure (e.g., development axis), these approaches lack concordance89

across methods and are limited in their ability to meaningfully characterize the cellular state space (Figure 2a,90
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Supplementary Figure 1a-c).91

Archetypal analysis provides a framework to identify "archetypes", or extreme states, in a dataset and92

characterize the datapoints as a convex combination of archetypes [2, 11, 21, 38]. Currently, the biggest challenge93

of archetypal analysis is identifying the correct and relevant archetypes. Linear archetypal analysis methods,94

such as Principal Convex Hull Analysis (PCHA), fit a linear simplex onto the data in the ambient space [11]95

but fail to correctly identify the extrema when the extrema in the ambient space do not conform to the data96

geometry. These methods thus prove inflexible to more complex datasets, such as scRNAseq data.97

To this end, we developed AAnet, a neural network for nonlinear archetypal analysis (Methods). AAnet98

learns a low-dimensional latent representation of the data as a regular simplex (Figure 2b i). This is achieved99

by regularizing the encoding layer of the neural network to encode points as convex or barycentric coordinates100

based on the archetypal points (Figure 2b ii). The autoencoder-style (i.e. encoder-decoder) architecture and101

the archetypal regularization together ensure that the model learns an accurate transformation to a simplex102

representation of the data, and it can decode data from the simplicial space to generate new data. In order to add103

further robustness to noise and accuracy to the model, we developed an approach (Methods) to identify extreme104

points based on the underlying data geometry, termed diffusion extrema (Figure 2b iii). We then use geodesic105

distances between diffusion extrema to choose the number of archetypes k, and we initialize the archetypes to106

the first k diffusion extrema at the beginning of training.107

Once the model is trained, the simplicial latent representation can be used for exploration of the dataset.108

The vertices in the latent space, encoded by standard basis vectors, can be decoded to the archetypes in the gene109

space, enabling characterization and comparison of their expression profiles. Furthermore, the archetypal space110

coordinates provide an interpretable measure of each cell’s affinity to each archetype (Figure 2c, Supplementary111

Figure 1g). Importantly, these archetypal affinities retain more information about cellular relationships than112

clustering while maintaining the interpretability of cell types. We show that the simplicial latent representation113

better preserves geodesic distances [32] than the cluster representation (Figure 2d), suggesting it could prove114

useful in tasks that depend on cluster annotations (e.g. [17, 27]). Finally, we can also represent signals, including115

gene expression, with respect to archetypal affinities, which allows characterization of continuous signals not116

possible with cluster-based enrichment analysis (Figure 2e).117

Comparison of AAnet to other approaches on simulated data118

To compare AAnet with existing approaches for characterizing cell state heterogeneity and archetypal analysis,119

we generated a nonlinearly-transformed tetrahedron, or a simplex with four vertices that are "ground truth"120

archetypes. We also simulated a nonlinear signal based on the true archetypal affinity to vertex four (Supple-121

mentary Figure 1a). Clustering (Supplementary Figure 1b) and trajectory inference (Supplementary Figure122

1c) approaches show disagreement in cluster and pseudotime assignments respectively and fail to capture the123

underlying relationship between the simulated signal and vertex four. Additionally, existing archetypal analysis124

methods cannot correctly infer the vertices of the tetrahedron and show worsening performance as we increase125

the nonlinearity of the tetrahedron transformation, suggesting that the linearity of these approaches is their126

major limitation (Supplementary Figure 1d).127

By contrast, AAnet is able to infer the true vertices with nearly perfect performance at all levels of nonlinearity128

(γextrema = 5, Supplementary Figure 1e). Without the diffusion extrema loss (γextrema = 0), AAnet shows129

better average performance than existing methods, though lacks robustness at very high degrees of nonlinearity130

(Supplementary Figure 1e). The approach to identify the number of archetypes based on diffusion extrema131

correctly identifies four vertices (Supplementary Figure 1f). Finally, AAnet captures interpretable archetypal132

affinities, and plotting the simulated signal against the inferred vertex 4 archetypal affinity shows AAnet is able133

to recapitulate the sinusoidal relationship (Supplementary Figure 1g).134

Validation of AAnet on an antigen-specific CD8+ T cell dataset135

To validate our method on real biological data, we leveraged a published single-cell dataset of tumor-specific136

CD8+ T cells [10]. (Supplementary Figure 2a).137

Using a mouse model of lung adenocarcinoma designed to express neoantigens, Connolly et al. identified a138

reservoir of antigen-specific stem-like T cells in the tumor-draining lymph node (dLN), which then migrated to139
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the site of the tumor to terminally differentiate. Tumor-specific CD8+ T cells from early (8 weeks p.i.) and late140

(17 weeks p.i.) dLNs (top left), early and late tumors (top right), early dLNs and early tumors (bottom left),141

and late dLNs and late tumors (bottom right) (Supplementary Figure 2a) were co-embedded with PHATE [32].142

"Flags" (blue, white, green) were hand-annotated based on a continuum of expression of key immune-related143

marker genes in distinct regions of the single-cell embeddings. Given the utility of these flags to characterize144

the heterogeneity of the state space without demarcating boundaries between points, we refer to these flags as145

archetypes.146

The white archetype was characterized by a naive CD8+ T cell signature based on high expression of Sell,147

Lef1, and Ccr7. The green archetype was characterized by a stem-like signature, defined by high expression of148

Tcf7, Xcl1, Slamf6. The blue archetype was characterized by an exhausted signature, with high expression of149

Pdcd1, Havcr2, and Cd101.150

Here, we ran AAnet separately on each of the paired embeddings to determine if it could recapitulate these151

archetypes (Supplementary Figure 2b). First, we compared expression of each marker gene to characterize the152

archetypes. This resulted in annotation of one archetype in each of the paired embeddings as a naive archetype,153

one archetype in three out of four paired embeddings as stem-like, and one archetype in three out of four paired154

embeddings as exhausted (Supplementary Figure 2c). Three archetypes (LN AT2, Week 8 AT2, and Lung AT3)155

did not strongly express any of the markers. These correspond to the hand-annotated exhausted archetype in the156

lymph node, an uncharacterized part of the manifold, and the hand-annotated stem-like archetype in the lung,157

respectively. The authors note in the text that, while annotated, there was no prominent population of exhausted158

T cells in the lymph node and no prominent population of stem-like T cells in the lung. The uncharacterized159

archetype does not correspond to these three cell state extremes, possibly corresponding to an uncovered cell160

state.161

With the archetypes expressing the markers of interest, we computed pairwise cosine similarity across162

all measured genes (not only the markers of interest, as in the original work). This showed clear clustering163

corresponding to the naive, exhausted, and stem-like archetypes (Supplementary Figure 2d). This bolsters the164

finding in the paper by suggesting that these cell states share broader transcriptomic similarity not limited to165

the nine markers known to be associated with CD8+ T cell states.166

Finally, to highlight the utility of the latent space learned by AAnet, we plotted the marker expression versus167

the latent space score for each archetype in the week 17 embedding (Supplementary Figure 2e). In all cases, the168

corresponding marker genes are upregulated, and the other marker genes are downregulated. Furthermore, we169

see non-linear dynamics of gene patterns corresponding to distance in the latent space, adding an additional170

layer of information through which to interpret the results.171

Together, this analysis corroborates the use of AAnet for characterizing datasets with continuous and nonlinear172

structure with respect to archetypes. Furthermore, it validates the ability to compare archetypes across datasets173

to identify unified signatures of response.174
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AAnet identifies five major archetypal expression states in primary tumor of triple-negative175

breast cancer model176

Figure 3177

Figure 3. (a) Experimental approach used to identify tumor archetypes in TNBC with AAnet. (b) Embedding
of TNBC tumor cells (all tumors combined) with archetypes indicated by colored circles. (c) Heatmap of cosine
similarity between archetypal expression vectors determined in each individual tumor (numbered) and all tumors
combined (all). Orthologous archetypes between samples are indicated with colors. (d) Enriched HALLMARK
genesets associated with each archetype in each tumor (colors indicate AT, numbers indicate tumor). P-value is
false discovery rate corrected, gene sets where p > 0.05 are shown in gray. Enrichment represents log2 fold-change.
(e) The percentage of cells in each sample committed to each archetype (colored) or uncommitted to an archetype
(gray).

Having demonstrated the power of AAnet to deconstruct single cell data into meaningful archetypes (ATs), we178

sought to use AAnet to address a critical question in cancer biology — how does the cell state landscape change179

across primary and metastatic tumors? Resolving this question may lead to new strategies to prevent non-genetic180

adaptation that facilitates cancer progression.181

To answer this, we generated a new scRNAseq dataset using an in vivo model of triple-negative breast cancer.182

Highly metastatic MDA-MB-231 breast cancer cells were injected into the mammary fat pad of NSG mice and183

left to grow (6-8week, Female, n=4; Figure 1). At 12 weeks, mice underwent survival surgery to remove primary184
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tumors and allow metastases to develop further. Primary tumors were dissociated into single cells, sorted by flow185

cytometry to capture the human cancer cells only (CD298+ cells [26]) and immediately captured for scRNAseq.186

After an additional 4 weeks in vivo, lung, liver and lymph nodes were harvested and CD298+ human tumor187

cells were sorted and captured for scRNAseq. This hybrid human-mouse model has a number of important188

strengths that are well suited for this study: 1) the confident delineation of tumor cells from the surrounding189

microenvironment 2) the capture of matched tumors and metastases and 3) a homogeneous starting population190

to control for cell intrinsic differences such as genetic clonality. With this model, we used AAnet to deconvolute191

the archetypes underlying heterogeneity in primary tumors. A total of 28,478 cells were analyzed from four192

primary-tumors (5,118-8,163 cells) after quality control (Methods).193

We first examined the archetypes contributing to cellular heterogeneity within primary tumors (Figure 3a).194

Each primary tumor was analyzed with AAnet individually (Tumor 1-4), as well as for all primary tumors195

combined (All). As hypothesized, each dataset showed a continuum of cellular expression states with multiple196

extrema, rather than discrete clusters or unidirectional trajectories (Figure 3b, Supplementary Figure 3, Supple-197

mentary Figure 4a). Five archetypes were identified in each dataset, representing distinct biological roles (Figure198

3b, Supplementary Figure 3). To elucidate the biology underlying these archetypes, marker genes were defined199

and used to identify hallmark genesets upregulated in each archetype and conserved between replicates (FDR <200

0.05) (Figure 3d, Supplementary Table 1, Methods). These genes and genesets summarize the biology of each201

archetype as follows:202

203

Proliferative archetype (blue) This archetype is enriched for hallmarks of cell proliferation (Hallmark204

genesets G2M checkpoint, E2F targets) and growth (MYC Targets V1/2, mTORC1 signaling). The top markers205

of this cluster include CDC20, CDK1 and CDK4, key regulators of phase transitions during the cell cycle [47].206

Concomitantly, analysis of cell cycle in the cells most strongly associated with this archetype revealed that >95%207

were in either the S or G2M phase (Supplementary Figure 5a-b).208

Oxidative/adipogenic archetype (yellow) This archetype is associated with hallmarks of oxidative209

metabolism and stress. Oxidative phosphorylation (OXPHOS) is the most strongly enriched hallmark geneset210

across all replicates, driven by electron transport chain components which couple ATP-synthesis to oxygen211

availability in the mitochondria (Supplementary Table 1, [5]). MYC targets are also overrepresented, including212

many nuclear genes involved in mitogenesis. Genes in the reactive oxygen species (ROS) pathway are among the213

top markers of this archetype, including the 4/6 peroxiredoxin family of antioxidant enzymes (PRDX1/2/4/6),214

regulated by cancer cells in response to oxidative stress [36]. Genes involved in adipogenesis are also significantly215

overrepresented in all replicates, suggesting fatty acid synthesis may be important for this archetype.216

Hypoxic archetype (orange) This archetype was significantly associated with the hypoxia hallmark in all217

replicates. While the canonical regulator of hypoxia HIF1A (hypoxia inducible factor 1) was not among the218

markers of this archetype, likely because it is degraded post-translationally in the presence of oxygen, CITED2, a219

HIF1A induced regulator of hypoxia known to promote both breast cancer, was one of the top markers associated220

with this archetype (Supplementary Table 1, [16]). Enrichment of this geneset was also driven by glycolytic221

enzymes among marker genes (the glycolysis hallmark enriched in 3/4 replicates). These included class 1 glucose222

transporters SLC2A1, SLC2A3 as well as genes linked to oxygen-independent energy production in cancer ENO2,223

HK2, LDHA, GAPDH [1]. Ribosomal subunits also featured prominantly among marker genes, suggesting a224

relationship between ribosome biogenesis and hypoxia.225

Cell damage/death archetype (amber) The top markers for this archetype were genes encoded on the226

mitochondrial genome, for which enrichment is associated with cell damage or death (Supplementary Table227

1, [30]). Indeed, analysis of the cells most strongly influenced by this archetype showed high expression of228

mitochondrially encoded components of the electron transport chain (ETC), yet limited expression of somatically229

encoded ETC components (Supplementary Figure 6). In addition to mitochondrial genes, TNF signaling via230

NF-κB and the epithelial-to-mesenchymal transition (EMT) hallmark genesets, both associated with cell stress,231

were also enriched. This associates this archetype with damaged and dying cells, potentially arising from technical232

variables.233

Immune-stimulatory archetype (purple) Immune stimulatory proteins were among the top markers of234

this archetype, including CXCL1, IFITM2/3, BST2, HLA-A/B/C, B2M and ICAM1 (Supplementary Table 1).235

Concordantly, Hallmark analysis showed enriched genesets related to immune signaling (IFN-γ, IFN-α, TNF-α,236
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and TGF-β pathways), and apoptosis (Apoptosis, p53). Analysis of cell cycle among the cells most strongly237

influenced by this archetype showed 96% percent of cells in G1, perhaps suggestive of a G1 arrest (Supplementary238

Figure 5a-b). These analyses indicate this archetype describes an apoptotic, immune-stimulatory expression239

pattern in tumor cells.240

241

Archetypes were highly conserved between primary tumors (Figure 3c). All archetypes had an orthologous242

archetype in each individual primary tumor and the combined dataset, with a mean cosine similarity 0.77-0.97.243

In contrast, individual archetypes showed modest pairwise cosine similarity (between -0.15 and -0.2), consistent244

with their classification of representing distinct cell states.245

Having deconvoluted tumor cell heterogeneity into five biologically meaningful archetypes, we then determined246

the association of each cell with each archetype using AAnet. AAnet encodes a representation of each cell based247

on its relative association to each archetype, where the coordinates of each cell are non-negative and sum to248

one. We term this association "archetypal affinity" and define cells with affinity for one archetype greater than249

the sum of all other archetypal affinities (i.e. affinity > 0.5) as "committed". Cells that do not surpass this250

affinity threshold for any archetype can be considered "uncommitted". Using archetypal commitment to analyze251

the cellular composition of primary tumors, the abundance of cells committed to an archetype was consistently252

above 60% in all tumors (62%-67.8%), yet the abundance of committed cells varied between archetypes (Figure253

3e). The proliferative archetype was the most abundant archetype in the combined analysis and in two of four254

individual tumors, and the immune-stimulatory archetype was the second most abundant archetype in the255

combined analysis and in two of four individual tumors. The oxidative/adipogenic archetype represented a minor256

fraction of tumor cells across all samples, and the hypoxic archetype was among the most variable. Together,257

these analyses show that AAnet deconvolutes cancer cell heterogeneity into biologically meaningful archetypes258

that are reproducibly detected in discrete tumors.259
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AAnet reveals conserved and de novo heterogeneity across distinct metastatic sites260

Figure 4261

Figure 4. (a) Approach to define tumor archetypes in TNBC metastases from the lymph node (LN), liver and
lung. (b) Embedding of tumor cells from each tissue with ATs indicated by colored circles. (c) Representative
histological sections of tumors and metastases taken for single-cell sequencing. (d) Stacked barplot showing
percentage of tumor cells in each tissue committed to each archetype (colored) or uncommitted to an archetype
(gray). (e) Stacked bar plot showing the cell cycle phase of cells committed to each archetype. (f) Enriched
HALLMARK genesets associated with ATs from each tissue (indicated by colors). P-value is false discovery rate
corrected, genesets where p > 0.1 are shown in gray. Enrichment represents log2 fold-change. P = primary, LN
= lymph node, LI = liver, LU = lung.
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Next, we used AAnet to identify archetypes in metastases. scRNAseq was performed on matched lymph node262

(LN), liver, and lung metastases that were collected four weeks after resection of the primary tumor (Figure263

4a-c). A total of 42,250 metastatic cells were analyzed from LN (n = 4,6604-19,224 cells per tumor), 42,647 cells264

from liver (n = 4,7136-18,671 cells per tumor), and 17,687 cells from the lung (n = 3,5599-6,379 cells per tumor)265

after removal of one outlier lung sample during QC (Methods, Supplementary Figure 7a). We combined data266

from metastases per tissue separately and defined archetypes in each site using AAnet.267

Cellular heterogeneity in metastases followed a phenotypic continuum akin to that observed in primary268

tumors (Figure 4b, Supplementary Figure 4b-d). To characterize this continuum, AAnet defined five archetypes269

in the lymph node, four in the liver, and five in the lung, where all archetypes detected in the primary had an270

ortholog in at least two metastatic sites (Supplementary Figure 7b-c). Moreover, a highly conserved pattern271

of hallmark enrichment was observed in orthologous archetypes from different sites (Figure 4f, Supplementary272

Table 2). This demonstrates that the factors of variation contributing to cancer cell heterogeneity were largely273

recapitulated in primary tumors and metastases.274

While orthologous archetypes were identified in many different metastases, analysis of archetypal affinity275

indicated their relative contribution to cellular heterogeneity in each tissue was somewhat distinct.276

Lymph node metastases showed the strongest resemblance to primary tumors. All five archetypes identified277

in the lymph node had an ortholog in the primary tumor (Figure 4d-f). The proportions of cells committed to278

each archetype were also highly conserved, with the proliferative and immune-stimulatory archetypes the most279

abundant in both tissues (Figure 4d). Moreover, the changes in the relative abundance of the oxidative, hypoxic280

and cell death archetypes were marginal, collectively indicating cell heterogeneity is very similar between primary281

tumors and lymph node metastases.282

Liver metastases differed from the primary and lymph node in the number and abundance of archetypes.283

Only four of the five archetypes identified in the primary tumor were detected in the liver, and more cells were284

committed to an archetype than in other tissues (Figure 4d-f). The absence of cells committed to the oxidative285

archetype was replaced by a greater proportion of cells committed to the proliferative and immune stimulatory286

archetypes, both nearly double their proportions in the primary tumor (32.94% and 23.54% respectively). Overall,287

while the archetypes were somewhat conserved with primary tumors and lymph node metastases, their relative288

contribution to cellular heterogeneity distinguished liver metastases from the other tissues.289

Lung metastases showed the greatest difference from primary tumors and the other metastases. Five archetypes290

were detected in the lung, four of which were orthologous to archetypes in the primary tumor (Figure 4d-f).291

While still the most abundant, the proportion of cells committed to the proliferative archetype were significantly292

lower than in other tissues (18.36%). The oxidative archetype, enriched for OXPHOS and ROS hallmarks, was293

the second most abundant and almost equal to the proliferative archetype (17.72%). Conversely, the hypoxic294

archetype was not detected in the lung metastases. This is consistent with cancer cellular heterogeneity in these295

metastases being shaped by a oxygen-rich lung microenvironment.296

The remaining archetype was unique to the lung. Markers of this archetype were significantly enriched297

for the cancer hallmarks of an oxidative metabolism (OXHPOS and ROS pathway) driven by genes encoding298

ETC components (ATP5F1A,B, NDUFA4,8,9, COX7C) and antioxidant enzymes (PRDX2,4,6) respectively299

(Supplementary Table 2). Additionally, hallmarks of TNF signaling via NF-κB, apoptosis, hypoxia, protein300

secretion, and coagulation were overrepresented, a profile of pathways indicating similarity to the immune301

stimulatory archtype. Importantly, enrichment of hypoxia was driven by a separate subset of glycolytic enzymes302

to those associated with the hypoxic archetype in other tissues, and did not include markers of HIF1A induction303

such as CITED2 (Supplementary Table 2).304

Together, these analyses show that AAnet-defined archetypes in primary tumors are also identified in305

metastases. This suggests that factors influencing cellular heterogeneity are highly conserved between primary306

tumors and metastases. Differences between tissues were largely driven by the differential influence of these307

archetypes, potentially due to interactions with the metastatic microenvironment.308
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Spatial Transcriptomics reveals organization and distinct cellular morphology of AAnet309

archetypes310

Figure 5311

Figure 5. (a) Approach used to define a spatial map of TNBC tumor archetypes using scMMGAN and AAnet.
(b) Histological sections of TNBC xenografts used for spatial transcriptome sequencing (n=2). (c) Spatial voxels
with a strong affinity (>0.3) for each archetype (colored) as determined by scMMGAN and AAnet. (d) Spatial
plots colored by marker geneset score for archetype. (e) Density resampled estimate of Mutual Information
(DREMI) score between archetypal affinity and marker geneset scores.

To further validate the significance and biology of the archetypes identified by AAnet, we sought to investigate312

their structural organization within tumors. Thus, we performed spatial transcriptomics (Visium 10X) on tissue313

sections from two primary tumors that were grown in vivo for 8 weeks. These samples were collected from two314

of the tumors used for scRNAseq, with parts of these tumors frozen in OCT for sectioning. Gene expression was315

measured at 2,275 spatially distributed voxels in the two samples after QC (1,170 and 1,105 voxels respectively),316

with each voxel assaying expression in an area approximately 3-10 cells in size.317

To map the archetypes from the scRNAseq to the spatial transcriptomic data, we first had to overcome318

the intrinsic differences in the data generated by these modalities. Raw data from these technologies is not319

directly comparable as they have very different sample processing protocols (digestion and droplets vs freezing320

and sectioning) and biological resolutions (single cells vs multiple cells). These differences create batch effect,321

where noise introduced in the process of data generation dominates the biological differences between samples.322
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This batch effect was evident when spatial voxels were embedded with the scRNAseq data from the primary323

tumor, as there was little alignment between the modalities despite being generated from matched biological324

samples (Supplementary Figure 8a).325

To address this, we leveraged our single-cell multi-modal generative adversarial network (scMMGAN) [4]326

(Methods). This approach uses adversarial learning to align data between modalities, enabling integrated327

downstream analysis while preserving data geometry (Figure 5a). We used scMMGAN to generate a scRNAseq328

measurement for each spatial voxel (scVoxels) that is aligned to our primary scRNAseq dataset. We can then329

input the aligned spatial data into the AAnet encoder trained on the primary scRNAseq data. This provides an330

archetypal representation for each spatial voxel based on our previously characterized primary archetypes (Figure331

5c, Supplementary Figure 8b-c). The ability to extend archetypal analysis to previously unseen data through the332

neural network framework is an important feature of AAnet versus existing archetypal analysis approaches.333

With spatial transcriptomic data embedded as scVoxels in the AAnet latent space, we calculated their334

affinity to each archetype which was mapped back to their corresponding spatial location in the primary tumor335

(Methods, Supplementary Figure 8). Archetypal affinities and marker geneset expression scores shared high336

mutual information across voxels (Methods, Figure 5d-e). This indicates that biology that defined each archetype337

had been retained in the spatial mapping process.338

Archetypes showed spatial organization and were associated with distinct cell morphologies in primary tumors:339

340

Proliferative archetype (blue) Voxels with high affinity for the proliferative archetype (affinity > 0.3)341

formed the bulk of the tumor yet were markedly absent from the central areas of each tumor section. Areas with342

high affinity for this archetype were enriched for cycling cells (Supplementary Figure 5c). These findings were343

consistent with the scRNAseq commitment analysis (Figure 3e) indicating that proliferation was a dominant344

factor of cell heterogeneity in the primary samples.345

Oxidative/adipogenic archetype (yellow) Areas of the tumor with high affinity for the oxidative346

archetype were located in close proximity to the proliferative archetype (Figure 5d). The affinity scores and347

expression of marker genesets were also significantly correlated (Figure 5e-f), indicating a relationship between348

oxidative metabolism and a proliferative cell state.349

Hypoxic archetype (orange) Strikingly, areas with a strong affinity for the hypoxic archetype were350

localized to central and peripheral regions of primary tumors, devoid of the proliferative and oxidative archetypes351

(Figure 5c). These areas showed enriched expression of markers associated with oxygen-independent glycolysis352

and ribosomal subunits (Figure 5d-e).353

Cell damage/death archetype (amber) The cell death archetype localized to areas with high expression354

of mitochondrial genes and was strongly correlated with the proliferative and oxidative archetypes (Figure355

5c-e). While preferential enrichment of mitochondrially encoded genes is often used as a marker of cell death,356

mitochondrial genes encode critical components of the electron transport chain necessary for oxidative energy357

production. Consequently, the association between this archetype and the proliferative/oxidative archetypes may358

identify oxygen-rich areas within primary tumors rather than cell death.359

Immune-stimulatory archetype (purple) Notably, affinity for the immune-stimulatory archetype was360

highest surrounding the hypoxic archetype within the tumor. These areas showed enriched expression (Figure 5c)361

of cytokines and antigen presenting proteins, such as CXCL1 and HLA-A/B/C/B2M (Figure 5d-e), consistent362

with the hallmark associations of this archetype. Interestingly, the immune-stimulatory archetype appears to363

demarcate the hypoxic and proliferative cancer cell archetypes.364

365

Together, this analysis shows identified archetypes have unique and distinct spatial organization within the366

tumor, further validating the ability of AAnet to identify unique cellular biology and structure of cancer cells367

within a phenotypic continuum of cell states. Further, the organization of the AAnet archetypes is consistent368

with a model whereby the local microenvironment may play a critical role in determining the organization of369

cellular heterogeneity in primary tumors.370
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Archetypes are associated with distinct cell types and metabolic niches in the microenvi-371

ronment372

Figure 6373

Figure 6. (a) Approach to defining tumor microenvironments (ME) associated with key archetypes (AT) using
AAnet. (b) Microenvironment-archetype (ME-AT) affinity scores for each spatial voxel. (c) Enrichment of
cell-types associated with each ME-AT. P-value is false discovery rate corrected. Enrichment represents log2
fold-change. (d) Enrichment of top 2 biological processes from the gene ontology (GO) associated with each
ME-AT. Processes are ranked by FDR (-log10). (e) ME-ATs (y-axis) significantly associated with each tumor AT
(x-axis). Color reflects tumor AT, enrichment represents log2 fold-change. (f) Top ranked ligand-receptor pairs
expressed in spatial voxels with a strong affinity for each archetype and their colocalized microenvironments.
Capitalized gene symbols indicate genes with expression in tumor cells (human). Title case symbols indicate
genes with expression in ME cells (mouse). Pairs are ranked by FDR (-log10). (g) Ligand-receptor interaction
score across spatial voxels for top pairs associated with each archetype.

With clear spatial organization of cancer cell archetypes derived by AAnet within the tumor, we next sought374

to determine if, beyond spatial location, the tumor microenvironment may also be playing a role in archetypal375
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development and commitment. We therefore assessed if microenvironmental cells were spatially structured into376

meaningful microenvironmental archetypes (ME-ATs) (Figure 6a). The xenograft model enabled separation of377

expression at each voxel into tumor and ME data based on alignment to the human or mouse genome, respectively.378

Then, we used AAnet to deconvolute the murine data into ME-ATs to investigate archetype-specific cell types379

and biological processes.380

AAnet defined six ME-ATs with unique patterns of spatial organization (Figure 6b, Methods). Each ME-AT381

is enriched for specific cell types and biological processes (Figure 6c-d). These include a ductal ME-AT with high382

enrichment of mammary epithelial cell markers in voxels overlaying to breast ducts, as well as an adipocyte ME-AT383

enriched for adipocyte markers and most highly expressed on the margins of the tumor sections with residual384

mammary fat pad. This correspondence with underlying histological features provides orthogonal validation for385

AAnet. AAnet also identified a stromal ME-AT, enriched for fibroblasts, capillary-lining pericytes, and stromal386

cells, as well as biological processes related to ECM organization, oxidative phosphorylation and angiogenesis; a387

neutrophil ME-AT, enriched for neutrophils and biological processes related to glycolysis, leukocyte chemotaxis388

and hypoxia; a myeloid ME-AT enriched for markers of monocytes, macrophages and dendritic cells, with an389

enriched response to interferon-gamma, immune effector processes and leukocyte mediated cytotoxicity; and an390

antigen-response ME-AT enriched for macrophages and genes involved in antigen processing and presentation of391

exogenous peptide antigen via MHC class II, and immunoglobulin-mediated immune response (Figure 6c-d).392

Therefore, AAnet deconvolutes expression in the microenvironment into stromal and immune components.393

Next, we explored the spatial relationship of the ME-ATs to the cancer cell ATs and uncovered specific394

associations (Figure 6e, Methods). Areas of the tumor with a high affinity for the proliferative AT were strongly395

associated with the myeloid and stromal ME-ATs, while the oxidative/adipogenic AT showed preferential396

enrichment for the stromal ME-AT. This suggests these archetypes colocalize with highly metabolic and397

vascularized microenvironments. Both of these archetypes were also associated with the ductal and fat-pad398

ME-ATs, concordant with the localization of these normal mammary gland structures in the histological sections.399

Notably, the hypoxic AT colocalized specifically with the neutrophil ME-AT. These interactions occurred at400

internal parts of the tumor section, indicating that these archetypes are associated with decreased oxygen401

availability and increased neutrophil chemotaxis. The cell death AT was strongly associated with the antigen402

ME-AT, indicating an active presentation of cancer cells to the immune system, cancer cell death and phagocytosis403

of dead and dying cells by macrophages. Interestingly, the immune-stimulatory cancer cell AT, defined by its404

enrichment for gene sets related to immune signaling, was associated with the antigen and neutrophil ME-ATs,405

indicating a strong overlap in signaling and cell phenotype between the cancer and microenvironmental cells. Thus,406

we observed multiple examples of spatially-localized phenotypic mimicry between cancer and microenvironmental407

cells, most notably in metabolic and immune signaling.408

To investigate direct cell-cell signaling mechanisms for phenotypic mimicry, we analyzed ligand-receptor409

pairs (LR-pairs) for evidence of paracrine interactions (Methods). We again used our hybrid model system to410

delineate between tumor (human) and ME (mouse) expression, allowing us to establish the direction of signaling.411

Specifically, LR-pairs with a ligand expressed in the human data and its cognate receptor expressed in the mouse412

data indicate signaling from the tumor to the microenvironment, and vice versa (Figure 6f). We first determined413

the coexpression of annotated LR-pairs across all voxels and calculated their enrichment in areas with a high414

affinity for each archetype. For all archetypes, the proportion of ligands originating from the tumor and the415

microenvironment were approximately 50%. However, the strongest LR-pairs that localized to high affinity416

regions differed between archetypes.417

Tumor cells expressed stromal growth factors in areas with a high affinity for proliferative and oxida-418

tive/adipogenic archetypes. These included platelet-derived growth factor (AT Ligand: PDGFC, ME Receptor:419

Pdgfrb) and fibroblast growth factor (AT Ligand: FGF12, ME Receptor: Fgfr1) pathways that promote blood420

vessel formation [12]. The hypoxic archetype was characterized by interactions between CD44 expressed in tumor421

cells and a variety of ligands expressed in the microenvironment, including Mif, which may enhance neutrophil422

accumulation within the hypoxic AT. Examples of cancer-microenvironmental cross talk in the cell death AT423

are evidenced by App-Cd74, where Cd74 is an MHCII molecule, and sema7a-ITGA1, where sema7a is a potent424

immune modulator. We also observe strong overlap in LR-pairs regulating immune-cancer cell crosstalk in the425

immune-stimulatory AT including MMP-itgam, IL1A-Ilr1rap, and Hmgb1-TLR2. (Figure 6g).426

Together, these results highlight the spatial colocalization of distinct cancer archetypes with unique microen-427
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vironments, where paracrine interactions that may enhance phenotypic mimicry are an important determinant of428

intratumoral heterogeneity.429

Intratumoral metabolic heterogeneity in TNBC and alignment to human breast cancers430

Figure 7431

Figure 7. (a) Heatmap showing expression of metabolic genes (glycolysis and oxidative phosphorylation) across
cancer archetypes and associated microenvironmental cells. (b) i. Cell growth of HCC1806, SUM159 and
HCC38-CD44 Hi cells treated with either control siRNA (siCTRL) or siRNA targeting SLC2A3 (siSLC2A3-1,
siSLC2A3-2) over a 96-hour period. n = 3 independent experiments, triplicate wells analyzed per condition.
Statistical significance defined by one-way ANOVA. ii. Representative images of SUM159 tumorspheres treated
with control or SLC2A3 targeted siRNA. iii. Quantitation of tumorsphere-forming capacity in control (siCTRL)
and SLC2A3 knockdown cells (siSLC2A3-1 or siSLC2A3-2) in SUM159, HCC1806 an HCC38-CD44 Hi cells. n
=3 independent experiments, 12 wells analyzed per condition, statistical significance defined by ordinary one-way
ANOVA with Tukey’s multiple comparison post-hoc analysis. (c) i. Diagrammatic representation of human
breast cancer sample single-cell analysis. ii. Visualization of cancer epithelial cells from two patients, colored by
markers for oxygen-independent glycolysis (SLC2A3 ) and entry into the TCA cycle (PDHA1 ). (d) Heatmap
showing expression of metabolic genes from (a) across 26 human cancer archetypes, 18 (left) associated with the
hypoxic archetype and 8 (right) associated with the proliferative archetype. Archetypes are from breast cancer
samples across three different breast cancer subtypes.
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The discrete localization of distinct metabolic phenotypes within the tumor, including the oxidative phosphorylation-432

enriched proliferative AT versus the glycolytic-enriched hypoxic AT (Figure 3d and Figure 4f), as well as the433

metabolic mimicry of the microenvironmental cells in those regions (Figure 6d), led us to ask if targeting a specific434

metabolic program might impact tumor growth. To delve into this question, we first examined the metabolic state435

of the microenvironments colocalized with each archetype by comparing genes associated with glycolysis and the436

TCA cycle in each cancer AT and associated microenvironment. Indeed, the concordance between the cancer AT437

and the microenvironment was driven by the correlation in expression of metabolic enzymes (Figure 7a). Enzymes438

in the tricarboxylic acid cycle (TCA-cycle), a pathway which requires oxygen to generate energy, were uniformly439

highly expressed in the tumor and ME of the proliferative, oxidative and cell death archetypes. In contrast,440

glycolytic enzymes were clearly enriched in the hypoxic AT and associated ME cells (Figure 7a). Enzymes most441

highly enriched in the hypoxic area were associated with oxygen-independent glycolysis in tumors [1] and include442

PDK1, an inhibitor for the entry of pyruvate into the TCA cycle. This indicates that the metabolic heterogeneity443

in primary tumor archetypes is mirrored in their local microenvironments, and the intratumoral hypoxic regions444

of the tumor are driven by glycolysis ending in the accumulation of lactate. Interestingly, hypoxic niches are445

known to provide a permissive environment for maintenance of both pluripotent stem cell and cancer stem cell446

populations [34,53]. AAnet identified that SLC2A1 (GLUT1) and SLC2A3 (GLUT3) are enriched in cancer cells447

that reside in that niche.448

Given that GLUT1 is ubiquitously expressed in normal cells throughout the body, we asked if ablating GLUT3,449

whose expression is largely confined to the brain and sperm in normal tissues, could eradicate the aggressive450

phenotype of the cancer cells in the hypoxic niche. In addition, GLUT3 expression is increased in TNBC and451

associated with metastasis and poor prognosis [44]. Three TNBC cancer stem cell-enriched cell lines (SUM159,452

HCC1806 and HCC38-CD44Hi) were treated with a control siRNA (siCTRL) or two independent siRNAs453

targeting SLC2A3/GLUT3 (siSLC2A3-1 and siSLC2A3-2). Efficient knockdown of SLC2A3 was confirmed454

by qPCR (Supplementary Figure 9). SLC2A3 knockdown significantly inhibited cell proliferation in all cell455

lines tested (Figure 7b, Supplementary Figure 9). Excitingly, we confirm that SLC2A3 knockdown significantly456

inhibits tumorsphere formation, an in vitro surrogate assay for in vivo tumor-initiating ability (Figure 7b).457

Together, these results suggest that SLC2A3 is critical for maintenance of the cancer stem cell phenotype in458

TNBC and add to previous data indicating a role for GLUT3 in EMT and migration [44].459

To examine the clinical relevance of the identified archetypes, we analyzed single-cell transcriptomes from460

human breast cancer cells across four distinct studies, corresponding to 34 samples from three major breast461

cancer subtypes (ER+, HER2+, TNBC) (Figure 7c) [6, 35, 51]. First, AAnet identifies 155 archetypes across462

the 34 samples and shows interesting similarities and differences across samples, cohorts, and breast cancer463

subtypes (Methods, Supplementary Figure 10). To further investigate the association of human archetypes with464

the proliferative AT (blue) and hypoxic AT (orange), we identify 18 archetypes across all human tumors that465

have transcriptomic profiles similar to AT3 (cosine similarity > 0.25) and dissimilar to AT1 (cosine similarity <466

-0.25), as well as 8 archetypes similar to AT1 and dissimilar to AT3 (Figure 7d). These metabolic archetypes are467

common in breast cancer, represented in 26 archetypes spanning 20 human tumors. Similar to the xenograft468

model, 6 tumors contain both a hypoxic AT and a proliferative AT within the same sample. Together, these469

results show correspondence between the metabolic profiles of archetypes identified by our model and human470

breast cancer tumors, and further, the identified archetypes are relevant across breast cancer subtypes.471

Visualization of the metabolic markers from Figure 7a reveals, for human archetypes associated with hypoxia,472

enrichment for the hypoxic signature within the glycolysis pathway and low expression of genes related to the473

TCA cycle. Conversely, human archetypes similar to the proliferative archetype showed low expression for474

hypoxic genes and higher enrichment for TCA cycle genes.475

Notably, there is no significant enrichment for a particular cancer subtype and association with AT1 or AT3476

(KS test p>0.05 for all tests), nor significant difference between cancer subtypes in proportion of cells committed477

to hypoxic or proliferative archetypes (Wilcoxon rank sums test p>0.05 for all tests). These data show that478

AAnet can be used to identify phenotypic similarities across cancer subtypes, and thereby offers a functional479

method beyond hormone and molecular subtyping to classify breast cancers for therapeutic targeting.480
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Discussion481

It is now recognized that non-genetic programs (e.g., epigenetic, transcriptional, translational) are a major driver482

of tumor heterogeneity. The dynamic and reversible nature of non-genetic heterogeneity likely favors rapid483

evolution of cancer cell states (e.g., seconds, minutes or hours) to enable survival in unfavorable microenvironments484

encountered throughout the metastatic cascade and in response to therapy. Thus, as single-cell technologies485

continue to resolve the breadth and structure of non-genetic heterogeneity in cancer and stromal cells within486

and across patient tumors, developing strategies to identify and validate the specific cell states and molecular487

mechanisms that fuel cancer progression remains a significant technological and biological challenge.488

To address this knowledge gap, we developed AAnet, an archetypal analysis method to identify archetypal cell489

states within and between samples and their associated biological processes. Archetypal analysis is a framework490

to describe a dataset as a convex combination of extreme, or archetypal, observations. In contrast to other491

unsupervised approaches to characterize such data, archetypal analysis is aptly suited for both identifying key492

cell states reflecting distinct biological processes and analyzing the cellular state space as a continuum of cells493

committed to these processes. However, identifying the archetypal states remains a fundamental challenge of494

archetypal analysis. In particular, nonlinearities can worsen the performance of existing archetypal analysis tools,495

as the extreme states of the data geometry do not conform to the extreme states of the data space.496

AAnet solves this problem by learning a transformation of the data into a simplex, rather than fitting a497

simplex on the data directly. The latent space of the autoencoder thus preserves relationships between cells and498

characterizes cells by their commitment to each archetype. We further regularize the latent space to initialize the499

archetypes to diffusion extrema (inferred from the cell-cell affinity graph) for improved accuracy and robustness.500

Applied here to single-cell data from pre-clinical and clinical breast cancer samples, we have shown that501

AAnet enabled the discovery of biologically and functionally-distinct archetypes within a phenotypic continumm502

of cell states within the tumor and captured their associated molecular drivers. First, in a pre-clinical xenograft503

model comprising primary tumors matched with lung, liver, and lymph node metastases, we identify six unique504

archetypes across primary and metastatic tissues, with each archetype defining unique biology of cells committed505

to that extrema. Interestingly, we show that the number and distribution of cells committed to archetypes in506

primary tumors is remarkably similar to those found in lymph node metastases, yet liver metastases differ by507

the loss of one archetype, and the lung metastases deviate from primary, lymph node and liver metastases via508

the emergence of one new archetype. These analyses demonstrate that AAnet can reveal the emergence of new509

cell states, the number of cells committed to a specific archetype, and the underlying biology that facilitate510

site-specific metastatic adaptation.511

Critically, we validate the significance of the archetypes identified by mapping the scRNAseq data to matched512

spatial transcriptomic data via scMMGAN [4]. These data confirm that AAnet-defined archetypes resolve513

into distinct spatially-localized regions within the tumor. Further, we show that AAnet has revealed a unique514

perspective on the organization of the associated microenvironments. Specifically, each archetype is enriched515

with distinct stromal cell types; for example, the proliferative archetype is enriched with fibroblasts, hypoxic516

archetype with neutrophils, and immune-stimulatory archetype with macrophages and dendritic cells. Thus,517

AAnet robustly identifies functional and spatially distinct cellular archetypes within a tumor.518

Of note, we uncovered metabolic heterogeneity not seen before in TNBC, where cells in discrete archetypes519

utilize distinct metabolic programs. We have recently analyzed bulk RNA-seq data (METABRIC and TCGA)520

and shown that TNBC exhibit a unique highly metabolic gene expression phenotype, upregulating a range of521

pathways,including glycolysis, compared to other breast cancer subtypes such as Luminal A [37]. Our archetypal522

analysis provides further granularity to these data, showing the individual contributions of each archetype to523

this unique TNBC metabolic signature. For example, the hypoxic archetype clearly contributes to the high524

expression of SLC2A1, SLC2A3 (GLUT3), HK1, HK2, ALDOA, ALDOC, TPI, GAPDH, PGK1, ENO1, PDK1525

and LDHA in the bulk RNAseq data, with contributions also from the immune-stimulatory archetype but not526

from the most abundant proliferative archetype. By comparison, these findings reveal that different regions527

of the tumor uniquely invoke glycolysis or oxidative phosphorylation, which could not be determined when528

analyzing existing bulk RNA-seq data. Furthermore, we show that we could use our identified archetypes to529

predict novel therapeutic targets within distinct cellular subsets, such as the glucose transporter GLUT3 in stem530

cells within the hypoxic archetype. Interestingly, we also discovered that the distinct metabolic phenotypes of two531
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archetypes are strikingly reflected in the microenvironmental cells associated with those archetypes. Importantly,532

we also found these distinct archetypes are present in human breast cancer samples. GLUT3/SLC2A3 expression533

was present at highest levels in the hypoxic archetype, with high levels also seen in the surrounding immune534

archetype. A previous study has suggested a role for GLUT3 in regulating the inflammatory microenvironment535

in TNBC [44], which may also play a role in the matched metabolic phenotypes of the tumor and surrounding536

microenvironment cells.537

Tumor heterogeneity remains a significant clinical challenge for diagnosis and therapeutic management. The538

discovery of the AAnet archetypes in scRNAseq data has enabled segmentation of tumors into functionally539

distinct regions comprising cancer cell states associated with unique cellular microenvironments. Together,540

these data resolve tumor heterogeneity to a level not yet achieved with previous computational tools. In the541

future, classifying patients according to biological archetypes with tools like AAnet is likely to improve tumor542

sub-classifications. Applied to samples before and after specific treatment, we can begin to learn how archetypes543

change over time, in response to specific therapies, and in different metastatic sites. Moreover, this approach will544

reveal the molecular programs driving each cellular archetype, as well as when and how they emerge. Ultimately,545

these tools will deliver the knowledge to enable the development of improved and effective therapeutic strategies.546

Importantly, AAnet is a flexible framework that can be used both independently and as a part of a large547

single-cell analysis pipeline to interpret the archetypal distribution underlying any single-cell dataset. Given its548

widespread utility and generalizability to characterize cells, AAnet is a valuable tool for the single-cell community.549
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Figures550

Supplemental Figures551

Supplementary Figure 1552

Supplementary Figure 1. Curved Tetrahedron example. (a) Simulated curved tetrahedron, colored
by signal defined with respect to affinity to archetype 4 (vertex at top). (b) Cluster assignments and signal
comparison for 10 clustering algorithms. (c) Trajectories and signal comparison from Slingshot with KMeans
clusters as input (left) and diffusion pseudotime (right). (d) Inferred archetypes from each archetypal analysis
method (black) versus ground truth archetypes (red) and mean squared error between real and ground truth
archetypes over increasing curvature. (e) AAnet-learned archetypes and mean squared error between real and
ground truth archetypes over increasing curvature. (f) AAnet-inferred number of archetypes. (g) AAnet-learned
archetypal coordinates. AAnet recapitulates sine signal with respect to archetype 4’s latent coordinates.
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Supplementary Figure 2553

Supplementary Figure 2. AAnet on CD8+ T cells. (a) Hand-annotated archetypes from [10]. (b) AAnet-
learned archetypes for each embedding. (c) Normalized expression for each archetype for key annotation genes.
(d) Cosine similarity between archetypes for all measured genes. (e) Expression over archetypal coordinates for
Week 17 embedding.
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Supplementary Figure 3554

Supplementary Figure 3. Primary tumor replicates independently characterized with AAnet.
Archetypes colored based on orthologous archetype in combined embedding (Figure 3).

Supplementary Figure 4555

Supplementary Figure 4. Cell embedding rotation. PCA embedding rotated around PC3 for (a) Primary
(b) LN (c) Liver (d) Lung.
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Supplementary Figure 5556

Supplementary Figure 5. Cell cycle characterization. (a) Cell cycle commitment based on competitive
gene set enrichment from scRNAseq data. (b) Cell cycle commitment of cells closest to each archetype. (c)
Commitment of each spatial voxel to each cell cycle phase.

Supplementary Figure 6557

Supplementary Figure 6. Mitochondrial expression. Expression of mitochondrially and somatically-
encoded electron transport chain genes in cell damage/death (amber) archetypes from primary replicates.
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Supplementary Figure 7558

Supplementary Figure 7. Comparison with metastatic tumor samples. (a) Number of cells from each
tumor for each tissue. (b) Number of archetypes for each tissue. (c) Cosine similarity characterizing relationships
between archetypes.
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Supplementary Figure 8559

Supplementary Figure 8. Spatial archetypal and gene set characterization. (a) Embedding without
scMMGAN alignment shows batch effect. (b) Overall commitment, where voxels that remained uncommitted
colored gray. (c) Archetypal affinity for each archetype after scMMGAN alignment. (d) Core gene set enrichment
for each archetype. (e) Commitment of each spatial voxel to each archetype.
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Supplementary Figure 9560

Supplementary Figure 9. Metabolic heterogeneity and alignment to human breast cancers. (a)
Quantitative PCR analysis of SLC2A3 mRNA expression following control or SLC2A3 targeted siRNA treatment
in SUM159, HCC1806 and HCC38-CD44 Hi cell lines. n=3 independent experiments each with triplicate technical
replicates analysed, significance measured using one-way ANOVA. (b) Representative images of proliferation
analyses following control or SLC2A3 targeted siRNA treatment in SUM159, HCC1806 and HCC38-CD44 Hi
cells. Images shown taken at experimental endpoint of 96 hours. (c) Representative images of tumorspheres
derived from HCC1806 and HCC38-CD44 Hi cell lines following control or SLC2A3 targeted siRNA treatment.
Images taken at experimental endpoint of 21 and 14 days for HCC1806 and HCC38-CD44 Hi respectively.
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Supplementary Figure 10561

Supplementary Figure 10. Cosine similarity across human breast cancer tumor archetypes.
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Supplemental Table Legends562

Supplementary Table 1.563

Enriched marker genes and corresponding statistics from Wilcoxon rank sum test. Sheets correspond to genes564

associated with each archetype identified in each Primary tumor replicate.565

Supplementary Table 2.566

Enriched marker genes and corresponding statistics from Wilcoxon rank sum test. Sheets correspond to genes567

associated with each archetype identified in each tissue (Primary, LN, Liver, Lung).568
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Methods569

Background on cell state heterogeneity analysis570

Clustering-based approaches unreliably identify clusters when data is a continuum of cells571

Clustering is the most commonly used technique for characterizing cell state heterogeneity in single-cell data,572

and is considered a standard part of single-cell workflows and best practices [30]. However, clustering can be a573

nontrivial task, both with computational challenges and challenges with interpretation and annotation [23]. This574

is in part due to the fact that clustering assumes that data is composed of biologically distinct groups, such as575

discrete cell types.576

After embedding the primary scRNA-seq data into 3-dimensions, it is evident that for the primary tumor,577

the cells are forming a connected manifold along the cellular state space, rather than separating into clusters578

(Figure 2a). After running Leiden clustering 100 times with default parameters, the cluster assignments changed579

at the boundaries, indicating that these cells are not strongly committed to one cluster.580

We hypothesized that the cells at cluster boundaries are intermediate cells between the more distal extreme581

states. To test the ability of clustering-based analysis to characterize such datasets, we simulated a curved582

tetrahedron, where the datapoints are defined as a continuum between the vertices. We also defined a signal on583

the tetrahedron as a function of the affinity to one vertex (Supplementary Figure 2a). Clustering the simulated584

data with ten different clustering algorithms reveals (1) the lack of concordance across clustering methods when585

there is no latent cluster structure in the dataset and (2) the limitations of discretizing the cellular state space in586

characterizing continuous signals (Supplementary Figure 2b).587

588

Trajectory-based approaches enforce lineage structure that do not accurately capture simulated589

signal590

On the other hand, trajectory inference methods are commonly used to identify continuous paths in the datasets591

in order to define pseudotemporal ordering of cells, often for learning developmental decisions [20, 39, 42, 43].592

We show that, without clear lineage structure in the dataset, trajectory-based methods are not able to learn an593

intelligible ordering of cells or meaningfully characterize the defined signal (Supplementary Figure 2c).594

595

Background on Archetypal Analysis596

Archetypal Analysis Overview597

Archetypal analysis (AA) is an unsupervised learning method that aims to find extremal points, called archetypes,
such that every point in a dataset can be approximated as a mixture of these archetypes [11]. Given a dataset
X = {x1, . . . , xN} ⊂ Rn, the archetypes {z1, . . . , zk} ⊂ Rn are chosen so that for each data point xi there exists
αi,1, . . . , αi,k ∈ [0, 1] such that

k∑
j=1

αi,jzk ≈ xi (1)

k∑
j=1

αi,j = 1. (2)

This type of linear combination where the coefficients are non-negative and sum to 1 is called a convex combination.598

The set of all such convex combinations of the archetypes {z1, . . . , zk} is a (k−1)-simplex. Note that the archetypes599

are not constrained to be points from the dataset.600
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Principal Convex Hull Analysis (PCHA)601

One of the first AA algorithms was principal convex hull analysis (PCHA), proposed in [11]. PCHA constrains602

the archetypes to be convex combinations of the input data points. It finds these archetypes through the following603

optimization problem:604

min
W,H

∥∥XT −XTWH
∥∥2
F

s.t. 1TW = 1, 1TH = 1, C ≥ 0, W ≥ 0.
(3)

where W ∈ RN×p maps the data to the archetypes and H ∈ Rp×N contains the coordinates of the archetypes in605

the feature space. The constraints on W guarantee that the archetypes are convex combinations of the data606

points while the constraints on H guarantee that the data points are convex combinations of the archetypes. [11]607

also defines an optimization algorithm for the expression above using alternating convex least-squares. This608

algorithm seeks solutions that satisfy the constraints 1TW = 1 and 1TH = 1 by adding auxiliary terms to the609

objective function. [33] builds on this work by modifying the optimization algorithm to use projected gradient in610

the alternating optimization steps to find solutions that satisfy the constraints.611

Non-linear archetypal analysis variants (kPCHA, Javadi et al, Chen et al)612

[33] also proposes kernel principal convex hull analysis (kPCHA), which is analogous to kernel principal613

components analysis (kPCA). PCHA is rotation equivariant, meaning that applying a rotation to the input614

dataset effectively results in the same rotation being applied the output features and archetypes. This implies that615

the output of PCHA only depends on the kernel matrix XTX rather than the actual input dataset X. kPCHA616

takes advantage of this fact by computing this kernel matrix in a possibly-infinite dimensional reproducing kernel617

Hilbert space (RKHS), then running PCHA on this kernel matrix instead of XTX. The mapping from the618

input feature space into the RKHS is typically non-linear, allowing kPCHA to potentially take advantage of the619

manifold geometry of the underlying dataset.620

Several other works have also extended the algorithm proposed by [11]. In [22], the requirement that the621

archetypes are convex combinations of input data is relaxed. The archetypes are found by optimizing an objective622

function with two terms. The first term is similar to the objective function in 3 above and captures how well the623

convex hull of the archetypes aligns with the dataset. The second term reflects how close the archetypes are to624

the convex hull of the dataset. Meanwhile [9] proposes an algorithm to optimize 3 using an active-set approach.625

Background on Machine Learning626

Autoencoders627

An autoencoder is a type of neural network that is used to learn compressed representations of data. Autoencoders628

are comprised of two separate networks: an encoder and a decoder. The encoder network maps the input data629

into a low-dimensional feature space or latent space, while the decoder tries to reconstruct the original data630

from this low-dimensional representation. Through minimizing the error between the original data and the631

reconstruction, termed reconstruction loss, autoencoders have been shown to successfully learn the structure of632

data, and have had particular utility in capturing a meaningful representation of single-cell data [3, 14, 19, 29, 46].633

Manifold learning634

Manifold learning is a subfield of machine learning built around the manifold hypothesis, which asserts that635

high-dimensional datasets are sampled from low-dimensional manifolds that lie in the high-dimensional space.636

Here a manifold refers to a space that is locally isomorphic to a Euclidean space. Many methods in unsupervised637

learning attempt to implicitly or explicitly capture the structure of the underlying data manifold. For instance,638

the latent space of an autoencoder can be viewed as a parameterization of the data manifold.639
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AAnet Overview640

AAnet architecture641

AAnet is designed to have a flexible number and size of layers depending on the complexity for the task. For our642

purposes, we found that a 2-layer (256 nodes, 128 nodes) encoder and (128 nodes, 256 nodes) 2-layer decoder643

worked well. The batch size was 256, the optimizer was ADAM, the learning rate was set to 1e-3, and the weight644

initialization was Xavier. All hidden layers contain Tanh nonlinear activations, besides layers directly before645

and after archetypal layer which are linear so that each point is a linear combination of archetypes. The default646

weight on extrema loss γextrema is set to 1. To encourage the archetypes to be tight, i.e. close to the data, we can647

add Gaussian noise ∼ N(0, 0.05) in the latent layer during training. For all datasets, we reduced dimensionality648

using PCA before running AAnet and inverse-transformed the learned archetypes to the ambient space.649

Reconstruction Loss650

The main loss function for the autoencoder seeks to minimize the difference between the original input fed into651

the encoder z = E(x) and the reconstructed input produced by the decoder x̃ = D(z), termed reconstruction652

loss. Standardly, autoencoders use the mean squared difference of these two terms:653

Reconstruction MSE = Ex∈X
[
∥x− x̃∥2

]
= Ex∈X

[
∥x−D(E(x)∥2

]
Archetypal Loss654

In addition to the reconstruction loss, we want to enforce the latent space of the autoencoder to learn the655

structure of the data with respect to the archetypes. To this end, we convert the coordinates from Cartesian to656

barycentric after the encoder learns the transformation. The barycentric coordinate system, related to Cartesian657

coordinates, is a system in which each point is specified by reference to a simplex. When coordinates are658

normalized to sum to 1, the vertices of the simplex are denoted by k+1 one-hot vectors of length k+1 for a659

k -simplex. For example, a triangle is a 2-simplex with 3 vertices, where the 3 vertices are (1,0,0), (0,1,0), and660

(0,0,1). All coefficients of point P are positive if and only if P is inside the simplex.661

662

As this coordinate system describes points with respect to a k -simplex, it is well-suited to be the latent space663

for k archetypes.664

665

To enable interpretation of points as convex combinations of archetypes, we enforce each point stays within666

the simplex by adding an archetypal loss term, the mean squared error of the negative coefficients:667

Archetypal MSE = Ex∈neg. coefficients
[
∥x∥2

]
Extrema Loss668

We developed a novel method to identify k plausible archetypes prior to model training. This method, explained669

in detail below, builds a graph from the data and then uses the eigenvectors of the Laplacian matrix to find670

extreme points in the datasets; these points will be refered to as diffusion extrema. We then include an extrema671

loss term that penalizes large distances in the latent space between the diffusion extrema and the vertices of the672

simplex. If the diffusion extrema and standard basis vectors in the latent space Rk are labelled as {ℓi}ki=1 and673

{ei}ki=1, respectively, then this loss term can be calculated as674

Diffusion extrema MSE =
1

k

k∑
i=1

∥E(ℓi)− ei∥22

Let {x1, . . . , xn} ∈ Rm be the points in the dataset. Then the procedure for finding these diffusion extrema675

is as follows:676
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(1) Construct a graph G from the dataset. This can be done by computing a symmetrized k-nearest neighbors677

graph from the dataset and then weighting the edges with a Gaussian kernel, as is done in [32].678

(2) Let ψ1, . . . ,ψn denote the eigenvectors of the combinatorial Laplacian L of G with corresponding eigenvalues679

λ1 ≤ · · · ≤ λn. Compute680

i1 = argmax
i∈{1,...,n}

|ψ2(i)|,

where ψ2(i) is the ith entry of ψ2.681

(3) Let L(i1) denote L with the entries in the ith row and ith column replaced by zeros. Likewise let682

ψ
(i1)
1 , . . . ,ψ

(i1)
n denote the eigenvectors of L(i1), again ordered in an ascending fashion by corresponding683

eigenvalue. Compute684

i2 = argmax
i∈{1,...,n}

∣∣∣ψ(i1)
2 (i)

∣∣∣ .
(4) Let L(i1,...,im) denote L with the entries in the i1th, . . ., im−1st, and imth rows and columns replaced685

by zeros. Likewise let ψ(i1,...,im)
1 , . . . ,ψ

(i1,...,im)
n denote the eigenvectors of L(i1,...,im). Iteratively for each686

j = 3, . . . , k compute687

ij = argmax
i∈{1,...,n}

∣∣∣ψ(i1,...,ij−1)
j (i)

∣∣∣ .
(5) The diffusion extrema are xi1 , . . . , xik .688

The intuition behind this algorithm comes from an application of Courant-Fischer theorem for symmetric689

matrices. Given an n× n symmetric matrix A with eigenvectors a1, . . . ,ak, Courant-Fischer tells us that690

a1 = argmin
∥x∥=1

xTAx and a2 = argmin
∥x∥=1

⟨x,a1⟩=0

xTAx

If A is the Laplacian matrix L for some weighted graph G = (V,E,w) then691

xTLx =
∑

(i,j)∈E

wi,j(x(i)− x(j))2

Intuitively the quadratic form xTLx captures how smoothly x varies over the edges of G. Hence ψ1 is the692

(normalized) constant vector, while ψ1 can be viewed as a smooth signal on G that is orthogonal to the constant693

vector. Now if we consider the matrix L(i) we see that minimizing the quadratic form xTL(i)x can be recast as694

minimizing xTLx with the additional constraint that x(i) = 0, i.e.695

ψ
(i)
2 = min

∥x∥=1
⟨x,1⟩=0

xTL(i)x = min
∥x∥=1
x(i)=0

xTL(i)x

This is because ψ(i)
1 = ei, the ith standard basis vector. Extending this reasoning to L(i1,...,im), where i1, . . . , im ∈696

{1, . . . , |V |} are unique but arbitrary, we see that ψ(i1,...,im)
j = eij for 1 ≤ j ≤ m. Hence697

ψ
(i1,...,im)
m+1 = min

∥x∥=1
x(i1)=···=x(im)=0

xTL(i1,...,im)x.

This tells us that the mth eigenvector of L(i1,...,lm) is a signal on G that is as smooth as possible while also698

having the value 0 on vertices i1, . . . , im. Then we should expect L(i1,...,lm) to attain its largest absolute value699

at a vertex that is far from the vertices i1, . . . , im. This is the guiding principle behind the above diffusion700

extrema method. Step (2) takes advantage of the fact that ψ2 is smooth on G and therefore is likely to attain701

its maximum absolutely value at extremal points in the graph. The vertex at which ψ2 has its largest absolute702
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value is chosen to be the first diffusion extrema. Steps (3) and (4) then use the properties of ψ(i1,...,im)
m+1 discussed703

above to iteratively find vertices in the graph that are far away from the extrema that have already been chosen.704

It has not been conclusively proven that the eigenvectors of the Laplacian L and Laplacian variant L(i1,...,im)
705

attain their maximum/minimal values at extremal points in the graph, nor is it entirely clear which vertices in a706

graph can be called in extremal. However through our experiments on both toy data and real biological data we707

believe this diffusion extrema method to be robust and effective in identify reasonable archetypes in a dataset.708

Choosing number of archetypes709

To choose the number of archetypes, we first define a range of possible archetype counts m = 2, 3, ..., nat. Then,710

we calculate nat diffusion extrema. For the mth diffusion extremum, we calculate the geodesic distance of that711

extremum to all previous extremum (first to m− 1th) and take the mean of all the distances. Intuitively, this712

score tells how transcriptionally distinct archetype m is from all existing archetypes, and if it is very similar,713

it is likely not a new archetype. Thus, we take the knee point of this score as the number of archetypes k for714

downstream analysis.715

sm =
1

m

m−1∑
i=1

geodesic distance(ℓm, ℓi) for m = 2, 3, ..., nat

Comparative Analysis716

Simulated Datasets717

To generate a simulated dataset for comparisons, we sample non-uniformly from a k-simplex projected onto a718

k-dimensional sphere using a stereographic projection. This enables comparisons on a dataset with nonlinear719

geometry and known vertices.720

For comparisons in Supplementary Figure 1, we sample 10,000 points from a 3-simplex (a tetrahedron)721

projected onto a hypersphere. This results in a curved tetrahedron, where the ground truth archetypes do not722

correspond to the extrema in the data space (as they would for a classic tetrahedron). We embed the curved723

tetrahedron with PHATE [32], a dimensionality reduction tool designed to capture nonlinear local and global724

variation.725

Next, we simulated a signal, defined by the sine of the affinity between vertex 4 and all other points in the726

tetrahedron based on data geometry. The ground truth signal is thus a sinusoidal function. This signal is defined727

by its relation to a ground truth archetype, and is designed to model biological processes that are enriched with728

respect to a cellular archetype.729

Comparison to clustering methods730

To compare archetypal analysis to clustering on the curved tetrahedron, we clustered the data using default731

parameters for 10 different clustering algorithms in sklearn.cluster. Five methods required the number of732

clusters to be specified, and for these we specified four clusters, the ground truth number of vertices for a733

tetrahedron.734

We ran clustering using ten different clustering algorithms: five that require the number of clusters to be735

specified (KMeans, Agglomerative Clustering (Ward), Agglomerative Clustering (Single Linkage), Agglomerative736

Clustering (Complete Linkage), and Spectral Clustering), and five that infer the number of clusters from the737

data (Affinity Propagation, Mean Shift, DBSCAN, OPTICS, and BIRCH).738

739

Comparison to trajectory-inference methods740

For trajectory inference comparisons, we ran Slingshot and diffusion pseudotime (DPT). Slingshot requires741

cluster labels and a dimensionality-reduced representation. We used the PHATE embedding and the KMeans742

cluster labels as input for Figure 2, as KMeans is a popular method for clustering that produced stable results.743
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Besides these two inputs, all other parameters were default. DPT was also run with default parameters, with the744

required starting cell chosen randomly from cluster 3 of KMeans (the cluster containing extremum 4).745

Comparison to archetypal analysis methods746

All archetypal analysis methods require input of the number of archetypes, so we specified four archetypes for747

each method, otherwise running with default parameters. To generate MSE calculations between the ground748

truth vertices and inferred archetypes, we ran each method 5 times and visualized the first run for each method.749

By the definition of barycentric coordinates, a point has a value closer to 1 for dimension k if it has a high750

affinity to the k-th vertex, and a value closer to 0 if it has a low affinity to the k-th vertex. Therefore, we color751

the dataset with the latent coordinates for each dimension to determine if the latent space has semantic structure,752

and if AAnet is effectively learning affinity relative to each extremum.753

AAnet for published antigen-specific CD8+ T cells754

For each dataset, we ran TruncatedSVD to reduce the dimensionality to 100, and then ran AAnet with default755

parameters. The expression levels in Supplementary Figure 2 were z-score normalized and archetypes were756

clustered based on cosine similarity.757

Computational Methods for TNBC758

Single-cell RNA preprocessing759

The CellRanger Analysis Pipeline (v3.0.2) was used to align the sequencing reads (fastq) to a pre-built reference760

genome (10x Genomics) containing both the human and mouse genomes (GRCh38 + mm10) and gene expression761

quantified in each cell. Cells from four primary tumors were sequenced (T1-T4) with a total of 33,938 cells762

sequenced (T1 = 8707, T2 = 5951, T3 = 8934, T4 = 10346). Gene expression data was loaded into Python763

(v3.8) and quality-control (QC) statistics were computed using the scanpy.pp.calculate_qc_metrics function764

(v1.9.1, [49]). To ensure only human tumor cells were taken for downstream archetypal analysis, cells with765

less than 99% of data aligning to the human genome were removed. Mouse genes were also removed prior to766

calculating library size. Cells with a total library size between 2000-50,000 UMI and expressing at least 1000767

genes were retained for downstream analysis. A total of 28,478 primary tumor cells passed QC filtering (T1 =768

7606, T2 = 5118, T3 = 8163, T4 = 7591). Remaining tumor cells were normalized to 10,000 reads per cell and769

square-root transformed using the scprep package (v1.2.3, github.com/krishnaswamylab/scprep). To correct770

for dropout data were smoothed with the manifold smoothing method MAGIC (v3.0.0, [45]). Cell numbers771

remaining after QC were visualized using the R package ggplot2 (v3.4.2, [48]). Cell-cycle phase assignment772

was performed using the scanpy.tl.score_genes_cell_cycle function with previously defined S-phase and773

G2M-phase gene lists [41].774

Highly variable genes were detected within each sample using the scprep function775

scprep.select.highly_variable_genes and a cellular graph constructed based on KNN and alpha decay776

kernel using graphtools777

(v1.5.3, github.com/krishnaswamylab/graphtools). For the combined analysis of all tumors we used an MNN778

kernel to build a cellular graph with batch correction between the replicates. We then used MAGIC (v3.0.0, [45])779

to transform each graph into the gene space, and ran TruncatedSVD to reduce the dimensionality to 100 and780

visualize samples in reduced dimensions.781

AT similarity, affinity and commitment782

AAnet was run on both individual samples and a combined dataset using default parameters. Data archetypes783

were defined for each dataset using AAnet and archetypal expression vectors were generating by transforming784

archetype coordinates back into the gene space. Cosine similarity was calculated between expression vectors785

and hierarchical clustering used to identify five orthologous expression states between datasets. The affinity of786

each cell to each archetype was calculated based on the distance of each cell to each archetype in the AAnet787

latent embedding. As the combined affinity of each cell to all archetypes is regularized to 1, cells with an affinity788
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to single archetype greater than the sum of their affinity to all other archetypes (i.e. with an affinity >0.5 for789

any archetypes) were defined as committed to that archetype. The archetypal composition of each sample was790

determined by summing the number of committed cells per archetype and assigning cells with affinity for all791

archetypes <0.5 as uncommitted.792

Biological characterization of archetypal states793

Marker genes upregulated in each archetype were calculated by comparing gene expression between cells that794

were the most committed to each archetype. The top 125 cells with the strongest affinity for each archetype795

in the combined AAnet latent space were selected from each replicate (500 cells per archetype), as well as the796

125 cell per replicate furthest from any archetype as the uncommitted populations (500 cells uncommitted).797

Genes that were upregulated in any group relative to all other groups (FDR < 0.05) were determined using the798

FindMarkers function from the Seurat R package (v4.0, [40]). Cancer hallmark gene sets [28] overrepresented799

(FDR < 0.1) in markers associated with each archetype were determined by 1-sided Fisher’s exact test using the800

clusterProfiler R-package (v3.16.1, [52]) and visualized using ggplot2.801

Spatial RNA data generation802

Spatial transcriptomics was conducted using 10X Visium Spatial Gene Expression Slide and Reagent Kit,803

16 rxns (PN-1000184), according to the protocol detailed in document CG000239RevD for the TNBCs and804

CG000239RevE for the Xenografts, available in 10X Genomics demonstrated protocols. Cryo-sectioning was805

done on OCT embedded and snap frozen tissue samples at 10um thickness and placed on cold Visium slide806

arrays. The sections were adhered by swiftly warming of the backside of the slide. The slides were then kept in807

-80°C less than 4 weeks before processing accordingly.808

In short, the slides were first warmed at 37°C for one minute and then immersed in pre-chilled methanol809

(VWR EU, 20847.307) for 30 minutes at -20°C for fixation. Staining with hematoxylin and eosin was carried810

out by one min of drying of the tissues with 500uL of isopropanol (Fisher Scientific, A461-1) followed by air811

drying until sections turned white. Around 1 mL of with Mayer’s hematoxylin (Agilent, S23309) was pipetted812

onto the slides and treated for four minutes. The slides were then washed in nuclease free water followed by a813

two-minute incubation with bluing buffer (Agilent, CS702), washed again and then counterstained with buffered814

eosin (Sigma-Aldrich, HT110216, 1:10 dilution in Tris-Acetic Acid Buffer). The slides were air dried for about 2815

minutes and then warmed for 5 minutes at 37°C before mounting using 85percent Glycerol (Merck, 104094) and816

a coverslip.817

Bright field histology images were obtained using a 20X objective on Zeiss microscope using the Metafer818

VSlide system and the images were processed by the VSlide software. The images were extracted as jpgs for819

downstream analysis.820

After imaging, the coverslip and the remaining glycerol was washed off in Milli-Q water and the slides were821

attached in plastic cassettes included in the reagent kit and first subjected to 20 minutes of permeabilization at822

37°C to let the mRNA reach the probes on the slide surface for binding.823

The protocol was then followed without deviations to create amplified libraries which in the end were824

individually indexed using the Dual Index Kit TT SetA, (PN-1000215, 10X Genomics), quality controlled on a825

BioAnalyzer instrument and concentrations were measured using Qubit DNA HS. The libraries were pooled826

equimolarly (2nM) and sequenced on the Nextseq 500 (Illumina platform) for the tnbcs and Nextseq 2000827

(Illumina platform) for the xenografts. To reach the appropriate read depth the recommended number of reads828

per ST spot were applied according to the protocol.829

Spatial RNA preprocessing830

The SpaceRanger Analysis Pipeline (v2.0.0, 10x Genomics) was used to align the sequencing reads (fastq) to a831

pre-built reference genome (10x Genomics) containing both the human and mouse genomes (GRCh38 + mm10)832

and gene expression quantified in each cell. Quality-control (QC) statistics were computed using the STutility833

package [7]. Voxels with a library size < 3000 UMI were removed and remaining voxels manually curated to834

remove those that were disconnected from the main tissue section. Human and mouse genes were separated835
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to create two datasets per sample, one measuring the expression of human genes at each voxel, pertaining to836

tumor cells, and the other measuring expression of mouse genes, pertaining to cells from the microenvironment.837

Genes were removed if they were detected in less than 10 voxels. Finally each dataset was filtered to remove838

voxels with low library diversity for a given genome (<1000 human genes detected, <300 mouse genes detected).839

After QC filtering, the human dataset comprised of 14,819 genes measured at 1170 and 1105 voxels for each840

tumor, while the mouse dataset comprised of 12,119 genes measured at 1150 and 1079 voxels in TX and TX841

section respectively. Remaining datasets were each normalized to 10,000 reads per voxel and log transformed.842

To correct for dropout (human dataset = 69.8% zeros, mouse dataset = 90.6% zeros) data were smoothed with843

the manifold smoothing method MAGIC. Cell-cycle phase assignment was performed using the CellCycleScoring844

function in Seurat [40] with previously defined S-phase and G2M-phase gene lists [41]. Spatial plots throughout845

the manuscript were generated using STUtility.846

Mapping of archetypes to spatial transcriptomics with scMMGAN847

To map archetypes identified in the single-cell data from primary tumors to voxels in the spatial transcriptomic848

samples we used scMMGAN [4]. Smoothed expression data were zero-centered and unit scaled each dimension,849

and reduce to 50 principal components used as input to the scMMGAN generator, with the combined scRNAseq850

data described above used as input for the discriminator layer. scMMGAN was run with a generator consisting851

of three internal layers of 128, 256, and 512 neurons with batch norm and leaky rectified linear unit activations852

after each layer, and a discriminator consisting of three internal layers with 1,024, 512, and 256 neurons with the853

same batch norm and activations except with minibatching after the first layer. We use the geometry-preserving854

correspondence loss with a coefficient of 10, cycle-loss coefficient of 1, learning rate of 0.0001, and batch size of855

256. This network was used to generate a single-cell-like representation of each spatial voxel. These generated856

single -cell values were then embedded into the AAnet latent space trained using the combined single-cell RNAseq857

dataset. The affinity of each voxel to each archetype was then determined based on the distance of its generated858

single-cell values to each archetype in the trained AAnet latent space. Each voxel was then assigned to an859

archetype to which it had the highest affinity, or uncommitted in the case the maximum affinity corresponded to860

more than one archetype. It is important to note that the resolution of spatial transcriptomics voxels above the861

single-cell level (estimated between 3-10 cells per voxel), thus archetypes represent the dominant expression state862

among cells in the voxel. We also scored voxels based on the expression of the marker gene sets associated with863

each archetype in the single-cell data using on the first principal component of gene set expression, analogous864

to the eigengene metric used to summarize gene coexpression networks [25]. Scores were calculated based on865

expression of the top 50 marker genes with the highest log fold enrichment per archetype, excluding mitochondrial866

and ribosomal genes.867

Microenvironment mapping and enrichment868

We used data aligning to the mouse genome at each voxel to analyze the microenvironment associated with each869

archetype. Based on the archetypal assignment of voxels using tumor data, as described above, we identified870

differentially expressed genes between microenvironment spatially colocalized with each archetype using the871

FindMarkers function in Seurat (LFC >0.1, FDR<0.05) [40]. Enrichment of Gene Ontology Biological Processes872

and cell-types markers associated with "Connective tissue", "Immune system", "Smooth muscle", "Epithelium",873

"Vasculature", "Blood", "Mammary gland" or "Skeletal muscle" in the Pangloa database (v27/03/2020) [18]874

among differentially expressed genes was determined with a 1-sided Fisher’s exact test using the clusterProfiler875

R-package [54]. Putative ligand-receptor interactions between archetypes were identified using CellPhoneDB876

(v2) [13]. Human orthologs to mouse genes were idenitfied in biomaRt and counts matrices were merged based877

on gene id prior to running CellPhoneDB using parameters –iterations 1000 –threshold 0.2. and identifying878

significant interactions (FDR < 0.05). The metabolism between archetypes and microenvrionment was compared879

based expression of key enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle in each archetype880

and associated microenvironment. Glycolytic enzymes were designated as either hypoxic based on their enriched881

expression (LFC > 0) in voxels assigned to the hypoxic AT5 archtype. Heatmaps were generated based on the882

mean of scaled values for voxels associated with each archetype (human genes) or microenvironment (orthologous883

mouse genes).884
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Cell Culture885

SUM159 cells were cultured in Ham’s F12 + 1% (v/v) hydrocortisone, HCC1806 and HCC38-CD44 Hi cells886

were cultured in RPMI media. Media were supplemented with 10% (v/v) fetal bovine serum (GE healthcare)887

and 1% (v/v) pencillin-streptomycin. To isolate CD44Hi cells from the parental HCC38 cell line, cells were888

expanded in vitro in 150 mm tissue culture-treated culture dish (Corning). For the initial FACS rounds, cells889

were trypsinized and 1-2 x 107 cells were stained for the membrane marker CD44 (BD anti-human CD44-PE-cy7890

(1:800)) for 25 min at 4C. Antibody titration was previously determined staining a battery of breast cancer cell891

lines. Pure CD44Hi cells were collected and replated for expansion in culture. Following sorting purification,892

cultures were supplemented with 0.1% (v/v) gentamicin and 1% (v/v) antibiotic-antimycotic for 2 passages to893

avoid contamination. Sequential rounds of FACS enrichment were performed until 100% pure populations were894

isolated. Data collection was performed using a BD Aria III and FACSDiva software (BD Biosciences). Flowjo895

X10.7.1 was used for data analysis.896

siRNA treatment897

Cells were plated, allowed to grow for 24h then transfected with either 20nM siRNA SilencerTM Select negative898

control (Invitrogen, 4390843) or SLC2A3 directed siRNA (Invitrogen, 4390824). siRNAs were transfected using899

Optimem Reduced Serum Media (ThermoFisher 31985070) and Lipofectamine 3000 (ThermoFisher scientific900

L3000015#) as per standard protocol. Cells were harvested at 24h for qPCR analysis or trypsinized and re-seeded901

for proliferation and/or tumorsphere assay.902

qRT-PCR903

Total RNA was extracted and purified using the RNeasy micro kit (Qiagen). Reverse transcription was performed904

from 1 μg of total RNA with Superscript IV reverse transcriptase (Life Technologies, CA, USA) according to the905

manufacturer’s instructions. The reverse transcription product was diluted 1:10 with TaqMan Fast Advanced906

Master Mix (Invitrogen, 4444556) and used as a cDNA template for qPCR analysis. Real-time quantitative PCR907

was performed using the QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystems, CA, USA). Results908

are represented as mean values normalised to controls.909

Proliferation910

Following 24 hours of treatment of control or SLC2A3 targeted siRNA treatment, cells were seeded (1000 per911

well) in a 96-well plate. Proliferation was determined by confluence (%) per well, measured every 24 hours over a912

96-hour using an Incucyte (Sartorius).913

Tumorsphere-forming assay914

After 24 hours of treatment of control or SLC2A3 targeted siRNA treatment, cells were trypsinized and seeded915

in an ultra-low attachment 96 well plate (Corning) (300 cells per well) at 1000 cells per well. Tumorsphere916

media was comprised of methylcellulose (Sigma, m-7027) and basal media supplemented with 20ng/ml basic917

fibroblast growth factor (Millipore, GF003), 20ng/ml human epidermal growth factor (Sigma, E1264), B27 (Life918

Technologies, 17504-044) and 4μg/ml heparin (Sigma, H3149). 50ul additional tumorsphere media was added919

every 5 days and tumorspheres were counted and imaged at 14 or 21 days.920

Human scRNA-seq data preprocessing921

For experiments from [6,35,51], the datasets were first subset to cancer epithelial cells based on prior annotation,922

and only samples with ≥ 1000 cells were analyzed with AAnet. We then further preprocessed the data by923

removing genes expressed in fewer than 5 cells, filtering library size to between 1500 and 60000 UMI counts,924

and L1 normalizing for library size. We then square-root transformed the data, and filtered any remaining925

contaminating cells based on marker gene expression. Finally, we embedded the data with MAGIC and PCA926

before identifying archetypes with AAnet. For experiments based on the PDX model, the same pipeline was927
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followed, where additionally cells with less than 99% of reads aligning to human cells were removed, and mouse928

genes were removed.929

Data Availability930

The accession codes to the newly generated single-cell and spatial data will be provided before publication.931

Public CD8+ T cell data can be accessed at GEO under accession number GSE182509. Processed scRNA-seq932

data from [35] is available as GEO series GSE161529. Raw sequencing reads of all single-cell experiments from [6]933

have been deposited in the European Genome-phenome Archive (EGA) under study no. EGAS00001004809.934

Processed scRNA-seq data from [51] are also available through the Gene Expression Omnibus under accession935

number GSE176078.936

Code Availability937

The source code is available at https://github.com/KrishnaswamyLab/AAnet.938
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