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Abstract 

Chromatin compartmentalization and epigenomic modification are crucial factors in cell differentiation and 

diseases development. However, mapping precise chromatin compartmental patterns across multiple cell types 

requires Hi-C or Micro-C data at high sequencing depth. Exploring the systematic relationship between 

epigenomic modifications and compartmental patterns remains a challenge. To address these issues, we present 

COCOA, a deep neural network framework that uses convolution and attention mechanisms to infer reliable fine-

scale chromatin compartment patterns from six representative histone modification signals. COCOA achieves this 

by extracting 1-D track features through bi-directional feature reconstruction after resolution-specific binning 

epigenomic signals. These track features are then cross-fused with contact features using an attention mechanism. 

Subsequently, the contact features are transformed into chromatin compartment patterns through residual feature 

reduction. COCOA demonstrates accurate inference of chromatin compartmentalization at a fine-scale resolution 

and exhibits stable performance on test sets. In addition, we explored the impact of histone modifications on the 

chromatin compartmentalization through in silico epigenomic perturbation experiments. When using 1kb 

resolution high-depth experimental data, obscure compartments are observed, whereas COCOA can generate clear 

and detailed compartmental patterns. Finally, we demonstrated that COCOA enables cell-type-specific prediction 

of unrevealed chromatin compartment patterns in various biological processes. Thus, COCOA is an effective tool 

for gaining chromatin compartmentalization insights from epigenomics in a wide range of biological scenarios. 

KEYWORDS: 3D genome; Deep learning; Chromatin compartment; Histone modification; Cell-type-
specificity 
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Introduction 

The three-dimensional (3D) architecture of chromatin is essential for gene expression during cell differentiation 

and disease development [1,2]. Recent advances in next generation sequencing have led to the development of 

several chromosome conformation capture techniques, such as Hi-C, Micro-C, and Pore-C [3–5], enabling the 

exploration of multiscale chromatin structural elements including chromatin compartment [3,6], topological 

associating domains (TADs) [7,8], loops [6], stripes [9] and microcompartments [10]. These techniques have 

revealed that the chromatin can be segregated into A compartment and B compartment [3,11]. The A 

compartments are generally active in the genome, whereas the B compartments are mostly transcriptional 

repressive. These chromatin compartments are closely related to the mechanisms underlying various key 

biological processes [12,13].  

To identify chromatin compartments, sequencing data is usually processed into contact maps and distance 

effects are eliminated using normalization methods. The normalized contact map is then used to calculate the 

correlation matrix (CM), which is subjected to principal component analysis (PCA). The sign of the first principal 

component (PC1) corresponds to the compartment state [3]. Most analyses related to chromatin compartments 

rely on CM and PC1 [14–16]. While the CM is commonly available and of high-quality at mega-base scale, it 

becomes noisy for resolution finer than 25kb, failed to show clear plaid patterns due to its sparseness. Recent 

studies have suggested the associations of the fine-scale resolution chromatin compartments with other structural 

elements [17,18], histone modifications and chromatin accessibility [19]. However, the available chromatin 

compartment data does not match the scale of the epigenomic data, making the connection between epigenomics 

and chromatin compartmentalization a challenge. Furthermore, due to technical limitations and sequencing costs 

[20], experimentally mapping high-resolution chromatin compartment is both expensive and labour-intensive. 

Therefore, there is unmet need for the development of a computational method to obtain the fine-scale CM across 

multiple cell lines. 

In the past decade, deep learning [21] has emerged as a widely used tool in computational 3D genomes. 

These applications include various tasks such as TAD boundary recognition [22,23], chromatin loop detection 

[24,25], chromatin interaction data enhancement [26,27], interaction matrix generation [28–30] and single cell 

Hi-C imputation [31,32]. While several methods explore contact map generation and enhancement, they lack cell 

type specificity. For example, HiC-Reg [33] used fourteen epigenomic signals from five cell lines to predict short-

range chromatin interactions using random forests. Akita [29] and Orca [34] adopted the convolutional neural 

network to predict contact maps from DNA sequences. However, these methods are not capable directly inferring 

contact maps across different cell types. Recently, two proposed methods, C.Origami [35] and Epiphany [30], 

address this limitation by utilizing the histone modifications and chromatin accessibility data. C.Origami predicts 

short-range interactions by integrating CTCF, chromatin accessibility, and DNA sequence information through a 

neural network containing the attention and convolutional modules. Epiphany uses multiple epigenomic signals 

to generate short-range chromatin contact maps. However, these methods have their own limitations in terms of 

chromatin compartmentation and method generalization. Firstly, these existing methods concentrate on the 

prediction of short-range interactions (TADs and loops) while ignoring long-range interactions (compartments). 

Additionally, the relationship between compartmentalization and histone modification is still unresolved. 
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Furthermore, these models require inputs in fixed bin sizes, limiting scalability and preventing across-resolution 

predictions. 

To address these limitations, we introduce COCOA (mapping chromatin compartmentalization with 

epigenomic information), a method that predict the cell-type-specific CM using six types of accessible epigenomic 

modification signals. COCOA adopts bidirectional feature reconstruction and cross attention fusion for bi-

directional reconstruction and fusion of epigenomics data. Subsequently, residual feature reduction is applied to 

map the fused results into CM. COCOA is specifically designed to generate chromatin compartmentalization, and 

the predicted CM can be directly used to determine compartment status. We evaluated the performance of COCOA 

using multiple metrics (MSE, MAE, GenomeDISCO, PCC, SSIM and PSNR). The results demonstrate that 

COCOA accurately generates significant and biologically meaningful CM. Furthermore, we conducted in silico 

perturbation experiments to investigate the influence of histone modifications on compartments. Additionally, we 

tested the generalization performance of COCOA by making model predictions with resolution-specific and cell-

type-specific data. The results show that COCOA enables robust performance at various resolutions from diverse 

cell lines, providing insights into the patterns of chromatin compartments in immune and disease tissues. 

 

Method 

Hi-C and Micro-C data sources and pre-processing 

We collected publicly available processed Hi-C and Micro-C data of different cell lines from the 4DN database 

[36]. Intra-chromosomal contact maps were computed from these data for model training and testing (see details 

in Table S1). Depending on the specific task, the intra-chromosomal contact maps is computed at different 

resolutions using the cooler package [37]. To eliminate the distance effect in the contact maps, we applied the 

observed-expected normalization method [3]. Finally, these normalized contact maps were converted into CMs, 

which clearly depict plaid pattern of chromatin compartmentalization. 

 

ChIP-seq data sources and pre-processing 

Histone modification signals (H3K9me3, H3K27ac, H3K4me1, H3K27me3, H3K4me3, H3K36me3) from the 

ChIP-seq [38] data for all cells were retrieved from ENCODE project [39] (see details in Table S2). The ChIP-

seq data were binned to specific resolutions using the pyBigWig package (Figure 1A). After binning, a log(x +

1) transformation and min-max normalization were performed on the data. Finally, the processed data were 

combined into an epigenomic signal matrix. 

 

 

Dividing matrices 

The pre-processing step generates two matrices: a symmetric correlation matrix (CM) with dimensions n×n 

(CM୬×୬ ) and an epigenomic matrix (EM) with dimensions m×n (EM୫×୬ ). Each value CM୧୨  in the CM୬×୬ 

represents the correlation strength between genomic segment i and j. Values greater than one indicate that the two 

genomic segments have the same interaction mode, while less than one indicate the opposite interaction mode, 
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providing information about the status of chromatin compartments. Each value EM୧୨ in the EM୫×୬ represents the 

signal strength of genomic segment j on epigenomic track i.  

To better preserve the plaid pattern of chromatin compartmentalization and adapt to the inputs of neural 

network, we implemented the following processing scheme. First, the CM୬×୬  was divided into sub-matrices 

of  k × k  size (SCM୩×୩ ), and the EM୫×୬  were divided into two sub-matrices of m × k  size (SLEM୫×୩  and 

SREM୫×୩). We started at the diagonal position in the top-left corner of CM୬×୬ and moved horizontally, dividing 

it into SCM୩×୩ . Simultaneously, we divided the two corresponding groups of genomic loci from EM into 

SLEM୫×୩ and SREM୫×୩. After completing the horizontal dividing, we moved the current position diagonally by 

k positions. This process was repeated until the entire CM୬×୬ could no longer be divided. Due to computational 

resource constraints, we sampled the SCM୩×୩ in groups to minimize the size of the training datasets (SLEM୫×୩ 

and SREM୫×୩ were synchronized to minimize). Finally, these data were saved separately for further modelling. 

 

Combining predicted sub-matrices 

The COCOA model takes the SLEM୫×୩ and SREM୫×୩ for each chromosome division as inputs. It then outputs a 

series of predicted correlation sub-matrices. These sub-matrices sequentially covered a square matrix (PCM୬×୬) 

with the same number of columns as the EM୫×୬. The specific coordinates for covering each predicted correlation 

sub-matrices are determined by the corresponding inputs (SLEM୫×୩  and SREM୫×୩ ). Finally, the complete 

PCM୬×୬ is generated and saved for further biological analyses.  

 

COCOA architecture 

The COCOA model consists of three main components: bidirectional feature reconstruction, cross attention fusion, 

and residual feature reduction (Figure 1B), which are described in the following sections. 

 

Bidirectional feature reconstruction 

The bidirectional feature reconstruction module consists of two matrix reconstruction layers (MR layers). The 

construction of these MR layers is inspired by our previous work on chromatin interaction data enhancement [40]. 

Each MR layer consists of two parts: an aggregation convolution layer with a filter size of N × 1 and a linear 

reconstruction layer. The output of each MR layer is computed as follows: 

v(SEM) = Tanh൫(SEM  KN×1) × W୧൯ ൫1൯ 

MR(SEM) = v(SEM) ·  v(SEM)୘ × W୨ ൫2൯ 

where  denotes the convolution operation, K୒×ଵ represents convolution kernel (N × 1), Tanh is the activation 

function [41], × denotes Hadamard product and · denotes dot product. SEM represents SLEM୫×୩ or SREM୫×୩ 

generated through pre-processing. v୘ represents the transposition of the vector v. W୧  and W୨ are learnable weight 

matrices, respectively. The MR layer aggregates multiple ChIP-seq track signals from different genomic loci into 

a 1D vector. This vector is in turn reconstructed into a low-ranking epigenomic track features using learnable 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.11.593669doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.11.593669
http://creativecommons.org/licenses/by-nc-nd/4.0/


weight matrices. In summary, this module obtains bi-directional epigenomic track features by reconstructing the 

SLEM୫×୩ and SREM୫×୩. 

 

Cross attention fusion 

Next, the COCOA model employs the cross attention fusion module to fuse bi-directional epigenomic track 

features. The cross attention fusion module mainly contains two attention feature fusion layers (AFF layers) [42]. 

Each AFF layer has three parts: global feature extraction, local feature extraction and attention fusion. The results 

of cross attention fusion are defined as follows: 

CAF (P, Q) =  concat(AFFଵ(P, Q), AFFଶ(Q, P)) (3) 

where P and Q represent bi-directional epigenomic track features, respectively. concat denotes stacking two 

outputs in the same dimension. AFF refers to an attention-based uniform and general neural network layer for 

feature fusion proposed by Dai et al. [42]. The cross attention fusion module transforms the epigenomic track 

features in the other direction into potential attention weights to reinforce the epigenomic track features in the 

current direction. By interleaving attention fusion and concatenation, a set of fused contact feature maps is 

obtained as inputs for the next module. 

 

Residual feature reduction 

The residual feature reduction module consists of a series of residual blocks, each containing several residual 

layers. Following the approach described in previous work [43], each residual layer is composed of convolutional 

layers with different convolution kernels, BN layers [44], and activation functions. The computation of each layer 

is defined as follows: 

F(X) = Tanh൫BNଵ(X ⊗ K୬×୬)൯ (4) 

Res(X) = Tanh( BNଶ(F(X) ⊗ K୫×୫) + X) (5) 

where K denotes the convolution kernels of different size, Tanh is activation function and BN is the BatchNorm 

layer. X represents the fused contact feature maps for the first layer and the output of the current layer serving as 

the input for the next layer. The residual feature reduction module decreases the channels of the contact features 

from the previous module, level by level. Throughout this process, the residual layer continuously filters to retain 

important information from the previous layer, aggregating it with the output of current layer. Finally, the 

predicted correlation sub-matrix is obtained from the last layer of residual feature reduction module. 

 

Loss function 

The COCOA model can be seen as a function F with a parameter set θ, which maps each group input SLEM୧,୫×୩ 

and SREM୧,୫×୩ to the predicted correlation sub-matrix PSCM୧,୩×୩ (i.e., PSCM୧,୩×୩ = F(SLEM୧,୫×୩, SREM୧,୫×୩ ∶

θ)). The objective of the training is to find a set of  θ∗ to enable PSCM୧,୩×୩ similar to the ground truth SCM୧,୩×୩. 

Therefore, COCOA initially uses the mean square error (MSE) loss to minimize the pairwise error of genomic 

range k × k between  PSCM and SCM. This loss can be described as: 
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𝔏୑ୗ୉൫PSCMi,k×k, SCMi,k×k൯ =
1

m
෍൫PSCMi,k×k − SCMi,k×k൯

ଶ
୫

୧ୀଵ

(6) 

Subsequently, COCOA incorporates a perceptual loss based on the VGG network [45] to restore structural 

information of the correlation matrix. Furthermore, we added the total variation (TV) loss [46], which effectively 

smooths noise in computer vision, as a regularization term to suppress the noise of the PSCM୩×୩. These losses can 

be described as: 

 

ℌ୚ୋୋ൫PSCMi,k×k, SCMi,k×k൯ =
1

N
෍ ቀVGG൫PSCMi,k×k൯ − VGG൫SCMi,k×k൯ቁ

ଶ
୒

୩ୀଵ

(7) 

𝔉୘୚(PSCMk×k) = ෍൫PSCM୧,୨ିଵ − PSCM୧,୨൯
ଶ

+ ෍൫PSCM୧ାଵ,୨ − PSCM୧,୨൯
ଶ

୧,୨୧,୨

(8) 

Finally, the training objective can be represented as: 

θ∗ = argmin஘ൣ𝔏୑ୗ୉൫PSCMi,k×k, SCMi,k×k൯ + α ∗ 𝔉୘୚൫PSCMi,k×k൯ + β ∗ ℌ୚ୋୋ൫PSCMi,k×k, SCMi,k×k൯൧ (9) 

where α,β are scaling weights that range from 0 to 1.  

 

COCOA training and hyper-parameter exploration 

Before model training, we pre-processed each chromosome of the HFFc6 Micro-C data [47] and corresponding 

ChIP-seq data. Chromosome 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 were used as training sets, while chromosomes 

18, 20, 21 and 22 were utilized for hyper-parameter tuning. The remaining chromosomes were allocated for 

performance evaluation.  

The COCOA model was implemented on Python 3.7 with PyTorch1.12 [48]. We trained the model with a 

batch size of 16 for 120 epochs, using the Adam optimizer [49] with an initial learning rate of 5e-4 (lr୧୬୧୲ = 5e −

4). The details on model training and hyper-parameters are provided in Note S1. 

 

Model evaluation 

We started the evaluation process by making predictions on independent test sets using the best-trained model. 

The predicted correlation sub-matrices were then combined to form the intra-chromatin correlation matrix. The 

experimental 25 kb chromatin interaction correlation matrices were considered as the ground truth. During the 

evaluation, we used the principal component analysis (PCA) provided by the sklearn package [50] to calculate the 

first principal component (PC1) of the two correlation matrices. PC1 is generally considered to represent the A/B 

compartment information. Additionally, we discretized PC1 to obtain the chromatin compartment state, which 

was saved separately.  

To assess the model performance, we used several indictors including Mean Square Error (MSE, see 

Equation (6)), Mean Absolute Error (MAE), Structure Similarity Index (SSIM) (assessing the similarity of two 

correlation matrices) and Peak Signal to Noise Ratio (PSNR) (measuring the quality score of the correlation 

matrices) [51]. MAE, SSIM and PSNR are defined by the following equations: 
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MAE(Ŷ, Y) =
1

n
෍หyො

i
− y

i
ห

୬

୧ୀଵ

(10) 

SSIM൫Ŷ, Y൯ =
(2μŶμଢ଼ + Cଵ) ∗ (2σŶଢ଼ + Cଶ)

൫μ
Ŷ
ଶ + μଢ଼

ଶ + Cଵ൯ ∗ ൫σ
Ŷ
ଶ + σଢ଼

ଶ + Cଶ൯
(11) 

PSNR൫Ŷ, Y൯ = 10 ∗ logଵ଴ ቆ
N

MSE൫Ŷ, Y൯
ቇ (12) 

where Ŷ denotes the predicted correlation matrices and Y represents the real correlation matrices. Furthermore, 

considering the chromatin compartmentalization information of the correlation matrices, we evaluated their 

reproducibility using multiple Pearson Correlation Coefficient (PCC) and GenomeDISCO score [52].   
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Results 

Overview of COCOA  

In this study, we proposed COCOA as a method for accurately predicting cell-type-specific chromatin 

compartment patterns at fine-scale resolution by integrating epigenomic modification signals. COCOA only 

requires six epigenomic track signals as inputs, which are accessible for most tissues and cell lines in the ENCODE 

database [53]. The targets of COCOA are defined as the correlation matrices (CM) of OE-normalized contact 

maps, allowing for the maximum retention of chromatin compartment pattern information. The COCOA 

framework connects these inputs and targets through binning, prediction and combination operations (Figure 1A). 

Notably, in the binning process, we utilized the resolution-specific binning approach (i.e., 𝐵𝑖𝑛௘௣௜ = 𝐵𝑖𝑛௖௢௥௥) 

instead of a single bin from each genome site approach (i.e., 𝐵𝑖𝑛௘௣௜ = 𝐵𝑖𝑛௖௢௥௥ ∗ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). This choice greatly 

improves the practicality of COCOA.  

 

 
Figure 1 COCOA pipeline and architecture 

(A) COCOA pipeline: The integration of six accessible epigenomic signals by resolution-specific binning serves as inputs to 

predict the correlation matrices.  

(B) COCOA architecture: COCOA extracts 1D track features from each input (bidirectional feature reconstruction module) 

and then combines these features with spatial contact features (cross attention fusion module). The contact features are further 

processed by the residual feature reduction module to obtain the final prediction result. Parameters are updated using a 

backpropagation algorithm with mixed loss functions. (Refer to Method for detailed information) 

 

We trained COCOA on Micro-C data of HFFc6 along with corresponding ChIP-seq data (Table S1 and S2) 

using backpropagation algorithm. Specifically, COCOA first utilizes the bidirectional feature reconstruction 

module to calculate the 1D track features separately from two inputs. This step captures the intrinsic association 

present in the original epigenomic data in each direction (Figure 1B and Method). Subsequently, the cross 

attention fusion module integrates these 1D track feature maps with space contact features based on crossed 

attention mechanisms (see details in Method). Lastly, the residual feature reduction module decodes these contact 

features to generate predicted results, which are then combined into a complete CM (Refer to the Combining 

predicted sub-matrices section of Method for detailed information). In addition, a composite loss function is 

employed to minimize the distance between the predicted targets and the ground truth. 
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COCOA accurately predicts chromatin compartmentalization pattern 

To assess the performance of COCOA, we applied the trained COCOA model to randomly selected epigenomic 

data in test sets (Chr 12, Chr 14 and Chr 16) to generate predicted CM. We considered the CM calculated from 

the Micro-C data and its PC1 as the experimental CM, which can be regarded as the ground truth for comparison.  

Heat maps in Figure 2A and Figure S1A compare typical genomic regions using the predicted and the 

experimental CM. The results demonstrate that the predicted CM generally exhibit the correct chromatin 

compartmentalization pattern. Furthermore, COCOA shows outstanding generative capacity in capturing subtle 

chromatin compartments. Notably, the predicted CM show more pronounced interactions in dissimilar chromatin 

compartment blocks (blue blocks) compared with the experimental CM, while exhibiting partial over-

reinforcement in identical chromatin compartment blocks (red blocks). We also computed the PC1 of the predicted 

CM and the experimental CM using the sklearn package [50]. Subsequently, the CMs were sorted based on the 

size of their respective PC1 values (Figure 2B and Figure S1B). The results indicate that modularity phenomenon 

of the predicted CMs resemble the modularity patterns observed in the experimental CMs. In addition, the 

predicted CMs successfully capture the white band regions present in the experimental CM (Figure S1B). 

To establish the biological significance of COCOA model predictions, we generate plots that illustrate the 

predicted CMs alongside the epigenomic signal tracks and the PC1 tracks. Figure S1C reveals that the predicted 

CM accurately show plaid patterns of chromatin compartments, with each block of the plaid corresponding to a 

signal peaks in the epigenomic data tracks. The PC1 values from the tracks of the experimental CM and the 

predicted CM also align precisely with these results. Importantly, COCOA can infer chromatin compartments that 

are consistent with the underlying epigenomic data but are not captured in the experimental CM (indicated by the 

black dotted lines in Figure 2C). Moreover, we analysed shifts in six epigenomic modification signals at 

compartment boundaries and randomly selected genomic loci, as done in previous studies [54]. Notably, we 

observed the consistent significant shifts in epigenomic modification signals within 375 kb neighbourhoods 

around A/B compartment boundaries in both predicted and experimental CMs. These shifts were obviously 

different from randomly selected genomic loci (Figure 2D and Figure S1D). It is worth noting that shifts of partial 

epigenomic modification signals of the predicted CM generated by COCOA outperformed the experimental CM 

in capturing some compartment boundaries (e.g.: A2B boundary of H3K4me1 shown in Figure 2D). 
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Figure 2 COCOA accurately predicts significant compartment patterns from epigenomic data 

(A) Representative region illustrating predicted and experimental CM on test chromosomes.  

(B) Heatmaps of the experimental CM and the predicted CM, sorted according to their respective PC1 sizes. The predicted 

CM demonstrates consistency with the compartment patterns observed in experimental CM.  

(C) The predicted CM exhibits patters that align precisely with the waveform of histone modification signal. Within the region 

marked by the black dashed line, COCOA is able to correct the pattern misclassified by the experiment.  
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(D) Analysis of the shifts in modification signals within 375 kb neighbourhoods surrounding compartment boundaries in both 

predicted and experimental CMs. 

 

Genome-wide performance evaluation of COCOA 

The performance of COCOA was quantitatively analysed on genome-wide test sets. We calculated the MSE, 

MAE, PNSR, and SSIM scores to evaluate the robustness of error, signal-to-noise ratios and the structural 

similarity of COCOA on test sets. COCOA achieves competitive error and similarity scores on the test sets, 

exhibiting only minimal fluctuation with variations in the quality of the input data and the chromosome size. This 

stability indicates that COCOA performs consistently across different prediction scenarios (Figure 3C, left panel 

and Table S3). In addition, we adopted GenomeDISCO scores, designed to assess the reproducibility of contact 

maps, to validate the biological significance of the predicted CM. As shown in Figure 3C (right panel), COCOA 

achieved high reproducibility between the predicted CM and the experimental CM. 
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Figure 3 Performance evaluation of COCOA in multiple metrics 

(A) Scatterplot showing the high correlation between the PC1 of the predicted CM and the PC1 of the ground truth on test sets. 

(B) Proportion of compartment pattern matching between the predicted CM and the experimental CM. The red and blue bars 

represent the proportion of compartments that overlap between the predicted CM and experimental CM. The green and purple 

bars indicate the proportion of compartments that differ between the predicted CM and experimental CM.  

(C) The MSE and genomeDISCO scores for COCOA on the test chromosomes.  

(D) Correlation coefficient between the predicted CM and experimental CM. The “PC1” row represents the correlation of the 

first principal component of the CM and the “A/B” row represents the correlation after binarization of PC1. 

 

As the CM contains abundant information regarding chromatin compartmentalization, we preformed 

correlation evaluations at the CM, PC1 values and the compartment states levels. Figure 3A shows a scatter plot 

of the PC1 values between the predicted CM and the experimental CM across the test sets (Rଶ = 0.941, p <

2.2e − 16). In Figure 3D, the correlation coefficients of the PC1 values for each predicted and experimental CM 
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are higher than 0.9, with the same trend observed for the A/B chromatin state correlation coefficients. Furthermore, 

we observed that misclassification rates of A/B compartments were independent of chromosome length and all 

remained below 10%  (Figure 3B). To evaluate COCOA’s performance in inferring deep chromatin 

compartmentalization information, we calculated the mean correlation coefficients for each column between the 

predicted CM and the ground truth. The results show that the predicted CM achieved high correlation scores when 

compared to the experimental CM (Figure S2).  

 

 

COCOA predicts chromatin compartmentalization changes to epigenomic 
perturbations 

 

After confirming the accuracy of COCOA in inferring chromatin compartmentalization from epigenomic data, 

we used COCOA to perform in silico epigenomic perturbation experiments and assessed the impact of epigenomic 

signals on chromatin compartment patterns. 

In the single epigenomic marker perturbation (one-perturbation) experiments, we generated perturbed 

epigenomic data by setting one selected epigenomic signal to its minimum value while keeping other data 

unchanged. Subsequently, we predicted the corresponding CMs for the perturbed epigenomic data and compared 

them to the experimental CM for the unperturbed data. The predicted results from one-perturbation experiments 

indicated that alerting H3K9me3 signal significantly influenced chromatin architecture, causing a substantial 

number of compartment B-to-A switches (Figure 4A). On the other hand, the perturbation of H3K4me1 signal led 

to a small proportion of compartment A-to-B switches. Perturbing other epigenomic signals (e.g., H3K27ac, 

H3K27me3, H3K4me1, and H3K4me3) had no significant effect on chromatin compartment patterns (Figure 4A 

and Figure S3A). 

To further analyse the contribution of individual epigenomic signals to the maintenance of chromatin 

compartment patterns, we conducted keep-one epigenomic signal perturbation (keep-one perturbation) 

experiments. In these experiments, we perturbed the epigenomic data by maintaining the selected epigenomic 

signal data while setting all other epigenomic signal data to their minimum values. Subsequently, we utilized 

COCOA to predict the chromatin compartment patterns for the perturbed data. The keep-one perturbation 

experiments revealed that the predicted CM from H3K9me3 or H3K4me1 signal partially overlapped with the 

experimental CM for the unperturbed data, while those predicted CMs from other epigenomic signals exhibited 

distinct differences from the experimental CM (Figure S4A and Figure S4B). This result reinforced the importance 

of H3K9me3 and H3K4me1 for predicting the status of chromatin architecture.  

We next investigated the effects of two epigenomic signals on the chromatin compartmentalization through 

two epigenomic signal perturbation (two-perturbations) experiments. We observed that H3K9me3 and H3K4me1 

signals play dominant roles in determining A/B compartment patterns. When H3K9me3 or H3K4me1 signal was 

perturbed along with H3K27ac, H3K27me3, H3K4me1 or H3K4me3 signal, the predicted chromatin 

compartment patterns exhibited significant changes compared to those for the unperturbed data (Figure S3B). 

Notably, perturbing the H3K9me3 signal gave rise to compartment B-to-A changes, while perturbing the 

H3K4me1 signal resulted in compartment A-to-B changes (Figure 4B). Simultaneous perturbations of H3K9me3 
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and H3K4me1 signal exhibited the greatest impact on the changes in chromatin compartment patterns among all 

the two-perturbations experiments.  

Taken together, COCOA facilitates investigations into the role of epigenomic signals in determining 

chromatin compartmentalization through in silico epigenomic perturbation experiments. Our results suggest that 

H3K9me3 and H3K4me1 signals are crucial for maintaining the chromatin compartment patterns. 

 

 

Figure 4 COCOA predicts the compartment patterns for epigenomic perturbation experiments 

The row where green “No perturbation” (Reference) indicates the comparison between the predicted CM and ground truth for 

unperturbed data. Red, black, and blue fonts in the vertical axis labels indicate high, medium, and low impact of the perturbed 

epigenomic signal on the chromatin compartment patterns, respectively.  

(A) Proportion of the compartment pattern matching between the predicted CM and the ground-truth CM from the 1-

perturbation epigenomic combinations. 

(B) Proportion of the compartment pattern matching between the predicted CM and the ground-truth CM from the 2-

perturbation epigenomic combinations.  

 

 

COCOA shows robust performance of model predictions at different resolutions 

 

To evaluate the performance of COCOA at different resolutions, we used the model trained at 25kb to predict the 

fine-scale CM using resolution-specific inputs. We first used the trained model to predict 10kb CM for 

chromosome 16, 17 and 18 data sets and evaluated the performance of the model predictions. The results shown 
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in Table S4 indicate that COCOA achieves consistent and competitive scores on all three test sets. We further 

evaluated the correlations between the predicted compartment patterns and the ground truth patterns. The 

predicted 10 kb CM is highly correlated with and the experimental CM (Figure 5A). A similar high correlation 

was observed between the predicted compartment states and the ground truth states (PC1 of CM). The 

compartment misclassification rate indicates that COCOA generates CMs containing reliable chromatin 

compartment information (Figure S5A). The predicted CM exhibits similar plaid patterns to the experimental CM, 

which correspond well with the epigenomic signals (Figure 5B and Figure 5C). In addition, the modularity of the 

predicted CM aligns with that of the experimental CM on the whole (Figure S5C). We also observed consistent 

and significant shifts in epigenomic modification signals within 150kb neighbourhoods around A/B compartment 

boundaries, in both predicted and experimental CM, which are distinguishable from randomly selected genomic 

loci (Figure 5D). 
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Figure 5 Predicting resolution-specific compartment pattern with COCOA 

(A) Correlation coefficient between the predicted CM and the experimental CM at 10kb and 1kb resolutions. The rows labeled 

‘PC1’, ‘Corr Mat’ and ‘A/B’ represent the correlation of the PC1 of the CMs, the correlation between the predicted CM and 

the experimental CM, and the correlation of the binarized PC1s, respectively.  

(B) The predicted CM accurately capture the histone modification signal waveforms for chr16 at 10kb resolution.  

(C) Typical region of the predicted CM and the experimental CM at 10kb and 1kb resolutions. At 1kb resolution, the 

experimental CM exhibits high noise levels and lacks a recognizable plaid pattern, while the predicted CM demonstrates a 

clear plaid pattern 
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(D) Shifts observed in modification signals around compartment boundaries in both predicted and experimental CMs at 10 kb 

and 1 kb resolutions. At 10 kb resolution, both predicted and experimental CMs display meaningful shifts, whereas at 1 kb 

resolution, the experimental CM approaches random results, while the predicted CM still shows significant biological shifts. 

 

To evaluate COCOA's performance at ultra-high resolution, we employ it to predict 1kb for chromosome 16, 

17 and 18, using the model trained at 25kb resolution. Similar to the evaluation at 10kb resolution, we assessed 

the performance metrics and correlations. The results show that COCOA achieves robust performance across a 

wide range of scores, but obtains scores close to 0 for the CM correlation coefficient (Figure 5A, Table S4). This 

may be attributed to the sparsity of the deeply-sequenced experimental CM at ultra-high resolution (i.e., ~2.6–4.5 

billion uniquely mapped reads with ~150X coverage per nucleosome) [47], which is challenging to define as the 

ground truth. As the CM size increases, the mean error evaluation narrows the gap, producing similar scores. 

However, using PCA-based correlation or compartment misclassification rates, we can partially mitigate the 

sparsity issue and obtain reliable scores (Figure S5B). Therefore, we visualized the experimental and predicted 

CM by heatmaps (Figure 5C). We found that the experimental CM shows vaguely visible plaid patterns and is 

filled with noise-induced thin lines. In contrast, the predicted CM remains consistent with these fuzzy patterns but 

displays more apparent compartmentalization patterns (Figure 5C and Figure S5D). Moreover, we investigated 

the shifts of epigenomic modification signals between the predicted CM and the experimental CM. Surprisingly, 

the shifts observed in the experimental CM are similar to those in randomly selected genome loci, while the 

predicted CM shows significant and biologically meaningful shifts (Figure 5D). 

 

COCOA accurately predicts cell-type-specific chromatin compartment patterns 

Because epigenomic data are cell-type-specific, we tested whether COCOA can accurately predict chromatin 

compartment patterns in different cell types. We first applied COCOA to GM12878 datasets and generated the 

predicted CM for multiple chromosomes. The experimental CM obtained from the Hi-C data of GM12878 [6] 

served as the ground truth for comparison. The results indicated that high correlations were observed between the 

two CMs and between the two principal components (PC1s) of the CMs (Figure 6A and Figure S6A). Figure 6B 

revealed that the compartment misclassification rates were all below 20%. Furthermore, the predicted CM presents 

the plaid patterns consistent with the experimental CM, achieving stable and competitive scores in terms of both 

error and the image similarity (Figure 6C and Table S5). Taken together, these data suggest that COCOA reliably 

predicts the cell-type-specific chromatin compartment patterns. 

Having established COCOA's capability to predict CMs across diverse cell types, we proceeded to predict 

CMs in five additional cell types encompassing tissues, diseases, and primary cells where chromatin conformation 

had not been sequenced. The predicted CM for the five data sets displayed obvious plaid patterns (Figure 6D and 

Figure S6B). The predicted A/B compartments in SJSA1, NCI-H929, and activated B cells were clearly defined 

and noise-free, while the predicted CMs of activated T cells and chorionic villus tissues displayed slightly 

diminished performance. To gain insight into the effects of chromatin compartmentalization in disease and 

differentiation, we systematically compared the patterns across different cell types. Using predicted CM from 

GM12878 data as a benchmark, we examined commonalities and differences in chromatin region patterns based 

on histone modification track information (Figure 6E). The results revealed similar patterns between GM12878 
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and most other cells, albeit with variations in certain regions (Figure 6F). Notably, activated B cells, being immune 

cells akin to GM12878, exhibited a comparable compartment pattern. Similarly, activated T cells demonstrated 

an analogous pattern. In contrast, SJSA1, NCI-H929, and chorionic villus tissues exhibited distinct compartment 

patterns. 

 

 

Figure 6 Cell-type-specific prediction of compartment pattern by COCOA 

(A) Correlation coefficient between the predicted CM and the experimental CM on GM12878 datasets. The rows ‘PC1’ and 

‘A/B’ represent the correlation of CM’s PC1s and the correlation of binarized PC1s, respectively.  

(B) Proportion of matching compartment patterns between the predicted CM and the experimental CM on GM12878 datasets.  

(C) Typical regions showing the predicted CM and the experimental CM patterns on GM12878 datasets.  

(D) Example regions illustrating the predicted CM patterns on SJSA1 and activated B cells datasets.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.11.593669doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.11.593669
http://creativecommons.org/licenses/by-nc-nd/4.0/


(E) Precisely matching of predicted CM patterns with the waveform of histone modification signals on chr15 in GM12878 

datasets.  

(F) Systematic comparison of chromatin compartment status on chr15 across GM12878, activated B cells, activated T cells, 

chorionic villus, SJSA1 and NCI-H929 datasets. 
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Discussion  

In this study, we developed a deep neural network framework called COCOA, which incorporates six types of 

epigenomic modification signals to accurately predict fine-scale resolution chromatin compartment patterns. 

These epigenomic signals data are readily accessible in ENCODE database [53] for various cell lines, in vitro 

differentiated cells, primary cells, and tissues. To process the raw epigenomic data, we employed resolution-

specific pre-processing to bin the data into mated inputs from different genomic positions. COCOA then uses the 

bidirectional feature reconstruction module to extract track features from these mated inputs, then fuses these 

track features to contact features using the cross attention fusion module. Eventually, these contact features are 

converted to chromatin compartment patterns by the residual feature reduction module. COCOA predict directly 

long-range chromatin compartment patterns without considering short-range interactions [28,29,35]. Our results 

demonstrate that COCOA accurately predicts the same chromatin compartment patterns as the experimental CM, 

with consistent epigenomic signals shifts of these patterns (Figure 2D). During model evaluation, COCOA 

achieves excellent performance with robust reproducibility scores on the test sets. Furthermore, the predicted CM 

and its PC1 show a high correlation with the experimental CM and PC1. The compartment misclassification rates 

of the predicted CM remain below 10% and are independent of chromosome length. 

With COCOA’s accurate prediction of chromatin compartmentalization, it becomes possible to perform in 

silico epigenomic perturbation to study the influence of histone modification signals on chromatin 

compartmentalization. By generating predicted CM using different perturbed epigenomic data, we found that 

H3K9me3 has strong impact on chromatin compartment patterns, followed by H3K4me1. In contrast, H3K27me3 

and H3K36me3 have a moderate level of impact, and H3K27ac and H3K4me3 have low impact. Interestingly, 

COCOA predicted that perturbation of H3K9me3 signal led to compartment B-to-A changes, while perturbation 

of H3K4me1 signal resulted in compartment A-to-B switches. Additionally, H3K9me3 and H3K4me1signals play 

dominant roles in determining chromatin compartment patterns when they are perturbed together with other 

epigenomics signals in two-perturbations experiments.  

Furthermore, we explored the performance of COCOA’s predictions across different resolutions and cell 

types. For prediction at 10kb resolution, COCOA exhibited the same outstanding performance as predicted at the 

trained resolution (25kb). Recognizing the significance of high resolution in chromatin interaction data analysis, 

we investigated whether COCOA can make good prediction at 1kb resolution. Unfortunately, even with a high 

sequenced depth [47], the experimental CM at 1kb resolution contains excessive noise lines and barely discernible 

plaid pattern. Therefore, we analysed histone modification shifts at compartment boundaries and mapped 

heatmaps of the predicted CM at different genome ranges. Surprisingly, the predicted CM displayed clearer plaid 

patterns and exhibited more biologically meaningful shifts compared to the experimental CM and randomly 

selected loci. We then evaluated the performance of COCOA in predicting cell-type-specific compartment 

patterns. Using validated Hi-C data of GM12878, our results demonstrated that COCOA can correctly infer 

chromatin compartment patterns from epigenomic data on unseen cell lines.  

While this work presents promising results, it also has several potential areas for improvements. Firstly, as a 

data-driven approach, COCOA relies on moderately good quality training sets to achieve high performance by 

incorporating potential information from bidirectional epigenomic data. In addition, we observed that the transfer 

capacity of COCOA in cross cell lines experiments is affected by the epigenomic data quality. Developing new 

data processing schemes may prove beneficial in solving this issue. Secondly, in challenging task such as high-
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volume fine-scale resolution CM prediction and in silico epigenomic signal perturbation experiments, COCOA 

requires significant run time and substantial computational resources. To alleviate this computational burden, 

parallel CM generation and distributed implementations can be explored as feasible approaches [55]. Thirdly, we 

also preliminarily explored the influences of histone modification signals on A/B chromatin compartmentalization 

in HFF datasets by in silico epigenomic perturbation experiments. However, more systematically studying the 

combined impacts of epigenomic modifications in relation to complex chromatin compartmentalization on 

different cell lines would benefit from further experimental evidence. Lastly, COCOA’s predictions for fine-scale 

chromatin compartmentalization information in diseases, tissues and primary cells have not been thoroughly 

explored. In future, it would be interesting to explore the impact of the chromatin compartment alteration on cell 

differentiation and disease occurrence by integrating epigenomics data with other omics and phenotypic data. 
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