

4 Qiang Wang^{a,b,†}, Yuemei Xi^{a,b,†}, Hairong Zhao^{c,d,‡}, De Xie^{a,b}, Linqian Yu^{a,b}, Yunbo
5 Yan^{a,b}, Jiayu Chen^{a,b}, Qian Zhang^{a,b}, Meng Liang^e, Jidong Cheng^{a,b*}

6 Affiliations

⁷ ^aDepartment of Internal Medicine, Xiang'an Hospital of Xiamen University, School
⁸ of Medicine, Xiamen University. Xiamen, Fujian, China.

⁹ ^b Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and
10 Regulation. Xiamen, Fujian, China.

11 ^cYunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali
12 University, Dali, Yunnan, China

¹³ ^d Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali
¹⁴ University, Dali, Yunnan, China

¹⁵ ^e Department of Nephrology, the 174th Hospital of the People's Liberation Army,
¹⁶ Xiamen, Fujian, China.

17 [#] These authors contributed equally.

18 *Corresponding author: Jidong Cheng (jidongcheng36@hotmail.com)

19

20 Running title:

21 Ferroptosis promotes hyperuricemic nephropathy

22

23

24 Abstract

Hyperuricemic nephropathy (HN) represents a prevalent complication arising from hyperuricemia, typified by tubular dysfunction, inflammation, and progressive renal fibrosis, whose pathogenic mechanisms remain enigmatic. Ferroptosis, a newly elucidated iron-dependent form of regulated cell death, plays a role in various

29 disease states. However, its involvement in HN has seldom been explored. In this
30 study, we observed indications of ferroptosis in the renal tissues of urate oxidase
31 knockout ($UOX^{-/-}$) mice, a model of hyperuricemia, as evidenced by increased iron
32 deposition and reduced expression of glutathione peroxidase 4 (GPX4). These
33 findings suggest a substantial role of ferroptosis in the pathogenesis of HN. To further
34 explore this hypothesis, $UOX^{-/-}$ mice were administered Ferrostatin-1, a known
35 inhibitor ferroptosis. This treatment markedly ameliorated tubular injury, necrosis,
36 and inflammatory cell infiltration, mitigated renal fibrosis, reinstated the expression of
37 proteins associated with ferroptosis in renal tissues, and reduced iron overload, lipid
38 peroxidation, and mitochondrial damage in $UOX^{-/-}$ mice. Additionally, we found
39 that receptor for advanced glycation end products (RAGE) propagates
40 ferroptosis-induced renal injury, inflammation and fibrosis, albeit without directly
41 facilitating ferroptosis. Finally, ferroptosis and RAGE upregulation were validated in
42 renal tissues of patients with hyperuricemia-related kidney disease. Collectively, our
43 research elucidates the critical contribution of ferroptosis to HN pathogenesis,
44 indicating that therapeutic strategies targeting ferroptosis and the related RAGE
45 signaling may offer novel therapeutic approaches for managing this condition.

46

47 **Keywords:** hyperuricemic nephropathy, ferroptosis, RAGE

48

49 **Introduction**

50 Hyperuricemia has become increasingly prevalent worldwide ¹. Its overall
51 prevalence has climbed to 14.0% in mainland China ², seriously jeopardizing human
52 health by predisposing to and fueling various metabolic disorders, including gout,
53 hypertension, cardiovascular disease, and chronic kidney disease (CKD) ³. However,
54 hyperuricemia often remains asymptomatic during its early stage, resulting in an
55 underestimation of its detrimental impacts by affected individuals.

56 Responsible for secreting approximately 75% of uric acid, the kidney is one of

57 the main target organs affected by chronic exposure to high levels of uric acid ⁴.
58 Elevated uric acid in the bloodstream exceeds its solubility limit and causes
59 precipitation and deposition of monosodium urate (MSU) crystals within the renal
60 tubules. This cascade of events initiates tubular obstruction, inflammatory responses,
61 and progressive renal fibrosis, eventually culminating in the development of CKD,
62 namely hyperuricemic nephropathy (HN) ⁵. Notably, kidneys manifest merely subtle
63 symptoms until significant functional impairment occurs. Therefore, HN typically has
64 an insidious onset and delayed diagnosis, rendering timely intervention challenging.
65 However, the molecular mechanisms underpinning HN remain poorly understood,
66 highlighting the critical need to elucidate the pathogenic pathways is imperative to
67 identify potential therapeutic targets against HN.

68 Ferroptosis is a newly recognized form of programmed cell death typified by
69 iron-dependent lipid peroxidation ^{6 7}. Among its key regulatory components, system
70 Xc- (catalytic subunit xCT/SLC7A11) and GPX4 are prominent negative factors ⁸.
71 Unlike apoptosis, ferroptosis triggers inflammation by eliciting the release of
72 damage-associated molecular patterns (DAMPs), a shared feature of multiple cell
73 necrosis modalities, including regulated forms like pyroptosis and necroptosis as well
74 as unregulated necrosis ⁹. Emerging evidence implicates ferroptosis in diverse
75 pathological processes, encompassing tumor suppression, ischemia-reperfusion injury,
76 neurodegeneration, acute nephrotoxicity induced by folic acid/cisplatin, and tubular
77 injury in diabetic nephropathy ¹⁰⁻¹⁴. However, the potential involvement of ferroptosis
78 in HN remains unexplored.

79 The Receptor for Advanced Glycation End Products (RAGE) belongs to the
80 immunoglobulin superfamily of cell surface molecules. It can be activated by various
81 ligands, including AGE, HMGB1, Decorin, Heme ¹⁵⁻¹⁷, thereby leading to effects such
82 as systemic insulin resistance, oxidative stress, inflammation, and tissue fibrosis.
83 Under physiological conditions, RAGE is expressed at low levels in renal tubular
84 epithelial cells ¹⁸. However, during sustained pathological stresses such as diabetic

85 nephropathy or unilateral ureteral obstruction, RAGE can be activated and contribute
86 to renal interstitial fibrosis ^{19,20}. Li et al. recently reported that RAGE promotes
87 dysregulation of iron and lipid metabolism in alcoholic liver disease ²¹, while Yang et
88 al. revealed an association between iron overload and RAGE signaling activation in
89 intracerebral hemorrhage ²². These findings may imply a potential interplay between
90 RAGE and ferroptosis.

91 In the present study, we delved into the potential involvement of ferroptosis in
92 HN using urate oxidase knockout ($UOX^{-/-}$) mice as the model of hyperuricemia. We
93 aimed to determine whether targeting ferroptosis and related signaling pathways could
94 confer renoprotection against HN. Our findings may provide new insights into the
95 molecular pathogenesis of HN and identify novel therapeutic strategies.

96

97 **Materials and methods**

98 **Reagents**

99 Ferrostatin-1 (#F864515) is from Macklin (China); FPS-ZM1(#HY-19370) is
100 from MedChemExpress (USA); mouse anti- α -SMA (#A2547) antibody is from Sigma
101 (USA); rabbit anti-RAGE (#ab3611), and HMGB1 (#ab18256), as well as mouse
102 anti-TNF- α (#ab255275) antibodies are from Abcam (UK); rabbit anti-E-cadherin
103 (#CPA1199) antibody is from Cohesion Biosciences (UK); rabbit anti-HO-1
104 (#10701-1-AP) antibody is from Proteintech (USA); rabbit anti-Iba1 (#019-19741) is
105 from Wako (Japan); rabbit anti-LC3B (#3868), Phospho (p)-P38 MAPK
106 (Thr180/Tyr182) (#4511), P38 MAPK (#8690), p-JNK (Thr183/Tyr185) (#4668),
107 JNK (#9252), p-ERK1/2 (Thr202/Tyr204) (#4370), ERK (#4695), p-NF- κ B p65
108 (Ser536) (#3033), NF- κ B p65 (#3034) antibodies are from Cell Signaling Technology
109 (USA); mouse anti-GAPDH (#AC033), rabbit anti- β -actin (#AC026), xCT (#A2413),
110 GPX4 (#A13309, #A11243), TfR1(#A4865), COX2 (#A3560), P62 (#A19700),
111 4-HNE (#A2245), HRP-conjugated goat anti-rabbit IgG (#AS014), HRP-conjugated
112 goat anti-mouse IgG (#AS003) antibodies are from Abclonal (China). Enhanced

113 Chemiluminescent (ECL) Substrate (#BMU102-CN) is from Abbkine (China). Kits
114 for determining biochemical indexes of uric acid (#C012-2-1) and creatinine
115 (#C011-2-1), and urea nitrogen (#C013-2-1 or #BC1535) are from Nanjing Jiancheng
116 (China) or Solarbio (China).

117

118 **Mice**

119 Due to the presence of urate oxidase (UOX), mice can further convert uric acid
120 into the more soluble allantoin. Thus, pharmacological inhibition or genetic knockout
121 of UOX are common strategies to establish hyperuricemic mouse models ²³. We
122 previously generated a hyperuricemic model by knocking out UOX gene in C57BL/6J
123 mice, namely, UOX^{-/-} mice ²⁴. They exhibited significant hyperuricemia, insulin
124 resistance, kidney injury and hepatic fat accumulation ^{24,25}. Starting at six weeks of
125 age, mice were administered with corresponding drugs (ferroptosis inhibitor Fer-1,
126 RAGE inhibitor FPS-ZM1) for 1 month before euthanasia. Fer-1 (1% DMSO in
127 normal saline) was intraperitoneally administered at 2 mg/kg per day. FPS-ZM1 (1%
128 DMSO in normal saline) was also delivered via intraperitoneal injection at 1.5 mg/kg
129 per day. At the end of the treatment period, mice were anaesthetized with isoflurane,
130 and then sacrificed by cervical dislocation. All mice were housed in the Laboratory
131 Animal Center of Xiamen University, having free access to food and water. All animal
132 experiments were revised and approved by the Animal Ethics Committee of Xiamen
133 University (approval number: XMULAC20200122).

134

135 **Human Renal Biopsy Specimens**

136 The specimens of hyperuricemia-associated nephropathy were derived from
137 renal biopsy. Control samples were derived from healthy adjacent non-cancerous
138 tissues of individuals undergoing tumor nephrectomies without diabetes or chronic
139 kidney disease. Each group includes two samples. The acquisition and utilization of
140 tissue specimens were reviewed and approved by the Medical Ethics Committee of

141 Xiang'an Hospital, Xiamen University (approval number: XAHLL2023014).

142

143 **Preparation of MSU crystals**

144 Uric acid (750 mg) was dissolved in a 0.5 M sodium hydroxide solution while
145 undergoing continuous stirring to achieve a 15 mg/mL urate solution. When left
146 undisturbed at 4°C overnight, visible precipitates formed. The solution was then
147 allowed to continue incubating at 4°C, enabling a gradual crystallization of MSU
148 crystals, characterized by needle-like morphology under microscope. These crystals
149 were collected through a second centrifugation step, followed by a thorough drying
150 and subsequent weighing. To ensure sterility, the MSU crystals underwent autoclaving
151 before being dissolved in PBS to yield a stock solution of 20 mg/mL.

152

153 **Cell culture**

154 The human kidney 2 (HK2) cell line, derived from human normal kidney, is
155 obtained from Center for Excellence in Molecular and Cellular Sciences, Chinese
156 Academy of Sciences (China), routinely cultured with DMEM/F-12 (#L310KJ,
157 BasalMedia, China) containing 10% fetal bovine serum in a 37°C incubator with 5%
158 CO₂.

159

160 **Cell Counting Kit-8 (CCK8) Assay**

161 CCK8 assay was used to assess cell viability as per manufacturer's instructions.
162 Briefly, 5000 cells per well were seeded into 96-well plates, treated with
163 corresponding compounds, and then incubated for indicated time. The old medium
164 was replaced with complete medium containing 10% CCK8 reagent and further
165 incubated for 1.5h before measuring the absorbance at 450 nm using a microplate
166 reader (#Multiskan Sky, Thermo, USA). Cell viability was calculated as a percentage
167 relative to untreated controls.

168

169 **Lactate dehydrogenase (LDH) release assay**

170 Cells were seeded in 6 cm dishes, treated with appropriate reagents or a control
171 vehicle. A blank control group with cell-free complete medium was set. Each dish
172 contained 3 ml of culture medium. After 24 hours, the culture medium from each dish
173 was centrifuged to obtain 100 μ l of the supernatant. Subsequently, the cells underwent
174 two washes with PBS, followed by the addition of 3 ml of 0.2% Triton X-100 to fully
175 lyse the cells, after which 100 μ l of the lysate supernatant was collected. The LDH
176 content in both the cell supernatant and the cell lysate was determined using a LDH
177 assay kit (#C0016, Beyotime, China). The percentage of LDH release was calculated
178 using the formula: [LDH in the supernatant / (LDH in the supernatant + LDH in the
179 cell lysate)] * 100%.

180

181 **Biochemical Analysis**

182 The serum levels of uric acid (UA), creatinine (CREA), and blood urea nitrogen
183 (BUN) were determined in accordance with the respective manufacturer's protocols.
184 Briefly, serum samples were allowed to react with the specific reaction mixtures
185 tailored to each biochemical index for the indicated duration. The optical density at
186 the specific wavelength was recorded using a microplate reader.

187

188 **Histological Analysis and tubular damage evaluation**

189 Fresh mouse kidney specimens were fixed by perfusion and immersion with 4%
190 paraformaldehyde solution. Subsequently, the tissues were embedded in paraffin and
191 sectioned to a thickness of 5 μ m. These sections underwent the standard
192 deparaffinization and rehydration procedures and then were subject to staining with
193 hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Masson's trichrome
194 according to established protocols. Following staining, the sections were dehydrated,
195 cleared, and mounted with a resinous mounting medium. Tubular damage in sections
196 stained with H&E was assessed based on the extent of the damaged area, using the

197 following scale: 0 = normal, 1 = 1-25%, 2 = 26-50%, 3 = 51-75%, and 4 = 76-100%.

198

199 **Immunohistochemistry**

200 Paraffin-embedded tissue sections were deparaffinized, rehydrated, and then
201 subjected to heat-mediated antigen retrieval in citrate buffer (pH 6.0). To quench
202 endogenous peroxidase activity the sections were treated with a 3% hydrogen
203 peroxide solution. Subsequently, the sections were blocked using 5% normal goat
204 serum and then incubated with rabbit anti-Iba1 (1:200), GPX4 (1:100) or RAGE
205 (1:100) antibodies overnight at 4°C. After washing, the sections were exposed to
206 HRP-conjugated secondary antibody for 1 hour at room temperature. Immunostaining
207 was developed using the DAB Peroxidase Substrate Kit (#DAB-0031, MXB
208 biotechnology, China), and the sections were counterstained with hematoxylin.
209 Images were captured using a light microscope.

210

211 **Immunofluorescence**

212 Paraffin-embedded tissue sections were deparaffinized, rehydrated, and then
213 subjected to heat-mediated antigen retrieval in citrate buffer (pH 6.0). After blocking
214 with 5% normal goat serum, the sections were incubated with rabbit anti-GPX4
215 (1:100) antibody overnight at 4°C. After washing, the sections were incubated with
216 Alexa Fluor-conjugated secondary antibody for 1 hour at room temperature. Nuclei
217 were counterstained with DAPI, and fluorescent images were acquired using a
218 fluorescence microscope (#DM2700 P, Leica, Germany).

219

220 **Iron deposition evaluation with ferrous iron colorimetric assay and**
221 **DAB-enhanced Prussian blue staining**

222 For ferrous iron measurement, fresh kidney tissues (~30 mg) were homogenized
223 in 300 µL of a specified extraction solution, followed by centrifugation to yield a clear
224 supernatant. An aliquot of 200 µL from each sample or and iron standard was

225 incubated with 150 μ L of Chromogenic Solution at 37°C for 10 min in 1.5 mL
226 microcentrifuge tubes. After incubation, 200 μ L of the supernatant was transferred
227 into the corresponding wells of a 96-well microplate. The OD values were measured
228 at 593 nm using a microplate reader. The ferrous iron concentration in the samples
229 was calculated by comparing their OD values against that of the iron standard.

230 For tissue iron visualization, DAB-enhanced Prussian blue staining was
231 conducted. Briefly, kidney sections were incubated with Prussian blue staining
232 solution for 20 min at 37°C, followed by exposure to a DAB substrate solution for 10
233 min at 37°C. After counterstaining with hematoxylin, the sections were dehydrated,
234 cleared and mounted. Images were acquired using a light microscope.

235

236 **Transmission Electron Microscopy (TEM)**

237 To prepare samples for TEM, we harvested the upper pole renal cortex of mice
238 and fixed them in 2.5% neutral glutaraldehyde and 1% osmium acid at 4°C overnight.
239 Subsequently, the tissues were dehydrated, embedded, and cut into 50 nm ultrathin
240 sections, which were then collected on copper grids. For enhanced contrast, double
241 staining was performed using uranyl acetate and lead nitrate. Finally, tubular
242 mitochondria were visualized and recorded using a Hitachi HT-7800 TEM (Japan).

243

244 **Quantitative PCR (qPCR)**

245 Total RNA was extracted from kidney cortices or cells using RNA extract
246 solution (#G3010, Servicebio, China) following the manufacturer's instructions.
247 Subsequently, 2 μ g of RNA were subject to reverse transcription using an Evo
248 M-MLV Mix Kit (#AG11728, Accurate Biotechnology, China). qPCR was conducted
249 on a Real-Time System (#CFX96, Bio-Rad, USA) using SYBR Green mix
250 (#RK21219, Abclonal, China). ACTB or GAPDH was used as the internal control,
251 and relative mRNA levels were calculated using the $2^{-\Delta\Delta Ct}$ method. The primer
252 sequences are listed in Table S1.

253

254 **Detection of Lipid Peroxidation**

255 For cultured live cells, lipid peroxidation was evaluated using the fluorescent
256 probe C11 BODIPY 581/591 (#RM02821, Abclonal, China). In brief, cells seeded on
257 coverslips in 12-well plates were allowed to adhere overnight. They were then treated
258 with MSU crystals for 48 h and subsequently incubated with 5 μ M C11 BODIPY
259 581/591 for another 1 hour at 37°C. Following a PBS wash, the coverslips were
260 inverted onto glass slides and imaged using a fluorescence microscope (#DM2700 P,
261 Leica). Both red (reduced) and green (oxidized) fluorescence images were captured.

262 For kidney sections, 4-HNE was selected as the marker of lipid peroxidation by
263 immunofluorescence.

264 For fresh kidney samples, MDA levels were used as an indicator of lipid
265 peroxidation. Briefly, kidney tissues underwent homogenization followed by
266 centrifugation to extract the supernatant. An MDA assay kit (#A003-1,
267 Nanjingjiancheng, China) was used according to the manufacturer's guidelines. To
268 ensure consistent comparative analysis, the obtained MDA content was normalized
269 against the weight of the kidney tissue.

270

271 **Intracellular Ferrous Iron Detection Using FerroOrange**

272 Intracellular ferrous iron levels were determined using FerroOrange (#F374,
273 Dojindo, Japan). Briefly, cells were seeded in a 6-well plate and allowed to adhere
274 overnight. After drug intervention, cells were washed three times with serum-free
275 culture medium, followed by the addition of 1 μ M FerroOrange. Following a 30-min
276 incubation at 37°C, the cells were observed and photographed under a fluorescence
277 microscope. The red fluorescence represents the relative ferrous iron content.

278

279 **Western blot (WB) analysis**

280 WB analysis was performed as previously described ²⁶. Briefly, cells or tissues

281 were lysed in RIPA buffer containing protease and phosphatase inhibitors. Equal
282 amounts of protein lysates were separated by SDS-PAGE and subsequently
283 transferred to PVDF membranes. These membranes were blocked with 5% non-fat
284 milk at room temperature for 30 min, incubated with primary antibodies overnight at
285 4°C, and then with HRP-conjugated secondary antibodies at room temperature for 1.5
286 h. Protein bands were visualized using ECL substrate in a chemiluminescence
287 imaging system (#ChemiScope 6100, CLiNX, China) and band intensities were
288 quantitated by densitometry using ImageJ software (NIH, USA).

289

290 **Enzyme-Linked Immunosorbent Assay (ELISA)**

291 The levels of HMGB1 protein in cell supernatants and serum were measured
292 according to the manufacturer's instructions (#E-EL-H1554, #E-EL-M0676,
293 Elabscience, China). Briefly, a complex of anti-HMGB1 coat antibody, HMGB1
294 present in supernatants or serum, biotinylated anti-HMGB1 detection antibody, and
295 HRP-conjugated streptavidin was formed, followed by reaction with TMB substrate,
296 which was terminated by the addition of stop solution and absorbance was measured
297 at 450 nm. HMGB1 concentration was calculated from a standard curve.

298

299 **Statistical analysis**

300 Statistical analyses were performed using GraphPad Prism 9 software.
301 Differences between two groups were analyzed by Student's t-test. One-way ANOVA
302 followed by Tukey's multiple comparison test was used for multiple comparisons. The
303 data were present as mean \pm standard error of mean (S.E.M). $P < 0.05$ was considered
304 statistically significant.

305

306 **Results**

307

308 **1. Occurrence of ferroptosis in the kidney of UOX^{-/-} mice**

309 By the age of eight weeks, UOX^{-/-} mice displayed notably elevated serum levels
310 of UA, CREA, and BUN compared to their wild-type (WT) counterparts (Fig. 1A),
311 indicating renal impairment in the HN model. PAS staining demonstrated extensive
312 tubular casts and necrosis in the kidneys of UOX^{-/-} mice, further corroborating renal
313 injury (Fig. 1C). WB analysis of renal cortex lysates showed marked upregulation of
314 α -SMA, a pivotal mesenchymal marker, in UOX^{-/-} mice (Fig. 1B). These findings
315 imply that increased levels of serum UA induced renal damage, ultimately leading to
316 kidney fibrosis in UOX^{-/-} mice, which was confirmed by MASSON staining (Fig. 1C).
317 Furthermore, significant downregulation of the key anti-ferroptosis markers, GPX4
318 and xCT, was observed in the kidneys of UOX^{-/-} mice (Fig. 1B), alongside with an
319 increased iron deposition indicated by DAB-enhanced Prussian blue staining (Fig.
320 1C). Immunohistochemistry (IHC) showed that GPX4 was predominantly expressed
321 in renal tubules instead of glomeruli, and its expression was diminished in UOX^{-/-}
322 mouse kidneys (Fig. 1C). Collectively, these results implied the occurrence of
323 ferroptosis in HN.

324

325 **2. Ferroptosis inhibitor Fer-1 ameliorates renal injury and ferroptosis in UOX^{-/-}
326 mice**

327 Mice received either vehicle or Fer-1 treatment for one month. The results
328 indicated that in UOX^{-/-} mice, Fer-1 substantially reduced elevated serum BUN and
329 CREA levels without altering serum UA levels (Fig. 2A-C). qPCR analysis revealed
330 that Fer-1 significantly decreased mRNA levels of renal injury markers KIM1 and
331 LCN2 in UOX^{-/-} mouse kidney (Fig. 2D-E). H&E staining revealed remarkable
332 tubular dilation, necrosis and immune cell infiltration in UOX^{-/-} mouse kidney, all of
333 which showed marked improvement upon Fer-1 treatment (Fig. 2F-G). The indicators
334 of lipid peroxidation (4-HNE and MDA) were significantly upregulated in the kidneys
335 of UOX-deficient mice, whereas Fer-1 treatment effectively inhibited their elevation
336 (Fig. 2H-I). Furthermore, we scrutinized the expression of ferroptosis-related markers

337 and noticed that Fer-1 administration restored the diminished protein levels of key
338 ferroptosis markers TfR1, xCT, and GPX4 in the kidneys of UOX^{-/-} mice (Fig. 2J-K).
339 The restorative effect of Fer-1 on GPX4 expression was corroborated by
340 immunofluorescence (Fig. 2M). Furthermore, we observed iron deposition by ferrous
341 iron colorimetric assay and DAB-enhanced Prussian blue staining as well as
342 mitochondrial shrinking with disappearance of mitochondrial cristae by TEM in renal
343 tubular epithelial cells of UOX^{-/-} mice, which were effectively reversed by Fer-1
344 treatment (Fig. 2L, N-O). Additionally, we determined the mRNA levels of regulatory
345 genes involved in ferroptosis (DMT1, IRP1, IRP2, FPN1, FTL1, FTH1, etc.) to
346 further elucidate the role of ferroptosis in HN (Fig. 2P).

347 Collectively, renal injury in hyperuricemic UOX^{-/-} mice was mediated by
348 ferroptosis, and the amelioration of renal injury in UOX^{-/-} mice was achieved through
349 the inhibition of ferroptosis.

350

351 **3. Ferroptosis inhibitor Fer-1 alleviates renal inflammation in UOX^{-/-} mice**

352 Considering the immunogenic nature of ferroptosis, we performed IHC staining
353 for Iba1, a marker of peripheral macrophages, to assess macrophage infiltration in the
354 kidney. Extensive macrophage infiltration was observed in the tubulointerstitium of
355 the UOX^{-/-} mouse kidney, which was significantly reduced by Fer-1 treatment (Fig.
356 3A). Furthermore, qPCR of the renal cortex showed increased mRNA levels of
357 inflammation-related markers (IL1 β , IL6, TNF- α , COX2, MCP-1) in UOX^{-/-} mice, all
358 of which were notably suppressed by Fer-1 to levels comparable to those of WT mice
359 (Fig. 3B). We further examined expression levels of the inflammation-related proteins
360 COX2, TNF- α , p-P65, HMGB1, and MAPK family members (ERK, P38 MAPK,
361 JNK), which possess vital functions in renal injury, by WB analysis. Compared to WT
362 mice, their expression levels were significantly increased in the UOX^{-/-} mouse kidney,
363 whereas Fer-1 markedly counteracted these changes (Fig. 3C-F). Notably, COX2 has
364 been identified as an important ferroptosis marker in recent years ²⁷, and HMGB1

365 plays a key role in ferroptosis-induced inflammation ²⁸. Since HMGB1 is an
366 important DAMP released by ferroptotic cells, we further measured serum HMGB1
367 levels by ELISA. The results indicated that serum HMGB1 levels followed a
368 comparable but notably more pronounced expression pattern compared with renal
369 HMGB1 protein levels. Serum HMGB1 significantly surged in UOX^{-/-} mice, which
370 was markedly inhibited by Fer-1 treatment (Fig. 3G). Taken together, ferroptosis
371 mediated the inflammatory response in the UOX^{-/-} mouse kidney.

372

373 **4. Ferroptosis inhibitor Fer-1 mitigates renal autophagy and fibrosis in UOX^{-/-} 374 mice**

375 Autophagy has been found to induce inflammatory injury and fibrosis in HN ²⁹,
376 and it's also worth noting that ferroptosis is a process that depends on autophagy ³⁰. In
377 the UOX^{-/-} mouse kidney, we observed an increase of LC3B \square/\square ratio and a
378 concurrent decrease of P62, the two key markers of autophagy, which indicate
379 sustained autophagic activation. Notably, inhibiting ferroptosis with Fer-1
380 significantly attenuated autophagy (Fig. 4A). In terms of renal fibrosis, the pivotal
381 epithelial marker E-cadherin was downregulated while α -SMA was upregulated in
382 UOX^{-/-} mice, highlighting remarkable renal fibrosis. Fer-1 markedly curtailed renal
383 fibrosis in UOX^{-/-} mouse (Fig. 4A-B). Masson staining confirmed the significant
384 tubulointerstitial fibrosis in UOX^{-/-} mouse kidney, which was markedly inhibited by
385 Fer-1 (Fig. 4C-D).

386 Taken together, ferroptosis inhibition significantly halts renal autophagy and
387 subsequent fibrosis in UOX^{-/-} mice.

388

389 **5. MSU crystals induce ferroptosis in HK2 cells**

390 Through WB analysis, we showed that MSU crystals led to a significant decrease
391 in the protein levels of GPX4 and xCT in HK2 cells. Meanwhile, fibrogenesis was
392 boosted as evidenced by the upregulation of α -SMA and the downregulation of

393 E-cadherin (Fig. 5A). Additionally, MSU crystal treatment significantly enhanced
394 lipid peroxidation (green fluorescence) in HK2 cells by using the fluorescent probe
395 C11 BODIPY 581/591, while Fer-1 inhibited this change (Fig. 5B). For MAPK
396 signaling, our findings revealed that inhibiting ferroptosis terminated the activation of
397 p-ERK without discernible effect on the p-P38 MAPK and p-JNK (Fig. 5C).
398 Additionally, we observed that inhibiting ferroptosis mitigated cellular autophagy
399 induced by MSU crystals (Fig. 5C). By using CCK8 and LDH release assays, we
400 demonstrated that Fer-1 partially restored HK2 cell injury (Fig. 5D-E). Next, we
401 measured HMGB1 levels in the supernatants of HK2 cells. The results revealed that
402 MSU crystals significantly induced the release of HMGB1, a process that was
403 effectively halted by the inhibition of ferroptosis with Fer-1 (Fig. 5F). FerroOrange
404 was employed to label intracellular ferrous iron. The findings revealed that MSU
405 crystals induced an accumulation of intracellular ferrous iron, which was mitigated by
406 inhibiting ferroptosis (Fig. 5G). Collectively, ferroptosis partially mediated MSU
407 crystals-induced injury in renal tubular epithelial cells.

408

409 **6. RAGE inhibition alleviates renal injury induced by ferroptosis in UOX^{-/-} mice**

410 qPCR, WB and IHC analysis consistently unveiled that Fer-1 administration
411 curbed RAGE upregulation in UOX^{-/-} mouse kidney (Fig. 6A-C), indicating that
412 RAGE signaling is activated in response to ferroptosis in HN. Therefore, we
413 speculated that RAGE might play an important role in HN. In light of this, a
414 comprehensive exploration was undertaken to ascertain whether RAGE mediates
415 ferroptosis, inflammation, or fibrosis in HN.

416 Mice were treated with either vehicle or a specific RAGE inhibitor FPS-ZM1.
417 The results showed that FPS-ZM1 significantly suppressed the increased serum
418 CREA and BUN levels in UOX^{-/-} mice without altering the elevated serum UA levels
419 (Fig. 6D). In the renal cortex, qPCR revealed a remarkable attenuation of the
420 overexpressed renal injury markers, namely KIM1 and LCN2, following FPS-ZM1

421 administration (Fig. 6E). Furthermore, the inhibitory effect of FPS-ZM1 on RAGE
422 expression was confirmed through qPCR analysis (Fig. 6F). H&E staining revealed
423 that FPS-ZM1 intervention ameliorated tubular injury in UOX^{-/-} mouse kidney (Fig.
424 6G-H). Nevertheless, FPS-ZM1 failed to reinstate the diminished protein levels of
425 core ferroptosis regulatory proteins, GPX4 and xCT (Fig. S1A). What's more, RAGE
426 inhibition did not alleviate renal iron deposition in UOX^{-/-} mice (Fig. S1B). These
427 data imply that inhibiting RAGE does not impede ferroptosis. Collectively, ferroptosis
428 in HN condition activates RAGE, and RAGE inhibition alleviates renal injury induced
429 by ferroptosis.

430

431 **7. RAGE mediates ferroptosis-induced renal inflammation in UOX^{-/-} mice**

432 IHC staining delineated extensive infiltration of macrophage (labeled by Iba1) in
433 UOX^{-/-} mouse kidney, particularly surrounding necrotic tubules. However, FPS-ZM1
434 conspicuously curtailed the extent of macrophage infiltration (Fig. 7A). We further
435 examined the expression profile of inflammation-related proteins. Compared to WT
436 mice, UOX^{-/-} mouse kidney showed remarkably increased protein levels of TNF- α ,
437 COX2, HMGB1, and an increasing tendency for RAGE and oxidative
438 stress-responsive protein HO-1, underscoring a pronounced presence of inflammation
439 and oxidative stress. Intriguingly, UOX^{-/-} mice subject to FPS-ZM1 intervention
440 exhibited marked abrogation of the aforementioned alterations (Fig. 7B-C). qPCR
441 results showed that FPS-ZM1 markedly inhibited the upregulated mRNA levels of
442 inflammation-related genes (MCP-1, TNF- α , IL1 β , IL6). However, FPS-ZM1 did not
443 significantly affect the mRNA levels of COX2 and HMGB1 (Fig. 7D). This suggests
444 that FPS-ZM1 may potentially inhibit COX2 at the post-transcriptional level, while
445 mainly suppressing HMGB1 secretion rather than transcription.

446

447 **8. RAGE inhibition mitigates renal autophagy and fibrosis in UOX^{-/-} mice**

448 In congruence with the forementioned results, the LC3BII/I ratio was

449 significantly increased in UOX^{-/-} mouse kidney, indicating an enhanced autophagic
450 process, which was significantly abrogated by FPS-ZM1 administration (Fig. 8A-B).
451 Similarly, the expression patterns of E-cadherin and α -SMA indicated that FPS-ZM1
452 markedly reversed renal fibrosis in UOX^{-/-} mice (Fig. 8C-D). Notably, p-ERK, a
453 crucial co-factor in RAGE-driven kidney fibrosis ³¹, was significantly inhibited in
454 response to FPS-ZM1 treatment. Masson staining further morphologically conformed
455 that FPS-ZM1 inhibited tubulointerstitial fibrosis in UOX^{-/-} mouse kidney (Fig. 8E).
456 In HK2 cells, RAGE inhibition with FPS-ZM1 suppressed MSU crystals-induced
457 p-ERK, p-P38 MAPK, COX2, autophagy, α -SMA, while its influence on p-JNK
458 remained negligible (Fig. S2A-D).

459

460 **9. Ferroptosis and RAGE upregulation in renal tissues of patients with** 461 **hyperuricemia-related kidney disease**

462 A preliminary exploration of renal pathology in patients with
463 hyperuricemia-related kidney disease was conducted using para-carcinoma tissues
464 from nephrectomy as controls. Their serological profiles are listed in Table S2. We
465 observed iron deposition and overload in the renal tissues of patients afflicted with
466 hyperuricemia-related kidney disease compared to the control group (Fig. 9A). IHC
467 revealed ubiquitous high expression of GPX4 in the renal tubular epithelial cells of
468 control subjects. However, GPX4 expression was significantly reduced in the
469 corresponding renal regions of patients with hyperuricemia-related kidney disease,
470 suggesting the occurrence of ferroptosis (Fig. 9B). Additionally, an upregulation of
471 RAGE was also noted (Fig. 9C). Overall, these findings are consistent with those
472 observed in UOX-/- mice.

473

474 **Discussion**

475 Hyperuricemia is recognized as an independent risk factor for the development
476 of renal failure ³², yet the unequivocal molecular underpinnings of this association

477 remain to be fully determined. Our study contributes to the understanding of these
478 mechanisms, presenting evidence that ferroptosis plays a critical role in mediating
479 renal damage in HN (Fig. 10). Specifically, our data indicate that inhibiting
480 ferroptosis markedly ameliorates kidney injury and inflammation in urate
481 oxidase-deficient ($\text{UOX}^{\text{-/-}}$) mice, alongside reducing lipid peroxidation, iron
482 accumulation, and mitochondrial impairment in renal tubular epithelial cells.
483 Furthermore, our findings highlight the role of RAGE in mediating
484 ferroptosis-induced inflammatory injury within the kidneys of $\text{UOX}^{\text{-/-}}$ mice.
485 Preliminary evidence of ferroptosis and RAGE upregulation in clinical samples of
486 hyperuricemia-associated nephropathy also supports the potential of ferroptosis and
487 its downstream RAGE as novel therapeutic targets for HN.

488 This investigation aligns with recent literature that ferroptosis in renal tubular
489 epithelial cells promotes renal fibrosis in certain kidney injury models^{33,34}. Indeed,
490 ferroptotic cells undergoing persistent lipid peroxidation release DAMPs, thereby
491 continuously activating inflammatory responses, ultimately contributing to organ
492 fibrosis. Autophagy, a cell survival mechanism under stress conditions, presents as a
493 double-edged sword in renal diseases. While it confers a protective effect against
494 acute renal injuries, its sustained activation in chronic renal damage encourages
495 inflammation and fibrosis, thus impeding the recovery of renal function³⁵. Especially
496 in the context of HN, endured autophagy activation is the key factor in inducing renal
497 fibrosis^{36,37}. We found that in $\text{UOX}^{\text{-/-}}$ mice, inhibition of ferroptosis attenuates renal
498 autophagy activation, suggesting an interplay between ferroptosis and autophagy,
499 where ferroptosis inhibition could partially improve renal inflammation and fibrosis
500 by reducing autophagy.

501 In addition to ferroptosis, other forms of cell death have also been observed to
502 play a role in HN, including apoptosis³⁸⁻⁴⁰, necroptosis⁴¹, and pyroptosis⁴²⁻⁴⁴,
503 indicating a complex interplay of cell death pathways in the disease. In a mouse
504 model of renal ischemia-reperfusion injury, Zhao et al. found that ferroptosis,

505 necroptosis, and pyroptosis collectively constitute the main cause of acute kidney
506 injury ⁴⁵. However, they observed that genes related to ferroptosis were mainly
507 expressed in renal tubular epithelial cells, while those related to necroptosis and
508 pyroptosis were mainly expressed in macrophages, suggesting that ferroptosis may be
509 the primary mode of cell damage for renal tubular epithelial cells. In HN, the
510 predominant cell death pathway and the interactions among different cell death
511 pathways require further clarification.

512 Numerous studies have consistently indicated that RAGE activation triggers
513 autophagy ^{20,46-48}. Given the reliance of ferroptosis on autophagy, it seemingly
514 suggests the potential of RAGE to induce ferroptosis. Indeed, RAGE inhibition
515 ameliorates hepatic injury in alcoholic liver disease by mitigating hepatic ferroptosis
516 ²¹. However, our investigation yielded negative results in the kidney. We discovered
517 that RAGE inhibition improved renal outcome without affecting iron deposition or
518 ferroptosis. This might be attributed to the inherently low basal expression levels of
519 RAGE in renal tubular epithelial cells under normal physiological conditions. It is
520 plausible that upregulation of RAGE occurs gradually after prolonged exposure to
521 uric acid. By that point, ferroptosis might have already been initiated through distinct
522 signaling pathways. Certainly, this necessitates a comprehensive temporal analysis of
523 the sequential activation of RAGE and ferroptosis. The pivotal role of RAGE/ERK
524 signaling in facilitating the epithelial-mesenchymal transition in renal tubular
525 epithelial cells has been reported ³¹. Our *in vitro* and *in vivo* results also indicated an
526 explicit suppressive effect of RAGE inhibition on ERK. Wen et al. ²⁸ previously
527 established that the HMGB1/RAGE pathway mediates the inflammatory response
528 triggered by ferroptosis. We observed a significant reduction in elevated HMGB1
529 levels in the supernatant of HK2 cells and the serum of mice when ferroptosis was
530 inhibited, which imply that HMGB1 may mediate the activation of RAGE signaling
531 in ferroptosis in the context of HN. In summary, RAGE mediates the renal
532 inflammatory damage caused by ferroptosis in HN.

533

534 **Conclusions**

535 In conclusion, this study underscores the significant role of ferroptosis in
536 hyperuricemic nephropathy. Ferroptosis mediates renal injury, inflammation and
537 fibrosis by activating RAGE signaling in hyperuricemic nephropathy. Targeting
538 ferroptosis and related RAGE signaling may provide novel therapeutic strategies
539 against hyperuricemic nephropathy.

540

541 **Funding/Acknowledgement**

542 This work was supported by grants from the National Natural Science
543 Foundation of China (82370895, 82260163), the Natural Science Foundation of
544 Fujian Province (2020J01018), the Joint Innovation Project of
545 Industry-University-Research of Fujian Province (2022Y4007), and the Gout
546 Research Foundation of Japan (Japan, 2022).

547

548 **Data Availability statement**

549 The data used to support the findings of this study are available from the
550 corresponding author upon request.

551

552 **Conflict of Interest**

553 The authors declare that there are no conflicts of interest regarding this research.

554

555 **Figure legend**

556 **Figure 1.** Renal tissues from UOX^{-/-} mice exhibit ferroptosis-related changes. (A)
557 Increased serum UA, CREA and BUN detected by biochemical assay in mice. Data
558 are presented as mean \pm S.E.M (n = 6). (B) Renal protein levels of α -SMA, GPX4 and
559 xCT detected by WB analysis in mice. (C) Renal staining in mice included PAS,
560 Masson, IHC against GPX4, and DAB-enhanced Prussian blue staining. WT, wild

561 type; UOX^{-/-}, urate oxidase knockout; IHC, immunohistochemistry; UA, uric acid;
562 CREA, creatinine; BUN, blood urea nitrogen. Scale bars are marked in figures. ***P* <
563 0.01, ****P* < 0.001, *****P* < 0.0001.

564

565 **Figure 2.** Ferroptosis inhibitor Fer-1 ameliorates renal injury and ferroptosis in
566 UOX^{-/-} mice. Serum levels of UA (A), CREA (B), and BUN (C). mRNA levels of
567 renal injury markers KIM1 (D) and LCN2 (E) determined by qPCR. (F) H&E staining
568 of mouse kidney and the corresponding tubular injury score (G). Scale bar = 100 μ m.
569 (H) Immunofluorescence of the lipid peroxidation marker 4-HNE in kidney tissue
570 sections. Scale bar = 100 μ m. (I) Relative content of the lipid peroxidation marker
571 MDA in kidney homogenates. (J) Protein levels of TfR1, xCT and GPX4 in mouse
572 kidney detected by WB analysis and their semi-quantification (K). (M) GPX4 shown
573 by immunofluorescence and cell nucleus indicated by DAPI in mouse kidney. Scale
574 bar = 100 μ m. Iron deposition indicated by ferrous iron colorimetric assay (L) and
575 DAB-enhanced Prussian blue staining (N) in mouse kidney. Scale bar = 100 μ m. (O)
576 Transmission electron microscopy revealed the mitochondrial morphology of mouse
577 renal tubular epithelial cells. Scale bar = 1 μ m. (P) mRNA levels of regulatory genes
578 of ferroptosis detected by qPCR in mouse kidney. Data are presented as mean \pm
579 S.E.M (n = 5 or 7 for A-C, n = 4~8 for D-E, n = 8 for G, n = 5 or 7 for I, n = 4 for J-K,
580 n = 4~8 for P). KO, UOX^{-/-} knockout, Veh, vehicle, Fer-1, Ferrostatin-1. **P* < 0.05,
581 ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001.

582

583 **Figure 3.** Ferroptosis inhibitor Fer-1 alleviates renal inflammation in UOX^{-/-} mice. (A)
584 Macrophage infiltration shown by IHC staining in mouse kidney. Scale bar = 100 μ m.
585 (B) mRNA expression of inflammation-related indicators, including pro-inflammatory
586 factors IL1 β , IL6 and TNF- α , as well as chemokines COX2 and MCP-1 determined
587 by qPCR in mouse kidney. (C) Protein levels of COX2, TNF- α , p-P65, HMGB1
588 determined by WB analysis and their semi-quantification (D). (E) Protein levels of the

589 MAPK family (ERK, P38 MAPK, JNK and their phosphorylated counterparts) and
590 determined by WB analysis and their semi-quantification (F). (G) Serum levels of
591 HMGB1 determined by ELISA. Data are presented as mean \pm S.E.M (n = 4~8 for B,
592 n = 4 for C-F, n = 4 for F, n = 4~8 for G). ns, not significant, $^*P < 0.05$, $^{***}P < 0.001$,
593 $^{****}P < 0.0001$.

594

595 **Figure 4.** Ferroptosis inhibitor Fer-1 mitigates renal autophagy and fibrosis in UOX^{-/-}
596 mice. (A) Protein levels of LC3B, P62, E-cadherin and α -SMA detected by WB in
597 mouse kidney and their semi-quantification (B). (C) Renal fibrosis shown by Masson
598 staining and its semi-quantification (D). Data are presented as mean \pm S.E.M (n = 4).
599 Scale bar = 100 μ m. $^*P < 0.05$, $^{***}P < 0.001$, $^{****}P < 0.0001$.

600

601 **Figure 5.** MSU crystals induce ferroptosis in HK2 cells. (A) Protein levels of GPX4,
602 xCT, α -SMA, E-cadherin detected by WB in HK2 cells. β -actin serves as the internal
603 reference protein. (B) Detection of lipid peroxidation in HK2 cells using
604 C11-BODIPY 581/591 fluorescent probe. HK2 cells were subject to treatment with a
605 vehicle (Control), 200 μ g/mL MSU crystals (MSU), or a combination of 200 μ g/mL
606 MSU crystals and 5 μ M Fer-1 (MSU+Fer-1) for 48 h. The red and green fluorescence
607 represent the reduced and oxidized forms, respectively. The transition from red
608 fluorescence to green fluorescence signifies the presence of lipid peroxidation. Scale
609 bar = 100 μ m. (C) Protein levels of MAPK family (p-P38 MAPK, p-JNK, p-ERK)
610 and LC3B detected by WB in HK2 cells. β -actin serves as the internal reference
611 protein. HK2 cell injury evaluated by CCK8 assay (D) and LDH release assay (E). (F)
612 HMGB1 release detected by ELISA in HK2 cells. (G) Intracellular ferrous iron
613 indicated by FerroOrange. Data are presented as mean \pm S.E.M (n = 3 for A, C and E,
614 n = 6 for D, n = 4 for F). Scale bar = 100 μ m. $^{***}P < 0.001$, $^{****}P < 0.0001$.

615

616 **Figure 6.** Pharmacological inhibition of RAGE ameliorates renal injury in UOX^{-/-}

617 mice. (A-C) RAGE expression detected by qPCR, WB and IHC in mouse kidney. (D)
618 Serum levels of UA, BUN, CREA. (E) mRNA levels of renal injury markers KIM1
619 and LCN2 detected by qPCR in mice kidney. (F) mRNA levels of RAGE detected by
620 qPCR in mice kidney. (G) Tubular injury shown by H&E staining in mice kidney.
621 Data are presented as mean \pm S.E.M (n = 4~8 for A, n = 2 for B, n = 6~16 for D, n =
622 6~8 for E and F, n = 12 for H). Scale bar = 100 μ m. ns, not significant, *P < 0.05, **P
623 < 0.01, ***P < 0.001, ****P < 0.0001.

624

625 **Figure 7.** Pharmacological inhibition of RAGE alleviates inflammation in UOX^{-/-}
626 mouse kidney. (A) Macrophage infiltration shown by IHC in mouse kidney. Scale bar
627 = 50 μ m. (B, C) Protein levels of TNF- α , COX2, RAGE, HMGB1, HO-1 in mouse
628 kidney detected by WB analysis and its semi-quantification. GAPDH serves as the
629 internal reference protein. (D) mRNA levels of MCP-1, TNF- α , IL1 β , IL6, COX2,
630 HMGB1 determined by qPCR. Data are presented as mean \pm S.E.M (n = 3~4 for B, n
631 = 3~5 for C, n = 6~8 for D). FPS, FPS-ZM1. ns, not significant, *P < 0.05, **P <
632 0.01.

633

634 **Figure 8.** Pharmacological inhibition of RAGE mitigates renal autophagy and fibrosis
635 in UOX^{-/-} mice. (A) Protein levels of LC3B in mouse kidney detected by WB analysis
636 and its semi-quantification (B). (C) Protein levels of E-cadherin, α -SMA and p-ERK
637 in mouse kidney detected by WB analysis and its semi-quantification (D). (E) Renal
638 fibrosis shown by Masson staining. Data are presented as mean \pm S.E.M (n = 3~5 for
639 A-B, n = 3~4 for C-D, n = 4 for E). Scale bar = 80 μ m. *P < 0.05, **P < 0.01.

640

641 **Figure 9. Ferroptosis and RAGE upregulation in renal tissues of patients with**
642 **hyperuricemia-related kidney disease.** (A) Human renal iron deposition indicated
643 by DAB-enhanced Prussian blue staining. (B, C) Human renal GPX4 and RAGE
644 expression indicated by IHC. CON-1 and CON-2 represent renal biopsy specimens of

645 healthy samples from volunteer 1 and 2, respectively. HN-1 and HN-2 represent renal
646 biopsy specimens of hyperuricemia-associated kidney diseases from patient 1 and 2,
647 respectively. Scale bar = 100 μ m.

648

649 **Figure 10.** The schematic shows that ferroptosis mediates the progression of
650 hyperuricemic nephropathy by activating RAGE signaling.

651

652 **Figure S1.** Pharmacological inhibition of RAGE alleviates renal iron deposition. (A)
653 Protein levels of GPX4 and xCT in mouse kidney detected by WB analysis and their
654 semi-quantification. Tubulin and GAPDH were served as internal control, respectively.
655 (B) Iron deposition shown by DAB-enhanced Prussian blue staining. Data are
656 presented as mean \pm S.E.M (n = 3~5). Scale bar = 100 μ m.

657

658 **Figure S2.** HK2 cells treated with FPS-ZM1. (A) The protein levels of p-ERK and
659 p-P38 MAPK assessed by WB analysis and their semi-quantification (B). (C) The
660 protein levels of p-JNK, COX2, LC3B, α -SMA assessed by WB analysis and their
661 semi-quantification (D). Tubulin or β -actin served as internal reference proteins. Data
662 are presented as mean \pm S.E.M (n = 3). ns, not significant, *P < 0.05, **P < 0.01,
663 ***P < 0.001, ****P < 0.0001.

664

665

666 **References**

- 667 1. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. *Lancet*.
668 2021;397:1843-1855. doi: 10.1016/s0140-6736(21)00569-9
- 669 2. Zhang M, Zhu X, Wu J, Huang Z, Zhao Z, Zhang X, et al. Prevalence of
670 Hyperuricemia Among Chinese Adults: Findings From Two Nationally
671 Representative Cross-Sectional Surveys in 2015-16 and 2018-19. *Front
672 Immunol*. 2021;12:791983. doi: 10.3389/fimmu.2021.791983
- 673 3. Joosten LAB, Crisan TO, Bjornstad P, Johnson RJ. Asymptomatic
674 hyperuricaemia: a silent activator of the innate immune system. *Nat Rev
675 Rheumatol*. 2020;16:75-86. doi: 10.1038/s41584-019-0334-3
- 676 4. Jung SW, Kim SM, Kim YG, Lee SH, Moon JY. Uric acid and inflammation

677 in kidney disease. *Am J Physiol Renal Physiol.* 2020;318:F1327-f1340. doi:
678 10.1152/ajprenal.00272.2019

679 5. Sellmayer M, Hernandez Petzsche MR, Ma Q, Kruger N, Liapis H, Brink A, et
680 al. Only Hyperuricemia with Crystalluria, but not Asymptomatic
681 Hyperuricemia, Drives Progression of Chronic Kidney Disease. *J Am Soc*
682 *Nephrol.* 2020. doi: 10.1681/ASN.2020040523

683 6. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated
684 ferroptosis defence is a targetable vulnerability in cancer. *Nature.*
685 2021;593:586-590. doi: 10.1038/s41586-021-03539-7

686 7. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE,
687 et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. *Cell.*
688 2012;149:1060-1072. doi: 10.1016/j.cell.2012.03.042

689 8. Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its
690 pharmacological implication. *Free Radic Biol Med.* 2019;133:144-152. doi:
691 10.1016/j.freeradbiomed.2018.09.014

692 9. Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in
693 neurological diseases. *Cell Death Differ.* 2021;28:2029-2044. doi:
694 10.1038/s41418-021-00814-y

695 10. Li D, Liu B, Fan Y, Liu M, Han B, Meng Y, et al. Nuciferine protects against
696 folic acid-induced acute kidney injury by inhibiting ferroptosis. *Br J*
697 *Pharmacol.* 2021;178:1182-1199. doi: 10.1111/bph.15364

698 11. Hu J, Gu W, Ma N, Fan X, Ci X. Leonurine alleviates ferroptosis in
699 cisplatin-induced acute kidney injury by activating the Nrf2 signalling
700 pathway. *Br J Pharmacol.* 2022;179:3991-4009. doi: 10.1111/bph.15834

701 12. Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, et al. Quercetin alleviates acute
702 kidney injury by inhibiting ferroptosis. *J Adv Res.* 2021;28:231-243. doi:
703 10.1016/j.jare.2020.07.007

704 13. Kim S, Kang SW, Joo J, Han SH, Shin H, Nam BY, et al. Characterization of
705 ferroptosis in kidney tubular cell death under diabetic conditions. *Cell Death*
706 *Dis.* 2021;12:160. doi: 10.1038/s41419-021-03452-x

707 14. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaïdi AA, Lei P. Ferroptosis:
708 mechanisms and links with diseases. *Signal Transduct Target Ther.* 2021;6:49.
709 doi: 10.1038/s41392-020-00428-9

710 15. May O, Yatime L, Merle NS, Delguste F, Howsam M, Daugan MV, et al. The
711 receptor for advanced glycation end products is a sensor for cell-free heme.
712 *FEBS J.* 2020;288:3448-3464. doi: 10.1111/febs.15667

713 16. Yepuri G, Shekhtman A, Marie Schmidt A, Ramasamy R. Heme & RAGE: A
714 new opportunistic relationship? *FEBS J.* 2021;288:3424-3427. doi:
715 10.1111/febs.15723

716 17. Liu J, Zhu S, Zeng L, Li J, Klionsky DJ, Kroemer G, et al. DCN released from
717 ferroptotic cells ignites AGER-dependent immune responses. *Autophagy.*

718 2021;18:2036-2049. doi: 10.1080/15548627.2021.2008692

719 18. Morcos M, Sayed AAR, Bierhaus A, Yard B, Waldherr Rd, Merz W, et al.

720 Activation of Tubular Epithelial Cells in Diabetic Nephropathy. *Diabetes*.

721 2002;51:3532-3544. doi: 10.2337/diabetes.51.12.3532

722 19. Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas

723 V, et al. Advanced glycation end products cause epithelial-myofibroblast

724 transdifferentiation via the receptor for advanced glycation end products

725 (RAGE). *J Clin Invest*. 2001;108:1853-1863. doi: 10.1172/jci11951

726 20. Liu B, Sun T, Li H, Qiu S, Li Y, Zhang D. Proximal tubular RAGE mediated

727 the renal fibrosis in UUO model mice via upregulation of autophagy. *Cell*

728 *Death Dis*. 2022;13. doi: 10.1038/s41419-022-04856-z

729 21. Li Y, Qin M, Zhong W, Liu C, Deng G, Yang M, et al. RAGE promotes

730 dysregulation of iron and lipid metabolism in alcoholic liver disease. *Redox*

731 *Biol*. 2023;59. doi: 10.1016/j.redox.2022.102559

732 22. Yang F, Wang Z, Zhang JH, Tang J, Liu X, Tan L, et al. Receptor for

733 Advanced Glycation End-Product Antagonist Reduces Blood-Brain Barrier

734 Damage After Intracerebral Hemorrhage. *Stroke*. 2015;46:1328-1336. doi:

735 10.1161/strokeaha.114.008336

736 23. Lu J, Dalbeth N, Yin H, Li C, Merriman TR, Wei WH. Mouse models for

737 human hyperuricaemia: a critical review. *Nat Rev Rheumatol*.

738 2019;15:413-426. doi: 10.1038/s41584-019-0222-x

739 24. Xie D, Zhao H, Lu J, He F, Liu W, Yu W, et al. High uric acid induces liver fat

740 accumulation via ROS/JNK/AP-1 signaling. *Am J Physiol Endocrinol Metab*.

741 2021;320:E1032-E1043. doi: 10.1152/ajpendo.00518.2020

742 25. Lu J, Hou X, Yuan X, Cui L, Liu Z, Li X, et al. Knockout of the urate oxidase

743 gene provides a stable mouse model of hyperuricemia associated with

744 metabolic disorders. *Kidney Int*. 2018;93:69-80. doi:

745 10.1016/j.kint.2017.04.031

746 26. Wang Q, Xi Y, Chen B, Zhao H, Yu W, Xie D, et al. Receptor of Advanced

747 Glycation End Products Deficiency Attenuates Cisplatin-Induced Acute

748 Nephrotoxicity by Inhibiting Apoptosis, Inflammation and Restoring Fatty

749 Acid Oxidation. *Front Pharmacol*. 2022;13. doi: 10.3389/fphar.2022.907133

750 27. Yang Wan S, SriRamaratnam R, Welsch Matthew E, Shimada K, Skouta R,

751 Viswanathan Vasanthi S, et al. Regulation of Ferroptotic Cancer Cell Death by

752 GPX4. *Cell*. 2014;156:317-331. doi: 10.1016/j.cell.2013.12.010

753 28. Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1

754 in ferroptosis. *Biochem Biophys Res Commun*. 2019;510:278-283. doi:

755 10.1016/j.bbrc.2019.01.090

756 29. Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney

757 damage by promoting autophagy and NLRP3-mediated inflammation in rats

758 with urate oxidase deficiency. *Dis Model Mech*. 2021. doi:

759 10.1242/dmm.048041

760 30. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, 3rd, et al. Autophagy
761 promotes ferroptosis by degradation of ferritin. *Autophagy*.
762 2016;12:1425-1428. doi: 10.1080/15548627.2016.1187366

763 31. Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME, Lan HY.
764 Advanced Glycation End Products Induce Tubular Epithelial-Myofibroblast
765 Transition through the RAGE-ERK1/2 MAP Kinase Signaling Pathway. *Am J*
766 *Pathol.* 2004;164:1389-1397. doi: 10.1016/s0002-9440(10)63225-7

767 32. Srivastava A, Kaze AD, McMullan CJ, Isakova T, Waikar SS. Uric Acid and
768 the Risks of Kidney Failure and Death in Individuals With CKD. *Am J Kidney*
769 *Dis.* 2018;71:362-370. doi: 10.1053/j.ajkd.2017.08.017

770 33. Wang J, Wang Y, Liu Y, Cai X, Huang X, Fu W, et al. Ferroptosis, a new target
771 for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD
772 rat model. *Cell Death Discov.* 2022;8:127. doi: 10.1038/s41420-022-00931-8

773 34. Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, et al. Liproxstatin-1 attenuates
774 unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular
775 epithelial cells ferroptosis. *Cell Death Dis.* 2021;12:843. doi:
776 10.1038/s41419-021-04137-1

777 35. Tang C, Livingston MJ, Liu Z, Dong Z. Autophagy in kidney homeostasis and
778 disease. *Nat Rev Nephrol.* 2020;16:489-508. doi: 10.1038/s41581-020-0309-2

779 36. Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A, et al. Delayed treatment with an
780 autophagy inhibitor 3-MA alleviates the progression of hyperuricemic
781 nephropathy. *Cell Death Dis.* 2020;11:467. doi: 10.1038/s41419-020-2673-z

782 37. Bao J, Shi Y, Tao M, Liu N, Zhuang S, Yuan W. Pharmacological inhibition of
783 autophagy by 3-MA attenuates hyperuricemic nephropathy. *Clin Sci (Lond).*
784 2018;132:2299-2322. doi: 10.1042/CS20180563

785 38. Yu W, Xiong Y, Liu M, Zeng D, Zhao H, Liu J, Lu W. Structural analysis and
786 attenuates hyperuricemic nephropathy of dextran from the Imperata cylindrica
787 Beauv. var. major (Nees) C. E. Hubb. *Carbohydr Polym.* 2023;317:121064.
788 doi: 10.1016/j.carbpol.2023.121064

789 39. Tao M, Shi Y, Tang L, Wang Y, Fang L, Jiang W, et al. Blockade of ERK1/2 by
790 U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with
791 hyperuricemic nephropathy. *Am J Physiol Renal Physiol.* 2019;316:F660-F673.
792 doi: 10.1152/ajprenal.00480.2018

793 40. Tang GY, Li S, Xu Y, Zhang C, Xu XY, Xu L, et al. Renal herb formula
794 protects against hyperuricemic nephropathy by inhibiting apoptosis and
795 inflammation. *Phytomedicine.* 2023;116:154812. doi:
796 10.1016/j.phymed.2023.154812

797 41. Wang K, Hu L, Chen JK. RIP3-deficiency attenuates potassium
798 oxonate-induced hyperuricemia and kidney injury. *Biomed Pharmacother.*
799 2018;101:617-626. doi: 10.1016/j.bioph.2018.02.010

800 42. Shi X, Zhuang L, Zhai Z, He Y, Sun E. Polydatin protects against gouty
801 nephropathy by inhibiting renal tubular cell pyroptosis. *Int J Rheum Dis.*

802 2023;26:116-123. doi: 10.1111/1756-185x.14463

803 43. Ma L, Shen R, Jiao J, Lin X, Zhai B, Xu A, et al. Gasdermin D promotes
804 hyperuricemia-induced renal tubular injury through RIG-I/caspase-1 pathway.
805 *iScience*. 2023;26:108463. doi: 10.1016/j.isci.2023.108463

806 44. Hu Y, Shi Y, Chen H, Tao M, Zhou X, Li J, et al. Blockade of Autophagy
807 Prevents the Progression of Hyperuricemic Nephropathy Through Inhibiting
808 NLRP3 Inflammasome-Mediated Pyroptosis. *Front Immunol*. 2022;13. doi:
809 10.3389/fimmu.2022.858494

810 45. Zhao Z, Wu J, Xu H, Zhou C, Han B, Zhu H, et al. XJB-5-131 inhibited
811 ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. *Cell
812 Death Dis*. 2020;11:629. doi: 10.1038/s41419-020-02871-6

813 46. Chen SY, Hsu YH, Wang SY, Chen YY, Hong CJ, Yen GC. Lucidone inhibits
814 autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in
815 pancreatic cancer cells. *Phytother Res*. 2022;36:1664-1677. doi:
816 10.1002/ptr.7385

817 47. Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, et al. Knockout RAGE
818 alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal
819 transition (EndMT) mediated by autophagy. *Cell Death Dis*. 2021;12:470. doi:
820 10.1038/s41419-021-03750-4

821 48. Kang R, Tang D, Lotze MT, Zeh HJ, 3rd. RAGE regulates autophagy and
822 apoptosis following oxidative injury. *Autophagy*. 2011;7:442-444. doi:
823 10.4161/auto.7.4.14681

824

Figure 1

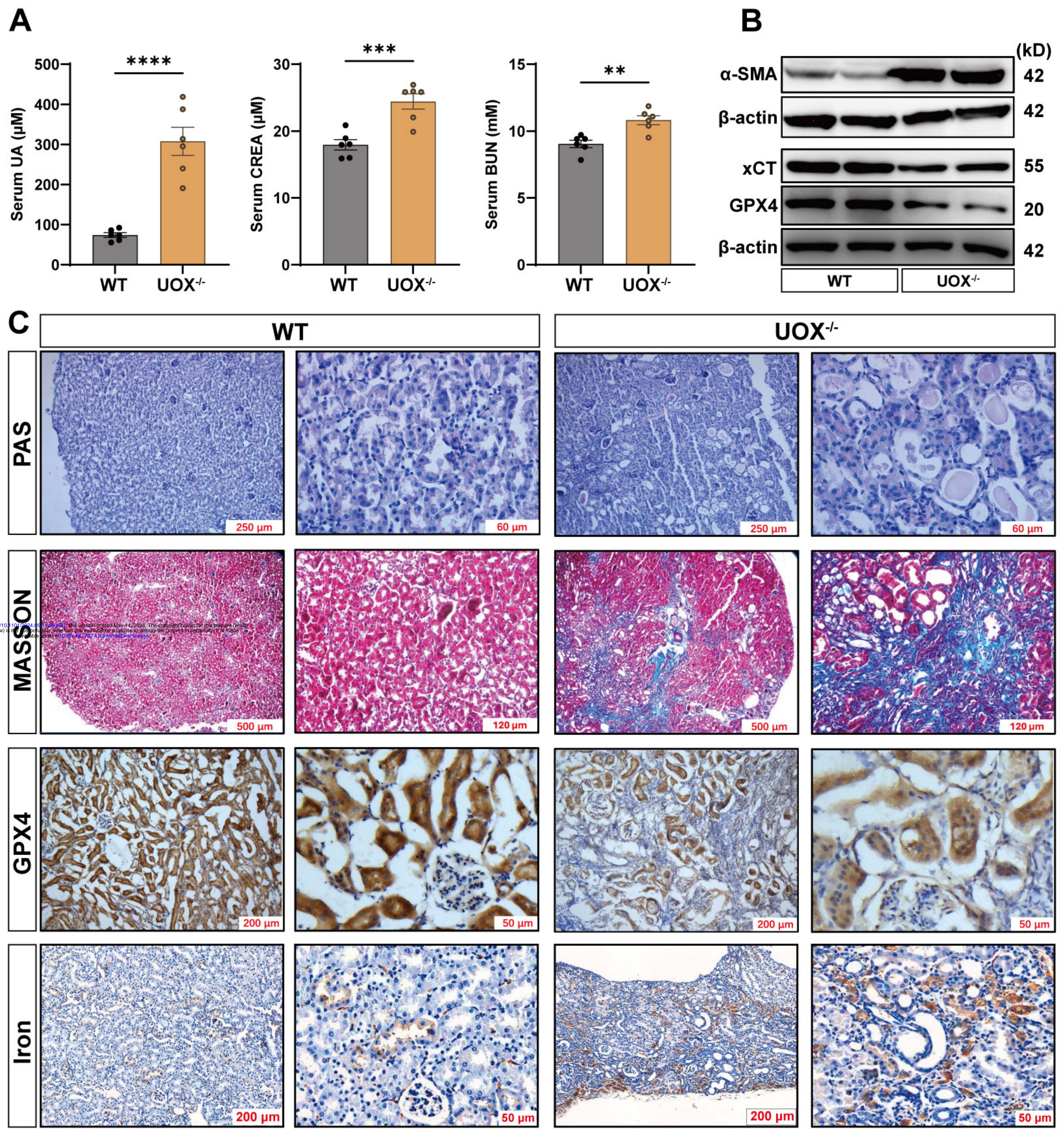


Figure 2

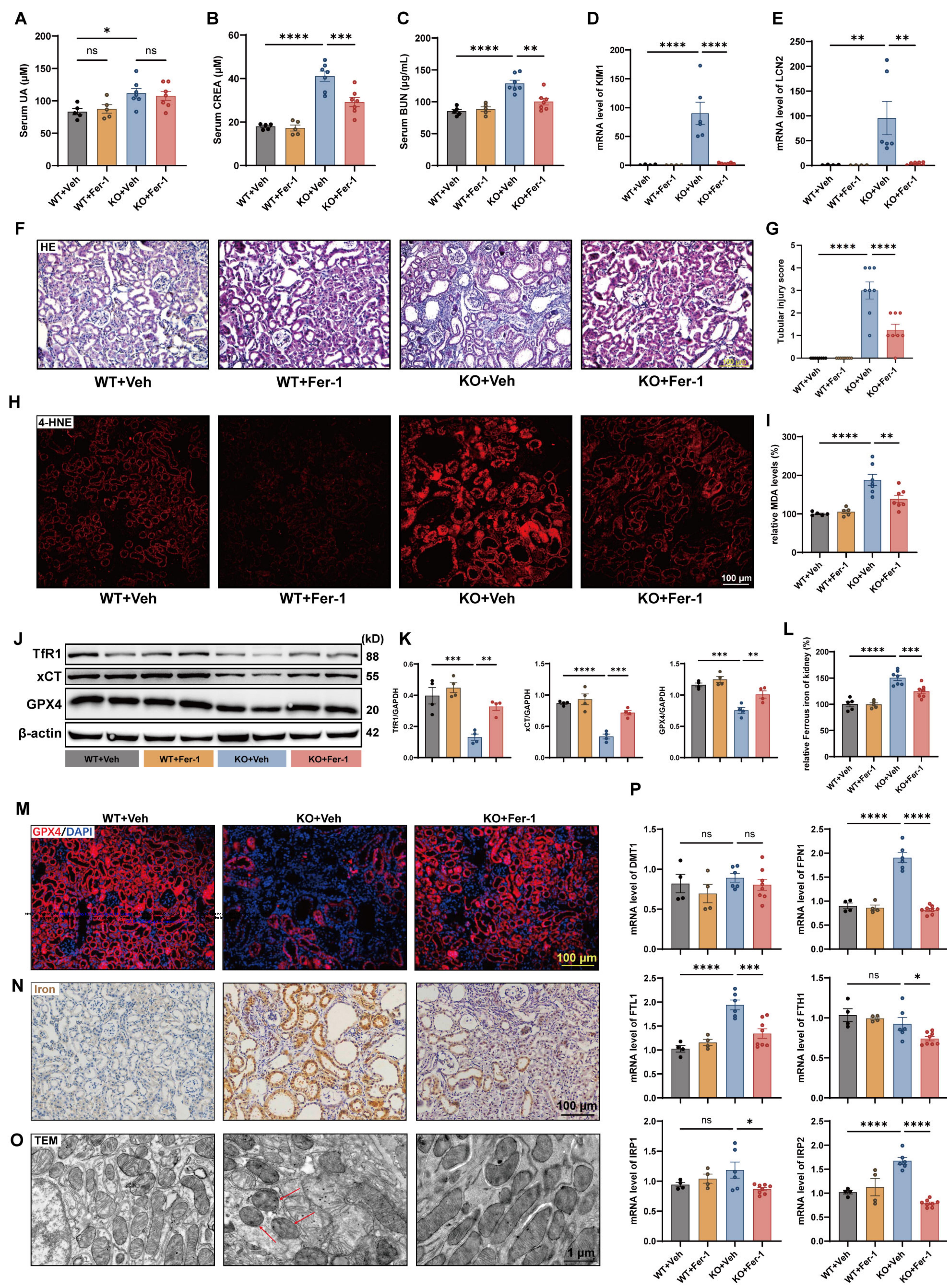


Figure 3

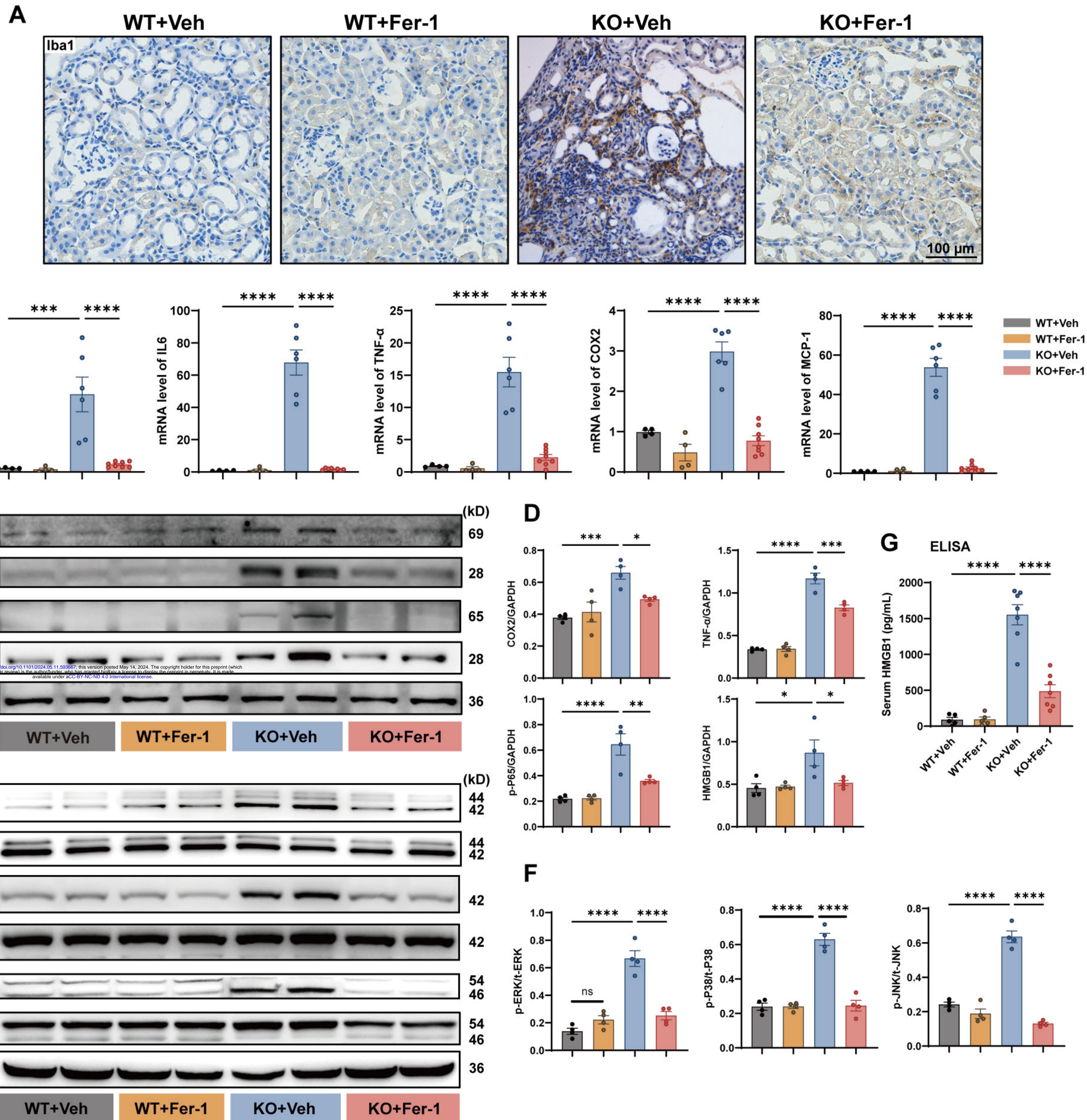
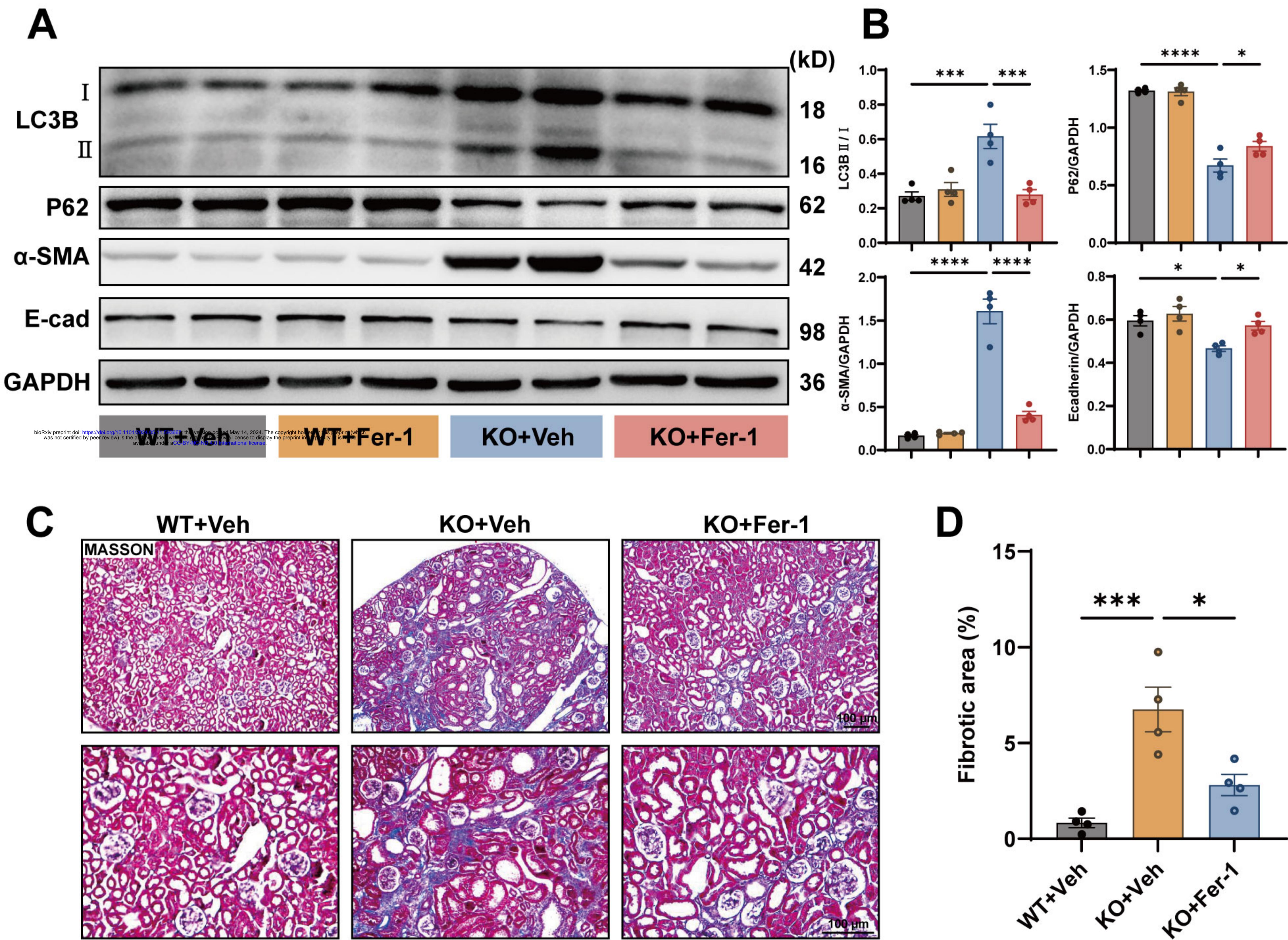
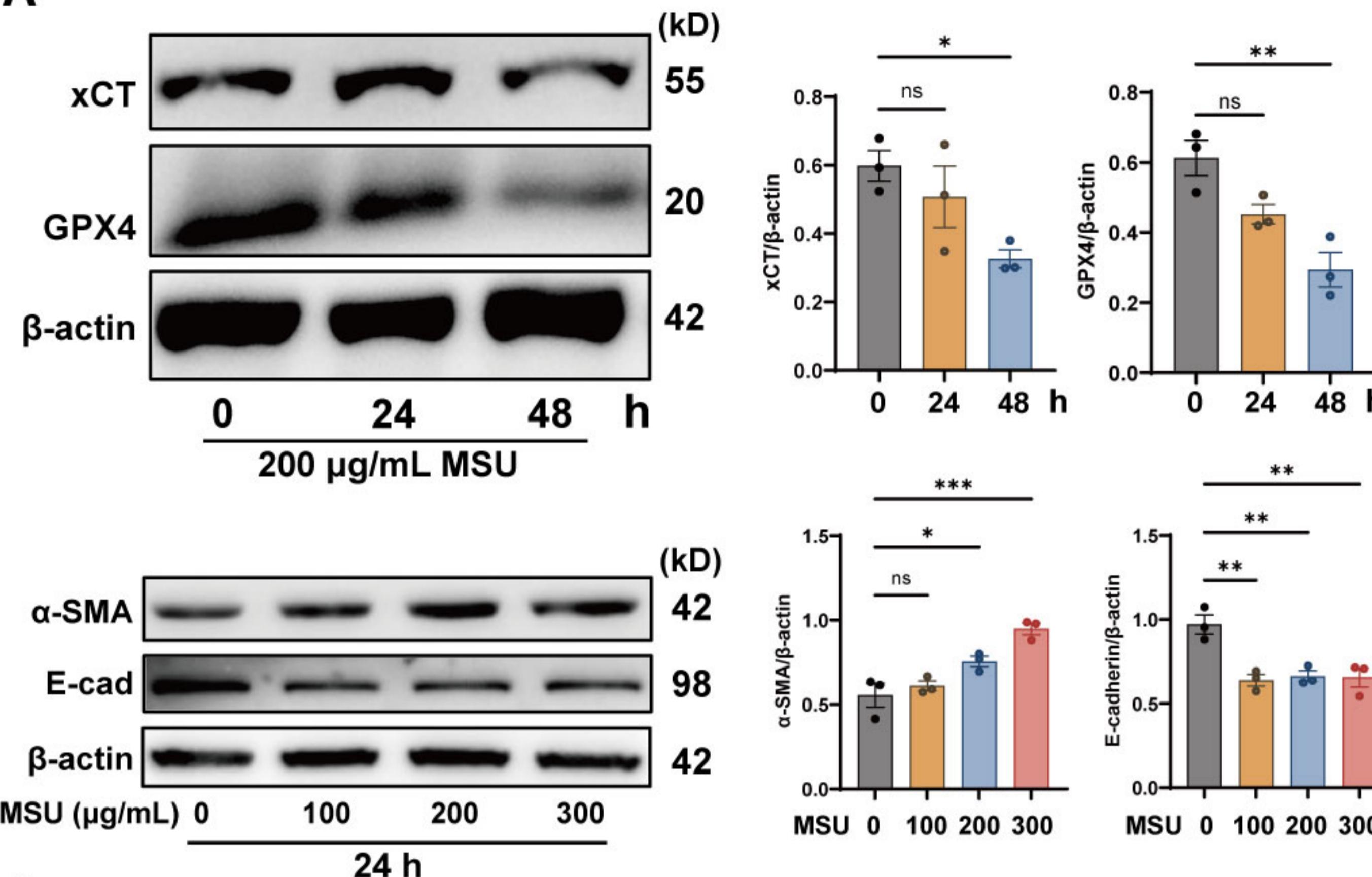




Figure 4

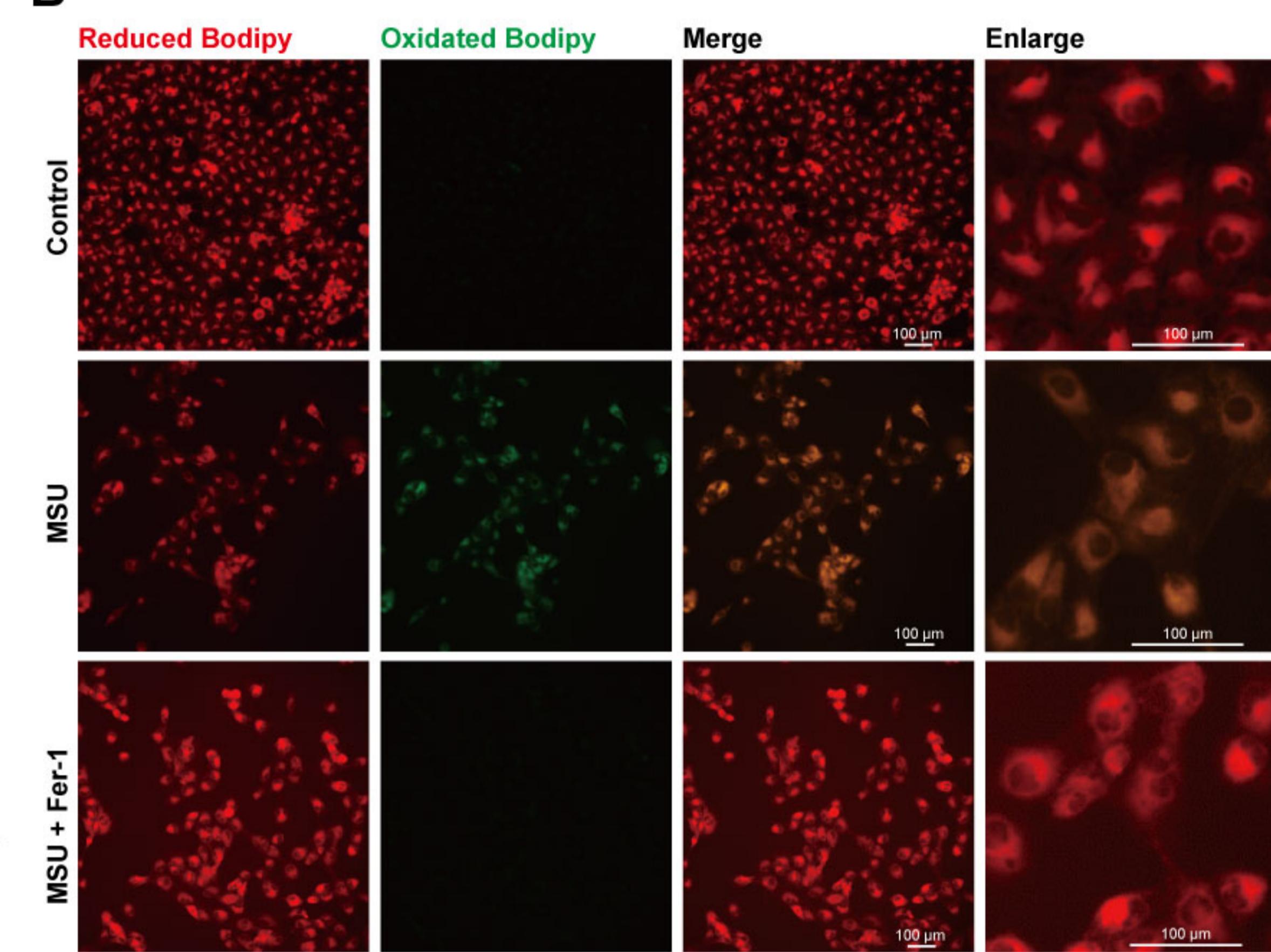
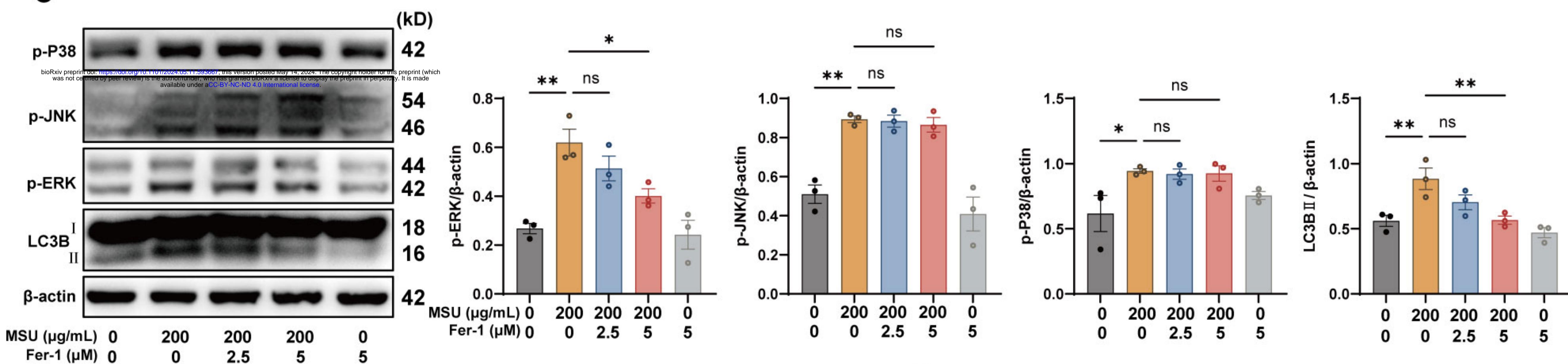
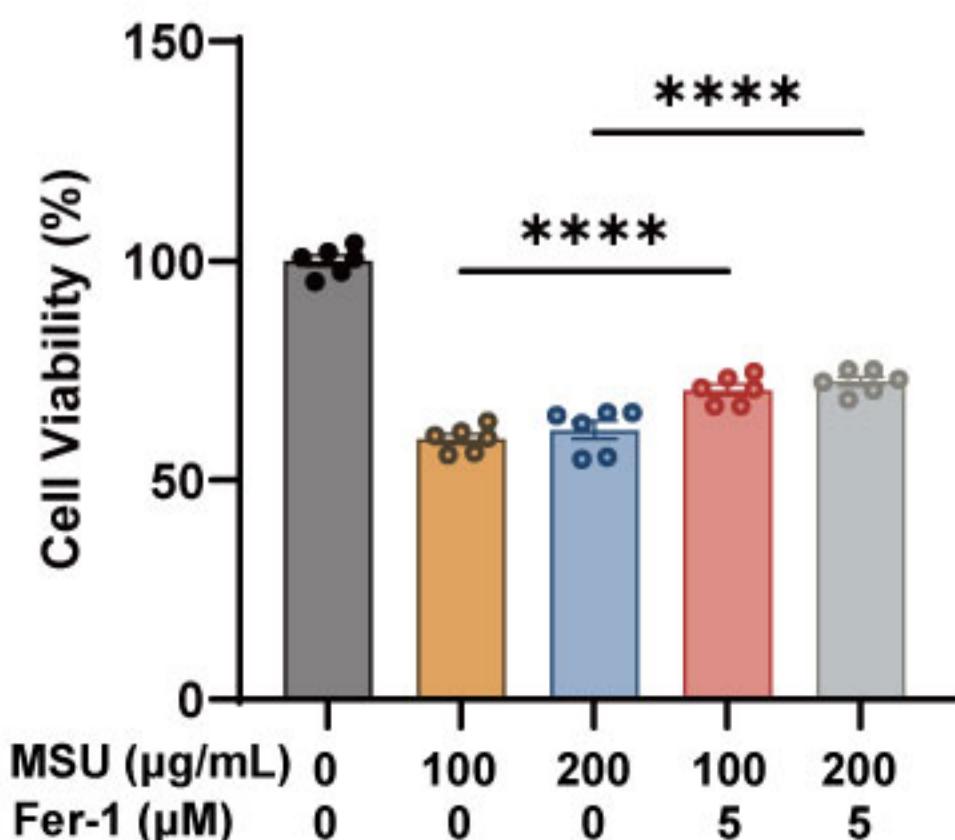
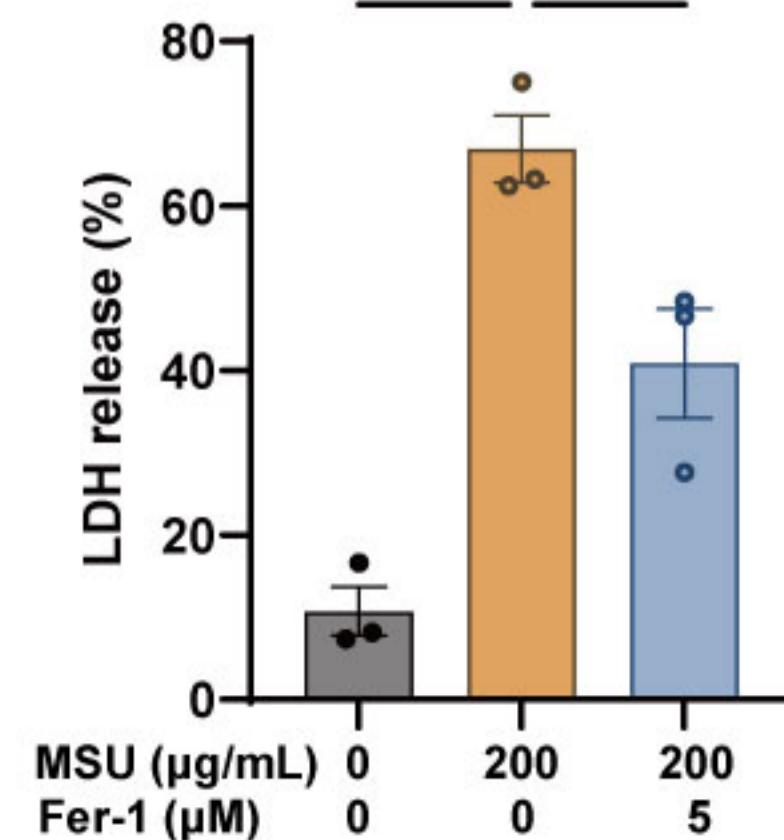
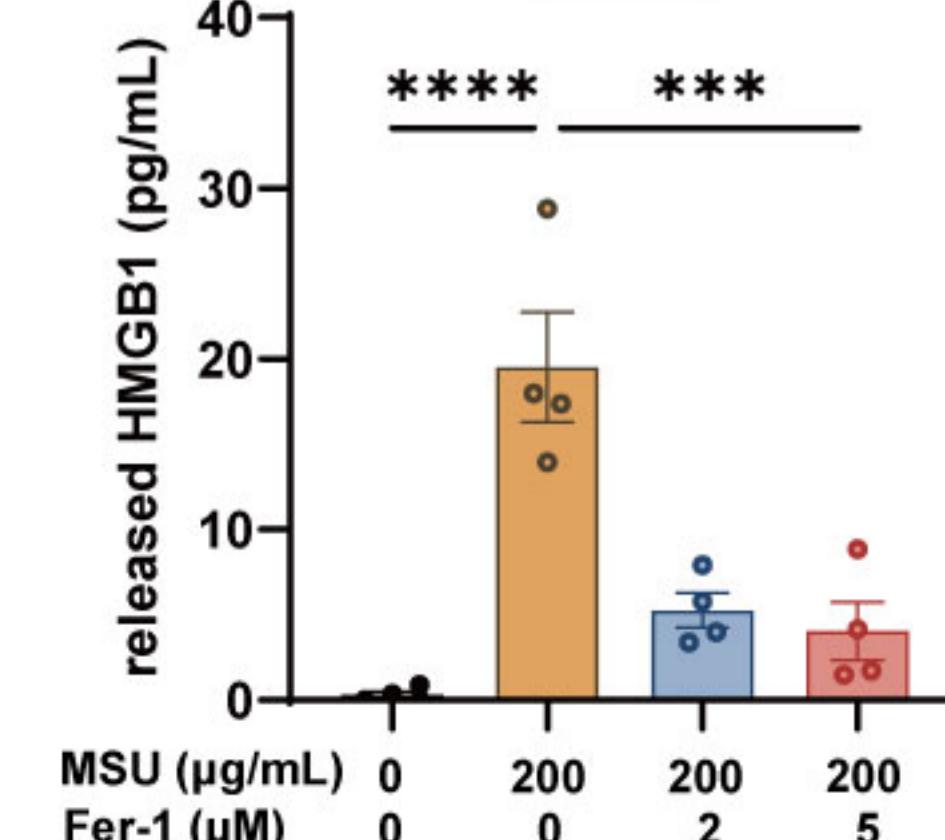


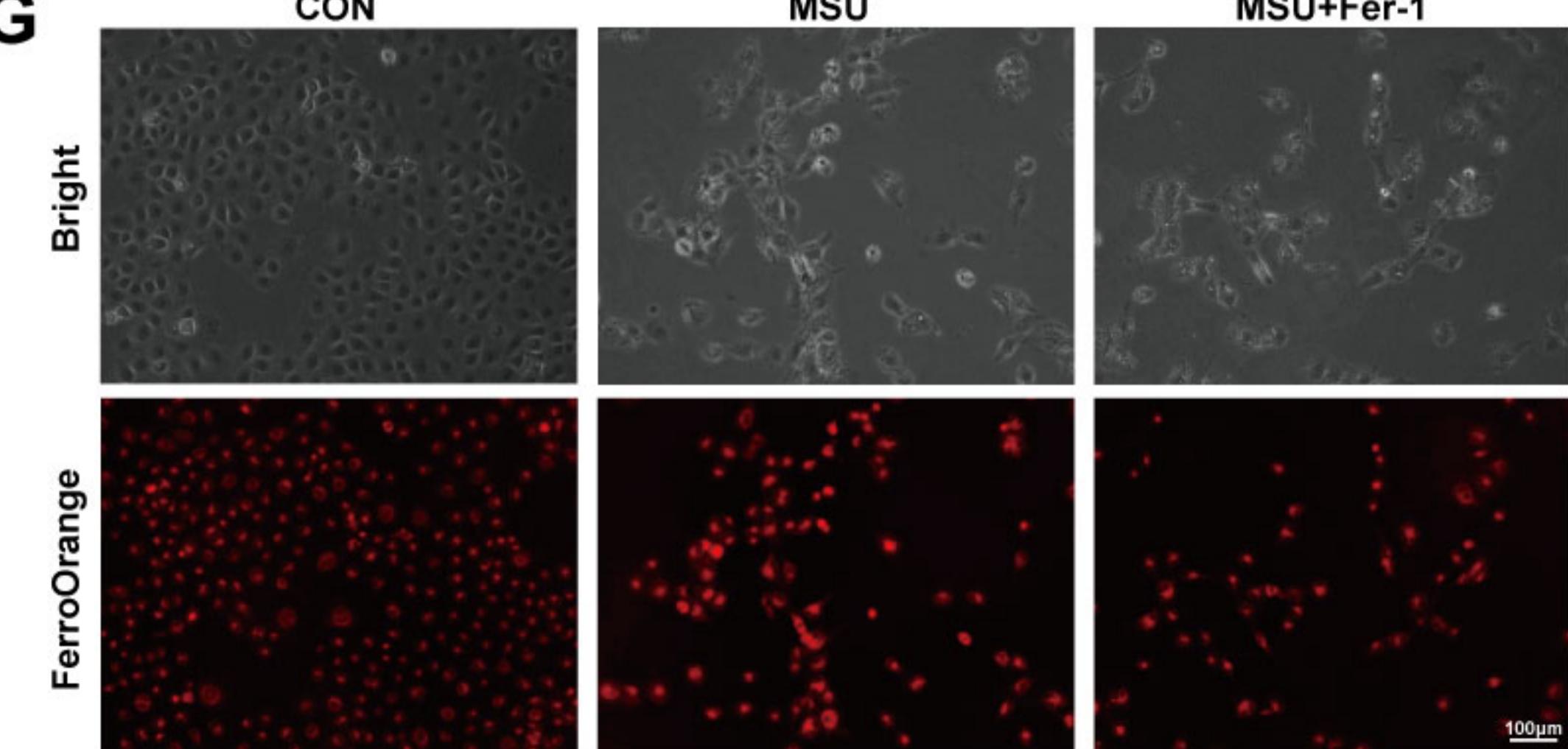
Figure 5

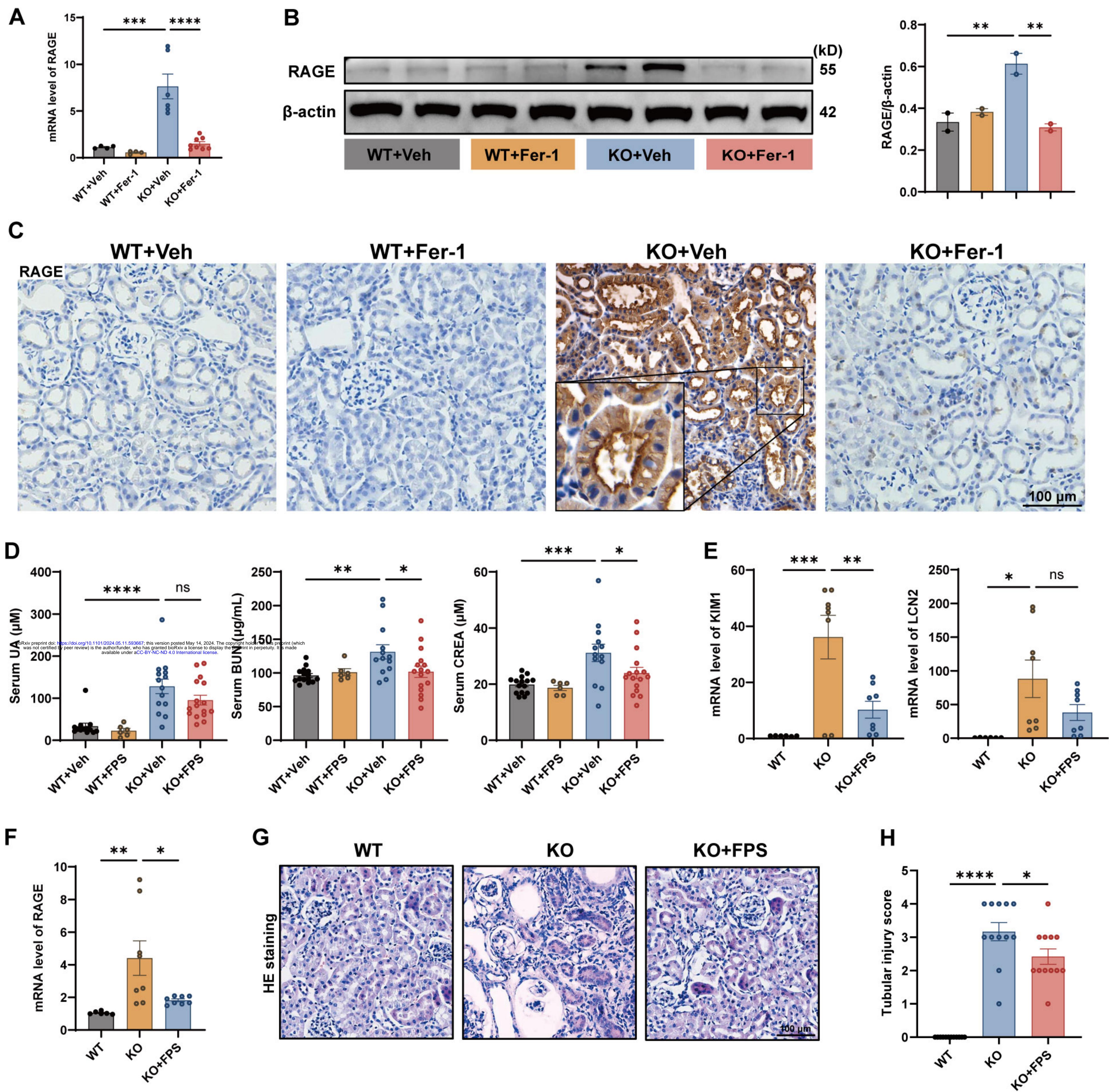

A

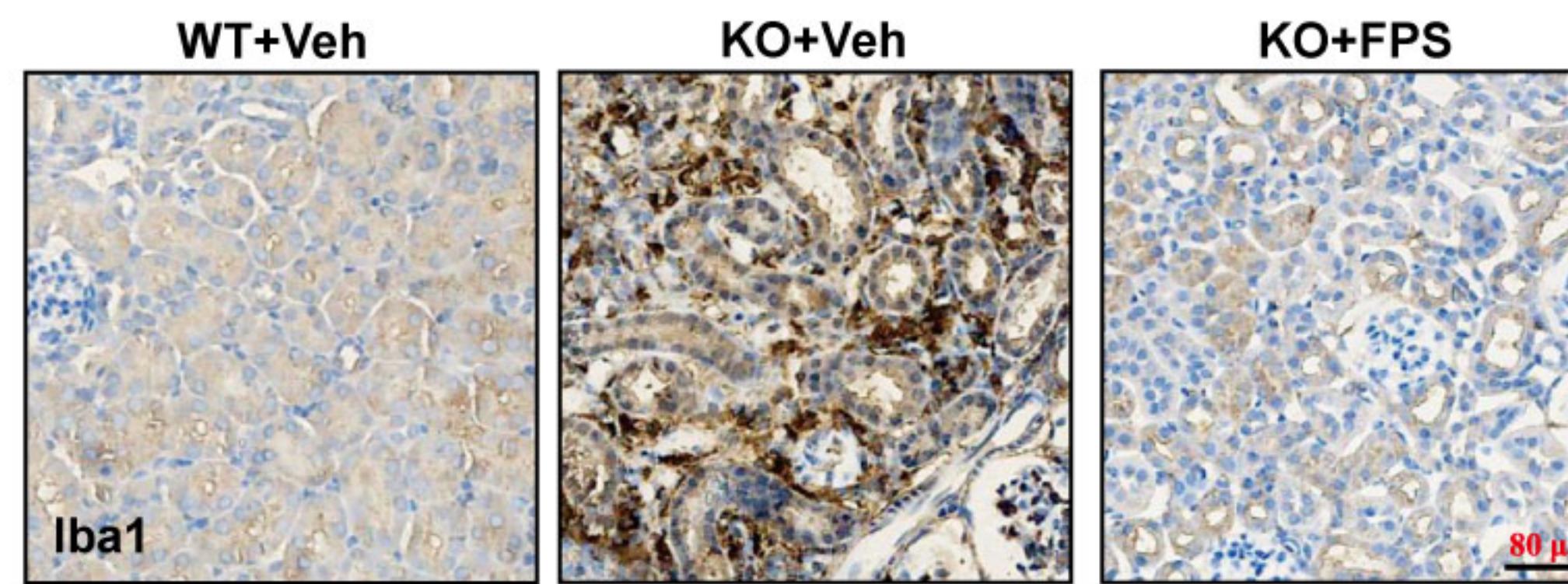
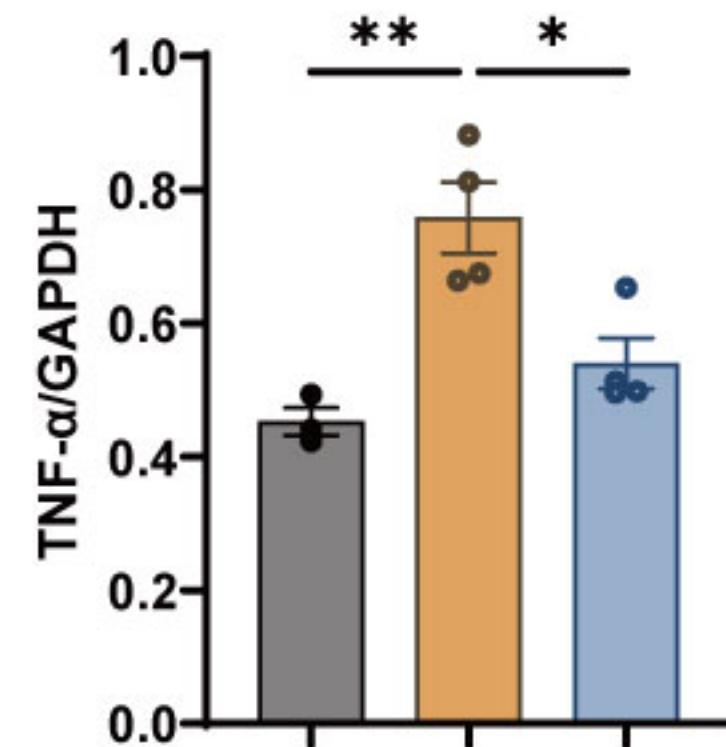
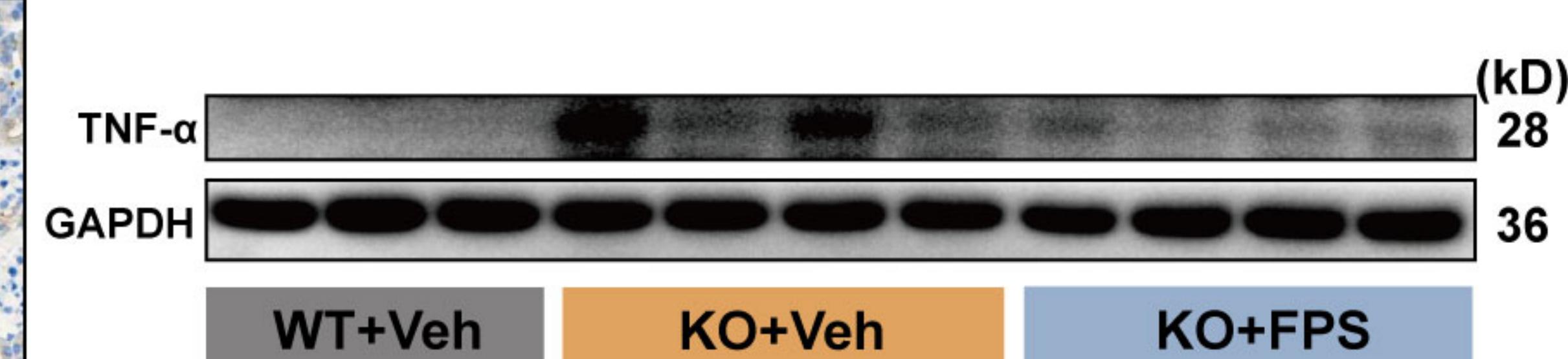
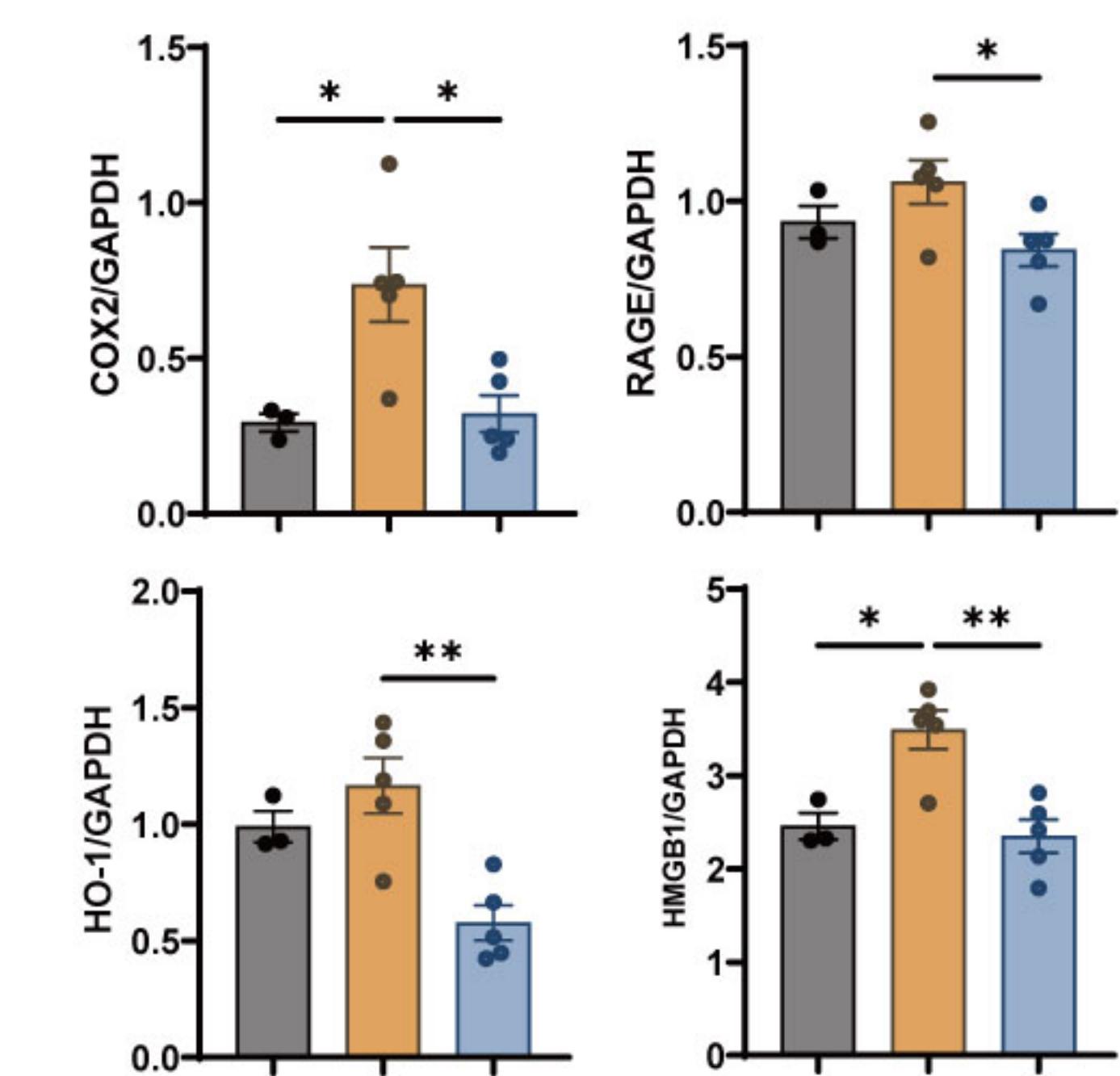
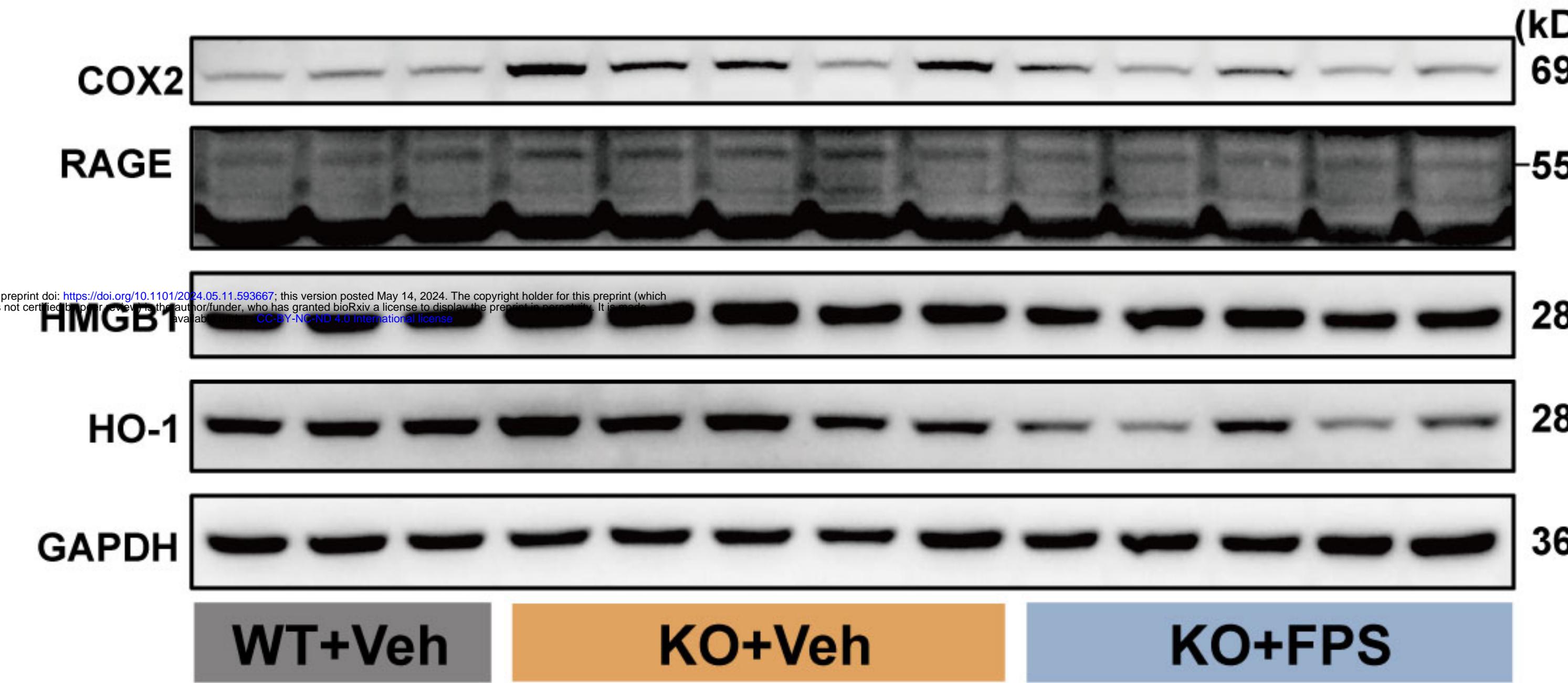
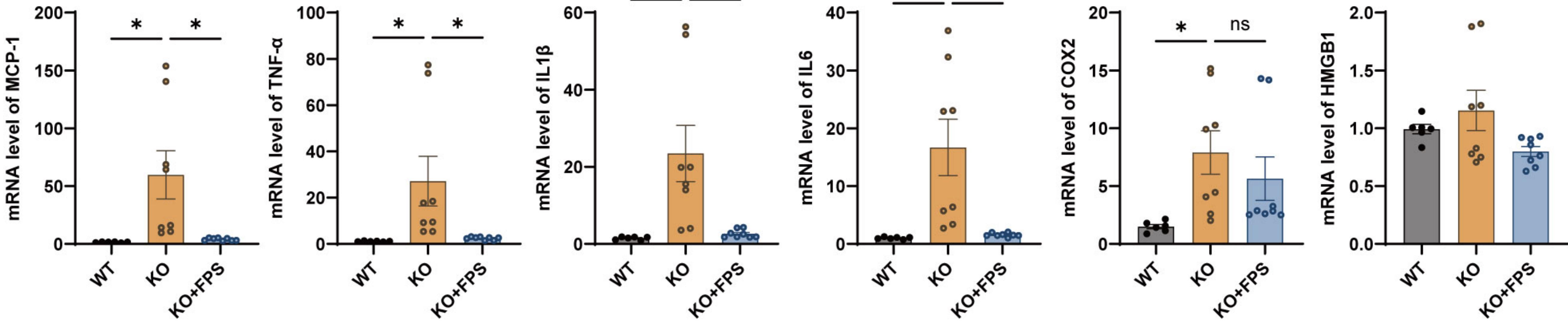

B


C


D


E









F

G

Figure 6

Figure 7**A****B****C****D**

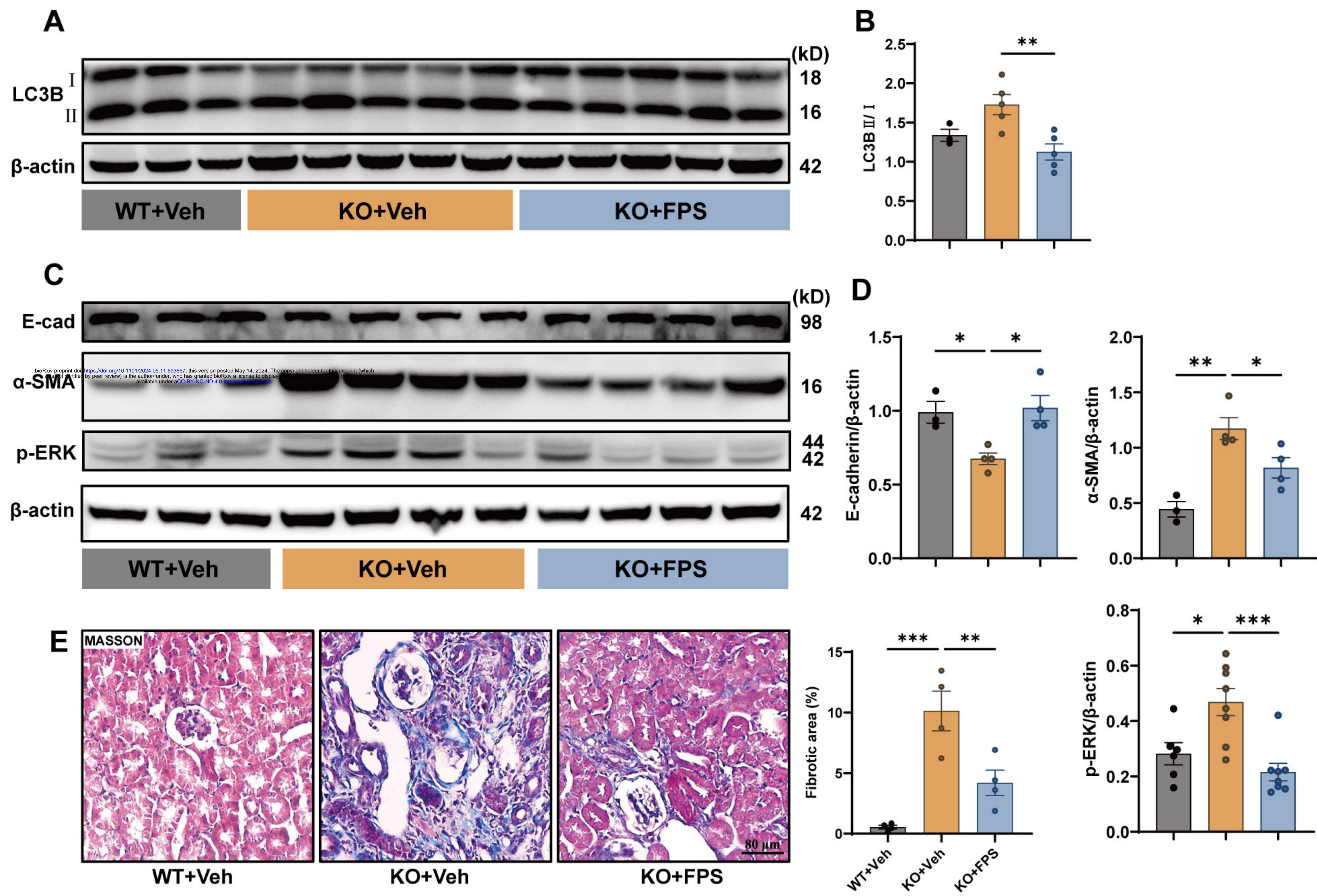

Figure 8

Figure 9

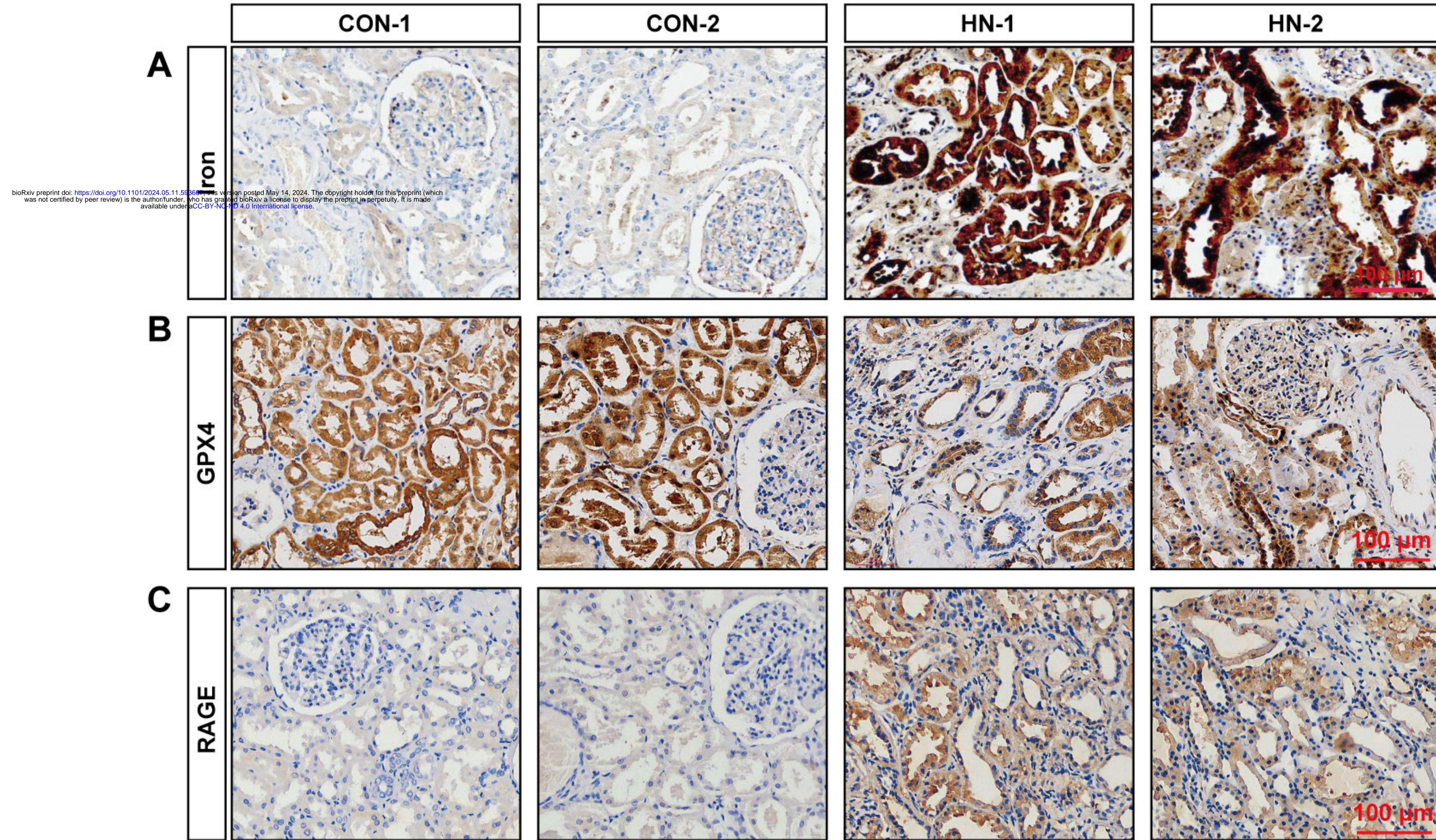


Figure 10

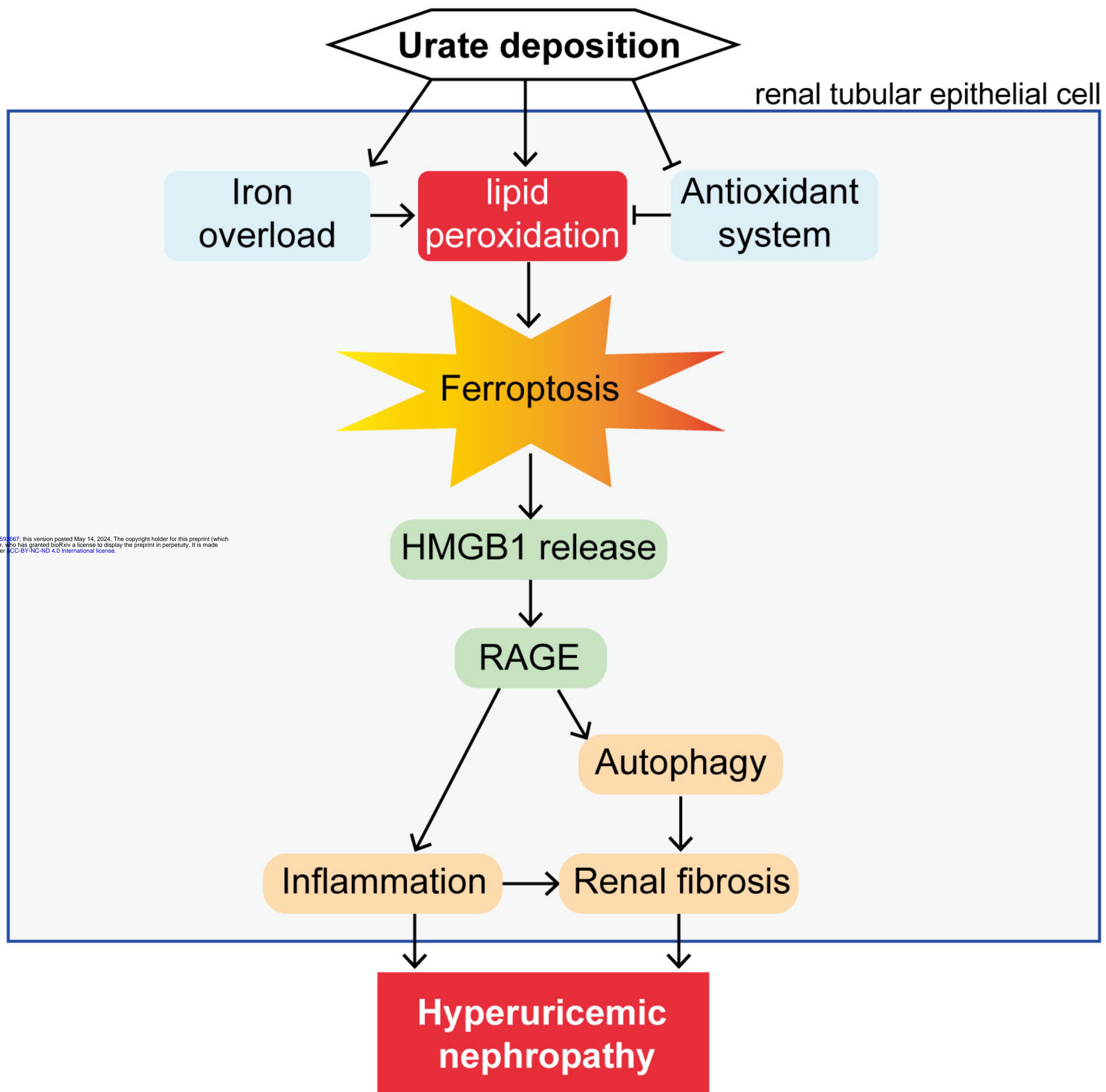
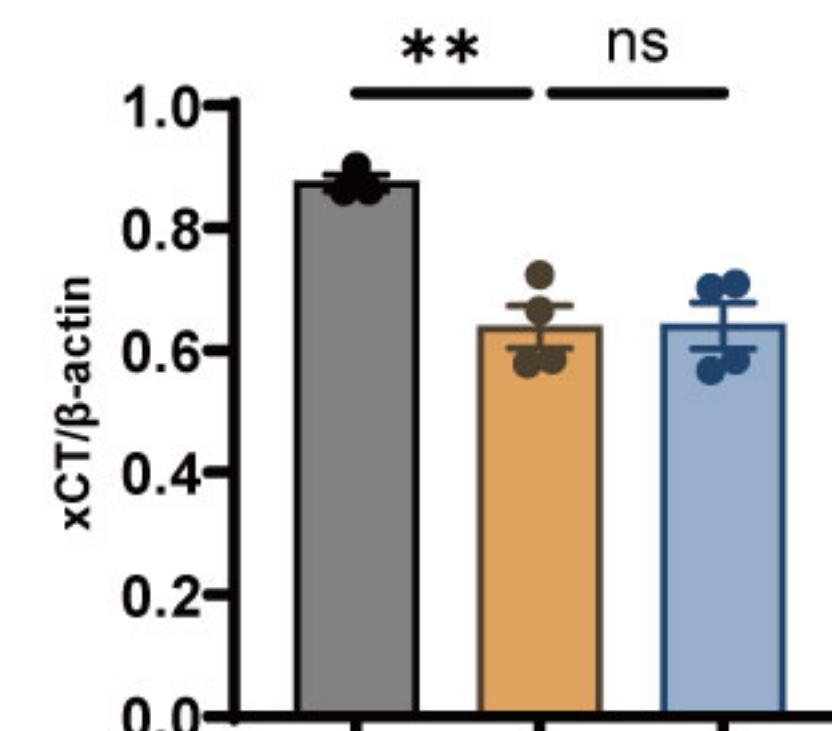
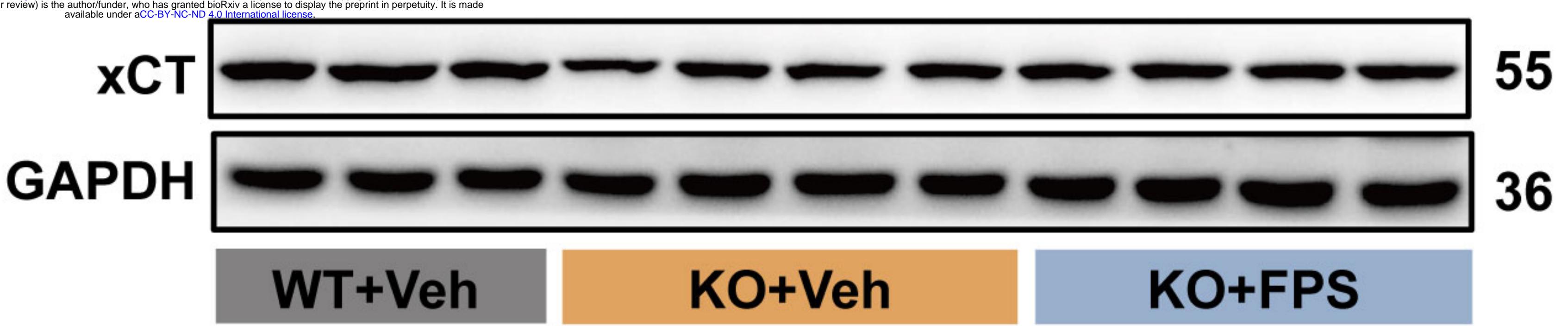
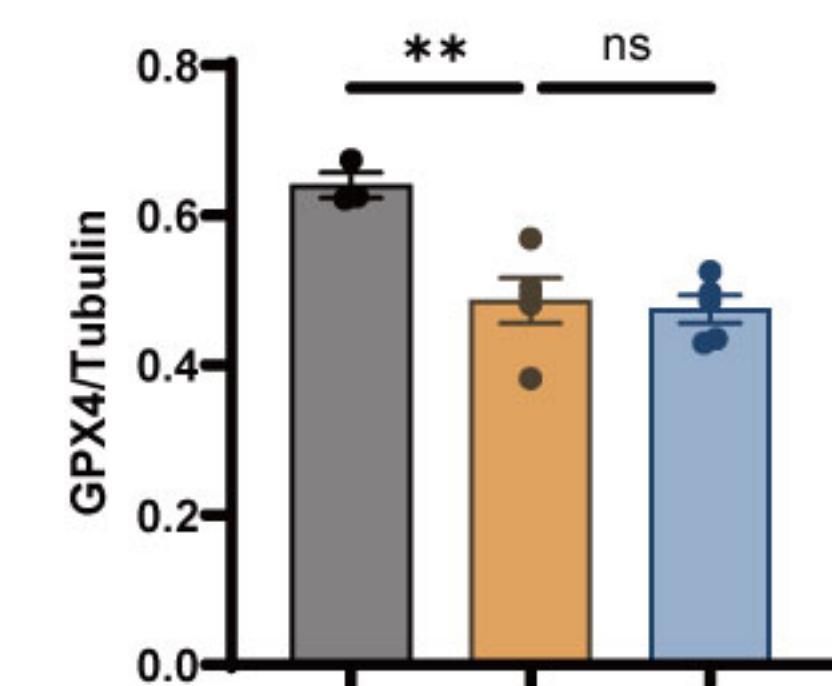
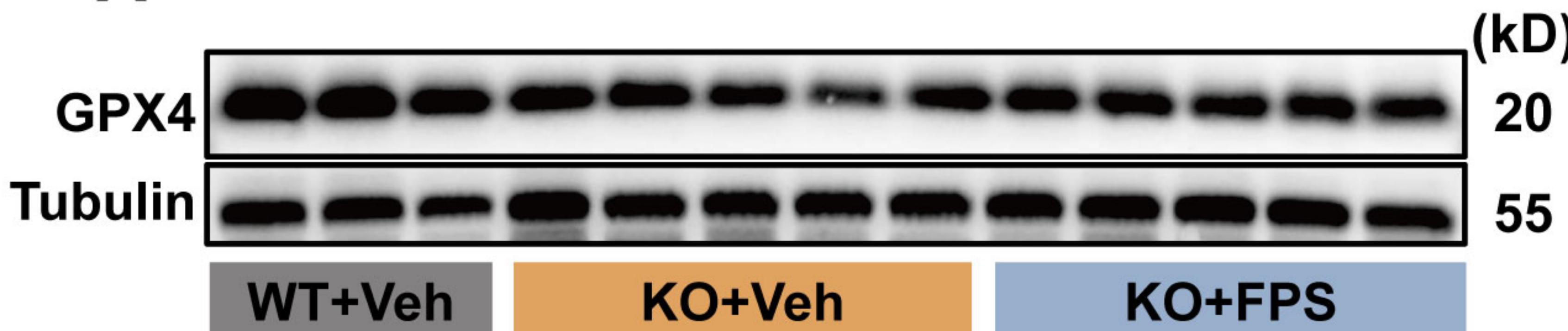






Figure S1

A

B

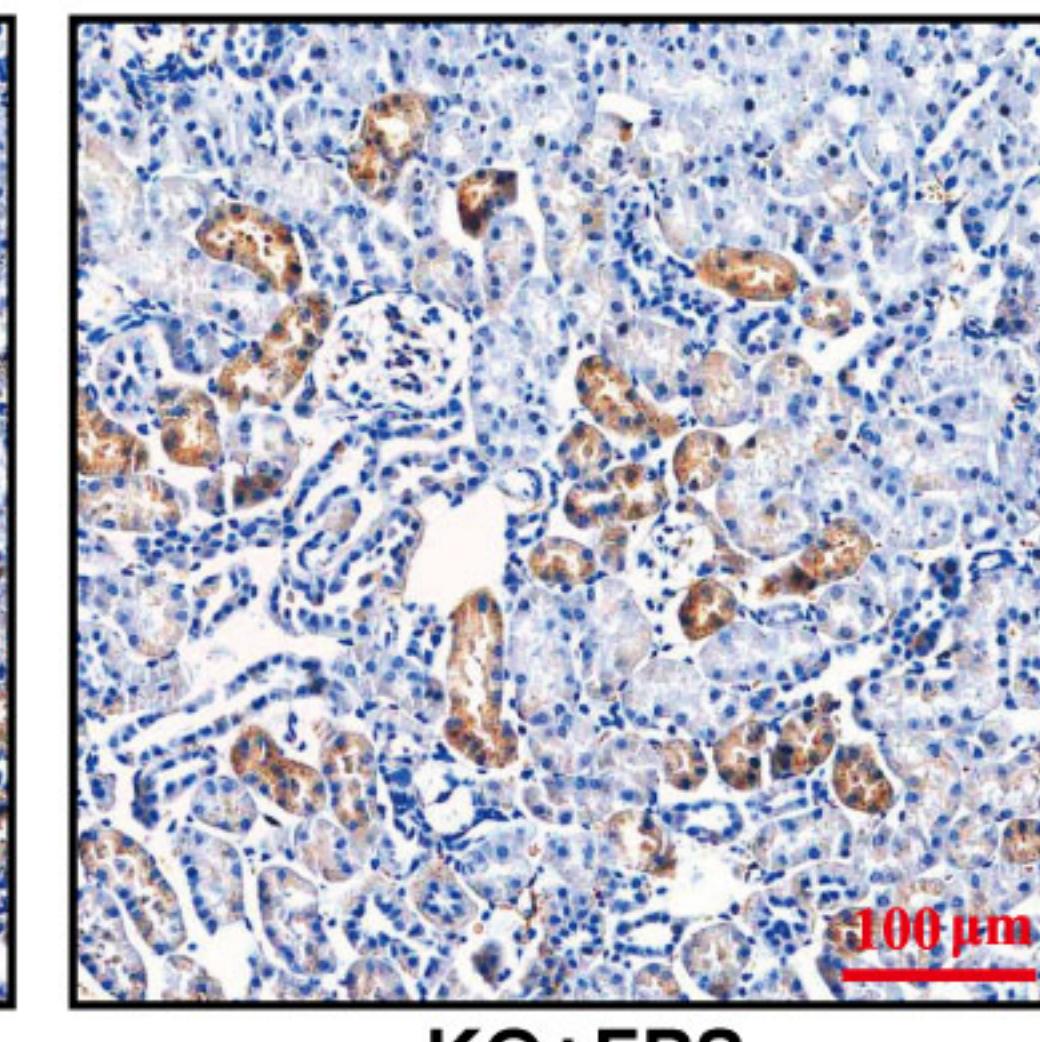
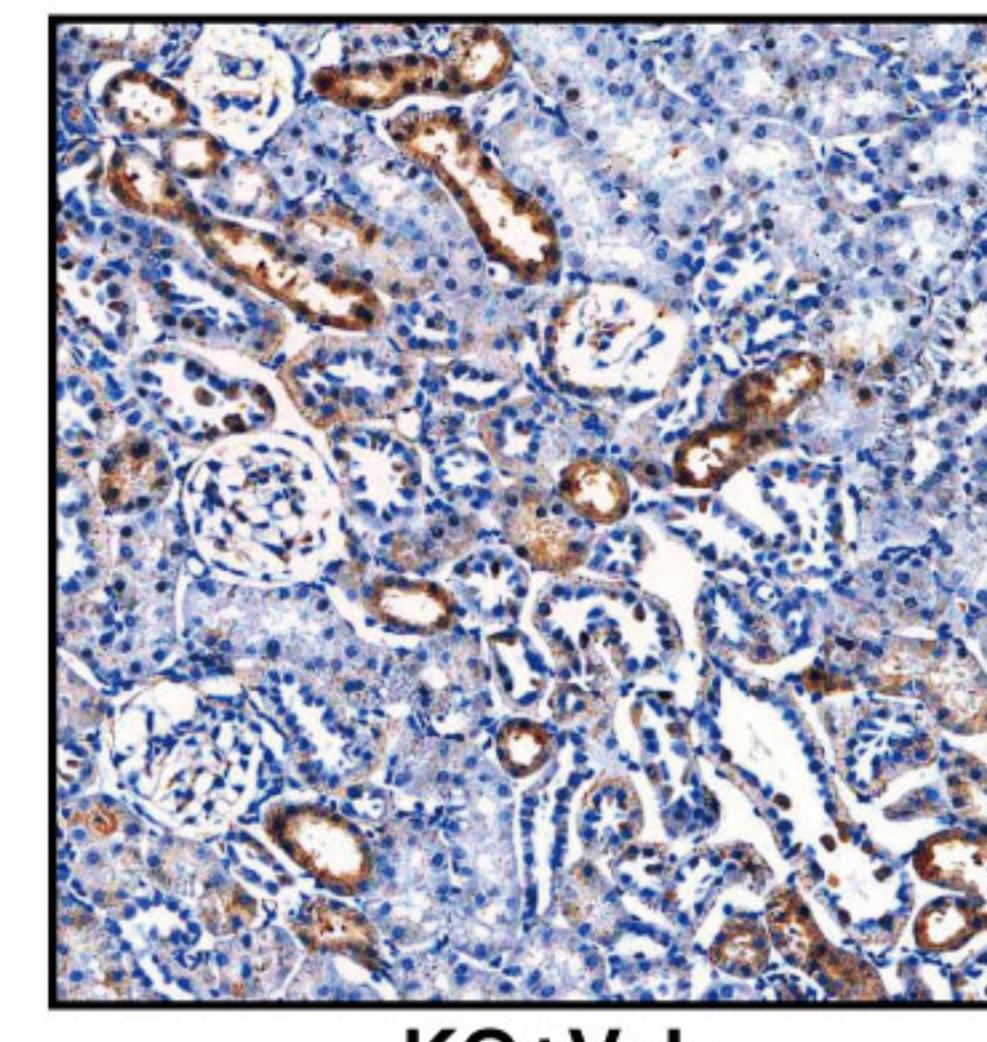
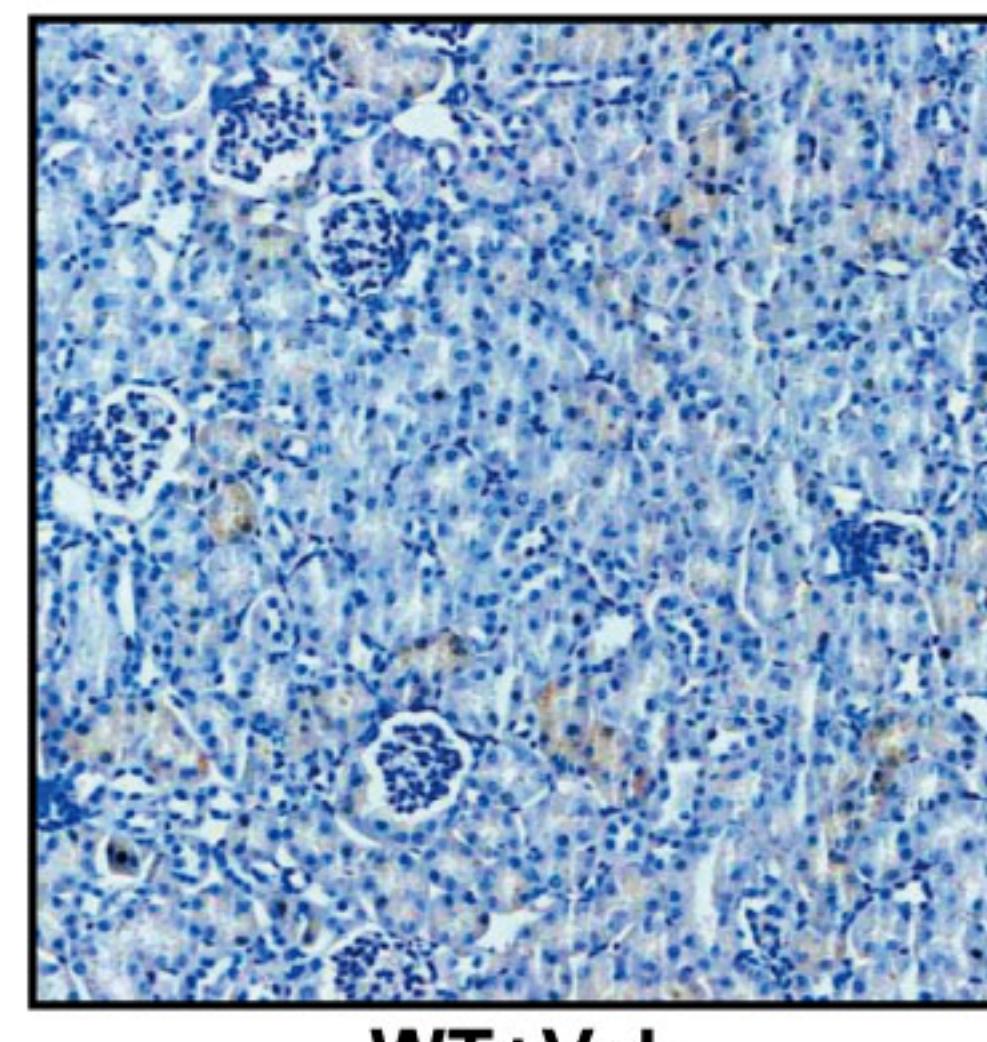




Fig. S2

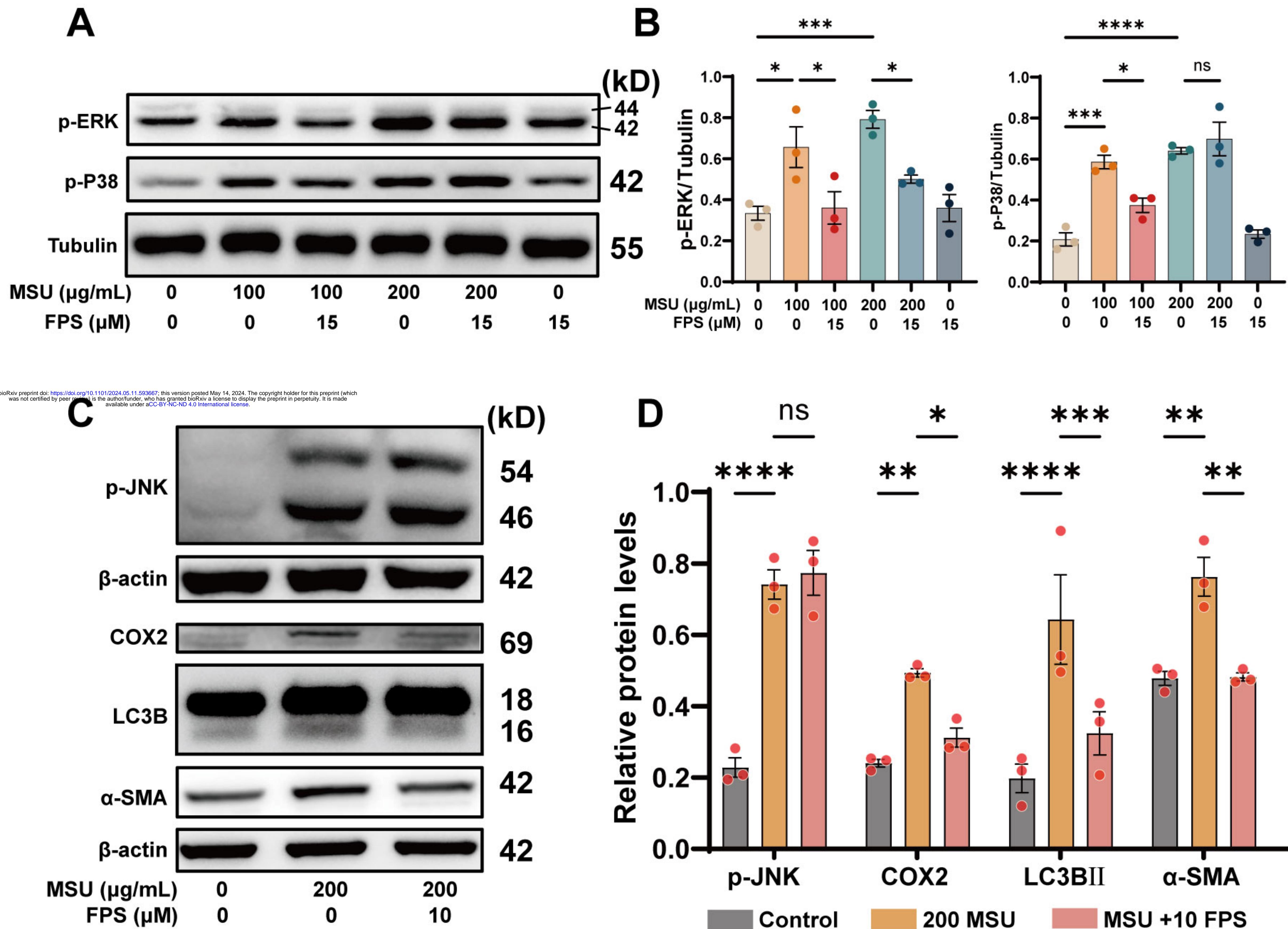


Table S1. primer sequences

Genes	Sequences
mouse FTH1	F: CAAGTGCGCCAGAACTACCA R: GCCACATCATCTCGGTAAAAA
mouse FTL1	F: CCATCTGACCAACCTCCGC R: CGCTCAAAGAGATACTCGCC
mouse FPN1	F: CCATAGTCTCTGTCAGCCTGCT R: CTTGCAGCAACTGTGTACCGT
mouse KIM1	F: ACATATCGTGGAATCACAAACGAC R: ACAAGCAGAAGATGGGCATTG
mouse LCN2	F: TGGCCCTGAGTGTATGTG R: CTCTTGTAGCTCATAGATGGTGC
mouse IL1 β	F: CTTCCCCAGGGCATGTTAAG R: ACCCTGAGCGACCTGTCTTG
mouse IL6	F: TTCCATCCAGTTGCCTTCTTG R: TTGGGAGTGGTATCCTCTGTGA
mouse TNF- α	F: GACGTGGAACTGGCAGAAGAG R: GCCACAAGCAGGAATGAGAAG
mouse COX2	F: TTCAACACACTCTATCACTGGC R: AGAACGTTGCGGTACTCAT
mouse MCP-1	F: CAACTCTCACTGAAGCCAG R: TTAACTGCATCTGGCTGAG
mouse DMT1	F: AGCTGCTCCCAACTGTGAG R: TGAACGCCACGAAAGCTAAA
mouse IRP2	F: TTCTGCCTTACTCAATACGGGT R: AGGGCACTTCAACATTGCTCT
mouse IRP1	F: AGAACCCATTGACACACCTTG R: AGCGTCCGTATCTTGAGTCCT
mouse RAGE	F: CAGTGTCCCTAATAAGGTGG R: TTTCCCCTCTAAGTGCCAG
mouse HMGB1	F: AGAGGTGGAAGACCATGTC R: CTCTTCATAACGAGCCTTGTGTC

Table S2. Basic Clinical Information of Patients with Hyperuricemia-Related Kidney Disease

Information	Patient 1 (HN-1)	Patient 2 (HN-2)
Gender	Male	Male
Age	49	52
Blood Uric Acid (μM)	490	442
Blood Pressure (mmHg)	147/105	146/97
Diabetes History (Years)	13	None
Kidney Biopsy Report	Multifocal inflammatory cell infiltration with fibrosis, tubular epithelial vacuolar degeneration	Mild chronic tubulointerstitial damage, IgA nephropathy
24-hour Urine Protein (g)	10.69	0.78
CREA (μM)	191	75
BUN (mM)	14.2	6.2
Total Cholesterol (mM)	4.51	5.66
Low Density Lipoprotein (mM)	2.46	2.51
Alanine Aminotransferase (IU/L)	12	20
Aspartate Aminotransferase (IU/L)	20	21