

1 3D chromatin maps of a brown alga reveal U/V sex chromosome spatial organization

2 Pengfei Liu¹, Jeromine Vigneau¹, Rory Craig¹, Josue Barrera-Redondo¹, Elena Avdievich¹, Claudia Martinho¹, Mi-
3 chael Borg¹, Fabian B. Haas¹, Chang Liu², Susana M Coelho^{1*}

4 ¹Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen,
5 Germany.

6 ²Institute of Biology, University of Hohenheim, Germany

7 *susana.coelho@tuebingen.mpg.de

8 *Running title: Sex-specific 3D genome organization in a U/V sexual system*

9 Abstract

10 Sex chromosomes are unique genomic regions displaying structural and evolutionary features that distinguish
11 them markedly from autosomes. Although nuclear three dimensional (3D) folding of chromatin structure is im-
12 portant for gene expression regulation and correct developmental programs, very little is known about the 3D
13 architecture of sex chromosomes within the nucleus, and how that impacts their function in sex determination.
14 Here, we determine the sex-specific 3D organization of the model brown alga *Ectocarpus* chromosomes at 2 kb
15 resolution, by comprehensively mapping long-range chromosomal interactions using Hi-C coupled with Oxford
16 Nanopore long reads. We report that *Ectocarpus* interphase chromatin exhibits a non-Rabl conformation, with
17 strong contacts among telomeres and among centromeres, which feature centromere-specific LTR retrotranspos-
18 ons. The *Ectocarpus* chromosomes do not contain large local interactive domains that resemble TADs described
19 in animals, but their 3D genome organization is largely shaped by post-translational modifications of histone pro-
20 teins that regulate chromatin compaction and mediate transcriptional regulation. We describe the spatial confor-
21 mation and sub-nuclear positioning of the sex determining region (SDR) within the U and V chromosomes and
22 show that these regions are very insulated and span the centromeres. Moreover, we link sex-specific chromatin
23 dynamics and gene expression levels to the 3D chromatin structure of U and V chromosomes. Finally, we uncover
24 the unique conformation of a large genomic region on chromosome 6 harboring an endogenous viral element
25 (EVE), providing insights regarding the functional significance of the chromatin organisation of latent giant dsDNA
26 virus.

27 Introduction

28 Sex chromosomes are unique genomic regions that evolved independently many times in different groups of eu-
29 karyotes. Three types of sex chromosome system exist in nature, the well-described XX/XY and ZW/ZZ systems,
30 and the still elusive UV systems, in organisms that express sex in the haploid stage of the life cycle ¹⁻⁶. Heteromor-
31 phic sex chromosomes (Y, W, U, V) have evolved repeatedly in diverse eukaryotic species. Suppression of recom-
32 bination between X and Y (or Z and W, or U and V) chromosomes usually leads to a range of genomic modifications
33 in these regions, including degeneration of the non-recombining chromosome, accumulation of repeats, and gene
34 decay via accumulation of deleterious mutations ^{7,8}. Repeats pose the largest challenge for reference genome
35 assembly, and centromeres, subtelomeres and the repeat-rich sex chromosome are typically ignored from se-

36 quencing projects. Consequently, complete sequence assemblies of heteromorphic Y, W, U and V sex chromosomes have only been generated across a handful of taxa ^{9–16}, and most of the information is fragmentary even at the linear sequence level. Moreover, despite the key role that the 3D structure of chromatin plays in gene regulation ^{17,18}, we lack critical information regarding chromatin landscapes and nuclear 3D organization of sex chromosomes within the nuclear space, and how chromatin folding is associated with the sex-specific gene expression underlying sexual differentiation.

42 Genome folding generally involves hierarchical structures ranging from chromatin loops to chromosome territories ¹⁹. The best-known 3D chromatin organization units are topologically associating domains (TADs), which show a self-interacting pattern with strongly interacting boundaries in Hi-C contact maps of animal genomes ²⁰. Genome 43 architectural proteins, such as CTCF (CCCTC-binding factor) and cohesin, bind strongly to DNA anchor sites and 44 mediate the formation of chromatin contact domains through loop extrusion ²¹. In addition to TADs, structural 45 units called compartmental domains have been demonstrated in animals (e.g. ²²). Compartmental domains are 46 closely associated with local chromatin states and preferentially interact with other compartmental domains of 47 similar chromatin states, contributing to the establishment of the 3D architecture for a given genome ^{19,22}. Plant 48 genomes also frequently exhibit a higher-order 3D chromatin organization. TADs or TAD-like structures have been 49 described in several plant species ²³, although their genomes do not encode CTCF homologs ²⁴. In contrast, *Arabi-* 50 *dopsis* (*Arabidopsis thaliana*) lacks plant-type TADs ²⁵. The absence of TADs in the *Arabidopsis* genome is likely 51 related to its small size, high gene density and short intergenic regions. However chromatin loops and comp- 52 artments are present in *A. thaliana* (e.g. ²⁶) and small structural units within 3D chromatin architecture have been 53 recently described ²⁷.

54 Here, we generated 2 kb-resolution maps of the male and female haploid genomes of the brown algal model 55 *Ectocarpus*, and examined the 3D chromatin structure of autosomes compared to U and V sex chromosomes. 56 *Ectocarpus* life cycle involves an alternation between diploid and haploid generations, with sex being determined 57 in the haploid stage of the life cycle by U (female) and V (male) sex chromosomes ⁵. Therefore, this model organ- 58 ism provides the opportunity to investigate the sub-nuclear organization of the chromatin structure of U/V sex 59 chromosomes and compare it to autosomes. Our near complete assembly of the *Ectocarpus* genome (*Ectocarpus* 60 V5) offers an improved reference genome and allowed us to define and characterise the centromeric and sub- 61 telomeric sequences in this organism. We found that interphase chromatin is organized in a non-Rabl configura- 62 tion, with telomeres and centromeres of all 27 *Ectocarpus* chromosomes clustering together in the 3D nuclear 63 space. We reveal that the 3D structure of *Ectocarpus* chromatin is highly streamlined, not organized into TADs, 64 and A and B chromatin compartments are mainly defined by H3K79me2 deposition and depletion of activation 65 marks. We then focus on the 3D structure of the *Ectocarpus* U and V sex chromosomes to show that in both sex 66 chromosomes the SDR spans the centromere, and is highly insulated from the rest of the chromosome. We found 67 no overall differences in the 3D chromatin organization between male (V) and female (U) chromosomes but both 68 have different 3D organization compared with autosomes. Finally, we uncover the distinctive conformation of a 69 genomic region on chromosome 6 harboring a giant endogenous viral element (EVE), giving insights into the in- 70 terplay of dsDNA viruses with the chromatin environment in the host. 71

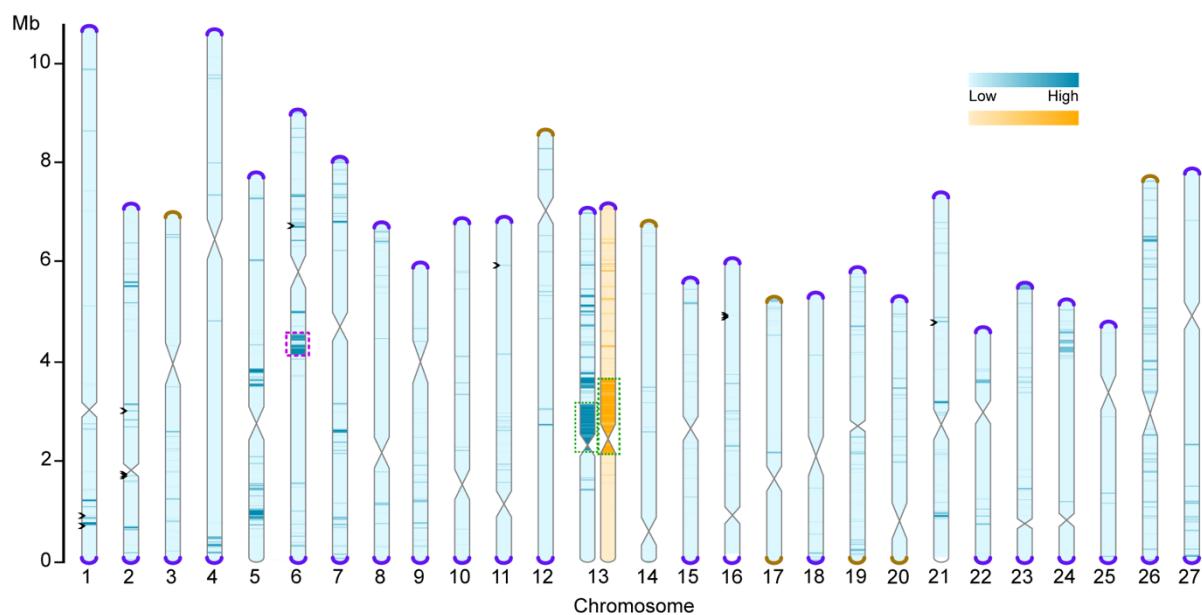
73 Results

74 A near complete assembly of the male and female haploid genome of *Ectocarpus*

75 A complete assembly of the *Ectocarpus* genome has been challenging mainly due to the presence of highly repetitive
76 regions, which short-read Illumina sequencing, low coverage Hi-C and Sanger sequencing could not hitherto
77 successfully resolve. The published version of the *Ectocarpus* sp.7 reference genome (V2) contains 28 pseudo-
78 chromosomes spanning 176.99 Mb, with 17.97 Mb of unplaced contigs, a contig-level N50 of 33 kb and a total of
79 11,588 gaps²⁸. Here, we combined Oxford Nanopore Technologies (ONT) long reads and Hi-C sequencing tech-
80 niques to achieve near complete assemblies of both the haploid male and female genome of *Ectocarpus* sp.7
81 (**Figure 1A, Table S1-S2**).

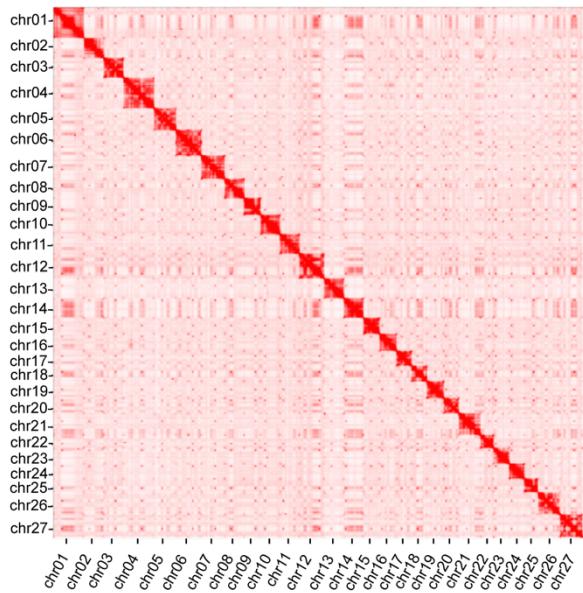
82 The ONT long reads were obtained separately from male and female siblings (Ec32m, Ec25f, **Figure S1, S2**), total-
83 ing 11 Gb and 20 Gb of data, respectively. ONT long-reads were complemented with Hi-C data, encompassing 822
84 million pairs of sequences (~135 Gb) at a sequencing depth of 635x for the male, and ~444 million pairs (~73 Gb)
85 and 338x coverage for the female (see methods for details) (**Figure S1, Table S3**). The *Ectocarpus* V5 male genome
86 assembly has an N50 of 7.0 Mb and a total size of 186.6 Mb. The V2 chromosome 28 from V2 is now part of
87 chromosome 4, bringing the total number of chromosomes to 27, with sizes ranging from 4.52 Mb to 10.73 Mb.
88 Similarly to what was done for the *Ectocarpus* V2²⁸, we added the female SDR (size 1.55 Mb) to this male genome
89 in order to obtain a final *Ectocarpus* V5 reference genome (**Figure S1**).

90 The genome is highly contiguous: out of the 27 assembled chromosome models, the majority contain zero gaps;
91 and six chromosomes have only 10 gaps in total (**Figure 1A, Table S4**). The accuracy of Hi-C based chromosome
92 construction was evaluated manually by inspecting the chromatin contact matrix at 100 kb resolution, which ex-
93 hibited a well-organized interaction contact pattern along the diagonals within each pseudo-chromosome (**Figure**
94 **1B**).

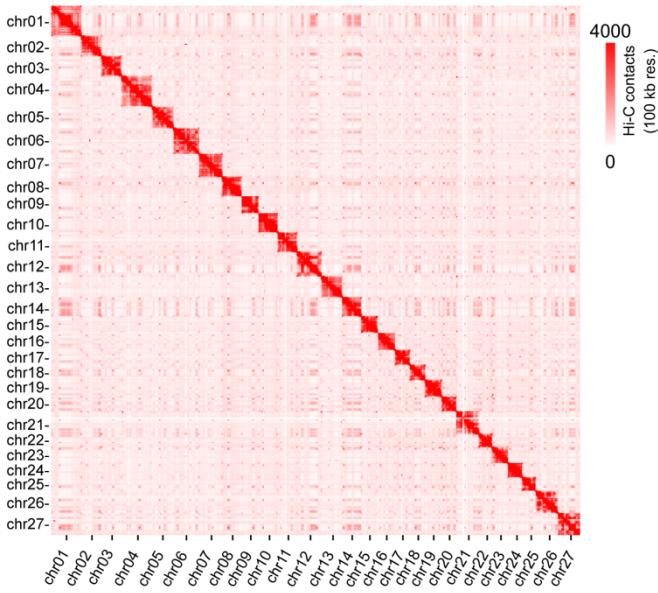

95 Telomeric regions were almost entirely absent from earlier genome assemblies, although a putative telomere
96 bearing the repeat (TTAGGG)_n was observed²⁹. In our *Ectocarpus* V5 assembly, 43 of the 54 telomeric regions are
97 fully resolved, and twelve of the 27 pseudo-chromosomes correspond to a telomere-to-telomere assembly (**Fig-**
98 **ure 1A, Figure S3**). On all but three of the resolved telomeric regions, we observed a specific satellite repeat
99 adjacent to the telomeric repeats. The satellite features a repeated monomer of ~98 bp and is almost exclusively
100 found at the sub-telomeres, where it forms arrays that range from only a few to more than 100 copies. Notably,
101 the telomeric motif TTAGGG is present in three independent locations with each satellite monomer (**Figure S4**).
102 Similar subtelomeric organizations have been observed in several species including the green alga *Chlamydomo-*
103 *nas reinhardtii*, where the telomere-like motifs present within the sub-telomeric satellites are hypothesised to
104 serve as seed sequences that facilitate telomere healing following DNA damage³⁰. Eight of the V5 chromosome
105 arms terminated in the subtelomeric repeat, leaving only four chromosome extremities for which the assembly
106 failed to reach either the subtelomere or telomere (**Figure 1A**).

107 Ribosomal DNA (rDNA) arrays were also poorly resolved in previous assemblies. The V5 assembly revealed a single
108 major rDNA array located within an internal region of chromosome 4, which features six rDNA repeats before
109 resulting in a contig break. The 5S rDNA gene is linked to the main rDNA unit (18S-5.8S-26S), as previously reported
110 in many brown algae and Stramenopiles³¹. Considering ONT read coverage of 7,000x, we estimate that the rDNA
111 array may consist of >100 copies, spanning ~800 kb.

112 The total repeat content of the assembled chromosomes is estimated to be 29.8% (**Table S4**). 13.75 Mb of addi-
113 tional sequence could not be assembled to chromosomes and remains unplaced in the V5 assembly. These se-
114 quences are extremely repetitive (74.3% repeats) and presumably include heterochromatic regions that corre-
115 spond to some of the assembly gaps or incomplete chromosome ends. Longer reads or alternative technologies
116 will be required to achieve complete assembly of these complex regions.


117 Since the V2 genome had a high-quality gene annotation, we performed a lift over of the V2 gene models to the
118 *Ectocarpus* V5 genome. Out of the 18,412 V2 gene models, 18,278 could be lifted, and the remaining were mostly
119 located on an unassigned scaffold in the V2 assembly. Genome completeness was quantified by BUSCO ³². Two
120 database sets were used, eukaryota (255 core genes) and stramenopiles (100 core genes). Of the 255 core eukar-
121 yotic BUSCO genes, the V5 reference assembly contains 226 (88.7%) complete BUSCO genes. This represents a
122 gain of 8 genes (+3.2%) compared to the V2 genome. The stramenopiles result increased by 1 % (**Table S5**).

A

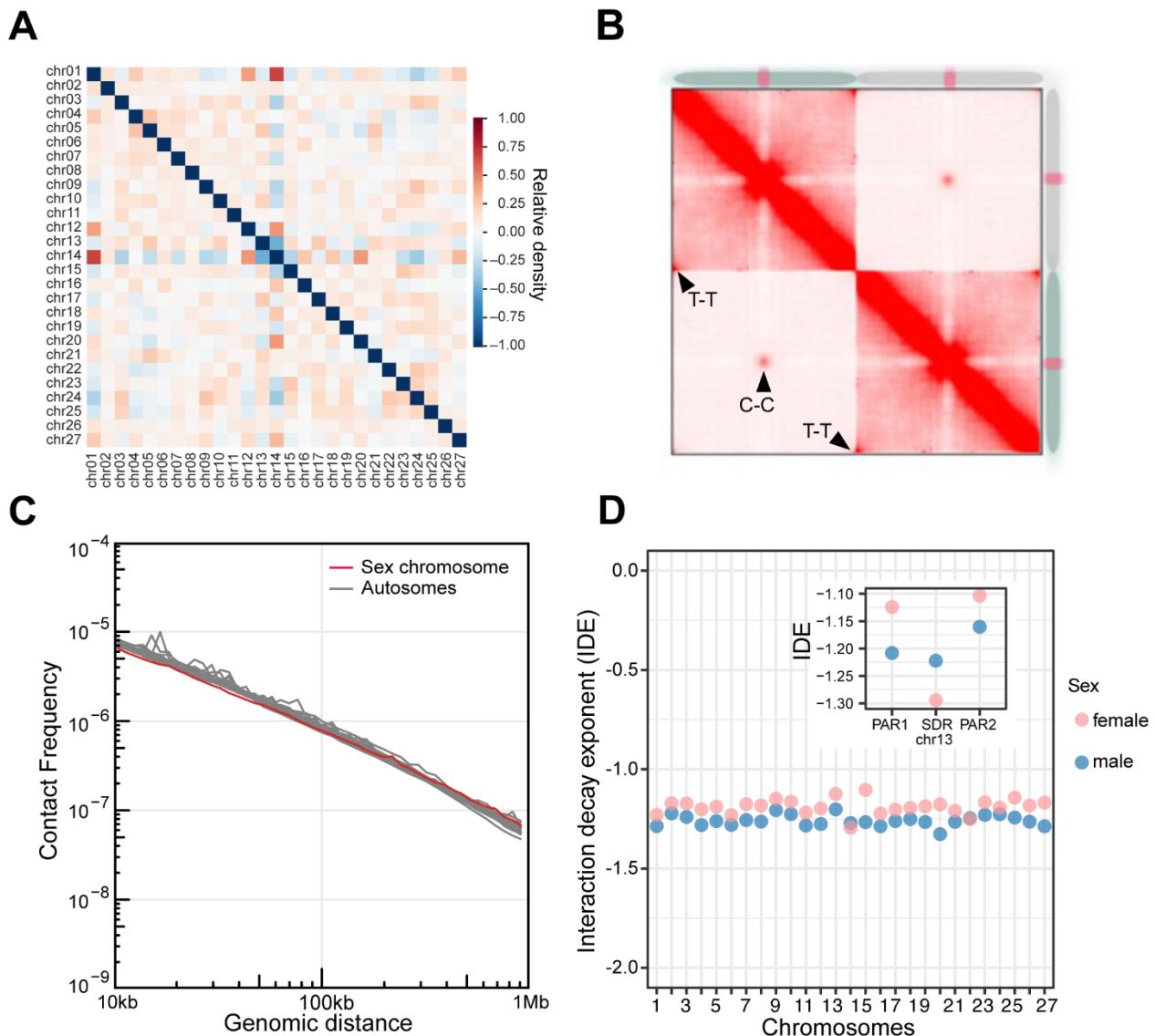


B

Ectocarpus sp.7 male haploid contact map

Ectocarpus sp.7 female haploid contact map

123 **Figure 1. *Ectocarpus* sp.7 whole-genome assembly.** (A) Schematic representation of the near telomere-to-telomere assembly
124 of the 27 *Ectocarpus* sp.7 chromosomes, in haploid male (blue) and female (orange). Telomeres are represented as violet caps,
125 sub-telomeres in brown. Centromeric regions are represented by the constrictions in the center of the chromosomes. The
126 chromosomes are filled by variant density between the male and female haploid genomes used for the assembly (darker color
127 means more differences). Violet dotted boxes represent the genomic region where a dsDNA virus is inserted and green dotted
128 boxes represent the SDRs. Black arrowheads depict gaps. See methods for details. (B) Genome-wide Hi-C contact map showing
129 frequencies of pairwise 3D genome contacts at a 100kb resolution in the male and female haploid genomes.


130 The *Ectocarpus* 3D chromatin architecture

131 To explore the 3D chromatin architecture of *Ectocarpus*, we mapped male and female Hi-C reads back to the V5
132 assembly (**Table S3**, **Figure S1**). Biological replicates were highly correlated (Pearson $r= 0.96$ and $r=0.94$ for male
133 and female samples, respectively, **Figure S5**), therefore, replicates were combined for downstream analysis to
134 produce sex-specific high-resolution maps. We obtained 188.8 and 134.8 million interaction read pairs for male
135 and female, respectively, reaching a 2 kb resolution for each of the sexes.

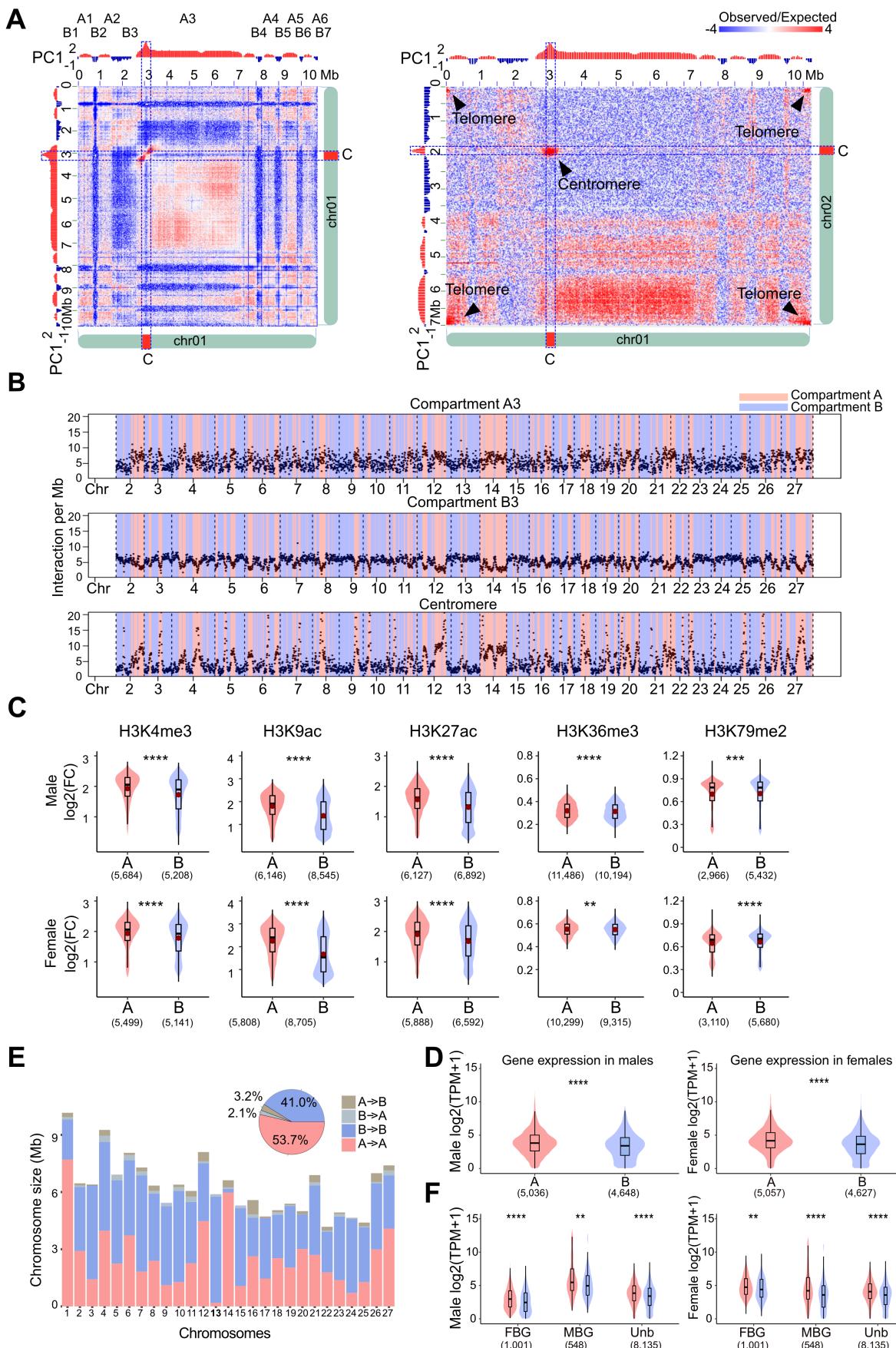
136 In animals and plants, chromosomes are hierarchically packed in the nuclear space, and each occupies discrete
137 regions referred to as a chromosome territory (CT) ^{23,33}. Chromosomal territories were detected in *Ectocarpus*,
138 reflected by strong intra-chromosomal interactions and clear boundaries between chromosomes (see **Figure 1B**).
139 We found a significant enrichment of inter-chromosomal interactions involving chromosomes 1, 12, 14, 20, and
140 27 (**Figure 2A**), suggesting a propensity for these chromosomes to establish stronger contacts compared to oth-
141 ers. Furthermore, strong contacts among telomeric regions of different chromosomes, as well as contacts among
142 centromeric regions (see below) were widespread on the Hi-C map (**Figure 2B**).

143 Next, we computed each chromosome's chromatin contact probability as a function of genomic distance to ex-
144 amine *Ectocarpus* chromosome packing patterns. As expected, we observed a decline in contact frequencies as
145 genomic distances increased (**Figure 2C**). Next, Interaction Decay Exponents (IDEs), which describe how fast in-
146 teraction frequencies drop with increasing physical genomic distance, were computed to characterize chromatin
147 packaging ^{34,35}. We found that for each of the *Ectocarpus* chromosome, interaction frequencies decayed in similar
148 power-law functions with IDE values between 10kb and 500Kb (**Figure 2D**). However, the IDE values in SDRs and
149 PARs of sex chromosomes showed noticeable variation, suggesting differences in local chromatin packing in these
150 regions (see below).

151 One prominent feature of animal and plant genomes is the organization of chromatin into TADs, characterized by
152 preferential contacts between loci inside the same TAD and strong insulation from loci in adjacent TADs ^{20,36}. TADs
153 regulate enhancer-promoter contacts and gene expression ³⁷. Intriguingly, we did not observe conspicuous TADs
154 patterns in any of the *Ectocarpus* chromosomes upon zooming into the Hi-C map (**Figure S6**). Note that *Ectocarpus*
155 has a similar genome size to the land plant *Arabidopsis thaliana*, which also does not exhibit classical TAD struc-
156 ture, but rather TAD-like domains that are moderately insulated from flanking chromatin regions ^{25,38} and is con-
157 sidered as an outlier species concerning plant TAD formation ³⁹.

158 **Figure 2. 3D chromatin architecture of *Ectocarpus* revealed by Hi-C data.** (A) Pair-wise averaged inter-chromosome con-
 159 tact contacts of *Ectocarpus* male at 10k resolution. (B) Analysis of aggregated intra- and inter-chromosomal contacts. T-T: telomere
 160 to telomere interactions; C-C: centromere to centromere interactions. (C) Global folding patterns of each of the male *Ectocar-*
 161 *pus* chromosomes reflected by contact frequency as a function of genomic distance (Ps). (D) IDEs of each autosome and sex
 162 chromosome regions in *Ectocarpus* male and female. Normalized Hi-C matrices at a resolution of 10 kb at distance range of
 163 10 kb to 500kb were used to calculate IDEs. Figure 3: High-resolution contact probability map reveals the higher-order organ-
 164 ization of the *Ectocarpus* genome.

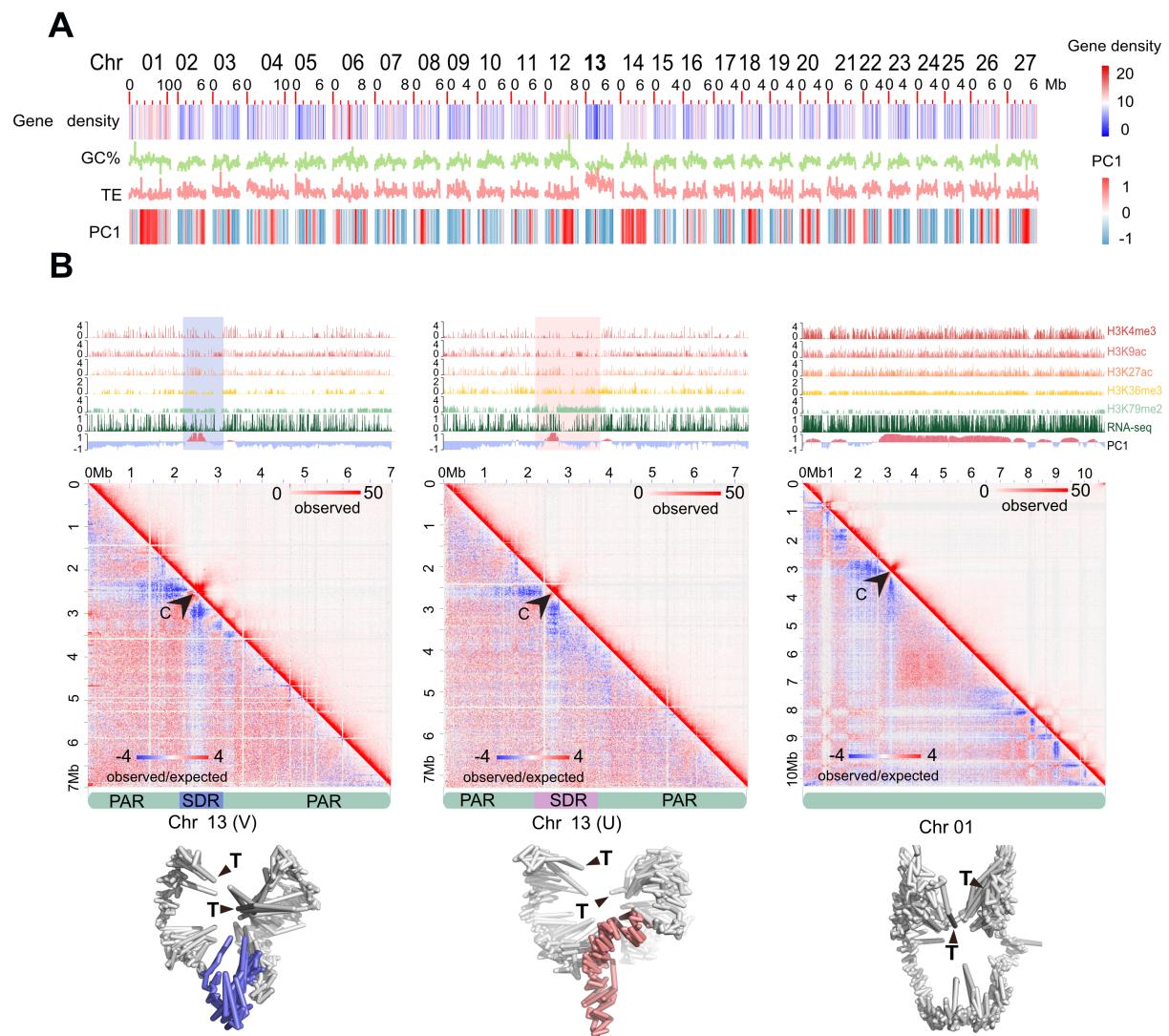
165 **A/B compartment dynamics in males versus females**


166 Spatially distinct nuclear compartments are a prominent feature of 3D chromatin organization in eukaryotes ³⁴.
 167 A/B compartments, which generally correlate with active and repressed chromatin, respectively, can be identified
 168 by applying Principal Components Analysis (PCA) of the correlation heatmap yields the first eigenvector (EV1),
 169 (PCA, Lieberman-Aiden et al. 2009). We applied PCA to individual chromosome's Hi-C maps normalized at 10kb
 170 bin size to identify the two spatial compartments (Figure 3A). The compartment that displayed stronger inter-
 171 chromosomal chromatin contacts was called 'A', whereas B compartment had lower inter-chromosomal contacts

172 (Figure 3B). Interestingly, the genomic regions bearing the centromeres corresponded to the A compartment
173 (Figure 3A, B). Further PCA analysis on the A compartment indicated that centromeres formed distinct sub-com-
174 partments, which were spatially separated from the rest of the A compartment regions (Figure S7).

175 Although different chromosomes had different proportions of compartment A and B, we noticed that the U and
176 V sex chromosomes (chromosome 13) exhibit large stretches of B compartment regions (Figure 3B), suggesting
177 they have a distinct configuration compared to autosomes overall (see below).

178 The *Ectocarpus* genome has been reported to have various histone post-transcriptional modification (PTMs) as-
179 sociated with gene transcriptional activities^{40,41}. We therefore asked whether chromatin associated with different
180 A/B compartments exhibited different histone modification profiles. To this end, we used published epigenomic
181 datasets for a range of histone PTMs from the same strains (Ec560, Ec561)⁴² and mapped the ChIP-seq datasets
182 to our V5 genome. We found that for both male and female genomes, the histone PTMs associated with active
183 gene expression, such as H3K4me3, H3K9ac, H3K27ac and, most conspicuously, H3K36me3, were significantly
184 enriched in the A compartment (Figure 3C). Conversely, H3K79me2, a histone mark associated with repressed
185 chromatin in *Ectocarpus*^{40,41}, was enriched in the B compartment (Figure 3C). Furthermore, genes located within
186 A compartment regions exhibited higher expression levels than those in the B compartments (Figure 3D). These
187 observations are in agreement with chromatin organization patterns reported in other multicellular eukaryotes
188 where the A/B compartments are enriched with euchromatic and heterochromatic chromatin, respectively^{23,34}.


189 The A/B compartment assignment of the male and female *Ectocarpus* genomes was highly similar; nonetheless,
190 5.3% of the *Ectocarpus* chromatin exhibited different A/B compartment identities in male and female Hi-C maps
191 (Figure 3E). In animals, compartment status and boundaries may change during cell differentiation and correlate
192 with changes in gene expression profiles⁴³. We therefore investigated whether such changes in compartment
193 annotation were associated with the expression patterns of sex-biased genes (SBG), i.e., genes that show a signif-
194 icant change in expression in males versus females^{44,45}. We used RNA-seq datasets⁴² and identified 2,069 SBGs
195 (see methods for details, Table S7). Depending on the expression preference, these SBGs were further annotated
196 as male- and female-biased genes (MBGs and FBGs), respectively. Compared with the distribution of unbiased
197 genes concerning A/B compartment annotation, SBG were not enriched in the regions where A/B compartment
198 identity changed (Chi-square test $p=0.0649$), suggesting that the regulation of SBG expression is largely independ-
199 ent from the chromosomal conformation. MBG in males were upregulated when in compartment A compared to
200 FBG, and the opposite was true in females (Figure 3F), and we noticed that whilst MBG in males still show greater
201 expression associated to the A compartment, the overall expression levels were higher, regardless of the com-
202 partment. Therefore, the patterns of expression of SBG were correlated with their association to histone PTMs
203 and to the specific 3D chromatin organization in males versus females.

205 **Figure 3: High-resolution contact probability map reveals the higher-order organization of the *Ectocarpus* genome.** (A)
206 Compartment A/B annotation based on principal component analysis. PC1 stands for the first principal component. The right
207 panel shows inter-chromosomal contact patterns of A/B compartment regions between chromosomes 1 and 2. (B) Inter-chro-
208 mosomal contacts of selected chromosome 1 regions with other chromosomes. The plots describe inter-chromosomal con-
209 tact patterns belonging to the compartment A3 (top), B3 (middle), and centromere regions (bottom). The A/B compartment annota-
210 tion of individual chromosomes is indicated with different colors. (C) Comparison of histone modifications, represented as fold
211 changes of regions enriched with selected histone marks. For each histone mark, the enriched regions are grouped according
212 to A/B Compartments of *Ectocarpus* male and female. Mean value of $\log_2(\text{fold change})$ is represented by a red dot in each
213 boxplot. Wilcoxon test, NS: $p > 0.05$, *: $p < 0.05$, **: $p < 0.01$, ***: $p < 0.001$, ****: $p < 0.0001$. Numbers in brackets represent
214 the number of peaks of the corresponding histone ChIP-seq data. (D) Levels of gene expression in compartment A and B in
215 males and females. p -values of Wilcoxon test, **: $p < 0.01$, ***: $p < 0.001$, ****: $p < 0.0001$. Numbers in brackets represent
216 the number of genes. (E) Sizes of conserved and switching A/B compartment regions in male and female *Ectocarpus* genomes.
217 "X ->Y" indicates compartment annotation in male ("X") and female ("Y"). The pie chart indicates pooled data from all chro-
218 mosomes. (F): Expression of sex biased genes (SBG) in compartment A/B regions. MBG: male biased gene; FBG: female biased
219 gene; Unb, unbiased gene. p -values of Wilcoxon test, **: $p < 0.01$, ***: $p < 0.001$, ****: $p < 0.0001$. Numbers in brackets
220 represent the number of genes.

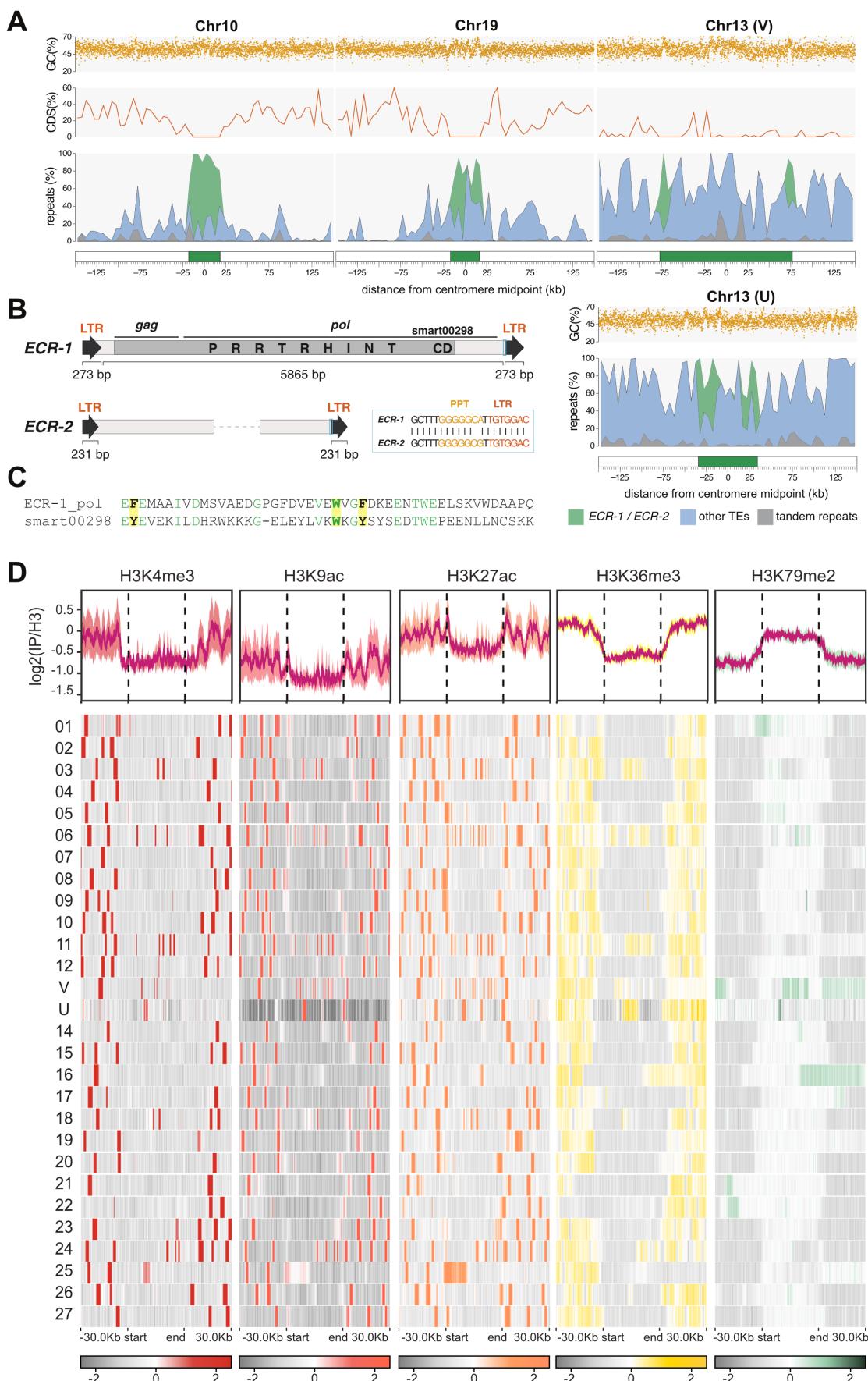
221 **U and V sex chromosomes and autosomes adopt distinct conformations**

222 The sex-specific high resolution genomic maps were then used to compare the sub-nuclear 3D genomic architec-
223 ture of the U and V sex chromosomes. The U and V sex-specific regions (SDR) have been identified and character-
224 ized previously^{9,46,47} but their largely repeat rich nature has prevented their full assembly. In the *Ectocarpus* V5,
225 the V and U chromosome had a total length of 7.16 Mb and 7.23 Mb respectively (see **Figure 1**). In *Ectocarpus*, U
226 and V are largely homomorphic with a small region that is non-recombining (SDR) and therefore largely divergent
227 between male and female^{9,47} (Figure S8A). The male and female SDR of the *Ectocarpus* V5 genome feature no
228 gaps. We also noticed that compared to the V2, the female SDR has increased in physical size (Figure S8B). This
229 was mainly due to the addition of repeats in the new assembly (V2 had 34.7% of repeats and V5 68.3% of repeats
230 in the U-SDR). The small SDRs are flanked by large pseudoautosomal regions (PARs), which recombine at meiosis
231^{9,48}. Structural analysis using our new assembly confirmed that U and V sex chromosomes display unique charac-
232 teristics compared with autosomes, including lower GC content, higher repeat content and lower gene density
233^{9,48} and a largely repressive chromatin landscape⁴¹ (Table S4, Figure 4A). We then used the 2 kb resolution Hi-C
234 map to investigate the 3D structure of the sex chromosomes in the *Ectocarpus* nucleus. Intriguingly, the U and V
235 sex chromosomes exhibited a distinct 3D architecture compared to autosomes, with their central, sex-specific
236 regions (SDRs) both being insulated from the flanking PAR regions (Figure 4B, see also Figure 2D), with high intra-
237 chromosomal contacts in the 3D space. We also noticed that both U and V SDRs spanned the centromeres (Figure
238 4B).

239

240 **Figure 4: U and V sex chromosome 3D architecture.** (A) Plot showing gene density, GC content, TE density in 100kb windows
 241 and compartment A/B (PC1) in 10kb windows across *Ectocarpus* chromosomes. Chromosome 13 is the sex chromosome. (B)
 242 Hi-C map and simulated 3D configurations of sex chromosomes at 10k resolution. SDRs in the simulated male and female
 243 chromosomes are colored in blue and red, respectively, and telomeres are labeled with black triangles. In each panel, the black
 244 arrowhead indicates centromere. The tracks above each Hi-C map show A/B compartment annotation (PC1), gene-expression
 245 (RNA-seq), and various histone modification ChIP-seq.

246 ***Ectocarpus* centromeres are distinguished by specific LTR retrotransposons**

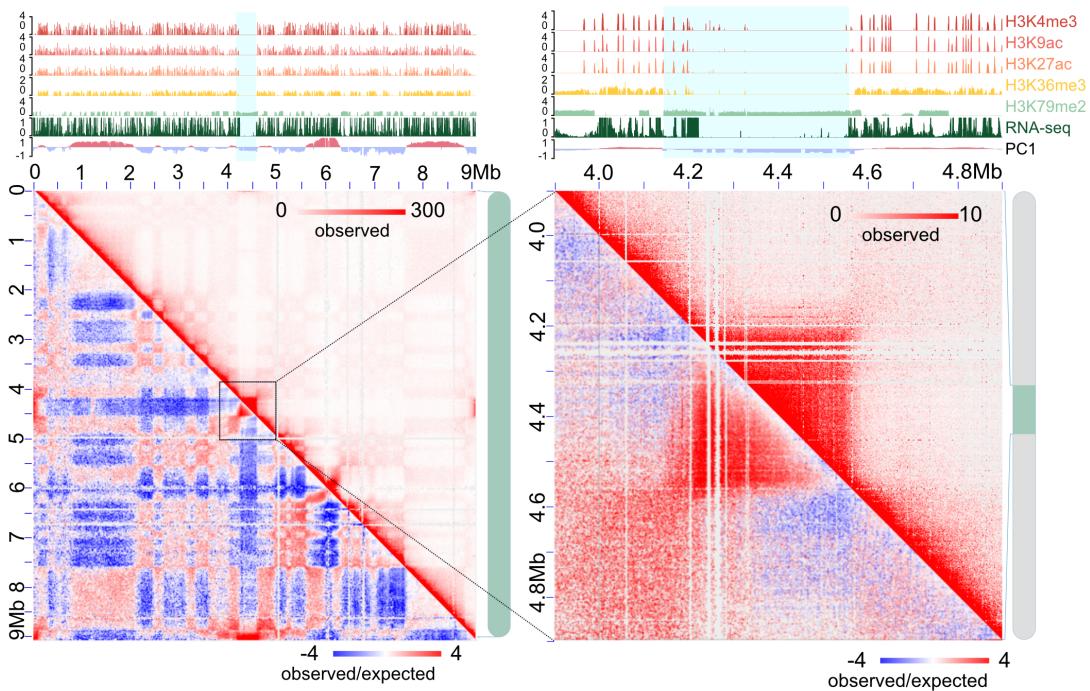

247 To determine the structure and precise locations of the *Ectocarpus* centromeres, we analysed the sequence char-
 248 acteristics of the chromosomal regions delineated by centromere-to-centromere interactions (see **Figure 2B**, **Fig-**
 249 **ure 3A, 3B**). Regional centromeres vary extensively among eukaryotes, with common structures including short
 250 non-repetitive AT-rich regions, transposon-rich regions spanning tens to hundreds of kilobases, and megabase-
 251 scale satellite arrays (Talbert and Henikoff 2020). We first searched for any specific repeat families that were i)
 252 enriched in the putative centromeric regions, and ii) common to all chromosomes. This revealed two retrotrans-
 253 poson families that are almost exclusively restricted to a single highly localised, gene-poor, and repeat-rich region
 254 on each chromosome (**Figure 5A**, **Figure S9**). The most abundant of the two elements is a 6.6 kb *Metaviridae* (i.e.
 255 *Ty3/Gypsy*) long terminal repeat (LTR) retrotransposon, which encodes Gag and Pol on a single open reading

256 frame of 1,699 aa and can be found as full-length copies flanked by 4 bp target site duplications (**Figure 5B**). The
257 second is presumably a related LTR element, although it is only present in degraded fragments, and we were
258 unable to recover an internal protein-coding region. The two retrotransposon families share a ~64 bp region of
259 homology that includes the polypurine tract that immediately precedes the 3' terminal repeat (**Figure 5B**). We
260 name these elements *ECR-1* and *ECR-2* for *Ectocarpus* Centromeric Retrotransposon.

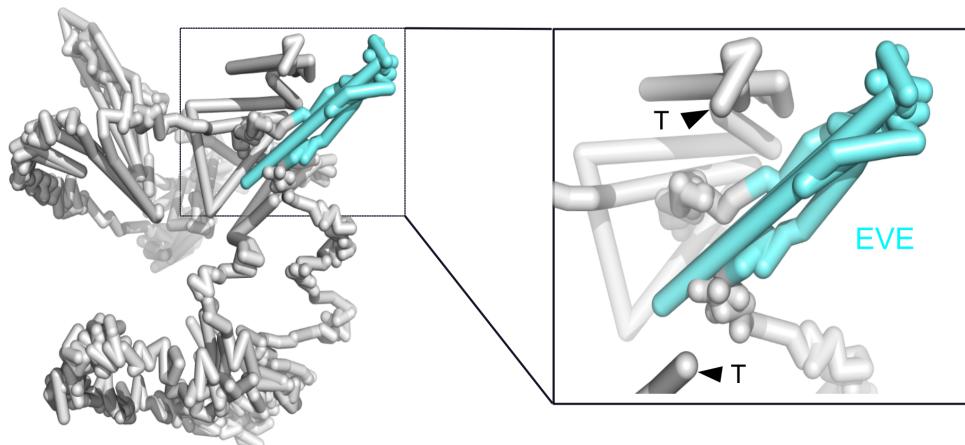
261 Notably, the *ECR-1* polyprotein features a C-terminal chromodomain fused to the integrase domain (**Figure 5B**,
262 **C**). Chromodomains recognise and bind histone methylated-lysines via a cage tertiary structure that is formed by
263 three aromatic residues ⁴⁹, all of which are conserved in the *ECR-1* polyprotein (**Figure 5C**).

264 Defining the putative centromeres as the region between the first and last *ECR* element, lengths range from only
265 6.8 kb on chromosome 25 (essentially a single copy of *ECR-1*) to 153.9 kb on the male chromosome 13 (i.e., chro-
266 mosome V), with a median of 38.6 kb (**Table S6**). On average per centromere, 33% of bases are contributed by
267 *ECR-1*, 7.3% by *ECR-2*, and 34% by other interspersed repeats that are not exclusive to these regions. Tandem
268 repeats constitute only 3.5% of the putative centromeres, relative to 6.7% elsewhere in the genome. Although
269 genes were generally absent from these regions, certain chromosomes feature a small number of genes distrib-
270 uted among the *ECR* copies (e.g. chromosome V, **Figure 5A**). The GC content of the putative centromeres (52.7%)
271 is only marginally lower than the rest of the genome (53.5%). However, this is partly driven by the GC content of
272 *ECR-1* (58.2%), and several chromosomes do feature short AT-rich sequences within the putative centromeres
273 (e.g., chromosome 19, **Figure 5A**). As expected, following their evolutionary independence, the putative centro-
274 mere of the female U chromosome differs substantially in length and composition relative to the V chromosome.

275 To further characterize the *Ectocarpus* putative centromeres, we analyzed the associated chromatin pattern using
276 ChIP-seq data (**Figure 5D**, **Figure S10A**). Despite their assignment to compartment A, the putative centromeres
277 exhibit a slight enrichment with the H3K79me2 mark. Furthermore, the surrounding regions of these putative
278 centromeres contain prominent peaks of histone marks associated with active genes (H3K4me3, H3K9ac,
279 H3K27ac and H3K36me3), consistent with their compartment assignment and the presence of flanking genes.
280 Interestingly, on a few chromosomes, the H3K79me2 pattern extends beyond the boundaries of the ECR. This
281 observation holds true when using a different mapping method (removing multi-mapping reads) for chromo-
282 somes 1, 16, U, and V (**Figure S10B**). These regions were highly enriched with transposable elements (TEs). Nota-
283 bly, the core of the V centromere exhibited a strong signal in H3K79me2 marks, which is not retrieved in the U
284 chromosome, except one strong spike of H3K79me2.



286 **Figure 5. *Ectocarpus centromeres and centromere-specific retrotransposons.*** (A) The centromeric regions of select chro-
287 mosomes and the ECR retrotransposons. Putative centromeres and flanking regions for four chromosomes, including the U
288 chromosome from the female genome assembly. The centromere (green box) is defined as the region from the first to the last
289 copy of ECR elements. The repeats panel is shown as a stacked area plot, and the percentage of each repeat type is plotted in
290 5 kb windows. Coding sequence (CDS) density is plotted in 5 kb windows, and GC content is plotted in 100 bp windows. For all
291 chromosomes see Supplemental Figure S9, and for genomic coordinates see Table S6. (B) Schematics of the ECR retrotrans-
292 posons. The light blue boxes highlight the conserved region between ECR-1 and ECR-2, and a partial alignment of this region
293 is shown (PPT = polypurine tract). Only 5' and 3' fragments of ECR-2 were recovered, and the dashed line represents protein-
294 coding sequence that is presumably missing. The domains shown on the ECR-1 protein are: PR = protease, RT = reverse tran-
295 scriptase, RH = RNaseH, INT = integrase, CD = chromodomain. (C) Alignment of ECR-1 chromodomain and SMART chromo-
296 domain curated model (smart00298). Conserved amino acids are coloured green, and the three aromatic amino acids that
297 are responsible for recognition of histone methylated-lysines are highlighted in yellow. (D) Histone mark signal ($\log_2(\text{IP}/\text{H3})$)
298 in the putative centromeres and the surrounding regions (30Kb). Plots were computed from male data and multi-mapping
299 method with a bin size of 100bp. On top, profiles of histone marks around the centromeres. The dark pink line stands for the
300 result and the thick light-colored line behind stands for the standard error. Note that the U chromosome was added to the
301 male heatmap for simplicity. For the whole heatmap (separately done for male and female) see Supplemental **Figure S10A**.


302 An inserted (endogenous) viral element exhibits a unique chromatin conformation

303 Marine filamentous brown algae of the order Ectocarpales frequently carry endogenous giant viruses with large
304 double-stranded DNA genomes⁵⁰. *Ectocarpus* sp.7, in particular, has been shown to harbor such type of endoge-
305 nous viral element inserted in chromosome 6, derived from the *Ectocarpus* phaeovirus EsV-1^{29,51,52}. We confirmed
306 the presence of an endogenous viral element (that we name Ec32EVE) localizing to chromosome 6 in our V5
307 *Ectocarpus* genome (**Figure 6A**, see also **Figure 1A**). The Ec32EVE is 399 kbp long and contains 199 genes, and is
308 covered with a large domain of the repression-associated mark H3K79me2 previously shown to be associated
309 with the silencing of transposable elements in *Ectocarpus*^{40,41}. The Ec32EVE region exhibits a depletion of activa-
310 tion-associated histone marks H3K4me3, H3K9ac, H3K27ac and H3K36me3 (**Figure 6A**). Consistent with this het-
311 erochromatic landscape, RNAseq analysis showed negligible expression throughout the entire Ec32EVE region
312 (**Figure 6A**), highlighting the silent nature of the potentially coding regions within the endogenous viral element.
313 The chromosome 6 Hi-C map further revealed high levels of compaction and insulation, associated with the viral
314 insertion region (**Figure 6A**). Remarkably, the Ec32EVE region displayed strong long-range contact with telomeres
315 in the nuclear 3D space (**Figure 6B**). We asked whether this observation was related to the highly heterochromatic
316 nature of the Ec32EVE region. However, other *Ectocarpus* genomic regions equally marked with long stretches of
317 H3K79me2 did not necessarily cluster in 3D with telomeres (**Figure S11**). It appears, therefore, that the Ec32EVE
318 insertion, rather than the epigenetic footprint of this region *per se*, is implicated in the unique 3D structure of this
319 region.

A

B

320

321

322

323

324

325

326

Figure 6. Virus insertion region (EVE) is insulated and shows strong interactions with telomeres. (A) Hi-C map of chromosome 6. The zoomed-in region to the right contains the EVE (4.2-4.6 Mb). The tracks above each Hi-C map show A/B compartment annotation (PC1), gene-expression (RNA-seq), and histone PTMs ChIP-seq tracks. A blue shade marks the region of the Ec32EVE. (B) Simulated 3D configurations of chromosome 6 at 10k resolution. The EVE region is colored in aquamarine, and the telomeres are labeled with black triangles. To the right, the Ec32EVE region is zoomed-in to highlight the long-range contacts with the telomeres.

327

Discussion

328

329

330

High-quality and complete reference genome assemblies are fundamental for the application of genomics to a range of disciplines in biology, from evolutionary genomics, genetics to biodiversity conservation. Here, we obtained a highly accurate and nearly complete assembly of the reference genome of the brown alga *Ectocarpus*, a

331 model organism for this key group of eukaryotes. The *Ectocarpus* V5 assembly includes telomeres for most chro-
332 mosomes, very few gaps, and therefore provides a new reference genome for the scientific community.

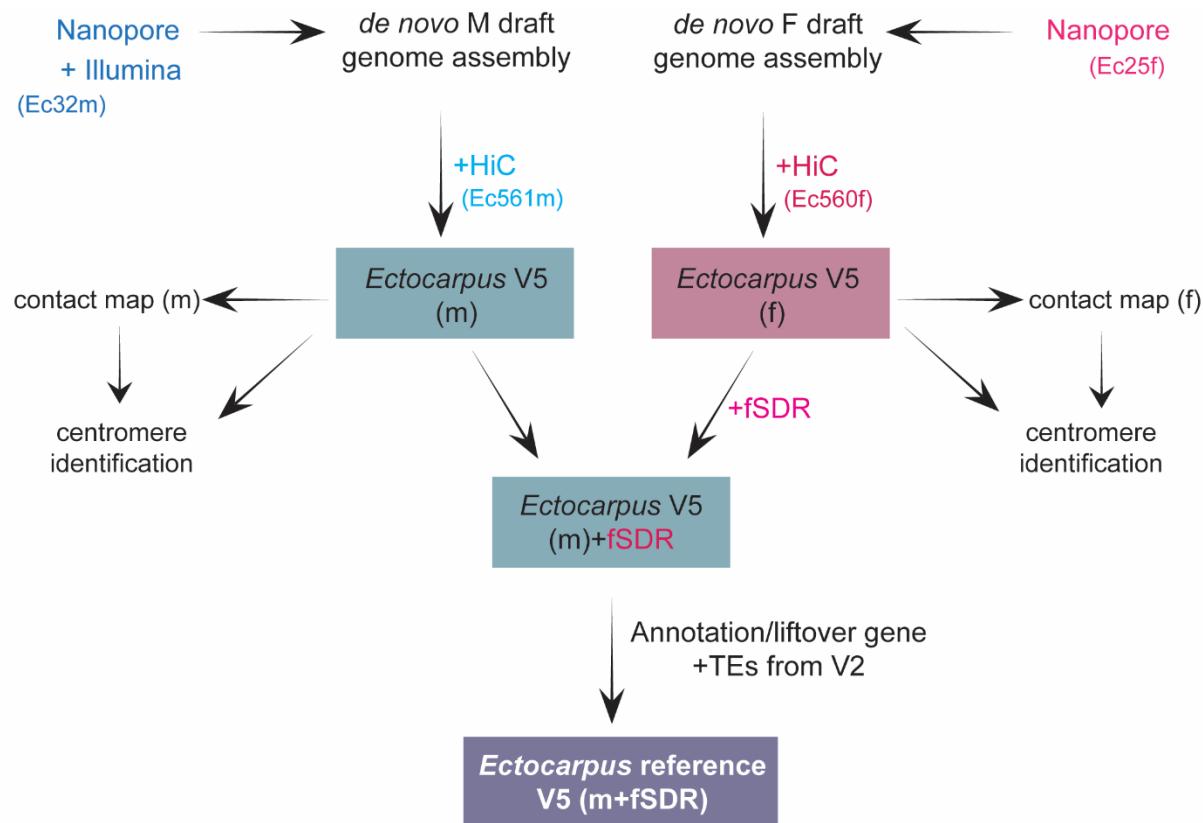
333 Chromosome folding patterns vary across lineages⁵³. For example, in many plant species with relatively large
334 genomes, chromosomes adopt Rabl configuration during interphase, in which centromere or telomere bundles
335 are associated with opposite faces of the nuclear envelope. For chromosomes with Rabl configuration, their Hi-C
336 maps display a characteristic belt that is perpendicular to the primary diagonal. *Arabidopsis*, in contrast, presents
337 a Rosette configuration⁵⁴, where the Hi-C maps feature conspicuous long-range intra-chromosomal contacts due
338 to the formation of megabase-size loops. None of these features were found in the *Ectocarpus* Hi-C map, suggest-
339 ing that its chromatin adopts a non-Rabl and non-Rosette configuration. Chromatin arrangement of interphase
340 chromosomes in *Ectocarpus* involved telomeres of all chromosomes and centromeres of all chromosomes clus-
341 tering together. Therefore, despite different linear genome architectures and centromere sequence composi-
342 tions, centromere interactions appear to be a pervasive feature in eukaryotes, from plants and animals to brown
343 algae.

344 TADs, whose boundaries partition the genome into distinct regulatory territories, are a prevalent structural fea-
345 ture of genome packing in animal and plant species, but our observations showed that TADs are not prominent
346 in the *Ectocarpus* genome. Note that *Ectocarpus* has a relatively simple morphology with a reduced number of
347 cell types. The Hi-C maps, thus, are likely to faithfully represent the interphase chromatin structure of male and
348 female *Ectocarpus* rather than an average conformation across multi-cell types as in other more complex organ-
349 isms. This feature allows us to conclude that *Ectocarpus* has a non-Rabl chromatin conformation and does not
350 exhibit TADs at a local level. The *A. thaliana* genome is another example in which TADs are absent²⁵ and this
351 feature is thought to be related to *A. thaliana* genome small size, high gene density, and short intergenic regions.
352 Given that *Ectocarpus* also has similar genomic characteristics, the absence of TADs in *Ectocarpus* supports the
353 hypothesis that TADs may form when the genome size is above a certain threshold^{55,56}. Note that in *A. thaliana*,
354 despite its genome not having clear TADs, over 1000 TAD-boundary-like and insulator-like sequences were found
355 from Hi-C maps normalized with 2 kb genomic bins²⁵. These regions possess similar properties to those of animal
356 TAD borders/insulators, i.e., chromatin contacts crossing insulator-like regions are restricted, and they are en-
357 riched for open chromatin. The *Ectocarpus* genome, in contrast, is mainly partitioned in H3K79me2 rich and
358 H3K79me2 poor regions, that largely define A and B compartments, but we did not find any evidence for canonical
359 insulators nor 'TAD-boundary-like' regions. Note that CTCF is absent in the genome of *Ectocarpus*, similarly to
360 yeast, *C. elegans* and plants⁵⁷.

361 The high resolution, sex-specific Hi-C maps of haploid individuals allowed us to examine the 3D structure of the U
362 and V sex chromosomes in the interphase nucleus of *Ectocarpus* males and females. The U and V chromosomes
363 are largely homomorphic, each containing a small, non-recombining region^{9,47} that harbors several dozen genes,
364 including the master male-determining factor MIN⁵⁸, and a largely heterochromatic landscape⁴¹. Our *Ectocarpus*
365 V5 yielded gapless SDRs and demonstrated that the U and V SDRs span the centromere. Linkage between mating
366 type (MT) locus and centromeres is a common feature of haploid mating-type (MT) chromosomes in fungi. For
367 example, in the *Microbotryum* fungi, recombination suppression links the MT determining loci to centromeres
368^{59,60} and this is thought to help preserving heterozygosity and/or be beneficial under auto-fecundation, as it in-
369 creases the degree of compatibility between gametes from the same individual. A similar process is unlikely to be
370 operating in *Ectocarpus* because there is no intra-tetrad direct crossing; haploid spores disperse after meiosis,

371 develop into male and female gametophytes and produce gametes at a later stage⁶¹. It is therefore more con-
372 ceivable that SDR linkage to centromere in *Ectocarpus* occurred due to expansion of the non-recombining SDR,
373 during which the centromere was subsumed in this region likely via a large scale inversion⁴⁷.

374 What is the potential role of the sex chromosome 3D chromatin configuration? Among numerous steps required
375 for gene expression, the spatial organization of the genome is known to modulate DNA accessibility to the tran-
376 scriptional machinery and to promote contacts between genes and distant regulatory DNA elements such as en-
377 hancers⁶². In the case of *Ectocarpus*, the correct spatial and temporal window of transcriptional activation of genes
378 contained within the SDR is critical to ensure sex determination and differentiation in the brown algal tissues. It
379 is therefore likely that the tight transcriptional regulation of the SDR is achieved both by 3D chromatin remodeling
380 in conjunction with histone PTMs and sRNA⁴². Whilst the 3D chromatin configuration of animal and plants sex
381 chromosomes remains largely elusive, it is well known that chromatin 3D structure is involved in repression of the
382 silent MT loci in yeast *Saccharomyces cerevisiae* during mating type switching^{63 64}. Therefore, it appears that
383 modulation of mating type or sex chromosome architecture may play a significant role in controlling sex-specific
384 features across eukaryotic lineages.

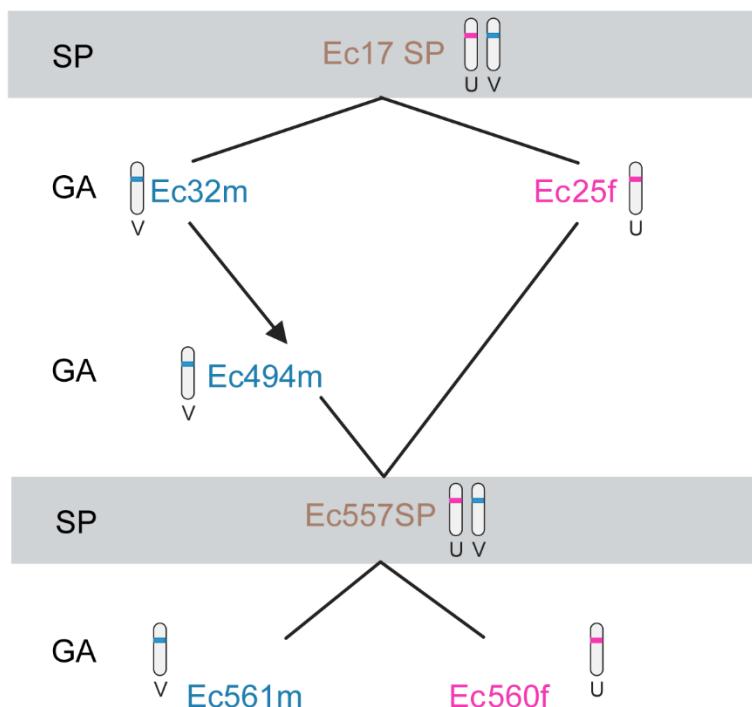

385 The *Ectocarpus* V5 assembly and high-resolution Hi-C map allowed us to examine centromeric sequences in this
386 organism. We observed 27 unique centromere sequences occurring once per chromosome, a finding that helps
387 to resolve nuclear genome organization and indicates monocentric regional centromeres. The centromeres of
388 *Ectocarpus* may be categorised as transposon-rich and primarily composed of centromere-specific retrotranspos-
389 ons. However, although *ECR-1* presumably targets centromeric DNA (and *ECR-2* may have done so in the past), it
390 remains to be determined whether the *ECR* elements constitute the epigenetic centromere. The putative centro-
391 meres are short relative to the transposon-rich centromeres of many other species⁶⁵, and we cannot rule out an
392 association between cenH3 and short AT-rich sequences, as in diatoms⁶⁶. ChIP-sequencing of cenH3 will be re-
393 quired to distinguish between these possibilities.

394 The fusion of an LTR integrase to a C-terminal chromodomain is most widely known from the evolutionary ancient
395 chromovirus clade of *Metaviridae* LTRs, where the presence of the chromodomain enables recognition of specific
396 histone modifications and targeted insertion at associated genomic sites⁶⁷. In plants, the CRM subclade of chro-
397 movirus LTRs contains many centromere-targeting families that accompany satellite arrays and constitute a major
398 component of centromeric DNA⁶⁸. Independent lineages of chromodomain-containing LTRs have been reported
399 in Stramenopiles, including the Chronos *Metaviridae* elements of oomycetes⁶⁹ and the CoDi-like *Pseudoviridae*
400 (i.e. *Ty1/Copia*) elements of diatoms⁷⁰. Interestingly, *ECR-1* does not appear to be a member of either the chro-
401 movirus or Chronos clades, and instead is most closely related to chromodomain-containing oomycete LTRs that
402 are yet to be phylogenetically classified (e.g. *Gypsy-20_PR* from *Phytophthora ramorum*). We hypothesise that
403 the chromodomain of *ECR-1* may enable centromere-targeted integration in *Ectocarpus*, either by recognition of
404 cenH3 or another centromere-associated epigenetic context, implying evolutionary convergence with the CRM
405 elements of plants. However, it is unlikely that the targeting mechanism is itself convergent, since the centromere-
406 targeting CRM elements feature derived chromodomains that lack the three conserved aromatic amino acids⁶⁸,
407 which are present in *ECR-1*.

408 Viruses that transcribe their DNA within the nucleus have to adapt to the molecular mechanisms that govern
409 transcriptional regulation. The interaction between chromatin and viral directed modulation of chromatin are
410 critical component of the viral-host interaction⁷¹. However, the complexity of the higher-order organization of

411 the host genome and its potential influence in the regulation of gene expression raises questions regarding the
412 spatial arrangement of integrated viral DNA in the host's genome. Phaeoviruses are latent giant double-stranded
413 DNA viruses that insert their genomes into those of their brown algal (Phaeophyceae) hosts^{50,52}. Remarkably, alt-
414 hough about 50% of individuals in *Ectocarpus* field populations show symptoms of giant viral infection⁷², the
415 *Ectocarpus* strain used in this study has never been observed to produce virus particles, and Ec32EVE genes are
416 transcriptionally silent²⁹. Here, we showed that the silencing of Ec32EVE genes correlated with deposition of large
417 domains of repressive-associated chromatin mark H3K79me2, concomitant with depletion of activation-associ-
418 ated marks. Moreover, the inserted giant viral element was associated to the B compartment, and adopted a
419 highly insulated conformation in the 3D nuclear space, exhibiting strong long-range contacts with the telomeres.
420 Whilst the detailed mechanisms underlying the relationship between giant virus latency and gene-silencing mech-
421 anisms, including 3D architecture of the chromatin, remain to be determined, our study provides strong evidence
422 for an interplay between 3D chromatin architecture, H3K79me2 domains and EVE gene silencing, as open new
423 avenues to gain insights regarding the functional significance of these interactions.

424 Supplemental Figures

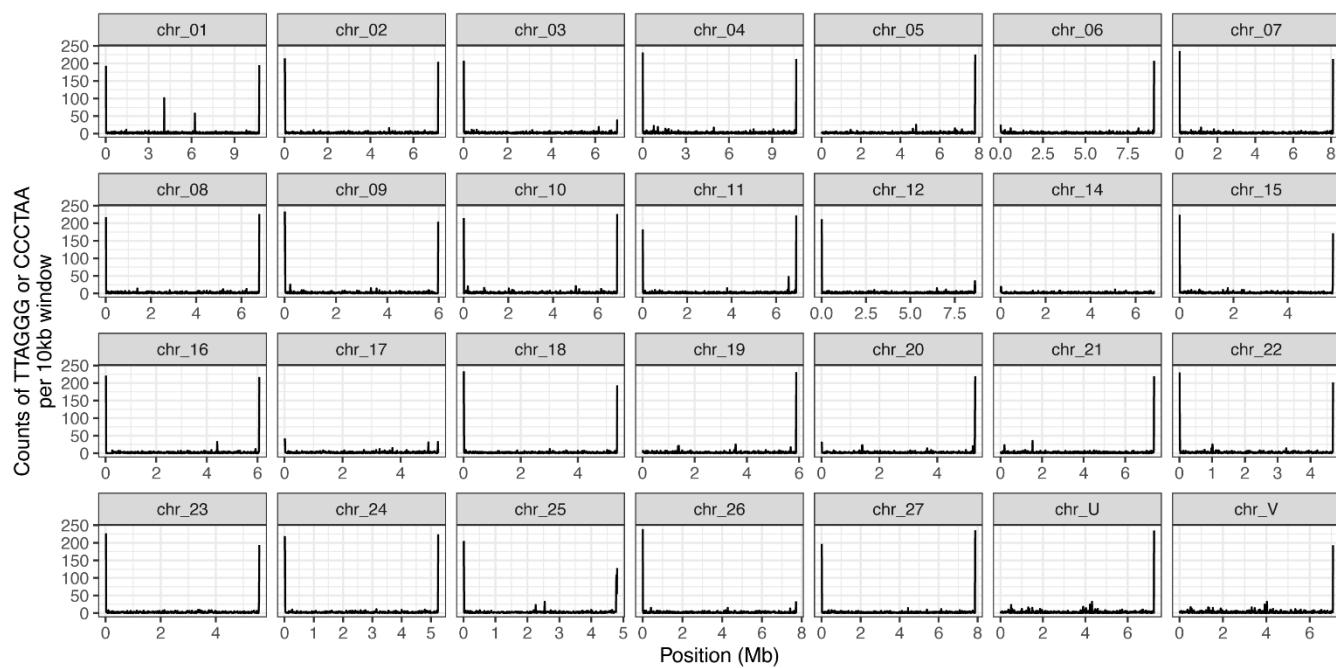


425 **Figure S1. Schematic view of the approach used to reach a high-quality genome assembly of male and female *Ectocarpus*.**
426 De novo draft genomes from male and female siblings (Ec32 male and Ec25 female) were generated using Nanopore, and the
427 male genome was polished using illumine reads. Genomes were further assembled using Hi-C data from Ec560 and Ec561
428 (near isogenic male and female lines ⁴¹). This resulted in the generation of male and female V5 genomes that were used for
429 producing high resolution male and female contact maps. In order to have only one 'reference' genome, we chose to use the
430 male V5 reference genome and complemented it with the female-specific sex-determining contig (SDR). Therefore, the final
431 'reference' *Ectocarpus* genome V5 is composed of high-quality male genome that includes both the male and the female SDR.
432 Annotation of this V5 reference genome was performed by lifting over gene and TE annotations from the *Ectocarpus* V2
433 genome ²⁸. Centromeres were identified based on the contact maps and their annotation further refined (see methods for
434 details). *Ectocarpus* strain numbers are given inside brackets (see also Table S1).

435

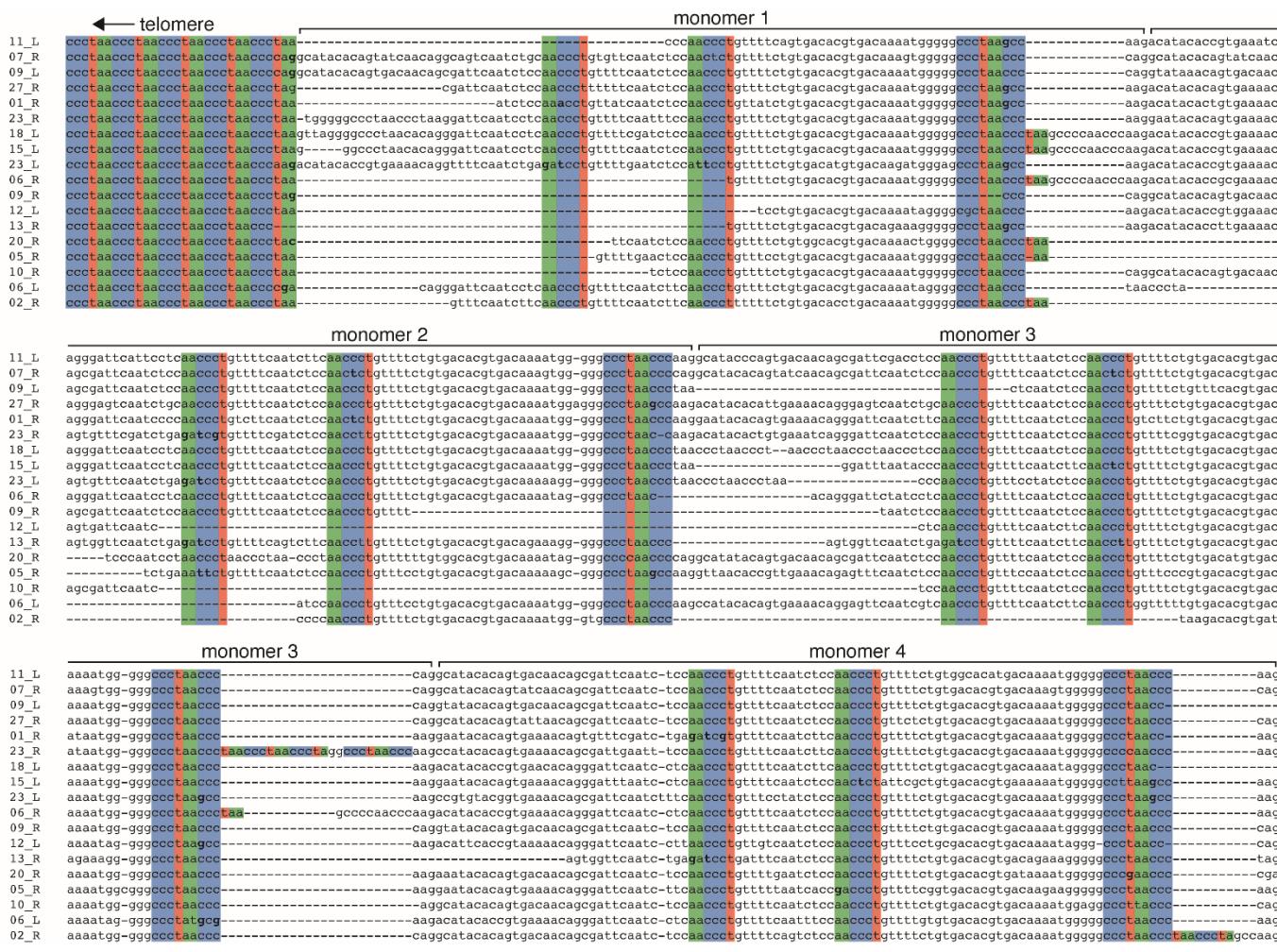
436

437

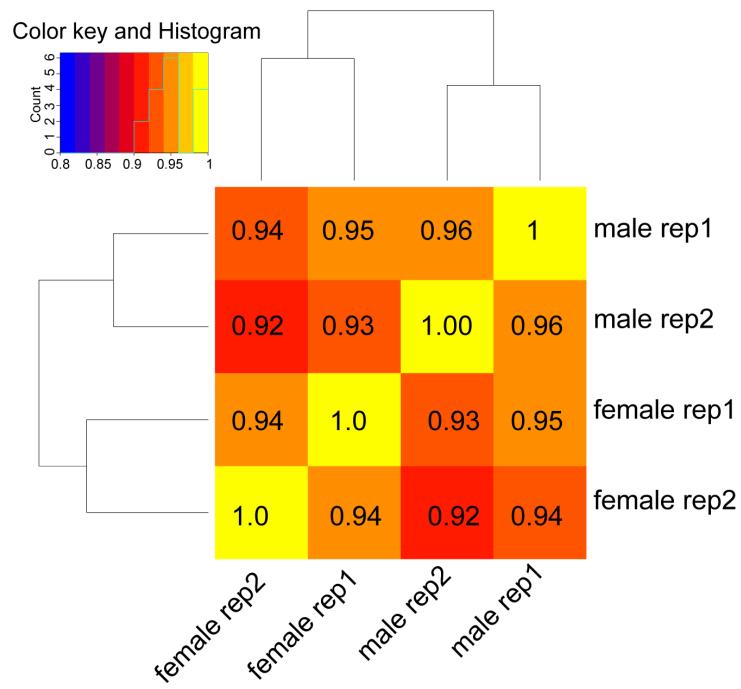


438 **Figure S2: Pedigree of the *Ectocarpus* strains used in this study.** SP, diploid sporophyte; GA, gametophyte; m, male gametophyte; f, female gametophyte.

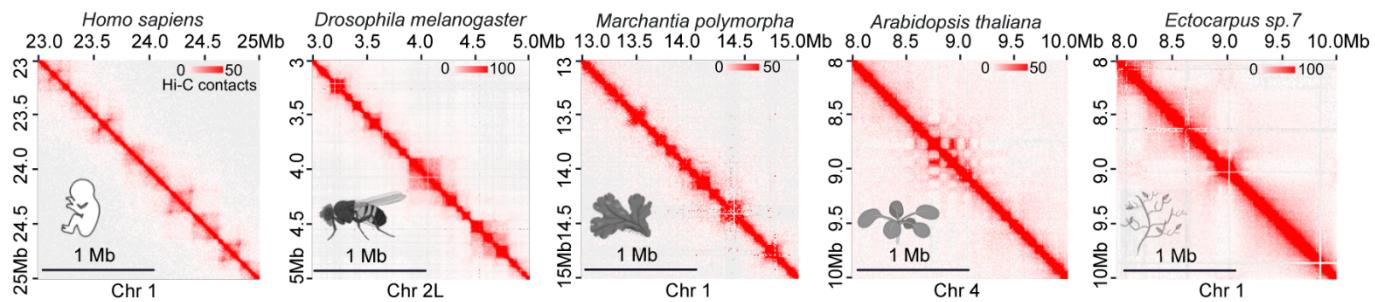
440


441

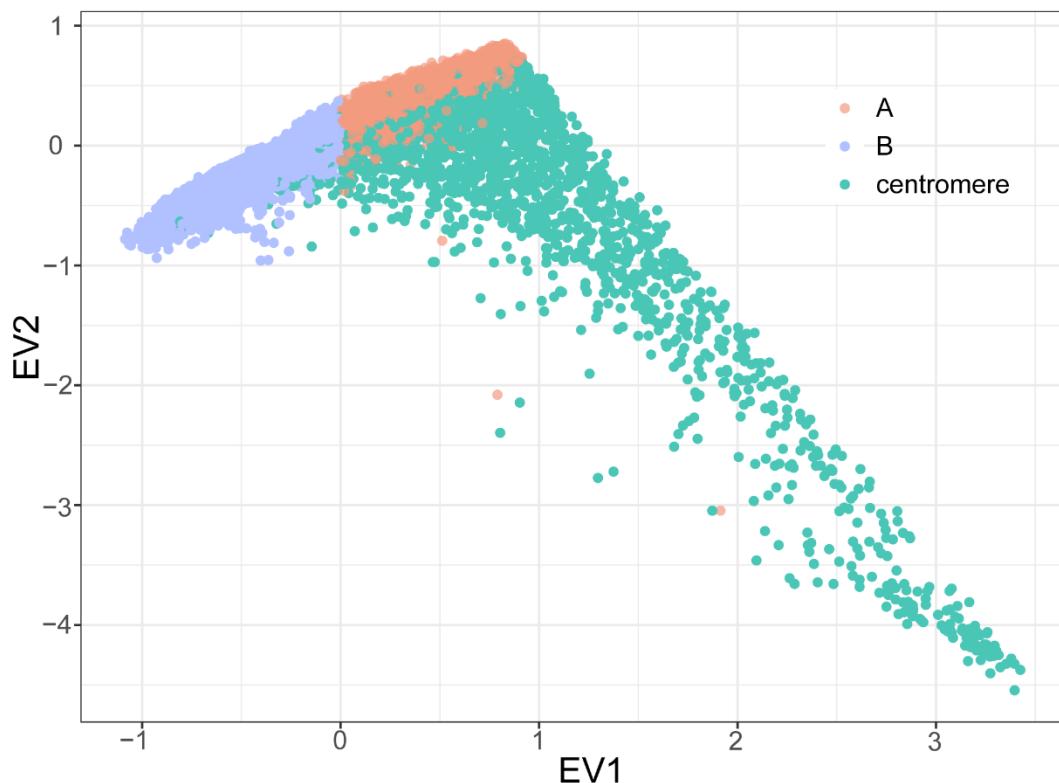
442


443 *Figure S3. Distribution of telomere repeat motif (TTAGGG or CCCTAA) in haploid genome.*

444

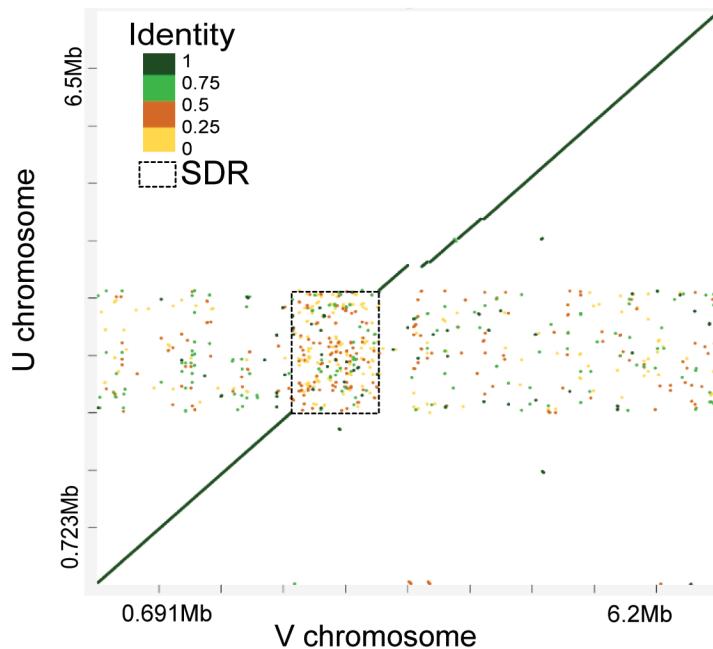

445 **Figure S4. The organization of *Ectocarpus subtelomeres*.** Alignment of 18 subtelomeres (e.g. 11_L is the left extremity of
446 chromosome 11) showing the transition from the telomere to the subtelomeric satellite. The first four monomers of the ~98
447 bp satellite are shown. Telomeres and telomeric motifs present in the subtelomeric satellite are colored.

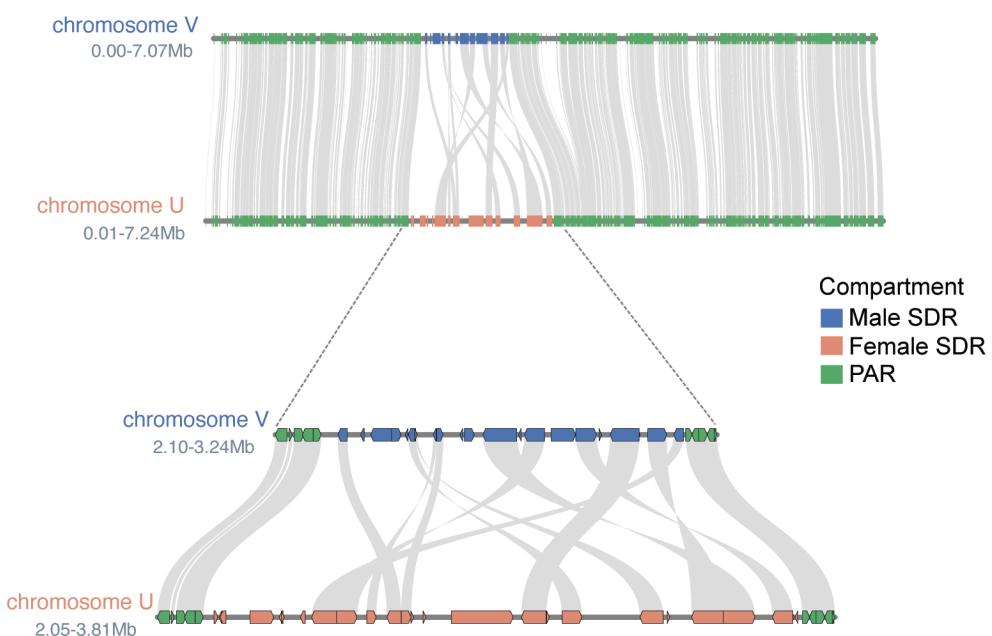
448


449 **Figure S5. Quality control of biological replicates of Hi-C data.** Pearson correction of biological replicates of *Ectocarpus* male
450 and female Hi-C data at 10k bin size

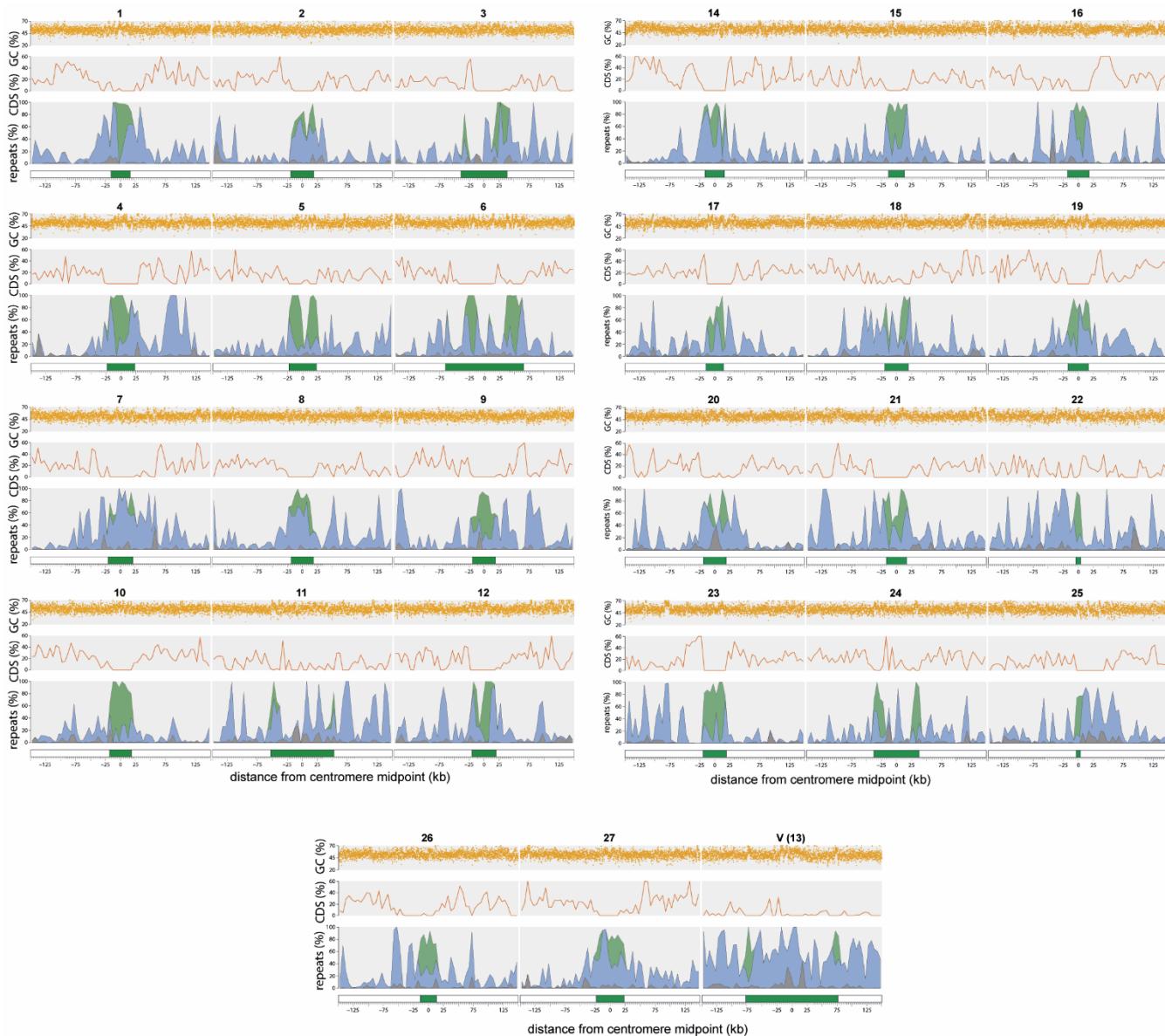
451

452 **Figure S6. No prominent TAD patterns are observed in *Ectocarpus*.** Examples of Hi-C maps from different species representing
453 TADs patterns in *H. sapiens* (chromosome 1,) *Drosophila* (chromosome 2L,⁷³) *Marchantia* (chromosome 1,⁷⁴)
454 *Arabidopsis* (chromosome 4,³⁸) and *Ectocarpus* (chromosome 4, our paper). HiC maps of the different species were obtained using Juic-
455 erbox at 10kb resolution. Note that TADs are not an obvious feature of *Arabidopsis* nor *Ectocarpus* genomes.

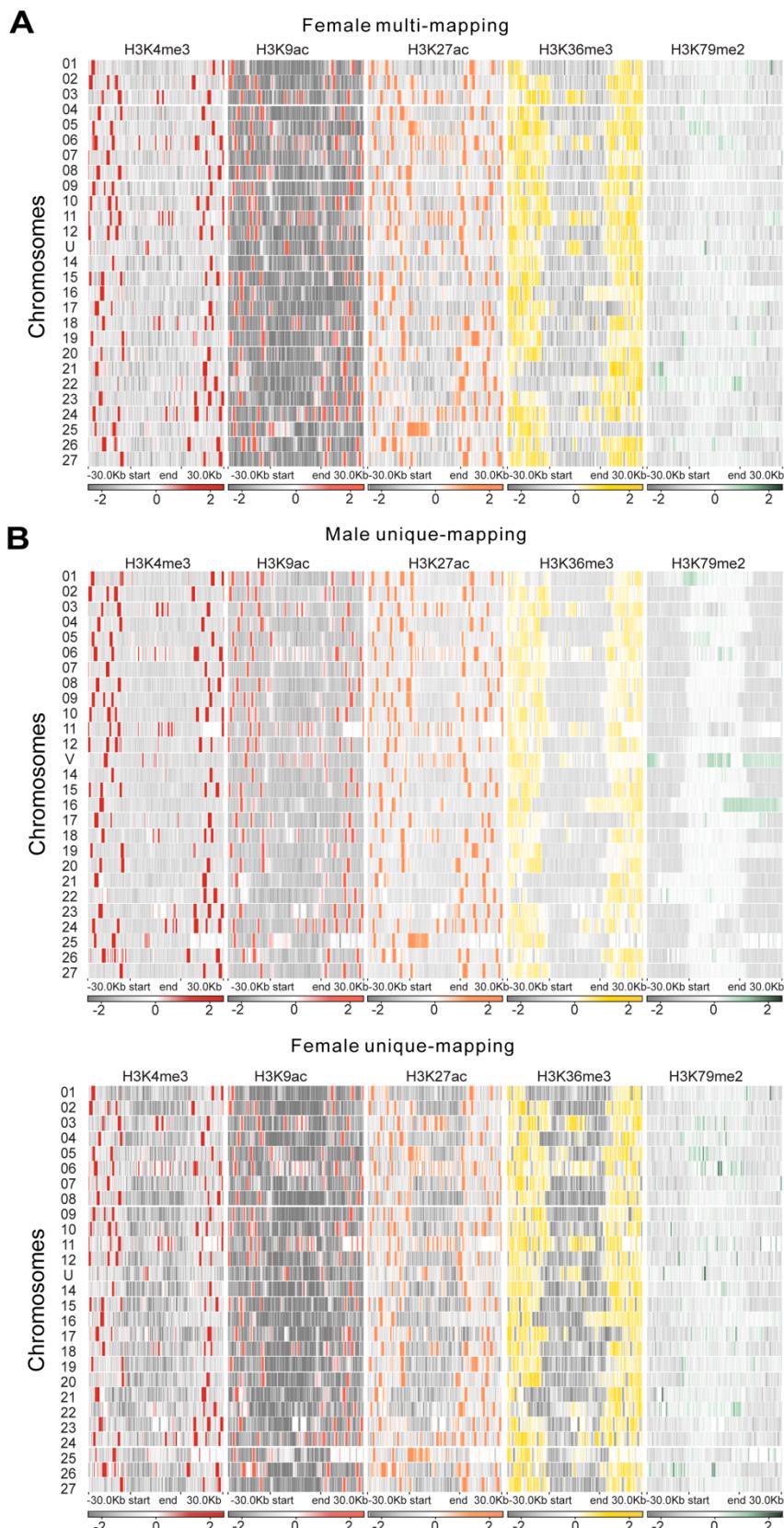

456


457 **Figure S7. Centromeres form distinct sub-compartments.** Centromere is represented as a sub-compartment, which could be
458 separated from compartments by $E1(PC1)$ and $E2(PC2)$.

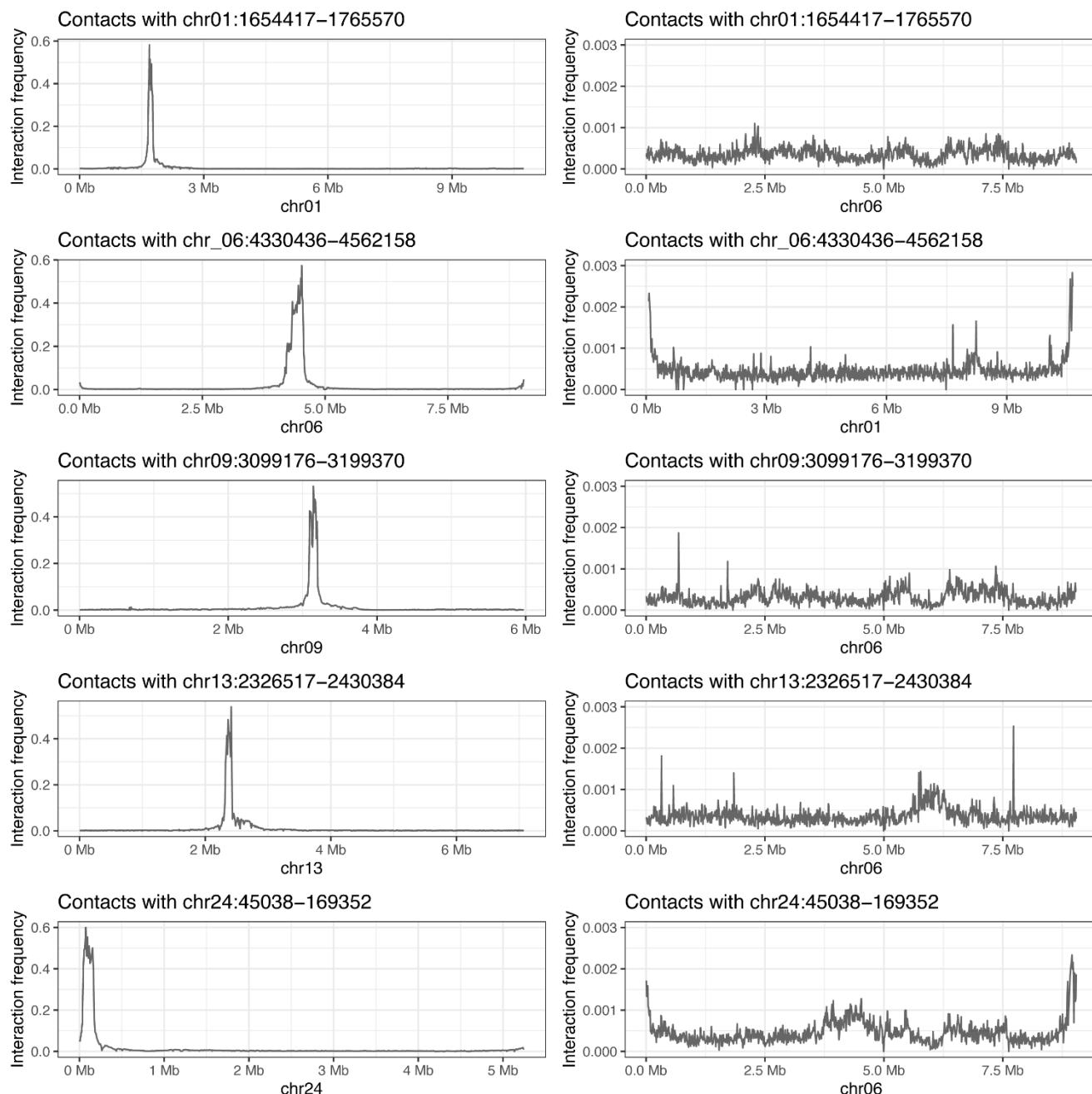
459


A

B



460 **Figure S8. Sequence alignment of U and V sex chromosome.** (A) The matches are presented as colored lines. The colors
461 correspond to identity values that have been clustered in four groups (below 25%, between 25% and 50%, between 50% and
462 75% and over 75%), the dash box shows SDRs. (B) Synteny plot male vs female sex chromosome, including the newly, fully
463 continuous male and female SDRs.


464 **Figure S9. Sequence characteristics of *Ectocarpus centromeres*.** Putative centromeres and flanking regions for all chromo-
 465 somes from the male Ec32 v5 assembly. The centromere (green box) is defined as the region from the first to the last copy of
 466 ECR elements. The repeats panel is shown as a stacked area plot, and the percentage of each repeat type is plotted in 5 kb
 467 windows. Coding sequence (CDS) density is plotted in 5 kb windows, and GC content is plotted in 100 bp windows.

468

469 **Figure S10. Heatmaps of histone marks around centromeres.** For each heatmap, $\log_2(\text{IP}/\text{H3})$ is calculated on the putative
470 centromere regions and 30Kb surroundings with a bin size of 100bp. (A) Heatmap from female data and multi-mapping
471 method. (B) Heatmap from male and female data with unique-mapping method.

472

473
474

Figure S11. Examples of virtual 4C-like plot of H3K79me2 domains larger than 100 kb. Intra/inter chromosomal interaction frequency of H3K79me2 domains.

475

476 **Supplemental Tables**

477 Table S1. *Ectocarpus* strains used in this study.

478 Table S2. Nanopore long reads statistics.

479 Table S3. Statistics of number of Hi-C reads in the different samples and replicates

480 Table S4. Genome statistics (chromosome level assembly). Note that Chromosome (chr) 13 is the sex chromo-
481 some. Statistics are shown separately for male (V) and female (U) sex chromosomes.

482 Table S5. Statistics of complete, single, duplicated, fragmented, and missing genes computed by BUSCO v5.7.0

483 Table S6. Genomic coordinates and repeat densities for *Ectocarpus* putative centromeres. Centromeric coordi-
484 nates were defined as the first to the last copy of ECR elements.

485 Table S7. Gene expression levels (transcripts per million, TPM) in the *Ectocarpus* male versus female samples used
486 in this study (gametophytes)

487 Table S8. Number of sex biased genes (SBG) in compartments A and B in males and females.

488 Table S9: Comparative statistics of *Ectocarpus* sex determination region (SDR) annotations between the *Ectocar-*
489 *pus* V2 and V5 assembly.

490 **Methods**

491 **Brown algae culture**

492 Algae were cultured as previously described ⁷⁵. Briefly, *Ectocarpus* strains Ec32, Ec25, Ec561, and Ec560 were
493 grown in autoclaved natural seawater (NSW) with PES at 14 °C with the light intensity of 20 µmol photons m⁻² s⁻¹
494 (12h light/12h dark). The medium was changed every week. Before collection, algae were treated with antibiotics:
495 Streptomycin (25mg/L), Chloramphenicol (5mg/L), and PenicillinG (100mg/L) for three days to limit bacterial
496 growth.

497 **Hi-C**

498 An *in situ* Hi-C protocol of plants ⁷⁶ was optimized for brown algae. *Ectocarpus* cultures were collected using a
499 40µm filter and fixed in 2% (vol/vol) formaldehyde for 30 min at room temperature, and the cross-linking reaction
500 was quenched with 400 mM glycine. Approximately 50 mg fixed algae suspended in 1 ml nuclei isolation buffer
501 (0.1% triton X-100, 125 mM sorbitol, 20 mM potassium citrate, 30 mM MgCl₂, 5 mM EDTA, 5 mM 2-mercaptoeth-
502 anol, 55 mM HEPES at pH 7.5) with 1X protease-inhibitor in a 2 ml VK05 tube, then homogenized by Precellys
503 Evolution beads homogenizer (Bertin technologies) with the following settings: 7800 rpm, 30s each time, 20s
504 pause each grinding cycle, repeat 5 times. Over 1 million nuclei were isolated and digested overnight by Dpn II,
505 DNA ends were labeled with biotin-14-dCTP, then ligated by T4 DNA ligase enzyme. The purified Hi-C DNA was
506 sheared by covaries E220 evolution and libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit
507 (NEB, no. E7645), and the average size of the library was detected by bioanalyzer, the final library was sequenced
508 with 150bp paired-end reads on an Illumina HiSeq 3000 platform. Two biological replicates were performed for
509 each strain.

510 **Nanopore sequencing**

511 High molecule weight (HMW) DNA of *Ectocarpus* male (Ec32) and female (Ec25) were isolated using *OmniPrep*™
512 kit (G-Biosciences) with slight modifications. 500 mg of fresh collected tissue was dried and resuspended in 1ml
513 lysis buffer, then homogenized using a Precellys mixer. Samples were incubated at 60°C for 1h with proteinase K,
514 inversed every 15 min. HMW-gDNA was dried and eluted by 10mM ph 8.0 Tris-HCl, and incubated at 55°C for 30
515 min with 0.5 µL 10mg/ml RNaseA. The concentration of HMW-gDNA was quantified using an Invitrogen Qubit 4
516 Fluorometer, and molecule size distributions were estimated using a FEMTO Pulse system (Agilent). The sample
517 was further cleaned and concentrated using AMPure XP SPRI paramagnetic beads (Beckman Coulter) at a DNA:
518 bead volume ratio of 1:0.6, followed by two washes using freshly prepared 70% ethanol and resuspension in
519 10mM ph 8.0 Tris-HCl. 1 µg HMW-gDNA was used for nanopore library preparation and sequencing according to
520 the standard protocol of ONT Ligation Sequencing Kit (Nanopore, <https://store.nanoporetech.com/eu/ligation-sequencing-kit110.html>). Sequencing was performed an ONT MinION Mk1B with three R9.4.1 flow cells.

522 **Re-assembly of genomes assisted by Nanopore and Hi-C**

523 Base-calling was done by ONT Guppy v6.5.7 (--trim_adapters –trim_primers)(Wick et al., 2019). A *de novo* draft
524 male genome assembly was generated based on Ec32 ONT data by the Canu assembler v2.2(genomeSize=220m
525 -pacbio-raw)(Koren et al., 2017), with three iterations of error correction by Pilon v1.24 (Walker et al., 2014). An
526 additional scaffolding step was accomplished by ARCS v1.2.5 (z=1500 m=8-10000 s=70 c=3 l=3 a=0.3)(Yeo et al.,
527 2018). As long read sequencing input the original ONT read data was extended by the previous assembly(Cock et
528 al., 2010); the same strategy was also used for the new *Ectocarpus* female draft genome with Ec25 but only used
529 ONT data.

530 The Hi-C raw reads underwent a preprocessing step using Trimmomatic v.0.39 with a default setting to remove
531 the adapters and other Illumina-specific sequences ⁷⁷. Subsequently, the clean reads were aligned draft genomes
532 using 3D *de novo* assembly (3D-DNA) pipeline, following ⁷⁸. The resulting Hi-C contact map, based on the initial
533 chromosomal assembly, was visualized using Juicebox ⁷⁹. Juicebox also facilitated the manual adjustment of contig
534 orientations and order along the chromosomes, based on the observed contacts. During this adjustment process,
535 some incorrectly placed sequences were trimmed from the original contigs and reassembled with the appropriate
536 ones. The orientation of the final chromosome name was corrected with the previous reference genome ²⁸. To
537 refine the assembly, we employed TGS-GapCloser with error correction by racon v1.4.3, along with RFiller utilizing
538 ONT reads for gap filling (Midekso & Yi, 2022; Xu et al., 2020). Subsequently, an assessment of genome quality
539 was conducted by Benchmarking Universal Single-Copy Orthologs (BUSCO) ³² together with its eukaryote and
540 stramenopiles databases in the version odb10.

541 To be consistent with the V2 genome, we extracted the gapless 1.55 Mb female sex determining region (SDR) of
542 the female assembly and added it as a separate contig to the male genome (fSDR). This ‘reference’ assembly is
543 the new *Ectocarpus sp.7* V5 reference genome.

544 To identify bacterial contamination in the genome assemblies, the new assembled scaffolds were analyzed by
545 kraken2 (version 2.1.3) ⁸⁰, blastn (version 2.13.0, nt database 2022-07-01) ⁸¹ and blobtools (version 1.1.1)⁸². Hits
546 identified by all three tools were considered, and corresponding contamination scaffolds were removed. During
547 the contamination analyses we removed two Hi-C scaffolds corresponding to the bacteria genera *Paraglacielecola*
548 and *Halomonas*.

549 **Hi-C data analysis**

550 The Hi-C reads were processed using the Juicer pipeline (Dudchenko et al., 2017), and binning was performed at
551 various sizes, including 2kb, 5kb, 10kb, 20kb, 50kb, 100kb, and 500kb. The clean Hi-C data was mapped to its
552 corresponding re-assembled reference genome (male or female *Ectocarpus* V5, Figure S1) using Bow-
553 tie2(Langmead & Salzberg, 2013). During the alignment, the clean reads were aligned end-to-end, and spanning
554 ligation junctions were trimmed at their 3'-end and realigned to *Ectocarpus* newly assembled genome. The result-
555 ing aligned reads from both fragment mates were then paired and stored in a paired-end BAM file. Invalid Hi-C
556 reads including discarding dangling-end reads, same-fragment reads, self-circled reads and self-ligation reads
557 were removed from further analyses.

558 **Chromosomal contact probability**

559 The reads information processed by the Juicer pipeline in the "merged_nodups.txt" were converted to pairs using
560 the pairix tool (Lee et al., 2022). The draft genome was divided into 1,000 bp bins, and the contact probability $P(s)$
561 was calculated and visualized using cooltools⁸³ following the guidelines provided in the documentation at
562 https://cooltools.readthedocs.io/en/latest/notebooks/contacts_vs_distance.html. In short, $P(s)$ was determined
563 by dividing the number of observed interactions within each bin by the total number of possible pairs.

564 **A/B compartment identification**

565 The A/B compartment status was determined using Eigen values (E1) obtained through eigenvector decomposi-
566 tion of Hi-C contact maps. To calculate the E1 values at a 10kb resolution, Cooltools software was utilized with
567 the "cooltools eigs-trans" function and GC density file⁸³. The resulting E1 values were then loaded into the plaid
568 pattern of Hi-C contact maps. Manual validation based on intra or inter-chromosomal interactions in Hi-C was
569 performed along each chromosome to obtain the final list of "E1" values. Since the direction of eigenvalues is
570 arbitrary, positive values were assigned the label "A", while negative values were assigned the label "B" based on
571 their association with GC or gene density. The compartment border was defined as the edge bin separating the A
572 and B compartments.

573 **ChIP-seq and RNA-seq**

574 ChIP-seq and RNA-seq data from the male (Ec561) and female (Ec560) strains were obtained from⁴². The datasets
575 include two replicates of H3K4me3, H3K9ac, H3K27ac, H3K36me3, and H3K79me2 samples, as well as two control
576 samples (an input control corresponding to sonicated DNA and anti-histone H3). To process the data, the nf-core
577 ChIP-seq pipeline v2.0.0 was employed⁸⁴. Briefly, the raw data underwent trimming using Trim Galore v0.6.4
578 (Krueger, 2015), and the paired-end reads were aligned to the reference genome using BWA v0.7.17(Li & Durbin,
579 2009). Subsequently, MACS2 with default parameters was used to call broad and narrow peaks (Gaspar, 2018).
580 Three replicates of RNA-seq data were trimmed by Trimmomatic v0.39 and mapped on *Ectocarpus* V5 reference
581 genome (**Figure S1**) by GSAP aligner v2021-12-17(Bolger et al., 2014; Wu et al., 2016), unique mapped read
582 pairs were used to calculate read counts per gene by featureCount v2.0.3, DEseq2 (v1.41.6, Bioconductor) was
583 used for detection differential expression genes with the threshold of adjusted p value $=< 0.01$ and log2fold
584 change ≥ 1 , TPM (Transcripts Per Million) was used for gene expression quantification (Gueno et al., 2022; Liao
585 et al., 2014; Love et al., 2017).

586 Centromere characterisation

587 Broad centromeric regions were determined by visually assessing the Hi-C contact maps. To assess the repeat
588 content of these regions, RepeatModeler v2.0.2 (Flynn et al. 2020) was run on the male Ec32 V5 genome assembly
589 to generate de novo repeat consensus models, using the flag “-LTRStruct” to perform LTR structural searches. The
590 subsequent repeat library was provided as input to RepeatMasker v4.0.9 (<https://www.repeatmasker.org/RepeatMasker/>) to identify genomic coordinates of repeats. Tandem Repeats Finder v4.09.1 (Benson 1999) was run
591 to identify coordinates of satellite and microsatellite DNA using the recommended parameters “2 5 7 80 10 50
592 2000”, enabling satellite DNA with monomers up to 2 kb to be identified. Final tandem repeat coordinates were
593 achieved by combining the simple and low complexity repeats identified by RepeatMasker with the repeats identified
594 by Tandem Repeats Finder. All other repetitive coordinates identified by RepeatMasker that did not overlap
595 tandem repeats were assumed to be interspersed repeats (i.e. transposable elements).

597 Putative centromeric repeats were identified by searching for repeat families that were both almost exclusively
598 present in the broad centromeric regions defined by the contact maps and common to all chromosomes. The two
599 repeat models that met these criteria were then manually curated following Goubert et al. (2022). Retrotrans-
600 posons related to *ECR-1* were identified by passing the predicted protein to Repbase Censor online tool (Kohany
601 et al. 2006). Centromeric coordinates were defined as the first to the last copy of *ECR* elements (see **Table S9**).
602 All centromeric analyses were performed on the male Ec32 V5 genome, except for the U chromosome which was
603 analysed using the female Ec25 genome.

604 Acknowledgements

605 This work was supported by the MPG, the ERC (grant n. 864038), the Moore Foundation (GBMF11489) and the
606 Bettencourt-Schuller Foundation. RC is supported by a grant HORIZON-MSCA-2022-PF-01 (Project ID:
607 101109906). We thank the BMBF-funded de.NBI Cloud within the German Network for Bioinformatics Infrastruc-
608 ture (de.NBI) (031A532B, 031A533A, 031A533B, 031A534A, 031A535A, 031A537A, 031A537B, 031A537C,
609 031A537D, 031A538A). We thank Remy Luthringer and Andrea Belkacemi for assistance with the algal cultures.

610 Conflict of Interests

611 The authors declare no conflict of interests.

612 Data accessibility

613 Data is available in NCBI under the project number PRJNA1105946.

614 Author contributions

615 PL: Investigation (lead); Formal analysis (lead); Visualization (lead), Writing – original draft (equal)

616 JV: Investigation (equal); Methodology (supporting); Formal analysis (supporting)

617 RC: Investigation (equal), Methodology (supporting); Visualization (equal); Formal analysis (equal); Writing – re-
618 view and editing (supporting)

619 JBR: Investigation (equal), Methodology (supporting); Visualization (equal); Formal analysis (equal)

620 EA, CM: Investigation (supporting)
621 MB: Methodology (supporting)
622 FBH, CL: Data curation (equal); Visualization (supporting); Formal analysis (equal); supervision (equal); Writing –
623 review and editing (supporting)
624 SMC: Conceptualization (lead); Funding acquisition (lead); Methodology (equal); Project administration (lead);
625 Supervision (lead); Visualization (supporting); Writing – original draft (equal); Writing – review and editing (lead).

626 References

- 627 1. Bachtrog, D. *et al.* Are all sex chromosomes created equal? *Trends Genet. TIG* **27**, 350–357 (2011).
- 628 2. Charlesworth, D. *Plant Sex Chromosomes. Annu. Rev. Plant Biol.* **67**, 397–420 (2016).
- 629 3. Abbott, J. K., Nordén, A. K. & Hansson, B. Sex chromosome evolution: historical insights and future perspec-
630 tives. *Proc. R. Soc. B Biol. Sci.* **284**, 20162806 (2017).
- 631 4. Ponnikas, S., Sigeman, H., Abbott, J. K. & Hansson, B. Why Do Sex Chromosomes Stop Recombining? *Trends*
632 *Genet. TIG* **34**, 492–503 (2018).
- 633 5. Umen, J. & Coelho, S. Algal sex determination and the evolution of anisogamy. *Annu. Rev. Microbiol.* **73**, 267–
634 291 (2019).
- 635 6. Olito, C. & Abbott, J. K. The evolution of suppressed recombination between sex chromosomes and the
636 lengths of evolutionary strata. *Evolution* **77**, 1077–1090 (2023).
- 637 7. Charlesworth, B. Model for evolution of Y chromosomes and dosage compensation. *Proc. Natl. Acad. Sci. U.*
638 *S. A.* **75**, 5618–5622 (1978).
- 639 8. Beukeboom, L. & Perrin, N. *The Evolution of Sex Determination*. (Oxford University Press, 2015).
- 640 9. Ahmed, S. *et al.* A haploid system of sex determination in the brown alga *Ectocarpus* sp. *Curr. Biol. CB* **24**,
641 1945–1957 (2014).

642 10. Mahajan, S., Wei, K. H.-C., Nalley, M. J., Gibilisco, L. & Bachtrog, D. De novo assembly of a young *Drosophila* Y
643 chromosome using single-molecule sequencing and chromatin conformation capture. *PLOS Biol.* **16**,
644 e2006348 (2018).

645 11. Cechova, M. *et al.* Dynamic evolution of great ape Y chromosomes. *Proc. Natl. Acad. Sci.* **117**, 26273–26280
646 (2020).

647 12. Montgomery, S. A. *et al.* Chromatin Organization in Early Land Plants Reveals an Ancestral Association be-
648 tween H3K27me3, Transposons, and Constitutive Heterochromatin. *Curr. Biol. CB* **30**, 573-588.e7 (2020).

649 13. Carey, S. B. *et al.* Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. *Sci.*
650 *Adv.* **7**, (2021).

651 14. Moraga, C. *et al.* The *Silene Latifolia* Genome and Its Giant Y Chromosome. <http://bio->
652 rxiv.org/lookup/doi/10.1101/2023.09.21.558754 (2023) doi:10.1101/2023.09.21.558754.

653 15. Rhie, A. *et al.* The complete sequence of a human Y chromosome. *Nature* **621**, 344–354 (2023).

654 16. Yue, J. *et al.* The origin and evolution of sex chromosomes, revealed by sequencing of the *Silene latifolia*
655 female genome. *Curr. Biol.* **33**, 2504-2514.e3 (2023).

656 17. Krijger, P. H. L. & De Laat, W. Regulation of disease-associated gene expression in the 3D genome. *Nat. Rev.*
657 *Mol. Cell Biol.* **17**, 771–782 (2016).

658 18. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. *Nat. Rev. Genet.* **21**, 207–226
659 (2020).

660 19. Rowley, M. J. *et al.* Evolutionarily Conserved Principles Predict 3D Chromatin Organization. *Mol. Cell* **67**, 837-
661 852.e7 (2017).

662 20. Dixon, J. R. *et al.* Topological domains in mammalian genomes identified by analysis of chromatin interactions.
663 *Nature* **485**, 376–380 (2012).

664 21. Sanborn, A. L. *et al.* Chromatin extrusion explains key features of loop and domain formation in wild-type and
665 engineered genomes. *Proc. Natl. Acad. Sci.* **112**, (2015).

666 22. Rao, S. S. P. *et al.* Cohesin Loss Eliminates All Loop Domains. *Cell* **171**, 305-320.e24 (2017).

667 23. Dong, P. *et al.* 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B Compartments.
668 *Mol. Plant* **10**, 1497–1509 (2017).

669 24. Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emer-
670 gence of metazoan diversity. *Proc. Natl. Acad. Sci.* **109**, 17507–17512 (2012).

671 25. Wang, C. *et al.* Genome-wide analysis of local chromatin packing in *Arabidopsis thaliana*. *Genome Res.* **25**,
672 246–256 (2015).

673 26. Crevillén, P., Sonmez, C., Wu, Z. & Dean, C. A gene loop containing the floral repressor FLC is disrupted in the
674 early phase of vernalization. *EMBO J.* **32**, 140–148 (2012).

675 27. Lee, H. & Seo, P. J. Accessible gene borders establish a core structural unit for chromatin architecture in Ara-
676 bidopsis. *Nucleic Acids Res.* gkad710 (2023) doi:10.1093/nar/gkad710.

677 28. Cormier, A. *et al.* Re-annotation, improved large-scale assembly and establishment of a catalogue of noncod-
678 ing loci for the genome of the model brown alga *Ectocarpus*. *New Phytol.* **214**, 219–232 (2017).

679 29. Cock, J. M. *et al.* The *Ectocarpus* genome and the independent evolution of multicellularity in brown algae.
680 *Nature* **465**, 617–621 (2010).

681 30. Chaux-Jukic, F. *et al.* Architecture and evolution of subtelomeres in the unicellular green alga *Chlamydomonas*
682 *reinhardtii*. *Nucleic Acids Res.* **49**, 7571–7587 (2021).

683 31. Kawai, H., Nakayama, T., Inouye, I. & Kato, A. LINKAGE OF 5S RIBOSOMAL DNA TO OTHER rDNAs IN THE
684 CHROMOPHYTIC ALGAE AND RELATED TAXA ¹. *J. Phycol.* **33**, 505–511 (1997).

685 32. Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: Assessing Genomic Data Quality and Beyond.
686 *Curr. Protoc.* **1**, (2021).

687 33. Ouyang, W., Xiong, D., Li, G. & Li, X. Unraveling the 3D Genome Architecture in Plants: Present and Future.

688 *Mol. Plant* **13**, 1676–1693 (2020).

689 34. Lieberman-Aiden, E. *et al.* Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of

690 the Human Genome. *Science* **326**, 289–293 (2009).

691 35. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with

692 Similarities to the flamenco Locus of Drosophila. *Mol. Cell* **55**, 678–693 (2014).

693 36. Nora, E. P. *et al.* Spatial partitioning of the regulatory landscape of the X-inactivation centre. *Nature* **485**, 381–

694 385 (2012).

695 37. Ruiz-Velasco, M. & Zaugg, J. B. Structure meets function: How chromatin organisation conveys functionality.

696 *Curr. Opin. Syst. Biol.* **1**, 129–136 (2017).

697 38. Yin, X. *et al.* Binding by the Polycomb complex component BMI1 and H2A monoubiquitination shape local and

698 long-range interactions in the Arabidopsis genome. *Plant Cell* **35**, 2484–2503 (2023).

699 39. Pei, L., Li, G., Lindsey, K., Zhang, X. & Wang, M. Plant 3D genomics: the exploration and application of chro-

700 matin organization. *New Phytol.* **230**, 1772–1786 (2021).

701 40. Bourdareau, S. *et al.* Histone modifications during the life cycle of the brown alga *Ectocarpus*. *Genome Biol.*

702 **22**, 12 (2021).

703 41. Gueno, J. *et al.* Chromatin landscape associated with sexual differentiation in a UV sex determination system.

704 *Nucleic Acids Res.* **50**, 3307–3322 (2022).

705 42. Vigneau, J. *et al.* Sex Chromosome Dominance in a UV Sexual System. [http://bio-](http://bioRxiv.org/lookup/doi/10.1101/2023.12.28.573518)

706 [rxiv.org/lookup/doi/10.1101/2023.12.28.573518](http://bioRxiv.org/lookup/doi/10.1101/2023.12.28.573518) (2023) doi:10.1101/2023.12.28.573518.

707 43. Dixon, J. R. *et al.* Chromatin architecture reorganization during stem cell differentiation. *Nature* **518**, 331–

708 336 (2015).

709 44. Lipinska *et al.* Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga *Ectocar-*
710 *pus. Mol. Biol. Evol.* **32**, 1581–1597 (2015).

711 45. Cossard, G. G. *et al.* Selection drives convergent gene expression changes during transitions to co-sexuality in
712 haploid sexual systems. *Nat. Ecol. Evol.* **6**, 579–589 (2022).

713 46. Lipinska, A. P. *et al.* Multiple gene movements into and out of haploid sex chromosomes. *Genome Biol.* **18**,
714 104 (2017).

715 47. Barrera-Redondo *et al.* Origin and evolutionary trajectories of brown algal sex chromosomes. *bioRxiv*
716 2024.01.15.575685 (2024) doi:10.1101/2024.01.15.575685.

717 48. Avia, K. *et al.* Genetic diversity in the UV sex chromosomes of the brown alga *Ectocarpus*. *Genes* **9**, (2018).

718 49. Yap, K. L. & Zhou, M.-M. Structure and Mechanisms of Lysine Methylation Recognition by the Chromodomain
719 in Gene Transcription. *Biochemistry* **50**, 1966–1980 (2011).

720 50. Müller, D. G., Kapp, M. & Knippers, R. Viruses in marine brown algae. *Adv. Virus Res.* **50**, 49–67 (1998).

721 51. Delaroque, N., Maier, I., Knippers, R. & Müller, D. G. Persistent virus integration into the genome of its algal
722 host, *Ectocarpus siliculosus* (Phaeophyceae). *Journal of General Virology* vol. 80 1367–1370 (1999).

723 52. Delaroque, N. *et al.* The complete DNA sequence of the *Ectocarpus siliculosus* virus EsV-1 genome. *Virology*
724 **287**, 112–32 (2001).

725 53. Alvarez-Ponce, D. & Fares, M. A. Evolutionary rate and duplicability in the *Arabidopsis thaliana* protein-protein
726 interaction network. *Genome Biol. Evol.* **4**, 1263–1274 (2012).

727 54. Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R. & Schubert, I. Interphase chromosomes in *Arabidopsis*
728 are organized as well defined chromocenters from which euchromatin loops emanate. *Proc. Natl. Acad. Sci.*
729 **99**, 14584–14589 (2002).

730 55. Doğan, E. S. & Liu, C. Three-dimensional chromatin packing and positioning of plant genomes. *Nat. Plants* **4**,
731 521–529 (2018).

732 56. Stam, M., Tark-Dame, M. & Fransz, P. 3D genome organization: a role for phase separation and loop extru-
733 sion? *Curr. Opin. Plant Biol.* **48**, 36–46 (2019).

734 57. Ong, C.-T. & Corces, V. G. CTCF: an architectural protein bridging genome topology and function. *Nat. Rev.*
735 *Genet.* **15**, 234–246 (2014).

736 58. Luthringer, R. *et al.* Repeated co-option of HMG-box genes for sex determination in brown algae and animals.
737 *Science* (2024) doi:10.1126/science.adk5466.

738 59. Corcoran, P. *et al.* Introgression maintains the genetic integrity of the mating-type determining chromosome
739 of the fungus *Neurospora tetrasperma*. *Genome Res.* **26**, 486–498 (2016).

740 60. Carpentier, F. *et al.* Convergent recombination cessation between mating-type genes and centromeres in
741 selfing anther-smut fungi. *Genome Res.* **29**, 944–953 (2019).

742 61. Coelho, S. M. & Umen, J. Switching it up: algal insights into sexual transitions. *Plant Reprod.* **34**, 287–296
743 (2021).

744 62. Szabo, Q. *et al.* Regulation of single-cell genome organization into TADs and chromatin nanodomains. *Nat.*
745 *Genet.* **52**, 1151–1157 (2020).

746 63. Belton, J.-M. *et al.* The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by
747 the Recombination Enhancer. *Cell Rep.* **13**, 1855–1867 (2015).

748 64. Li, M., Fine, R. D., Dinda, M., Bekiranov, S. & Smith, J. S. A Sir2-regulated locus control region in the recombi-
749 nation enhancer of *Saccharomyces cerevisiae* specifies chromosome III structure. *PLOS Genet.* **15**, e1008339
750 (2019).

751 65. Talbert, P. B. & Henikoff, S. What makes a centromere? *Exp. Cell Res.* **389**, 111895 (2020).

752 66. Diner, R. E. *et al.* Diatom centromeres suggest a mechanism for nuclear DNA acquisition. *Proc. Natl. Acad. Sci.*
753 **114**, (2017).

754 67. Gao, X., Hou, Y., Ebina, H., Levin, H. L. & Voytas, D. F. Chromodomains direct integration of retrotransposons
755 to heterochromatin. *Genome Res.* **18**, 359–369 (2008).

756 68. Neumann, P. *et al.* Plant centromeric retrotransposons: a structural and cytogenetic perspective. *Mob. DNA*
757 **2**, 4 (2011).

758 69. Ustyantsev, K., Blinov, A. & Smyshlyaev, G. Convergence of retrotransposons in oomycetes and plants. *Mob.*
759 *DNA* **8**, 4 (2017).

760 70. Llorens, C., Muñoz-Pomer, A., Bernad, L., Botella, H. & Moya, A. Network dynamics of eukaryotic LTR retro-
761 elements beyond phylogenetic trees. *Biol. Direct* **4**, 41 (2009).

762 71. Knipe, D. M. *et al.* Snapshots: Chromatin control of viral infection. *Virology* **435**, 141–156 (2013).

763 72. McKeown, D. *et al.* Phaeoviral Infections Are Present in *Macrocystis*, *Ecklonia* and *Undaria* (Laminariales) and
764 Are Influenced by Wave Exposure in Ectocarpales. *Viruses* **10**, 410 (2018).

765 73. Ray, J. *et al.* Chromatin conformation remains stable upon extensive transcriptional changes driven by heat
766 shock. *Proc. Natl. Acad. Sci.* **116**, 19431–19439 (2019).

767 74. Karaaslan, E. S. *et al.* Marchantia TCP transcription factor activity correlates with three-dimensional chromatin
768 structure. *Nat. Plants* **6**, 1250–1261 (2020).

769 75. Coelho, S. M. *et al.* How to cultivate *Ectocarpus*. *Cold Spring Harb. Protoc.* **2012**, 258–261 (2012).

770 76. Liu, C., Cheng, Y.-J., Wang, J.-W. & Weigel, D. Prominent topologically associated domains differentiate global
771 chromatin packing in rice from *Arabidopsis*. *Nat. Plants* **3**, 742–748 (2017).

772 77. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinforma.*
773 *Oxf. Engl.* **30**, 2114–2120 (2014).

774 78. Dudchenko, O. *et al.* De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length
775 scaffolds. *Science* **356**, 92–95 (2017).

776 79. Durand, N. C. *et al.* Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *Cell Syst.* **3**, 99–101 (2016).

777

788 80. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. *Genome Biol.* **20**, 257 (2019).

789

790 81. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

791

792 82. Laetsch, D. & Blaxter, M. BlobTools: Interrogation of genome assemblies [version 1; referees: 2 approved with reservations]. *F1000Research* 2017 61287 6:1287 (2017).

793

794 83. Open2C *et al.* Cooltools: Enabling High-Resolution Hi-C Analysis in Python. <http://bioRxiv.org/lookup/doi/10.1101/2022.10.31.514564> (2022) doi:10.1101/2022.10.31.514564.

795

796 84. Ewels, P. A. *et al.* The nf-core framework for community-curated bioinformatics pipelines. *Nat. Biotechnol.* **38**, 276–278 (2020).

797

798