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ABSTRACT (243 words)

Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent
infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus
(MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The
present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the
absence of gut microbiota. Through genomic analyses and competition assays, we found that
MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural
changes that enhance fitness. Initially, these adaptations increase carbohydrate transport;
subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or
cell wall biosynthesis. Increased fithess in arginine pathway mutants depended on arginine
catabolic genes, especially nos and arcC, which promote microaerobic respiration and ATP
generation, respectively. Thus, arginine adaptation likely improves redox balance and energy
production in the oxygen-limited gut environment. Findings were supported by human gut
metagenomic analyses, which suggest the influence of arginine metabolism on colonization.
Surprisingly, these adaptive genetic changes often reduced MRSA'’s antimicrobial resistance
and virulence. Furthermore, resistance mutation, typically associated with decreased virulence,
also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The
presence of normal microbiota inhibited these adaptations, preserving MRSA’'s wild-type
characteristics that effectively balance virulence, resistance, and colonization fitness. The
results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits
for long-term ecological success in commensal populations, underscoring the potential
consequences on MRSA's survival and fitness during and after host hospitalization and

antimicrobial treatment.

Importance (150 words). The fithess of MRSA depends on its ability to colonize. A key,
underappreciated observation is that gut colonization frequently serves as the site for MRSA
infections, especially among vulnerable groups such as children and hospitalized adults. By
evolving MRSA strains in germ-free mice, we identify molecular mechanisms underlying how
MRSA exploits a depletion in host microbiota to enhance gut colonization fitness. This work
points to bacterial colonization factors that may be targetable. Our findings indicate that
adaptive changes in MRSA often reduce its antimicrobial resistance and virulence, and are
suppressed by the presence of native commensal bacteria. This work helps explain the ecology
of pathoadaptive variants that thrive in hospital settings but falter under colonization conditions

in healthy hosts. Additionally, it illustrates the potential adverse effects of prolonged, broad-
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spectrum empirical antimicrobial therapy and adds a new type of weight to calls for microbiota

transplantation to reduce colonization by antimicrobial-resistant pathogens.


https://doi.org/10.1101/2024.05.11.593044
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.11.593044; this version posted May 11, 2024. The copyright holder for this preprint (which

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION (text 4,651)

Among antimicrobial-resistant bacteria, methicillin-resistant Staphylococcus aureus
(MRSA) causes the second highest morbidity and mortality worldwide (1). Since colonization is
an important prerequisite for S. aureus infection and transmission (2), the fitness of MRSA as a
pathogen depends on its ability to colonize. A complex relationship exists between colonization,
microbial virulence, antimicrobial resistance, and fithess among commensal competitors,
thereby complicating the study of the evolution of colonization-adaptive traits. Understanding
this relationship has important implications for both pathogen biology and public health.

Nares are the primary site of colonization by S. aureus (3), However, gastrointestinal
carriage of S. aureus, and especially MRSA, is common in some vulnerable host populations.
For example, community-acquired (CA)-MRSA frequently colonizes the gastrointestinal tract of
infants, and the rectum and perianal skin are key sites for surface colonization in children with
CA-MRSA skin infections (4, 5), We recently discovered metabolic changes that promote
intestinal colonization in a strain of CA-MRSA primarily afflicting children (6), That pathogen
advantage primes the clone for epidemiological success. Gastrointestinal (Gl) carriage of S.
aureus is thought to decrease with host maturity owing to the greater complexity of the
microbiota of adults compared to infants, a process known as colonization resistance (7),
Nevertheless, gastrointestinal colonization by MRSA is common in hospitalized adults, as
disruption of microbiota by antibiotics and critical illness predispose to bacterial overgrowth with
S. aureus and other pathogens (8-12). One result is fecal shedding that promotes environmental
contamination and transmission of MRSA in hospitals. Moreover, rectal carriage of MRSA is
associated with an increased rate of invasive infection in high-risk patients (13, 14). Collectively,
these and other observations (15, 16), indicate that gastrointestinal colonization in the setting of
microbiota dysbiosis contributes to the spread and pathogenesis of MRSA. We currently lack
sufficient insight to interrupt this process.

In the absence of growth suppression by gut commensal gut microbes, MRSA
overgrowth can occur. To date, little is known about how the bacterium adapts to the intense
competition that ensues among MRSA cells. To explore gut adaptation, we examined MRSA
colonization of mice. Since microbiota composition is highly variable among mice following
antibiotic treatment, patterns of molecular evolution associated with antibiotic treatment during
colonization of mice are highly variable (17). Consequently, identification of colonization-
adaptive genes is more straightforward in germ-free mice, which provide a simplified,
ecologically relevant model to study the molecular basis and fitness effects of adaptive

mutations in gut lacking commensal competitors. In this connection, the current study used
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genomic analyses and competition assays to characterize how the absence of gut microbiota in

germ-free mice shape the evolution of MRSA.

RESULTS

MRSA rapidly evolves in germ-free mice
To study the evolutionary dynamics of MRSA during adaptation in the Gl tract of germ-free
mice, we introduced community-acquired MRSA (CA-MRSA) strain USA300 LAC (18) by
gavage (inoculum size ~5 x 10® colony-forming units [cfu]) into four sets of germ-free mice that
were housed in independent cages. Stool pellets were harvested at weekly intervals for
determination of S. aureus cfu (Fig. 1A). Recovery of S. aureus consistently averaged ~10°
cfu/g stool from week 1 until the end of the experiment (Fig. 1B). For comparison, conventional
mice in our facility often remain colonized at much lower levels (~10° cfu/g stool) (Fig. 1C).
Thus, MRSA populations expand to high densities in the intestinal tract of germ-free mice (19).
After ~3 weeks, translucent colony variants appeared that were distinct from the opaque
morphotype of the wild-type parental strain of the initial inoculum (Fig. 1D-1E). Translucent
variants evolved in all four cages in similar proportions, suggesting that their selection was
driven by adaptive genetic variations. Translucent variants reached a peak prevalence of ~50%
at five weeks (Fig. 1E), and then their prevalence plateaued, suggesting adaptive changes were
also present in the wild-type-like (opaque) phenotype. Since rates of fithess improvement are
expected to show diminishing returns with time (20), subsequent analysis focused on week-5

mice to capture most of the gain that improves colonization.

Adaptation targets a limited set of transcriptional and regulatory elements

To identify the genetic basis of adaptation and link genotype to phenotype, we determined the
genome sequence of the parental strain used as inoculum and ~25 translucent and ~25 opaque
colonies in mice in each of the four cages five weeks post-colonization (n = 202 strains; Dataset
S1). The majority (74/691 or ~83%) of mutations identified were point mutations. Among these,
most (321/574 or ~56%) were missense, 144 (~25%) were synonymous, 14 (~2%) were
translation-stop mutations, and 95 (~17%) were intergenic. The mean number of mutations per
evolved MRSA clone was 3.4, with a minimum of zero and a maximum of ten. The total number
of mutations accumulated was between 40 and 54 distinct mutations per cage (including indels
and complex mutations). We found no evidence of hypermutation, as evidenced by a relative

absence of 1) low-frequency mutations (Dataset S1), 2) an imbalance in favor of transitions over
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point mutations, and 3) mutations in known mutator genes (e.g., uvrABC, mutS) (21). Moreover,
mutation frequencies, measured by mutation to rifampin resistance, were identical when
colonization-adapted (evolved) and parental strains were compared (Fig. S1). Thus, bacterial
load and spontaneous mutation explain adaptation.

We identified multiple parallel mutations, defined as any gene, intragenic region, or
metabolic pathway carrying mutations in populations from all cages of mice and with a sum of
mutation frequency in each mutational target of = 30% in each cage (e.g., sugar transport,
arginine metabolism). Targets that fit our criteria included carbohydrate transport (gIcA/B/T,
fruB), serine deamination (sdaA), arginine metabolism (ahrC/arcR), and cell wall metabolism
(walKR) (Fig. 2A). Colony translucency correlated almost exclusively with walKR mutations,
indicating a genetic basis for the phenotype. Opaque-colony phenotypes almost always carried
mutations in ahrC/arcR. Additionally, we observed frequent excision of the SCCmec element,
which contains mecA and forms a composite genomic island with the arginine catabolic mobile
element (ACME) (22). They encode methicillin resistance and an accessory copy of the arginine
deiminase operon, respectively. In three of four cages, the SCCmec excision correlated with the
opaque phenotype and chromosomal mutations in ahrC or arcR, thereby linking changes in
chromosomal and accessory arginine metabolism.

A parallel evolution study of strain JH1, which belongs to a highly prevalent hospital-
associated (HA-) MRSA lineage (23), revealed a similar mutation pattern, including repeated
selection of walKR and glcB mutations, although differences in mutations that control enzymes
involved in arginine metabolism were observed (e.g., enrichment of mutations in rsaE, a
regulatory RNA that controls enzymes involved in arginine metabolism (24), and a concurrent
decrease in ahrC/arcR mutations)(Dataset S2). Thus, dominant adaptations were not MRSA

strain-specific.

Sequential evolution of adaptive mutations
Phylogeny of the evolved LAC variants revealed a deeply branched tree with multiple lineages
(Fig. 2B). Lineage-specific diversity corresponded largely to mutually exclusive mutations in
ahrC, arcR, or walKR. In contrast, identical mutations in glcB/gIcT generally occurred throughout
the phylogeny. Collectively, these observations suggest that, for the most part, primary
differentiation of glcB/gIcT is followed by polymorphism of either ahrC/arcR or walKR.

To determine the time of the emergence of these mutations, we deep sequenced
populations of strain LAC by pooling clones sampled from each cage weekly for five weeks (Fig.

2C). Deep sequencing involved pooling hundreds of colonies from each sample and sequencing
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the pool with high coverage (~450x). Glucose transport mutations in glcB were detected in the
first week post-colonization and thereafter (Fig. 2C and Dataset S3). Mutations in ahrC and
arcR were initially detected in the 2" and 3" week, respectively; walkKR mutants appeared in the
5™ week (Fig. 2C). In contrast, analysis of single colonies discussed above identified translucent
walKR mutants in the 3" week of evolution (Fig. 1E), likely owing to the enhanced sensitivity of
analyzing individual colonies for identifying mutations having lower allele frequencies.
Nonetheless, the combination of deep and single colony sequencing results supports the idea
that LAC adapts rapidly to the intestine of germ-free mice by mutating glycolytic pathways,

followed by repeated selection of mutations that reprogram arginine or cell wall metabolism.

Adaptation is microbiota-dependent

To confirm that evolved changes in strain LAC are adaptive, we competed a 1:1 mixture of a
cadmium resistance-marked parental strain with evolved mutants by colonizing germ-free mice.
The following evolved mutants were evaluated: 1) a glcB mutant that lacked mutations
elsewhere in the genome, 2) an ahrC/ACME double mutant, and 3) a glcB/walK double mutant.
All of the evolved strains, especially the ahrC/ACME double mutant (100-1000 fold) and
glcB/walK double mutant (10-100 fold), outcompeted wild-type (Fig. 3A, 3C, and 3E). The
fithess of the marked parental strain in vivo matched the unmarked parental strain; thus, results
were not skewed by an effect of the resistance marker (Fig. S3A-S3B).

Notably, we found that evolved mutants did not display significantly increased Gl
competitive fithess compared to WT in germ-replete (conventional) mice (Fig. 3B, 3D, and 3F).
Moreover, genome sequencing of randomly selected week-5 colonies (n = 10 colonies) in
conventional mice showed that MRSA does not acquire mutations during colonization of
conventional mice. To determine whether a ‘low-complexity’ microbiota, which might be relevant
to antibiotic-induced disruption of microbiota, is more permissive for adaptation, germ-free mice
were colonized with minimal defined flora consisting of a consortium of 15 bacterial strains
representing the murine gut microbiota(25) followed by strain LAC 3 days later. The consortium
is known to confer resistance to colonization by microbial pathogens in mice (25). As with
conventional mice, we found no mutation after colonization for 5 weeks (10 colonies
sequenced). Collectively, the results indicate that commensal microbiota limits both strain LAC

colonization and adaptation.

Adaptation supports MRSA growth and biomass
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Increased glycolytic activity. Mutation of the glcB (ptsG; SAUSA300_2476) promoter was

among the most common recurring events, being present in 28.4% (57 of 201) of all evolved
clones of strain LAC at 5 weeks (Dataset S1, Fig. 2, and Figs. S2A and S4A). Unlike the 3 other
phosphoenolpyruvate-dependent phosphotransferase system (PTS) glucose transporters in S.
aureus (26), expression of glcB is thought to be induced rather than constitutive, potentially
explaining why its regulatory region mutated preferentially. The upstream regulatory region of
glcB contains a putative terminator structure overlapping a conserved ribonucleic anti-terminator
sequence (RAT) motif (Fig. S4B-S4C). In Bacillus subtilis and Staphylococcus carnosus (27,
28), and likely S. aureus, the RAT maotif is thought to be recognized by the transcriptional anti-
terminator protein GIcT, which was another target of adaptive mutation. In the absence of
glucose, a conserved histidine residue (His-104) in GIcT is phosphorylated, thereby inactivating
the protein. If glucose is present, unphosphorylated GIcT binds to RAT, which prevents
formation of the terminator structure, thereby enabling transcription of the downstream
transporter gene (Fig. S4B). 80% (45 of 57) of clones containing mutations in glcB had
mutational hotspot deletions in RAT that are predicted to inhibit formation of the terminator
structure (Fig. S4B-S4C). Additionally, mutations in glcT were in all cases confined to a hotspot
in the phosphorylation site (His-104), which would constitutively activate GIcT (Fig. S4B). Thus,
both mutations are expected to de-repress glcB and/or other glucose transporters. Indeed, glcB
expression in independently evolved strains containing either glcB or glcT mutations was low in
the presence of glucose (14 mM) but was ~300-fold higher compared to the parental strain
when glucose was absent (Fig. 4A-4B). We conclude that the evolved mutants constitutively
express glcB and that His-104 in GIcT is likely required for negative regulation of the
antiterminator activity.

As with glcB, mutations in sdaA consisted almost exclusively of hotspot mutations in the
upstream promoter region (Fig. S2A). sdaA catabolizes L-serine to pyruvate, the final product of
glycolysis, to synthesize ATP via substrate-level phosphorylation (29, 30). The ability to
catabolize L-serine increases bacterial fitness by providing Enterobacteriaceae with a growth
advantage in inflamed gut (31). The mutations in sdaA are likely upregulating since attenuating
mutations would be far more frequent in coding regions. This finding, together with the above
mentioned increased in vivo fitness of evolved glcB and glcB sdaA double mutants (Fig. 3A),
supports the idea that upregulating mutations in glycolytic pathways are selected during Gl
adaptation in the absence of gut microbiota.

In 3 cages of mice, mutations in glcB/T and/or sdaA were mutually exclusive with

mutations in fruB (fructose 1-phosphate kinase); in one cage fruB mutations were the dominant
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mode of carbohydrate metabolism mutation (Fig. 2A, Dataset S1). Thus, glucose transport is not
the only carbohydrate metabolic pathway targeted by mutation during adaptation to the Gl tract
(Fig. S2B).

Increased arginine catabolism. Following mutation of glycolytic pathways, opaque phenotypes

primarily accumulated mutations in arginine metabolic genes ahrC or arcR. ahrC represses the
arginine biosynthetic pathway and the arginine deiminase (ADI) operon; arcR upregulates the
ADI pathway (32, 33)(Fig. S2B). Mutations in these two pathways were mutually exclusive,
suggesting that mutation of either is functionally redundant and presumably the result of
convergent evolution. Recent work demonstrated that mutations in ahrC that facilitate arginine
biosynthesis are selected in clinical infections (33). We therefore focused our analysis on ahrC
mutants.

S. aureus is an arginine auxotroph, but inactivation of ahrC upregulates argGH
(argininosuccinate synthase/lyase) and arcB1 (ornithine carbamoyltransferase), thus enabling
arginine biosynthesis via proline in media lacking glucose (glucose suppresses arginine
synthesis) (33). Gut-evolved ahrC mutants grew robustly in media lacking arginine and glucose,
phenocopying an engineered ahrC deletion mutant (33) and indicating that the mutations are
inactivating (Fig. 4C-4D). However, mutation of the arginine biosynthesis pathway (argG::Tn) in
the evolved ahrC mutant and parental backgrounds failed to eliminate the ahrC competitive
advantage in vivo (Fig. 4E), indicating that ahrC-mediated fitness in the Gl tract of germ-free
mice does not require arginine biosynthesis. Consistent with this idea, the inactivation of argG in
the wild-type background had no effect on competitive fithness (Fig. 4F). Thus, ahrC must exert
its fitness-enhancing effect through arginine catabolism.

S. aureus employs three pathways to catabolize arginine: 1) the arginine deiminase
pathway, which generates substrate for ATP via carbamoyl phosphate (34), 2) the arginase
pathway that produces glutamate, which replenishes the tricarboxylic acid cycle via 2-
oxoglutarate, and 3) nitric oxide synthase (nos), which converts arginine to nitric oxide and
ultimately nitrite to nitrate for use in respiration and adaptation to low-oxygen environments (35).
To determine which catabolic pathway is important for colonization in vivo, we performed in vivo
competition experiments using mutants from each pathway (arcC, carbamate kinase; gudB,
glutamate dehydrogenase; nos, nitric oxide synthase) from a sequence-defined transposon
library (36) (Fig. 4G-41). All 3 mutants were outcompeted by wild-type, but nos inactivation had

by far the most profound (~20 fold on day 7) detrimental effect. Collectively, these data support

10
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the ideas that 1) arginine catabolism is critical for enteric fitness in germ-free gut, and 2)
mutation of ahrC functions to increase arginine catabolism.

The role of adaptive mutations in other arginine metabolism genes, such as arcR,
ACME, spoVG, and rsak (in strain JH1), requires additional study. However, mutations in
spoVG and the ACME-encoded ahrC homolog argR2, like those in native ahrC, facilitate growth
in media lacking arginine and glucose (33). Relatedly, excision of SCCmec, which was a
frequently observed adaptation in strain LAC (31%) (Fig. 2A), occurred only three times in JH1
(3%). SCCmec in JH1 does not encode ACME as it does in LAC (Dataset S2). These
observations suggest that selection against ACME-mediated effects on arginine metabolism

drives SCCmec excision in strain LAC.

MRSA shapes fecal metabolite concentrations

To determine whether MRSA causes a shift in the fecal metabolome that correlates with
evolved mutations, we collected stool pellets from our evolution experiment a week after
colonization for metabolite profiling. Metabolomic profiling showed a distinct clustering pattern
between pre-inoculated germ-free mice (week 0) and those given LAC (week 1) (Fig. 5A).
Glucose and arginine are of particular interest, because their metabolic pathways were targeted
by mutation during gut colonization (Fig. S2A-S2B). We found that metabolites identified as the
arginine breakdown products ornithine and citrulline were increased when LAC was present
(Fig. 5B-5C). These data, together with competition assays providing direct evidence that
evolved mutants utilize arginine more efficiently for growth than parental strain LAC (Fig. 4),
suggest that increases in metabolites represent MRSA-derived products of arginine catabolism.
The observed increase in arginine metabolites was accompanied by a small decrease in
arginine levels (Fig. 5B-5C). Serine levels also decreased when LAC was present (Fig. 5B-5C),
consistent with conversion of serine to pyruvate for energy via promoter mutation of sdaA (Fig.
S2A).

Examination of the fecal metabolome in subsequent weeks indicated consistent
increases in arginine and glucose catabolic products, stability of arginine levels, and a slight
decrease in glucose. Gl tract concentrations of arginine and other amino acids are known to be
elevated in germ-free mice (37, 38). Thus, the relative absence of arginine or glucose depletion
supports the idea that evolved MRSA outcompete the parental wild-type by competition for
glucose and arginine that are abundant because there are no commensal bacteria in the

intestine to consume them.
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walKR mutations increase biomass and enteric fitness

Evolved mutations also occurred in genes frequently mutated in vancomycin intermediate-
resistant S. aureus (VISA) that belong to the essential two-component system walK and walR.
This system links cell wall biosynthesis to cell division (39). walKR mutations were tightly linked
to members of the translucent colony class (Fig. 2A), indicating that they are the basis of the
phenotype.

Only missense and insertion mutations in walKR were observed; frameshift or nonsense
mutations were absent (Fig. 2A and Fig. S2A). Additionally, mutations did not match any known
VISA-associated mutation (40), which usually attenuate walKR activity. Thus, mutation patterns
suggest that evolved mutations upregulate activity of the operon. Consistent with this idea,
evolved mutants demonstrated increased autolysis and biofilm biomass (Figs. 6A and B), which
are positively controlled by walKR (39). However, the test strain, like all walKR mutants,
contained mutations in other genes, primarily gicB. To rule out the effects of pleiotropy from
other mutations in the strain background, we constructed a site-specific replacement (H271Y) in
WalK of the parental strain LAC. This mutation is known to activate the walKR regulon (41). As
predicted, the substitution increased vancomycin susceptibility, autolysis, and colonization
fitness (Fig. 6) compared to wild-type LAC. These findings support a direct relationship between
colonization fitness, the evolved mutations, and walKR activity.

Although the majority of translucent colony variants remained stable when grown in vitro,
indicating a heritable change, a small number reverted with passage or demonstrated sectored
colonies (portions of the colony reverted to an opaque morphology) (Fig. 6G). The presence of
revertants indicates a loss of growth fitness in vitro, suggesting tradeoffs in bacterial fitness.
Indeed, walKR mutants grew poorly in planktonic cultures (Fig. 6H). Thus, the fitness of evolved
walKR mutants compared to wild-type in vivo was not attributable to an intrinsic growth
advantage; if anything, they showed a growth defect.

Mutations that negatively affect the activity of the walKR locus are associated with
vancomycin-intermediate resistant (VISA) phenotypes (39, 42, 43) and low virulence (39, 44-
46). To evaluate colonization phenotypes in such strains, we assayed a clinical heterogeneous
VISA (hVISA) clone and its vancomycin-susceptible (VSSA) parent isolated from the
bloodstream of a patient with endocarditis who was treated extensively with vancomycin.
Genomic sequencing showed that the variant arose from a common recent ancestor and traced
the likely basis of resistance to an attenuating mutation in the walKR regulator yycH, a frequent
target of walKR-attenuating mutations in patients (42). As expected, the VISA/yycH mutant had

decreased autolysis compared to the parental VSSA isolate (Dataset S4). Moreover, when the
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VISA and VSSA isolates competed in germ-free mice, the resistant variant displayed a
colonization defect (Fig. 6E-6F). Thus, walKR mutations that decrease susceptibility to

vancomycin are attenuated during colonization.

Colonization adaptation correlated inversely with antimicrobial resistance and virulence
As mentioned above, mutations that decrease walKR activity are associated with VISA
phenotypes (39, 42, 43). Thus, we were not surprised to find that vancomycin prevents growth
of several evolved mutants having walK upregulation mutations at drug concentrations that are
subinhibitory for wild-type cells (Fig. 7A). At the same time, population analysis for the walK
mutants, in which large numbers of cells from a culture were applied to antibiotic-containing
agar plates and resistant colonies were counted, indicated a similar frequency of colonies that
reflect the vancomycin-resistant mutant subpopulations present in the culture (Fig. 7B). Thus,
evolved walK mutations increased drug susceptibility without interfering with the stepwise
accumulation of additional mutations.

Adaptive mutations in LAC or JH1 also included mecA deletions 1) by means of the
SCCmec excision that eliminates methicillin-resistance and 2) by mutations in antimicrobial
resistance loci that are hotspots for adaptation to key anti-staphylococcal antibiotics: spoVG (n
= 25 in strain LAC; oxacillin (47)), cls2 (n = 26 in strain LAC; n = 8 in strain JH1; daptomycin),
mprF (n = 9 in strain JH1; daptomycin (48)), and rpoB (n = 1 in strain LAC; multiple
antimicrobials (49)). We confirmed that 1) walKR mutants were more susceptible to
vancomycin, 2) mecA-deletion mutants were oxacillin susceptible, 3) spoVG mutations
increased susceptibility to beta-lactams, and 4) cls2 mutations increased susceptibility to
daptomycin (Fig. 7C-7E). Thus, several antibiotic resistance loci are lost or compromised during
colonization adaptation.

To determine whether evolved mutations modulate virulence, we compared the virulence
of strain LAC to that of evolved glcB/walK, glcB/sdaA, and ahrC/ACME mutants, which were
representative of the dominant evolutionary lineages, in a murine skin abscess model of
infection (6). Evolved glcB/sdaA and glcB/walK strains formed markedly smaller, or no
abscesses, compared with the wild-type parental strain (Fig. 7F-7G). Thus, evolved mutations
that enhance colonization attenuate antimicrobial resistance and virulence. In contrast, the
parental strain and the evolved ahrC/ACME mutant showed similar virulence (Fig. 7H).

Core genome-encoded toxins play an important role in MRSA skin infection (50), and
cytotoxicity measurements can be used to determine the potential for MRSA strains to cause

disease (51). To determine whether evolved mutations attenuate cytotoxicity, we obtained cell-
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free extracts from cultures of evolved glcB/walK, glcB/sdaA, and ahrC/ACME (-) mutants for use
in cytotoxicity assays. Evolved clones tended to have equal cytotoxicity toward primary human
neutrophils compared to the highly cytotoxic parental strain (Fig. S5). Additionally, exoprotein
abundances between the parental strain and the evolved mutants showed, if anything, an
increase in exoprotein secretion. Thus, in vitro analyses of cytotoxicity do not correlate with the

reduced virulence of colonization-adapted strains.

Evolved mutations in human gut

To explore the ecological significance of the targets of these mutations within the human gut, we
evaluated variant alleles of murine gut adaptive pathways in 395 human gut metagenome
samples obtained from an observational cohort of 49 hematopoietic stem cell transplant patients
(52). Disruption of gut microbiota in these patients, induced by antibiotics and critical illness,
fosters bacterial overgrowth with Staphylococcus and other pathogens, facilitating analysis of
molecular adaptation (53). Our analysis focused on dominant adaptations that increase glucose
transport (glcB promoter, glcT), arginine biosynthesis (ahrC, arcR, and spoVG), and cell wall
metabolism (walKR). Additionally, we sought mutations in the chromosomal arginine-deiminase
system (Arc) promoter and ccpA that, like those in ahrC and spoVG facilitate arginine
biosynthesis (33, 54). Notably, these mutations were recently found to be selected during
clinical infection (33).

We detected non-synonymous variant alleles in one sample whose metagenomic
assemblies included more than 1 Mbp of S. aureus nucleotide sequence, allowing for the
assembly of candidate genes (Dataset S5). The sample contained mutations in spoVG, one of
which was predicted to be deleterious ([e.g., intolerant by the Sorting Intolerant From Tolerant
program (55)). This sample also contained a frameshift mutation in ccpA and three arc promoter
mutations. These specific promoter mutations were identical to those found in human infection-
associated strains that evolved independently in distinct hosts (33). Moreover, variant arcAl
promoter mutations co-occurred with variants in other genes (e.g., spoVG, ccpA) affecting the
arginine metabolic pathway, a phenomenon observed during infection (33). This observation
suggests genetic instability, potentially facilitating adaptation when selection favors a

combination of individually neutral or deleterious mutations.

DISCUSSION
We report that colonization of germ-free mice by MRSA rapidly selects for the stepwise

emergence of bacterial mutations that (i) increase carbohydrate transport, thereby priming
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clones for success; and (ii) target two mutually exclusive genetic pathways involving either
increased arginine catabolism or cell wall metabolism (Fig. S6A). Notably, the dominant mutants
that evolved showed reduced virulence during invasive infection and increased antimicrobial
susceptibility. Moreover, we found that microbiota inhibits MRSA metabolic adaptation, thereby
maintaining wild-type MRSA characteristics. The interaction of colonization pathways that affect
virulence and resistance with fithess among commensal competitors provides a general
framework for understanding the ubiquitous presence of wild-type phenotypes in MRSA
populations (Fig. S6B).

The scarcity of S. aureus sequences in our human metagenomic dataset likely stem
from the widespread use of intravenous vancomycin in almost all patients and the empirical
administration of oral vancomycin to eradicate Clostridioides difficile in approximately one
guarter of patients (52). Thus, a broader assessment of additional patients is needed to
understand the prevalence and evolution of S. aureus variants in the gut. Despite limited
samples, observed arginine metabolic mutations imply that S. aureus variants in the human gut
may alter pathways in a manner similar to those observed in mice. This finding, combined with
previous work by others (33), supports the idea that mutations in ahrC and parallel pathways
(such as chromosomal and ACME arginine-deiminase systems, spoVG) are selected in S.
aureus, potentially widely in clinical settings. Moreover, our finding that mutations in ahrC/ACME
do not adversely affect virulence during acute abscess infection in mice (Fig. 7H) suggests that
mutation of arginine metabolic genes could be an evolutionary pathway to a colonization fithess
produced without associated costs in virulence, possibly even with a gain.

Mutations in ahrC likely promote catabolism of arginine by arcC and nos pathways,
improving, respectively, redox balance and energy production in the oxygen-limited gut
environment. Typically, mutations in ahrC/ACME and walKR follow mutations in
promoter/regulator regions in the glycolytic pathway that increase glycolytic flux (Fig. 2C). Thus,
evolved mutants transport and metabolize the most desired nutrient (glucose) first. However,
despite high glycolytic demand during infection (26), evolved glcB sdaA mutations that support
fitness in the Gl tract attenuated virulence during infection (Fig. 7). Infection likely involves
fluctuating nutrient availabilities that require the metabolic versatility afforded by gene
regulation. Increased metabolism of glucose due to the mutations might therefore represent a
slash-and-burn strategy of competition for resources in which maximum growth potential is
achieved through inactivation of important regulatory functions that are necessary for MRSA to

occupy variety of niches.
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Prior studies indicate a complex and largely inverse relationship between fithess for
antimicrobial resistance and virulence (56, 57). Our studies reveal mechanisms and principles
driving reciprocal interactions between these key traits, namely a previously unappreciated link
with colonization and commensal microbiota (Fig. S6B). Broadly speaking, these data lead to a
two-part framework that can help explain why phenotypic diversity is enriched in isolates from
infecting but not from colonizing sites within natural populations of S. aureus (58). First, negative
correlation among the metabolic requirements for colonization, virulence, and resistance
underscores the wide range of phenotypes manifest during within-host adaptation to distinct
disease states—a phenomenon known as pathoadaptation. The variability in how mutations
impact these phenotypes as environmental conditions and microbiota change renders
unpredictable the short-term advantages of pathoadaptive mutations and their long-term fitness,
thereby complicating efforts to personalize treatment to each patient's infection-adapted strain.
For example, pathoadaptive mutations in the global regulator agr can both decrease virulence
and colonization (16) while increasing antimicrobial tolerance (59). Consequently, the use of agr
inhibitors, which are under development for treatment of MRSA infection, may be ill advised in
certain patients (60). We expect that a better understanding of the tradeoffs involved in
colonization, virulence, and resistance will enable more effective and syndrome-specific
targeting of intervention strategies.

Second, commensal microbiota constrains adaptation of MRSA, suggesting an
unappreciated role in maintaining wild-type metabolic and pathogenic flexibility necessary for
long-term circulation of S. aureus through various niches in different hosts. This finding can help
explain the ecology of new pathoadaptive variants. For example, VISA, and more generally
antimicrobial-resistant hospital-associated MRSA clades, are only rarely encountered beyond
vulnerable individuals within hospitals (61). In contrast, in healthy individuals outside hospitals,
the barrier to colonization is likely higher than in hospitalized patients, where antimicrobial
disruption of microbiota facilitates the spread of resistance-adapted MRSA strains with
compromised fitness. This scenario highlights the potential drawbacks of prolonged, broad-
spectrum empirical antimicrobial therapy and supports calls for microbiota transplantation as a

strategy to decrease colonization by antimicrobial-resistant pathogens (62).
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METHODS

Method Details

The Supplementary Materials provide detailed methods for constructing S. aureus strains and
their growth conditions. Included are comprehensive descriptions of assays for intestinal
colonization, skin infection, cytotoxicity, autolysis, and biofilm formation. Also described are
methods for measuring antimicrobial susceptibility, mutation frequency, and performing genome
sequencing, metagenomic, metabolomic, and statistical analyses. The strains and primers used

in this study are listed in Tables S2 and S3, respectively.
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753  Fig. 1. Evolution of morphologic variants in the gut of germ-free mice. (A) Experimental
754  design. Germ-free C57BL/6 mice housed in 4 cages were individually gavaged with 5 x 10° cfu
755  of strain LAC (BS819). (B, C) Quantification of bacteria (cfu) in stool from germ-free (B; n = 16)
756  and conventional (germ-replete; C; n = 7) mice. Each symbol represents data from one mouse.
757  Data are mean + SEM. Dotted line, limit of detection. (D) Colony morphology. Representative
758 images at week 0 (LAC wild-type), 1, and 5 (left, middle, and right panels, respectively). Blue
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759  arrows, opaque (wild-type-like) colonies; yellow arrows, translucent (variant) colonies. (E)

760  Colony morphology over time. Morphotypes were scored by plating bacteria (n > 200 colonies)
761  on tryptic soy agar with sheep blood from all 4 cages at each timepoint. Also shown are week 5
762  data from individual cages.

763

27


https://doi.org/10.1101/2024.05.11.593044
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.11.593044; this version posted May 11, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

>

. Opague Translucent . ACME and mecA present
Cage 1 Cage 2 Cage 3 Cage 4
Gene Opaque Translucent

= |
pucigen- T
frus' I . 1 il T I eI TR T Ine I i
gleT= .
p— 1
s . I II il | I”I[I
s - (L I (LALN
anc- [ I N L
0 25 50 75 100 0 25 50 75 100 Isolate
Percent Percent

Cell
wall

Carbohydrate
metabolism

Amino acid
metabolism

Mutation type . Promoter . Missense variant . Insertion variant . Stop gained

B C

Parental strain - - - - - - - - EEUD EERR IS L T

1.00
0.754

0.254

0.00
1.00

0.751

0.50 1
0.251
0.00 1

0.50 1
000 (I
0004 | —
1.00
c 0759
-y —
- 0.251
6 o000l N
Q. 1.0 X
O o075 g
o o] - 3 ;
. [
""""" O oo N —
® 1004
d>) 0.754
0.50 4
< -

o I w— R S—

o

£ o & \y &
& SO &

Tree scale: 10°©

764 —
765

766  Fig. 2. Parallel evolution of mutations and genetic alterations within and between cages
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767  of germ-free mice. (A) Distribution of top mutated genes in evolved strains (see Results).

768  Single evolved colonies (n = 201) of strain LAC (BS819) from four cages of germ-free mice

769  were sequenced 5-weeks post-inoculation. Mutation type, opaque and translucent morphology,

770 and presence or absence of methicillin-resistance (mecA) and ACME (arginine catabolic mobile
771  element) are indicated. Insertion variants are in-frame with the walK coding sequence. See

772  Table S1 and Fig. S2 for supporting information. (B-C) Primary differentiation by ptsG/gIcT is for
773  the most part followed by polymorphism of walKR or arcR/ahrC. (B) Phylogeny of evolved

774  mutants. Maximume-likelihood trees of 51 opaque (walKR mutant) and translucent (all other)
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775  colonies obtained 5-weeks post-inoculation from cage 1 mice. Gene names are listed at the top,
776  and mutations for each isolate are indicated on the corresponding horizontal line and column.
777  (C) Changes in mutation composition over time. Aggregate allele frequency estimates (fraction
778  of aligned reads) in selected genes by week, identified by deep sequencing of thousands of
779  pooled colonies obtained from the stool of mice in all four cages.

780
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Fig. 3. Fitness of evolved mutants in the gut of germ-free and conventional mice. (A-F)
Competitive colonization assays (competitive index, Left) and quantification of bacteria in stool
(cfu, Right) determined from the stool of colonized germ-free (A, C, and E) or conventional,
germ-replete mice (B, D, and F). Strains with evolved mutations in glcB (BS1565; panels A and
B), ahrC ACME (-) (W5-1-018; panels C and D), and walk glcB (W5-9; panels E and F) were
competed against patental strain LAC. LAC contained a chromosomally integrated cadmium
resistance marker (SaPI1 attC::cadCA; strain VJT32.58) to distinguish the strains following
plating of serial dilutions on tryptic soy agar (TSA) with or without cadmium (0.3 mM). Evolved
mutants and LAC Cd® were mixed 1:1 and used to inoculate each mouse. Each symbol
represents data from one mouse (n = 6-12 mice). Median values (red lines) are shown, and
each symbol is the competitive index (Left) or cfu (Right) from one mouse. *P < 0.05, **P < 0.01,
and ns (P > 0.05) by Wilcoxon signed-rank tests. The dotted lines indicate a 1:1 ratio (equal

fitness). LOD: limit of detection.
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Fig. 4. Involvement of evolved mutations with upregulation of glucose import and

arginine catabolism. (A-B) Effect of evolved mutations on transcription of glcB in the presence
and absence of glucose. Total cellular RNA was extracted from the indicated evolved mutant or
parental strain LAC (BS819) after aerobic growth in chemically-defined medium (CDM, 1% cas

amino acids with 14 mM glucose) (A) or CDM without glucose (B), followed by reverse
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803 transcription and PCR amplification of glcB, using 16S rRNA as an internal standard. Data are
804  mean log;e(fold change) from each strain (n = 3). ns P > 0.05; * P < 0.05; * P < 0.01; ** P <
805 0.001 by one sample t test comparing to 0 (log10 [LAC fold change]). Strains were evolved
806 mutant glcB (BS1565), glcB walK (W5-9), glcB sdaA (W5-10); and glcT walK (W5-17). (C-D)
807  Effect of evolved mutations in ahrC on growth in media lacking arginine. Growth analysis of
808 evolved mutants ahrC glcB (W5-7), ahrC glcB ACME (-) (W5-1-01), ahrC (W5-2-010), ahrC
809 ACME (-)(W5-1-018), and parental strain LAC (BS819) in CDM with or without (CDM-R)

810 arginine. Data represent means + SEM from three (n = 3) biological replicates. (E-1) Effect of
811  transposon insertions in arginine biosynthesis and catabolism genes in evolved strains. (E-I)
812  Competition assays in germ-free mice, performed as in Fig. 3, involving (E) evolved mutant
813 ahrC ACME (-) (W5-1-018) containing arginine biosynthesis gene mutation argG::bursa

814  (BS1541) or LAC argG::bursa Cd® (BS1539), and (F-I) parental strain LAC Cd® (VJT32.58) and
815 arginine catabolic pathway transposon mutants arcC::bursa (BS1535), gudB::bursa (BS1409),
816 and nos::bursa (BS1434). See Fig. S3 for bacterial burden. Each symbol represents data from
817 one mouse (n = 9-15 mice). Wilcoxon signed-rank test: ns P > 0.05; * P < 0.05; ** P < 0.01; ****
818 P <0.0001. The red lines are medians.

819
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824  Fig. 5. MRSA shapes fecal metabolite concentrations. Comparative analysis of the fecal
825 metabolome of germ-free mice (nl1=['3) housed in a single cage before (week 0; W0) and after
826  (week 1; W1) inoculation with parental strain LAC (BS819). The homogenized stool (total 3 stool
827  pellets per week) was analyzed by HILIC UPLC mass spectrometry. (A) Metabolite profile

828 comparison of week 0 and week 1 stool. Unsupervised clustering analysis showing significant
829  altered metabolites (P < 0.05 from t test; n = 144). (B) Relative concentrations of metabolites
830 associated with carbohydrate and arginine metabolism. Peak spectra intensities of the indicated
831 metabolites from week 0 and week 1 stool samples. Data are mean = SD. The dotted line

832 indicates the limit of detection. Unpaired t test, * P < 0.1. (C) Log, fold change of all metabolites
833 (n =1320) in stool samples from week 1 relative to week 0. Each dot represents a metabolite.

834 Red and blue indicates metabolites that were increased or decreased, respectively.

33


https://doi.org/10.1101/2024.05.11.593044
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.11.593044; this version posted May 11, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15
A B -
. 1.2 e
PBS PBS + TritonX-100
120 120 1
v 09 L]
® 100 ® 100 2
e E 8
§ 80 g 80 06 A
2 60 2 60 -
g 40 2 40 0.3
X X ’
20 20
0 T T T 1 ok, T T T 1 0.0
0 1 2 3 4 0 1 . 2 3 4 NS g\&\
Time (h) Time (h) N
& LAC 4 LAC Aatl N
<4 Evolved walK (W5-9) < Evolved non-walK (W5-10) ?)‘0

¥ Evolved walK (W5-25)  * Evolved non-walk (W5-2)

< Evolved walkK (W5-17) <= Evolved non-walk (W5-21) LAC WalK"271Y /| AC cdR

@]
o
g
t

PBS PBS + TritonX-100 «
120 1204 S 27 oo
100 © 100+ % 19 s otet
e 2 80 = ol
@ 804 B O
g% ) 3
S 60 g 604 Q -1
2 " |e LAC ® LAC 4atl 4 LAC WalkH271Y 3 5
< 40 < 404 8 -2
8 8
20 204 3
o+ T T T . 0 r . . 2 7
0 L 2 3 4 0 1 2 3 4 Days Post Inoculation
Time (h) Time (h)
) BS1210/BS1208 CdR
E PBS PBS + TritonX-100 F
120 39 ox
120 X
[ 2
© 100 g 100 2
g G 80 o 17
g 80 o =
S 60 S 60 g O ; """"" e
2 & LAC & LAC Aatl a S ] e e
< 40 < 40 £ *ee .
b BS1208 == BS1210 < E : .
20 20 o -2
o+ r r r . o+ r r T 1 S e
0 1 2 3 4 0 1 2 3 4 2 7
Time (h) Time (h) Days Post Inoculation
G H TSB
] LAC
5
©
o
2]
S Evolved (walK, glcB)
E
=
3
a
O 014
LAC Unstable evolved 0 1 2 3 4 5 6 7 8
835 translucent variant Time (h)

837 Fig. 6. Association of evolved walKR mutations with increased autolysis, biofilm,

838 intestinal fitness, and colony morphology. (A) TritonX-100-stimulated autolysis of walKR
839  mutant cells. Cells of the indicated evolved walKR mutant, parental strain LAC (BS819), and
840  control strain LAC Aatl (VJT80.33) grown in tryptic soy broth (TSB), were suspended in PBS or
841  PBS containing 0.1% TritonX-100. Rate of autolysis was monitored as a decrease of

842  absorbance at 600 nm. Data represent the means £ SEM from (n = 2-3) biological replicates.
843  (B) Biofilm formation. Biofilm formation in TSB supplemented with 0.25% w/v D-(+)-glucose

844  medium at 37°C for evolved strain walK, glcB (W5-9) and parental strain LAC with tissue
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culture-treated 96-well plates. Data represent the mean £ SEM from (n = 3) biological replicates.
Unpaired t test: ** P < 0.01. (C) TritonX-100-stimulated autolysis of LAC WalK™"*Y cells. Cells of
LAC Walk"™™Y LAC, and LAC atl were analysed as in A. (D) Competition assays in germ-free
mice, performed as in Fig. 3, involving LAC WalK"*"*" and LAC Cd® (n = 10 mice). ** P < 0.01
by Wilcoxon signed-rank test. The red lines are medians. See Fig. S3 for bacterial burden. (E)
TritonX-100-stimulated autolysis of a yycH mutant clinical isolate with a VISA phenotype. Cells
of ancestral clinical isolate (BS1208), evolved yycH mutant (BS1210), LAC, and LAC Aatl were
analysed as in A. BS1208 and BS1210 are isolates JH1 and JH6, respectively, in Mwangi et
al.?® (F) Competition assays in germ-free mice, performed as in Fig. 3, involving BS1210 and
BS1208 Cd® (SaPI1 attC::cadCA; strain BS1709)(n = 9 mice). ** P < 0.01 by Wilcoxon signed-
rank test. The red lines are medians. See Fig. S3 for bacterial burden. (G) Intracolonial
phenotypic variation in a walKR mutant seen as colony sectoring. Photographs of colonies,
illuminated by oblique and transmitted light, derived from control strain LAC and a translucent
walK variant (W3-1C) grown on TSA. (H) Growth curves. Evolved walK glcB mutant (W5-9) and
parental strain LAC cultures were grown in TSB following 1,000-fold dilution of overnight
cultures. Growth of diluted cultures was monitored for 8 hours every 15 min by measuring the

ODggo Using a Bioscreen C.
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Fig. 7. Association of colonization adaptative mutations with antimicrobial resistance and

virulence. (A) Vancomycin resistance determined by Etest or population analysis. Minimal

inhibitory concentration (MIC) of parental strain LAC (BS819) and an evolved walK mutant (W5-
2-T2) by Etest. (B) population analysis of LAC, evolved WalK”>**N GlcT"*" mutant (W5-2-T6),
evolved WalK"™s®"™" GIcT™%Y mutant (W5-4-T16), and heteresistant control strain Mu3 (BS626).
Data represent means from four technical replicates. (C-E) Cefoxitin and daptomycin MICs of
parental strain LAC mecA::bursa (BS1168), LAC mprF::bursa (BS1328), and evolved strains

with mecA, spoVG, or cls2 mutations, determined by Etest (n = 6-16 for evolved strains in each

condition). See Table S5 for stain information. ns P > 0.05; * P < 0.05; ** P < 0.01 by one-way
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877  ANOVA, Dunnett's multiple comparisons test. Data are mean £ SEM. (F-H) Association of

878  evolved mutations and skin abscess size. Abscess size, measured 48h after s.c. infection with
879  ~1 x 10’ cfu of the indicated strain, (n = 9-10 mice per group with two abscesses per mouse).
880  Strains were evolved mutants walK glcB (W5-9), glcB sdaA (W5-10), and ahrC ACME (-) (W5-1-
881 018), and parental strain LAC (BS819). ns P > 0.05; **** P < 0.0001 by Mann Whitney test (F
882 and G) or unpaired t test (H). Data are mean £ SEM.

883
884
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