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2 aniSNA

Abstract

1 Animal social network analysis using GPS telemetry datasets provides insights into group
> dynamics, social structure, and interactions of the animal communities. It aids conservation
s by characterizing key aspects of animal sociality - including spatially explicit information on
4 where sociality occurs (e.g., habitats, migratory corridors), contributing to informed manage-
5 ment strategies for wildlife populations. The aniSNA package provides functions to assess
¢ and leverage data collected by sampling a subset of an animal population to perform social
7 network analysis. The methodologies offered in this package are compatible with a variety
s of location and grouping data, collected through various means (e.g., direct observations, bi-
o ologgers), however, they are particularly well suited to autocorrelated data streams such as
10 data collected through GPS telemetry radio collars. The techniques assess the data’s suit-
1 ability to extract reliable statistical inferences from social networks and compute uncertainty
12 estimates around the network metrics in the scenario where a fraction of the population
13 is monitored. The package functions are user-friendly and allow for the implementation of
12 pre-network data permutations for auto-correlated data streams, sensitivity analysis under
15 downsampling, bootstrapping to establish confidence intervals for global and node-level net-
16 work metrics, and correlation and regression analysis to assess the robustness of node-level
17 network metrics. Using this package, animal ecologists will be able to compute social network
18 metrics, both at the population and individual level, assess their reliability, and use such met-
10 rics in further analyses, e.g., to study social network variation within and across populations
20 or link individual sociality to life history. This software also has plotting features that allow

a1 for visual interpretation of the findings.
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1. Introduction: Social network analysis of animal societies

23 Over the last decade, social network theory has emerged as a competent means to enhance
2« our understanding of complex interactions between animals (Farine and Strandburg-Peshkin
s 2015a; Hobson, Silk, Fefferman, Larremore, Rombach, Shai, and Pinter-Wollman 2021; Silk,
2% Croft, Delahay, Hodgson, Weber, Boots, and McDonald 2017; Gomes, Boogert, and Cardoso
a7 2023; Torfs, Stevens, Verspeek, Laméris, Guéry, Eens, and Staes 2023; Davis, Crofoot, and
28 Farine 2018; Balasubramaniam, Beisner, Berman, Marco, Duboscq, Koirala, Majolo, MaclIn-
20 tosh, McFarland, Molesti, Ogawa, Petit, Schino, Sosa, Sueur, Thierry, de Waal, and McCowan
30 2018). Consequently, there has been an upsurge in software and tools available to construct
s1 and analyse animal social networks. In R (R Core Team 2022), packages have played a cru-
32 cial role in the analysis of animal social networks by providing a comprehensive set of tools,
33 functions, and methodologies tailored to network analysis. Apart from the general packages
s available to analyse social networks such as igraph (Csardi and Nepusz 2006), sna (Butts
55 2020), network (Butts 2015, 2008), statnet(Handcock, Hunter, Butts, Goodreau, Krivitsky,
ss  and Morris 2018; Hunter, Handcock, Butts, Goodreau, and Morris 2008), specialised software
s7  packages developed to analyse animal networks have surfaced (Farine 2013; Bonnell 2023;
s Silk, McDonald, Delahay, Padfield, and Hodgson 2020; Sosa, Puga-Gonzalez, Hu, Pansanel,
30 Xie, and Sueur 2020; Ross, McElreath, and Redhead 2023; Silk and Gimenez 2023). Ecolo-
20 gists now have a very solid platform to undertake many types of studies and develop networks
4 from data obtained in various ways owing to this softwares. Most of these software cater to
2 a different aspect of the animal social network studies, such as assistance with importing
43 different data formats and data cleaning, network formation and visualisation, calculation of

4 different network metrics, statistical analysis, community detection, and temporal analysis.
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4 aniSNA

s These R packages seamlessly integrate with other statistical and data analysis tools in the R

46 ecosystem, allowing researchers to combine network analysis with other types of analyses.

a7 The asnipe package (Farine 2013) is one of the first such packages in the R environment that
4 provided a novel approach for estimating re-association rates of time between frequently sam-
29 pled individuals, bridging a gap in the tools available to perform permutation-based statistical
so testing on animal social network data. The spatsoc (Robitaille, Webber, and Wal 2019) pack-
st age in R facilitates spatial social network analysis using animal telemetry data. It provides
52 flexible functions for generating edge lists, gambit-of-the-group data, data-stream randomiza-
53 tion, and group by individual matrices, allowing users of animal telemetry data to generate
s« efficient and intuitive social networks. NetTS (Bonnell 2023) is a time-aggregated network
55 package that uses an adjustable moving window to measure how a social network changes
s6 through time. It provides tools for choosing window sizes, comparing observed network mea-
57 sures to null models, and simulating network data to aid in statistical model construction and
s testing. The package CMRnet (Silk et al. 2020) assists in generating social and movement
so networks from long-term capture-mark-recapture data, providing insights into demography
oo and behaviour in wild animal populations. Finally, The ANTs (Sosa et al. 2020) package
61 presents itself as the fastest computing environment and an all-in-one toolbox for implement-
62 ing various social network analysis techniques in use today. The package attempts to manage
63 the limitations of each of its predecessors which are discussed in more detail in Sosa et al.
s« (2020). The all-in-one toolbox provides a variety of functions including calculating network
65 formation and network metrics, performing pre-and post-network data randomization, and
s implementing various statistical tests. Two of the recent R packages STRAND (Ross et al.

e7  2023) and genNetDem (Silk and Gimenez 2023) in R allow to apply generative network mod-
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68 els. The STRAND package allows the integration of stochastic block models with social
6 relation models for Bayesian analysis of animal social networks. Package genNetDem sim-
70 ulates integrated network-demographic datasets, generating populations and social networks

7 with known statistical relationships.

2 1.1. Assessing data suitability : samples from a population

73 By leveraging these features available through different packages, researchers can efficiently
74 analyze complex animal social networks, uncover patterns of interaction, and gain a deeper
75 understanding of the social dynamics within animal populations. The availability of diverse
76 R packages has allowed researchers to choose the tools that best suit their specific research
77 questions and study designs. However, one of the concerns before using a dataset to answer a
78 particular research question is the dataset’s adequacy to perform social network analysis and
79 obtain correct inferences (Farine and Strandburg-Peshkin 2015b). Data collection through
s telemetry devices is rapidly increasing owing to their ability to capture accurate and precise
st animal movements (He, Klarevas-Irby, Papageorgiou, Christensen, Strauss, and Farine 2022;
g2 Smith and Pinter-Wollman 2021; Cagnacci, Boitani, Powell, and Boyce 2010; Neethirajan
ss and Kemp 2021). Since GPS devices are typically used to monitor a small proportion of
s« individuals in a population, the network uncertainty resulting from such data is high (Farine
ss and Strandburg-Peshkin 2015b). Therefore, missing data while performing social network
ss analysis can have several implications, and the extent to which it is problematic depends on
7 the nature and pattern of sampling strategies (Smith and Moody 2013; Smith and Morgan
s 2016; Smith, Morgan, and Moody 2022; Frantz, Cataldo, and Carley 2009). For animal social
80 networks, performing statistical analysis without thorough information about the sources of

o bias and uncertainty could lead to incorrect inferences (Silk 2018; Gilbertson, White, and


https://doi.org/10.1101/2024.05.10.593659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593659; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

6 aniSNA

or  Craft 2021). If the animals are not sampled at random (which is often the case), the network
o2 metrics could be biased, potentially leading to inaccurate assessments of centrality, cohesion,
o3 or other network properties (Smith and Morgan 2016). The results may not accurately
oa represent the true structure of the associations and impact the generalizability of the findings
os depending on the selection of nodes in the sample (Smith and Morgan 2016). Even if the
o6 sampling is done randomly, before performing social network analysis on a collection of GPS
o7 telemetry observations, it is essential to assess the appropriateness of the available data. It
9 must be determined if the contacts resulting from such observations represent individual social
9 preferences or are just chance encounters. The network measures obtained from a sample are
100 the point estimates, reflecting the properties of the sample and not the whole population.
101 The corresponding value that reflects the characteristics of the population might differ from

102 this point estimate.

1w 1.2. The five step workflow

s (Kaur, Ciuti, Ossi, Cagnacci, Loison, Atmeh, McLoughlin, Reinking, Beck, Ortega, Kauff-
s man, Boyce, and Salter-Townshend 2023) proposed a five-step workflow to assess the bias
106 and uncertainty in the global and node-level metrics of animal social networks. The first step
107 in the workflow is to determine whether the observations acquired by monitoring a sample of
108 animals accurately reflect the true associations, screening out random encounters. For this,
100 pre-network datastreams are permuted to form null networks, and the observed values of the
1o network metrics of interest are compared to a null value distribution. In the second step,
1 the sample’s robustness is evaluated by subsampling from the observed network, estimating
112 uncertainty, and analysing bias in the retained network summary statistics. The third step

13 estimates uncertainty in global network measurements by establishing confidence intervals
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s around observed values using bootstrapping techniques. Node-level network metrics are af-
15 fected by the proportion of individuals in the sample, therefore, the fourth step allows to
116 assess the robustness of node-level network metrics using correlation and regression analyses.
7 The final step generates confidence intervals for each node’s network metric value, enabling
us researchers to combine social connectedness with other ecological factors of interest (e.g.,

ne survival, mating strategy and success, habitat selection).

120 The R package aniSNA (Kaur 2024) is built around this five-step workflow and provides a
121 platform to implement the statistical methods suggested as part of the workflow to assess
122 the sufficiency of the data. Through the package aniSNA, we provide user-friendly functions
123 to examine the suitability of a dataset concerning the research question at hand. The pack-
122 age functions are designed to work with GPS telemetry observations, however, the network
125 structures obtained from other data sources can also be assessed for step two onwards of the
126 five-step protocol presented by Kaur et al. (2023). The package’s functions allow users to
127 apply bootstrapping techniques to obtain confidence intervals, which provide a measure of
128 uncertainty around global and node-level network metrics. This is especially useful when a
120 proportion of individuals are monitored from the population or the sampling proportion is
130 unknown. In this paper, we present an overview of the package including the list of main
131 functions. We then illustrate the step-wise workflow through an example of GPS telemetry
132 observations of a large ungulate, the pronghorn (Antilocapra americana, Figure 1) and also

133 discuss some of the applications of this workflow.

2. aniSNA : Overview

132 aniSNA takes in a set of GPS telemetry observations of individuals from a population that
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8 aniSNA

Figure 1: A group of female pronghorn from the study area (Image by Jacob D. Hennig).
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135 has been monitored over a period of time. The data must consist of an individual animal
136 1D, date and time of observation as well as the longitude and latitude coordinates of the
137 location of observations. The input dataset needs to be an R dataframe consisting of four
133 columns, namely "animal_id", "datetime", "latitude" and "longitude". The latitude and lon-
139 gitude columns need to be in radians. A function called get_coordinates_in_radian() is
1o available in the package, that can be used to convert degree coordinates into radians. This
141 is a necessary step as radian values are later required to compute the distance between the

142 individuals in order to consider interactions.

113 The data collected through GPS telemetry observations is used to obtain a network struc-
124 ture consisting of nodes and edges. The individuals that are monitored form the nodes of
1s the network and an interaction between a pair of individuals form the edges (Farine and
s Whitehead 2015). A pair of individuals is deemed "associates" if they are observed within a
147 predetermined temporal and spatial threshold. For instance, if two individuals are observed
us associating within a 25-meter radius within a 5-minute interval, as determined by the user,
10 they are linked by an edge in the network. These network edges are assigned a weight, which
150 is determined by the proportion of time the pair spends associating (He et al. 2022; Farine

151 and Whitehead 2015; Kaur et al. 2023).

152 The networks generated through this method may either accurately depict the entire popu-
153 lation or differ significantly from the true dynamics of the population, depending on various
154 factors (James, Croft, and Krause 2009; Davis et al. 2018). These factors include the size
155 of the population, the number and proportion of individuals monitored, the sampling strat-
156 egy used to tag the individuals, the duration and frequency of observations, the ecological

157 characteristics of the species, geographical features of the study area, among others (Davis
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10 aniSNA

158 et al. 2018; Kaburu, Balasubramaniam, Marty, Beisner, Fuji, Bliss-Moreau, and McCowan
159 2023; Gilbertson et al. 2021; Frantz et al. 2009; Silk 2018). Consequently, it’s essential to
10 evaluate the quality of the data collected and the extent to which it accurately represents the

161 population’s characteristics.

162 We now discuss the functions of the package aniSNA and provide a brief overview of each
163 function’s purpose, usability, and outcomes. The functions in the package are organised
164 around a workflow described as a five-step workflow by Kaur et al. (2023). A description of

165 the main functions in aniSNA is provided in Table 1.

3. Illustration

166 We illustrate the workflow of the functions in aniSNA with the help of a dataset consisting
167 of GPS telemtry observations of Pronghorn (Antilocapra americana)

16s pronghorn_GPS_observations (Reinking, Smith, Mong, Read, and Beck 2019). This large
160 dataset consists of observations from a proportion of individuals sampled from the population
170 of unknown total size and contains a unique animal identity number, date, time, and spatial
111 coordinates of the observations. This collection of GPS telemetry observations is an example
172 of a typical dataset that is available to the ecologists for analysis. Some of the important
173 information such as the population size, exact sampling protocols are often unknown factors
174 that affect the inference obtained from social network analysis (Sunga, Webber, and Broders
175 2021; Franks, Weiss, Silk, Perryman, and Croft 2020; Smith, Swain, Innocent, Nevison, and
176 Hutchings 2019; Farine 2017). Through this dataset, we demonstrate how statistical inference

177 can be obtained on the structure of the social network through the five-step workflow.

17s We first load in the package and the dataset pronghorn_GPS_observations in R.
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Table 1: A description of the main functions in aniSNA package

Function

Description

bootstrapped_difference_pvalues

correlation_analyze

get_coordinates_in_radian

get_interactions
get_network_summary

get_spatial_threshold

global_width_CI

global_CI
network _from_interactions
node_level CI

obtain_bootstrapped_samples

obtain_network_subsamples

obtain_permuted_network_versions
plot_network
regression_slope_analyze

subsampled_network_metrics

subsampled_permuted_network_metrics

Obtains two non-overlapping bootstrapped versions and

generates p-values for the significance of difference.
Performs correlation analysis for node-level network metrics.

Converts latitude and longitude values from degree to ra-

dian.
Obtains interactions from raw GPS observations.
Calculates and prints network summary statistics.

Calculates optimum spatial threshold for obtaining interac-
tions from raw GPS observations. The threshold is obtained
as the distance interval that captures maximum number of

inter-individual interactions.

Obtains width of confidence intervals using bootstrapped

versions at each level of sub-sampling.

Obtains confidence intervals for global network metrics.
Generates a network structure from interactions dataframe.
Obtains confidence intervals for node-level network metrics.

Generates bootstrapped versions of a network’s adjacency

matrix.

Generates subsamples of the observed network at a given

level.

Obtains permuted networks from raw datastream.
Visualize animal social network.

Performs regression analysis for node-level network metrics.

Generates subsamples of a network at a given level and ob-

tains global network metrics of those subsamples.

Generates subsamples of the permuted networks and obtain

network metrics of those subsamples.
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12 aniSNA

R> library(aniSNA)

R> pronghorn_data <- read.csv("pronghorn_GPS_observations.csv")

179 The dataset consists of GPS telemetry observations of 159 pronghorn, observed between
10 November, 2013 and October, 2016 with each animal relocated every 2 hours. It is a dataframe
181 consisting of four columns including a character column animal_id, a datetime column of
182 class POSIXct representing calendar dates and times and latitude and longitude values in
183 degrees. We obtain the radian values of longitude and latitude columns using the function

18 get_coordinates_in_radian().

R> pronghorn_data <- get_coordinates_in_radian(pronghorn_data)

155 The above line of code introduces two additional columns in the existing dataframe namely
186 latitude_rad and longitude_rad. We call the summary function on the dataset to ensure
187 that all variables are in the expected format. It should be noted that the datetime column

188 should be in POSIXct class, if not, it can be converted to it using the function as.P0SIXct ().

R> pronghorn_data$datetime <- as.PO0SIXct(pronghorn_data$datetime,
format = "JY-Jm-7d JH:M:%0S")

R> summary (pronghorn_data)

animal_id longitude latitude datetime

Length:896401 Min. :-109.2  Min. :40.05  Min. :2013-11-10 08:23:44
Class :character 1st Qu.:-108.0 1st Qu.:41.36 1st Qu.:2014-05-20 08:02:43
Mode :character Median :-107.8 Median :41.52 Median :2014-12-08 22:03:06

Mean :-108.0 Mean :41.60 Mean :2014-12-02 11:07:02
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3rd Qu.:-107.7 3rd Qu.:41.78 3rd Qu.:2015-05-23 05:03:14

Max. :-106.3  Max. :42.51 Max. :2016-10-10 19:02:37

latitude_rad longitude_rad
Min. :0.6990  Min. :-1.907
1st Qu.:0.7219 1st Qu.:-1.885
Median :0.7246  Median :-1.882
Mean :0.7261  Mean :-1.884
3rd Qu.:0.7292 3rd Qu.:-1.879

Max. :0.7419 Max. :-1.855

1.9 Identify interactions and form network structure

10 Now we use this dataset to identify interactions. We choose a spatial and temporal threshold
101 to obtain pairs of interacting individuals. The spatial threshold defines the maximum distance
192 in metres within which two animals are considered interacting (Davis et al. 2018). This value
103 can be dictated by the prior information on species ecology and the research question. We
104 can also identify an optimum value of spatial threshold from the raw set of GPS observations.
105 The optimum value will be the shortest distance threshold that captures maximum number
16 of true interactions within all pairs. This method is also called identifying the first mode
17 of number of interactions and is as per the suggestions by He et al. (2022) and Kaur et al.

108 (2023).

190 To do that, we must first determine the greatest distance within which we may reasonably

200 expect to discover the ideal spatial threshold. For pronghorn, we specify this distance to
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201 be b0m and retrieve all possible interactions within this spatial threshold by using the func-
202 tion get_interactions() from the package. Next, we determine the ideal spatial thresh-
203 old value using the function get_spatial_threshold(). The function takes an argument
204 interval_size which represents the size of the bins within which we are searching the opti-
205 mal value. Note that this function allows for parallel processing and the user can specify the

206 number of cores if multiple cores are available.

R> pronghorn_50m_interactions <- get_interactions(pronghorn_data,
temporal_thresh = 7,
spatial_thresh = 50,
n_cores = 3)

R> get_spatial_threshold(pronghorn_50m_interactions, interval_size = 1)

13

207 The function get_spatial_threshold() yields a result of 13 when the interval size is one,
208 indicating that 13 metres is the ideal value to use for spatial threshold. In other words,
200 our routine suggests that in this specific case, based on the observed data, the two ani-
210 mals are considered to be interacting, when they are within 13 meters of each other. We
21 selected a temporal threshold of 7 minutes in order to get interactions using the function
212 get_interactions(). The time interval when two animals seen within a specific distance
213 are deemed to be interacting is known as the temporal threshold (See Kaur et al. (2023) for
24 more details). Basically, this allows for some animals that are together but are relocated at
215 slighlty different times (e.g. 11:57 am and 12:01 pm - quite typical in GPS telemetry) to be

216 deemed together (in our example we picked 7 minutes but users can change it). With the
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217 ideal spatial and temporal thresholds, we can now acquire the complete set of interactions.

218 Again, the package function get_interactions() is used.

R> pronghorn_interactions <- get_interactions(pronghorn_data,
temporal_thresh = 7,
spatial_thresh = 13,

n_cores = 3)

210 This produces a dataframe consisting of five columns and 8254 observations. The first two
20 columns, "Animal A" and "Animal B" respectively, contain the animal IDs of two animals
21 in an interacting pair, relocated together within 13 meters and 7 minutes. Columns three and
22 four contain the observation timestamps for each of the animals in the pair and last column
23 contains the observed distance in metres between that pair. The Euclidean distance between
224 the geographic coordinates of two individuals at that particular time is used to compute the

25 distance.

»6 In the next step, we obtain a network structure from this set of interactions. This is ac-
27 complished by using the package function network_from_interactions(), which yields an
228 igraph object. The function plot_network() may be used to display the network structure.
29 A visualisation of the pronghorn network obtained by this function is given in Figure 2. In
230 this figure, two dense groups are easily discernible. Please take note that this representation

231 only offers a rudimentary understanding of the structure and is barely informative.

R> pronghorn_network <- network_from_interactions(pronghorn_data,
pronghorn_interactions,

n_cores = 3)
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R> plot_network(pronghorn_network)

Figure 2: Network visualisation obtained using plot_network() function

232 We use the function get_network_summary () to investigate network properties and generate

233 network metric values for the pronghorn network obtained from the available sample.

R> get_network_summary(pronghorn_network)

The number of vertices are 159

The number of edges are 504

Vertex Attributes are : name

Edge Attributes are : n weight

The edge density of the network is : 0.04012419
The mean degree is 6.339623

The mean strength is 0.01860817

The diameter is 7
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The transitivity is 0.6229546

The mean geodesic distance is 0.002609776

At this stage, the network structure is ready for the analysis using the five-step workflow

(Kaur et al. 2023). A summary of the steps so far is provided in Figure 3.

Choose maximum possible
value of spatial threshold

Identify
interacting pairs
within the selected
spatial and
temporal
threshold

Identify the
optimum spatial
threshold based
on first mode

Obtain
network
structure

Generate all
interactions

—»

CChoose temporal threshold

Figure 3: A flowchart of steps for network formation

Step 1 : Pre-network data permutations

Social network analysis for animal communities is increasingly widely used (Silk et al. 2017;
Hock and Fefferman 2011; Webber, Schneider, and Wal 2020; Pinter-Wollman, Hobson, Smith,
Edelman, Shizuka, De Silva, Waters, Prager, Sasaki, Wittemyer, Fewell, and McDonald 2013).
Typically, researchers focus on specific study questions and seek evidence to test theories.
Consequently, they choose the most suitable network metric to represent a network feature
and aid in making inferences (Sosa, Sueur, and Puga-Gonzalez 2021). Therefore, the first
step is to determine if the observed interactions and the resulting network metric captured
by the observed sample are indeed caused by social preferences or if those are the results
of random encounters (Croft, Madden, Franks, and James 2011; Sundaresan, Fischhoff, and
Dushoff 2009; Farine 2014). In this reference, null models are created to account for the non-

social factors that lead to animal co-occurrence (Farine 2017; Spiegel, Leu, Sih, and Bull 2016).
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2 High-resolution GPS telemetry data often generates autocorrelated streams, with the extent of
200 autocorrelation varying based on individual speed. To maintain the autocorrelation structure
250 of individual movements but randomize contacts, pre-network datastream permutations are
251 obtained. This methodology segments daily tracks for each individual and shuffled their dates,
252 ensuring unaffected home ranges of animals in the permuted data but randomizing contacts

253 in the null model (Farine and Carter 2022; Farine 2017; Spiegel et al. 2016).

254 The underlying purpose is to determine if the available data is appropriate to answer the
255 research question in consideration. With this aim, we compare the observed network metric
256 to a distribution of network metrics derived from permuted data (See Kaur et al. (2023) for
257 more details). Permuted data represents observations that have no underlying structure and
258 'which would have been observed if the animals moved arbitrarily without any social or other

250 preferences (Farine 2017).

260 As a result, it is critical to determine if the given data accurately captures the aspect of the
261 population that is being examined. We use seven global network metrics commonly employed
262 in animal social network studies including edge density, mean strength, diameter, transitivity,
263 assortativity degree, modularity, and global efficiency (Kaburu et al. 2023; Shimada and Sueur
264 2014). FEach of these network metrics represents a particular aspect of the animal social

265 network (Sosa et al. 2021) and are summarised in Table 2.

266 The package function obtain_permuted_network_versions() is used to generate permuted
267 versions. The first argument to the function is the dataframe of raw GPS telemetry observa-
268 tions, and the second and third arguments are the temporal and spatial thresholds. The user
260 also needs to specify the number of permuted versions that should be generated. The function

270 has a default value of 100 permutations and we can specify the number of cores to allow for
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Table 2: Global network metrics used in the analysis of pronghorn network

19

Global Network | What does the metric measure?
Metric
Edge Density The proportion of completed edges in the network.
Transitivity The amount of clustering in the network, calculated as a function of completed
triangles relative to possible triangles.
Diameter The shortest distance between the two most distant nodes in the network.
Modularity This measure quantifies the degree of segregation or partitioning in the
network structure.
Mean Strength | The average strength of a node in the network.
Assortativity This metric measures the tendency of nodes in the network to connect to other
Degree nodes with similar degree values. A positive assortativity degree indicates that
high-degree nodes are more likely to connect to other high-degree nodes, while
low-degree nodes tend to connect to other low-degree nodes.
Global This measure quantifies the efficiency of information transfer within the entire
Efficiency network and is calculated as the average inverse shortest path length between
all pairs of nodes in the network.

on parallel processing. Note that this function is computationally intensive and the users are
o2 suggested to run this on a remote server if possible. The time taken depends on the number
273 of observations in the raw GPS data set and the number of permutations required. To obtain
272 100 permutations for the dataframe pronghorn_data using four cores, it took approximately

2715 four hours.

R> pronghorn_permutations <- obtain_permuted_network_versions (pronghorn_data,

temporal_thresh = 7,

spatial_thresh = 13,

n_permutations = 100,

n_cores = 4)

R> plot(pronghorn_permutations, pronghorn_network,
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network_metrics_functions_list =
c("Edge density" = function(x) igraph::edge_density(x),
"Mean strength" = function(x) mean(igraph::strength(x)),
"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function (x)
igraph::assortativity.degree(x),
"Modularity" = function(x) igraph::modularity(x,
igraph: :membership (igraph: :cluster_walktrap(x)),
weights = igraph::E(x)$weight),

"Global efficiency" = function(x) igraph::global_efficiency(x)))

276 The function obtain_permuted_network_versions() returns a list of size n_permutations
277 in which each element is an igraph network obtained from the permuted versions of the raw
o7s data stream. The returned list belongs to class list_permuted_networks. The function
279 plot() is used on the returned list of networks which obtains a visualisation of network
20 metrics histogram (see Fig 4). The user can specify the network metrics that are of interest
281 in the form of a list. In this example, we have picked seven network metrics and defined
282 their functions. This feature enables the user to assess any network measure of interest by
283 giving a simple function definition for it. The plots obtained in this way also indicate the
284 value of the network metric in the observed network. The user can compare the position of
25 the observed network metric with respect to the samples of network metrics obtained from
286 permuted versions of raw data. Using this visualisation, it can be verified if the data captures

287 non-random aspects of the network. Note that the user is free to add new network metrics,
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238 delete them from this list, or use a different set of network metrics that is better suited to

230 the research question.

R> assortativity_observed <- igraph::assortativity.degree(pronghorn_network)

R> print(assortativity_observed)

0.4096592

R> assortativity_degree_null_values <- unlist(lapply(pronghorn_permutations,
function(x) igraph::assortativity.degree(x)))
R> round(quantile(assortativity_degree_null_values,

probs = c(0.025, 0.975)), 5)

2.5% 97.5%

-0.09091 0.38944

R> modularity_observed <- igraph::modularity(pronghorn_network,
igraph: :membership(
igraph::cluster_walktrap(pronghorn_network)),
weights = igraph::E(pronghorn_network)$weight)

R> print(modularity_observed)

0.7765574
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R> modularity_degree_null_values <- unlist(lapply(pronghorn_permutations,
function(x)
igraph::modularity(x,
igraph: :membership(
igraph::cluster_walktrap(x)),
weights = igraph::E(x)$weight)))

R> round(quantile (modularity_degree_null_values,

probs = c(0.025, 0.975)), 5)

2.5% 97.5%

0.74521 0.88853

200 From the visualisations obtained in this case, we see that the observed values of assortativity
201 degree and modularity lie within the distribution of null values. We further investigate if the
202 observed values for these two network metrics lie within the middle 95% in the distribution
203 of null values. For this, we use the quantile() function to extract 95% confidence intervals.
200 For assortativity degree, the observed value does not lie within 95% confidence interval of
205 null values but for modularity, it does. As the network metric modularity is used to assess
206 the presence of community structure in networks, this indicates that the sample that we
207 have has a pattern of clustering among nodes which could have been present in any random
208 network of associations. It does not reveal any underlying patterns of organization in the
200 pronghorn population based on the available sample. Therefore, modularity should not be
30 used for further analysis such as hypothesis testing on the pronghorn dataset. In general,

s0  if the observed value falls outside the 95% CI then the data collected does capture a social
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Figure 4: Histogram of the network metric values obtained from permuted versions of the raw
data stream. If the observed value falls within the 95% confidence interval, the network metric

should not be used since it does not account for that non-random aspect of the associations.

32 structure that differs from random associations. Therefore we accept the network metric

303 assortativity degree along with the rest of the five network metrics for further analysis.
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sw Step 2a : Subsampling from the observed sample

35 In the second phase of the workflow, the goal is to determine if the network metrics chosen
36 at this stage remain stable and robust under sampling and understand the level of bias
507 as the sample size lowers. To do so, we perform subsampling and assess change in the
38 network metrics’ values with decreasing sample size. This provides an idea of the extent of
309 bias that can be expected in the values of these network metrics as the observed datasets
3.0 are the subsets of the population. The package function subsampled_network_metrics()
311 enables users to construct several subsamples at different proportions. The function selects
312 the nodes at random without replacement and generates a network from the selected nodes.
313 All interactions within the specified nodes are retained, while the remainder are discarded.
314 This procedure mimics the process of random sampling from the population and depicts
315 the network structure if initially an even lower proportion of the population was randomly
316 sampled. In this example, we proceed with the six network metrics chosen in step 1 and

317 supply those as a list to the function argument network_metrics_functions_list.

R> pronghorn_subsampling <- subsampled_network_metrics (pronghorn_network,

n_simulations = 100,
subsampling proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
network_metrics_functions_list =

c("Edge density" = function(x) igraph::edge_density(x),

"Mean strength" = function(x) mean(igraph::strength(x)),

"Diameter" = function(x) igraph::diameter(x, weights = NA),

"Transitivity" = function(x) igraph::transitivity(x),

"Assortativity degree" = function(x)
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igraph: :assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x)

R> plot(pronghorn_subsampling, pronghorn_network,
network_metrics_functions_list =
c("Edge density" = function(x) igraph::edge_density(x),
"Mean strength" = function(x) mean(igraph::strength(x)),
"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function (x)
igraph::assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x)

The function subsampled_network_metrics() returns a list of length equivalent to the num-
ber of metrics passed in the argument network_metrics_functions_list. The list belongs
to the class "Subsampled_ Network Metrics" which allows the user to use the plot function
to obtain visualisations corresponding to each network metric. The visualisation consists of
boxplots (Figure 5) that represent the distribution of network metric values obtained from
multiple subsamples at each level of subsampling. Edge density, transitivity, and assortativ-
ity degree remain unbiased even when the subsampling proportion is lowered to 30%. On

the other hand, the network metrics mean strength, diameter, and global efficiency display a
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Figure 5: Effect of sub-sampling on six global network metrics. The horizontal red line in each
plot represents the metric value in the observed network. The boxplots denote the distribution
of network metric values obtained from the observed networks by taking 100 sub-samples at

each level.

326 biased behaviour as the number of nodes in the subsample decreases. Note that the diameter
327 tends to plateau at 8 depicting that even if we had a larger sample from the population, the
328 diameter would remain 8 or very close to it. Depending on the study objective, the user must
329 decide if the chosen network metrics are compatible with their aims based on their poten-
330 tial to exhibit biased behaviour. Inferences based on the network metrics that tend to get
31 biased as the sample size lowers should be made carefully. When the sampling proportion
332 is unknown, conclusions on the population should not be made based on the sample for the

333 metrics displaying biased behaviour.
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Step 2b : Comparing subsamples of the observed and the permuted networks

The package also allows the user to compare the subsamples from the observed network to
those obtained from permuted versions of the observed network. This comparison allows to
understand under what level of sampling would the current non-random metrics resemble the
random values (Kaur et al. 2023). The function subsampled_permuted_network_metrics()
is used to obtain the values at each level of subsampling and returns an object of class
"Subsampled_ Permuted_ Network Metrics". The object can then be passed to plot() to

obtain a visualisation that implements the plots shown in Figure 6.

R> permuted_subsamples_comparison <- subsampled_permuted_network_metrics(
pronghorn_permutations,
subsampling proportion = c¢(0.1, 0.30, 0.50, 0.70, 0.90),
network_metrics_functions_list =
c("Edge density" = function(x) igraph::edge_density(x),

"Mean strength" = function(x) mean(igraph::strength(x)),

"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function(x) igraph::assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x))

R> plot(permuted_subsamples_comparison,
pronghorn_network,

network_metrics_functions_list =


https://doi.org/10.1101/2024.05.10.593659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593659; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

28 aniSNA
Edge density Mean strength
0.03-
0.100 = ° E Observed ° ® E Observed
L ]
E3 Permuted E3 Permuted
L]
0.075~ : 0.02- s
g0 | . ! ————————————————————————
5 $ 3 .
§ 0.050- S $ .
— . I s . "_'*'_" 0.01 -
0.025- L .
[ ]
‘ #
0.000 - ° -t — — —_— 0.00- [~ |~ — e e
01 03 05 07 09 011 03 05 07 0'9
Sub-sample size (in %) Sub-sample size (in %)
Diameter Transitivity
. E Observed 1.00- l E Observed
754 E Permuted E Permuted
0.75= .
0
©50- L] ® ’
5 . 2 0.50- 3
. e o S .
L]
—— .
251 R 025-
0.0~ — 0.00- —_— —_— —_— —_—
0.1 03 05 07 09 o1 0.3 05 07 0.9
N Sub-sample size (in %) Sub-sample size (in %)
Assortativity degree Global efficiency
1.0- E Observed 500 = E Observed
E Permuted E Permuted
05 - J- - - - | ¥¥% ~¥7$37¥~
- ] .
3 Y 400 = .
3 00- E] e S B S -
S s
U C 200 -
05 .
.
:
10- [ . o - < - -
01 03 05 07 0'9 0.1 03 0.5 0.7 0.9
Sub-sample size (in %) Sub-sample size (in %)

Figure 6: Comparison of the subsamples of the observed network to those of permuted net-
works. The blue boxplots are obtained by calculating network metric values for 1000 permuted
versions. The orange boxplots are the ones that we obtained from subsampling the observed
network. The horizontal red line in each plot represents the observed metric value. Com-
paring the subsamples of the observed network to those of permuted networks identifies the
sampling proportion where the non-random aspects of the observed network resemble to those

of random networks.
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c("Edge density" = function(x) igraph::edge_density(x),

"Mean strength" = function(x) mean(igraph::strength(x)),

"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function(x) igraph::assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x))

For the network metrics edge density and transitivity, even if 10% of the nodes were sampled
from the population, the observed network would still be very different to a network of
random interactions. For the network metric assortativity degree, the overlapping between
the two boxplots starts at 90% sampling level. However, for the permuted network versions,
assortativity degree becomes highly biased with decrease in the sub-sample size. For the
sample of pronghorn population, the network metrics edge density, mean strength, transitivity
and global efficiency are captured very well and the network could be differentiated from a
random network even at lower sample sizes. This result can help determine the minimum
level of sampling required to obtain correct inferences for future research studies, given the

research question requires analysis of these network metrics.

Step 3 : Estimate uncertainty around the point estimates of global network

metrics

One way of estimating uncertainty around the network metrics’ point estimates is to obtain

confidence intervals (Snijders and Borgatti 1999). Animal data is inherently variable and
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357 confidence intervals acknowledge and account for this variability, helping to avoid overconfi-
38 dence in the precision of network metric estimates (Whitehead 2009; Borgatti, Everett, and

39 Freeman 2014).

30 In animal social network studies, care should be taken while interpreting the confidence inter-
361 vals obtained for the observed network metrics Farine and Carter (2022); Lusseau, Whitehead,
32 and Gero (2008); Whitehead (2008). In step 2 of the workflow, the subsampling analysis iden-
363 tified the network metrics that remain unbiased as the sample size lowers. For such network
364 metrics, confidence intervals provide a range of values within which the true population pa-
365 rameter is likely to fall. However, for the network metrics that became unbiased with lowering
366 sample size such as mean strength, diameter, and global efficiency, confidence intervals ob-
367 tained for the observed value may not contain the true population parameter. Therefore,
ss inference using confidence intervals for the full population should not be made using a sample

30 for such network metrics.

370 However, confidence intervals can provide other useful information even for biased network
s metrics. It can be used to test the significance of the difference between networks obtained
32 from two samples of the same size. For example, if a researcher is interested in testing
3713 hypotheses such as the difference in mean strength of the sampled network in summer and
372 winter. Confidence intervals allow for a direct comparison of the estimated network metrics. If

375 the intervals for the two groups do not overlap, it suggests a statistically significant difference.

376 In general, confidence intervals provide a more comprehensive picture of the network structure
s77 compared to point estimates alone. Instead of relying solely on a single value, it conveys the
sis range of plausible values for a network metric. This enables researchers and decision-makers

379 to understand the level of uncertainty associated with their social network estimates which is
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particularly important when decisions are based on statistical inference. Kaur et al. (2023)
described the importance and need to obtain confidence intervals around the point estimates
of network metrics generated from an observed sample from a population and suggested to
implement it as the third step in the five-step workflow. In aniSNA| the function global_CI()
generates 95% confidence intervals around the observed network metric estimates as shown

in the code below.

R> pronghorn_global_CI <- global_CI(
pronghorn_network,
n_versions = 100,
network_metrics_functions_list =
c("Edge density" = function(x) igraph::edge_density(x),

"Mean strength" = function(x) mean(igraph::strength(x)),

"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function(x) igraph::assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x))

R> round(pronghorn_global_CI,4)

Observed_network_metric Lower_limit Upper_limit
Edge density 0.0401 0.0307 0.0520
Mean strength 0.0186 0.0101 0.0502

Diameter 7.0000 4.0000 8.0000


https://doi.org/10.1101/2024.05.10.593659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593659; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

386

387

388

389

390

391

392

393

394

395

made available under aCC-BY 4.0 International license.

32 aniSNA

Transitivity 0.6230 0.4490 0.6514
Assortativity degree 0.4097 0.0472 0.6841
Global efficiency 326.3107 182.5884 391.9129

Confidence intervals also indicate the precision of the estimated network metric with respect
to the size of the sample. A narrower interval implies a more precise estimate, while a wider
interval suggests greater uncertainty. The package function global_width_CI() allows to
investigate how the width of confidence intervals around the point estimates of global network
metrics change as the sample size is lowered. The function global_width_CI() takes in the
observed network as the first argument. The user can specify the number of bootstrapped
versions that should be used to obtain confidence intervals (See Kaur et al. (2023) for more
details on bootstrapping.) The argument n.iter represents the number of iterations at each

level of sub-sampling over which the mean of confidence intervals is calculated.

R> pronghorn_width_CI <- global_width_CI(pronghorn_network,
network_metrics_functions_list =
c("Edge density" = function(x) igraph::edge_density(x),

"Mean strength" = function(x) mean(igraph::strength(x)),

"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function(x) igraph::assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x))

R> plot(pronghorn_width_CI)

The function global_width_CI() returns a list of vectors of class "Width_ CI__matrix" which
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Figure 7: The plots show the mean widths of 95% confidence intervals obtained from boot-
strapped sub-samples of a network. The x-axis indicates the number of nodes in the sample
and y-axis denotes the mean width of confidence intervals. Except for mean strength and
diameter, the mean widths of all network metrics increase with lower sample size indicating
increasing uncertainty around the point estimate of the network metrics. As the values for
mean strength and diameter are directly affected by the number of nodes present in the net-
work, we consider scaled versions of these two metrics such that the values at each level are

scaled by the number of nodes at that level.
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34 aniSNA

the user can pass into the plot () function and obtain a visualisation as shown in Figure 7.
As the sample size is lowered, the uncertainty in the observed network metric increases, and
therefore, the width of the confidence intervals widens. However, for some of the network
metrics like mean strength and diameter, the width of confidence intervals declines when the
sub-sample size is lowered. This is because for these network metrics, the number of nodes
in the network sample has a direct impact on the observed values of these metrics (See Kaur
et al. (2023) for more details) and therefore, a scaled version for these metrics should be
considered. In the function global_width_CI(), the user has a choice to specify the network
metrics whose scaled versions need to be considered. The network metrics that are directly
affected by the number of nodes present in the sample should be specified here. We repeat

this analysis by specifying these metrics.

R> pronghorn_width_CI_scaled <- global_width_CI(pronghorn_network,
network_metrics_functions_list =
c("Edge density" = function(x) igraph::edge_density(x),

"Mean strength" = function(x) mean(igraph::strength(x)),

"Diameter" = function(x) igraph::diameter(x, weights = NA),
"Transitivity" = function(x) igraph::transitivity(x),
"Assortativity degree" = function(x) igraph::assortativity.degree(x),

"Global efficiency" = function(x) igraph::global_efficiency(x)),

scaled_metrics = c("Mean strength", "Diameter")

R> plot(pronghorn_width_CI_scaled)


https://doi.org/10.1101/2024.05.10.593659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593659; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

35

Mean strength_scaled Diameter_scaled
wn o
[5e] L] N —e
S 4 o
T < ©
F e
7] [}
2 . 2 e
© . Qo ©
Q \ . / g
5 9 /N e 5
- o [ ] - o
= o . = o
5 2 . . 5 =
o ° /7 o @ .
[ ] ,.'.\ Y
= . . . o
s £ 4 \
o o
£ © s S -0,
o e-0-g _
S e ®-9-9o LET I
o T T T T T T T T T T T T T T
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Sample Size Sample Size

Figure 8: The plots show the mean widths of 95% confidence intervals for the scaled versions
of the chosen network metrics. The x-axis indicates the number of nodes in the sample and

y-axis denotes the mean width of confidence intervals.

a7 We investigate the scaled versions of these network metrics by obtaining the corresponding
ss plots for these (Figure 8). After scaling, the plot for the network metric diameter shows
a0 similar behaviour to that of unscaled versions of other network metrics. Interestingly, the
a0 confidence interval widths of mean strength first increase and then decrease as the sample
a1 size is lowered. This indicates that when the sample size falls below a specific threshold, the
412 observed network splits into smaller disjoint sub-networks, and even in bootstrapped versions

a3 of these smaller networks, the mean strength values remain low.

as Step 4a : Correlation analysis between node-level network metrics of ob-

a5 served and smaller subsamples

a6 The fourth step in the five-step workflow (Kaur et al. 2023) concerns the node-level network

a7 metrics. We use eight node-level network metrics commonly used in animal social network
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studies representing the importance of each node in the network based on certain criteria (Sosa
et al. 2021). The node-level network metrics included in the analysis are degree, strength,
betweenness, clustering coefficient, eigenvector centrality, harmonic centrality, reach, and
laplacian centrality. See Table 3 for a summary of what each of these metrics represents in a

network.

Table 3: Node-level network metrics used in the analysis of Pronghorn network

Node-level
Network Metric

What does the metric measure?

Degree The number of connections an individual has in the network. Higher degree
means more gregariousness.
Strength The combined weight (i.e., frequency or duration) of all of an individual’s
connections in a network. It is also called weighted degree.
Betweenness The number of times an individual occurs on the shortest path between two
Centrality other individuals in the network.
Eigenvector A measure of influence in the network that takes into account second-order
Centrality connections.
Local Clustering | A measure of likelihood that the connections of an individual are also
Coefficient connected.
Harmonic A measure of proximity of a node to other nodes in the network, measured
Centrality by the inverse of the shortest path distances. Nodes with high harmonic
centrality are close to many other nodes, or are well connected to the rest of
the network.
Reach (Order 2) | The reach (order 2) of a node refers to the number of other nodes that are
reachable from the node through two steps in the network.
Laplacian Calculated as the drop in Laplacian energy when the node is removed from
Centrality the network, this measure quantifies the importance of a node by

considering its connectivity to other nodes and potential influence on
network dynamics.

In the fourth step, we examine the correlation coefficient’s behaviour with respect to the node-

level network metrics of the observed network and its sub-samples. A significant correlation
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a5 between the two values shows a strong linear connection and rank preservation among the
26 sampled individuals. The network metrics with a high correlation value provide a more

427 accurate idea of the individual’s position in the social network of the population.

28 The package function correlation_analyze() allows for this analysis on the network ob-
a9 tained from GPS telemetry observations. The function takes in the igraph object of the
430 observed network as the first argument, the number of simulations to obtain the mean and
a1 standard deviation of correlation coefficient at each subsampling level as the second argu-
422 ment n_simulations. The user also specifies the proportions at which sub-sampling should
a3 be done via the argument subsampling_ proportion along with the network_metrics to be

a3a  calculated.

R> correlation_pronghorn <- correlation_analyze(pronghorn_network,
n_simulations = 10,
subsampling proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
network_metrics_functions_list =
c("Degree" = function(net, sub_net)
igraph::degree(net, v = igraph::V(sub_net)$name),
"Strength" = function(net, sub_net)
igraph: :strength(net, v = igraph::V(sub_net)$name),
"Betweenness" = function(net, sub_net)
igraph: :betweenness(net, v = igraph::V(sub_net)$name),
"Clustering coefficient" = function(net, sub_net)
igraph::transitivity(net, type = "local",

vids = igraph::V(sub_net)$name),
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"Eigenvector centrality" = function(net, sub_net)
igraph::eigen_centrality(net)$vector[igraph: :V(sub_net)$name],
"Harmonic centrality" = function(net, sub_net)
igraph::harmonic_centrality(net, vids = igraph::V(sub_net)$name),
"Reach (order 2)" = function(net, sub_net)
igraph::ego_size(net, order = 2, nodes = igraph::V(sub_net)$name),
"Laplacian centrality" = function(net, sub_net)

centiserve::laplacian(net, vids = igraph::V(sub_net)$name))

R> plot(correlation_pronghorn)

s35 The function correlation_analyze () returns an object of class 1ist_correlation_matrices
436 which contains a list of size equivalent to the number of network metrics specified. Corre-
437 sponding to each network metric, a matrix is returned that contains the correlation coefficient
438 value at each run of simulation for each subsampling proportion. The returned object can be

a9 plotted via the plot () function and visualisation is obtained as shown in Figure 9.

a0 For the pronghorn network, even with a sample size of only 40%, the network measures degree,
a1 reach, and laplacian centrality remain well correlated. The correlation values for strength and
a2 eigenvector centrality vary greatly as the subsampling level decreases as indicated by the thick
a3 band of standard deviation in the value. This indicates that for the pronghorn network, even
aa  if 50% of the current sample size was available, the individual rankings for the network metrics
ws  degree, reach, and laplacian centrality would have been preserved. As the laplacian centrality
ws  of a node represents its influence over the entire network, taking into account both the node’s

a7 direct connections and its indirect influence through neighboring nodes, this result implies
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Figure 9: The plots show the correlation of node-level network metrics between the nodes of

sub-sampled and observed networks. The black line in the plots indicates the mean correlation

coefficient value between the node-level metrics of nodes present in the sub-sampled network.

The colored region depicts the standard deviation of the correlation values at each sampling

level.
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as  that the pronghorn network structure remains well preserved when the sample size is lowered

a9 to 50% of the current size.

0 Step 4b : Regression analysis between the node-level network metrics of

1 observed and smaller subsamples

a2 Regression provides a quantitative measure of the strength and direction of the relationship
153 between two quantities. We use regression analysis to analyse how the dependence of node-
454 level metrics in sub-sampled networks on the nodes of fully observed network changes when
55 there is a decline in the sampling proportion. The package function regression_slope_analyze ()
a6 allows to perform regression analysis where the values of node-level network metrics from sub-
ss7  sampled networks are regressed on the node-level network metrics of the same nodes from the
a8 observed networks. We show the example of performing regression analysis on the pronghorn

40  network.

R> regression_pronghorn <- regression_slope_analyze (pronghorn_network,
n_simulations = 10,
subsampling proportion = c(0.1, 0.3, 0.5, 0.7, 0.9),
network_metrics_functions_list =
c("Degree" = function(net, sub_net)
igraph: :degree(net, v = igraph::V(sub_net)$name),
"Strength" = function(net, sub_net)
igraph: :strength(net, v = igraph::V(sub_net)$name),
"Betweenness" = function(net, sub_net)
igraph: :betweenness(net, v = igraph::V(sub_net)$name),

"Clustering coefficient" = function(net, sub_net)
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Figure 10: Regression analysis of the node-level network metrics between the sub-sampled
and observed network. In each plot, the x-axis denotes the proportion of nodes in the sub-
sample and the y-axis shows the corresponding value of the slope of regression calculated by

regressing these metrics of sub-sampled nodes on the observed network nodes.
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igraph: :transitivity(net, type = "local",
vids = igraph::V(sub_net)$name),

"Eigenvector centrality" = function(net, sub_net)

igraph::eigen_centrality(net)$vector[igraph: :V(sub_net)$name],
"Harmonic centrality" = function(net, sub_net)

igraph: :harmonic_centrality(net, vids = igraph::V(sub_net)$name),
"Reach (order 2)" = function(net, sub_net)

igraph: :ego_size(net, order = 2, nodes = igraph::V(sub_net)$name),
"Laplacian centrality" = function(net, sub_net)

centiserve::laplacian(net, vids = igraph::V(sub_net)$name)))

R> plot(regression_pronghorn)

The function regression_slope_analyze () returns an object of class

list_regression_matrices which can be passed to the plot() function to obtain a visu-
alisation as shown in Figure 10. For the pronghorn network, the slope of regression declines
almost linearly with a decrease in the sampling proportion for the network metrics degree.
It follows an almost linear pattern for strength, harmonic centrality, reach, and laplacian
centrality. This shows that for the sub-samples of the available sample of pronghorn, the
variation in the rank orders for the individuals in terms of the network metrics degree, har-
monic centrality, reach, and laplacian centrality can be explained well, however, the strength
of this relationship declines as the sample size is lowered. The network metric clustering
coefficient has a regression slope of 1 when as low as 30% of the pronghorn observed sample
is sub-sampled. Therefore, rankings based on the clustering coefficient of smaller sub-samples

reflect the true rankings of the observed sample. As the observed sample represents just a
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proportion of the population, the network metrics that do not preserve the rankings should

not be used to make inferences on the population’s network structure.

Step 5 : Confidence intervals for node-level network metrics

As with global network metrics, confidence intervals play an important role in enhancing
network analysis inferences for node-level network metrics. For each individual in the sample,
point estimates provide a snapshot of their position in the network which might change
depending on the choice of other individuals in the network. It is important to assess the
extent of this change when dealing with a sample from the population. Confidence intervals
provide a range of values within which the metric value of the node is likely to fall. The final
step in the five-step workflow is to obtain confidence intervals around the point estimates of
the node-level network metrics. The package function node_level_CI() allows the generation

of confidence intervals for each node’s observed network metric value.

R> pronghorn_node_level_CI <- node_level_CI(pronghorn_network,
n_versions = 100,
network_metrics_functions_list =

c("Degree" = igraph::degree,

"Strength" = igraph::strength ,

"Betweenness" = igraph::betweenness,
"Clustering coefficient" = function(x){
trans <- igraph::transitivity(x,

type = "local", vids = igraph::V(x),

isolates = '"zero");
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names (trans) <- igraph::V(x)$name;
return(trans)},
"Eigenvector centrality" = function(x)
igraph::eigen_centrality(x)$vector,
"Harmonic centrality" =
igraph: :harmonic_centrality,
"Reach (order 2)" = function(x){
reach <- igraph::ego_size(x, order = 2)
names (reach) <- igraph::V(x)$name
return(reach)
+,

"Laplacian centrality" = centiserve::laplacian),

n_cores = 1, CI_size = 0.95)

R> plot(pronghorn_node_level_CI)

The package function node_level_CI() takes in the observed network in the form of an

igraph object. The user is asked to specify the number of bootstrapped versions to be con-

sidered for obtaining the confidence intervals with a default value of 100. The user can

also specify the level of confidence through CI_size argument. The default value is 0.95

which generates 95% confidence intervals. The function returns a list which is an object of

class 1ist_node_level_CI. Passing this list to the plot function generates visualisation as

depicted in figure 11.

For the pronghorn network, each of the plot for a network metric depicts an interesting picture.

The amount of uncertainity in the observed values of degree for each node is approximately
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Figure 11: Node-level metrics for the pronghorn network for the network metrics degree,
strength, betweenness, clustering coefficient, eigenvector centrality, harmonic centrality, reach,
and laplacian centrality with associated 95% confidence intervals. To facilitate readability,

the nodes are sorted in decreasing order by observed metric.
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a3 equal. A lot of the nodes having high clustering coefficient values have the tendency to achieve
a4 very low values and vice versa depending on the choice of other individuals in the sample.
205 For the network metric eignevector centrality, most of the nodes have an observed value of
406 zero, however we can point out the few nodes from the sample that have a tendency to have
407 higher values for this centrality. Plot for harmonic centrality indicates that some of the nodes
208 have a much higher tendency to act as bridges connecting different parts of the network than

209 what is observed from the given sample.

so  Conclusions from pronghorn GPS telemetry data

so0 A summary of the workflow is provided in figure 12. Performing this five-step workflow on the
502 pronghorn network obtained from the GPS telemetry observations has revealed interesting
s03 insights about the nature of the observed sample. Along with providing a comprehensive
so4 understanding of the network structure, it has helped us to familiarise with the patterns,
sos  performance with different social network metrics, and potential issues in the data before

so6  proceeding with a more advanced form of social network analysis.

s07 We assessed seven global network metrics and eight node-level network metrics for their
sos  compatibility with the raw GPS telemetry observations collected for pronghorn. The first
so0  step of the workflow highlighted the network metrics which could be an ideal choice to be
s10 used for further social network analysis on the observed pronghorn data. For example, if a
s11 researcher were considering using modularity as a network metric to test certain hypotheses,
512 the first step of the workflow revealed that it might not be a good idea. The observed value
513 of modularity lied within the distribution of null values that indicated that the pronghorn
514 network generated from the sampled observations does not explicitly capture this aspect and

si5 is in fact similar to a random network with regards to modularity. This is an important result
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Figure 12: Summary of the five-step workflow

as if a researcher was interested in comparing the network structure of pronghorn in winter
and summer months and no difference in modularity was observed. The researcher might
conclude that there is no difference in the two networks in terms of modularity whereas the
actual reason could be that the data collected does not capture this aspect very well in the

first place.

The second and third steps of the workflow revealed insights about the extent of bias in
the chosen network metrics and the nature of conclusions that could be made using those.
The network metrics edge density, transitivity, and assortativity degree remained unbiased
with lowering sample sizes and obtaining confidence intervals around the observed values for
these metrics provided a range of values within which the population parameter may lie.

The fourth and fifth steps of the workflow assessed the uncertainty in the observed values of
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527 node-level network metrics. Degree, reach and laplacian centrality of smaller sub-networks
58 were well correlated with the observed network, indicating that node-wise ranks were well
s20 preserved for these network metrics. Having confidence intervals around the observed values
530  of node-level network metrics helped point out the network metrics that tend to achieve
ss1. - much greater (or lower) observed values, depending on the choice of other individuals in the
532 sample. For example, if we need to choose individuals to be vaccinated in cases of disease
533 spread, the individuals from the sample having higher upper confidence interval values for
53 harmonic centrality should be chosen as the individuals with higher harmonic centrality in the
535 sub-network are likely to have highest harmonic centrality in the full population as indicated

53 by high correlation coefficients.

s57. Computational limitations

s33  Computing pre-network data stream permutations is computationally demanding and could
539  take long depending on the number of individuals monitored, observation frequency and
s90  duration of observations. The users are advised to use multiple cores to allow for parallel

sa1 processing and use remote servers whenever available.

4. Discussion

s22 GPS telemetry data is becoming increasingly common for extracting and analyzing animal
543 social networks, providing valuable insights into the social and spatial behavior of animal
s¢4  communities. By leveraging the latest tools available for animal social network analysis,
545 researchers can uncover nuanced insights into how animals interact socially and navigate

ss6  their environments. In this endeavour, the aniSNA serves as a crucial but thus far missing
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547 tool that is needed before using many existing tools for SNA on animal datasets. It allows
ss8  the user to construct and analyze network structures even when working with a subset of
s99 the population. This means that data previously considered insufficient for social network
ss0 analysis can now be judiciously utilized, expanding the scope of research possibilities. The
ss1 package includes sample data from GPS telemetry observations of elk monitored in 2010,

552 which users can use to explore the methods described in this paper for themselves.

553 The package aniSNA will continue to grow as further advancements in statistical tools to
554 analyse and obtain inferences from network data take place. The current and subsequent ver-
555 sions of aniSNA enable the researchers to derive robust statistical insights from the networks
556 obtained from GPS telemetry data. Animal ecologists gain the capacity to compute an array
557 of social network metrics, offering insights at both population-wide patterns and individual
sss behaviors. It enables users to confidently evaluate the reliability of these metrics and leverage
ss0  them for subsequent analyses. For instance, researchers can investigate the intricacies of so-
se0  cial network variation within and between populations, revealing how social structures differ
s61  in various ecological environments. Additionally, by linking individual sociality metrics to life
s62  history traits, such as reproductive success or survival rates, they can uncover the profound
s63 implications of social dynamics on key aspects of animal behavior and ecology. Through
se¢4 these capabilities, the package serves as a powerful tool for unraveling the complexities of
s6s  animal social systems and their ecological implications, paving the way for more informed

s66 conservation and management strategies.
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