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ABSTRACT 22 

Long-read metagenomic sequencing is a powerful approach for cataloging the microbial 23 

diversity present in complex microbiomes, including the human gut microbiome. We performed 24 

a deep-sequencing experiment using PacBio HiFi reads to obtain metagenome-assembled 25 

genomes (MAGs) from a pooled human gut microbiome. We performed long-read metagenome 26 

assembly using two methods (hifiasm-meta, metMDBG), used improved bioinformatic and 27 

proximity ligation binning strategies to cluster contigs and identify MAGs, and developed a 28 

novel framework to compare and consolidate MAGs (pb-MAG-mirror). We found proximity 29 

ligation binning yielded more MAGs than bioinformatic binning, but our novel comparison 30 

framework resulted in higher MAG yields than either binning strategy individually. In total, from 31 

255 Gbp of total HiFi data we produced 595 total MAGs (including 175 high-quality MAGs) 32 

using hifiasm-meta, and 547 total MAGs (including 277 high-quality MAGs) with metaMDBG. 33 

Hifiasm-meta assembled almost twice as many strain-level MAGs as metaMDBG (246 vs. 156), 34 

but both assembly methods produced up to five strains for a species. Approximately 85% of the 35 

MAGs were assigned to known species, but we recovered >35 high-quality MAGs that represent 36 

uncultured diversity. Based on strict similarity scores, we found 125 MAGs were unequivocally 37 

shared across the assembly methods at the strain level, representing ~22% of the total MAGs 38 

recovered per method. Finally, we detected more total viral sequences in the metaMDBG 39 

assembly versus the hifiasm-meta assembly (~6,700 vs. ~4,500). Overall, we find the use of HiFi 40 

sequencing, improved metagenome assembly methods, and complementary binning strategies is 41 

highly effective for rapidly cataloging microbial genomes in complex microbiomes. 42 

 43 

INTRODUCTION 44 

The human gut microbiome contains a diversity of microbes that potentially impact health and 45 

disease (Lynch & Pederson 2016; Wang & Jia 2016; Duvallet et al. 2017; Gilbert et al. 2018). 46 

Despite considerable efforts to catalog the microbial diversity present in the human gut, large 47 

numbers of species and strains remain uncultured and undetected (Lagier et al. 2018; Nayfach et 48 

al. 2019; Almeida et al. 2019; Forster et al. 2019; Pasolli et al. 2019; Zou et al. 2019; Almeida et 49 

al. 2021). The pace of biodiversity discovery is limited using traditional isolation and culturing 50 

methods, but it can be greatly accelerated using metagenomic sequencing. Metagenome 51 

assembly is a powerful approach for reconstructing the genomic contents of species contained in 52 
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a microbiome sample (Tyson et al. 2004). Historically, the contigs produced by metagenome 53 

assemblies often represent small fragments of microbial genomes, and binning methods are used 54 

to group contigs into putative genomes. The genomes obtained through assembly and binning are 55 

commonly referred to as metagenome-assembled genomes (MAGs). Metagenome assembly 56 

based on short-read sequencing generally requires substantial effort to produce high-quality 57 

MAGs (Bowers et al. 2017; Chen et al. 2020). For example, repetitive genomic regions and 58 

interspecies genomic overlaps are difficult to resolve using short reads, and this generally leads 59 

to highly fragmented assemblies (Arumugam et al. 2019). Furthermore, binning can introduce 60 

major errors by grouping contigs belonging to different species or strains into MAGs (Chen et al. 61 

2020). This can result in chimeric MAGs or even MAGs with human contamination, which can 62 

have severe negative effects on downstream analyses (see Gihawi et al. 2023).  63 

Long-read sequencing can overcome many of the challenges associated with metagenome 64 

assembly (Kolmogorov et al. 2020; Feng et al. 2022; Albertsen 2023; Benoit et al. 2023; 65 

Agustinho et al. 2024). The most popular long-read sequencing platforms are those produced by 66 

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). PacBio HiFi 67 

sequencing produces highly accurate consensus reads (>Q20, median Q30) that are 10–20 kb in 68 

length (Wenger et al. 2019). Several studies have demonstrated that HiFi sequencing generally 69 

produces more total MAGs and higher quality MAGs than short-read sequencing (Priest et al. 70 

2021; Gehrig et al. 2022; Meslier et al. 2022; Eisenhofer et al. 2023; Orellana et al. 2023; Tao et 71 

al. 2023; Zhang et al. 2023), and that HiFi sequencing outperforms ONT for metagenome 72 

assembly (Meslier et al. 2022; Sereika et al. 2022). The high accuracy of HiFi reads has led to 73 

the development of two new metagenome assembly methods, hifiasm-meta (Feng et al. 2022) 74 

and metaMDBG (Benoit et al. 2023), which perform better than previous methods such as 75 

HiCanu (Nurk et al. 2020) and metaFlye (Kolmogorov et al. 2020). Hifiasm-meta phases reads 76 

based on single nucleotide variants and constructs the string graph using only intra-haplotype 77 

read overlaps. Heuristics to keep contained reads with ambiguous phasing and to resolve tangles 78 

using either unitig read coverages or topology are implemented in graph cleaning steps. By 79 

contrast, metaMDBG uses de-Bruijn graph assembly in a mimizer-space and a progressive 80 

abundance-based filtering strategy to simplify strain complexity. Performing metagenome 81 

assembly with these HiFi-specific methods routinely produces complete, circular MAGs, and 82 

sometimes in large numbers (Bickhart et al. 2022; Feng et al. 2022; Kato et al. 2022; Kim et al. 83 
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2022; Zhang et al. 2022; Benoit et al. 2023; Jiang et al. 2023; Saak et al. 2023; Schaerer et al. 84 

2023; Masuda et al. 2024). For example, using hifiasm-meta Kim et al. (2022) recovered 102 85 

complete, circular MAGs from five human gut microbiome samples (including 39 MAGs that 86 

remain uncultured), and a reanalysis of data from Bickhart et al. (2022) with metaMDBG 87 

recovered 447 high-quality MAGs from a single sheep gut microbiome, including 266 circular 88 

MAGs (Benoit et al. 2023). 89 

 Although metagenome assembly with HiFi sequencing data can produce complete 90 

MAGs, additional genomes will be represented by two or more contigs. Reconstructing these 91 

additional MAGs requires the use of binning algorithms. A majority of bioinformatic binning 92 

methods perform clustering using tetranucleotide frequencies, depth of coverage, or deep 93 

learning methods (Sczyrba et al. 2017; Meyer et al. 2022), and most were designed for short-read 94 

assemblies. When applied to long-read assemblies, these methods can produce unexpected or 95 

suboptimal results. To address this, new long-read binning algorithms have been developed, 96 

including MetaBCC-LR (Wickramarachchi et al. 2020), LRBinner (Wickramarachchi & Lin 97 

2022), GraphMB (Lamurias et al. 2022), and most recently SemiBin2 (Pan et al. 2023). 98 

Metagenomic assembly workflows often include multiple bioinformatic binning methods, and 99 

the results from multiple binning algorithms are typically merged. This key step de-replicates the 100 

bin sets from alternative methods, resulting in improvements to MAG quality and yield (Olm et 101 

al. 2017; Uritskiy et al. 2018). In addition to bioinformatic approaches, proximity ligation 102 

information (e.g., Hi-C) can also be used to bin contigs (Burton et al. 2014; Press et al. 2017; 103 

DeMaere & Darling 2019). The ProxiMeta platform (Press et al. 2017), MetaCC (Du & Sun 104 

2023), and metaBAT-LR (Ho et al. 2023) can perform binning using Hi-C data and a set of 105 

assembled contigs. Proximity ligation also allows mobile elements to be associated with their 106 

respective host genomes, offering a unique advantage. Proximity ligation binning methods have 107 

been successfully applied to long-read metagenome assemblies, presumably improving MAG 108 

yields relative to bioinformatic binning (Bickhart et al. 2022; Saak et al. 2023). However, no 109 

studies have performed a systematic comparison of the MAG sets produced from bioinformatic 110 

and proximity ligation binning using long reads. 111 

 Here, we performed a deep-sequencing experiment on a pooled human gut microbiome to 112 

produce a catalog of highly resolved MAGs. This pooled gut sample is particularly challenging 113 

for metagenome assembly, as the number of species and strains is higher than what is typically 114 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2024. ; https://doi.org/10.1101/2024.05.10.593587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593587
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

found in a gut microbiome. We obtained HiFi data from the PacBio Sequel IIe and Revio 115 

systems. We assembled the combined sequencing dataset using hifiasm-meta and metaMDBG, 116 

and performed binning using bioinformatic and proximity ligation approaches. For bioinformatic 117 

binning, we created a new version of a workflow designed to process long-read metagenome 118 

assemblies (HiFi-MAG-Pipeline), and we used the ProxiMeta platform to perform proximity 119 

ligation binning and association of mobile elements. We also developed a new algorithm (pb-120 

MAG-mirror) which compares the contents of MAGs obtained from two alternate binning 121 

approaches (based on the same set of starting contigs), and consolidates the MAGs into a single 122 

non-redundant set. In an effort to characterize tradeoffs in performance, we compared the 123 

number, quality, and taxonomy of MAGs obtained from the various combinations of assembly 124 

and binning methods. Finally, we performed a downsampling experiment to understand the 125 

effects of total data on MAG recovery. Overall, our study illustrates how HiFi sequencing can be 126 

used to obtain highly complete MAGs from the human gut microbiome, accelerating our ability 127 

to catalog the microbial diversity in this complex system. 128 

 129 

RESULTS 130 

 131 

Sequencing datasets 132 

Our combined PacBio HiFi sequencing dataset consists of 34.7 million HiFi reads and 255.9 Gb 133 

of total data, with a mean QV of 42.5 (Table 1). We obtained 17.1 million HiFi reads (120.8 Gb) 134 

from six 8M SMRT Cells on the Sequel IIe system, and 17.5 HiFi reads (135.0 Gb) from two 135 

25M SMRT Cells on the Revio system. The Sequel IIe HiFi reads display a mean length of 7.0 136 

kb and mean QV of 40.5 (Supplemental Fig. S1); yields across cells ranged from 2.30–3.33 137 

million reads and 14.1–27.8 Gb total data. The Revio HiFi reads had a similar mean length of 7.7 138 

kb but a higher mean QV of 45.8. Importantly, predicted read QV scores were higher in the 139 

Revio dataset despite a fewer mean number of passes (18 versus 24; Supplemental Fig. S1). Both 140 

Revio runs were highly consistent in yielding 8.7–8.8 million HiFi reads and 67.0–67.9 Gb total 141 

data. 142 

 143 

Metagenome assembly and binning 144 
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We performed metagenome assembly using two HiFi-specific methods: hifiasm-meta and 145 

metaMDBG (Fig. 1). The assembly with hifiasm-meta resulted in 34,117 contigs with an N50 of 146 

458 kbp and total assembly size of 2.76 Gbp. We found that metaMDBG produced 66,952 147 

contigs with an N50 of 306 kbp and total assembly size of 2.75 Gbp. The runtime performance 148 

differed between the assembly methods. Using hifiasm-meta took 5 days and 5.8 hours wall time 149 

using 64 threads (7767 CPU hrs) with peak memory of 713 GB, whereas metaMDBG required 150 

21.13 hours wall time (1352 CPU hrs) and 12.7 GB peak memory (using 64 threads). 151 

To obtain MAGs from the assembled contigs, we performed bioinformatic binning using 152 

the HiFi-MAG-Pipeline and proximity ligation binning using ProxiMeta (Fig. 1). We categorized 153 

MAGs as medium-quality or high-quality (MQ-MAG, HQ-MAG, respectively) based on 154 

standards proposed by the Genomic Standards Consortium (Bowers et al. 2017). The HQ-MAGs 155 

require ≥90% completeness (based on universal single-copy genes - SCGs) and ≤5% 156 

contamination, whereas MQ-MAGs fall below these criteria but display ≥50% SCG 157 

completeness and ≤10% contamination. Overall, we obtained large numbers of total MAGs and 158 

HQ-MAGs across all the assembly and binning combinations. Specifically, using bioinformatic 159 

binning we obtained 485 and 480 total MAGs for hifiasm-meta and metaMDBG, respectively 160 

(Fig. 2, Table 2). Comparing the binning strategies, we found ProxiMeta produced more total 161 

MAGs than bioinformatic binning, with 522 and 492 total MAGs for hifiasm-meta and 162 

metaMDBG, respectively (Fig. 2, Table 2). This represents an 8% and 3% increase in total 163 

MAGs for the two assembly methods. Across both binning strategies, the total number of MAGs 164 

produced by hifiasm-meta is higher than metaMDBG. However, we found metaMDBG has a 165 

higher proportion of HQ-MAGs relative to hifiasm-meta across both binning strategies 166 

(bioinformatic: 239 vs. 157; proximity ligation: 258 vs. 166; Fig 2). Both assembly methods 167 

recovered similar numbers of SC-HQ-MAGs, but the numbers differed across binning strategy 168 

(Table 2). The first step of the HiFi-MAG-Pipeline was designed to identify highly complete, 169 

single-contig MAGs using a “completeness-aware” strategy. Based on this approach, we 170 

recovered 98 and 96 SC-HQ-MAGs from hifiasm-meta and metaMDBG, respectively, with 70 171 

and 74 being circular. The ProxiMeta workflow does not include a parallel initial step, and as a 172 

result we recovered 79 and 70 SC-HQ-MAGs (from hifiasm-meta and metaMDBG, respectively, 173 

both with 59 circular). For ProxiMeta we observed several cases in which one or more small 174 

contigs (<50kb) were binned with complete bacterial chromosomes (identified as SC-HQ-MAGs 175 
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using HiFi-MAG-Pipeline), and they were subsequently excluded from being counted as SC-176 

HQ-MAGs. The smaller contigs may possibly represent unannotated mobile elements. Overall, 177 

ProxiMeta produced higher HQ and MQ-MAG yields than the HiFi-MAG-Pipeline. 178 

We compared and consolidated the bioinformatic and proximity ligation bin sets using 179 

our new method, pb-MAG-mirror. Our analysis with pb-MAG-mirror resulted in more MQ- and 180 

HQ-MAGs than either binning approach individually (Fig. 2). The analysis assigned MAGs to 181 

four comparison categories, including identical, superset/subset, unique, and high-, medium- and 182 

low-similarity mixed (Fig. 1). Three of these categories involved identifying highly similar pairs 183 

of MAGs across the two binning strategies (e.g., the identical, superset/subset, and high-184 

similarity mixed categories; Fig. 1), whereas the unique, medium- and low-similarity mixed 185 

categories identified distinct or poorly overlapping MAGs. These classifications allowed us to 186 

identify the proportion of highly similar MAGs shared across binning methods, which guided the 187 

consolidation step (see Methods). Our analysis with pb-MAG-mirror produced 595 and 547 total 188 

consolidated MAGs for hifiasm-meta and metaMDBG, representing 11–22% more total MAGs 189 

than bioinformatic or proximity ligation binning individually. We found that 61–66% of total 190 

MAGs were classified as highly similar across the bioinformatic and proximity ligation binning 191 

methods (Fig. 2, Supplementary Table S1). This result indicates that a majority of MAGs contain 192 

highly similar contents across the binning approaches. By contrast, we found approximately 18–193 

23% of the total MAGs were assigned to the medium and low-similarity mixed categories, which 194 

had little to no overlap in MAG composition. These MAGs tended to have lower completeness 195 

scores and higher contamination scores relative to other categories (Supplemental Fig. S2). 196 

Finally, the number of unique MAGs varied across binning and assembly methods, ranging from 197 

11–20% of the total MAGs. ProxiMeta produced more unique MAGs than HiFi-MAG-Pipeline, 198 

and the highest number of unique MAGs occurred for the hifiasm-meta and ProxiMeta 199 

combination (Fig. 2, Supplementary Table S1). We investigated the characteristics of the unique 200 

MAGs from each binning method, and found the unique MAGs from HiFi-MAG-Pipeline and 201 

ProxiMeta had similar completeness scores (~70%, for both assembly methods; Supplementary 202 

Fig. S2). However, the unique MAGs from HiFi-MAG-Pipeline displayed a higher average 203 

number of contigs (hifiasm-meta: 17 vs. 9 contigs; metaMDBG: 18 vs. 13 contigs) and a lower 204 

average depth of coverage (hifiasm-meta: 21x vs. 64x; metaMDBG: 27x vs. 87x), relative to 205 

ProxiMeta (Supplementary Fig. S2). In the consolidated MAG set, a major contribution comes 206 
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from the inclusion of the unique MAGs from both methods. The combined unique MAGs 207 

represent 30% and 22% of the total consolidated MAGs for hifiasm-meta and metaMDBG, 208 

respectively.  209 

 210 

Effects of total data 211 

To investigate the effects of total data on MAG yield, we downsampled our Sequel IIe dataset to 212 

lower data levels (Supplementary Table S2). Overall, we found the patterns from the full dataset 213 

were recapitulated in the downsampled datasets. For example, across both assembly methods we 214 

found the consolidated MAG set resulted in the greatest numbers of MQ- and HQ-MAGs, 215 

followed by proximity ligation binning, then bioinformatic binning (Supplementary Figs. 3, 4; 216 

Supplementary Table S3). In the full sequencing datasets, hifiasm-meta produced more total 217 

MAGs than metaMDBG (Fig. 2), but this pattern was not consistent across the downsampled 218 

datasets. We found metaMDBG produced more total MAGs in 14% of the downsampled 219 

comparisons, most often in conjunction with the HiFi-MAG-Pipeline (Supplementary Figs. S3, 220 

S4, Table S3). However, across all data levels we found metaMDBG produced more HQ-MAGs, 221 

and fewer MQ-MAGs, than hifiasm-meta (Fig. 3). We note our smallest downsampled dataset 222 

contained only ~360,000 HiFi reads and 3Gb total data, yet it resulted in up to 73 total MAGs 223 

and 10 HQ-MAGs (Supplementary Table S3). Looking across all data levels (including our full 224 

dataset), we found a predictable logarithmic relationship between total data and the number of 225 

HQ or MQ-MAGs in the consolidated MAG sets (Fig. 3; Supplementary Table S4). These 226 

trendlines indicate that although additional sequencing could further increase MAG yields, there 227 

are diminishing returns relative to lower data levels.  228 

 229 

Taxonomic diversity and strain-level variation 230 

The number of species assigned by GTDB-Tk ranged from 313–385 species across assembly and 231 

binning combinations, with the highest number of species occurring in the consolidated MAG 232 

sets for hifiasm-meta (n=364) and metaMDBG (n=385; Table 3). The number of MAGs that 233 

were not assigned to the species level ranged from 65–96 across the method combinations, 234 

representing 13–17% of the total MAGs. The highest numbers again occurred in the consolidated 235 

MAG sets, with 96 MAGs not assigned to the species rank for hifiasm-meta (16%) and 75 for 236 

metaMDBG (14%). Given the high number of unassigned MAGs, the species counts from 237 
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GTDB-Tk represent a conservative estimate of the total species diversity. The dRep results 238 

support this notion, as we recovered more species-level clusters across assembly and binning 239 

combinations, ranging from 385–455 (Table 3). The highest numbers of dRep species clusters 240 

were also found for the consolidated MAG sets, with 449 clusters for hifiasm-meta and 455 for 241 

metaMDBG (Fig. 4). 242 

We observed a large proportion of strain-level variation in our MAG sets, particularly for 243 

method combinations including hifiasm-meta. Based on dRep species clusters, we found 73–100 244 

species represented by multiple strains across the binning methods for hifiasm-meta, with only 245 

52–64 species displaying multiple strains for metaMDBG (Fig. 4; Table 3). For hifiasm-meta, we 246 

found a total of 246 strain-level MAGs in the consolidated MAG set, representing 40% of the 247 

total MAGs (Table 3). A large proportion of these strain-level genomes for hifiasm-meta were 248 

classified as MQ-MAGs (68%). By contrast, we only found 156 strain-level MAGs for 249 

metaDBG, representing 28% of the total MAGs (Table 3). Of these, 52% were classified as MQ-250 

MAGs. In the consolidated MAG sets there were many species containing two strains (hifiasm-251 

meta: 68; metaMDBG: 46), several with three strains (hifiasm-meta: 20; metaMDBG: 10), but 252 

only a few displaying four (hifiasm-meta: 10; metaMDBG: 6) or five strains (hifiasm-meta: 2; 253 

metaMDBG: 2). Across all species with 2–5 strains, approximately ~65% contained at least one 254 

HQ-MAG, ~25% contained two or more HQ-MAGs, ~15% contained three HQ-MAGs, and 255 

none contained four or more HQ-MAGs (Supplementary Table S5). These results indicate that 256 

assembling multiple HQ-MAGs at the strain level is currently possible, but that strain-level 257 

variation is typically captured as one HQ-MAG plus one or more incomplete genomes. Among 258 

the species clusters displaying four to five strains, there are 12 for hifiasm-meta and 8 for 259 

metaMDBG (Supplementary Table S6). There are 15 high-strain-diversity species in the 260 

combined set: Adlercreutzia celatus_A/equolifaciens, Agathobacter faecis, Agathobaculum 261 

butyriciproducens, Bacteroides uniformis, Blautia_A massiliensis, CAG-41 sp900066215, 262 

Copromonas sp000435795, Dorea_A longicatena, Dysosmobacter sp001916835, 263 

Faecalibacterium prausnitzii_D, Faecalibacterium prausnitzii_G, Faecalibacterium 264 

sp900539945, Lachnospira eligens_A/sp003451515, Phocaeicola dorei/vulgatus, and 265 

Ruminococcus_B gnavus. We note that in addition to these high-strain-diversity species, there 266 

are an additional 26 species which contain three strains each.  267 
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Our main phylogenetic and taxonomic analyses were focused on the consolidated MAG 268 

sets for hifiasm-meta and metaMDBG (Fig. 4). At the phylum level, the MAG assignments were 269 

dominated by Firmicutes_A (hifiasm-meta: 450; metaMDBG: 416), followed by Bacteroidota 270 

and Firmicutes (hifiasm-meta: 50 and 30, respectively; metaMDBG: 46 and 26). Within 271 

Firmicutes_A, representation was highest among the families Lachnospiraceae (hifiasm-meta: 272 

184; metaMDBG: 153), Oscillospiraceae (hifiasm-meta: 61; metaMDBG: 68), Ruminococcaceae 273 

(hifiasm-meta: 54; metaMDBG: 57), and Acutalibacteraceae (hifiasm-meta: 33; metaMDBG: 274 

31), but included 33 families in total. Within Bacteroidota seven families were represented, with 275 

Bacteroidaceae (hifiasm-meta: 24; metaMDBG: 19) and Rikenellaceae (hifiasm-meta: 13; 276 

metaMDBG: 12) displaying the greatest number of MAGs. The phyla with the least amount of 277 

representation included Methanobacteria, Cyanobacteria, Desulfobacterota_I, Firmicutes_B, 278 

Firmicutes_C, Firmicutes_G, and Verrucomicrobiota (hifiasm-meta: 2, 6, 6, 5, 4, 0, and 5 279 

MAGs, respectively; metaMDBG: 1, 4, 4, 5, 4, 1, and 5 MAGs). Based on GTDB-Tk, we 280 

determined 96 of the consolidated MAGs were not assigned to the species level for hifiasm-281 

meta, and 75 were not assigned for metaMDBG. Of these, 21 from hifiasm-meta and 16 from 282 

metaMDBG were not assignable to the genus level. Of the set of MAGs not assigned at the 283 

species level, we found 16 and 36 were categorized as HQ-MAGs for hifiasm-meta and 284 

metaMDBG, respectively (Supplementary Table S7). A majority of these novel HQ-MAGs 285 

occur in the phylum Firmicutes_A (hifiasm-meta: 10; metaMDBG: 28), and within this phylum 286 

most occur in the orders Lachnospirales and Oscillospirales (Supplementary Table S7). In total, 287 

the novel HQ-MAGs recovered from hifiasm-meta and metaMDBG represent 33 distinct genera 288 

distributed across thirteen orders and six phyla.  289 

 290 

Comparison of assembly methods 291 

We performed comparisons of hifiasm-meta and metaMDBG at the contig and MAG-level, 292 

using several approaches. We performed an alignment of the contigs across assemblers, and 293 

found 69% of bases were shared at the 98% identity threshold, and 63% of bases were shared at 294 

the 99% identity threshold. We also compared large contigs (>500kb) using Mash and 295 

FracMinHash to understand contig similarity and containment (Supplementary Table S8). At a 296 

99% mash similarity threshold (e.g., strain-level), we found 13.8% and 16.3% of large contigs 297 

were matched across hifiasm-meta and metaMDBG, with 13.2% and 14.4% being contained. At 298 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2024. ; https://doi.org/10.1101/2024.05.10.593587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593587
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

95% for mash and 80% for FracMinHash, the number of contig matches for hifiasm-meta and 299 

metaMDBG was 39% and 53%, and 44% and 33% were contained. Finally. for 90% for mash 300 

and 70% for FracMinHash, the number of matched long contigs for hifiasm-meta and 301 

metaMDBG was 51% and 64%, with 47% and 33% contained.  302 

We mapped the HiFi reads to the contigs and to the consolidated MAGs for both 303 

assembly methods, and found similar numbers of reliably mapped reads in both cases 304 

(Supplementary Table S9). Approximately 78% of HiFi reads were reliably mapped to the 305 

contigs (for both assembly methods), and 61% and 62% were mapped to the consolidated MAGs 306 

(hifiasm-meta and metaMDBG, respectively). These results indicate a large proportion of the 307 

information contained in the HiFi reads was represented in the contigs, with a somewhat smaller 308 

proportion represented in the final MAGs.  309 

 To understand how much species diversity was assembled into genomes, we searched for 310 

16S genes in the HiFi reads and compared them to the 16S genes contained within MAGs. We 311 

found 108,830 reads contained full length 16S rRNA genes, and greedy clustering yielded 3,772 312 

species-level OTUs (with a minimum of two reads each). We found 1,645 OTUs had more than 313 

10 reads of support. Of the 1,645 OTUs with high coverage, 436 (26.5%) were also found in the 314 

consolidated HQ-MAG set (Fig. 5). When considering the MQ- and HQ-MAGs, we found a total 315 

of 778 OTUs represented (47.3%). 316 

We estimated the number of MAGs that were unequivocally shared across the assembly 317 

methods, based on the consolidated MAG sets. We used a combination of aligned sequence 318 

lengths and ANI to measure MAG similarity, and explored the effects of different values on the 319 

number of matches (Supplemental Fig. S5).  Ultimately, we defined an unequivocal match as 320 

requiring ≥90% of the total bases per MAG to be aligned with ≥99% ANI (Fig. 6), which is 321 

representative of a strain-level match. Based on these criteria, we found a total of 125 MAGs that 322 

were unequivocally shared across the assembly methods, representing 21–23% of the total 323 

MAGs for each method (Fig. 6, Supplementary Table S10). These unequivocally shared MAGs 324 

had higher average percent completeness scores (97% vs. 73–84%), lower average numbers of 325 

contigs (3–7 vs. 9–12), and higher average depths of coverages (186–192x vs. 72–78x) relative 326 

to the unmatched MAGs from each assembly method (Fig. 6). We determined 115 of the shared 327 

MAGs (92%) were classified as HQ-MAGs, but we also found matched MAGs with as low as 328 

71% completeness.  329 
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 330 

Mobile element association and viral detection 331 

We used ProxiMeta, geNomad, and VirSorter2 to detect viral, proviral, and plasmid sequences in 332 

the contigs from both assembly methods. For both assemblers geNomad detected the most total 333 

viral contigs (hifiasm-meta 4,551, metaMDBG 6,679), followed closely by VirSorter2 (hifiasm-334 

meta 4,264, metaMDBG 6,203), and then ProxiMeta (hifiasm-meta 2,175, metaMDBG 2,501; 335 

Supplemental Table S11). For a given assembly, a large proportion of viral and proviral contigs 336 

were annotated by both VirSorter2 and geNomad (62–80%; Supplementary Fig. S6). In addition 337 

to viral and proviral categories, ProxiMeta and geNomad annotated plasmid sequences. We 338 

found geNomad recovered more plasmids for metaMDBG (11,983) relative to hifiasm-meta 339 

(6,827). ProxiMeta identified fewer total plasmid sequences than geNomad but differentiated 340 

between plasmids and integrated plasmids. For metaMDBG ProxiMeta detected 129 plasmids 341 

and 1,878 integrated plasmids, whereas for hifiasm-meta it found 164 plasmids and 2,268 342 

integrated plasmids (Supplementary Table S11). In addition to identifying mobile element 343 

sequences, ProxiMeta’s ProxiPhage algorithm predicts if a given mobile sequence is interacting 344 

with a microbial bin as a host. We found that ProxiMeta identified more viral-host and plasmid-345 

host associations in metaMDBG (333 viral-host and 32 plasmid-host associations) than hifiasm-346 

meta (123 viral-host and 25 plasmid-host associations). Taken together, these results indicate that 347 

we consistently detected more viral sequences in the metaMDBG contigs, but more proviral 348 

sequences in the hifiasm-meta contigs. 349 

 350 

DISCUSSION 351 

Cataloging the microbial diversity of the human gut presents major challenges, and large 352 

numbers of species and strains remain unknown. HiFi metagenomic sequencing provides a rapid 353 

and scalable alternative to culturomics, and also offers substantial improvements over short-read 354 

sequencing. Here, we performed a deep-sequencing experiment on a pooled human gut 355 

microbiome - a challenging sample containing an inflated number of species and strains. We 356 

generated large numbers of MAGs using different combinations of long-read assembly, binning, 357 

and consolidation methods (Fig. 2). Our study demonstrates that metagenome assembly with 358 

HiFi reads can produce large numbers of highly complete MAGs, corroborating the findings of 359 

previous studies (Bickhart et al. 2022; Feng et al. 2022; Kato et al. 2022; Kim et al. 2022; Zhang 360 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2024. ; https://doi.org/10.1101/2024.05.10.593587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593587
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

et al. 2022; Benoit et al. 2023; Jiang et al. 2023; Saak et al. 2023; Schaerer et al. 2023; Masuda et 361 

al. 2024). Across all method combinations, we found up to 595 total MAGs, 277 HQ-MAGs, and 362 

98 single-contig HQ-MAGs (including 70 circular). These MAGs represent up to 455 species 363 

clusters (Fig. 4), with 15% of the MAGs representing uncultured species (including >35 HQ-364 

MAGs). Based on our results, we discuss the relative performance and trade-offs for different 365 

methods, which overall we find to be complementary. 366 

 We used bioinformatic and proximity ligation binning methods to group contigs into 367 

putative MAGs, and developed a new framework to explicitly compare MAGs across binning 368 

strategies (Fig. 1). From a simple performance perspective, we found ProxiMeta generally 369 

produced more total MAGs than the HiFi-MAG-Pipeline (Fig. 2, Supplementary Figs. S3, S4). 370 

However, our framework with pb-MAG-mirror allowed us to move beyond counting MAGs to 371 

better understand how the contents of MAGs were distributed across both methods. In an ideal 372 

scenario, two orthogonal methods would produce MAG sets with a large proportion of highly 373 

similar MAGs (e.g., MAGs with near-identical contig contents), increasing our confidence in the 374 

biological reality of those genomes. In the worst case scenario, the methods could produce MAG 375 

sets with no sensible overlap - the contig contents of individual MAGs are highly mixed across 376 

MAGs in the other method. It is also possible to recover unique MAGs (e.g., those with contig 377 

contents not appearing in the other method), which may highlight strengths or blindspots for a 378 

given method. In our study, we found ~65% of total MAGs were classified as highly similar 379 

across the binning methods, with ~20% being highly mixed and another ~15% being unique to 380 

each method (Fig. 2). These proportions were consistent across hifiasm-meta and metaMDBG, 381 

suggesting they are robust to the starting contigs. The large proportion of highly similar MAGs is 382 

reassuring, as the same core set of MAGs (roughly ~320) can be recovered using HiFi-MAG-383 

Pipeline or ProxiMeta (Fig. 2). The 20% of highly mixed MAGs (~100) is somewhat 384 

disconcerting, highlighting major disagreements across the binning methods. Furthermore, to 385 

perform consolidation a decision must be made about which MAGs are more accurate. As 386 

previous studies have demonstrated higher accuracy for bins using proximity ligation 387 

information (Burton et al. 2014; Ho et al. 2023), we selected these in our consolidation step. 388 

Finally, we found each method produced ~15% unique bins each (ranging from 55–100 MAGs), 389 

highlighting information captured by only one method. Unique bins from HiFi-MAG-Pipeline 390 

had significantly lower coverages than those from ProxiMeta (which requires a minimum 391 
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coverage threshold), suggesting bioinformatic binning may perform better at recovering very low 392 

coverage MAGs. Conversely, ProxiMeta can use contact information to associate contigs and 393 

refine bins, potentially grouping contigs otherwise missed by tetranucleotide frequencies and 394 

coverage distributions. By comparing and consolidating the MAGs from ProxiMeta and HiFi-395 

MAG-Pipeline, we identified overlap and incorporated complementary aspects of both methods 396 

to improve MAG yields. For example, ProxiMeta provided a 3–8% increase in total MAGs over 397 

the HiFi-MAG-Pipeline, but pb-MAG-mirror resulted in an 11–22% increase in total MAGs over 398 

both binning methods. Overall, our comparison revealed that high numbers of MAGs can be 399 

obtained using both binning methods, a large core set of MAGs is shared across the methods, and 400 

that consolidation can incorporate the unique information captured by each.  401 

 We used hifiasm-meta and metaMDBG for metagenome assembly, and based on 402 

performance we found different strengths for each method. At the highest level, we were 403 

interested in which assembly method produced the most MAGs. In general, hifiasm-meta 404 

produced more total MAGs than metaMDBG (Fig. 2), with some exceptions in the downsampled 405 

datasets. However, regarding genome quality we found that metaMDBG consistently produced 406 

more HQ-MAGs than hifiasm-meta (Figs. 2, 3). Specifically, HQ-MAGs make up 50% of the 407 

total MAGs for metaMDBG in the consolidated set, but only 30% of the total for hifiasm-meta. 408 

We also investigated how well each method assembled strain-level variation. Here, hifiasm-meta 409 

produced strains for 56% more species and assembled 57% more total strain-level MAGs 410 

relative to metaMDBG, for the consolidated MAGs (Fig. 4, Table 3). Of the species with strains 411 

assembled, we wanted to understand whether strain-level variation was represented as two or 412 

more near-complete genomes (e.g., HQ-MAGs), as one near-complete genome and several 413 

incomplete genomes, or as many fragmented genomes. Despite their differences in the total 414 

number of strains assembled, hifiasm-meta and metaMDBG recovered two or more strain-level, 415 

near-complete genomes for a similar number of species in the consolidated MAGs (21 and 24, 416 

respectively; Supplementary Table S5). For both assembly methods, strains were most often 417 

represented by one near-complete genome and multiple partial genomes. We observed that for 418 

hifiasm-meta, strains were also commonly represented by sets of partial genomes, whereas this 419 

was infrequent for metaMDBG. These results highlight that both assembly methods are capable 420 

of assembling strain-level variation into two or more near-complete genomes, resolving strains 421 

remains challenging, and that hifiasm-meta currently produces more strain-level information.  422 
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We investigated how many MAGs were shared across the assembly methods in the 423 

consolidated sets. We used strict criteria to identify unequivocal matches across the assembly 424 

methods, which resulted in 125 high-confidence matches at the strain level (Fig. 6). These 425 

unequivocally shared MAGs tended to be very high-quality, with greater completeness scores, 426 

fewer contigs (including many single-contig), and higher depth of coverage relative to MAGs not 427 

shared across the methods (Fig. 6). Although this only represents ~22% of the total MAGs in 428 

each method, we emphasize that even slight differences in the assembly or binning of contigs 429 

could disqualify a potential match. It is also possible that partial strain-collapsing in some MAGs 430 

could impact this type of analysis, which would be exacerbated in this high-strain-diversity 431 

sample. Remarkably, there are 17 matched MAGs which both consist of a single-contig, are 432 

within 200 bp of the total length of one another (across a 1.42–6.09 Mb size range), and display 433 

only 2–100 nucleotide differences (Supplementary Table S10). These results highlight that the 434 

use of highly accurate long reads can lead to the recovery of nearly identical MAGs, despite the 435 

use of disparate assembly and binning methods.  436 

Beyond bacterial and archaeal genomes, viral and plasmid genomes pose a different set 437 

of assembly challenges (Antipov et al. 2020). For long reads specifically, their size range can fall 438 

below the length of a typical HiFi read (10–20 kb), and their structure is quite variable. We used 439 

ProxiMeta, VirSorter2, and geNomad to identify and annotate viral sequences, and in most cases 440 

recovered more total viral sequences for metaMDBG (Supplementary Table S11). With the 441 

ProxiMeta platform, we detected more viral and plasmid host associations for metaMDBG 442 

versus hifiasm-meta. These results indicate metaMDBG may have an advantage for assembling 443 

smaller, viral sequences, but that additional work is required to improve assembly for these 444 

highly variable genomes.  445 

The routine production of single-contig HQ-MAGs from long-read metagenome 446 

assemblies is a recent phenomenon, and we propose it requires some important considerations. 447 

First, a majority of binning algorithms operate with an implicit assumption that the assembled 448 

contigs represent fragmented genomes, and this assumption is often violated with HiFi 449 

metagenome assembly. Performing naïve binning on HiFi assemblies can result in the mis-450 

binning of single-contig MAGs with additional contigs, inflating their contamination score and 451 

causing removal during quality filtering (Feng et al. 2022; Benoit et al. 2023). For this reason, 452 

we built a “completeness-aware” strategy into the HiFi-MAG-Pipeline, and propose it is an 453 
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essential step for any long-read binning workflow. This strategy involves screening all contigs 454 

longer than 500kb to obtain completeness and contamination scores, and moving all highly 455 

complete, single-contig MAGs into individual bins. The subsequent binning steps therefore only 456 

include incomplete contigs, preventing the mis-binning and removal of any SC-HQ-MAGs. 457 

Second, the quality standards proposed by the Genomic Standards Consortium (Bowers et al. 458 

2017) have proven useful for comparing short-read MAGs, but they do not capture additional 459 

information relevant for long-read MAGs. Specifically, contiguity (i.e., the number of contigs 460 

per MAG) is becoming increasingly important for evaluating quality. For example, a short-read 461 

MAG can be defined as high-quality based on the presence of single-copy genes despite 462 

containing hundreds of contigs (and potentially missing large portions of the accessory genome). 463 

An ideal HQ-MAG is composed of a single contig per chromosome, and these are often 464 

distinguished in long-read studies (Bickhart et al. 2022; Feng et al. 2022; Kim et al. 2022; Zhang 465 

et al. 2022; Benoit et al. 2023; Jiang et al. 2023; Masuda et al. 2024), including ours (labeled as 466 

SC-HQ-MAGs). However, there is currently no distinction between HQ-MAGs composed of a 467 

few long contigs (e.g., hundreds of kilobases, or megabases) versus those containing hundreds of 468 

short contigs (e.g., tens of kilobases or shorter), despite the former being much higher quality. 469 

We propose this idea should be reflected in future terminology, allowing distinctions to be made 470 

along the contiguity spectrum. Beyond contiguity, circularity is sometimes also highlighted as an 471 

important quality metric (Bickhart et al. 2022; Kim et al. 2022; Zhang et al. 2022; Jiang et al. 472 

2023; Masuda et al. 2024). However, Kim et al. (2022) demonstrated that circular MAGs can 473 

contain large gaps, and circularity alone should not be taken as a reliable indicator of 474 

completeness. Furthermore, linear contigs can sometimes be closed using additional read-475 

mapping information. Therefore, information about linear vs. circular SC-HQ-MAGs can be 476 

useful, but may not be as meaningful as other quality categories. Although defining new 477 

standards is beyond the scope of this study, we suggest these criteria should be re-evaluated by 478 

the community as long-read metagenomics continues to become more mainstream.  479 

 480 

METHODS 481 

Sample 482 

The ZymoBIOMICS™ Fecal Reference with TruMatrix™ Technology [D6323] (Zymo 483 

Research – CA, USA) was made by collecting multiple fecal samples from healthy human 484 
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volunteers following ethical guidelines and informed consent procedures. Samples were 485 

collected using sterile collection tubes and stored at -80°C until processing. Collections from 486 

multiple donors were pooled and homogenized in one large suspension together with the 487 

microbiome preservative reagent DNA/RNA Shield™ (Zymo Research – CA, USA) to prevent 488 

outgrowths or depletions of microbial taxa. The fecal suspension was then distributed to 489 

containers to be stored at -80°C until aliquoting to individual tubes. Each stored container was 490 

tested individually by sequencing to confirm consistency prior to aliquoting to individual tubes. 491 

All aliquots have been demonstrated to have consistent metagenomic and metatranscriptomic 492 

profiles. 493 

 494 

Sequencing 495 

DNA was extracted using the ZymoBIOMICS DNA Miniprep Kit (D4300), which involved 496 

either mechanical (Vortex Genie 2) or enzymatic lysis. Fragment sizes were measured using a 497 

Femto Pulse (Agilent). A total of eight SMRTbell libraries were prepared from four DNA 498 

extractions. Libraries for the PacBio Sequel IIe system were created using the SMRTbell Express 499 

Template Prep Kit 2.0 (n=3) or SMRTbell Prep Kit 3.0 (n=3), and libraries were prepared for the 500 

Revio system using the SMRTbell Prep Kit 3.0 (n=2). Size selection was performed using 3.7X 501 

35% Ampure SPRIselect (Beckman Coulter), which targeted the removal of fragments <3kb. Six 502 

libraries were sequenced on the Sequel IIe system (using 40–60 ng library input) and two on the 503 

Revio system (using 130–140 ng library input), with each library sequenced on an individual 8M 504 

or 25M SMRT Cell, respectively. For the Sequel IIe system, HiFi reads were generated using ccs 505 

v6.2, whereas for the Revio system HiFi reads were generated on-instrument using Google 506 

DeepConsensus (Baid et al. 2023). For downstream data analysis, we combined the HiFi data 507 

obtained from Sequel IIe and Revio. To investigate the effects of lower data levels on assembly, 508 

we performed downsampling on the Sequel IIe dataset. Our downsampling design includes the 509 

equivalent of six 8M SMRT Cells down to one cell, along with a 2plex, 4plex, and 8plex on one 510 

cell (Supplemental Table S1).  511 

 A proximity ligation (Hi-C) library was prepared from an aliquot of the Fecal Reference 512 

standard using the ProxiMeta Hi-C v4.0 Kit from Phase Genomics according to the manufacturer 513 

provided protocol (Lieberman-Aiden et al. 2009). Briefly, intact cells were crosslinked using a 514 

formaldehyde solution, simultaneously digested using the Sau3AI and MlucI restriction enzymes, 515 
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and proximity ligated with biotinylated nucleotides to create chimeric molecules composed of 516 

fragments from different regions of microbial genomes that were physically proximal in vivo. 517 

Proximity ligated DNA molecules were pulled down with streptavidin beads and processed into 518 

an Illumina-compatible sequencing library. Sequencing was performed on an Illumina NovaSeq 519 

with PE150 read pairs, producing 181.7M reads in total.  520 

 521 

Metagenome assembly and binning 522 

We performed assemblies with hifiasm-meta r74 (Feng et al. 2022) and metaMDBG v0.3 523 

(Benoit et al. 2023) using default parameter settings. The resulting contigs were processed using 524 

two distinct methodologies, including bioinformatic binning and proximity ligation (Hi-C) 525 

binning. A visual overview of our analysis workflow is shown in Figure 1.  526 

For bioinformatic binning, we developed a new version of the HiFi-MAG-Pipeline 527 

(available from: https://github.com/PacificBiosciences/pb-metagenomics-tools), which uses a 528 

completeness-aware binning strategy. The workflow begins by identifying all contigs longer than 529 

500kb which display >90% completeness and <10% contamination, as measured by CheckM2 530 

v1.0.1 (Chklovski et al. 2023). These highly complete, single-contig MAGs are removed from 531 

the contig set and placed in individual bins. The remaining set of incomplete contigs is then 532 

subjected to binning using the long-read mode of SemiBin2 v1.5 (Pan et al. 2022, 2023) and with 533 

MetaBAT2 v2.15 (Kang et al. 2019). To obtain coverage scores per contig, minimap2 v2.17 (Li 534 

2018, 2021) is used to map reads to the contig set, and the jgi_summarize_bam_contig_depths 535 

script of MetaBAT2 is used to summarize depth per contig. Settings for MetaBAT2 included -m 536 

30000, whereas SemiBin2 used the single_easy_bin module and included the --self-supervised, -537 

-sequencing-type=long_reads, and --environment=human_gut flags. The two bin sets are de-538 

replicated using DAS_Tool v1.1.6 (Sieber et al. 2018), and the de-replicated bin set is assessed 539 

with CheckM2. The bins which pass minimum criteria for single-copy gene (SCG) completeness 540 

and contamination are added to the set of highly complete, single-contig MAGs identified in the 541 

first step. Finally, the Genome Taxonomy Database Toolkit (GTDB-Tk) v2.1.1 (Chaumeil et al. 542 

2019, 2022) is used to assign taxonomy to all filtered MAGs.  543 

 MAGs were categorized as medium-quality or high-quality (MQ-MAG, HQ-MAG, 544 

respectively): HQ-MAGs require ≥90% SCG completeness and ≤5% contamination, whereas 545 

MQ-MAGs fall below these criteria but display ≥50% SCG completeness and ≤10% 546 
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contamination. We note that the total number of MAGs reported in our results is equal to the 547 

number of HQ-MAGs plus MQ-MAGs. We also include a third category for the highest level of 548 

quality, which we label as a single-contig, high-quality MAG (SC-HQ-MAG). This category 549 

includes the same criteria as an HQ-MAG, plus the presence of a single contig (circularity 550 

optional). 551 

 In addition to bioinformatic binning, we used proximity ligation to generate bins (Press et 552 

al. 2017). Proximity ligation sequencing files and assembled contigs were uploaded to the cloud-553 

based ProxiMeta platform (Uritskiy et al. 2021). Proximity ligation reads were aligned using 554 

BWA-MEM (Li & Durbin 2010) with the -5SP options specified, and all other options default. 555 

SAMBLASTER (Faust & Hall 2014) was used to flag PCR duplicates, which were later 556 

excluded from analysis. Alignments were then filtered with samtools (Li et al. 2009) using the -F 557 

2304 filtering flag to remove non-primary and secondary alignments. Metagenome 558 

deconvolution was performed with ProxiMeta (Press et al. 2017; Stewart et al. 2018), resulting in 559 

the creation of putative genome and genome fragment clusters, as well as viral, plasmid, and 560 

AMR gene host annotations. For consistency, we ran the bins inferred by the ProxiMeta 561 

workflow through CheckM2, filtered based on the above quality criteria, and assigned taxonomy 562 

using GTDB-Tk v2.1.1. This allowed a more direct comparison to the bins recovered by HiFi-563 

MAG-Pipeline.  564 

 565 

Binning method comparison 566 

We compared the HiFi-MAG-Pipeline and ProxiMeta binning results using a new approach we 567 

developed, called pb-MAG-mirror. We compared the contig content of MAGs across methods to 568 

identify four categories: identical bins, superset/subset bins, mixed bins, and unique bins (Fig. 1). 569 

Identical bins occur when a bin from each method contains the exact same contig set. A subset 570 

bin occurs when the contig set of a bin is fully contained in a bin of the alternate method (i.e., the 571 

superset bin). We further require that any additional contigs in the superset bin do not occur in 572 

any other bin (e.g., any additional contigs present in the superset bin were unique to the superset 573 

bin). Lastly, a unique bin occurs when it contains a set of contigs that does not occur in any bin 574 

of the alternative method. If a single contig of the set can be found in a bin of the alternative 575 

method, the bin cannot be classified as unique. All bins not falling into these categories 576 

(identical, subset/superset, unique) are considered mixed, as they contain two or more contigs 577 
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that occur in two or more bins of the alternative method. For these mixed bins, we perform cross-578 

method pairwise comparisons. We examine the shared contig content of each comparison to 579 

identify the best match, which is selected based on the percentage of total shared bases. We 580 

consider high-similarity (HS) matches as those with ≥80% shared bases in each bin, medium-581 

similarity (MS) as those with ≥50% shared bases in each bin, and low-similarity (LS) as those 582 

with <50% shared bases in each bin. Based on the category results, pb-MAG-mirror can be used 583 

to consolidate the two bin sets. The default behavior is to include one representative bin for each 584 

of the identical bins, all superset bins and unique bins from both sets, and for cross-set mixed 585 

matches the bin with the highest completeness score is selected. However, for cross-set mixed 586 

matches the bins from one set can be preferentially selected instead. For our comparisons, for the 587 

cross-set mixed matches we selected ProxiMeta bins. We refer to the resulting MAGs as the 588 

consolidated MAG set (Fig. 1). To identify potential differences in characteristics of unique bins 589 

between HiFi-MAG-Pipeline and ProxiMeta, we compared completeness scores, number of 590 

contigs, and average depth of coverage for the unique bins. pb-MAG-mirror is available as an 591 

open-source workflow at: https://github.com/PacificBiosciences/pb-metagenomics-tools. 592 

 593 

Taxonomic and phylogenetic analyses 594 

We quantified the number of species contained in the various MAG sets using two approaches. 595 

First, we used the taxonomy assigned by GTDB-Tk to count the number of unique species 596 

assignments. However, several genomes were not assigned to the species level. These 597 

unassigned genomes could represent one or more species groups. To address this issue, we used 598 

dRep v3.4.3 (Olm et al. 2017) to cluster MAGs into species-level groups based on an average 599 

nucleotide identity (ANI) of 95% (Jain et al. 2018; Olm et al. 2020). The default settings were 600 

used, which involved the ANImf algorithm for genome comparisons, 90% ANI for creating 601 

primary clusters, and 95% ANI for creating secondary clusters. We regarded each resulting 602 

cluster as a unique species. For strain-level counts, we aggregated counts based on genomes with 603 

the same species (GTDB-TK) or cluster (dRep) assignment. 604 

 We reconstructed the phylogenetic relationships of the MAGs from the consolidated 605 

MAG sets for each assembly method. We obtained protein alignments for core bacterial and 606 

archaeal genes (Pfam, TIGRFAM) using the identify and align modules of GTDB-Tk. The core 607 

gene sets differ in number between bacteria and archaea (n=120 and n=53, respectively), with 608 
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five genes shared across both sets. We created a concatenated supermatrix of all genes and 609 

analyzed the supermatrix using RAxML v8.2.12 (Stamatakis 2014). Tree searches used the 610 

gamma model of rate heterogeneity and JTTDCMUT amino acid substitution model. We 611 

visualized the phylogeny using the Interactive Tree of Life (iTOL) v6.8.1 online tool (Letunic & 612 

Bork 2021).  613 

 614 

Comparison of assembly methods 615 

We compared contigs from hifiasm-meta and metaMDBG using two approaches. First, we 616 

aligned the contig sets using minimap2, and calculated the percent of bases covered based on 98 617 

or 99% identity. Second, for contigs >500kb we calculated Mash similarities (MinHash) using 618 

mash (Ondov et al. 2016) and FracMinHash-based similarities using sourmash (Pierce et al. 619 

2019; Irber et al. 2022). There were 996 contigs >500kb for hifiasm-meta and 867 for 620 

metaMDBG. Concordantly high values for both Mash and FracMinHash similarities were taken 621 

as strong evidence for a contig match across assemblers, whereas a high value for Mash and 622 

lower value for FracMinHash indicated a contig was likely contained within the other contig. A 623 

range of minimum cutoffs for each metric was explored. 624 

 We also investigated the number of HiFi reads that could be reliably mapped to the 625 

contigs or consolidated MAGs, per assembly method. We performed read mapping using 626 

minimap2 with HiFi settings (-x map-hifi -k19 -w19 --secondary=no), and subsequently filtered 627 

the alignments. We kept primary alignments in which ≥90% of the HiFi read was aligned to the 628 

reference, and with ≥95% identity (defined as number of matched query bases divided by total 629 

query bases in the alignment). To identify potential differences in MAG characteristics across the 630 

assembly methods, we compared the average depth of coverage and number of contigs for the 631 

consolidated HQ- and MQ-MAGs.  632 

 In an effort to understand how representative the MAGs are of the total species diversity 633 

in the sample, we compared 16S rRNA sequences obtained from the HiFi reads with those 634 

contained in MAGs (Feng & Li 2024). Methods were highly similar to those described in Feng 635 

and Li (2024). In brief, HiFi reads containing 16S regions were discovered by mapping to the 636 

SILVA database (Quast et al. 2013), rRNA genes were identified using barrnap v0.9 637 

(https://github.com/tseemann/barrnap), annotated using the RDP classifier (Cole et al. 2014), and 638 

OTUs were defined using greedy incremental clustering and 99% mismatch identity. The MAG 639 
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16S sequences were identified and extracted from the consolidated MAG sets from hifiasm-meta 640 

and metaMDBG, and mapped to the OTU set from the HiFi reads. A MAG could have more than 641 

one OTU assignment if it contained multiple, distinct 16S copies. 642 

We sought to determine the number of identical or nearly-identical MAGs that were 643 

unequivocally shared across the assembly methods. To accomplish this, we estimated the 644 

intersection of the consolidated MAG sets from each assembly method, using minimum 645 

thresholds for aligned sequence lengths and ANI. We used dRep to generate clusters for all 646 

consolidated MAGs from hifiasm-meta and metaDMBG, using the ANImf algorithm with 90% 647 

ANI for primary clusters and 99% ANI for secondary clusters. For each resulting cluster, we first 648 

determined if it contained at least one MAG per assembly method. If so, we then performed 649 

pairwise comparisons of all MAGs from hifiasm-meta to metaMDBG to identify unequivocal 650 

matches. To understand the effects of parameter values on the number of matches, we explored 651 

using 95% or 99% ANI and a range of values for the minimum percent of bases per MAG 652 

required (70–100%). Based on these results, we defined an unequivocal match as requiring ≥90% 653 

of the total bases to be aligned (per genome) with ≥99% ANI (e.g., a nearly identical match at the 654 

strain level)  655 

 656 

Mobile element association and viral annotation 657 

Mobile element host-association was performed using the cloud-based ProxiMeta platform 658 

(Uritskiy et al. 2021). Briefly, viral contigs were identified using VIBRANT (Kieft et al. 2020), 659 

and plasmid contigs were identified using BLAST and the NCBI Plasmid Database. Alignments 660 

of long-range Hi-C linkage data were used to identify viral-host and plasmid-host linkages. A 661 

combination of the Hi-C link count, mobile element read depth, and MAG read depth were then 662 

used to estimate the average copy count of each mobile element in each MAG. The density of 663 

Hi-C links per kb2 of sequence between the mobile element and the MAG was then compared to 664 

the connectivity of the MAG to itself and normalized to the estimated copy count to compute the 665 

normalized connectivity ratio. Mobile-host linkages were then filtered to keep only connections 666 

with at least 2 Hi-C read links between the mobile and host MAG, a connectivity ratio of 0.1, 667 

and intra-MAG connectivity of 10 links to remove false positives. For the final threshold value, a 668 

receiver operating characteristic (ROC) curve is used to determine the optimal copy count cut-off 669 

value, which is the value that removes the maximum number of virus-host links while still 670 
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finding at least one host for the maximum number of mobile elements. Additional filtering 671 

removed linkages with an average copy count less than 80% of the highest copy count value for 672 

the given mobile element sequence. 673 

 As an alternative to ProxiMeta, we also predicted viral and proviral sequences using 674 

geNomad (Camarago et al. 2023) and VirSorter2 (Guo et al. 2021). geNomad (ver 1.8.0) was run 675 

in “relaxed” mode. VirSorter2 (v2.2.4) was run with all steps and results were verified with 676 

CheckV (v1.0.1) using “end-to-end” mode (Nayfach et al. 2021). VirSorter2 viral counts include 677 

all quality types reported from CheckV (complete, high quality, medium quality, low quality, 678 

and not determined). 679 

 680 

 681 

DATA ACCESS 682 

HiFi sequencing data are publicly available on NCBI (PRJNA1110296) and from:  683 

https://downloads.pacbcloud.com/public/revio/2023Q3/ZymoTrumatrix/  684 

https://downloads.pacbcloud.com/public/sequelii/2023Q3/ZymoTrumatrix/ 685 

 686 

The contigs, MAGs, and add sets for each binning (HiFi-MAG-Pipeline, ProxiMeta, 687 

consolidated) and assembly (hifiasm-meta, metaMDBG) combination are publicly available on 688 

the Open Science Framework: https://osf.io/cwqzr/ 689 

 690 

pb-MAG-mirror is publicly available at: https://github.com/PacificBiosciences/pb-691 

metagenomics-tools  692 
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Table 1. Summary of HiFi sequencing datasets.  

Dataset Sequencing level 
HiFi reads 

(million) 
HiFi yield (Gb) 

Mean read 

length 
Mean QV 

Revio 2 SMRT Cells (25M) 17.56 135.06 7,690 45.8 

Sequel IIe 6 SMRT Cells (8M)    17.15 120.85 7,046 40.2 

Combined - 34.71 255.91 7,724 42.5 

 

 

 

 

 

 

 

Table 2. Counts of MAGs by quality for each dataset and binning method combination.  

 

Assembly method Binning method SC-HQ-MAGs HQ-MAGs MQ-MAGs Total MAGs 

hifiasm-meta HiFi-MAG-Pipeline 70/98 157 328 485 

 ProxiMeta 59/79 166 356 522 

 Consolidated 61/83 175 420 595 

metaMDBG HiFi-MAG-Pipeline 74/96 239 241 480 

 ProxiMeta 59/70 258 234 492 

  Consolidated 61/73 277 270 547 

The HQ-MAG category requires >90% completeness and <5% contamination, whereas MQ-MAGs fall below those criteria but display >50% completeness and 

<10% contamination. Total MAGs = HQ + MQ-MAGs. SC-HQ-MAGs are a subcategory of HQ-MAGs with one contig present. For SC-HQ-MAGs, the first 

number represents genomes that are circular, whereas the second number represents all genomes (linear or circular).    
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Table 3. Estimates of species and strain information obtained by reference-based taxonomic assignment (GTDB-Tk) and MAG 

clustering (dRep).  

 
Assembly method Binning method GTDB-Tk     dRep     

  Total species Species with 

strains 

Total strain-level 

MAGs 

Unique 

clusters 

Clusters with 

strains 

Total strain-level 

MAGs 

hifiasm-meta HiFi-MAG-Pipeline 313 67 158 385 73 173 

 ProxiMeta 329 82 196 399 85 208 

 Consolidated 364 97 233 449 100 246 

metaMDBG HiFi-MAG-Pipeline 347 50 115 414 52 118 

 ProxiMeta 351 60 137 411 60 141 

  Consolidated 385 64 152 455 64 156 
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Figure 1. (a) Visual depiction of analysis steps involved with metagenome assembly, binning, and taxonomy. (b) Illustration of the 

categories used to compare MAGs with pb-MAG-mirror. Within a category, each box represents an individual MAG and the colored 

lines represent the contigs contained in the MAG. A full description of each category is provided in the Methods. 
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Figure 2. (a) Assignment of MAGs to categories from pb-MAG-mirror across the two assembly methods. Stacked barplot colors 

represent the number of MAGs occurring in different categories; total MAG numbers are shown on top. Bold outline highlights 

categories that are considered identical or nearly identical across methods. (b) Number of MAGs recovered for each assembly and 

binning method combination. HQ-MAGs require ≥90% single-copy genes (SCG) completeness and ≤5% contamination, whereas MQ-

MAGs fall below the HQ thresholds but display ≥50% SCG completeness and ≤10% contamination. Total MAG numbers are shown 

above, with colors showing MAG counts exclusive to each category. 
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Figure 3. (a) Number of HQ-MAGs for the consolidated MAG set across downsampled datasets. (b) Number of HQ-MAGs obtained 

from hifiasm-meta versus metaMDBG across all binning methods and downsampled datasets. (c) Number of MQ-MAGs for the 

consolidated MAG set across downsampled datasets. (d) Number of MQ-MAGs obtained from hifiasm-meta versus metaMDBG 

across all binning methods and downsampled datasets. 
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Figure 4. (a) Total number of species and species containing multiple strains, for each assembly and binning combination. Counts are 

based on dRep clustering results. (b) Aggregated taxonomic counts of MAGs assigned at the phylum rank.  
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Figure 5. Barplots showing the 16S OTUs identified from the HiFi reads, based on 99% identity clustering. Relative abundance is 

represented by the height of the bars (log coverage). OTUs only occurring in the HiFi reads are shown in grey, whereas green 

indicates the OTU was also detected in a MAG. The MAG sets consist of the consolidated MAGs from both hifiasm-meta and 

metaMDBG, with results shown for (a) HQ-MAGs only or (b) all MQ- and HQ-MAGs. 
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Figure 6. (a) Visual overview of workflow used to identify MAGs unequivocally shared across the assembly methods. Barplots 

summarizing (b) percent completeness, (c) average number of contigs per MAG, and (b) depth of coverage for MAGs in the shared 

(grey) and not shared categories (blue: hifiasm-meta, purple: metaMDBG). Outliers not shown. 

 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2024. ; https://doi.org/10.1101/2024.05.10.593587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593587
http://creativecommons.org/licenses/by-nc-nd/4.0/

