

1 **Highly accurate metagenome-assembled genomes from human gut microbiota using long-
2 read assembly, binning, and consolidation methods**

3

4 Daniel M. Portik¹, Xiaowen Feng^{2,3}, Gaetan Benoit⁴, Daniel J. Nasko¹, Benjamin Auch⁵, Samuel
5 J. Bryson⁵, Raul Cano⁶, Martha Carlin⁶, Anabelle Damerum⁷, Brett Farthing⁷, Jonas R. Grove⁵,
6 Moutusee Islam⁵, Kyle W. Langford⁵, Ivan Liachko⁵, Kristopher Locken⁷, Hayley Mangelson⁵,
7 Shuiquan Tang⁷, Siyuan Zhang¹, Christopher Quince^{8,9,10,11}, and Jeremy E. Wilkinson¹

8

9 1. PacBio, 1305 O'Brien Dr, Menlo Park, CA 94025 USA

10 2. Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215 USA

11 3. Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
12 USA

13 4. Sequence Bioinformatics, Department of Computational Biology, Institut Pasteur, Paris,
14 France

15 5. Phase Genomics, 1617 8th Ave, Seattle, WA 98109 USA

16 6. The BioCollective LLC., 5650 Washington St., Denver, CO 80216 USA

17 7. Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA 92614 USA

18 8. Organisms and Ecosystems, Earlham Institute, Norwich, UK

19 9. Gut Microbes and Health, Quadram Institute, Norwich, UK

20 10. School of Biological Sciences, University of East Anglia, Norwich, UK

21 11. Warwick Medical School, University of Warwick, Coventry, UK

22 ABSTRACT

23 Long-read metagenomic sequencing is a powerful approach for cataloging the microbial
24 diversity present in complex microbiomes, including the human gut microbiome. We performed
25 a deep-sequencing experiment using PacBio HiFi reads to obtain metagenome-assembled
26 genomes (MAGs) from a pooled human gut microbiome. We performed long-read metagenome
27 assembly using two methods (hifiasm-meta, metMDBG), used improved bioinformatic and
28 proximity ligation binning strategies to cluster contigs and identify MAGs, and developed a
29 novel framework to compare and consolidate MAGs (pb-MAG-mirror). We found proximity
30 ligation binning yielded more MAGs than bioinformatic binning, but our novel comparison
31 framework resulted in higher MAG yields than either binning strategy individually. In total, from
32 255 Gbp of total HiFi data we produced 595 total MAGs (including 175 high-quality MAGs)
33 using hifiasm-meta, and 547 total MAGs (including 277 high-quality MAGs) with metaMDBG.
34 Hifiasm-meta assembled almost twice as many strain-level MAGs as metaMDBG (246 vs. 156),
35 but both assembly methods produced up to five strains for a species. Approximately 85% of the
36 MAGs were assigned to known species, but we recovered >35 high-quality MAGs that represent
37 uncultured diversity. Based on strict similarity scores, we found 125 MAGs were unequivocally
38 shared across the assembly methods at the strain level, representing ~22% of the total MAGs
39 recovered per method. Finally, we detected more total viral sequences in the metaMDBG
40 assembly versus the hifiasm-meta assembly (~6,700 vs. ~4,500). Overall, we find the use of HiFi
41 sequencing, improved metagenome assembly methods, and complementary binning strategies is
42 highly effective for rapidly cataloging microbial genomes in complex microbiomes.

43

44 INTRODUCTION

45 The human gut microbiome contains a diversity of microbes that potentially impact health and
46 disease (Lynch & Pederson 2016; Wang & Jia 2016; Duvallet et al. 2017; Gilbert et al. 2018).
47 Despite considerable efforts to catalog the microbial diversity present in the human gut, large
48 numbers of species and strains remain uncultured and undetected (Lagier et al. 2018; Nayfach et
49 al. 2019; Almeida et al. 2019; Forster et al. 2019; Pasolli et al. 2019; Zou et al. 2019; Almeida et
50 al. 2021). The pace of biodiversity discovery is limited using traditional isolation and culturing
51 methods, but it can be greatly accelerated using metagenomic sequencing. Metagenome
52 assembly is a powerful approach for reconstructing the genomic contents of species contained in

53 a microbiome sample (Tyson et al. 2004). Historically, the contigs produced by metagenome
54 assemblies often represent small fragments of microbial genomes, and binning methods are used
55 to group contigs into putative genomes. The genomes obtained through assembly and binning are
56 commonly referred to as metagenome-assembled genomes (MAGs). Metagenome assembly
57 based on short-read sequencing generally requires substantial effort to produce high-quality
58 MAGs (Bowers et al. 2017; Chen et al. 2020). For example, repetitive genomic regions and
59 interspecies genomic overlaps are difficult to resolve using short reads, and this generally leads
60 to highly fragmented assemblies (Arumugam et al. 2019). Furthermore, binning can introduce
61 major errors by grouping contigs belonging to different species or strains into MAGs (Chen et al.
62 2020). This can result in chimeric MAGs or even MAGs with human contamination, which can
63 have severe negative effects on downstream analyses (see Gihawi et al. 2023).

64 Long-read sequencing can overcome many of the challenges associated with metagenome
65 assembly (Kolmogorov et al. 2020; Feng et al. 2022; Albertsen 2023; Benoit et al. 2023;
66 Agustinho et al. 2024). The most popular long-read sequencing platforms are those produced by
67 Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). PacBio HiFi
68 sequencing produces highly accurate consensus reads (>Q20, median Q30) that are 10–20 kb in
69 length (Wenger et al. 2019). Several studies have demonstrated that HiFi sequencing generally
70 produces more total MAGs and higher quality MAGs than short-read sequencing (Priest et al.
71 2021; Gehrig et al. 2022; Meslier et al. 2022; Eisenhofer et al. 2023; Orellana et al. 2023; Tao et
72 al. 2023; Zhang et al. 2023), and that HiFi sequencing outperforms ONT for metagenome
73 assembly (Meslier et al. 2022; Sereika et al. 2022). The high accuracy of HiFi reads has led to
74 the development of two new metagenome assembly methods, hifiasm-meta (Feng et al. 2022)
75 and metaMDBG (Benoit et al. 2023), which perform better than previous methods such as
76 HiCanu (Nurk et al. 2020) and metaFlye (Kolmogorov et al. 2020). Hifiasm-meta phases reads
77 based on single nucleotide variants and constructs the string graph using only intra-haplotype
78 read overlaps. Heuristics to keep contained reads with ambiguous phasing and to resolve tangles
79 using either unitig read coverages or topology are implemented in graph cleaning steps. By
80 contrast, metaMDBG uses de-Bruijn graph assembly in a mimizer-space and a progressive
81 abundance-based filtering strategy to simplify strain complexity. Performing metagenome
82 assembly with these HiFi-specific methods routinely produces complete, circular MAGs, and
83 sometimes in large numbers (Bickhart et al. 2022; Feng et al. 2022; Kato et al. 2022; Kim et al.

84 2022; Zhang et al. 2022; Benoit et al. 2023; Jiang et al. 2023; Saak et al. 2023; Schaefer et al.
85 2023; Masuda et al. 2024). For example, using hifiasm-meta Kim et al. (2022) recovered 102
86 complete, circular MAGs from five human gut microbiome samples (including 39 MAGs that
87 remain uncultured), and a reanalysis of data from Bickhart et al. (2022) with metaMDBG
88 recovered 447 high-quality MAGs from a single sheep gut microbiome, including 266 circular
89 MAGs (Benoit et al. 2023).

90 Although metagenome assembly with HiFi sequencing data can produce complete
91 MAGs, additional genomes will be represented by two or more contigs. Reconstructing these
92 additional MAGs requires the use of binning algorithms. A majority of bioinformatic binning
93 methods perform clustering using tetranucleotide frequencies, depth of coverage, or deep
94 learning methods (Sczyrba et al. 2017; Meyer et al. 2022), and most were designed for short-read
95 assemblies. When applied to long-read assemblies, these methods can produce unexpected or
96 suboptimal results. To address this, new long-read binning algorithms have been developed,
97 including MetaBCC-LR (Wickramarachchi et al. 2020), LRBinner (Wickramarachchi & Lin
98 2022), GraphMB (Lamurias et al. 2022), and most recently SemiBin2 (Pan et al. 2023).

99 Metagenomic assembly workflows often include multiple bioinformatic binning methods, and
100 the results from multiple binning algorithms are typically merged. This key step de-replicates the
101 bin sets from alternative methods, resulting in improvements to MAG quality and yield (Olm et
102 al. 2017; Uritskiy et al. 2018). In addition to bioinformatic approaches, proximity ligation
103 information (e.g., Hi-C) can also be used to bin contigs (Burton et al. 2014; Press et al. 2017;
104 DeMaere & Darling 2019). The ProxiMeta platform (Press et al. 2017), MetaCC (Du & Sun
105 2023), and metaBAT-LR (Ho et al. 2023) can perform binning using Hi-C data and a set of
106 assembled contigs. Proximity ligation also allows mobile elements to be associated with their
107 respective host genomes, offering a unique advantage. Proximity ligation binning methods have
108 been successfully applied to long-read metagenome assemblies, presumably improving MAG
109 yields relative to bioinformatic binning (Bickhart et al. 2022; Saak et al. 2023). However, no
110 studies have performed a systematic comparison of the MAG sets produced from bioinformatic
111 and proximity ligation binning using long reads.

112 Here, we performed a deep-sequencing experiment on a pooled human gut microbiome to
113 produce a catalog of highly resolved MAGs. This pooled gut sample is particularly challenging
114 for metagenome assembly, as the number of species and strains is higher than what is typically

115 found in a gut microbiome. We obtained HiFi data from the PacBio Sequel IIe and Revio
116 systems. We assembled the combined sequencing dataset using hifiasm-meta and metaMDBG,
117 and performed binning using bioinformatic and proximity ligation approaches. For bioinformatic
118 binning, we created a new version of a workflow designed to process long-read metagenome
119 assemblies (HiFi-MAG-Pipeline), and we used the ProxiMeta platform to perform proximity
120 ligation binning and association of mobile elements. We also developed a new algorithm (pb-
121 MAG-mirror) which compares the contents of MAGs obtained from two alternate binning
122 approaches (based on the same set of starting contigs), and consolidates the MAGs into a single
123 non-redundant set. In an effort to characterize tradeoffs in performance, we compared the
124 number, quality, and taxonomy of MAGs obtained from the various combinations of assembly
125 and binning methods. Finally, we performed a downsampling experiment to understand the
126 effects of total data on MAG recovery. Overall, our study illustrates how HiFi sequencing can be
127 used to obtain highly complete MAGs from the human gut microbiome, accelerating our ability
128 to catalog the microbial diversity in this complex system.

129

130 **RESULTS**

131

132 **Sequencing datasets**

133 Our combined PacBio HiFi sequencing dataset consists of 34.7 million HiFi reads and 255.9 Gb
134 of total data, with a mean QV of 42.5 (Table 1). We obtained 17.1 million HiFi reads (120.8 Gb)
135 from six 8M SMRT Cells on the Sequel IIe system, and 17.5 HiFi reads (135.0 Gb) from two
136 25M SMRT Cells on the Revio system. The Sequel IIe HiFi reads display a mean length of 7.0
137 kb and mean QV of 40.5 (Supplemental Fig. S1); yields across cells ranged from 2.30–3.33
138 million reads and 14.1–27.8 Gb total data. The Revio HiFi reads had a similar mean length of 7.7
139 kb but a higher mean QV of 45.8. Importantly, predicted read QV scores were higher in the
140 Revio dataset despite a fewer mean number of passes (18 versus 24; Supplemental Fig. S1). Both
141 Revio runs were highly consistent in yielding 8.7–8.8 million HiFi reads and 67.0–67.9 Gb total
142 data.

143

144 **Metagenome assembly and binning**

145 We performed metagenome assembly using two HiFi-specific methods: hifiasm-meta and
146 metaMDBG (Fig. 1). The assembly with hifiasm-meta resulted in 34,117 contigs with an N50 of
147 458 kbp and total assembly size of 2.76 Gbp. We found that metaMDBG produced 66,952
148 contigs with an N50 of 306 kbp and total assembly size of 2.75 Gbp. The runtime performance
149 differed between the assembly methods. Using hifiasm-meta took 5 days and 5.8 hours wall time
150 using 64 threads (7767 CPU hrs) with peak memory of 713 GB, whereas metaMDBG required
151 21.13 hours wall time (1352 CPU hrs) and 12.7 GB peak memory (using 64 threads).

152 To obtain MAGs from the assembled contigs, we performed bioinformatic binning using
153 the HiFi-MAG-Pipeline and proximity ligation binning using ProxiMeta (Fig. 1). We categorized
154 MAGs as medium-quality or high-quality (MQ-MAG, HQ-MAG, respectively) based on
155 standards proposed by the Genomic Standards Consortium (Bowers et al. 2017). The HQ-MAGs
156 require $\geq 90\%$ completeness (based on universal single-copy genes - SCGs) and $\leq 5\%$
157 contamination, whereas MQ-MAGs fall below these criteria but display $\geq 50\%$ SCG
158 completeness and $\leq 10\%$ contamination. Overall, we obtained large numbers of total MAGs and
159 HQ-MAGs across all the assembly and binning combinations. Specifically, using bioinformatic
160 binning we obtained 485 and 480 total MAGs for hifiasm-meta and metaMDBG, respectively
(Fig. 2, Table 2). Comparing the binning strategies, we found ProxiMeta produced more total
161 MAGs than bioinformatic binning, with 522 and 492 total MAGs for hifiasm-meta and
162 metaMDBG, respectively (Fig. 2, Table 2). This represents an 8% and 3% increase in total
163 MAGs for the two assembly methods. Across both binning strategies, the total number of MAGs
164 produced by hifiasm-meta is higher than metaMDBG. However, we found metaMDBG has a
165 higher proportion of HQ-MAGs relative to hifiasm-meta across both binning strategies
166 (bioinformatic: 239 vs. 157; proximity ligation: 258 vs. 166; Fig 2). Both assembly methods
167 recovered similar numbers of SC-HQ-MAGs, but the numbers differed across binning strategy
168 (Table 2). The first step of the HiFi-MAG-Pipeline was designed to identify highly complete,
169 single-contig MAGs using a “completeness-aware” strategy. Based on this approach, we
170 recovered 98 and 96 SC-HQ-MAGs from hifiasm-meta and metaMDBG, respectively, with 70
171 and 74 being circular. The ProxiMeta workflow does not include a parallel initial step, and as a
172 result we recovered 79 and 70 SC-HQ-MAGs (from hifiasm-meta and metaMDBG, respectively,
173 both with 59 circular). For ProxiMeta we observed several cases in which one or more small
174 contigs (<50kb) were binned with complete bacterial chromosomes (identified as SC-HQ-MAGs
175

176 using HiFi-MAG-Pipeline), and they were subsequently excluded from being counted as SC-
177 HQ-MAGs. The smaller contigs may possibly represent unannotated mobile elements. Overall,
178 ProxiMeta produced higher HQ and MQ-MAG yields than the HiFi-MAG-Pipeline.

179 We compared and consolidated the bioinformatic and proximity ligation bin sets using
180 our new method, pb-MAG-mirror. Our analysis with pb-MAG-mirror resulted in more MQ- and
181 HQ-MAGs than either binning approach individually (Fig. 2). The analysis assigned MAGs to
182 four comparison categories, including identical, superset/subset, unique, and high-, medium- and
183 low-similarity mixed (Fig. 1). Three of these categories involved identifying highly similar pairs
184 of MAGs across the two binning strategies (e.g., the identical, superset/subset, and high-
185 similarity mixed categories; Fig. 1), whereas the unique, medium- and low-similarity mixed
186 categories identified distinct or poorly overlapping MAGs. These classifications allowed us to
187 identify the proportion of highly similar MAGs shared across binning methods, which guided the
188 consolidation step (see Methods). Our analysis with pb-MAG-mirror produced 595 and 547 total
189 consolidated MAGs for hifiasm-meta and metaMDBG, representing 11–22% more total MAGs
190 than bioinformatic or proximity ligation binning individually. We found that 61–66% of total
191 MAGs were classified as highly similar across the bioinformatic and proximity ligation binning
192 methods (Fig. 2, Supplementary Table S1). This result indicates that a majority of MAGs contain
193 highly similar contents across the binning approaches. By contrast, we found approximately 18–
194 23% of the total MAGs were assigned to the medium and low-similarity mixed categories, which
195 had little to no overlap in MAG composition. These MAGs tended to have lower completeness
196 scores and higher contamination scores relative to other categories (Supplemental Fig. S2).
197 Finally, the number of unique MAGs varied across binning and assembly methods, ranging from
198 11–20% of the total MAGs. ProxiMeta produced more unique MAGs than HiFi-MAG-Pipeline,
199 and the highest number of unique MAGs occurred for the hifiasm-meta and ProxiMeta
200 combination (Fig. 2, Supplementary Table S1). We investigated the characteristics of the unique
201 MAGs from each binning method, and found the unique MAGs from HiFi-MAG-Pipeline and
202 ProxiMeta had similar completeness scores (~70%, for both assembly methods; Supplementary
203 Fig. S2). However, the unique MAGs from HiFi-MAG-Pipeline displayed a higher average
204 number of contigs (hifiasm-meta: 17 vs. 9 contigs; metaMDBG: 18 vs. 13 contigs) and a lower
205 average depth of coverage (hifiasm-meta: 21x vs. 64x; metaMDBG: 27x vs. 87x), relative to
206 ProxiMeta (Supplementary Fig. S2). In the consolidated MAG set, a major contribution comes

207 from the inclusion of the unique MAGs from both methods. The combined unique MAGs
208 represent 30% and 22% of the total consolidated MAGs for hifiasm-meta and metaMDBG,
209 respectively.

210

211 **Effects of total data**

212 To investigate the effects of total data on MAG yield, we downsampled our Sequel IIe dataset to
213 lower data levels (Supplementary Table S2). Overall, we found the patterns from the full dataset
214 were recapitulated in the downsampled datasets. For example, across both assembly methods we
215 found the consolidated MAG set resulted in the greatest numbers of MQ- and HQ-MAGs,
216 followed by proximity ligation binning, then bioinformatic binning (Supplementary Figs. 3, 4;
217 Supplementary Table S3). In the full sequencing datasets, hifiasm-meta produced more total
218 MAGs than metaMDBG (Fig. 2), but this pattern was not consistent across the downsampled
219 datasets. We found metaMDBG produced more total MAGs in 14% of the downsampled
220 comparisons, most often in conjunction with the HiFi-MAG-Pipeline (Supplementary Figs. S3,
221 S4, Table S3). However, across all data levels we found metaMDBG produced more HQ-MAGs,
222 and fewer MQ-MAGs, than hifiasm-meta (Fig. 3). We note our smallest downsampled dataset
223 contained only ~360,000 HiFi reads and 3Gb total data, yet it resulted in up to 73 total MAGs
224 and 10 HQ-MAGs (Supplementary Table S3). Looking across all data levels (including our full
225 dataset), we found a predictable logarithmic relationship between total data and the number of
226 HQ or MQ-MAGs in the consolidated MAG sets (Fig. 3; Supplementary Table S4). These
227 trendlines indicate that although additional sequencing could further increase MAG yields, there
228 are diminishing returns relative to lower data levels.

229

230 **Taxonomic diversity and strain-level variation**

231 The number of species assigned by GTDB-Tk ranged from 313–385 species across assembly and
232 binning combinations, with the highest number of species occurring in the consolidated MAG
233 sets for hifiasm-meta (n=364) and metaMDBG (n=385; Table 3). The number of MAGs that
234 were not assigned to the species level ranged from 65–96 across the method combinations,
235 representing 13–17% of the total MAGs. The highest numbers again occurred in the consolidated
236 MAG sets, with 96 MAGs not assigned to the species rank for hifiasm-meta (16%) and 75 for
237 metaMDBG (14%). Given the high number of unassigned MAGs, the species counts from

238 GTDB-Tk represent a conservative estimate of the total species diversity. The dRep results
239 support this notion, as we recovered more species-level clusters across assembly and binning
240 combinations, ranging from 385–455 (Table 3). The highest numbers of dRep species clusters
241 were also found for the consolidated MAG sets, with 449 clusters for hifiasm-meta and 455 for
242 metaMDBG (Fig. 4).

243 We observed a large proportion of strain-level variation in our MAG sets, particularly for
244 method combinations including hifiasm-meta. Based on dRep species clusters, we found 73–100
245 species represented by multiple strains across the binning methods for hifiasm-meta, with only
246 52–64 species displaying multiple strains for metaMDBG (Fig. 4; Table 3). For hifiasm-meta, we
247 found a total of 246 strain-level MAGs in the consolidated MAG set, representing 40% of the
248 total MAGs (Table 3). A large proportion of these strain-level genomes for hifiasm-meta were
249 classified as MQ-MAGs (68%). By contrast, we only found 156 strain-level MAGs for
250 metaMDBG, representing 28% of the total MAGs (Table 3). Of these, 52% were classified as MQ-
251 MAGs. In the consolidated MAG sets there were many species containing two strains (hifiasm-
252 meta: 68; metaMDBG: 46), several with three strains (hifiasm-meta: 20; metaMDBG: 10), but
253 only a few displaying four (hifiasm-meta: 10; metaMDBG: 6) or five strains (hifiasm-meta: 2;
254 metaMDBG: 2). Across all species with 2–5 strains, approximately ~65% contained at least one
255 HQ-MAG, ~25% contained two or more HQ-MAGs, ~15% contained three HQ-MAGs, and
256 none contained four or more HQ-MAGs (Supplementary Table S5). These results indicate that
257 assembling multiple HQ-MAGs at the strain level is currently possible, but that strain-level
258 variation is typically captured as one HQ-MAG plus one or more incomplete genomes. Among
259 the species clusters displaying four to five strains, there are 12 for hifiasm-meta and 8 for
260 metaMDBG (Supplementary Table S6). There are 15 high-strain-diversity species in the
261 combined set: *Adlercreutzia celatus_A/equolifaciens*, *Agathobacter faecis*, *Agathobaculum*
262 *butyriciproducens*, *Bacteroides uniformis*, *Blautia_A massiliensis*, *CAG-41 sp900066215*,
263 *Copromonas sp000435795*, *Dorea_A longicatena*, *Dysosmobacter sp001916835*,
264 *Faecalibacterium prausnitzii_D*, *Faecalibacterium prausnitzii_G*, *Faecalibacterium*
265 *sp900539945*, *Lachnospira eligens_A/sp003451515*, *Phocaeicola dorei/vulgatus*, and
266 *Ruminococcus_B gnarus*. We note that in addition to these high-strain-diversity species, there
267 are an additional 26 species which contain three strains each.

268 Our main phylogenetic and taxonomic analyses were focused on the consolidated MAG
269 sets for hifiasm-meta and metaMDBG (Fig. 4). At the phylum level, the MAG assignments were
270 dominated by Firmicutes_A (hifiasm-meta: 450; metaMDBG: 416), followed by Bacteroidota
271 and Firmicutes (hifiasm-meta: 50 and 30, respectively; metaMDBG: 46 and 26). Within
272 Firmicutes_A, representation was highest among the families Lachnospiraceae (hifiasm-meta:
273 184; metaMDBG: 153), Oscillospiraceae (hifiasm-meta: 61; metaMDBG: 68), Ruminococcaceae
274 (hifiasm-meta: 54; metaMDBG: 57), and Acutalibacteraceae (hifiasm-meta: 33; metaMDBG:
275 31), but included 33 families in total. Within Bacteroidota seven families were represented, with
276 Bacteroidaceae (hifiasm-meta: 24; metaMDBG: 19) and Rikenellaceae (hifiasm-meta: 13;
277 metaMDBG: 12) displaying the greatest number of MAGs. The phyla with the least amount of
278 representation included Methanobacteria, Cyanobacteria, Desulfobacterota_I, Firmicutes_B,
279 Firmicutes_C, Firmicutes_G, and Verrucomicrobiota (hifiasm-meta: 2, 6, 6, 5, 4, 0, and 5
280 MAGs, respectively; metaMDBG: 1, 4, 4, 5, 4, 1, and 5 MAGs). Based on GTDB-Tk, we
281 determined 96 of the consolidated MAGs were not assigned to the species level for hifiasm-
282 meta, and 75 were not assigned for metaMDBG. Of these, 21 from hifiasm-meta and 16 from
283 metaMDBG were not assignable to the genus level. Of the set of MAGs not assigned at the
284 species level, we found 16 and 36 were categorized as HQ-MAGs for hifiasm-meta and
285 metaMDBG, respectively (Supplementary Table S7). A majority of these novel HQ-MAGs
286 occur in the phylum Firmicutes_A (hifiasm-meta: 10; metaMDBG: 28), and within this phylum
287 most occur in the orders Lachnospirales and Oscillospirales (Supplementary Table S7). In total,
288 the novel HQ-MAGs recovered from hifiasm-meta and metaMDBG represent 33 distinct genera
289 distributed across thirteen orders and six phyla.

290

291 **Comparison of assembly methods**

292 We performed comparisons of hifiasm-meta and metaMDBG at the contig and MAG-level,
293 using several approaches. We performed an alignment of the contigs across assemblers, and
294 found 69% of bases were shared at the 98% identity threshold, and 63% of bases were shared at
295 the 99% identity threshold. We also compared large contigs (>500kb) using Mash and
296 FracMinHash to understand contig similarity and containment (Supplementary Table S8). At a
297 99% mash similarity threshold (e.g., strain-level), we found 13.8% and 16.3% of large contigs
298 were matched across hifiasm-meta and metaMDBG, with 13.2% and 14.4% being contained. At

299 95% for mash and 80% for FracMinHash, the number of contig matches for hifiasm-meta and
300 metaMDBG was 39% and 53%, and 44% and 33% were contained. Finally, for 90% for mash
301 and 70% for FracMinHash, the number of matched long contigs for hifiasm-meta and
302 metaMDBG was 51% and 64%, with 47% and 33% contained.

303 We mapped the HiFi reads to the contigs and to the consolidated MAGs for both
304 assembly methods, and found similar numbers of reliably mapped reads in both cases
305 (Supplementary Table S9). Approximately 78% of HiFi reads were reliably mapped to the
306 contigs (for both assembly methods), and 61% and 62% were mapped to the consolidated MAGs
307 (hifiasm-meta and metaMDBG, respectively). These results indicate a large proportion of the
308 information contained in the HiFi reads was represented in the contigs, with a somewhat smaller
309 proportion represented in the final MAGs.

310 To understand how much species diversity was assembled into genomes, we searched for
311 16S genes in the HiFi reads and compared them to the 16S genes contained within MAGs. We
312 found 108,830 reads contained full length 16S rRNA genes, and greedy clustering yielded 3,772
313 species-level OTUs (with a minimum of two reads each). We found 1,645 OTUs had more than
314 10 reads of support. Of the 1,645 OTUs with high coverage, 436 (26.5%) were also found in the
315 consolidated HQ-MAG set (Fig. 5). When considering the MQ- and HQ-MAGs, we found a total
316 of 778 OTUs represented (47.3%).

317 We estimated the number of MAGs that were unequivocally shared across the assembly
318 methods, based on the consolidated MAG sets. We used a combination of aligned sequence
319 lengths and ANI to measure MAG similarity, and explored the effects of different values on the
320 number of matches (Supplemental Fig. S5). Ultimately, we defined an unequivocal match as
321 requiring $\geq 90\%$ of the total bases per MAG to be aligned with $\geq 99\%$ ANI (Fig. 6), which is
322 representative of a strain-level match. Based on these criteria, we found a total of 125 MAGs that
323 were unequivocally shared across the assembly methods, representing 21–23% of the total
324 MAGs for each method (Fig. 6, Supplementary Table S10). These unequivocally shared MAGs
325 had higher average percent completeness scores (97% vs. 73–84%), lower average numbers of
326 contigs (3–7 vs. 9–12), and higher average depths of coverages (186–192x vs. 72–78x) relative
327 to the unmatched MAGs from each assembly method (Fig. 6). We determined 115 of the shared
328 MAGs (92%) were classified as HQ-MAGs, but we also found matched MAGs with as low as
329 71% completeness.

330

331 **Mobile element association and viral detection**

332 We used ProxiMeta, geNomad, and VirSorter2 to detect viral, proviral, and plasmid sequences in
333 the contigs from both assembly methods. For both assemblers geNomad detected the most total
334 viral contigs (hifiasm-meta 4,551, metaMDBG 6,679), followed closely by VirSorter2 (hifiasm-
335 meta 4,264, metaMDBG 6,203), and then ProxiMeta (hifiasm-meta 2,175, metaMDBG 2,501;
336 Supplemental Table S11). For a given assembly, a large proportion of viral and proviral contigs
337 were annotated by both VirSorter2 and geNomad (62–80%; Supplementary Fig. S6). In addition
338 to viral and proviral categories, ProxiMeta and geNomad annotated plasmid sequences. We
339 found geNomad recovered more plasmids for metaMDBG (11,983) relative to hifiasm-meta
340 (6,827). ProxiMeta identified fewer total plasmid sequences than geNomad but differentiated
341 between plasmids and integrated plasmids. For metaMDBG ProxiMeta detected 129 plasmids
342 and 1,878 integrated plasmids, whereas for hifiasm-meta it found 164 plasmids and 2,268
343 integrated plasmids (Supplementary Table S11). In addition to identifying mobile element
344 sequences, ProxiMeta’s ProxiPhage algorithm predicts if a given mobile sequence is interacting
345 with a microbial bin as a host. We found that ProxiMeta identified more viral-host and plasmid-
346 host associations in metaMDBG (333 viral-host and 32 plasmid-host associations) than hifiasm-
347 meta (123 viral-host and 25 plasmid-host associations). Taken together, these results indicate that
348 we consistently detected more viral sequences in the metaMDBG contigs, but more proviral
349 sequences in the hifiasm-meta contigs.

350

351 **DISCUSSION**

352 Cataloging the microbial diversity of the human gut presents major challenges, and large
353 numbers of species and strains remain unknown. HiFi metagenomic sequencing provides a rapid
354 and scalable alternative to culturomics, and also offers substantial improvements over short-read
355 sequencing. Here, we performed a deep-sequencing experiment on a pooled human gut
356 microbiome - a challenging sample containing an inflated number of species and strains. We
357 generated large numbers of MAGs using different combinations of long-read assembly, binning,
358 and consolidation methods (Fig. 2). Our study demonstrates that metagenome assembly with
359 HiFi reads can produce large numbers of highly complete MAGs, corroborating the findings of
360 previous studies (Bickhart et al. 2022; Feng et al. 2022; Kato et al. 2022; Kim et al. 2022; Zhang

361 et al. 2022; Benoit et al. 2023; Jiang et al. 2023; Saak et al. 2023; Schaeerer et al. 2023; Masuda et
362 al. 2024). Across all method combinations, we found up to 595 total MAGs, 277 HQ-MAGs, and
363 98 single-contig HQ-MAGs (including 70 circular). These MAGs represent up to 455 species
364 clusters (Fig. 4), with 15% of the MAGs representing uncultured species (including >35 HQ-
365 MAGs). Based on our results, we discuss the relative performance and trade-offs for different
366 methods, which overall we find to be complementary.

367 We used bioinformatic and proximity ligation binning methods to group contigs into
368 putative MAGs, and developed a new framework to explicitly compare MAGs across binning
369 strategies (Fig. 1). From a simple performance perspective, we found ProxiMeta generally
370 produced more total MAGs than the HiFi-MAG-Pipeline (Fig. 2, Supplementary Figs. S3, S4).
371 However, our framework with pb-MAG-mirror allowed us to move beyond counting MAGs to
372 better understand how the contents of MAGs were distributed across both methods. In an ideal
373 scenario, two orthogonal methods would produce MAG sets with a large proportion of highly
374 similar MAGs (e.g., MAGs with near-identical contig contents), increasing our confidence in the
375 biological reality of those genomes. In the worst case scenario, the methods could produce MAG
376 sets with no sensible overlap - the contig contents of individual MAGs are highly mixed across
377 MAGs in the other method. It is also possible to recover unique MAGs (e.g., those with contig
378 contents not appearing in the other method), which may highlight strengths or blindspots for a
379 given method. In our study, we found ~65% of total MAGs were classified as highly similar
380 across the binning methods, with ~20% being highly mixed and another ~15% being unique to
381 each method (Fig. 2). These proportions were consistent across hifiasm-meta and metaMDBG,
382 suggesting they are robust to the starting contigs. The large proportion of highly similar MAGs is
383 reassuring, as the same core set of MAGs (roughly ~320) can be recovered using HiFi-MAG-
384 Pipeline or ProxiMeta (Fig. 2). The 20% of highly mixed MAGs (~100) is somewhat
385 disconcerting, highlighting major disagreements across the binning methods. Furthermore, to
386 perform consolidation a decision must be made about which MAGs are more accurate. As
387 previous studies have demonstrated higher accuracy for bins using proximity ligation
388 information (Burton et al. 2014; Ho et al. 2023), we selected these in our consolidation step.
389 Finally, we found each method produced ~15% unique bins each (ranging from 55–100 MAGs),
390 highlighting information captured by only one method. Unique bins from HiFi-MAG-Pipeline
391 had significantly lower coverages than those from ProxiMeta (which requires a minimum

392 coverage threshold), suggesting bioinformatic binning may perform better at recovering very low
393 coverage MAGs. Conversely, ProxiMeta can use contact information to associate contigs and
394 refine bins, potentially grouping contigs otherwise missed by tetranucleotide frequencies and
395 coverage distributions. By comparing and consolidating the MAGs from ProxiMeta and HiFi-
396 MAG-Pipeline, we identified overlap and incorporated complementary aspects of both methods
397 to improve MAG yields. For example, ProxiMeta provided a 3–8% increase in total MAGs over
398 the HiFi-MAG-Pipeline, but pb-MAG-mirror resulted in an 11–22% increase in total MAGs over
399 both binning methods. Overall, our comparison revealed that high numbers of MAGs can be
400 obtained using both binning methods, a large core set of MAGs is shared across the methods, and
401 that consolidation can incorporate the unique information captured by each.

402 We used hifiasm-meta and metaMDBG for metagenome assembly, and based on
403 performance we found different strengths for each method. At the highest level, we were
404 interested in which assembly method produced the most MAGs. In general, hifiasm-meta
405 produced more total MAGs than metaMDBG (Fig. 2), with some exceptions in the downsampled
406 datasets. However, regarding genome quality we found that metaMDBG consistently produced
407 more HQ-MAGs than hifiasm-meta (Figs. 2, 3). Specifically, HQ-MAGs make up 50% of the
408 total MAGs for metaMDBG in the consolidated set, but only 30% of the total for hifiasm-meta.
409 We also investigated how well each method assembled strain-level variation. Here, hifiasm-meta
410 produced strains for 56% more species and assembled 57% more total strain-level MAGs
411 relative to metaMDBG, for the consolidated MAGs (Fig. 4, Table 3). Of the species with strains
412 assembled, we wanted to understand whether strain-level variation was represented as two or
413 more near-complete genomes (e.g., HQ-MAGs), as one near-complete genome and several
414 incomplete genomes, or as many fragmented genomes. Despite their differences in the total
415 number of strains assembled, hifiasm-meta and metaMDBG recovered two or more strain-level,
416 near-complete genomes for a similar number of species in the consolidated MAGs (21 and 24,
417 respectively; Supplementary Table S5). For both assembly methods, strains were most often
418 represented by one near-complete genome and multiple partial genomes. We observed that for
419 hifiasm-meta, strains were also commonly represented by sets of partial genomes, whereas this
420 was infrequent for metaMDBG. These results highlight that both assembly methods are capable
421 of assembling strain-level variation into two or more near-complete genomes, resolving strains
422 remains challenging, and that hifiasm-meta currently produces more strain-level information.

423 We investigated how many MAGs were shared across the assembly methods in the
424 consolidated sets. We used strict criteria to identify unequivocal matches across the assembly
425 methods, which resulted in 125 high-confidence matches at the strain level (Fig. 6). These
426 unequivocally shared MAGs tended to be very high-quality, with greater completeness scores,
427 fewer contigs (including many single-contig), and higher depth of coverage relative to MAGs not
428 shared across the methods (Fig. 6). Although this only represents ~22% of the total MAGs in
429 each method, we emphasize that even slight differences in the assembly or binning of contigs
430 could disqualify a potential match. It is also possible that partial strain-collapsing in some MAGs
431 could impact this type of analysis, which would be exacerbated in this high-strain-diversity
432 sample. Remarkably, there are 17 matched MAGs which both consist of a single-contig, are
433 within 200 bp of the total length of one another (across a 1.42–6.09 Mb size range), and display
434 only 2–100 nucleotide differences (Supplementary Table S10). These results highlight that the
435 use of highly accurate long reads can lead to the recovery of nearly identical MAGs, despite the
436 use of disparate assembly and binning methods.

437 Beyond bacterial and archaeal genomes, viral and plasmid genomes pose a different set
438 of assembly challenges (Antipov et al. 2020). For long reads specifically, their size range can fall
439 below the length of a typical HiFi read (10–20 kb), and their structure is quite variable. We used
440 ProxiMeta, VirSorter2, and geNomad to identify and annotate viral sequences, and in most cases
441 recovered more total viral sequences for metaMDBG (Supplementary Table S11). With the
442 ProxiMeta platform, we detected more viral and plasmid host associations for metaMDBG
443 versus hifiasm-meta. These results indicate metaMDBG may have an advantage for assembling
444 smaller, viral sequences, but that additional work is required to improve assembly for these
445 highly variable genomes.

446 The routine production of single-contig HQ-MAGs from long-read metagenome
447 assemblies is a recent phenomenon, and we propose it requires some important considerations.
448 First, a majority of binning algorithms operate with an implicit assumption that the assembled
449 contigs represent fragmented genomes, and this assumption is often violated with HiFi
450 metagenome assembly. Performing naïve binning on HiFi assemblies can result in the mis-
451 binning of single-contig MAGs with additional contigs, inflating their contamination score and
452 causing removal during quality filtering (Feng et al. 2022; Benoit et al. 2023). For this reason,
453 we built a “completeness-aware” strategy into the HiFi-MAG-Pipeline, and propose it is an

454 essential step for any long-read binning workflow. This strategy involves screening all contigs
455 longer than 500kb to obtain completeness and contamination scores, and moving all highly
456 complete, single-contig MAGs into individual bins. The subsequent binning steps therefore only
457 include incomplete contigs, preventing the mis-binning and removal of any SC-HQ-MAGs.
458 Second, the quality standards proposed by the Genomic Standards Consortium (Bowers et al.
459 2017) have proven useful for comparing short-read MAGs, but they do not capture additional
460 information relevant for long-read MAGs. Specifically, contiguity (i.e., the number of contigs
461 per MAG) is becoming increasingly important for evaluating quality. For example, a short-read
462 MAG can be defined as high-quality based on the presence of single-copy genes despite
463 containing hundreds of contigs (and potentially missing large portions of the accessory genome).
464 An ideal HQ-MAG is composed of a single contig per chromosome, and these are often
465 distinguished in long-read studies (Bickhart et al. 2022; Feng et al. 2022; Kim et al. 2022; Zhang
466 et al. 2022; Benoit et al. 2023; Jiang et al. 2023; Masuda et al. 2024), including ours (labeled as
467 SC-HQ-MAGs). However, there is currently no distinction between HQ-MAGs composed of a
468 few long contigs (e.g., hundreds of kilobases, or megabases) versus those containing hundreds of
469 short contigs (e.g., tens of kilobases or shorter), despite the former being much higher quality.
470 We propose this idea should be reflected in future terminology, allowing distinctions to be made
471 along the contiguity spectrum. Beyond contiguity, circularity is sometimes also highlighted as an
472 important quality metric (Bickhart et al. 2022; Kim et al. 2022; Zhang et al. 2022; Jiang et al.
473 2023; Masuda et al. 2024). However, Kim et al. (2022) demonstrated that circular MAGs can
474 contain large gaps, and circularity alone should not be taken as a reliable indicator of
475 completeness. Furthermore, linear contigs can sometimes be closed using additional read-
476 mapping information. Therefore, information about linear vs. circular SC-HQ-MAGs can be
477 useful, but may not be as meaningful as other quality categories. Although defining new
478 standards is beyond the scope of this study, we suggest these criteria should be re-evaluated by
479 the community as long-read metagenomics continues to become more mainstream.
480

481 METHODS

482 Sample

483 The ZymoBIOMICS™ Fecal Reference with TruMatrix™ Technology [D6323] (Zymo
484 Research – CA, USA) was made by collecting multiple fecal samples from healthy human

485 volunteers following ethical guidelines and informed consent procedures. Samples were
486 collected using sterile collection tubes and stored at -80°C until processing. Collections from
487 multiple donors were pooled and homogenized in one large suspension together with the
488 microbiome preservative reagent DNA/RNA Shield™ (Zymo Research – CA, USA) to prevent
489 outgrowths or depletions of microbial taxa. The fecal suspension was then distributed to
490 containers to be stored at -80°C until aliquoting to individual tubes. Each stored container was
491 tested individually by sequencing to confirm consistency prior to aliquoting to individual tubes.
492 All aliquots have been demonstrated to have consistent metagenomic and metatranscriptomic
493 profiles.

494

495 **Sequencing**

496 DNA was extracted using the ZymoBIOMICS DNA Miniprep Kit (D4300), which involved
497 either mechanical (Vortex Genie 2) or enzymatic lysis. Fragment sizes were measured using a
498 Femto Pulse (Agilent). A total of eight SMRTbell libraries were prepared from four DNA
499 extractions. Libraries for the PacBio Sequel IIe system were created using the SMRTbell Express
500 Template Prep Kit 2.0 (n=3) or SMRTbell Prep Kit 3.0 (n=3), and libraries were prepared for the
501 Revio system using the SMRTbell Prep Kit 3.0 (n=2). Size selection was performed using 3.7X
502 35% Ampure SPRIselect (Beckman Coulter), which targeted the removal of fragments <3kb. Six
503 libraries were sequenced on the Sequel IIe system (using 40–60 ng library input) and two on the
504 Revio system (using 130–140 ng library input), with each library sequenced on an individual 8M
505 or 25M SMRT Cell, respectively. For the Sequel IIe system, HiFi reads were generated using ccs
506 v6.2, whereas for the Revio system HiFi reads were generated on-instrument using Google
507 DeepConsensus (Baid et al. 2023). For downstream data analysis, we combined the HiFi data
508 obtained from Sequel IIe and Revio. To investigate the effects of lower data levels on assembly,
509 we performed downsampling on the Sequel IIe dataset. Our downsampling design includes the
510 equivalent of six 8M SMRT Cells down to one cell, along with a 2plex, 4plex, and 8plex on one
511 cell (Supplemental Table S1).

512 A proximity ligation (Hi-C) library was prepared from an aliquot of the Fecal Reference
513 standard using the ProxiMeta Hi-C v4.0 Kit from Phase Genomics according to the manufacturer
514 provided protocol (Lieberman-Aiden et al. 2009). Briefly, intact cells were crosslinked using a
515 formaldehyde solution, simultaneously digested using the *Sau3AI* and *MlucI* restriction enzymes,

516 and proximity ligated with biotinylated nucleotides to create chimeric molecules composed of
517 fragments from different regions of microbial genomes that were physically proximal *in vivo*.
518 Proximity ligated DNA molecules were pulled down with streptavidin beads and processed into
519 an Illumina-compatible sequencing library. Sequencing was performed on an Illumina NovaSeq
520 with PE150 read pairs, producing 181.7M reads in total.

521

522 **Metagenome assembly and binning**

523 We performed assemblies with hifiasm-meta r74 (Feng et al. 2022) and metaMDBG v0.3
524 (Benoit et al. 2023) using default parameter settings. The resulting contigs were processed using
525 two distinct methodologies, including bioinformatic binning and proximity ligation (Hi-C)
526 binning. A visual overview of our analysis workflow is shown in Figure 1.

527 For bioinformatic binning, we developed a new version of the HiFi-MAG-Pipeline
528 (available from: <https://github.com/PacificBiosciences/pb-metagenomics-tools>), which uses a
529 completeness-aware binning strategy. The workflow begins by identifying all contigs longer than
530 500kb which display >90% completeness and <10% contamination, as measured by CheckM2
531 v1.0.1 (Chklovski et al. 2023). These highly complete, single-contig MAGs are removed from
532 the contig set and placed in individual bins. The remaining set of incomplete contigs is then
533 subjected to binning using the long-read mode of SemiBin2 v1.5 (Pan et al. 2022, 2023) and with
534 MetaBAT2 v2.15 (Kang et al. 2019). To obtain coverage scores per contig, minimap2 v2.17 (Li
535 2018, 2021) is used to map reads to the contig set, and the jgi_summarize_bam_contig_depths
536 script of MetaBAT2 is used to summarize depth per contig. Settings for MetaBAT2 included -m
537 30000, whereas SemiBin2 used the single_easy_bin module and included the --self-supervised, -
538 -sequencing-type=long_reads, and --environment=human_gut flags. The two bin sets are de-
539 replicated using DAS_Tool v1.1.6 (Sieber et al. 2018), and the de-replicated bin set is assessed
540 with CheckM2. The bins which pass minimum criteria for single-copy gene (SCG) completeness
541 and contamination are added to the set of highly complete, single-contig MAGs identified in the
542 first step. Finally, the Genome Taxonomy Database Toolkit (GTDB-Tk) v2.1.1 (Chaumeil et al.
543 2019, 2022) is used to assign taxonomy to all filtered MAGs.

544 MAGs were categorized as medium-quality or high-quality (MQ-MAG, HQ-MAG,
545 respectively): HQ-MAGs require $\geq 90\%$ SCG completeness and $\leq 5\%$ contamination, whereas
546 MQ-MAGs fall below these criteria but display $\geq 50\%$ SCG completeness and $\leq 10\%$

547 contamination. We note that the total number of MAGs reported in our results is equal to the
548 number of HQ-MAGs plus MQ-MAGs. We also include a third category for the highest level of
549 quality, which we label as a single-contig, high-quality MAG (SC-HQ-MAG). This category
550 includes the same criteria as an HQ-MAG, plus the presence of a single contig (circularity
551 optional).

552 In addition to bioinformatic binning, we used proximity ligation to generate bins (Press et
553 al. 2017). Proximity ligation sequencing files and assembled contigs were uploaded to the cloud-
554 based ProxiMeta platform (Uritskiy et al. 2021). Proximity ligation reads were aligned using
555 BWA-MEM (Li & Durbin 2010) with the -5SP options specified, and all other options default.
556 SAMBLASTER (Faust & Hall 2014) was used to flag PCR duplicates, which were later
557 excluded from analysis. Alignments were then filtered with samtools (Li et al. 2009) using the -F
558 2304 filtering flag to remove non-primary and secondary alignments. Metagenome
559 deconvolution was performed with ProxiMeta (Press et al. 2017; Stewart et al. 2018), resulting in
560 the creation of putative genome and genome fragment clusters, as well as viral, plasmid, and
561 AMR gene host annotations. For consistency, we ran the bins inferred by the ProxiMeta
562 workflow through CheckM2, filtered based on the above quality criteria, and assigned taxonomy
563 using GTDB-Tk v2.1.1. This allowed a more direct comparison to the bins recovered by HiFi-
564 MAG-Pipeline.

565

566 **Binning method comparison**

567 We compared the HiFi-MAG-Pipeline and ProxiMeta binning results using a new approach we
568 developed, called pb-MAG-mirror. We compared the contig content of MAGs across methods to
569 identify four categories: identical bins, superset/subset bins, mixed bins, and unique bins (Fig. 1).
570 Identical bins occur when a bin from each method contains the exact same contig set. A subset
571 bin occurs when the contig set of a bin is fully contained in a bin of the alternate method (i.e., the
572 superset bin). We further require that any additional contigs in the superset bin do not occur in
573 any other bin (e.g., any additional contigs present in the superset bin were unique to the superset
574 bin). Lastly, a unique bin occurs when it contains a set of contigs that does not occur in any bin
575 of the alternative method. If a single contig of the set can be found in a bin of the alternative
576 method, the bin cannot be classified as unique. All bins not falling into these categories
577 (identical, subset/superset, unique) are considered mixed, as they contain two or more contigs

578 that occur in two or more bins of the alternative method. For these mixed bins, we perform cross-
579 method pairwise comparisons. We examine the shared contig content of each comparison to
580 identify the best match, which is selected based on the percentage of total shared bases. We
581 consider high-similarity (HS) matches as those with $\geq 80\%$ shared bases in each bin, medium-
582 similarity (MS) as those with $\geq 50\%$ shared bases in each bin, and low-similarity (LS) as those
583 with $< 50\%$ shared bases in each bin. Based on the category results, pb-MAG-mirror can be used
584 to consolidate the two bin sets. The default behavior is to include one representative bin for each
585 of the identical bins, all superset bins and unique bins from both sets, and for cross-set mixed
586 matches the bin with the highest completeness score is selected. However, for cross-set mixed
587 matches the bins from one set can be preferentially selected instead. For our comparisons, for the
588 cross-set mixed matches we selected ProxiMeta bins. We refer to the resulting MAGs as the
589 consolidated MAG set (Fig. 1). To identify potential differences in characteristics of unique bins
590 between HiFi-MAG-Pipeline and ProxiMeta, we compared completeness scores, number of
591 contigs, and average depth of coverage for the unique bins. pb-MAG-mirror is available as an
592 open-source workflow at: <https://github.com/PacificBiosciences/pb-metagenomics-tools>.

593

594 **Taxonomic and phylogenetic analyses**

595 We quantified the number of species contained in the various MAG sets using two approaches.
596 First, we used the taxonomy assigned by GTDB-Tk to count the number of unique species
597 assignments. However, several genomes were not assigned to the species level. These
598 unassigned genomes could represent one or more species groups. To address this issue, we used
599 dRep v3.4.3 (Olm et al. 2017) to cluster MAGs into species-level groups based on an average
600 nucleotide identity (ANI) of 95% (Jain et al. 2018; Olm et al. 2020). The default settings were
601 used, which involved the ANImf algorithm for genome comparisons, 90% ANI for creating
602 primary clusters, and 95% ANI for creating secondary clusters. We regarded each resulting
603 cluster as a unique species. For strain-level counts, we aggregated counts based on genomes with
604 the same species (GTDB-TK) or cluster (dRep) assignment.

605 We reconstructed the phylogenetic relationships of the MAGs from the consolidated
606 MAG sets for each assembly method. We obtained protein alignments for core bacterial and
607 archaeal genes (Pfam, TIGRFAM) using the identify and align modules of GTDB-Tk. The core
608 gene sets differ in number between bacteria and archaea (n=120 and n=53, respectively), with

609 five genes shared across both sets. We created a concatenated supermatrix of all genes and
610 analyzed the supermatrix using RAxML v8.2.12 (Stamatakis 2014). Tree searches used the
611 gamma model of rate heterogeneity and JTTDCMUT amino acid substitution model. We
612 visualized the phylogeny using the Interactive Tree of Life (iTOL) v6.8.1 online tool (Letunic &
613 Bork 2021).

614

615 **Comparison of assembly methods**

616 We compared contigs from hifiasm-meta and metaMDBG using two approaches. First, we
617 aligned the contig sets using minimap2, and calculated the percent of bases covered based on 98
618 or 99% identity. Second, for contigs >500kb we calculated Mash similarities (MinHash) using
619 mash (Ondov et al. 2016) and FracMinHash-based similarities using sourmash (Pierce et al.
620 2019; Irber et al. 2022). There were 996 contigs >500kb for hifiasm-meta and 867 for
621 metaMDBG. Concordantly high values for both Mash and FracMinHash similarities were taken
622 as strong evidence for a contig match across assemblers, whereas a high value for Mash and
623 lower value for FracMinHash indicated a contig was likely contained within the other contig. A
624 range of minimum cutoffs for each metric was explored.

625 We also investigated the number of HiFi reads that could be reliably mapped to the
626 contigs or consolidated MAGs, per assembly method. We performed read mapping using
627 minimap2 with HiFi settings (-x map-hifi -k19 -w19 --secondary=no), and subsequently filtered
628 the alignments. We kept primary alignments in which $\geq 90\%$ of the HiFi read was aligned to the
629 reference, and with $\geq 95\%$ identity (defined as number of matched query bases divided by total
630 query bases in the alignment). To identify potential differences in MAG characteristics across the
631 assembly methods, we compared the average depth of coverage and number of contigs for the
632 consolidated HQ- and MQ-MAGs.

633 In an effort to understand how representative the MAGs are of the total species diversity
634 in the sample, we compared 16S rRNA sequences obtained from the HiFi reads with those
635 contained in MAGs (Feng & Li 2024). Methods were highly similar to those described in Feng
636 and Li (2024). In brief, HiFi reads containing 16S regions were discovered by mapping to the
637 SILVA database (Quast et al. 2013), rRNA genes were identified using barrnap v0.9
638 (<https://github.com/tseemann/barrnap>), annotated using the RDP classifier (Cole et al. 2014), and
639 OTUs were defined using greedy incremental clustering and 99% mismatch identity. The MAG

640 16S sequences were identified and extracted from the consolidated MAG sets from hifiasm-meta
641 and metaMDBG, and mapped to the OTU set from the HiFi reads. A MAG could have more than
642 one OTU assignment if it contained multiple, distinct 16S copies.

643 We sought to determine the number of identical or nearly-identical MAGs that were
644 unequivocally shared across the assembly methods. To accomplish this, we estimated the
645 intersection of the consolidated MAG sets from each assembly method, using minimum
646 thresholds for aligned sequence lengths and ANI. We used dRep to generate clusters for all
647 consolidated MAGs from hifiasm-meta and metaMDBG, using the ANImf algorithm with 90%
648 ANI for primary clusters and 99% ANI for secondary clusters. For each resulting cluster, we first
649 determined if it contained at least one MAG per assembly method. If so, we then performed
650 pairwise comparisons of all MAGs from hifiasm-meta to metaMDBG to identify unequivocal
651 matches. To understand the effects of parameter values on the number of matches, we explored
652 using 95% or 99% ANI and a range of values for the minimum percent of bases per MAG
653 required (70–100%). Based on these results, we defined an unequivocal match as requiring $\geq 90\%$
654 of the total bases to be aligned (per genome) with $\geq 99\%$ ANI (e.g., a nearly identical match at the
655 strain level)

656

657 **Mobile element association and viral annotation**

658 Mobile element host-association was performed using the cloud-based ProxiMeta platform
659 (Uritskiy et al. 2021). Briefly, viral contigs were identified using VIBRANT (Kieft et al. 2020),
660 and plasmid contigs were identified using BLAST and the NCBI Plasmid Database. Alignments
661 of long-range Hi-C linkage data were used to identify viral-host and plasmid-host linkages. A
662 combination of the Hi-C link count, mobile element read depth, and MAG read depth were then
663 used to estimate the average copy count of each mobile element in each MAG. The density of
664 Hi-C links per kb^2 of sequence between the mobile element and the MAG was then compared to
665 the connectivity of the MAG to itself and normalized to the estimated copy count to compute the
666 normalized connectivity ratio. Mobile-host linkages were then filtered to keep only connections
667 with at least 2 Hi-C read links between the mobile and host MAG, a connectivity ratio of 0.1,
668 and intra-MAG connectivity of 10 links to remove false positives. For the final threshold value, a
669 receiver operating characteristic (ROC) curve is used to determine the optimal copy count cut-off
670 value, which is the value that removes the maximum number of virus-host links while still

671 finding at least one host for the maximum number of mobile elements. Additional filtering
672 removed linkages with an average copy count less than 80% of the highest copy count value for
673 the given mobile element sequence.

674 As an alternative to ProxiMeta, we also predicted viral and proviral sequences using
675 geNomad (Camarago et al. 2023) and VirSorter2 (Guo et al. 2021). geNomad (ver 1.8.0) was run
676 in “relaxed” mode. VirSorter2 (v2.2.4) was run with all steps and results were verified with
677 CheckV (v1.0.1) using “end-to-end” mode (Nayfach et al. 2021). VirSorter2 viral counts include
678 all quality types reported from CheckV (complete, high quality, medium quality, low quality,
679 and not determined).

680

681

682 **DATA ACCESS**

683 HiFi sequencing data are publicly available on NCBI (PRJNA1110296) and from:

684 <https://downloads.pacbcloud.com/public/revio/2023Q3/ZymoTrumatrix/>

685 <https://downloads.pacbcloud.com/public/sequelii/2023Q3/ZymoTrumatrix/>

686

687 The contigs, MAGs, and add sets for each binning (HiFi-MAG-Pipeline, ProxiMeta,
688 consolidated) and assembly (hifiasm-meta, metaMDBG) combination are publicly available on
689 the Open Science Framework: <https://osf.io/cwqzr/>

690

691 pb-MAG-mirror is publicly available at: <https://github.com/PacificBiosciences/pb->
692 [metagenomics-tools](https://github.com/PacificBiosciences/pb-metagenomics-tools)

693

694

695 **COMPETING INTEREST STATEMENT**

696 DMP, DJN, JEW, and SZ are employees of Pacific Biosciences of California, Inc. KL, ST, BF,
697 and AD are employees of Zymo Research. MC and RC are the CEO and CSO of The
698 BioCollective, respectively. IL is the CEO of Phase Genomics, and BA, HM, KWL, MI, JRG,
699 and SJB are employees of Phase Genomics.

700

701

702 **ACKNOWLEDGMENTS**

703 CQ acknowledges the support of the Biotechnology and Biological Sciences Research Council
704 (BBSRC), part of UK Research and Innovation; Earlham Institute Strategic Programme Grant
705 (Decoding Biodiversity) BBX011089/1 and its constituent work package BBS/E/ER/230002C;
706 the Core Strategic Programme Grant (Genomes to Food Security) BB/CSP1720/1 and its
707 constituent work packages BBS/E/T/000PR9818 and BBS/E/T/000PR9817; and the Core
708 Capability Grant BB/CCG2220/1. GB was supported by the ERC IndexThePlanet grant (UE
709 ERC-2022-COG INDEXTHEPLANET). Work by members of Phase Genomics were supported
710 by NIH/NIAID grants R44AI172703 and R44AI162570 as well as funding from the Bill and
711 Melinda Gates Foundation.

712

713

714 **REFERENCES**

715 Agustinho DP, Fu Y, Menon VK, Metcalf GA, Treangan TJ, and FJ Sedlazeck. 2024. Unveiling
716 microbial diversity: harnessing long-read sequencing technology. *Nature Methods*,
717 <https://doi.org/10.1038/s41592-024-02262-1>

718 Albertsen M. Long-read metagenomics paves the way toward a complete microbial tree of life.
719 2023. *Nature Methods*, 20: 30–31.

720 Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, and RD
721 Finn. 2019. A new genomic blueprint of the human gut microbiota. *Nature*, 568: 499–504.

722 Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E,
723 Parks DH, Hugenholtz P, Segata N, Kyrpides NC, and RD Finn. 2021. A unified catalog of
724 204,938 reference genomes from the human gut microbiome. *Nature Biotechnology*, 39:
725 105–114.

726 Antipov D, Raiko M, Lapidus A, and PA Pevzner. 2020. MetaviralSPAdes: assembly of viruses
727 from metagenomic data. *Bioinformatics*, 36: 4126–4129.

728 Arumugam K, Bağcı C, Bessarab I, Beier S, Buchfink B, Górska A, Qiu G, Huson DH, and RBH
729 Williams. 2019. Annotated bacterial chromosomes from frame-shift-corrected long-read
730 metagenomic data. *Microbiome*, 7: 61.

731 Baid G, Cook DE, Shafin K, Yun T, Llinares-López F, Berthet Q, Belyaeva A, Töpfer A,
732 Wenger AM, Rowell WJ, Yang H, Kolesnikov A, Ammar W, Vert J-P, Vaswani A, McLean
733 CY, Nattestad M, Chang P-C, and A Carroll. 2023. DeepConsensus improves the accuracy of
734 sequences with a gap-aware sequence transformer. *Nature Biotechnology*, 41: 232–238.

735 Benoit G, Raguideau S, James R, Phillippy AM, Chikhi R, and C Quince. 2023. Efficient high-
736 quality metagenome assembly from long accurate reads using minimizer-space de Bruijn
737 graphs. *bioRxiv*, <https://doi.org/10.1101/2023.07.07.548136>

738 Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, Tolstoganov I, Uritskiy G,
739 Liachko I, Sullivan ST, Shin SB, Zorea A, Andreu VP, Panke-Buisse K, Medema MH,
740 Mizrahi I, Pevzner PA, and TPL Smith. 2022. Generating lineage-resolved, complete
741 metagenome-assembled genomes from complex microbial communities. *Nature
742 Biotechnology*, 40: 711-719.

743 Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F,
744 Jarett J, Rivers AR, Eloë-Fadrosch EA, Tringe SG, Ivanova NN, Copeland A, Clum A,

745 Becroft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM,
746 Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ,
747 Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen
748 JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I,
749 Tyson GW, Rinke C, The Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P,
750 Parks DH, Murat Eren A, Schriml L, Banfield JF, Hugenholtz P and T Woyke. 2017.
751 Minimum information about a single amplified genome (MISAG) and a metagenome-
752 assembled genome (MIMAG) of bacteria and archaea. *Nature Biotechnology*, 35: 725–731.
753 Burton JN, Liachko I, Dunham MJ, and J Shendure. 2014. Species-level deconvolution of
754 metagenome assemblies with Hi-C-based contact probability maps. *G3 (Bethesda)*, 4: 1339–
755 1346.
756 Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, Hu B, Chain PSG, Nayfach S, and NC
757 Kyrpides. 2023. Identification of mobile genetic elements with geNomad. *Nature
758 Biotechnology*, <https://doi.org/10.1038/s41587-023-01953-y>
759 Chaumeil P-A, Mussig AJ, Hugenholtz P, and DH Parks. 2019. GTDB-Tk: a toolkit to classify
760 genomes with the Genome Taxonomy Database. *Bioinformatics*, 35: 1925–1927.
761 Chaumeil P-A, Mussig AJ, Hugenholtz P, and DH Parks. 2022. GTDB-Tk v2: memory friendly
762 classification with the genome taxonomy database. *Bioinformatics*, 38: 5315–5316.
763 Chen L-X, Anantharaman K, Shaiber A, Murat Eren A, and JF Banfield. 2020. Accurate and
764 complete genomes from metagenomes. *Genome Research*, 30: 315–333.
765 Chklovski A, Parks DH, Woodcroft BJ, and GW Tyson. 2023. CheckM2: a rapid, scalable and
766 accurate tool for assessing microbial genome quality using machine learning. *bioRxiv*,
767 <https://doi.org/10.1101/2022.07.11.499243>
768 Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske
769 CR, and JM Tiedje. 2014. Ribosomal database project: data and tools for high throughput
770 rRNA analysis. *Nucleic Acids Research*, 42: D633–D642.
771 DeMaere MZ, and AE Darling. 2019. bin3C: exploiting Hi-C sequencing data to accurately
772 resolve metagenome-assembled genomes. *Genome Biology*, 20: 46.
773 Du Y, and F Sun. 2023. MetaCC allows scalable and integrative analyses of both long-read and
774 short-read metagenomic Hi-C data. *Nature Communications*, 14: 6231.

775 Duvallet C, Gibbons SM, Gurry T, Irizarry RA, and EJ Alm. 2017. Meta-analysis of gut
776 microbiome studies identifies disease-specific and shared responses. *Nature
777 Communications*, 8: 1784.

778 Eisenhofer R, Nesme J, Santos-Bay L, Koziol A, Sorenson SJ, Alberdi A, and O Aizpurua. 2023.
779 A comparison of short-read, HiFi long-read and hybrid strategies for genome-resolved
780 metagenomics. *bioRxiv*, <https://doi.org/10.1101/2023.10.04.560907>

781 Faust GG, and IM Hall. 2014. SAMBLASTER: fast duplicate marking and structural variant
782 read extraction. *Bioinformatics*, 17: 2503–2505.

783 Feng X, Cheng H, Portik D, and H Li. 2022. Metagenome assembly of high-fidelity long reads
784 with hifiasm-meta. *Nature Methods*, 19: 671–674.

785 Feng X, and H Li. 2024. Evaluating and improving the representation of bacterial contents in
786 long-read metagenome assemblies. *Genome Biology*, 25: 92.

787 Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn M, Mkandawire
788 TT, Zhu A, Shao Y, Pike LJ, Louie T, Browne HP, Mitchell AL, Neville BA, Finn RD, and
789 TD Lawley. 2019. A human gut bacterial genome and culture collection for improved
790 metagenomic analyses. *Nature Biotechnology*, 37: 186–192.

791 Gehrig JL, Portik DM, Driscoll MD, Jackson E, Chakraborty S, Gratalo D, Ashby M, and R
792 Valladares. 2022. Finding the right fit: evaluation of short-read and long-read sequencing
793 approaches to maximize the utility of clinical microbiome data. *Microbial Genomics*, 8:
794 000794.

795 Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, and R Knight. Current
796 understanding of the human microbiome. *Nature Medicine*, 24: 392–400.

797 Gihawi A, Ge Y, Lu J, Puiu D, Xu A, Cooper CS, Brewer DS, Pertea M, and SL Salzberg. 2023.
798 Major data analysis errors invalidate cancer microbiome findings. *mBio*, 9: e0160723.

799 Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA,
800 Gazitúa MC, Vik D, Sullivan MB, and S Roux. 2021. VirSorter2: a multi-classifier, expert-
801 guided approach to detect diverse DNA and RNA viruses. *Microbiome*, 9: 37.

802 Ho H, Chovatia M, Egan R, He G, Yoshinaga Y, Liachko I, O'Malley R, and Z Wang. 2023.
803 Integrating chromatin conformation information in a self-supervised learning model
804 improves metagenome binning. *PeerJ*, 11: e16129.

805 Irber L, Brooks PT, Reiter T, Pierce-Ward NT, Hera MR, Koslicki D, and CT Brown. 2022.
806 Lightweight compositional analysis of metagenomes with FracMinHash and minimum
807 metagenome covers. bioRxiv, <https://doi.org/10.1101/2022.01.11.475838>

808 Jain C, Rodrigues-R LM, Phillippy AM, Konstantinidis KT, and S Aluru. 2018. High throughput
809 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature
810 Communications*, 9: 5114.

811 Jiang F, Li Q, Wang S, Shen T, Wang H, Wang A, Xu D, Yuan L, Lei L, Chen R, Yang B, Deng
812 Y, and W Fan. 2023. Recovery of metagenome-assembled microbial genomes from a full-
813 scale biogas plant of food waste by Pacific Biosciences high-fidelity sequencing. *Frontiers in
814 Microbiology*, 13: 1095497.

815 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, and Z Wang. 2019. MetaBAT 2: an
816 adaptive binning algorithm for robust and efficient genome reconstruction from metagenome
817 assemblies. *PeerJ*, 7: e7359.

818 Kato S, Masuda S, Shibata A, Shirasu K, and M Ohkuma. 2022. Insights into ecological roles of
819 uncultivated bacteria in Katase hot spring sediment from long-read metagenomics. *Frontiers
820 in Microbiology*, 13: 1045931.

821 Kieft K, Zhou Z, and K Anantharaman. 2020. VIBRANT: automated recovery, annotation and
822 curation of microbial viruses, and evaluation of viral community function from genomic
823 sequences. *Microbiome*, 8: 90.

824 Kim CY, Ma J, and I Lee. 2022. HiFi metagenomic sequencing enables assembly of accurate and
825 complete genomes from human gut microbiota. *Nature Communications*, 13: 6367.

826 Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J,
827 Polevikov E, Smith TPL, and PA Pevzner. 2020. metaFlye: scalable long-read metagenome
828 assembly using repeat graphs. *Nature Methods*, 17: 1103–1110.

829 Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain J-M,
830 Fournier P-E, and D Raoult. 2018. Culturing the human microbiota and culturomics. *Nature
831 Reviews Microbiology*, 16: 540–550.

832 Lamurias A, Sereika M, Albertsen M, Hose K, and TD Nielsen. 2022. Metagenomic binning
833 with assembly graph embeddings. *Bioinformatics*, 38: 4481–4487.

834 Letunic I, and P Bork. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic
835 tree display and annotation. *Nucleic Acids Research*, 49: W293–W296.

836 Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I,
837 Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M,
838 G涅ke A, Stamatoyannopoulos J, Mirny LA, Lander ES, and J Dekker. 2009.
839 Comprehensive mapping of long-range interactions reveals folding principles of the human
840 genome. *Science*, 326: 289–293.

841 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 34: 3094–
842 3100.

843 Li H. 2021. New strategies to improve minimap2 alignment accuracy. *Bioinformatics*, 37: 4572–
844 4574.

845 Li H, and R Durbin. 2010. Fast and accurate long-read alignment with Burrows-Wheeler
846 transform. *Bioinformatics*, 26: 589–595.

847 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R
848 and 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map
849 (SAM) format and SAMtools. *Bioinformatics*, 25: 2078–2079.

850 Lynch SV, and O Pedersen. 2016. The human intestinal microbiome in health and disease. *The
851 New England Journal of Medicine*, 375: 2369–2379.

852 Masuda S, Gan P, Kiguchi Y, Anda M, Sasaki K, Shibata A, Iwasaki W, Suda W, and K Shirasu.
853 2024. Uncovering microbiomes of the rice phyllosphere using long-read metagenomic
854 sequencing. *Communications Biology*, 7: 357.

855 Meslier V, Quinquis B, Da Silva K, Plaza Onate F, Pons N, Roume H, Podar M, and M Almeida.
856 2022. Benchmarking second and third-generation sequencing platforms for microbial
857 metagenomics. *Scientific Data*, 9: 694.

858 Meyer F, Fritz A, Deng Z-L, Koslicki D, Lesker TR, Gurevich A, Robertson G, Alser M,
859 Antipov D, Beghini F, Bertrand D, Brito JJ, Brown CT, Buchmann J, Buluç A, Chen B,
860 Chikhi R, Clausen PTLC, Cristian A, Dabrowski PW, Darling AE, Egan R, Eskin E,
861 Georganas E, Goltsman E, Gray MA, Hansen LH, Hofmeyr S, Huang P, Irber L, Jia H,
862 Jørgensen TS, Kieser SD, Klemetsen T, Kola A, Kolmogorov M, Korobeynikov A, Kwan J,
863 LaPierre N, Lemaitre C, Li C, Limasset A, Malcher-Miranda F, Mangul S, Marcelino VR,
864 Marchet C, Marijon P, Meleshko D, Mende DR, Milanese A, Nagarajan N, Nissen J, Nurk S,
865 Oliker L, Paoli L, Peterlongo P, Piro VC, Porter JS, Rasmussen S, Rees ER, Reinert K,
866 Renard B, Robertsen EM, Rosen GL, Ruscheweyh H-J, Sarwal V, Segata N, Seiler E, Shi L,

867 Sun F, Sunagawa S, Sørensen SJ, Thomas A, Tong C, Trajkovski M, Tremblay J, Uritskiy G,
868 Vicedomini R, Wang Z, Wang Z, Wang Z, Warren A, Willassen NP, Yelick K, You R, Zeller
869 G, Zhao Z, Zhu S, Zhu J, Garrido-Oter R, Gastmeier P, Hacquard S, Häußler S, Khaledi A,
870 Maechler F, Mesny F, Radutoiu S, Schulze-Lefert P, Smit N, Strowig T, Bremges A, Sczyrba
871 A, and AC McHardy. 2022. Critical assessment of metagenome interpretation: the second
872 round of challenges. *Nature Methods*, 19: 429–440.

873 Nayfach S, Shi ZJ, Seshadri R, Pollard KS and NC Kyrpides. 2019. New insights from
874 uncultivated genomes of the global human gut microbiome. *Nature*, 568: 505–510.

875 Nayfach S, Camargo AP, Schulz F, Eloë-Fadrosh E, Roux S, and NC Kyrpides. 2021. CheckV
876 assesses the quality and completeness of metagenome-assembled viral genomes. *Nature
877 Biotechnology*, 39: 578–585.

878 Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga K, Eichler EE,
879 Phillip AM, and S Koren. 2020. HiCanu: accurate assembly of segmental duplications,
880 satellites, and allelic variants from high-fidelity long reads. *Genome Research*, 30: 1291–
881 1305.

882 Olm MR, Brown CT, Brooks B, and JF Banfield. 2017. dRep: a tool for fast and accurate
883 genomic comparisons that enables improved genome recovery from metagenomes through
884 de-replication. *The ISME Journal*, 11: 2864–2868.

885 Olm MR, Crits-Cristoph A, Diamond S, Lavy A, Matheus Carnevali PB, and JF Banfield. 2020.
886 Consistent metagenome-derived metrics verify and delineate bacterial species boundaries.
887 *mSystems*, 5: e00731-19.

888 Orellana LH, Kruger K, Sidhu C, and R Amann. 2023. Comparing genomes recovered from
889 time-series metagenomes using long- and short-read sequencing technologies. *Microbiome*,
890 11: 105.

891 Pan S, Zhu C, Zhao XM and LP Coelho. 2022. A deep Siamese neural network improves
892 metagenome-assembled genomes in microbiome datasets across different environments.
893 *Nature Communications*, 13: 2326.

894 Pan S, Zhao X-M, and LP Coelho. 2023. SemiBin2: self-supervised contrastive learning leads to
895 better MAGs for short- and long-read sequencing. *Bioinformatics*, 39: i21–i29.

896 Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A,
897 Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC, Golden CD, Quince C,

898 Huttenhower C, and N Segata. 2019. Extensive unexplored human microbiome diversity
899 revealed by over 150,000 genomes and metagenomes spanning age, geography, and lifestyle.
900 *Cell*, 176: 649–662.

901 Pierce NT, Irber L, Reiter T, Brooks P, and CT Brown. 2019. Large-scale sequence comparisons
902 with sourmash. *F1000Research*, 8: 1006.

903 Press MO, Wiser AH, Kronenberg ZN, Langford KW, Shakya M, Lo C-C, Mueller KA, Sullivan
904 ST, Chain PSG, and I Liachko. 2017. Hi-C deconvolution of a human gut microbiome yields
905 high-quality draft genomes and reveals plasmid-genome interactions. *bioRxiv*,
906 <https://doi.org/10.1101/198713>.

907 Priest T, Orellana LH, Huettel B, Fuchs BM, and R Amann. 2021. Microbial metagenome-
908 assembled genomes of the Fram Strait from short and long read sequencing platforms. *PeerJ*,
909 9: e11721.

910 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, and FO Glöckner. 2013.
911 The SILVA ribosomal RNA gene database project: improved data processing and web-based
912 tools. *Nucleic Acids Research*, 41: D590–D596.

913 Saak CC, Pierce EC, Dinh CB, Portik D, Hall R, Ashby M, and RJ Dutton. 2023. Longitudinal,
914 multi-platform metagenomics yields a high-quality genomic catalog and guides an in vitro
915 model for cheese communities. *mSystems*, 8:e00701-22.

916 Schaefer L, Putman L, Bigcraft I, Byrne E, Kulas D, Zolghadr A, Aloba S, Ong R, Shonnard D,
917 and S Techtmann. 2023. Coexistence of specialist and generalist species within mixed plastic
918 derivative-utilizing microbial communities. *Microbiome*, 11: 224.

919 Sczryba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler
920 J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD,
921 Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F,
922 Balvociūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R,
923 Kang DD, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D,
924 Wu Y-W, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T,
925 Lin H-H, Liao Y-C, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop
926 M, Klenk H-P, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM,
927 Darling AE, Rattei T, and AC McHardy. 2017. Critical assessment of metagenome
928 interpretation – a benchmark of metagenomics software. *Nature Methods*, 14: 1063–1071.

929 Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sorensen EA, Wollenberg RD, and M
930 Albertsen. 2022. Oxford Nanopore R10.4 long-read sequencing enables the generation of
931 near-finished bacterial genomes from pure cultures and metagenomes without short-read or
932 reference polishing. *Nature Methods*, 19: 823-826.

933 Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, and JF Banfield. 2018.
934 Recovery of genomes from metagenomes via a dereplication, aggregation and scoring
935 strategy. *Nature Microbiology*, 3: 836–843.

936 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
937 large phylogenies. *Bioinformatics*, 30: 1312–1313.

938 Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ,
939 Dewhurst RJ, Walker AW, Roehe R, and M Watson. 2018. Assembly of 913 microbial
940 genomes from metagenomic sequencing of the cow rumen. *Nature Communications*, 9: 870.

941 Tao Y, Xun F, Zhao C, Mao Z, Li B, Xing P, and QL Wu. 2023. Improved assembly of
942 metagenome-assembled genomes and viruses in Tibetan saline lake sediment by HiFi
943 metagenomic sequencing. *Microbiology Spectrum*, 11: e03328-22.

944 Tyson GQ, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin
945 EM, Rokhsar DS, and JF Banfield. 2004. Community structure and metabolism through
946 reconstruction of microbial genomes from the environment. *Nature*, 428: 37–43.

947 Urtskiy G, DiRuggiero J, and J Taylor. 2018. MetaWRAP – a flexible pipeline for genome-
948 resolved metagenomic data analysis. *Microbiome*, 6: 158.

949 Urtskiy G, Press M, Sun C, Huerta GD, Zayed AA, Wiser A, Grove J, Auch B, Eacker SM,
950 Sullivan S, Bickhart DM, Smith TPL, Sullivan MB, and I Liachko. 2021. Accurate viral
951 genome reconstruction and host assignment with proximity-ligation sequencing. *bioRxiv*,
952 <https://doi.org/10.1101/2021.06.14.448389>.

953 Wang J, and H Jia. 2016. Metagenome-wide association studies: fine-mining the microbiome.
954 *Nature Reviews Microbiology*, 14: 508–522.

955 Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, Ebler J,
956 Fungtammasan A, Kolesnikov A, Olson ND, Töpfer A, Alonge M, Mahmoud M, Qian Y,
957 Chin C-S, Phillippy AM, Schatz MC, Myers G, DePristo MA, Ruan J, Marschall T,
958 Sedlazeck FJ, Zook JM, Li H, Koren S, Carroll A, Rank DA, and MW Hunkapiller. 2019.

959 Accurate circular consensus long-read sequencing improves variant detection and assembly
960 of a human genome. *Nature Biotechnology*, 37: 1155–1162.

961 Wickramarachchi A, Mallawaarachchi V, Rajan V, and Y Lin. 2020. MetaBCC-LR:
962 metagenomics binning by coverage and composition for long reads. *Bioinformatics*, 36: i3–
963 i11.

964 Wickramarachchi A, and Y Lin. 2022. Binning long reads in metagenomics datasets using
965 composition and coverage information. *Algorithms for Molecular Biology*, 17: 14.

966 Zhang Y, Jiang F, Yang B, Wang S, Wang H, Wang A, Xu D, and W Fan. 2022. Improved
967 microbial genomes and gene catalog of the chicken gut from metagenomic sequencing of
968 high-fidelity long reads. *GigaScience*, 11: 1-12.

969 Zhang Z, Yang C, Veldsman WP, Fang X, and L Zhang. 2023. Benchmarking genome assembly
970 methods on metagenomic sequencing data. *Briefings in Bioinformatics*, 24: 1-17.

971 Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R,
972 Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X,
973 Wang J, Yang H, Kristiansen K, Li J, Jia H, and L Xiao. 2019. 1,520 reference genomes
974 from cultivated human gut bacteria enable functional microbiome analyses. *Nature
975 Biotechnology*, 37: 179–185.

976

Table 1. Summary of HiFi sequencing datasets.

Dataset	Sequencing level	HiFi reads (million)	HiFi yield (Gb)	Mean read length	Mean QV
Revio	2 SMRT Cells (25M)	17.56	135.06	7,690	45.8
Sequel IIe	6 SMRT Cells (8M)	17.15	120.85	7,046	40.2
Combined	-	34.71	255.91	7,724	42.5

Table 2. Counts of MAGs by quality for each dataset and binning method combination.

Assembly method	Binning method	SC-HQ-MAGs	HQ-MAGs	MQ-MAGs	Total MAGs
hifiasm-meta	HiFi-MAG-Pipeline	70/98	157	328	485
	ProxiMeta	59/79	166	356	522
	Consolidated	61/83	175	420	595
metaMDBG	HiFi-MAG-Pipeline	74/96	239	241	480
	ProxiMeta	59/70	258	234	492
	Consolidated	61/73	277	270	547

The HQ-MAG category requires >90% completeness and <5% contamination, whereas MQ-MAGs fall below those criteria but display >50% completeness and <10% contamination. Total MAGs = HQ + MQ-MAGs. SC-HQ-MAGs are a subcategory of HQ-MAGs with one contig present. For SC-HQ-MAGs, the first number represents genomes that are circular, whereas the second number represents all genomes (linear or circular).

Table 3. Estimates of species and strain information obtained by reference-based taxonomic assignment (GTDB-Tk) and MAG clustering (dRep).

Assembly method	Binning method	GTDB-Tk			dRep		
		Total species	Species with strains	Total strain-level MAGs	Unique clusters	Clusters with strains	Total strain-level MAGs
hifiasm-meta	HiFi-MAG-Pipeline	313	67	158	385	73	173
	ProxiMeta	329	82	196	399	85	208
	Consolidated	364	97	233	449	100	246
metaMDBG	HiFi-MAG-Pipeline	347	50	115	414	52	118
	ProxiMeta	351	60	137	411	60	141
	Consolidated	385	64	152	455	64	156

Figure 1. (a) Visual depiction of analysis steps involved with metagenome assembly, binning, and taxonomy. (b) Illustration of the categories used to compare MAGs with pb-MAG-mirror. Within a category, each box represents an individual MAG and the colored lines represent the contigs contained in the MAG. A full description of each category is provided in the Methods.

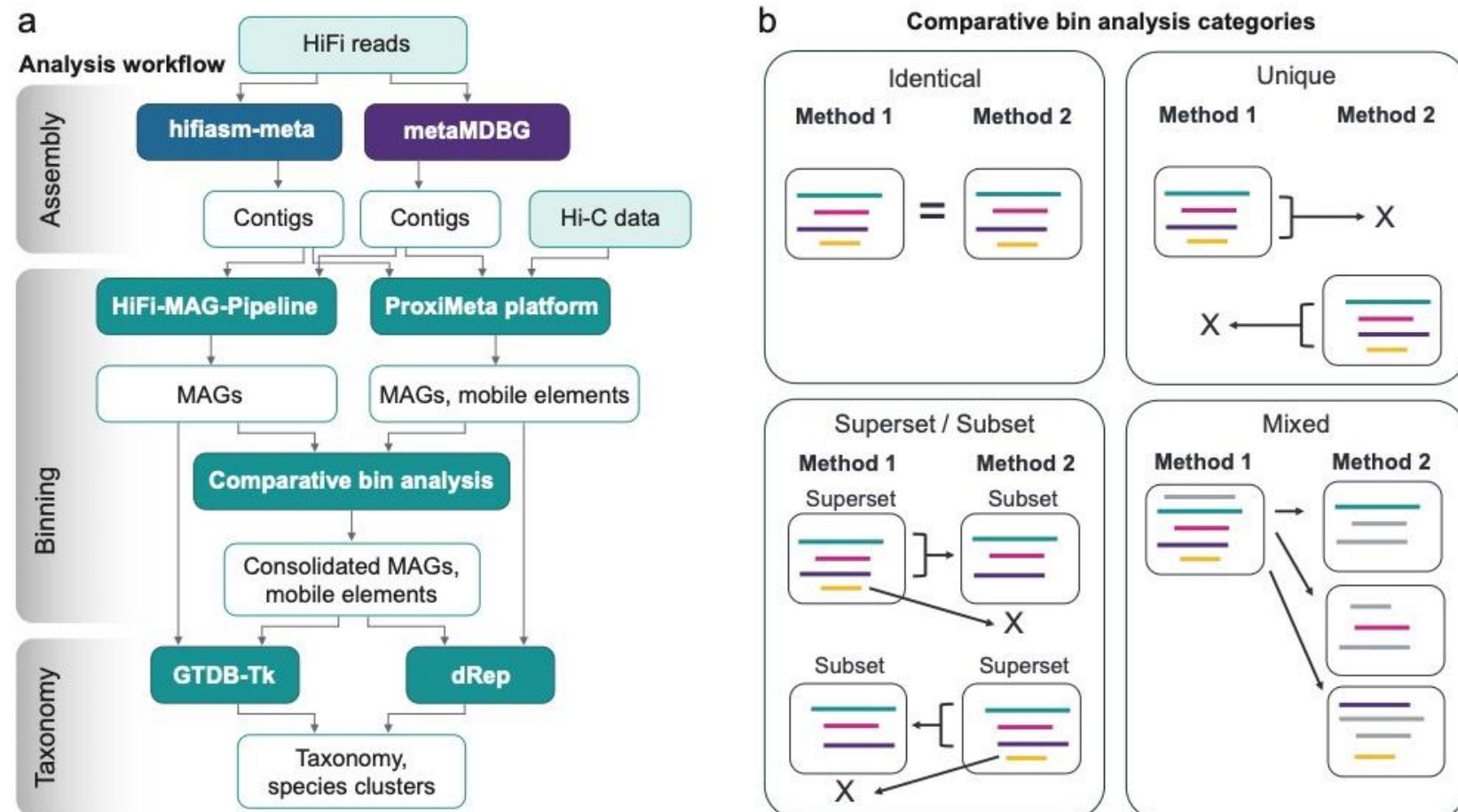


Figure 2. (a) Assignment of MAGs to categories from pb-MAG-mirror across the two assembly methods. Stacked barplot colors represent the number of MAGs occurring in different categories; total MAG numbers are shown on top. Bold outline highlights categories that are considered identical or nearly identical across methods. (b) Number of MAGs recovered for each assembly and binning method combination. HQ-MAGs require $\geq 90\%$ single-copy genes (SCG) completeness and $\leq 5\%$ contamination, whereas MQ-MAGs fall below the HQ thresholds but display $\geq 50\%$ SCG completeness and $\leq 10\%$ contamination. Total MAG numbers are shown above, with colors showing MAG counts exclusive to each category.

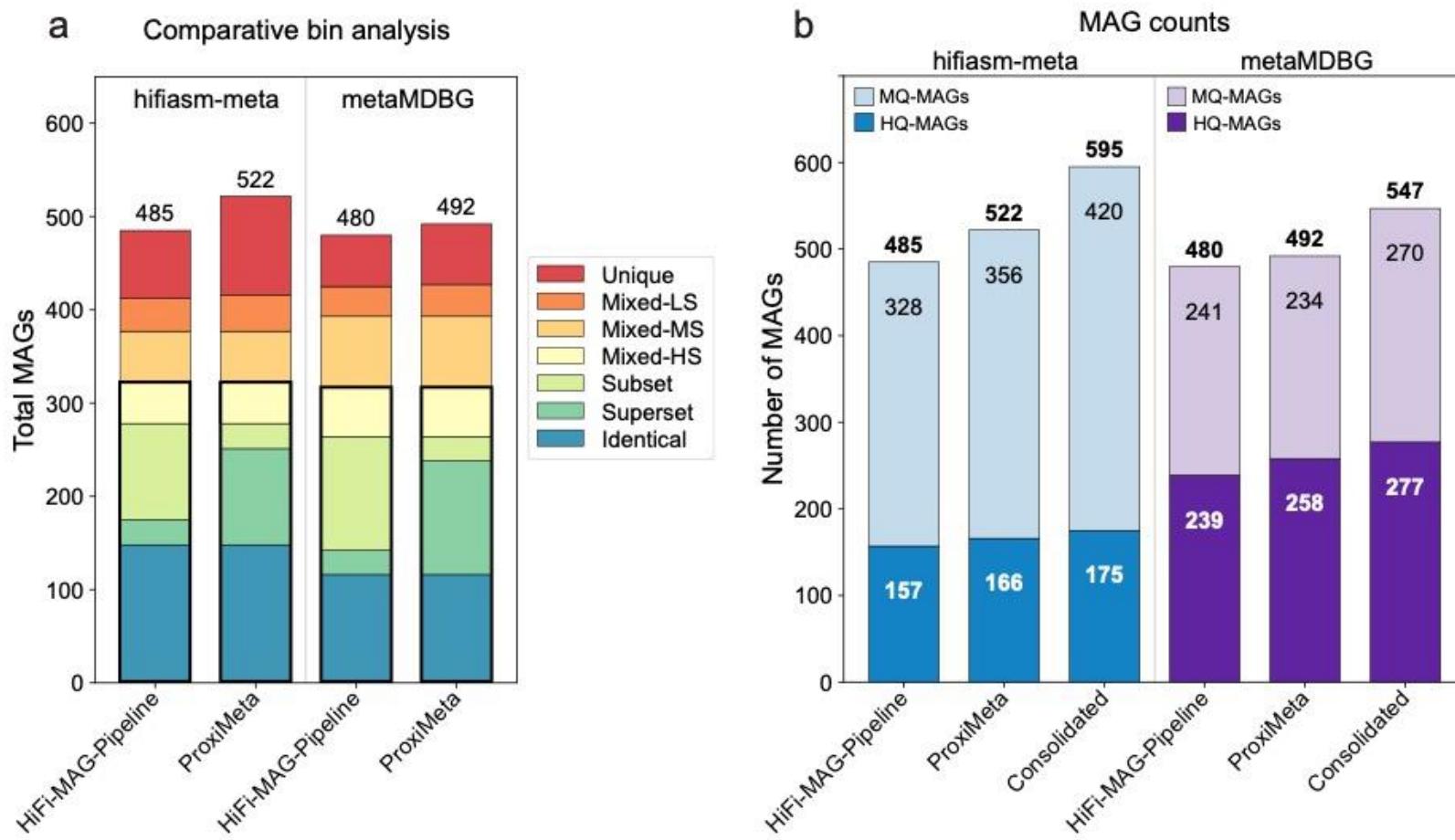


Figure 3. (a) Number of HQ-MAGs for the consolidated MAG set across downsampled datasets. (b) Number of HQ-MAGs obtained from hifiasm-meta versus metaMDBG across all binning methods and downsampled datasets. (c) Number of MQ-MAGs for the consolidated MAG set across downsampled datasets. (d) Number of MQ-MAGs obtained from hifiasm-meta versus metaMDBG across all binning methods and downsampled datasets.

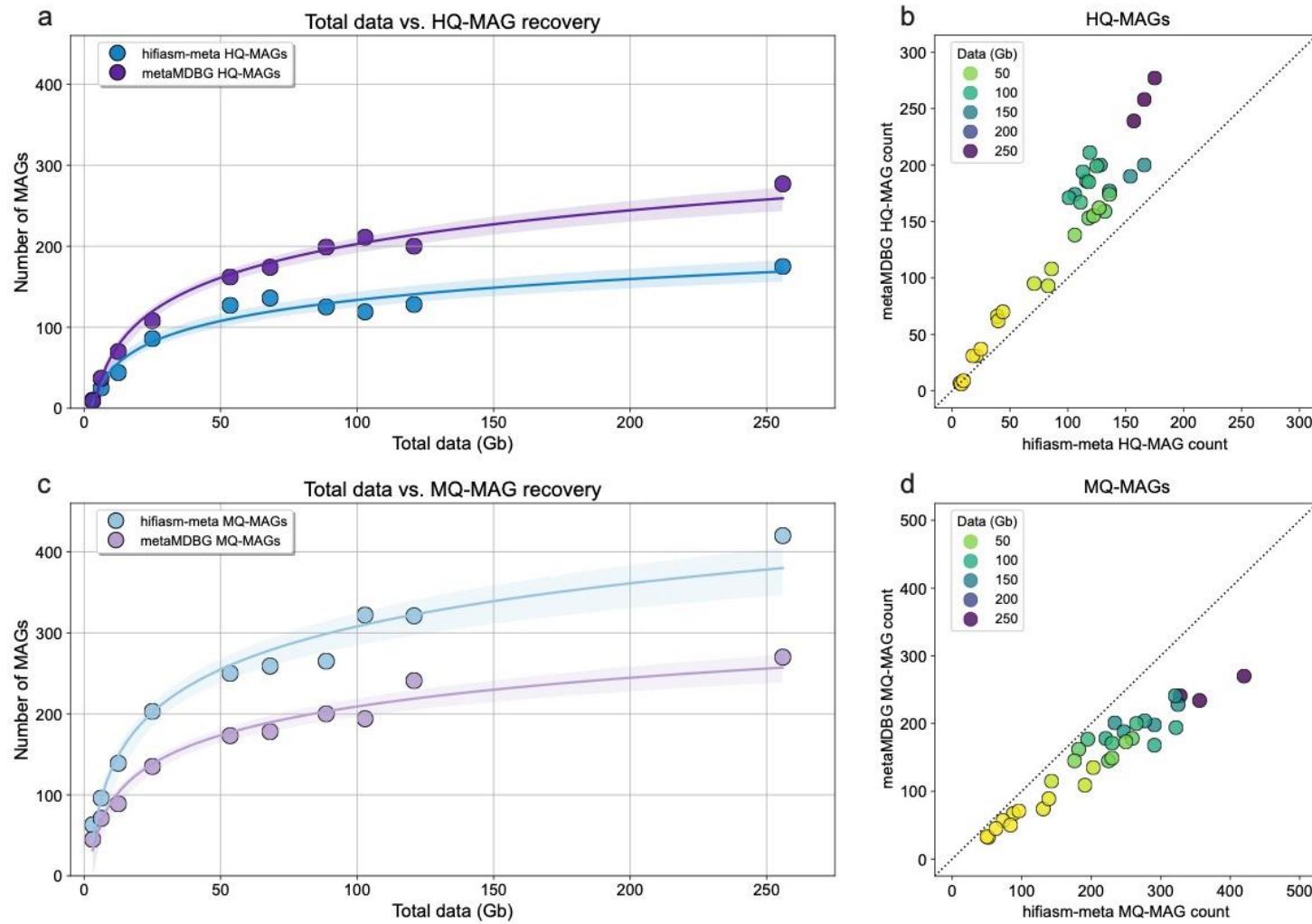


Figure 4. (a) Total number of species and species containing multiple strains, for each assembly and binning combination. Counts are based on dRep clustering results. (b) Aggregated taxonomic counts of MAGs assigned at the phylum rank.

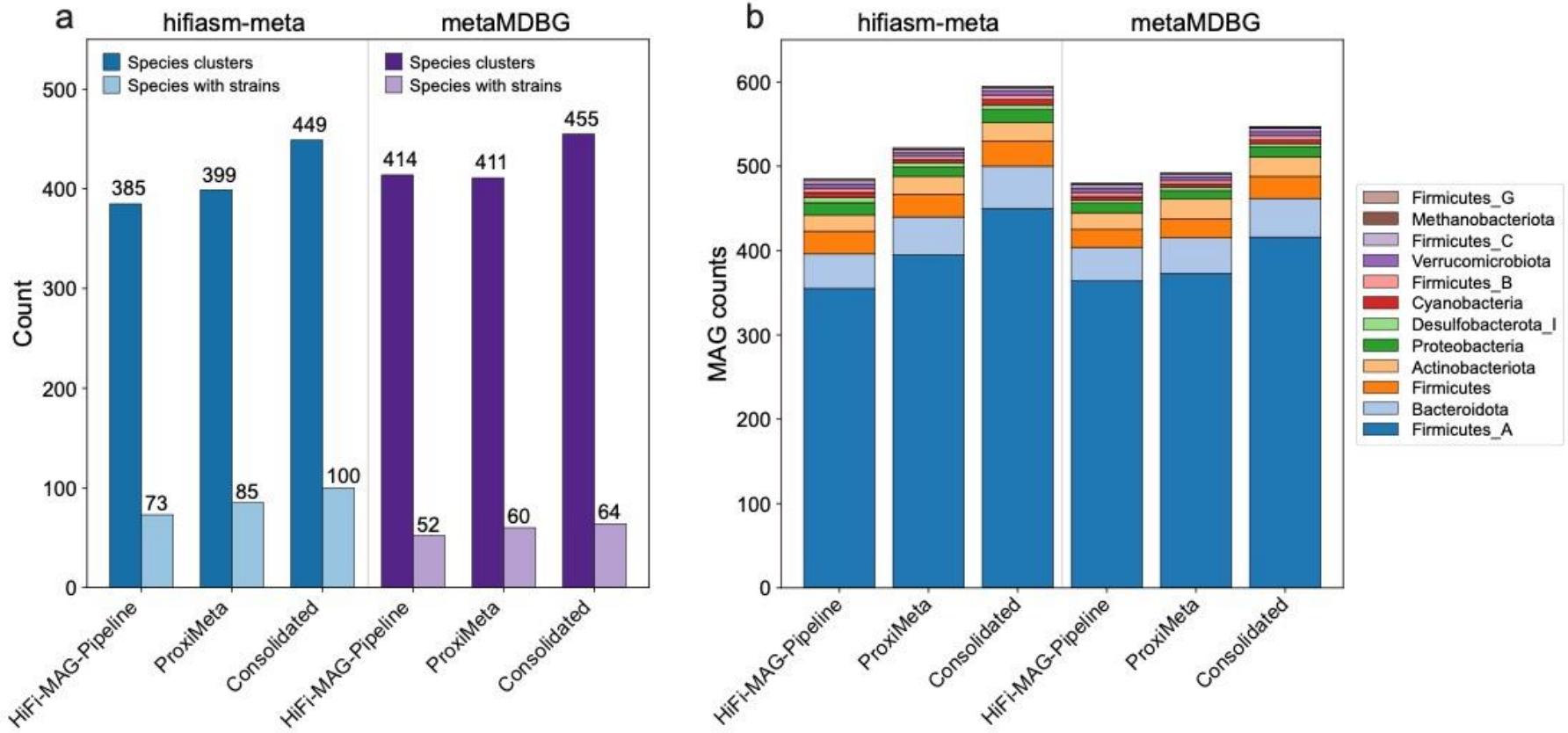


Figure 5. Barplots showing the 16S OTUs identified from the HiFi reads, based on 99% identity clustering. Relative abundance is represented by the height of the bars (log coverage). OTUs only occurring in the HiFi reads are shown in grey, whereas green indicates the OTU was also detected in a MAG. The MAG sets consist of the consolidated MAGs from both hifiasm-meta and metaMDBG, with results shown for **(a)** HQ-MAGs only or **(b)** all MQ- and HQ-MAGs.

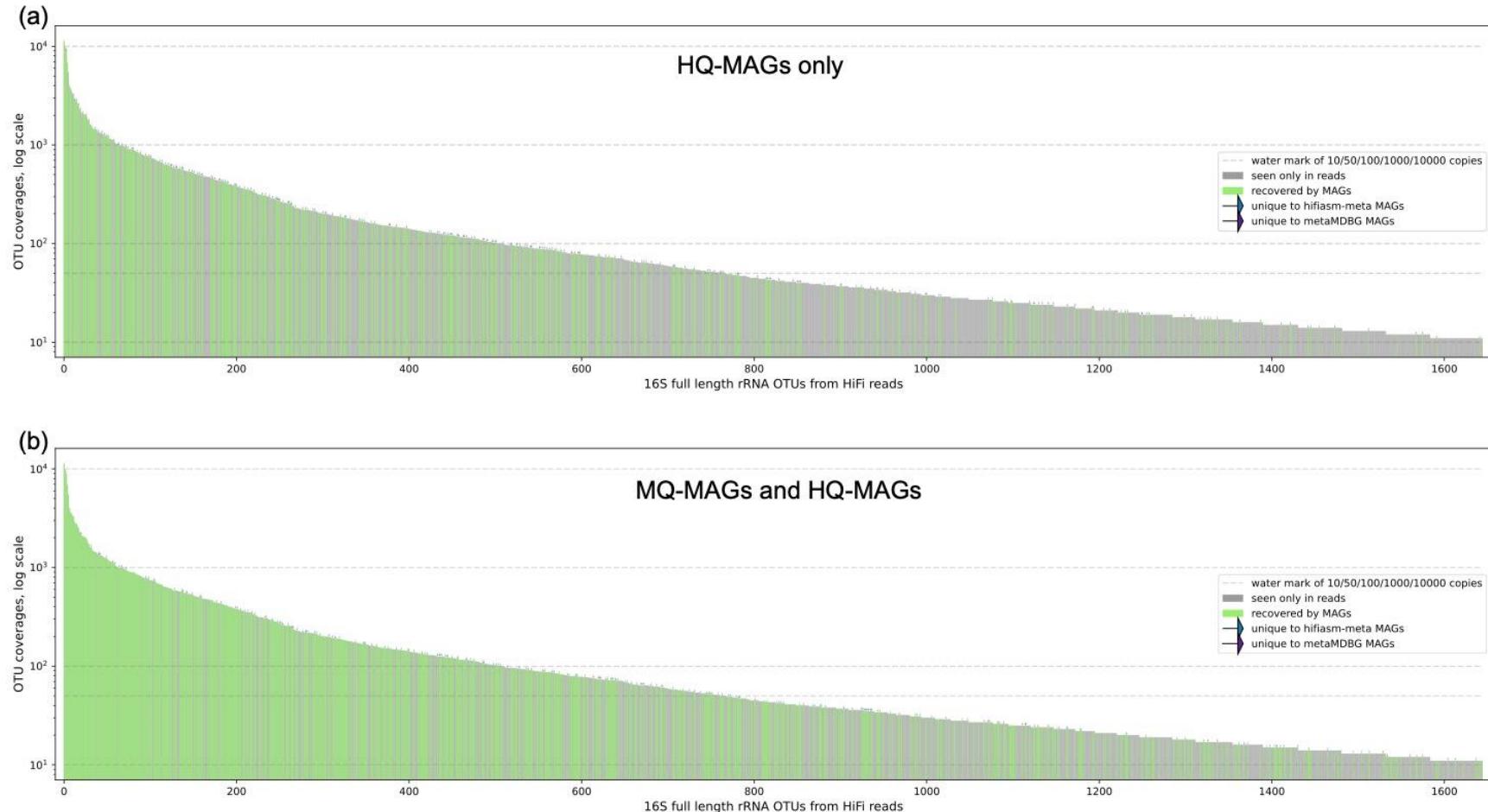


Figure 6. (a) Visual overview of workflow used to identify MAGs unequivocally shared across the assembly methods. Barplots summarizing (b) percent completeness, (c) average number of contigs per MAG, and (d) depth of coverage for MAGs in the shared (grey) and not shared categories (blue: hifiasm-meta, purple: metaMDBG). Outliers not shown.

