

1 **ZW sex chromosome structure in *Amborella trichopoda***

2
3 Sarah B. Carey¹, Laramie Aközbek^{1,2}, John T. Lovell^{1,3}, Jerry Jenkins¹, Adam L. Healey¹,
4 Shengqiang Shu³, Paul Grabowski^{1,3}, Alan Yocca¹, Ada Stewart¹, Teresa Jones¹, Kerrie Barry³,
5 Shanmugam Rajasekar⁴, Jayson Talag⁴, Charlie Scutt⁵, Porter P. Lowry II^{6,7}, Jérôme Munzinger⁸,
6 Eric B. Knox⁹, Douglas E. Soltis¹⁰, Pamela S. Soltis¹⁰, Jane Grimwood^{1,3}, Jeremy Schmutz^{1,3},
7 James Leebens-Mack¹¹, Alex Harkess¹

8
9 **AFFILIATIONS**

10 ¹HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA

11 ²Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA

12 ³Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory,
13 Berkeley, CA, USA

14 ⁴Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA

15 ⁵Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB
16 Lyon-1, CNRS, INRA, F-69342 Lyon, France

17 ⁶Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO, USA

18 ⁷Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d'Histoire
19 Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des
20 Hautes Études, Université des Antilles, C.P. 39, 57 rue Cuvier, 75005 Paris, France

21 ⁸AMAP, Univ. Montpellier, IRD, CIRAD, CNRS, INRAE, F-34398 Montpellier, France

22 ⁹Department of Biology, Indiana University, Bloomington, IN, USA

23 ¹⁰Florida Museum of Natural History, University of Florida, Gainesville, FL, USA

24 ¹¹Department of Plant Biology, University of Georgia, Athens, GA, USA

25

26 **AUTHORS FOR CORRESPONDENCE:** JLM: jleebensmack@uga.edu; AH:

27 aharkess@hudsonalpha.org

28

ABSTRACT

29 Sex chromosomes have evolved hundreds of times, and their recent origins in flowering plants
30 can shed light on the early consequences of suppressed recombination. *Amborella trichopoda*,
31 the sole species on a lineage that is sister to all other extant flowering plants, is dioecious with a
32 young ZW sex determination system. Here we present a haplotype-resolved genome assembly,
33 including highly-contiguous assemblies of the Z and W chromosomes. We identify a ~3-
34 Megabase sex-determination region (SDR) captured in two strata that includes a ~300-Kilobase
35 inversion that is enriched with repetitive sequence and contains a homolog of the *Arabidopsis*
36 METHYLTHIOADENOSINE NUCLEOSIDASE (*MTN1-2*) genes, which are known to be
37 involved in fertility. However, the remainder of the SDR does not show patterns typically found
38 in non-recombining SDRs, like repeat accumulation and gene loss. These findings are consistent
39 with the hypothesis that dioecy is recently derived in *Amborella* and the sex chromosome pair
40 has not significantly degenerated.

41

42 **KEY WORDS:** dioecy, ZW chromosomes, phased genome assembly, degeneration

43

MAIN

44 The evolution of separate sexes, or dioecy, is a rare trait in angiosperms, having been identified
45 in just 5-10% of species ¹. At the same time, dioecy has evolved hundreds of independent times
46 across the flowering plant tree of life ². This makes flowering plants ideal for examining the
47 evolution of sex chromosomes over both deep and shallow time scales. Comparative
48 investigations of sex chromosomes rely on high-quality genome assemblies ², and while the
49 availability of genomes for dioecious species has increased, there are only a few where the
50 structure of the sex chromosome pair has been well characterized. While divergence between X
51 and Y sex chromosomes has been described in a growing number of angiosperm species ^{2,3},
52 investigations of possibly less common ZW systems can shed new light on the dynamics and
53 consequences of sex chromosome evolution.

54 Since its discovery as the sister lineage to all other living angiosperms, *Amborella*
55 *trichopoda* (hereafter, *Amborella*) ⁴⁻⁷ has served as a pivotal taxon for investigating the origin
56 and early diversification of flowering plants ^{8,9}. *Amborella* is an understory shrub or small tree
57 endemic to New Caledonia and the sole extant species in the Amborellales. The flowers of
58 *Amborella* are actinomorphic and have a perianth of undifferentiated tepals, which are
59 characteristics shared with the reconstructed ancestral flower (Fig. 1) ⁹. Importantly, however,
60 *Amborella* is dioecious ¹⁰ with ZW sex chromosomes that evolved after the lineage diverged
61 from other flowering plants ¹¹. This implies that dioecy in *Amborella* is derived from a
62 hermaphroditic mating system and that the ancestral angiosperm had perfect flowers, in
63 agreement with ancestral state reconstructions ⁹. Significant progress has been made in several
64 angiosperm species to identify the genes involved in the evolution of dioecy ¹²⁻¹⁷, but the
65 molecular basis in *Amborella* remains unknown. Here we present a haplotype-resolved assembly
66 of the *Amborella* genome and compare highly contiguous Z and W sex chromosome assemblies
67 to address outstanding questions about their structure and gene content, including putative sex-
68 determining genes.

69

70

RESULTS

71 Improved genome assembly and annotation of *Amborella*

72 The *Amborella* reference genome has been a central anchor for comparative investigations of
73 gene family and gene structure evolution across angiosperms. Despite its demonstrated utility,
74 the 2013 *Amborella* genome used primarily short sequencing reads, which cannot fully resolve
75 repetitive regions ¹⁸. The repeat-derived gaps were filled in a more recent long-read assembly ¹¹ ,
76 but both biological haplotypes were collapsed into a single sequence representation. Despite the
77 higher contiguity, the 2022 genome offers limited information regarding sex determination
78 regions (SDRs) because in this assembly the Z and W chromosomes are a chimeric mix
79 represented as a single chromosome ¹¹.

80 To build a haplotype-resolved genome assembly for *Amborella* cv. Santa Cruz 75, we
81 used a combination of PacBio HiFi (mean coverage = 58.81x per haplotype; mean read length =
82 22,900 bp) and Phase Genomics Hi-C (coverage = 42.31x; Table S1) sequencing technologies.

83 The final haplotype 1 (HAP1) and 2 (HAP2) assemblies include 708.1 Mb in 59 contigs (contig
84 $N_{50} = 36.3$ Mb; $L_{50} = 7$) and 700.5 Mb in 45 contigs (contig $N_{50} = 44.5$ Mb; $L_{50} = 7$),
85 respectively; 99.69% and 99.87% of the assembled sequence is contained in the 13 largest
86 scaffolds for HAP1 and HAP2, respectively, corresponding to the expected chromosome number
87 ¹⁹ (Fig. S1). We found the k -mer completeness ²⁰ of HAP1 was 95.4% (QV 63) and HAP2 was
88 95.3% (QV 55), and the combined assemblies exhibit 98.8% completeness (QV 57). Consistent
89 with earlier assemblies, we annotated repeats and found they represent ~56% of the sequence for
90 both haplotypes (Fig. 1; Table S2) ¹⁸. To annotate gene models, we used a combination of
91 RNAseq and Iso-Seq (~757 million 2x150 read pairs, ~825K full-length transcripts). We
92 annotated 21,800 gene models in HAP1 and 21,721 in HAP2, with Embryophyte BUSCOs of
93 98.6% and 98.8%, respectively, an increase from 85.5% in the 2013 release ¹⁸. Overall, the new
94 assemblies represent a great improvement in the *Amborella* genome reference, resolving most of
95 the previous gaps (Fig. S2, Table S2).

96 *Amborella*'s ancient divergence ~140 MYA ²¹ from all other living angiosperms provides
97 an opportunity to examine conserved features that were likely present in the ancestral genome of
98 all flowering plants. For example, the repeat-dense pericentromeric region and gene-dense
99 chromosome arms of *Amborella* (Fig. 1) mirror those of most angiosperm genomes in stark
100 contrast to the more uniform gene and repeat density of most conifers, ferns, and mosses ^{22–24}.
101 The pericentromeric regions are enriched in Long Terminal Repeats (LTRs), specifically *Ty3* and
102 *Ty1* elements, as is often seen in other monocentric angiosperms ^{25,26}. Interestingly, unlike many
103 previously examined sex chromosomes, the *Amborella* Z/W do not stand out as notable
104 exceptions in terms of gene or repeat density (Fig. 1).

105

106 **Identification of the phased *Amborella* sex chromosomes**

107 Sex chromosomes have unique inheritance patterns relative to autosomes. In a ZW system, the
108 non-recombining SDR of the W chromosome is only inherited by females, while the remaining
109 pseudoautosomal region (PAR) recombines freely and is expected to show a similar lack of
110 divergence between the sexes as the autosomes. Identification of the boundary between the SDR
111 and PAR of sex chromosomes is nontrivial, and PAR/SDR boundaries have been shown to vary
112 among populations in some species ^{27,28}. Standard approaches for boundary identification
113 employ combinations of methodologies like sex-biased read coverage and population genomic
114 analyses ²⁹.

115 To delimit the PAR/SDR boundary we performed a k -mer analysis ^{12,30} to identify
116 sequences that are unique to the *Amborella* SDR (henceforth, W-mers), using four different
117 sampling strategies (Supplemental Methods). We found the W-mers densely clustered to Chr09
118 at ~44.32-47.26 Mb of HAP1 (Fig. 1-2, S3-6), supporting its identity as the W chromosome.
119 This location is consistent with previous analyses ¹¹, although we find assessing W-mers to a
120 haplotype-resolved assembly narrows the estimated size of the SDR from ~4 Mb to 2.94 Mb
121 (Fig. 2, S7). Importantly, the W-mers show consistent coverage on Chr09 in HAP1, with low and
122 sporadic coverage along any other chromosome or unincorporated scaffold in the assembly (Fig.

123 S3-6; Table S3). In contrast to the chimeric Z/W in the previous assembly, the resulting sex
124 chromosome assemblies are nearly complete with only four unresolved gaps in the SDR (zero
125 gaps in the homologous region on the Z; HZR) and are fully phased (Fig. S7).

126 A key characteristic of sex chromosomes is suppressed recombination of the SDR, and in
127 many species, structural variants have been identified as the causal mechanism. To examine this
128 in *Amborella*, we first used genome alignments to identify the HZR. The HZR is located on
129 Chr09 of HAP2 at 44.52-47.12 (~2.60 Mb; Fig. S8), suggesting the SDR is only 340 Kb larger
130 than the HZR, which is consistent with the observed cytological homomorphy of the ZW pair¹⁹.
131 In the SDR, we found evidence for a ~292-Kb inversion located ~20 Kb within the beginning of
132 the boundary and containing the majority of the W-specific sequence (Figs. 1B, S9). We could
133 not, however, find evidence for inversions or other large structural variants surrounding the
134 remaining portion of the SDR. Instead, the Z and W chromosomes are highly syntenic with one
135 another, similar to the autosomes (Figs. 1, S9). We investigated other potential mechanisms for
136 suppressed recombination, such as proximity to centromeres, where the existing low
137 recombination has been shown to facilitate SDR evolution in some species³¹. In *Amborella*, the
138 SDR is not located near the centromere; rather, it is approximately 1.82 Mb away from the *Ty3*-
139 retrotransposon-rich pericentromeric region (Fig. 2). In the absence of obvious structural variants
140 encompassing the SDR, it suggests that *Amborella* has a non-canonical mechanism to enforce
141 non-recombination between the Z and the W.

142

143 **The *Amborella* sex chromosomes are evolutionarily young**

144 *Amborella*'s sex chromosomes have previously been shown to have evolved after the lineage
145 split from other living flowering plants¹¹. With our phased Z/W pairs, we can better determine
146 Z- and W-linked genes, providing a more confident estimate of the age of the SDR, and examine
147 gene gain events. A classic signature of multiple recombination suppression events is a stepwise
148 pattern of synonymous substitutions (Ks), where genes captured into the SDR in the same event
149 are expected to have similar levels of Ks (i.e., strata) and the oldest captures have the highest Ks
150 values³². Understanding this timing of gene gain is essential to understanding the genetic
151 mechanism for sex determination, because the candidate sex-determining genes are likely to
152 have ceased recombining first (barring turnovers²⁹).

153 To examine gene gain in the *Amborella* SDR, we calculated Ks of one-to-one orthologs
154 on the W and Z chromosomes (i.e., gametologs). We compared the Ks values of 45 identifiable
155 gametologs to 1,397 one-to-one orthologs in the PARs. We found that Ks varies across the SDR-
156 HZR portion of the sex chromosomes (0.002-0.20; mean Ks=0.0298, SD=0.032) and is
157 significantly higher than Ks in the PARs (mean Ks=0.004, SD=0.019; Kruskal-Wallis
158 p<0.00001; Fig. S10), consistent with the expectation that the SDR is diverging from the HZR
159 on the Z chromosome. Interestingly, the gametolog pair with the highest Ks within the SDR is a
160 homolog of *Arabidopsis* METHYLTHIOADENOSINE NUCLEOSIDASE *MTN1*-2, a gene
161 involved in fertility, suggesting it resides in the oldest portion of the SDR; notably, the location
162 of the W-linked *MTN1*-2 homolog is within the SDR inversion.

163 We found evidence for two strata of gene capture into the SDR (Fig. 3). The Ks values
164 show two distinct steps, with the higher Ks values in the region corresponding to the inversion.
165 Defining the precise boundary of strata without obvious structural variants can be a challenge.
166 To delineate stratum one (S1) from two (S2), we assessed W-mer density and the average
167 nucleotide differences between sampled females and males (Nei's dXY). We found the drop in
168 W-mers and dXY in sliding windows coincides with a drop in dXY when run on only the gene
169 models (Fig. 3). Using this line as our boundary between strata, we found dXY of genes to be
170 significantly different (Mann Whitney U, $p < 3e-7$), higher in S1 (mean = 0.0167, n=62) than S2
171 (mean = 0.0081, n=35; entire Chr09 = 0.0038; n=1908). We also found Ks to be significantly
172 different between the strata (S1 mean Ks=0.037, SD=0.037; S2 mean Ks=0.021, SD=0.023;
173 Mann-Whitney U, $p=0.0014$) as was the extent of nonsynonymous changes in proteins (Ka;
174 Mann-Whitney U, $p=0.008$; Fig. 3), supporting inference of two strata. Using Ks, we also
175 estimated the age of the SDR in *Amborella*. Following the previously applied approach¹¹, we
176 found S1 to be ~4.97 MYA while S2 is nearly half as old at ~2.41 MYA. These analyses indicate
177 that the *Amborella* sex chromosomes are evolutionarily young, similar to several well-
178 characterized XY systems³, and further suggest that the sex chromosomes evolved well after the
179 lineage split from the rest of angiosperms.
180

181 **The *Amborella* W shows little degeneration**

182 The recent origin of the *Amborella* sex chromosomes provides an opportunity to examine the
183 early stages of their evolution. The lack of recombination in an SDR reduces the efficacy of
184 natural selection and drives the accumulation of slightly deleterious mutations^{33,34}. Two parallel
185 signatures of deleterious mutations seen across independent evolutions of sex chromosomes is
186 the accumulation of repeats and the loss of genes³⁵⁻³⁸. However, the tempo of this process of
187 degeneration is not well understood.

188 In the SDR of *Amborella*, curiously we overall do not find the expected patterns of repeat
189 expansions found in other SDRs. At 51.66% repeat elements, the SDR is lower than the genome
190 average (56%) and 0.05% lower than the HZR. The only observed enrichment in repeats is
191 within the inversion, where we find more Ty3 LTRs (4.32% increase relative to the HZR; Fig. 2).
192 Otherwise, only a slight distinction between the SDR and its HZR is evident: the SDR exhibits a
193 marginal increase ranging between 0.01-0.13% in the density of some superfamily elements (Fig.
194 2; Table S4). We examined the distribution of the divergence values for intact LTRs as a proxy
195 for their age³⁹ but found no patterns of distinctly younger or older LTRs within the W or Z (Fig.
196 S11). Moreover, to assess genome-wide repeat expansion across the major Transposable Element
197 (TE) superfamilies⁴⁰, we used repeat landscapes, which showed a comparable pattern within the
198 Z/W (Fig. 3, S12). These observations support previous characterization of TE insertions in the
199 *Amborella* genome as being quite old with little proliferation over the last 5 MYA¹⁸. It has been
200 proposed that a loss of active transposases or silencing may be playing a role in reducing TE
201 activity across the *Amborella* genome¹⁸ including the SDR.

202 Gene loss in an SDR has been hypothesized to contribute to the evolution of
203 heteromorphy seen in many sex chromosome pairs ^{41,42}. In *Amborella*, of the 97 annotated
204 models in the SDR and 84 in the HZR, 37 were W-specific and 24 Z-specific. To examine
205 whether these models were missing from the other haplotype for technical or biological reasons,
206 we also used dXY and presence-absence variation (PAV) between the sexes to evaluate gene
207 content. For most of the W-specific models, males showed presence, and dXY within females
208 was comparable to that of identifiable gametologs (mean dXY = 0.0136; Table S5). Only seven
209 models showed absence in coverage in males (dXY = 0 in females), suggesting conservatively
210 that these represent W-specific genes, four of which are in the SDR inversion. Similarly, we
211 identified only six Z-specific gene models. These analyses suggest that the Z and W have similar
212 numbers of haplotype-specific genes and that the SDR has experienced similar levels of gene
213 loss as the HZR.

214 Together, these results provide little evidence that degenerative processes, associated
215 with cessation of recombination, have occurred in the *Amborella* SDR. This region is younger
216 than that of *Rumex* (5-10 MYA ⁴³) and *Silene* (10 MYA ⁴⁴), which both show signatures of
217 degeneration ^{38,45}. However, in *Spinacia oleracea*, a younger SDR (2-3 MYA) does show signs
218 of degeneration ^{46,47}. The tempo of degeneration is apparently slower in *Amborella* and there has
219 not been sufficient time for gene loss or an accumulation of repeats as a consequence of the loss
220 of recombination.

221

222 Candidate sex-determining genes in *Amborella*

223 ZW sex chromosomes have been less well-characterized in plants than in animals; thus,
224 *Amborella* can provide unique insights regarding the genetic mechanisms associated with their
225 evolution. The two-gene model for sex chromosome evolution associated with a transition from
226 hermaphroditism to dioecy posits that distinct genes with antagonistic impacts on female and
227 male function experience strong selection for tight linkage (i.e., loss of recombination)⁴⁸. Under
228 this model, evolution of a ZW sex chromosome pair requires a dominant mutation causing male
229 sterility arising on a proto-W chromosome, followed by a recessive loss-of-female-function
230 mutation on the proto-Z (assuming a gynodioecious intermediate) ⁴⁸. Identification of these sex-
231 determining genes relies on an understanding of when sterility arises in the carpel and stamen
232 developmental pathways. In *Amborella*, ontogenetic differences between female and male
233 flowers are seen early in development. Whereas male flowers produce an average of 12 stamens
234 spiraling into the center of the flower, female flowers typically initiate a few staminodes just
235 inside the tepals, but carpel initiation replaces stamenoid initiation as organ development
236 proceeds towards the center of the flower ⁴⁹ (Fig. 1).

237 To identify candidate sex-determining genes, we examined differential expression
238 between female and male flower buds during stage 5/6 of flower development, when carpels,
239 stamens, and microsporangia develop ^{11,49,50}. We found 1,777 significantly differentially
240 expressed genes at an adjusted p-value greater than 0.05. Of these, 34 are in the SDR, several of
241 which are well-known flower development genes, including homologs of *MTN1-2*, *WUSCHEL*

242 (*WUS*), *LONELY GUY (LOG)*, *MONOPTEROS/Auxin Response Factor 5 (MP/ARF5)*, and *small*
243 *auxin up-regulated RNA (SAUR)* gene families (Fig. S13; Table S6-7). We found *ambMTN* and
244 *ambLOG* had higher transcript abundance in females, while *ambWUS*, *ambMP*, and *ambSAUR*
245 had greater expression in males. To further examine the sex-specific expression of SDR genes,
246 we used the EvoRepro database (<https://evorepro.sbs.ntu.edu.sg/>), which has transcriptome data
247 for 16 different tissue types for *Amborella*⁵¹. We contrasted female and male buds and flowers
248 and found three genes with male-biased transcript abundance: *ambWUS* and a *DUF827* gene in
249 buds and *ambLOG* in flowers, the latter differing in which sex has higher abundance from the
250 analyses using stage 5/6 flowers. Given the known functions of these genes in *Arabidopsis*
251 flower development, they are strong candidates for investigation of sex determination in
252 *Amborella*.

253 While functional analyses are not currently possible in *Amborella*, comparisons to other
254 species implicate the function of candidate genes that may be playing roles in *Amborella* sex
255 determination. *WUS* is a homeobox transcription factor that is required for the maintenance of
256 the floral meristem and has been shown to influence gynoecium and anther development^{52,53}. In
257 *Arabidopsis*, knockouts have sepals, petals, a single stamen, and no carpel⁵⁴. *WUS* has also been
258 implicated in sex determination or shown sex-specific expression in several species that have
259 unisexual flowers. In monoecious castor bean (*Ricinus*), *WUS* expression was only found in the
260 shoot apical meristem of male flowers⁵⁵, and in cucumbers (*Cucumis*), *WUS* expression is three
261 times greater in the carpel primordia of male flowers than females⁵⁶. In *Silene*, gynoecium
262 suppression is controlled by the *WUSCHEL-CLAVATA* feedback loop¹⁶. Interestingly, we do not
263 see male-biased expression of the *CLV3* ortholog in *Amborella*, but we do see female-biased
264 transcript abundance of the *Amborella CLE40* ortholog. In *Arabidopsis*, *WUS* promotes *CLV3*
265 expression in the central zone of the inflorescence meristem while suppressing *CLE40*
266 expression in the peripheral zone⁵⁷. It is possible that the smaller floral meristem seen in female
267 development relative to male floral meristems is due to reduced *ambWUS* expression driving
268 increased *ambCLE40* expression and encroachment of peripheral zone cells into the central zone
269 of the floral meristem. The role of *WUS* in maintaining meristematic zonation, coupled with its
270 position in S1 in the SDR, makes *ambWUS* a strong candidate for playing some role in
271 gynoecium suppression. Another strong candidate is *ambLOG*. *LOG* mutants were originally
272 characterized in rice as producing floral phenotypes with a single stamen and no carpels⁵⁸; in
273 date palms (*Phoenix*), a *LOG*-like gene was identified as a candidate Y-chromosome-linked
274 female suppression gene¹³. In *Amborella*, *ambLOG* showed greater expression in females in the
275 stage 5/6 data but was male-biased based when considering all 16 tissues in the EvoRepro
276 dataset. This switch in sex bias, and the fact *ambLOG* is located in the younger stratum of SDR
277 (S2), suggest that differential *ambWUS* (and *ambCLE40*) expression may have been a first step
278 in the divergence of male and female flower development. Like *ambLOG*, the *ambMP* and
279 *ambSAUR* genes were captured in S2, and their functions in *Arabidopsis* suggest other roles in
280 sex-specific development. *MP* has been shown to be involved with apical patterning of the
281 embryo axis^{59,60}. *SAURs* are a large gene family and in general play a role in cell elongation⁶¹,

282 including in pollen tube growth ⁶², stamen filament elongation ⁶³, and pistil growth ⁶⁴. Without
283 functional validation in *Amborella*, we cannot rule out the possibility of any of these genes,
284 though based on the data available, *ambWUS* may be the strongest candidate for spurring
285 divergence in male and female flower development.

286 The significant difference in gene expression of *ambMTN* is especially interesting given
287 that it is the gene model with the highest Ks value that is located in the SDR inversion. *MTN1-2*
288 genes encode 5'-methylthioadenosine (MTA) nucleosidase ⁶⁵, and double mutant *mtn1-1mtn2-1*
289 flowers in *Arabidopsis* have indehiscent anthers and malformed pollen grains ⁶⁶. Double mutants
290 also affected carpels and ovules, although the structures were aberrant but not necessarily non-
291 functional, and 10% looked like wild type ⁶⁶. The observed anther phenotype in *Arabidopsis* is
292 consistent with the staminode development in female flowers in *Amborella*, and together these
293 lines of evidence suggest that *ambMTN* may be the male-sterility gene. Based on our analyses,
294 we hypothesize that the W-linked *ambMTN* was the initial male-sterility mutation, creating the
295 proto-W, followed by a loss-of-function mutation on the W-*ambWUS* and a Z-copy shift to
296 dosage dependant gynoecium suppression. In sum, we hypothesize that *Amborella* follows the
297 two-gene model for sex chromosome evolution and dioecy. The genes we have identified here
298 make ideal candidates for further functional genomic investigation and validation.

299

300

DISCUSSION

301 Recent advances in sequencing technologies and assembly algorithms have enabled the
302 construction of telomere-to-telomere genome assemblies for humans, including the X and Y sex
303 chromosomes ^{67,68}. The sex chromosomes in humans and other animals are often highly
304 heteromorphic and can be the most challenging chromosomes to sequence and assemble ⁶⁹.
305 Moreover, given their antiquity, it is not possible to reconstruct events dating back to the origin
306 and early evolution of mammalian sex chromosomes. Plants, however, have repeatedly evolved
307 sex chromosomes derived from different ancestral autosomes, with different sex-determining
308 mutations ^{2,3} and with various mechanisms to impede recombination between the sex
309 chromosomes pair. Here we show that we can fully phase structurally similar sex chromosomes
310 within a heterogametic individual. Our analyses highlight the utility of phased sex chromosomes,
311 and diversity sequencing, to develop models of sex chromosome evolution when experimental
312 investigation of gene function is currently intractable. This research lays the foundation for
313 examining sex chromosome evolution in all angiosperms, starting with the sister species to all
314 living flowering plants, *Amborella*.

315 **Acknowledgements**

316 The work (proposal no. 10.46936/10.25585/60001405) conducted by the U.S. Department of
317 Energy (DOE) Joint Genome Institute (<https://ror.org/04xm1d337>), a DOE Office of Science
318 User Facility, is supported under contract no. DE-AC02-05CH11231. Additional support for
319 analysis was provided by the United States Department of Agriculture National Institute of Food
320 and Agriculture Postdoctoral Fellowship no. 2022-67012-38987 (S.B.C.), National Science
321 Foundation (NSF) IOS-PGRP CAREER no. 2239530 (A.H.), and National Science Foundation
322 GRFP (L.A.). We thank the Atlanta Botanical Garden for providing *Amborella* material used in
323 this study and Adam Bewick for the images of *Amborella* flowers.

324

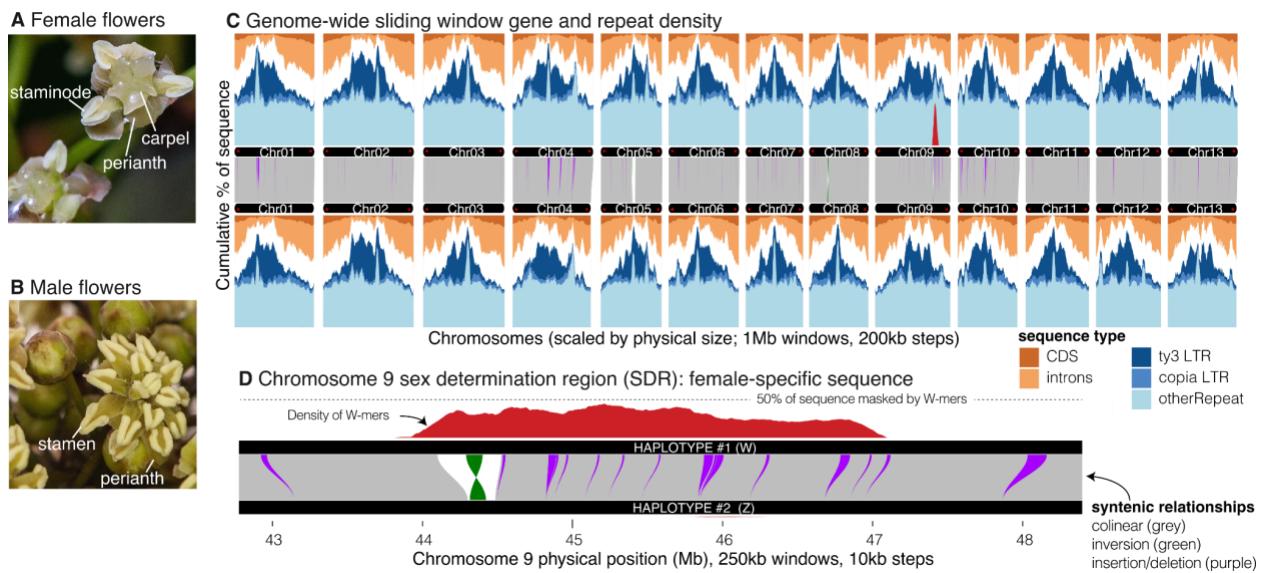
325 **Author contributions**

326 Concept and research design: S.B.C., J.S., J.L.-M., A.H.
327 Sample collection, data collection, sequencing: A.S., T.J., K.B., P.P.L., J.M., E.B.K., D.E.S.,
328 P.S.S., J.G., J.L.-M.

329 Genome assembly and annotation: S.B.C., J.J., S.S.

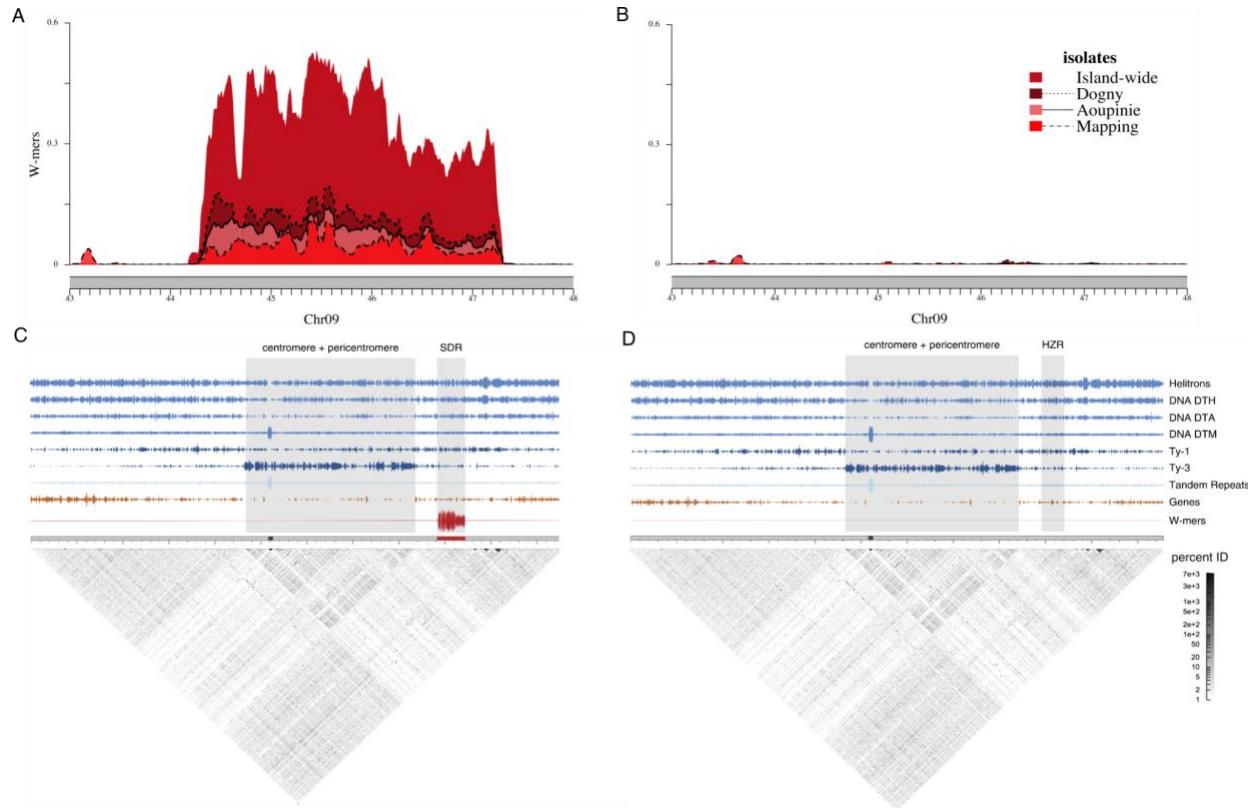
330 Computational and statistical analyses: S.B.C., L.A., J.T.L., A.L.H., P.G., A.Y.

331 Wrote the paper (with contributions from all authors): S.B.C., L.A., J.T.L., J.J., A.L.H., C.S.,
332 D.E.S., P.S.S., J.L.-M., A.H.


333

334 **Data availability**

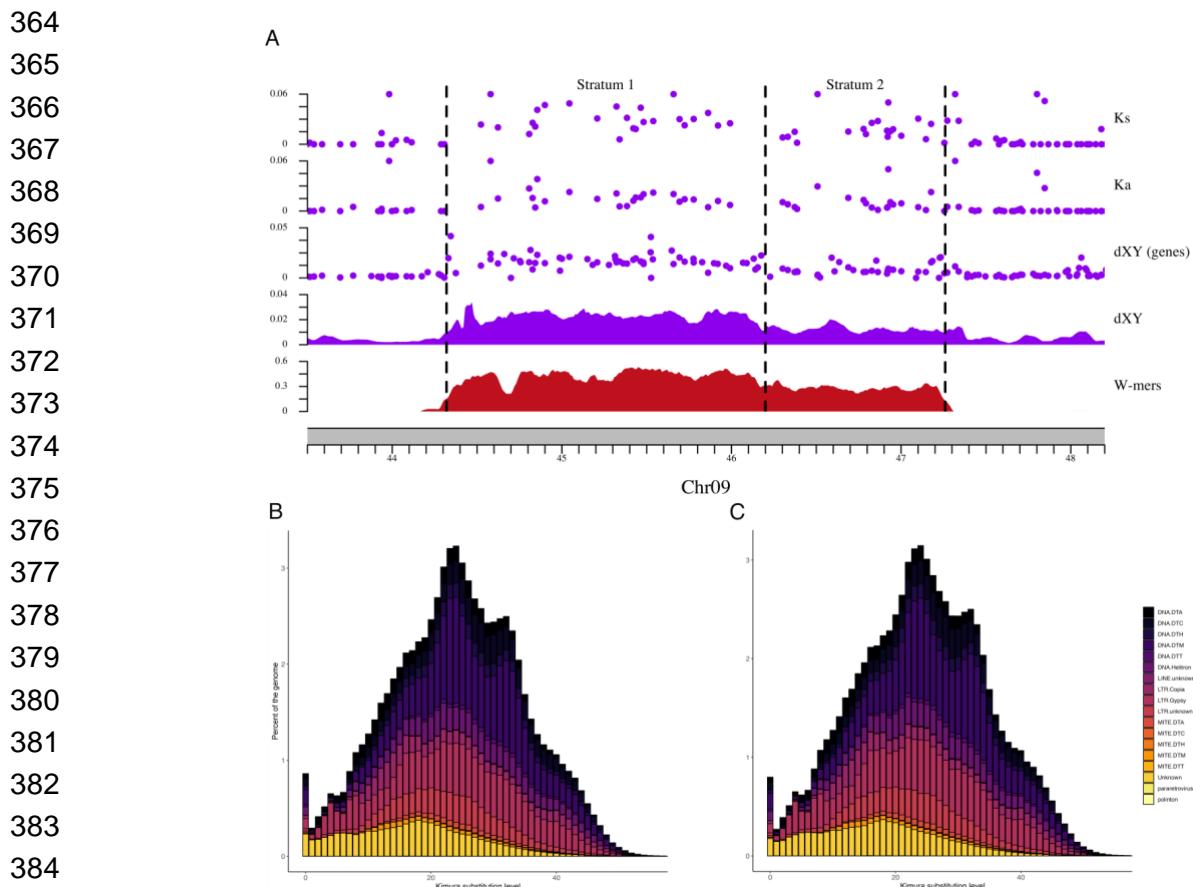
335 The genome assemblies and annotations (v.2.1) are available on Phytozome ([https://phytozome-
336 next.jgi.doe.gov/](https://phytozome-next.jgi.doe.gov/)) and have been deposited on NCBI under XXXX. Sequencing libraries are
337 publicly available on NCBI under BioProject PRJNA1100625. Individual accession numbers are
338 provided in Supplementary Table S8-9.


339

FIGURES

340

341 **Fig. 1. Amborella and its genome structure.** A-B) Female and male *Amborella* flowers. The
342 *Amborella* genome (C) and chromosome 9 (D) is typical of flowering plants: gene-rich
343 chromosome arms and repeat-dense, large pericentromeric region. Gene positions were extracted
344 from the protein-coding gene annotations, repeats from EDTA, and exact matches of 536,985
345 female-specific *k*-mers (W-mers). Syntenic mapping was calculated by AnchorWave and
346 processed by SyRI, only plotting inversions and insertions and deletions > 10 kb. Visualization
347 of synteny was accomplished with GENESPACE and sliding windows with gscTools. Panel B
348 highlights the sex determination region of chromosome 9 with female-specific *k*-mers (W-mers).
349 All chromosomes in haplotype 1 and all but four in haplotype 2 have both left and right
350 telomeres in the assembly (flagged with red *), defined as a region of >= 150 bps made up of >=
351 90% plant telomere *k*-mers (CCCGAAA, CCCTAAA, RC) separated by no more than 100 bp.
352



353

354

355

356 **Fig 2. Sex chromosome location in *Amborella*.** A) W-mer coverage in the sex-determining
357 region (SDR) and (B) homologous region of the Z (HZR) using four different sampling strategies
358 for isolates. SDR (C) and HZR (D) location and their proximity to the Chr09 centromere. Ty3
359 elements (dark blue) are often enriched in the pericentromeric regions of plants and correspond
360 to the low-complexity block of tandem repeat arrays (gray) that also contain the high-complexity
361 centromeric block, indicated by the satellite monomer density (light blue). Gene density (orange)
362 also predictably decreases near the pericentromeric region. The SDR (red) is notably outside of
363 the putative pericentromeric region and distant from the centromere.

Fig. 3. Molecular evolution of the *Amborella* sex chromosomes. A) Evidence for two strata. Points above 0.06 were excluded. B-C) The repeat landscapes of the *Amborella* haplotypes indicate similar patterns of expansion and minimal evidence of recent TE proliferation. Relative time is determined by the Kimura substitution level with lower values closer to 0 representing more recent events and higher values approaching 40 representing older events.

391

MATERIALS AND METHODS

392 DNA/RNA extraction, library prep, and sequencing.

393 We sequenced *Amborella trichopoda* (var. Santa Cruz 75) using a whole genome shotgun
394 sequencing strategy and standard sequencing protocols. High molecular weight DNA was
395 extracted from young tissue using the protocol of Doyle and Doyle⁷⁰ with minor modifications.
396 Flash-frozen young leaves were ground to a fine powder in a frozen mortar with liquid nitrogen
397 followed by very gentle extraction in a 2% CTAB buffer (that included proteinase K, PVP-40
398 and beta-mercaptoethanol) for 30 minutes to 1 hour at 50 °C. After centrifugation, the
399 supernatant was gently extracted twice with 24:1 Chloroform : Isoamyl alcohol. The upper phase
400 transferred to a new tube and added 1/10th volume of 3 M Sodium acetate, gently mixed, and
401 DNA precipitated with iso-propanol. DNA precipitate was collected by centrifugation, washed
402 with 70% ethanol, air dried for 5-10 minutes and dissolved thoroughly in an elution buffer at
403 room temperature followed by RNase treatment. DNA purity was measured with a Nanodrop,
404 DNA concentration measured with Qubit HS kit (Invitrogen, Waltham, MA) and DNA size was
405 validated by CHEF-DR II system (Bio-Rad Laboratories, Hercules, CA). The PacBio HiFi
406 libraries were sequenced at the HudsonAlpha Institute for Biotechnology in Huntsville,
407 Alabama. The PacBio HiFi library was constructed using DNA that was sheared using a
408 Diagenode Megaruptor 3 instrument. Libraries were constructed using SMRTbell Template Prep
409 Kit 2.0 and tightly sized on a SAGE ELF instrument (1-18kb) to a final library average insert
410 size of 24k. Sequencing was completed using the SEQUEL II platform. For the PacBio
411 sequencing, a total raw sequence yield of 83.3 Gb, with a total coverage of 58.81x per haplotype
412 (Table S10).

413 The Illumina Hi-C reads for Santa Cruz 75 were sequenced at Phase Genomics with a
414 single 2x80 Dovetail Hi-C library (169.27x; Table S1). The Illumina PCR-free library was
415 extracted using a Qiagen DNeasy kit (Qiagen, Hilden, Germany) and was sequenced at the
416 HudsonAlpha Institute for Biotechnology in Huntsville, Alabama. Illumina reads were
417 sequenced using the Illumina NovaSeq 6000 platform using a 400 bp insert TruSeq PCRfree
418 fragment library (49.62x). Prior to assembly, Illumina fragment reads were screened for phix
419 contamination. Reads composed of >95% simple sequence and those <50 bp after trimming for
420 adapter and quality (q<20) were removed. The final read set consists of 158,007,088 reads for a
421 total of 49.62x of high-quality Illumina bases.

422 To annotate gene models, we generated RNAseq and Iso-Seq data on several stages of
423 leaf, flower, and fruit for Santa Cruz 75 and two male isolates, ABG 2006-2975 and ABG 2008-
424 1967 (Table S8). Total RNA were extracted using a Qiagen RNeasy kit. The PacBio Iso-Seq
425 libraries were constructed using a PacBio Iso-Seq Express 2.0 kit. Libraries were either sized
426 (0.66x bead ratio) or unsized (1.2x bead ratio) to give final libraries with average transcript sizes
427 of 2kb or 3kb respectively. Libraries were sequenced using polymerase V2.1 on a PacBio Sequel
428 II Platform. The RNAseq libraries were constructed using an Illumina TruSeq Stranded mRNA
429 Library Prep Kit using standard protocols. Libraries were sequenced using a NovaSeq 6000
430 Instrument PE150 to 40 million reads per library.

431 To identify the sex chromosomes, we additionally whole-genome sequenced 52
432 *Amborella* isolates (Table S9). DNA extractions were performed using a standard CTAB
433 protocol. Illumina sequencing was performed on NovaSeq and HiSeq platforms at RAPiD
434 Genomics in Gainesville, Florida using a 2x150 paired end library. The voucher specimens are
435 deposited at the New Caledonia Herbarium in Nouméa (Herbarium code: NOU) and Indiana
436 University (IND). Existing data used to support this manuscript are found in Table S9.
437

438 **Genome assembly**

439 The version 2.0 HAP1 and HAP2 assemblies were generated by assembling the 3,605,703
440 PacBio CCS reads (58.81x per haplotype) using the HiFiAsm+HIC assembler⁷¹ and
441 subsequently polished using RACON⁷². This produced initial assemblies of both haplotypes.
442 The HAP1 assembly consisted of 1,522 scaffolds (1,522 contigs), with a contig N50 of 25.5 Mb,
443 and a total genome size of 800.6 Mb (Table S11). The HAP2 assembly consisted of 1,043
444 scaffolds (1,043 contigs), with a contig N50 of 43.0 Mb, and a total genome size of 773.5 Mb
445 (Table S11).

446 Hi-C Illumina reads from *Amborella trichopoda* (var. Santa Cruz 75), were separately
447 aligned to the HAP1 and HAP2 contig sets with Juicer⁷³, and chromosome scale scaffolding was
448 performed with 3D-DNA⁷⁴. No misjoins were identified in either the HAP1 or HAP2
449 assemblies. The contigs were then oriented, ordered, and joined together into 13 chromosomes
450 per haplotype using the HiC data. A total of 31 joins was applied to the HAP1 assembly, and 20
451 joins for the HAP2 assembly. Each chromosome join is padded with 10,000 Ns. Contigs
452 terminating in significant telomeric sequence were identified using the (TTTAGGG)_n repeat, and
453 care was taken to make sure that they were properly oriented in the production assembly. The
454 remaining scaffolds were screened against bacterial proteins, organelle sequences, GenBank nr
455 and removed if found to be a contaminant. After forming the chromosomes, it was observed that
456 some small (<20Kb) redundant sequences were present on adjacent contig ends within
457 chromosomes. To resolve this issue, adjacent contig ends were aligned to one another using
458 BLAT⁷⁵, and duplicate sequences were collapsed to close the gap between them. A total of 5
459 adjacent contig pairs were collapsed in the HAP1 assembly and 4 in the HAP2 assembly.

460 Finally, homozygous SNPs and INDELs were corrected in the HAP1 and HAP2 releases
461 using ~49x of Illumina reads (2x150, 400bp insert) by aligning the reads using BWA-MEM⁷⁶
462 and identifying homozygous SNPs and INDELs with the GATK's UnifiedGenotyper tool⁷⁷. A
463 total of 465 homozygous SNPs and 15,763 homozygous INDELs were corrected in the HAP1
464 release, while a total of 473 homozygous SNPs and 17,208 homozygous INDELs were corrected
465 in the HAP2 release. The final version 2.0 HAP1 release contained 707.9 Mb of sequence,
466 consisting of 59 contigs with a contig N50 of 36.3 Mb and a total of 99.69% of assembled bases
467 in chromosomes. The final version 2.0 HAP2 release contained 700.3 Mb of sequence,
468 consisting of 45 contigs with a contig N50 of 44.5 Mb and a total of 99.87% of assembled bases
469 in chromosomes.
470

471 **Genome annotation**

472 Transcript assemblies were made from ~757M pairs of 2x150 stranded paired-end Illumina
473 RNAseq reads using PERTRAN, which conducts genome-guided transcriptome short read
474 assembly via GSNAp⁷⁸ and builds splice alignment graphs after alignment validation,
475 realignment and correction. To obtain 825K putative full-length transcripts, about 20M PacBio
476 Iso-Seq CCSs were corrected and collapsed by a genome-guided correction pipeline, which
477 aligns CCS reads to the genome with GMAP⁷⁸ with intron correction for small indels in splice
478 junctions, if any, and clusters alignments when all introns are the same or 95% overlap for single
479 exon. Subsequently 563,694 transcript assemblies were constructed using PASA⁷⁹ from ESTs
480 and RNAseq transcript assemblies described above. Loci were determined by transcript assembly
481 alignments and/or EXONERATE alignments of proteins from *Arabidopsis thaliana*, *Glycine*
482 *max*, *Sorghum bicolor*, *Oryza sativa*, *Lactuca sativa*, *Helianthus annuus*, *Cynara cardunculus*,
483 *Selaginella moellendorffii*, *Physcomitrella patens*, *Nymphaea colorata*, *Solanum lycopersicum*,
484 and *Vitis vinifera*, and Swiss-Prot eukaryote proteomes to the repeat-soft-masked *Amborella*
485 *trichopoda* HAP1 genome using RepeatMasker⁸⁰ with up to 2K BP extension on both ends
486 unless extending into another locus on the same strand. Gene models were predicted by
487 homology-based predictors, FGENESH+⁸¹, FGENESH_EST (similar to FGENESH+, but using
488 EST to compute splice site and intron input instead of protein/translated ORF), EXONERATE⁸²,
489 PASA assembly ORFs (in-house homology-constrained ORF finder), and AUGUSTUS⁸³
490 trained by the high-confidence PASA assembly ORFs and with intron hints from short-read
491 alignments. The best scored predictions for each locus were selected using multiple positive
492 factors, including EST and protein support, and one negative factor: overlap with repeats. The
493 selected gene predictions were improved by PASA and the optimal set was selected using several
494 curated gene quality metrics⁸⁴. We assessed the gene annotations using compleasm v0.2.6⁸⁵
495 using the Embryophyta database.

496 We further annotated repeats using EDTA v2.0.0⁸⁶ using the sensitive mode that runs
497 RepeatModeler⁸⁷. To identify tandem repeats, we used Tandem Repeats Finder⁸⁸ (parameters 2
498 7 7 80 10 50 500 -f -d -m -h). We ran StainedGlass v0.5⁸⁹ to visualize the massive tandem repeat
499 arrays for chromosomes in both haplotypes. To build the repeat landscapes for assessing recent
500 expansion events, we followed the methods outlined in EDTA Github Issue #92: Draw Repeat
501 Landscapes, utilizing a library generated from an independent annotation on the combined
502 haplotypes with EDTA v2.0.1.

503

504 **Comparisons between assembly haplotypes**

505 To plot comparisons between the two haplotypes, including genes and repeats, we used
506 GENESPACE v.1.3.1⁹⁰. To generate synteny between the two haplotypes, we first performed
507 genome alignments. Haplotype 1 and haplotype 2 were aligned using AnchorWave⁹¹ using the
508 'genoAli' method and '-IV' parameter to allow for inversions. Alignment was performed using
509 only "chromosome" sequence for each haplotype. The alignment was converted to SAM format

510 using the 'maf-convert' tool provided in 'last' ⁹² and used for calling variants with SyRI ⁹³. The
511 output from SyRI was used to make chromosome-level synteny and SV plots using plotsr ⁹⁴.
512

513 **Identification of the sex chromosome non-recombining region**

514 We used whole-genome sequencing data to identify the sex-determining region (SDR) of the W.
515 All paired-end Illumina data had adapters removed and were quality filtered using
516 TRIMOMATIC v0.39 ⁹⁵ with leading and trailing values of 3, sliding window of 30, jump of
517 10, and a minimum remaining read length of 40. We next found all canonical 21-mers in each
518 isolate using Jellyfish v2.3.0 ⁹⁶ and used the bash *comm* command to find all *k*-mers shared in all
519 female isolates and not found in any male isolate (W-mers). We mapped the W-mers to both
520 haplotype assemblies using BWA-MEM v0.7.17 ⁷⁶, with parameters '-k 21' '-T 21' '-a' '-c 10'.
521 W-mer mapping was visualized by first calculating coverage in 100,000-bp sliding windows
522 (10,000 bp jump) using BEDTools v2.28.0 ⁹⁷ and plotted using karyoplotR v1.26.0 ⁹⁸.
523

524 **Structural variation**

525 To identify structural variants between the haplotypes, we mapped PacBio reads using minimap2
526 v2.24 ⁹⁹ in HiFi mode, added the MD tag using samtools v1.10 *calmd*, and called structural
527 variants using Sniffles v2.0.7 ¹⁰⁰. We also performed whole genome alignments using minimap2
528 v2.24 ⁹⁹ and visualized the dotplot using pafR v0.0.2 ¹⁰¹.
529

530 **Gene homology and protein evolution**

531 To identify one-to-one orthologs on the ZW to examine protein evolution, we ran OrthoFinder
532 v.2.5.2 ^{102,103} using only the *Amborella* haplotypes. We calculated synonymous (Ks) and
533 nonsynonymous (Ka) changes in codons using Ka/Ks Calculator v2.0 ¹⁰⁴.
534

535 **Nucleotide differences between the sexes**

536 BWA v0.7.17 ⁷⁶ was used to map reads and bcftools v1.9 *mpileup* and *call* ¹⁰⁵ functions were
537 used to call variants using the Island-wide sampling (nine male and six female plants; Table S9).
538 We filtered the vcf file using 'QUAL>20 & DP>5 & MQ>30', minor allele frequency of 0.05,
539 and dropped sites with > 25% missing data. To calculate Nei's nucleotide diversity between the
540 sexes (dXY) we used pixy v1.2.7.beta1 ¹⁰⁶. dXY was calculated using 100,00bp windows with a
541 10,000bp jump, and on the gene models only separately.
542

543 **Presence-absence variation**

544 Presence-absence variation (PAV) was identified following the methods of Hu et al. ¹⁰⁷ mapping
545 reads from the Island-wide sampling (eight male and six female plants; the Atlanta Botanical
546 Gardens isolate was removed due to low resequencing depth; Table S9) to our new reference
547 genome and annotation. Briefly, reads for the samples were aligned to each haplotype using
548 BWA v0.7.17 ⁷⁶. Sorted BAM files were converted to bedgraph format using bedtools v2.30.0 ⁹⁷.
549 Genes were called absent if the horizontal coverage of exons was <5% and the average depth

550 was <2x. A test for equality in the proportion of PAV rate across chromosomes was performed in
551 R using the `prop.test()` function.

552

553 **Gene expression analyses**

554 To examine gene expression and identify candidate sex-determining genes, we used existing
555 RNAseq data from 10 females and 10 males ¹¹. From the reads, we first filtered using
556 TRIMOMATIC (same parameters as above). Filtered reads were mapped to the haplotype 1
557 genome assembly using STAR v2.7.9a ¹⁰⁸ and expression estimated for the annotated gene
558 models using StringTie v2.1.7 (-e, -G) ¹⁰⁹. We performed differential gene expression analyses
559 using DESeq2 v1.32.0 ¹¹⁰, with the contrast being between the sexes.

560

561

LITERATURE CITED

- 562 1. Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. *Am. J. Bot.* **101**, 1588–1596 (2014).
- 563 2. Carey, S., Yu, Q. & Harkess, A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. *Genes* **12**, (2021).
- 564 3. Renner, S. S. & Müller, N. A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. *Nat Plants* **7**, 392–402 (2021).
- 565 4. Soltis, P. S., Soltis, D. E. & Chase, M. W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. *Nature* **402**, 402–404 (1999).
- 566 5. Moore, M. J., Bell, C. D., Soltis, P. S. & Soltis, D. E. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 19363–19368 (2007).
- 567 6. Burleigh, J. G. *et al.* Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. *Syst. Biol.* **60**, 117–125 (2011).
- 568 7. Soltis, D. E. *et al.* Angiosperm phylogeny: 17 genes, 640 taxa. *Am. J. Bot.* **98**, 704–730 (2011).
- 569 8. One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* **574**, 679–685 (2019).
- 570 9. Sauquet, H. *et al.* The ancestral flower of angiosperms and its early diversification. *Nat. Commun.* **8**, 16047 (2017).
- 571 10. Anger, N., Fogliani, B., Scutt, C. P. & Gâteblé, G. Dioecy in Amborella trichopoda: evidence for genetically based sex determination and its consequences for inferences of the

584 breeding system in early angiosperms. *Ann. Bot.* **119**, 591–597 (2017).

585 11. Käfer, J. *et al.* A derived ZW chromosome system in Amborella trichopoda, representing

586 the sister lineage to all other extant flowering plants. *New Phytol.* **233**, 1636–1642 (2022).

587 12. Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome–encoded small RNA acts as

588 a sex determinant in persimmons. *Science* (2014).

589 13. Torres, M. F. *et al.* Genus-wide sequencing supports a two-locus model for sex-

590 determination in Phoenix. *Nat. Commun.* **9**, 3969 (2018).

591 14. Akagi, T. *et al.* Two Y-chromosome-encoded genes determine sex in kiwifruit. *Nat Plants*

592 **5**, 801–809 (2019).

593 15. Harkess, A. *et al.* Sex Determination by Two Y-Linked Genes in Garden Asparagus. *Plant*

594 *Cell* **32**, 1790–1796 (2020).

595 16. Kazama, Y. *et al.* A CLAVATA3-like Gene Acts as a Gynoecium Suppression Function in

596 White Campion. *Mol. Biol. Evol.* **39**, (2022).

597 17. Müller, N. A. *et al.* A single gene underlies the dynamic evolution of poplar sex

598 determination. *Nat Plants* **6**, 630–637 (2020).

599 18. Amborella Genome Project. The Amborella genome and the evolution of flowering plants.

600 *Science* **342**, 1241089 (2013).

601 19. Oginuma, K., Jaffré, T. & Tobe, H. The Karyotype Analysis of Somatic Chromosomes in

602 Amborella trichopoda (Amborellaceae). *J. Plant Res.* **113**, 281–283 (2000).

603 20. Rie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality,

604 completeness, and phasing assessment for genome assemblies. *Genome Biol.* **21**, 245

605 (2020).

606 21. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A

607 metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.

608 *New Phytol.* **207**, 437–453 (2015).

609 22. Marchant, D. B. *et al.* Dynamic genome evolution in a model fern. *Nat Plants* **8**, 1038–1051

610 (2022).

611 23. Niu, S. *et al.* The Chinese pine genome and methylome unveil key features of conifer

612 evolution. *Cell* **185**, 204–217.e14 (2022).

613 24. Healey, A. L. *et al.* Newly identified sex chromosomes in the Sphagnum (peat moss)

614 genome alter carbon sequestration and ecosystem dynamics. *Nat Plants* **9**, 238–254 (2023).

615 25. Neumann, P. *et al.* Plant centromeric retrotransposons: a structural and cytogenetic

616 perspective. *Mob. DNA* **2**, 4 (2011).

617 26. Sigman, M. J. & Slotkin, R. K. The first rule of plant transposable element silencing:

618 location, location, location. *Plant Cell* (2016).

619 27. Lappin, F. M. *et al.* A polymorphic pseudoautosomal boundary in the *Carica papaya* sex

620 chromosomes. *Mol. Genet. Genomics* **290**, 1511–1522 (2015).

621 28. Cotter, D. J., Brotman, S. M. & Wilson Sayres, M. A. Genetic Diversity on the Human X

622 Chromosome Does Not Support a Strict Pseudoautosomal Boundary. *Genetics* **203**, 485–

623 492 (2016).

624 29. Palmer, D. H., Rogers, T. F., Dean, R. & Wright, A. E. How to identify sex chromosomes

625 and their turnover. *Mol. Ecol.* **28**, 4709–4724 (2019).

626 30. Tennessen, J. A. *et al.* Repeated translocation of a gene cassette drives sex-chromosome

627 turnover in strawberries. *PLoS Biol.* **16**, e2006062 (2018).

628 31. Yu, Q. *et al.* A physical map of the papaya genome with integrated genetic map and

629 genome sequence. *BMC Genomics* **10**, 371 (2009).

630 32. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. *Science*
631 **286**, 964–967 (1999).

632 33. Rice, W. R. THE ACCUMULATION OF SEXUALLY ANTAGONISTIC GENES AS A
633 SELECTIVE AGENT PROMOTING THE EVOLUTION OF REDUCED
634 RECOMBINATION BETWEEN PRIMITIVE SEX CHROMOSOMES. *Evolution* **41**, 911–
635 914 (1987).

636 34. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic
637 sex chromosomes. *Heredity* **95**, 118–128 (2005).

638 35. Papadopoulos, A. S. T., Chester, M., Ridout, K. & Filatov, D. A. Rapid Y degeneration and
639 dosage compensation in plant sex chromosomes. *Proc. Natl. Acad. Sci. U. S. A.* **112**,
640 13021–13026 (2015).

641 36. Wu, M. & Moore, R. C. The Evolutionary Tempo of Sex Chromosome Degradation in
642 *Carica papaya*. *J. Mol. Evol.* **80**, 265–277 (2015).

643 37. Hobza, R. *et al.* Impact of Repetitive Elements on the Y Chromosome Formation in Plants.
644 *Genes* **8**, (2017).

645 38. Sacchi, B. *et al.* Phased assembly of neo-sex chromosomes reveals extensive Y
646 degeneration and rapid genome evolution in *Rumex hastatulus*. *bioRxiv* 2023.09.26.559509
647 (2023) doi:10.1101/2023.09.26.559509.

648 39. Jedlicka, P., Lexa, M. & Kejnovsky, E. What Can Long Terminal Repeats Tell Us About
649 the Age of LTR Retrotransposons, Gene Conversion and Ectopic Recombination? *Front.*
650 *Plant Sci.* **11**, 644 (2020).

651 40. Cornet, C. *et al.* Holocentric repeat landscapes: From micro-evolutionary patterns to macro-
652 evolutionary associations with karyotype evolution. *Mol. Ecol.* (2023)

653 doi:10.1111/mec.17100.

654 41. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome
655 degeneration. *Nat. Rev. Genet.* **14**, 113–124 (2013).

656 42. Charlesworth, D. The timing of genetic degeneration of sex chromosomes. *Philos. Trans. R.
657 Soc. Lond. B Biol. Sci.* **376**, 20200093 (2021).

658 43. Hibbins, M. S. *et al.* Phylogenomics resolves key relationships in Rumex and uncovers a
659 dynamic history of independently evolving sex chromosomes. *bioRxiv* 2023.12.13.571571
660 (2023) doi:10.1101/2023.12.13.571571.

661 44. Krasovec, M., Chester, M., Ridout, K. & Filatov, D. A. The Mutation Rate and the Age of
662 the Sex Chromosomes in *Silene latifolia*. *Curr. Biol.* **28**, 1832–1838.e4 (2018).

663 45. Akagi, T. *et al.* Rapid and dynamic evolution of a giant Y chromosome in *Silene latifolia*.
664 *bioRxiv* 2023.09.21.558759 (2023) doi:10.1101/2023.09.21.558759.

665 46. Ma, X. *et al.* The spinach YY genome reveals sex chromosome evolution, domestication,
666 and introgression history of the species. *Genome Biol.* **23**, 75 (2022).

667 47. She, H. *et al.* Evolution of the spinach sex-linked region within a rarely recombining
668 pericentromeric region. *Plant Physiol.* **193**, 1263–1280 (2023).

669 48. Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy.
670 *Am. Nat.* (1978).

671 49. Buzgo, M., Soltis, P. S. & Soltis, D. E. Floral Developmental Morphology of Amborella
672 trichopoda (Amborellaceae). *Int. J. Plant Sci.* **165**, 925–947 (2004).

673 50. Flores-Tornero, M. *et al.* Transcriptomic and Proteomic Insights into Amborella trichopoda
674 Male Gametophyte Functions. *Plant Physiol.* **184**, 1640–1657 (2020).

675 51. Julca, I. *et al.* Comparative transcriptomic analysis reveals conserved programmes

676 underpinning organogenesis and reproduction in land plants. *Nat Plants* **7**, 1143–1159
677 (2021).

678 52. Deyhle, F., Sarkar, A. K., Tucker, E. J. & Laux, T. WUSCHEL regulates cell differentiation
679 during anther development. *Dev. Biol.* **302**, 154–159 (2007).

680 53. Zúñiga-Mayo, V. M., Gómez-Felipe, A., Herrera-Ubaldo, H. & de Folter, S. Gynoecium
681 development: networks in *Arabidopsis* and beyond. *J. Exp. Bot.* **70**, 1447–1460 (2019).

682 54. Schoof, H. *et al.* The stem cell population of *Arabidopsis* shoot meristems is maintained by
683 a regulatory loop between the CLAVATA and WUSCHEL genes. *Cell* **100**, 635–644
684 (2000).

685 55. Parvathy, S. T., Prabakaran, A. J. & Jayakrishna, T. Author Correction: Probing the floral
686 developmental stages, bisexuality and sex reversions in castor (*Ricinus communis* L.). *Sci.
687 Rep.* **11**, 10504 (2021).

688 56. Zhang, S. *et al.* The control of carpel determinacy pathway leads to sex determination in
689 cucurbits. *Science* **378**, 543–549 (2022).

690 57. Schlegel, J. *et al.* Control of *Arabidopsis* shoot stem cell homeostasis by two antagonistic
691 CLE peptide signalling pathways. (2021) doi:10.7554/eLife.70934.

692 58. Kurakawa, T. *et al.* Direct control of shoot meristem activity by a cytokinin-activating
693 enzyme. *Nature* **445**, 652–655 (2007).

694 59. Hardtke, C. S. & Berleth, T. The *Arabidopsis* gene MONOPTEROS encodes a transcription
695 factor mediating embryo axis formation and vascular development. *EMBO J.* **17**, 1405–
696 1411 (1998).

697 60. Aida, M., Vernoux, T., Furutani, M., Traas, J. & Tasaka, M. Roles of PIN-FORMED1 and
698 MONOPTEROS in pattern formation of the apical region of the *Arabidopsis* embryo.

699 *Development* **129**, 3965–3974 (2002).

700 61. Stortenbeker, N. & Bemer, M. The SAUR gene family: the plant's toolbox for adaptation of
701 growth and development. *J. Exp. Bot.* **70**, 17–27 (2019).

702 62. He, S.-L., Hsieh, H.-L. & Jauh, G.-Y. SMALL AUXIN UP RNA62/75 Are Required for the
703 Translation of Transcripts Essential for Pollen Tube Growth. *Plant Physiol.* **178**, 626–640
704 (2018).

705 63. Chae, K. *et al.* Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen
706 filament elongation. *Plant J.* **71**, 684–697 (2012).

707 64. van Mourik, H., van Dijk, A. D. J., Stortenbeker, N., Angenent, G. C. & Bemer, M.
708 Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. *BMC
709 Plant Biol.* **17**, 245 (2017).

710 65. Bürstenbinder, K. *et al.* Inhibition of 5'-methylthioadenosine metabolism in the Yang cycle
711 alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. *Plant
712 J.* **62**, 977–988 (2010).

713 66. Waduwar-Jayabahu, I. *et al.* Recycling of methylthioadenosine is essential for normal
714 vascular development and reproduction in Arabidopsis. *Plant Physiol.* **158**, 1728–1744
715 (2012).

716 67. Nurk, S. *et al.* The complete sequence of a human genome. *Science* **376**, 44–53 (2022).

717 68. Rhie, A. *et al.* The complete sequence of a human Y chromosome. *bioRxiv*
718 2022.12.01.518724 (2022) doi:10.1101/2022.12.01.518724.

719 69. Rhie, A. *et al.* Towards complete and error-free genome assemblies of all vertebrate
720 species. *Nature* **592**, 737–746 (2021).

721 70. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh

722 leaf tissue. *Phytochemical bulletin* (1987).

723 71. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo
724 assembly using phased assembly graphs with hifiasm. *Nat. Methods* **18**, 170–175 (2021).

725 72. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly
726 from long uncorrected reads. *Genome Res.* **27**, 737–746 (2017).

727 73. Durand, N. C. *et al.* Juicer Provides a One-Click System for Analyzing Loop-Resolution
728 Hi-C Experiments. *Cell Syst* **3**, 95–98 (2016).

729 74. Dudchenko, O. *et al.* De novo assembly of the *Aedes aegypti* genome using Hi-C yields
730 chromosome-length scaffolds. *Science* **356**, 92–95 (2017).

731 75. Kent, W. J. BLAT—The BLAST-Like Alignment Tool. *Genome Res.* **12**, 656–664 (2002).

732 76. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
733 *arXiv [q-bio.GN]* (2013).

734 77. McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing
735 next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

736 78. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in
737 short reads. *Bioinformatics* **26**, 873–881 (2010).

738 79. Haas, B. J. *et al.* Improving the *Arabidopsis* genome annotation using maximal transcript
739 alignment assemblies. *Nucleic Acids Res.* **31**, 5654–5666 (2003).

740 80. Smit, A. F. A., Hubley, R. & Green, P. RepeatModeler Open-1.0. 2008--2015. *Seattle, USA:*
741 *Institute for Systems Biology*. Available from: <http://www.repeatmasker.org>, Last Accessed
742 May 1, 2018 (2015).

743 81. Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in *Drosophila* genomic DNA.
744 *Genome Res.* **10**, 516–522 (2000).

745 82. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence
746 comparison. *BMC Bioinformatics* **6**, 31 (2005).

747 83. Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes
748 with a generalized hidden Markov model that uses hints from external sources. *BMC*
749 *Bioinformatics* **7**, 62 (2006).

750 84. Lovell, J. T. *et al.* The genomic landscape of molecular responses to natural drought stress
751 in *Panicum hallii*. *Nat. Commun.* **9**, 5213 (2018).

752 85. Huang, N. & Li, H. compleasm: a faster and more accurate reimplementation of BUSCO.
753 *Bioinformatics* **39**, (2023).

754 86. Ou, S. *et al.* Benchmarking transposable element annotation methods for creation of a
755 streamlined, comprehensive pipeline. *Genome Biol.* **20**, 275 (2019).

756 87. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable
757 element families. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 9451–9457 (2020).

758 88. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids*
759 *Res.* **27**, 573–580 (1999).

760 89. Vollger, M. R., Kerpeljiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive
761 visualization of massive tandem repeat structures with identity heatmaps. *Bioinformatics* **38**,
762 2049–2051 (2022).

763 90. Lovell, J. T. *et al.* GENESPACE tracks regions of interest and gene copy number variation
764 across multiple genomes. *Elife* **11**, (2022).

765 91. Song, B. *et al.* AnchorWave: Sensitive alignment of genomes with high sequence diversity,
766 extensive structural polymorphism, and whole-genome duplication. *Proc. Natl. Acad. Sci.*
767 *U. S. A.* **119**, (2022).

768 92. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic
769 sequence comparison. *Genome Res.* **21**, 487–493 (2011).

770 93. Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements
771 and local sequence differences from whole-genome assemblies. *Genome Biol.* **20**, 277
772 (2019).

773 94. Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements
774 between multiple genomes. *Bioinformatics* **38**, 2922–2926 (2022).

775 95. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
776 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

777 96. Marcais, G. & Kingsford, C. Jellyfish: A fast k-mer counter. *Tutorialis e Manuais* 1–8
778 (2012).

779 97. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
780 features. *Bioinformatics* **26**, 841–842 (2010).

781 98. Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes
782 displaying arbitrary data. *Bioinformatics* **33**, 3088–3090 (2017).

783 99. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–
784 3100 (2018).

785 100. Sedlazeck, F. J. *et al.* Accurate detection of complex structural variations using single-
786 molecule sequencing. *Nat. Methods* **15**, 461–468 (2018).

787 101. Winter, D., Lee, K. & Cox, M. pafr: read, manipulate and visualize ‘Pairwise mAPPING
788 Format’data. *The Comprehensive R Archive Network* (2020).

789 102. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome
790 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* **16**, 157

791 (2015).

792 103. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
793 genomics. *Genome Biol.* **20**, 238 (2019).

794 104. Zhang, Z. *et al.* KaKs_Calculator: calculating Ka and Ks through model selection and
795 model averaging. *Genomics Proteomics Bioinformatics* **4**, 259–263 (2006).

796 105. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping
797 and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**,
798 2987–2993 (2011).

799 106. Korunes, K. L. & Samuk, K. pixy: Unbiased estimation of nucleotide diversity and
800 divergence in the presence of missing data. *Mol. Ecol. Resour.* **21**, 1359–1368 (2021).

801 107. Hu, H. *et al.* Amborella gene presence/absence variation is associated with abiotic stress
802 responses that may contribute to environmental adaptation. *New Phytol.* **233**, 1548–1555
803 (2022).

804 108. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
805 (2013).

806 109. Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from RNA-
807 seq reads. *Nat. Biotechnol.* **33**, 290–295 (2015).

808 110. Love, M., Anders, S. & Huber, W. Differential analysis of count data--the DESeq2 package.
809 *Genome Biol.* **15**, 10–1186 (2014).

810