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Abstract

The reactivation of neurodevelopmental programs in cancer highlights parallel biological
processes that occur in both normal development and brain tumors. Achieving a deeper
understanding of how dysregulated developmental factors play a role in the progression of brain
tumors is therefore crucial for identifying potential targets for therapeutic interventions. Single-
cell RNA sequencing (scRNA-Seq) provides an opportunity to understand how developmental
programs are dysregulated and reinitiated in brain tumors at single-cell resolution. Here, we
introduce COORS (Cell Of ORIigin like CellS), as a computational tool trained on developmental
human brain single-cell datasets that enables annotation of “developmental-like” cell states in
brain tumor cells. Applying COORS to various brain cancer datasets, including medulloblastoma
(MB), glioma, and diffuse midline glioma (DMG), we identified developmental-like cells that
represent putative cells of origin in these tumors. Our work adds to our cumulative
understanding of brain tumor heterogeneity and helps pave the way for tailored treatment

strategies.

Introduction

One of the greatest challenges to finding a cure for brain cancers is the robust inter- and intra-
tumoral heterogeneity that characterizes these tumors’™. This heterogeneity contributes to
disease progression and is a key reason therapeutic approaches fail to prevent disease
recurrence. Although the genetic evolution of cancer cells is a critical determinant, tumor
heterogeneity is also influenced by non-genetic factors including varying developmental cellular
programs, which include stem, progenitor, and senescent cell states®®. Prior studies have
demonstrated that aberrant expression of neurodevelopmental programs is pervasive in brain
tumors and is largely driven by the reactivation of developmental transcriptional states that are

acquired by genomic and epigenomic changes. Given the complexity of cell types and an array
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of developmental states, isolating a single cell type of origin poses a difficult task, however, a
more thorough examination of brain tumor transcriptomics alongside transcriptional signatures
of neurodevelopmental cell types may shed light on the origins of brain cancer. To gain a deeper
understanding of which developmental cell types brain tumors most closely resemble, we
hypothesized that tumor cell lineages can recapitulate cell lineages encountered in the
developing brain. While tumors exhibit a multitude of dysregulated pathways, existing evidence,

particularly in pediatric tumors, supports this hypothesis®*°.

We, therefore, focused on
employing developmental expression modeling trained on human brain atlases that span
various developmental time points. This modeling approach allows us to characterize tumor
cells by overlaying their gene expression patterns onto those of early neurodevelopmental
stages. By identifying and studying these myriad cellular states from development, our goal is to

uncover insights into the origins and behavior of brain tumors, ultimately paving the way for

more effective treatment strategies and improved patient outcomes.

Single-cell RNA sequencing (scRNA-Seq) provides an opportunity to dissect the complex
cellular states during development and in health and disease™. However, it is computationally
challenging to decipher the spectrum of heterogeneous developmental cell states in tumor cells
using scRNA-Seq. Accurate identification of developmental-like cell states necessitates a
comprehensive understanding of the interactions among all genes, which, in turn, requires a
substantial amount of gene expression data. In this study, we developed COORS, a
computational tool to annotate each developmental cell state in tumor cells at single cell
resolution. COORS uses multilayer perceptron model for cell of origin classification and cell age
regression using developing brain scRNA-Seq datasets from previously published scRNA-seq
datasets, comprising approximately 1M million cells from developing human and mouse

brains®'#*° We used COORS to predict developmental-like analogs in pediatric and adult
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77  tumors using public and in-house MB', DMG™ and glioma scRNA-Seq data, which revealed
78  unique developmental cell types as putative cells of origin in each brain cancer subtype.
79
80 Results
81 The overall workflow of COORS algorithm
82  The basic motivation of COORS algorithm is to utilize existing primitive cell types identified in
83  developing normal brain tissues to annotate the potential origins of cells in tumor samples. In
84  this regard, COORS aims to capitalize on the large amount of healthy developmental
85 transcriptional profiles to identify similar programs in tumor tissues. This is in essence different
86 from existing cell type annotation methods with two aspects: 1) Existing methods for cell type
87 annotations in healthy tissues rely on exact matching of the cell types. 2) Existing methods for
88 cell type annotations in tumor samples focus mainly on detecting tumor cells and do not focus
89  on annotating the origin states for cells.
90
91 For training COORS models, we train a multilayer perceptron model for cell of origin
92 classification and cell age regression using developing brain scRNA-Seq datasets®**® (Table
93  S1). Assuming we have reference data with two origin-like cell types A and B, we train a neural
94  network-based cell of origin classifier using this reference data, saving the model in our
95 repository (Figure 1A-B). Concurrently, we train two neural network-based cell age regressors,
96 one for cell origin A and another for cell origin B, also saving these trained models in the
97 repository. In the assignment step, each tumor needs to be matched to correct set of origin-like
98 cell type assignment models. This is justified since each cancer originates at different regions of
99  brain (neocortex vs cerebellum vs pons) which can be used to select the COORS models. After
100 selecting the relevant origin-like cell models, we map tumor cells to developing healthy brain
101 cells by using the pre-trained models. We predict the cell of origin for the testing dataset using

102  the pre-trained cell of origin classifier. For each developmental-like cell type, we further predict
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103  cell age using the corresponding pre-trained cell age regressors. Finally, we conduct SHapley
104  Additive exPlanations (SHAP) analysis®® to extract essential features from our machine-learning
105 neural network models, identifying tumor-specific developmental-like gene markers for each cell
106 type and age within our training dataset (Figure 1A-B).

107

108 Validation of COORS algorithm on scRNA-Seq Medulloblastoma data

109

110  Medulloblastoma (MB) is a pediatric brain tumor that is closely associated with early hindbrain
111  development and can be classified into four main molecular subgroups®’*®**?2. The WNT-
112  activated subgroup is defined by mutations in the WNT signaling pathway and generally
113  displays a favorable prognosis. In contrast, the Sonic Hedgehog (SHH)-activated subgroup
114  results from mutations in the SHH pathway and may have varying clinical outcomes. Group 3
115 (GP3) MBs have a distinct gene expression profile and are typically associated with a poorer
116  prognosis. Finally, Group 4 (GP4) tumors, marked by a specific gene expression pattern, tend to
117 have intermediate clinical outcomes. Understanding the origin of these four tumor subtypes
118 might lead to the development of improved treatment strategies.

119

120 We applied the COORS algorithm to previously published MB scRNA-Seq data ', where
121  subgroup annotations are available for each sample, containing 29 samples and approximately
122 ~40K cells in total (Figure 2A). Using COORS algorithm, we have used the pre-trained cell type
123 and cell age models, derived from scRNA-Seq data of developing cerebellum, to map tumor MB
124  cells (Figure 2B)". We have not focused on WNT subgroup tumor cells because the WNT
125  subgroup is known to originate from the lower rhombic lip (LRL) adjacent to the brainstem,
126  rather than from the upper rhombic lip (URL) in the cerebellum?. COORS maps SHH subgroup
127  tumor cells to granule cell precursor (GCP), GP4 subgroup tumor cells to unipolar brush cell

128 (UBC-CN), Granule Neurons (GN) predominantly to SHH and secondarily to GP4 and GP3
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129  subgroup tumor cells, and Rhombic Lip (RL) subgroup tumor cells to GP4 and GP3 (Figure 2B-
130  F). These findings align with recent publications on MB subgroup cell origins®®**?. Earlier
131 research identified GN as progenitor cells for SHH-induced MB, while another study proposed
132  that the rhombic lip subventricular zone (RLSVZ) progenitor cells are the source of GP3 and
133  GP4 MB®*°?*?°_ Additionally, one study suggested that GP4 originates from the UBC lineage®. In
134  addition, we conducted SHAP analysis'® to extract critical features from our machine-learning
135 neural network models, which returned new and known marker genes associated with upper
136 rhombic lip-derived cell types and the MB subgroups to which they correspond. For example,
137 markers associated with the external granule layer or GCP identity such as NDST3%,
138 CBFA2T2*, and UNC13C%; GC identity and maturation such as RBFOX3%*% GRIK2%,
139 ROBO1 whose paralogs are essential in GC migration®®, with MSI2 likely as it marks GCPs in
140  the external granule layer but not postmitotic granule cells in the internal granule layer®'; UBC
141  identity such as LMX1A%*, CACNA2D1%%, RELN*, known GP4 oncogene ERBB4*** and
142  JIJMJID1C/KDM3C, a putative H3K9 demethylase whose paralogs are recurrently somatically
143  altered in GP4 MB*****%; and RL identity such as OTX2", HIST1H4C, -3B, and -1C*, and
144  SLIT2%® (Figure 2G-J).

145

146  Next, we predicted the cell age of each identified developmental cell type within MB tumor cells
147  using our pretrained cell age regressor models (Figure 2K-0). Interestingly, GP4 subgroup cells
148 mapping to UBC mostly correspond to the later weeks in development by 17 post-conceptional
149  weeks (PCW), while GP3 and GP4 subgroup cells mapping to RL mostly correspond to the
150 earlier weeks by 11 PCW in development (Figure 2K). The DEGs between tumor cells and their
151 respective cells of origin, as well as the DEGs between the cell of origin and the following
152  developmental stage cell type are listed in Table S2 (Figure S1-8).

153

154  Application of COORS algorithm on pediatric diffuse midline glioma (DMG)
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155 Next, we applied the COORS algorithm on previously published H3.1/H3.2 and H3.3 histone 3
156 K27M-mutant DMG scRNA-Seq data containing 13 samples and approximately 47K cells in
157  total (Figure 3)°*. Using COORS algorithm, similar to our previous application in MB data, we
158 have used the pre-trained cell type and cell age models, derived from scRNA-Seq data of
159 developing mouse pons brain®, to map pediatric glioma cell origins (Figure 3A-C). Consistent
160  with previous studies we have found that H3.3K27M gliomas mapped to oligodendrocyte-like
161  and neuron-like cells, as previously reported®*®*%*. More specifically, H3.1/2K27M tumors
162 mapped to ependymal-like cells whereas H3.3 mapped to neuronal intermediate progenitor cells
163  (IPCs).

164

165  Additionally, SHAP analysis identified that FOXJ, a well-known ependymal transcription factor®®,
166  contributed to the mapping of H3.1/2 tumor cells to ependymal origins, while NFIB, a recognized
167  transcription factor for neuronal progenitors*’, contributed to the assignment of H3.3 tumor cells
168 to neuronal IPCs. Next, we predicted the cell age of each identified developmental cell type
169  within DMG tumor cells using our pretrained cell age regressor models (Figure S9). H3.3 tumor
170 cells mapping to neuronal IPCs mostly correspond to the earlier weeks in development,
171  whereas H3.1/2 tumor cells mapping to ependymal-like cells mostly correspond to the later
172  weeks in development (Figure S9). The DEGs between tumor cells and their respective cells of
173  origin, as well as the DEGs between the cell of origin and the subsequent developmental cell
174  type, are listed in Table S3 (Figure S10-27).

175

176  Application of COORS algorithm on inhouse scRNA-Seq glioma data

177  Next, we applied the COORS algorithm to our inhouse glioma scRNA-Seq data, containing 21
178 samples and approximately ~234K cells in total (Figure 4A)*'. Using COORS algorithm, we
179 have used the pre-trained cell type and cell age models, derived from Jessa et al. developing

180 mouse forebrain® and three human developing brain scRNA-Seq datasets from Zeng et al™®,
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181  Polioudakis et al*® and Bhaduri et al'® to map adult glioma cells (Figure 4B-D). Pretrained
182  models from both mouse forebrain developmental dataset'? and the dataset by Bhaduri et
183  al.***? maps IDH"T subgroup tumor cells to the radial glia (RG) cells. RG cells are neural stem
184  cells found in the developing human brain, particularly during the embryonic stages of brain

42,43
t

185 developmen and alterations in their regulatory pathways or genetic mutations can lead to

186 their transformation into glioma stem-like cells (GSCs), which are thought to drive tumor

187  initiation and progression in glioblastoma®**°.

In another dataset on the developing human
188  brain by Zeng et al.”, IDH"" tumor cells are again mapped to Neural Stem Cells (NSC-cluster
189  12). Poliodakis et al.*** dataset more specifically maps IDH"" tumor cells to ventricular zone
190 radial glia (vVRG) which are known to reside in the ventricular zone (VZ) of the developing
191  brain***. On the other hand, IDH"" cells consistently maps to oligodendrocytes, OPC and also
192  to neuronal subtypes using multiple pretrained models from Bhaduri et al.'®, Poliodakis et al.'?,
193 Jessa et al.’ datasets. In another dataset on the developing human brain by Zeng et al.***’,
194  IDH" tumor cells mostly mapped to specific populations of GABA cells in the developing brain
195 (GABA-cluster 9) derived from the ectoderm layer. Previous studies also suggest that
196 GABAergic neurons and OPCs are derived from common neurodevelopmental origins;
197 predominantly, they both originate from Nkx2.1l-expressing precursors located in the medial,

198 lateral, and caudal ganglionic eminences*"*.

Moreover, GABAergic neurons and OPCs
199 converge at a shared transcriptional state with expression of OLIG2*°, GABARs>, and
200 PDGFRA®. In our recent study, we demonstrated that a subset of IDH""" glioma cells fire single,
201  short action potentials (APs) and are defined by mixed characteristics of GABAergic neurons
202  and OPC™.

203

204 In addition, we conducted SHAP analysis to extract critical features from our machine-learning

205 neural network models, enabling the identification of developmental-like gene markers specific

206 to glioma for each mapped cell type. SHAP analysis identified that markers commonly
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207  associated with oligodendrocyte precursor cells (OPCs) such as OLIG1%, SOX10>*, PDGFRA>
208  NKX2-2°° and OLIG2°®**" predominantly contributed to the mapping of IDH mutant tumor cells
209 to OPCs. GABAA receptor subunit GABRA2®, known to be also expressed in oligodendrocytes
210  contributed to the mapping of neuronal subtypes in IDH"" using Jessa et al.® pretrained model.
211  In the dataset from Zeng et al.'>, GABA-cluster 9 exhibits a high expression of genes such as
212 STMN2, ELAVL4, ELAVL3, and DCX, all of which are known to have crucial role in neuronal
213  development and differentiation, predominantly contributed to the mapping of IDH"" tumor cells
214  to neuronal subtypes. SHAP analysis identified that markers commonly associated with neural

HWT

215  stem cells and radial glia cells HES5>°and HES1®, contributed to the mapping of ID tumor

216 cells to radial glia cells. NSC-cluster 12 exhibits high expression of genes such as SOX2, and

217  TTYHL, all of which are known markers of neural stem cells®!

, contributing to the mapping of
218  IDH"" tumor cells to NSCs.

219

220 To estimate the cell age of each identified developmental cell type within glioma tumor cells, we
221  applied our pre-trained cell age regressor models (Figure 4A-C). Age mapping was performed
222 exclusively on the datasets from Bhaduri et al.*® , Zeng et al.'® , and Jessa et al.® due to their

|16

223  wide range of developmental age data. Notably, both Bhaduri et al.® and Jessa et al.® datasets'

224 models consistently revealed that IDH" cells corresponding to OPCs exhibit a bimodal age

225 distribution, indicating stages early and late in development. In contrast, IDH"'

cells aligning
226  with RG mostly represent earlier developmental weeks. The DEGs between tumor cells and
227  their respective cells of origin, as well as the DEGs between the cell of origin and the following
228 developmental cell type, are listed in Table S4-5 (Figure S28-51).

229

230 Discussion

231
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232 Here we presented a hierarchical machine learning-based approach, named COORS, for the
233 identification and characterization of tumor cells that exhibit gene expression patterns
234  reminiscent of early developmental stages in the brain. COORS achieves this by employing
235 NNMs trained on diverse scRNA-Seq datasets from developing human brain tissues. We
236 applied our method to predict developmental-like cells in various brain cancer datasets,
237 including MB, DMG, and glioma, with validation against well-characterized MB data. COORS
238 identified VRG developmental cells within IDH"" glioma cells whereas OPC and neuronal-like
239  cells in IDHY™, Interestingly, IDH" subgroup cells that map to OPC show bimodal distributions,

240 that are both early and late weeks in development, while IDHVT

subgroup cells mapping to RG
241  mostly correspond to the earlier weeks in development. Furthermore, COORS offers a valuable
242  resource by providing information on the DEGs between tumor cells and their respective cells of
243  origin, as well as between the cell of origin and the subsequent developmental cell type. These
244  DEGs hold promise as potential therapeutic targets, offering new avenues for the development
245  of targeted therapies for brain tumors. In conclusion, the development and application of
246 COORS represent a significant advancement in our ability to accurately annotate
247  developmental-like cell states in brain cancer datasets and potentially extend this approach to
248  other cancer types.

249 In the past, efforts to induce the differentiation of cancer cells into more mature, less
250 aggressive cell types, without damaging normal cells were met with limited success in solid
251  tumors, likely due to insufficient understanding of the precise progenitor cells involved®*®,
252  However, advancements in our comprehension of specific time points and cell types have paved
253  the way for a more nuanced approach. By examining the subsequent steps in the lineage, such
254  as the differentiation of OPCs into mature oligodendrocytes, we can identify key genes involved
255 in this process. For instance, oligodendrocytes are characterized by decreased proliferative

256 capacity compared to OPCs, suggesting a regulatory role for certain genes in cell fate

257  determination. Targeting genes like OLIG2, which maintains OPC identity, while activating those
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258 involved in mature oligodendrocyte function, such as myelin basic protein (MBP), holds promise
259 for directing OPCs toward differentiation into oligodendrocytes. This approach presents a
260 potential avenue for differentiation therapy, wherein manipulating gene expression could drive
261 tumor cells toward a more benign phenotype, offering a novel strategy for cancer treatment.

262

263  Overall, our approach relies on a separate model for each origin-like cell type. While one could
264  use a single model for assignment of all cell types jointly (e.g. multitask learning) to make use of
265 all data at once, our experiments did not show significant benefit of one model compared to
266  building simpler single models for each cell type. We hypothesize that this may be inherently a
267  result of data size requirements and complexities of jointly learning hundreds of origin-like cell
268 types from unbalanced datasets. In addition, our approach provides more flexibility for selecting
269  biologically meaningful models of origin-like cell types in different tumors.

270

271  Methods

272  Data preprocessing

273  We conducted the standard pipeline of single-cell RNA sequencing data preprocessing for both
274  reference and testing datasets using Scanpy 1.7.2 in Python 3.6.8. For cell of origin
275 classification, the preprocessing of reference and testing data were performed starting from the
276  whole datasets. On the other hand, for cell age regression, we first grouped the reference and
277  testing datasets by cells of origin and then preprocessed each group separately. Each cell was
278 normalized to have the same total read count and the matrices were transformed into natural
279  logarithm domain. We annotated the top 2,000 highly variable genes in reference dataset,
280 scaled both datasets to unit variance and zero mean, and truncated to 10. We kept all the other

281  parameters in default values.
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282 A common gene set is needed between the reference and testing datasets as they will
283  be fed into one same model. We took the union of reference marker genes and highly variable
284  genes to intersect with the testing genes as the common gene set and trimmed both datasets.
285 The volumes of reference cell types vary. We first excluded cell types with number of cells fewer
286 than 20. To balance the number of cells among the rest cell types, we set as baseline the cell
287  type that is the 25% quantile in terms of numbers of cells and randomly subsampled the others
288 to this baseline. Those cell types with number of cells fewer than the baseline were not
289  subsampled.

290 We randomly split each reference cell type into two subsets, one with 80% cells for
291 model training and the other with 20% cells for model validation. The training subsets of all the
292  cell types were concatenated as training data, the validation subsets as validation data.

293  We conducted one-hot encoding of cell types in both training and validation data. We scaled
294  training, validation, and testing data into the range from O to 1 using Scikit-learn 0.24.2.

295

296  MLP-based prediction model

297 We developed multilayer perceptron networks for cell of origin classification and cell age
298  regression.

299

300 Cell of origin classifier. The cell of origin classifier has one input layer, variable numbers of
301 hidden layers, and one output layer. The input layer has the same number of nodes as the input
302 genes. The number of hidden layers varies from one to four, and the number of nodes in one
303 hidden layer is set to be 256, 128, 64, or 32, which is determined after hyperparameter
304 optimization. Following the dense connection within each hidden layer, there are batch
305 normalization, activation, and dropout functions. We use the popular Rectified Linear Unit
306 (ReLU) for hidden layer activation and set dropout rate to be 0.1 or 0.2. The output layer uses

307 Softmax activation function so that each node outputs a non-negative value smaller than 1 and
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308 all the values sum up to 1. Therefore, each output corresponds to the probability of one cell
309 type. We compile the model using categorical crossentropy as loss function, Adam as optimizer,
310 and accuracy as metrics.

311

312  Cell age regressor. Similar as cell of origin classifier, cell age regressor consists of one input
313 layer, a group of hidden layers, and one output layer. While the input layer and hidden layers are
314  structurally the same as cell of origin classifier, the output layer of cell age regressor has only
315 one node with Sigmoid activation function that corresponds to the predicted cell age. The model
316 is compiled using mean squared error as loss function, Adam as an optimizer, and loss as
317 metrics. Since more than one cell age regressors exist corresponding to each cell of origin
318 classifier, these regressors can have specific hyperparameters of hidden layers that are not
319 necessarily the same.

320

321 Model training prerequisites. We implemented cell of origin classifier and cell age regressor
322  using Keras 2.6.0 with Tensorflow 2.6.2 as backend in Python 3.6.8. Prerequisite packages for
323  data preprocessing and model training include Numpy 1.19.5, Pandas 1.1.5, Scanpy 1.7.2,
324  Anndata 0.7.8, Scipy 1.5.4, and Scikit-learn 0.24.2.

325

326 Hyperparameter optimization. We systematically optimized hyperparameters of cell of origin
327 classifier and cell age regressor using grid search cross validation implemented by Scikit-learn
328 0.24.2, focusing on tuning the number of hidden layers and nodes, dropout rate of hidden
329 layers, and learning rate of the optimizer. For each model, we varied the number of hidden
330 layers from one to four and the number of nodes in each layer that could be 256, 128, 64, or 32.
331 We followed convention to use Rectified Linear Unit (ReLU) as activation function in hidden
332 layers. Training epochs were fixed to be 100 and batch size 32 as they did not show significant

333  affections in our case. Along with the iteration of every possible hidden layer structure, we
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334  explored dropout rate of 0.1 or 0.2 and learning rate of 0.1, 0.01, 0.001, or three decaying
335 learning rates that were scheduled to exponentially reduce during model training based on initial
336 rate of 0.1 or 0.01, final rate of 0.01 or 0.001, training epochs, and batch size.

337

338

339  Source Code Availability

340  Source code of COORS is publicly available at https://github.com/Su-Wang-UTH/COORS


https://doi.org/10.1101/2024.05.10.593553
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593553; this version posted May 14, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
Model training based on developing brain Tumeor cell of origin mapping using pre-trained models
ol 1%
Lol - p—
g B
= /-/"
Developing Developing scRNA-seq scRNA-seq
brain cells brain tumor turmor cells
L R B
_— s 'I T :
a . o
é\..-!.fi .0 o
o "t-_ ~._. Pl 18
5 Cell of arigin 7 S, A
= Train one model for cell ‘ Testing Map tumor cells using  Testing
of arigin classification L dataset cell of origin classifier  dataset
ama ; |
A B L3 »
Cell of origin M A a A
Reference A Cell age ? ros o |cellageX
dataset o Cell age ? g Cellage ¥
e s Cell age ? e Cellage Z
@ F 8 b R T A
Train one madel for cell age Testing Map tumor cells using  Testing
regression in A and one in B dataset cell age regressor A dataset
B

COORB TypeiAge
Modsl Database

Input Tumor Read
Gounts

model

Tumaor Locatian,
Agsumed etiology

origin cell
ypes

Cell Types

Assign
Cell Age

Cell Ages

341

342  Figure 1. Overview of COORS algorithm. (A) In the first step, neural network models are
343  trained for cell of origin classification and cell age regression using developing brain sScRNA-Seq
344  datasets, and the models saved in the repository. In the second step, these pre-trained models
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345  are used to map scRNA-Seq tumor cells to developing brain cells, predicting cell origin and age
346  while conducting SHAP analysis to identify tumor-specific gene markers. (B) Tumors are
347 matched with specific origin-like cell type assignment models based on their region of origin
348  within the brain (e.g., neocortex vs cerebellum vs pons), enhancing the precision of the COORS
349  application. Post-model selection, the mapping of tumor cells to developing healthy brain cells is
350 performed through the application of these pre-trained models, as depicted in the schematic.
351

352

353
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355 Figure 2. Characterization of developmental-like cell states in MB scRNA-Seq data. (A)
356  Tumor subgroups are shown for MB scRNA-seq dataset. (B) Barplots showing the distribution
357 of MB cells within each tumor subgroup mapped to individual developing cell types. (C-F)
358 Developmental cell type probability scores are shown for RL, GCP, GN and UBC cell types. (G-
359 J) The figure displays the results of SHAP analysis, showing the top impactful genes from each
360 cell type, RL, GCP, GN and UBC respectively, in our training dataset. (K) Distribution of age
361 mapping within each tumor subgroup and their respective mapped cell of origin pairs. (L-O) PCA
362 plots showing the mapping of developmental ages for tumor cells mapped to various
363 developmental origins, GCP, CN-UBC, GN, and RL respectively.
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375 Figure 3. Characterization of developmental-like cell states in DMG scRNA-Seq data. (A)
376  Tumor subgroups are shown for DMG scRNA-seq dataset. (B) Developmental cell type
377  probability scores are shown for Gliogenic Progenitor, Inhibitory Neurons, Neurons, and
378  Excitatory Neurons cell types. (C) Barplots showing the distribution of DMG cells within each
379  tumor subgroup mapped to individual developing cell types. (D) The figure displays the results
380 of SHAP analysis, showing the top impactful genes from each cell type Gliogenic Progenitor,
381 Inhibitory Neurons, Neurons, and Excitatory Neurons respectively, in our training dataset. (E)
382 Developmental cell type probability scores are shown for Oligodendrocytes, Other neurons,
383  Astrocytes and Neuronal IPC, and Ependymal cell types (F) The figure displays the results of
384  SHAP analysis, showing the top impactful genes from each cell type Oligodendrocytes, Other

385 neurons, Astrocytes and Neuronal IPC and Ependymal respectively, in our training dataset.
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388 Figure 4. Characterization of developmental-like cell states in glioma scRNA-Seq data.
389 (A) Tumor subgroups are shown for inhouse glioma scRNA-seq dataset. (B) Developmental
390 cell type probability scores are shown for Oligodendrocytes, Neuronal IPC, RGC, Excitatory
391 Neurons and Other neurons predicted from Jessa et al pretrained models*. (C) Barplots
392 showing the distribution of glioma cells within each tumor subgroup mapped to individual

393  developing cell types in Jessa et al dataset'®. (D) The figure displays the results of SHAP
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394  analysis, showing the top impactful genes from each cell type, Oligodendrocytes, Neuronal IPC,
395 RGC, Excitatory Neurons and Other neurons respectively, using Jessa et al pretrained
396 models'. (E) Barplots showing the distribution of glioma cells within each tumor subgroup
397 mapped to individual developing cell types predicted from Poliudokis et al. pretrained models™.
398 (F) Developmental cell type probability scores are shown for INCGE (caudal ganglionic
399 eminence derived interneurons), OPC, VRG, ExM (migrating excitatory neuron) and ExN
400 (newborn excitatory neuron) cell types predicted from Poliudokis et al. pretrained models™.
401 (G) The figure displays the results of SHAP analysis, showing the top impactful genes from
402  each cell type in INCGE, OPC, vRG, ExM and ExN celltypes using Poliudokis et al. pretrained
403 models™. (H) Barplots showing the distribution of glioma cells within each tumor subgroup
404 mapped to individual developing cell types in Bhaduri et al. dataset'®. (I) Developmental cell
405 type probability scores are shown for OPC, RG cell types in Bhaduri et al. dataset'® and SHAP
406  analysis, showing the top impactful genes from each cell type, OPC, RG respectively, using
407 Bhaduri et al. pretrained models®. (J) The figure displays the results of SHAP analysis,
408 showing the top impactful genes from each cell type, GABA N 9 and NSC 12 respectively, using
409 Zeng et al. pretrained models™. (K) Distribution of age mapping within each tumor subgroup
410 and their respective mapped cell of origin pairs from Jessa et al pretrained models™. (L)
411  Distribution of age mapping within each tumor subgroup and their respective mapped cell of
412  origin pairs from Bhaduri et al. pretrained models™®.
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