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 26 

Abstract  27 

The reactivation of neurodevelopmental programs in cancer highlights parallel biological 28 

processes that occur in both normal development and brain tumors. Achieving a deeper 29 

understanding of how dysregulated developmental factors play a role in the progression of brain 30 

tumors is therefore crucial for identifying potential targets for therapeutic interventions. Single-31 

cell RNA sequencing (scRNA-Seq) provides an opportunity to understand how developmental 32 

programs are dysregulated and reinitiated in brain tumors at single-cell resolution. Here, we 33 

introduce COORS (Cell Of ORigin like CellS), as a computational tool trained on developmental 34 

human brain single-cell datasets that enables annotation of “developmental-like” cell states in 35 

brain tumor cells. Applying COORS to various brain cancer datasets, including medulloblastoma 36 

(MB), glioma, and diffuse midline glioma (DMG), we identified developmental-like cells that 37 

represent putative cells of origin in these tumors. Our work adds to our cumulative 38 

understanding of brain tumor heterogeneity and helps pave the way for tailored treatment 39 

strategies.  40 

 41 

Introduction  42 

One of the greatest challenges to finding a cure for brain cancers is the robust inter- and intra-43 

tumoral heterogeneity that characterizes these tumors1–4. This heterogeneity contributes to 44 

disease progression and is a key reason therapeutic approaches fail to prevent disease 45 

recurrence.  Although the genetic evolution of cancer cells is a critical determinant, tumor 46 

heterogeneity is also influenced by non-genetic factors including varying developmental cellular 47 

programs, which include stem, progenitor, and senescent cell states5,6. Prior studies have 48 

demonstrated that aberrant expression of neurodevelopmental programs is pervasive in brain 49 

tumors and is largely driven by the reactivation of developmental transcriptional states that are 50 

acquired by genomic and epigenomic changes. Given the complexity of cell types and an array 51 
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of developmental states, isolating a single cell type of origin poses a difficult task, however, a 52 

more thorough examination of brain tumor transcriptomics alongside transcriptional signatures 53 

of neurodevelopmental cell types may shed light on the origins of brain cancer. To gain a deeper 54 

understanding of which developmental cell types brain tumors most closely resemble, we 55 

hypothesized that tumor cell lineages can recapitulate cell lineages encountered in the 56 

developing brain. While tumors exhibit a multitude of dysregulated pathways, existing evidence, 57 

particularly in pediatric tumors, supports this hypothesis6–10. We, therefore, focused on 58 

employing developmental expression modeling trained on human brain atlases that span 59 

various developmental time points. This modeling approach allows us to characterize tumor 60 

cells by overlaying their gene expression patterns onto those of early neurodevelopmental 61 

stages. By identifying and studying these myriad cellular states from development, our goal is to 62 

uncover insights into the origins and behavior of brain tumors, ultimately paving the way for 63 

more effective treatment strategies and improved patient outcomes. 64 

 65 

Single-cell RNA sequencing (scRNA-Seq) provides an opportunity to dissect the complex 66 

cellular states during development and in health and disease11. However, it is computationally 67 

challenging to decipher the spectrum of heterogeneous developmental cell states in tumor cells 68 

using scRNA-Seq. Accurate identification of developmental-like cell states necessitates a 69 

comprehensive understanding of the interactions among all genes, which, in turn, requires a 70 

substantial amount of gene expression data. In this study, we developed COORS, a 71 

computational tool to annotate each developmental cell state in tumor cells at single cell 72 

resolution. COORS uses multilayer perceptron model for cell of origin classification and cell age 73 

regression using developing brain scRNA-Seq datasets from previously published scRNA-seq 74 

datasets, comprising approximately 1M million cells from developing human and mouse 75 

brains6,12–16. We used COORS to predict developmental-like analogs in pediatric and adult 76 
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tumors using public and in-house MB17, DMG14 and glioma scRNA-Seq data, which revealed 77 

unique developmental cell types as putative cells of origin in each brain cancer subtype. 78 

 79 

Results 80 

The overall workflow of COORS algorithm 81 

The basic motivation of COORS algorithm is to utilize existing primitive cell types identified in 82 

developing normal brain tissues to annotate the potential origins of cells in tumor samples. In 83 

this regard, COORS aims to capitalize on the large amount of healthy developmental 84 

transcriptional profiles to identify similar programs in tumor tissues. This is in essence different 85 

from existing cell type annotation methods with two aspects: 1) Existing methods for cell type 86 

annotations in healthy tissues rely on exact matching of the cell types. 2) Existing methods for 87 

cell type annotations in tumor samples focus mainly on detecting tumor cells and do not focus 88 

on annotating the origin states for cells.  89 

 90 

For training COORS models, we train a multilayer perceptron model for cell of origin 91 

classification and cell age regression using developing brain scRNA-Seq datasets6,12–16 (Table 92 

S1). Assuming we have reference data with two origin-like cell types A and B, we train a neural 93 

network-based cell of origin classifier using this reference data, saving the model in our 94 

repository (Figure 1A-B). Concurrently, we train two neural network-based cell age regressors, 95 

one for cell origin A and another for cell origin B, also saving these trained models in the 96 

repository. In the assignment step, each tumor needs to be matched to correct set of origin-like 97 

cell type assignment models. This is justified since each cancer originates at different regions of 98 

brain (neocortex vs cerebellum vs pons) which can be used to select the COORS models. After 99 

selecting the relevant origin-like cell models, we map tumor cells to developing healthy brain 100 

cells by using the pre-trained models. We predict the cell of origin for the testing dataset using 101 

the pre-trained cell of origin classifier. For each developmental-like cell type, we further predict 102 
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cell age using the corresponding pre-trained cell age regressors. Finally, we conduct SHapley 103 

Additive exPlanations (SHAP) analysis18 to extract essential features from our machine-learning 104 

neural network models, identifying tumor-specific developmental-like gene markers for each cell 105 

type and age within our training dataset (Figure 1A-B).  106 

 107 

Validation of COORS algorithm on scRNA-Seq Medulloblastoma data 108 

 109 

Medulloblastoma (MB) is a pediatric brain tumor that is closely associated with early hindbrain 110 

development and can be classified into four main molecular subgroups6,7,10,19–22. The WNT-111 

activated subgroup is defined by mutations in the WNT signaling pathway and generally 112 

displays a favorable prognosis. In contrast, the Sonic Hedgehog (SHH)-activated subgroup 113 

results from mutations in the SHH pathway and may have varying clinical outcomes. Group 3 114 

(GP3) MBs have a distinct gene expression profile and are typically associated with a poorer 115 

prognosis. Finally, Group 4 (GP4) tumors, marked by a specific gene expression pattern, tend to 116 

have intermediate clinical outcomes. Understanding the origin of these four tumor subtypes 117 

might lead to the development of improved treatment strategies.  118 

 119 

We applied the COORS algorithm to previously published MB scRNA-Seq data 17, where 120 

subgroup annotations are available for each sample, containing 29 samples and approximately 121 

~40K cells in total (Figure 2A). Using COORS algorithm, we have used the pre-trained cell type 122 

and cell age models, derived from scRNA-Seq data of developing cerebellum, to map tumor MB 123 

cells (Figure 2B)13. We have not focused on WNT subgroup tumor cells because the WNT 124 

subgroup is known to originate from the lower rhombic lip (LRL) adjacent to the brainstem, 125 

rather than from the upper rhombic lip (URL) in the cerebellum23. COORS maps SHH subgroup 126 

tumor cells to granule cell precursor (GCP), GP4 subgroup tumor cells to unipolar brush cell 127 

(UBC-CN), Granule Neurons (GN) predominantly to SHH and secondarily to GP4 and GP3 128 
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subgroup tumor cells, and Rhombic Lip (RL) subgroup tumor cells to GP4 and GP3 (Figure 2B-129 

F). These findings align with recent publications on MB subgroup cell origins8,9,24,25. Earlier 130 

research identified GN as progenitor cells for SHH-induced MB, while another study proposed 131 

that the rhombic lip subventricular zone (RLSVZ) progenitor cells are the source of GP3 and 132 

GP4 MB8,9,24,25. Additionally, one study suggested that GP4 originates from the UBC lineage8. In 133 

addition, we conducted SHAP analysis18 to extract critical features from our machine-learning 134 

neural network models, which returned new and known marker genes associated with upper 135 

rhombic lip-derived cell types and the MB subgroups to which they correspond. For example, 136 

markers associated with the external granule layer or GCP identity such as NDST326, 137 

CBFA2T224, and UNC13C27; GC identity and maturation such as RBFOX328,29, GRIK224, 138 

ROBO1 whose paralogs are essential in GC migration30, with MSI2 likely as it marks GCPs in 139 

the external granule layer but not postmitotic granule cells in the internal granule layer31; UBC 140 

identity such as LMX1A32, CACNA2D18,33, RELN34, known GP4 oncogene ERBB424,35  and 141 

JMJD1C/KDM3C, a putative H3K9 demethylase whose paralogs are recurrently somatically 142 

altered in GP4 MB20,24,36; and RL identity such as OTX213, HIST1H4C, -3B, and -1C37, and 143 

SLIT230 (Figure 2G-J). 144 

 145 

Next, we predicted the cell age of each identified developmental cell type within MB tumor cells 146 

using our pretrained cell age regressor models (Figure 2K-O). Interestingly, GP4 subgroup cells 147 

mapping to UBC mostly correspond to the later weeks in development by 17 post-conceptional 148 

weeks (PCW), while GP3 and GP4 subgroup cells mapping to RL mostly correspond to the 149 

earlier weeks by 11 PCW in development (Figure 2K). The DEGs between tumor cells and their 150 

respective cells of origin, as well as the DEGs between the cell of origin and the following 151 

developmental stage cell type are listed in Table S2 (Figure S1-8).  152 

 153 

Application of COORS algorithm on pediatric diffuse midline glioma (DMG)  154 
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Next, we applied the COORS algorithm on previously published H3.1/H3.2 and H3.3 histone 3 155 

K27M-mutant DMG scRNA-Seq data containing 13 samples and approximately 47K cells in 156 

total (Figure 3)6,14. Using COORS algorithm, similar to our previous application in MB data, we 157 

have used the pre-trained cell type and cell age models, derived from scRNA-Seq data of 158 

developing mouse pons brain6, to map pediatric glioma cell origins (Figure 3A-C). Consistent 159 

with previous studies we have found that H3.3K27M gliomas mapped to oligodendrocyte-like 160 

and neuron-like cells, as previously reported3,6,14,38. More specifically, H3.1/2K27M tumors 161 

mapped to ependymal-like cells whereas H3.3 mapped to neuronal intermediate progenitor cells 162 

(IPCs).  163 

 164 

Additionally, SHAP analysis identified that FOXJ, a well-known ependymal transcription factor39, 165 

contributed to the mapping of H3.1/2 tumor cells to ependymal origins, while NFIB, a recognized 166 

transcription factor for neuronal progenitors40, contributed to the assignment of H3.3 tumor cells 167 

to neuronal IPCs. Next, we predicted the cell age of each identified developmental cell type 168 

within DMG tumor cells using our pretrained cell age regressor models (Figure S9). H3.3 tumor 169 

cells mapping to neuronal IPCs mostly correspond to the earlier weeks in development, 170 

whereas H3.1/2 tumor cells mapping to ependymal-like cells mostly correspond to the later 171 

weeks in development (Figure S9). The DEGs between tumor cells and their respective cells of 172 

origin, as well as the DEGs between the cell of origin and the subsequent developmental cell 173 

type, are listed in Table S3 (Figure S10-27).  174 

 175 

Application of COORS algorithm on inhouse scRNA-Seq glioma data 176 

Next, we applied the COORS algorithm to our inhouse glioma scRNA-Seq data, containing 21 177 

samples and approximately ~234K cells in total (Figure 4A)41. Using COORS algorithm, we 178 

have used the pre-trained cell type and cell age models, derived from Jessa et al. developing 179 

mouse forebrain6 and three human developing brain scRNA-Seq datasets from Zeng et al15, 180 
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Polioudakis et al128  and Bhaduri et al16  to map adult glioma cells (Figure 4B-D). Pretrained 181 

models from both mouse forebrain developmental dataset12 and the dataset by Bhaduri et 182 

al.41,42 maps IDHWT subgroup tumor cells to the radial glia (RG) cells. RG cells are neural stem 183 

cells found in the developing human brain, particularly during the embryonic stages of brain 184 

development42,43 and alterations in their regulatory pathways or genetic mutations can lead to 185 

their transformation into glioma stem-like cells (GSCs), which are thought to drive tumor 186 

initiation and progression in glioblastoma44–46.  In another dataset on the developing human 187 

brain by Zeng et al.15,  IDHWT tumor cells are again mapped to Neural Stem Cells (NSC-cluster 188 

12).  Poliodakis et al.41,42  dataset more specifically maps IDHWT tumor cells to ventricular zone 189 

radial glia (vRG) which are known to reside in the ventricular zone (VZ) of the developing 190 

brain42,43. On the other hand, IDHMut cells consistently maps to oligodendrocytes, OPC and also 191 

to neuronal subtypes using multiple pretrained models from Bhaduri et al.16, Poliodakis et al.12, 192 

Jessa et al.6 datasets.  In another dataset on the developing human brain by Zeng et al.46,47,  193 

IDHMut tumor cells mostly mapped to specific populations of GABA cells in the developing brain  194 

(GABA-cluster 9) derived from the ectoderm layer.  Previous studies also suggest that 195 

GABAergic neurons and OPCs are derived from common neurodevelopmental origins; 196 

predominantly, they both originate from Nkx2.1-expressing precursors located in the medial, 197 

lateral, and caudal ganglionic eminences47,48. Moreover, GABAergic neurons and OPCs 198 

converge at a shared transcriptional state with expression of OLIG249, GABARs50, and 199 

PDGFRA51. In our recent study, we demonstrated that a subset of IDHMut glioma cells fire single, 200 

short action potentials (APs) and are defined by mixed characteristics of GABAergic neurons 201 

and OPC52.  202 

 203 

In addition, we conducted SHAP analysis to extract critical features from our machine-learning 204 

neural network models, enabling the identification of developmental-like gene markers specific 205 

to glioma for each mapped cell type. SHAP analysis identified that markers commonly 206 
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associated with oligodendrocyte precursor cells (OPCs) such as OLIG153, SOX1054, PDGFRA51 207 

NKX2-255 and OLIG256,57   predominantly contributed to the mapping of IDH mutant tumor cells 208 

to OPCs. GABAA receptor subunit GABRA258, known to be also expressed in oligodendrocytes 209 

contributed to the mapping of neuronal subtypes in IDHMut  using Jessa et al.6  pretrained model. 210 

In the dataset  from Zeng et al.15, GABA-cluster 9 exhibits a high expression of genes such as 211 

STMN2, ELAVL4, ELAVL3, and DCX, all of which are known to have crucial role in neuronal 212 

development and differentiation, predominantly contributed to the mapping of IDHMut tumor cells 213 

to neuronal subtypes. SHAP analysis identified that markers commonly associated with neural 214 

stem cells and radial glia cells HES559and HES159, contributed to the mapping of IDHWT  tumor 215 

cells to radial glia cells. NSC-cluster 12 exhibits high expression of genes such as SOX2, and 216 

TTYH1, all of which are known markers of neural stem cells60,61, contributing to the mapping of 217 

IDHWT  tumor cells to NSCs. 218 

 219 

To estimate the cell age of each identified developmental cell type within glioma tumor cells, we 220 

applied our pre-trained cell age regressor models (Figure 4A-C). Age mapping was performed 221 

exclusively on the datasets from Bhaduri et al.16 , Zeng et al.15 , and Jessa et al.6 due to their 222 

wide range of developmental age data. Notably, both Bhaduri et al.16  and Jessa et al.6 datasets' 223 

models consistently revealed that IDHMut cells corresponding to OPCs exhibit a bimodal age 224 

distribution, indicating stages early and late in development. In contrast, IDHWT cells aligning 225 

with RG mostly represent earlier developmental weeks. The DEGs between tumor cells and 226 

their respective cells of origin, as well as the DEGs between the cell of origin and the following 227 

developmental cell type, are listed in Table S4-5 (Figure S28-51).  228 

 229 

Discussion  230 

 231 
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Here we presented a hierarchical machine learning-based approach, named COORS, for the 232 

identification and characterization of tumor cells that exhibit gene expression patterns 233 

reminiscent of early developmental stages in the brain. COORS achieves this by employing 234 

NNMs trained on diverse scRNA-Seq datasets from developing human brain tissues. We 235 

applied our method to predict developmental-like cells in various brain cancer datasets, 236 

including MB, DMG, and glioma, with validation against well-characterized MB data. COORS 237 

identified vRG developmental cells within IDHWT glioma cells whereas OPC and neuronal-like 238 

cells in IDHMut. Interestingly, IDHMut subgroup cells that map to OPC show bimodal distributions, 239 

that are both early and late weeks in development, while IDHWT subgroup cells mapping to RG 240 

mostly correspond to the earlier weeks in development. Furthermore, COORS offers a valuable 241 

resource by providing information on the DEGs between tumor cells and their respective cells of 242 

origin, as well as between the cell of origin and the subsequent developmental cell type. These 243 

DEGs hold promise as potential therapeutic targets, offering new avenues for the development 244 

of targeted therapies for brain tumors.  In conclusion, the development and application of 245 

COORS represent a significant advancement in our ability to accurately annotate 246 

developmental-like cell states in brain cancer datasets and potentially extend this approach to 247 

other cancer types.  248 

 In the past, efforts to induce the differentiation of cancer cells into more mature, less 249 

aggressive cell types, without damaging normal cells were met with limited success in solid 250 

tumors, likely due to insufficient understanding of the precise progenitor cells involved62,63.  251 

However, advancements in our comprehension of specific time points and cell types have paved 252 

the way for a more nuanced approach. By examining the subsequent steps in the lineage, such 253 

as the differentiation of OPCs into mature oligodendrocytes, we can identify key genes involved 254 

in this process. For instance, oligodendrocytes are characterized by decreased proliferative 255 

capacity compared to OPCs, suggesting a regulatory role for certain genes in cell fate 256 

determination. Targeting genes like OLIG2, which maintains OPC identity, while activating those 257 
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involved in mature oligodendrocyte function, such as myelin basic protein (MBP), holds promise 258 

for directing OPCs toward differentiation into oligodendrocytes. This approach presents a 259 

potential avenue for differentiation therapy, wherein manipulating gene expression could drive 260 

tumor cells toward a more benign phenotype, offering a novel strategy for cancer treatment. 261 

 262 

Overall, our approach relies on a separate model for each origin-like cell type. While one could 263 

use a single model for assignment of all cell types jointly (e.g. multitask learning) to make use of 264 

all data at once, our experiments did not show significant benefit of one model compared to 265 

building simpler single models for each cell type. We hypothesize that this may be inherently a 266 

result of data size requirements and complexities of jointly learning hundreds of origin-like cell 267 

types from unbalanced datasets. In addition, our approach provides more flexibility for selecting 268 

biologically meaningful models of origin-like cell types in different tumors. 269 

 270 

Methods 271 

Data preprocessing 272 

We conducted the standard pipeline of single-cell RNA sequencing data preprocessing for both 273 

reference and testing datasets using Scanpy 1.7.2 in Python 3.6.8. For cell of origin 274 

classification, the preprocessing of reference and testing data were performed starting from the 275 

whole datasets. On the other hand, for cell age regression, we first grouped the reference and 276 

testing datasets by cells of origin and then preprocessed each group separately. Each cell was 277 

normalized to have the same total read count and the matrices were transformed into natural 278 

logarithm domain. We annotated the top 2,000 highly variable genes in reference dataset, 279 

scaled both datasets to unit variance and zero mean, and truncated to 10. We kept all the other 280 

parameters in default values. 281 
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A common gene set is needed between the reference and testing datasets as they will 282 

be fed into one same model. We took the union of reference marker genes and highly variable 283 

genes to intersect with the testing genes as the common gene set and trimmed both datasets. 284 

The volumes of reference cell types vary. We first excluded cell types with number of cells fewer 285 

than 20. To balance the number of cells among the rest cell types, we set as baseline the cell 286 

type that is the 25% quantile in terms of numbers of cells and randomly subsampled the others 287 

to this baseline. Those cell types with number of cells fewer than the baseline were not 288 

subsampled. 289 

We randomly split each reference cell type into two subsets, one with 80% cells for 290 

model training and the other with 20% cells for model validation. The training subsets of all the 291 

cell types were concatenated as training data, the validation subsets as validation data. 292 

We conducted one-hot encoding of cell types in both training and validation data. We scaled 293 

training, validation, and testing data into the range from 0 to 1 using Scikit-learn 0.24.2. 294 

 295 

MLP-based prediction model 296 

We developed multilayer perceptron networks for cell of origin classification and cell age 297 

regression. 298 

 299 

Cell of origin classifier. The cell of origin classifier has one input layer, variable numbers of 300 

hidden layers, and one output layer. The input layer has the same number of nodes as the input 301 

genes. The number of hidden layers varies from one to four, and the number of nodes in one 302 

hidden layer is set to be 256, 128, 64, or 32, which is determined after hyperparameter 303 

optimization. Following the dense connection within each hidden layer, there are batch 304 

normalization, activation, and dropout functions. We use the popular Rectified Linear Unit 305 

(ReLU) for hidden layer activation and set dropout rate to be 0.1 or 0.2. The output layer uses 306 

Softmax activation function so that each node outputs a non-negative value smaller than 1 and 307 
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all the values sum up to 1. Therefore, each output corresponds to the probability of one cell 308 

type. We compile the model using categorical crossentropy as loss function, Adam as optimizer, 309 

and accuracy as metrics.  310 

 311 

Cell age regressor. Similar as cell of origin classifier, cell age regressor consists of one input 312 

layer, a group of hidden layers, and one output layer. While the input layer and hidden layers are 313 

structurally the same as cell of origin classifier, the output layer of cell age regressor has only 314 

one node with Sigmoid activation function that corresponds to the predicted cell age. The model 315 

is compiled using mean squared error as loss function, Adam as an optimizer, and loss as 316 

metrics. Since more than one cell age regressors exist corresponding to each cell of origin 317 

classifier, these regressors can have specific hyperparameters of hidden layers that are not 318 

necessarily the same. 319 

 320 

Model training prerequisites. We implemented cell of origin classifier and cell age regressor 321 

using Keras 2.6.0 with Tensorflow 2.6.2 as backend in Python 3.6.8. Prerequisite packages for 322 

data preprocessing and model training include Numpy 1.19.5, Pandas 1.1.5, Scanpy 1.7.2, 323 

Anndata 0.7.8, Scipy 1.5.4, and Scikit-learn 0.24.2. 324 

 325 

Hyperparameter optimization. We systematically optimized hyperparameters of cell of origin 326 

classifier and cell age regressor using grid search cross validation implemented by Scikit-learn 327 

0.24.2, focusing on tuning the number of hidden layers and nodes, dropout rate of hidden 328 

layers, and learning rate of the optimizer. For each model, we varied the number of hidden 329 

layers from one to four and the number of nodes in each layer that could be 256, 128, 64, or 32. 330 

We followed convention to use Rectified Linear Unit (ReLU) as activation function in hidden 331 

layers. Training epochs were fixed to be 100 and batch size 32 as they did not show significant 332 

affections in our case. Along with the iteration of every possible hidden layer structure, we 333 
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explored dropout rate of 0.1 or 0.2 and learning rate of 0.1, 0.01, 0.001, or three decaying 334 

learning rates that were scheduled to exponentially reduce during model training based on initial 335 

rate of 0.1 or 0.01, final rate of 0.01 or 0.001, training epochs, and batch size.   336 

 337 

 338 

Source Code Availability 339 

Source code of COORS is publicly available at https://github.com/Su-Wang-UTH/COORS 340 
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341 

Figure 1.  Overview of COORS algorithm. (A) In the first step, neural network models are342 

trained for cell of origin classification and cell age regression using developing brain scRNA-Seq343 

datasets, and the models saved in the repository. In the second step, these pre-trained models344 
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are used to map scRNA-Seq tumor cells to developing brain cells, predicting cell origin and age 345 

while conducting SHAP analysis to identify tumor-specific gene markers. (B) Tumors are 346 

matched with specific origin-like cell type assignment models based on their region of origin 347 

within the brain (e.g., neocortex vs cerebellum vs pons), enhancing the precision of the COORS 348 

application. Post-model selection, the mapping of tumor cells to developing healthy brain cells is 349 

performed through the application of these pre-trained models, as depicted in the schematic. 350 

 351 

 352 

 353 
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Figure 2.  Characterization of developmental-like cell states in MB scRNA-Seq data. (A) 355 

Tumor subgroups are shown for MB scRNA-seq dataset.  (B) Barplots showing the distribution 356 

of MB cells within each tumor subgroup mapped to individual developing cell types. (C-F) 357 

Developmental cell type probability scores are shown for RL, GCP, GN and UBC cell types. (G-358 

J) The figure displays the results of SHAP analysis, showing the top impactful genes from each 359 

cell type, RL, GCP, GN and UBC respectively, in our training dataset. (K) Distribution of age 360 

mapping within each tumor subgroup and their respective mapped cell of origin pairs. (L-O) PCA 361 

plots showing the mapping of developmental ages for tumor cells mapped to various 362 

developmental origins, GCP, CN-UBC, GN, and RL respectively. 363 

 364 
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374 

Figure 3. Characterization of developmental-like cell states in DMG scRNA-Seq data. (A)375 

Tumor subgroups are shown for DMG scRNA-seq dataset. (B) Developmental cell type376 

probability scores are shown for Gliogenic Progenitor, Inhibitory Neurons, Neurons, and377 

Excitatory Neurons cell types. (C) Barplots showing the distribution of DMG cells within each378 

tumor subgroup mapped to individual developing cell types. (D) The figure displays the results379 

of SHAP analysis, showing the top impactful genes from each cell type Gliogenic Progenitor,380 

Inhibitory Neurons, Neurons, and Excitatory Neurons respectively, in our training dataset. (E)381 

Developmental cell type probability scores are shown for Oligodendrocytes, Other neurons,382 

Astrocytes and Neuronal IPC, and Ependymal cell types (F) The figure displays the results of383 

SHAP analysis, showing the top impactful genes from each cell type Oligodendrocytes, Other384 

neurons, Astrocytes and Neuronal IPC  and Ependymal respectively, in our training dataset. 385 
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 386 

387 

Figure 4. Characterization of developmental-like cell states in glioma scRNA-Seq data.388 

(A) Tumor subgroups are shown for inhouse glioma scRNA-seq dataset.  (B) Developmental389 

cell type probability scores are shown for Oligodendrocytes, Neuronal IPC, RGC, Excitatory390 

Neurons and Other neurons predicted from Jessa et al pretrained models14. (C) Barplots391 

showing the distribution of glioma cells within each tumor subgroup mapped to individual392 

developing cell types in Jessa et al dataset14. (D) The figure displays the results of SHAP393 
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analysis, showing the top impactful genes from each cell type, Oligodendrocytes, Neuronal IPC, 394 

RGC, Excitatory  Neurons and Other neurons respectively, using Jessa et al pretrained 395 

models14. (E) Barplots showing the distribution of glioma cells within each tumor subgroup 396 

mapped to individual developing cell types predicted from Poliudokis et al. pretrained models12.  397 

(F) Developmental cell type probability scores are shown for InCGE (caudal ganglionic 398 

eminence derived interneurons), OPC, vRG, ExM (migrating excitatory neuron)  and ExN 399 

(newborn excitatory neuron)  cell types  predicted from Poliudokis et al. pretrained models12.  400 

(G) The figure displays the results of SHAP analysis, showing the top impactful genes from 401 

each cell type in InCGE, OPC, vRG, ExM and ExN celltypes  using Poliudokis et al. pretrained 402 

models12. (H) Barplots showing the distribution of glioma cells within each tumor subgroup 403 

mapped to individual developing cell types in Bhaduri et al. dataset16. (I)  Developmental cell 404 

type probability scores are shown for OPC, RG cell types in Bhaduri et al. dataset16 and  SHAP 405 

analysis, showing the top impactful genes from each cell type, OPC, RG respectively, using 406 

Bhaduri et al. pretrained models16.  (J) The figure displays the results of SHAP analysis, 407 

showing the top impactful genes from each cell type, GABA N 9 and NSC 12 respectively, using 408 

Zeng  et al. pretrained models15.  (K) Distribution of age mapping within each tumor subgroup 409 

and their respective mapped cell of origin pairs from Jessa et al pretrained models14. (L) 410 

Distribution of age mapping within each tumor subgroup and their respective mapped cell of 411 

origin pairs from Bhaduri et al. pretrained models16. 412 

 413 
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