bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels
for molecular biology

Wilfried Agbeto™!? | Camille Coti>!”, and Vladimir Reinharz' "

L Université du Québec & Montréal, Canada
agbeto.kossi_wilfriedQcourrier.uqam.ca
reinharz.vladimir@ugam.ca
2 Ecole de Technologie Supérieure, Canada
camille.coti@etsmtl.ca

Abstract. Advances in graph algorithmics have allowed in-depth study
of many natural objects from molecular biology or chemistry to social
networks. Particularly in molecular biology and cheminformatics, under-
standing complex structures by identifying conserved sub-structures is
a key milestone towards the artificial design of novel components with
specific functions. Given a dataset of structures, we are interested in
identifying all maximum common connected partial subgraphs between
each pair of graphs, a task notoriously NP-Hard.

In this work, we present parallel algorithms over shared and distributed
memory to enumerate all maximal connected common sub-graphs be-
tween pairs of arbitrary multi-directed graphs with labels on their edges.
We offer an implementation of these methods and evaluate their perfor-
mance on the non-redundant dataset of all known RNA 3D structures.
We show that we can compute the exact results in a reasonable time
for each pairwise comparison while taking into account a much more
diverse set of interactions—resulting in much denser graphs—resulting
in an order of magnitude more conserved modules. All code is avail-
able at https://gitlab.info.ugam.ca/cbe/pasigraph and results in
the branch results.

Keywords: Common subgraphs - Parallel algorithms - Molecular struc-
ture.

1 Introduction

Graphs are increasingly being applied in various fields such as mathematics,
biology, chemistry, and social network analysis. For instance, in biology, the
tertiary structure of RNA can be represented as a graph, where each vertex
represents a nucleotide identified by its base name and sequence number, and
edges represent interactions between nucleotides, labeled by their interaction
type. In this RNA graph model, searching for RNA structural motifs (which
are recurring substructures appearing at non-homologous locations in one or
more RNA molecules) is equivalent to searching for maximal common connected
partial subgraphs (MCCPS).

https://orcid.org/0009-0005-5041-9875
https://orcid.org/0000-0002-1224-7786
https://orcid.org/0000-0001-8481-1094
https://gitlab.info.uqam.ca/cbe/pasigraph
https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2 W. Agbeto et al.

The problem of finding the MCCPS between two graphs is a generalization
that includes the connectivity aspect of the Maximum Common Partial Sub-
graph (MCPS) problem, which is limited to finding only the largest maximal
common partial subgraph between two graphs and is recognized in the litera-
ture as being NP-hard : for each vertex in the first graph, we find every similar
vertex in the second graph. Edges of the graph are labeled with the type of
interaction between the two nucleotides modeled by the graph. For each of these
similar pairs, we try to extend the similar subgraph by comparing the edges
connecting their neighbors, and we continue this extension as long as we find
similar neighbors . Because of the computation-intensive nature of this problem,
parallel computing is an attractive approach to speed-up the computation by
taking advantage of the computation and memory capabilities of current high-
performance computing platforms. Indeed, finding all the MCCPS requires an
exhaustive exploration of the search space, and therefore has a high combinato-
rial complexity.

However, finding all the MCCPS between two graphs in parallel faces multi-
ple challenges. The MCCPS are tied with each other: extending a subgraph can
have consequences on other subgraphs that might be computed on other pro-
cesses. Moreover, MCCPS computation times are very unbalanced. Therefore,
computing them in parallel raises non-trivial load-balancing and inter-process
communication challenges. Moreover, the number of solutions of an MCCPS
problem can be exponential in the number of nodes, henceforth making exhaus-
tive search highly computation-intensive.

In this paper, we present parallel algorithms to compute the MCCPS over
shared memory, and distributed memory (hybrid approach). Our implementa-
tion works on multi-directed graphs with labeled edges; we present a perfor-
mance evaluation on the dataset of all known RNA 3D structures. A limitation
of previous works was the number of labels taken into account, the most effi-
cient algorithms would fail on a computer with 8TB of RAM when all contacts
between two large molecules were taken into account. The present algorithms
easily overcome this limitation requiring only 186GB of RAM to process the
entire dataset.

2 Related works

The problem of finding a Maximum Common Subgraph (MCS) has been studied
for half a century. The problem of finding an MCS is divided into two categories
of problems: MCIS (Maximum Common Induced Subgraph) [17I21l27] is the
problem of finding a common induced subgraph with the largest number of
nodes, and MCPS (Maximum Common Partial Subgraph) [2122] is the problem
of finding a common partial subgraph with the largest number of edges. Another
distinction can be made between the connected case and the disconnected case.
[9U8] have demonstrated that this problem is one of the most challenging in terms
of algorithmic complexity.

There are two main types of exact approaches to solving this problem: the re-
duction approach to the maximum clique problem and the enumeration approach
of common subgraphs (branch and bound) [15]. The reduction approach to the

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels for molecular biology 3

maximum clique problem relies on reformulating the problem into a compatibil-
ity graph. In this graph, each clique corresponds to a common subgraph. Thus,
finding a maximum common subgraph is equivalent to identifying a maximum
clique in the compatibility graph. In the enumeration approach of common sub-
graphs, a search tree is constructed to explore all possible common subgraphs.
The creation of subgraphs is halted when the algorithm determines that a sub-
graph cannot produce a solution larger than the best one found so far. The
efficiency of these algorithms depends on the use of pruning heuristics to quickly
remove unnecessary branches from the search tree [15]. The second approach is
more efficient for small or sparse graphs. In all other cases, the first approach is
more efficient [4].

Approximate [23] and parallel [13l6] approaches have also been proposed.
Parallel approaches decompose the problem into independent sub-problems that
can be solved simultaneously using domain partitioning. The MCS problem is
one of the most difficult problems to parallelize due to its complex combinatorial
nature and the interdependence among sub-problems. The subgraphs considered
by the computation can span over multiple subdomains, leading to non-trivial
communication patterns and load-balancing challenges.

Such irregular parallel applications can be dealt with using task-based pro-
gramming with automatic load balancing, such as what was done for parameter
space exploration. The parameter space is partitioned from points called refer-
ence points. From a reference point, polyhedra around it are computed. Different
polyhedra can be computed in parallel as their computation is independent of
each other. However, it is impossible to know in advance which points will be
included in the same polyhedron, so it is important to avoid computing the same
polyhedron on different computational resources. This problem can therefore be
connected to the MCS problem, in which the computation time to find a com-
mon subgraph and how the domain can be decomposed cannot be known before
the common subgraph has been found. Heuristics and dynamic algorithms have
been designed and evaluated in [1]. Their conclusion is that for small parameter
spaces, a random distribution of points works well, and for larger parameter
spaces, a dynamic domain decomposition with work stealing works better. [5]
address a comparable parameter space partitioning problem. They compare dif-
ferent approaches, and the one that performs the best involves detecting and
stopping redundant computations early and computing another task instead.

In this work, we will apply MCPS to the task of finding RNA motifs. An
RNA molecule can be described as a sequence of nucleotides w € {ACGU}"™, of
a length from 10s to thousands of letters. They adopt 3D conformations through
contacts (strengthened by hydrogen bonds) between the different nucleotides.
The structure is known to form hierarchically [29], first canonical and wobble
base pairs (A-U, G-C, and G-U contacts in the cis Watson—Crick/Watson—
Crick cWW conformations) agregate into rigid stems, ladders of cWW contacts.
These have experimentally determined energies [16] and are well captured by
an efficient thermodynamic model in O(n?®), with the length of the sequence
|w] = n below 300 [11]. Yet the global configuration and binding geometries

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4 W. Agbeto et al.

depend on finer conformations in the loops, positions outside of the stems, for
which no energetic parameter are known. These new geometries can conveniently
be described as graphs, where the nucleotides are nodes, the edges indicating
contacts between the nodes. The geometry of these contacts is classified into 12
families by Leontis—Westhof [10]. They can be of type cWW as others depicted in
Table |2} The backbone connects the nucleotides sequentially.

Uncovering the main motifs, conserved sub-
graphs, is a main challenge in the field necessary to
support better tools for structure prediction as the
design of artificial sequences [14]. Approaches di-
rectly from 3D structure have been limited to sim-
ple loops due to the complexity of atoms-to-atoms
comparisons [19]. Alternatively, graph-based algo-
rithms have been developed and have allowed to
find motifs spanning multiple loops and with hun-
dreds of nodes and edges [73124128]. Yet stackings,
a core feature of RNAs, are too numerous to be Fig-1. RNA graph, blue dou-
analyzed with current methods. To overcome this Ple lines are cWW interactions
task, we develop a memory-efficient distributed al- forming St?n,ls’ black e,dges

. . connect positions sequentially,
gorithm that allows to exhaustively enumerate all

o . red edges are between loops,
MCPPS when considering backbones, canonical orange edges are stacks.
and noncanonical contacts, as stackings.

Edge type Edge label Inverse edge label
Phosphodiester bonds (Backbone) B53 B35
Canonical and non-canonical interactions a3, a €{c,t}, Bety € {W,H,S} ayp
SAB, A et B €{5,3} SBA

Table 1. Labeling an RNA graph. cWW is canonical, other non-canonical

3 Algorithms

In this section, we are presenting parallel algorithms to solve the MCCPS prob-
lem. We are presenting the sequential algorithm and data structures our parallel
algorithms are based on (Section7 then parallel algorithms over shared mem-
ory (Section and distributed memory (Section [3.3).

3.1 Algorithm for Maximal Common Connected Partial Subgraphs

Let g and h be two directed graphs with edge labels. The approach used to find
all MCCPS between g and h involves starting from an edge matching between g
and h and adding neighboring edge matchings to it, considering all possibilities
until reaching the maximal one. This approach is made of two steps: 1) Search
for all edge matchings and 2) Extension of edge matchings.

Search for all edge matchings (. Algom'thm@ Two edges in g and in h correspond
together if they have the same label and direction. We use a list describing

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels for molecular biology 5

the edge types involved to treat an edge matching and its reverse edge match-
ing as a single edge matching. For example, for edgeTypeList=[{CWS,CSW},
{TWW, TWW}|, the first element of edgeTypeList implies that if there exists
an edge (a,b, CW.S) in g, then there also exists an inverse edge (b, a, CSW) in g.

The function SearchAllEdgeMatchings returns the list of all found edge
matchings (edgeMatchList), as well as two other lists: edgeMatchIdListl
contains the identifier of the edge in ¢ for each edge matching, and edge-
MatchldList2 contains the identifier of the edge in & for each edge matching.

Extension of edge matchings Edge matchings are the elementary patterns con-
stituting the MCCPS (A MCCPS can be represented as a set of edge matchings
between g and h.). In this section, we present the algorithm that extends an
edge matching to find all MCCPS containing it.

Extending an edge matching s involves adding neighboring edge matchings
to it through a breadth-first search (BFS) traversal until maximization. Maxi-
mization is achieved when there are no more neighbors to explore.

During the extension of an edge matching, conflict events may occur. A
conflict event happens when a neighboring edge matching cannot be added to
the CCPS (Common Connected Partial Subgraph: subgraph under construction
and not yet maximal). This occurs when a neighboring edge matching has a
node aglah that cannot be added to the CCPS, as the latter either has a node
a’glah or a node ag|a’h, or both (with a’g # ag and a’h # ah).

For each conflict, we create a new extension branch containing a new CCPS
to be extended. To obtain the new CCPS, we create a copy of the MCCPS by
removing the nodes and edges in conflict with the conflicting edge matching
and adding the conflicting edge matching to the copy. Since the extension of an
edge matching s should yield all MCCPS containing s, any conflicts that imply
removing s are ignored.

Extending an edge matching s, combined with conflict management, allows
us to find all MCCPS containing s. (1)Conflict management enables the exten-
sion algorithm to backtrack and explore alternatives to find additional MCCPS.
However, multiple conflicts can lead to the same MCCPS, posing a challenge. To
mitigate this, before creating a new extension branch, we check if the new CCPS
to be extended is already included in any previously found MCCPS starting from
s. If so, the branch is not created. This inclusion check involves searching for an
exact subgraph isomorphism that preserves edge labels and node identifiers.

(2)Since extending an edge matching s yields all MCCPS containing s, then
the extension of multiple edge matchings can yield identical MCCPS. To address
this issue, when an edge matching e can be added to a CCPS resulting from ex-
tending an edge matching s;, then we check if e € {sg, $1, s2, ..., $;—1}, where
s; is the edge matching at index 7 in edgeMatchList. If this is the case, the
edge matching is not added to the CCPS. The subgraph obtained at the end of
extending the CCPS may not be an MCCPS, meaning it may not be maximal.
If at least one of the edge matchings e, which were ignored by the CCPS, can
be added to the obtained subgraph, then it is not maximal and therefore not

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

6 W. Agbeto et al.

considered as an MCCPS.

Before describing the parallel algorithms, it is important to present the dif-
ferent types of tasks.

Task of extension an edge matching: This task involves extending an
edge matching. Thanks to (2), these tasks can be executed in parallel indepen-
dently without communication or synchronization. Branch extension task:
These tasks arise from conflict resolution. Due to (1), they can be executed in
parallel, but they need to synchronize to avoid searching for an already found
MCCPS. It is also important to note that conflict resolution is local to the
extension of a given edge matching.

Our objective is to simultaneously (if possible) reduce idle time (improving
workload balancing) and the synchronization costs of execution units.

3.2 Shared Memory Algorithm

Algorithm [1] gives the parallel algorithm in the shared memory model. We base
our approach on the PCAM method, which includes the following steps:

Partitioning: The problem is decomposed into fine-grained tasks.

— Communication: Identification of dependencies between tasks.

— Agglomeration: Once the tasks and their dependencies have been deter-
mined in the previous steps, tasks can, if necessary, be combined into larger
tasks to improve performance (data movements).

— Mapping: Distribution of tasks across processing units.

Search for all edge matchings The partitioning step is achieved using a one-
dimension domain decomposition on the edgeTypeList to create one task for
each element of edgeTypeList. The computation time for each of these tasks is
irregular and can take advantage of a dynamic scheduling policy such as the one
provided by OpenMP.

Ezxtension of edge matchings The set of edge matchings also uses a one-dimensional
domain decomposition to create one task for each edge matching. We obtain fine-
grained tasks because extending edge matchings is strongly unbalanced between
the tasks. In the following, we focus on a work-stealing approach to balance
the workload automatically. We are using threads as processing units. We ex-
plored the impact of the scheduling strategy being used here, and the results are
presented in Section

Dynamic Distribution Each thread receives a task corresponding to the exten-
sion of an edge matching. When it is done, it moves on to another task. In
this approach, tasks are independent, so it is not necessary to communicate or
synchronize between tasks. However, this approach suffers from significant load
imbalance when the distribution of the number of MCCPS per edge matching
is highly unbalanced (in some practical cases, extending an edge matching took
more than 80% of the total execution time).

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels for molecular biology 7

Data: g, h, edgeTypeList

edgeMatchList < {} /* shared variable */
edgeMatchldListl < {}/* shared variable */
edgeMatchldList2 « {} /* shared variable */

Parallel construction shared(g, h, edgeTypeList)
edgeMatchListLocal < {};

edgeMatchldList1Local + {};

edgeMatchldList2Local + {};

Parallel for i < 0 to edgeTypeList.size() do

9 edgeType <+ edgeTypeList|i];

10 label < edgeType.edgelLabel;

11 edgeList]l + getOutgoingEdge(g,label);

12 edgeList2 + getOutgoingEdge(h,label);

13 for edgel in edgeList] do

0O Uk WN -

14 for edge2 in edgeList?2 do

15 matchEdge + createMatchEdge(edgel,edge2);
16 edgeMatchListLocal.append (matchEdge);

17 edgeMatchldList1Local.append(edgel.id);

18 edgeMatchlIdList2Local.append(edge2.id);

19 Begin critical section

20 edgeMatchList.append (minimumSubGraphListLocal);

21 edgeMatchIdList1.append(minimumSubGraphldList1Local);
22 edgeMatchldList2.append (minimumSubGraphldList2Local);
23 End critical section

24 End parallel construction;

Algorithm 1: SearchAllEdgeMatchings Parallel

Nested Threads are organized in groups. The master thread of each group
receives a task corresponding to the extension of an edge matching, and the
branch extension tasks resulting from conflict resolution are distributed among
the threads of the same group. Threads within the same group must synchronize
to avoid extending a branch that will yield an already-found MCCPS. When it
is done, the group moves on to another task of extension an edge matching. To
avoid duplications, a list containing the MCCPS already found is shared with
exclusive access among the threads of the same group. The process to avoid
duplication is described in Section Although this method improves load dis-
tribution, complex tasks can monopolize a group of threads and unbalance the
others, making it crucial to precisely adjust the size and number of groups to
avoid underutilization of resources.

Work Stealing This approach is similar to the dynamic distribution one, except
that when there is no more tasks that extend an edge matching are exhausted,
idle threads steal branch extension tasks from active threads. This approach
allows for better workload balancing. To reduce task synchronization overhead,
threads do not directly share their branch extension tasks; they only do so when
at least one other thread is available. A thread knows if there is at least one
other available thread through the shared variable num ThreadFree. When there
are no more tasks to extend edge matchings, idle threads set the value at index
rankThread in threadStateList to 1, indicating they are available, and increment

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

8 W. Agbeto et al.

numThreadFree by 1. When at least one thread is available, only one of the busy
threads shares its branch extension tasks: the thread with the smallest thread id
using the function isYourRound that takes threadStateList and rankThread as
input, traverses threadStateList, and returns 1 if it finds only 1, indicating that
the calling thread should share its tasks. Otherwise, the function returns 0.

3.3 Distributed Memory Algorithm

Search for All Edge Matchings The starting point of the algorithm is edge match-
ing. This can be distributed easily like on shared memory: every process starts
from a set of labels and communication is necessary at this step. Each process
executes the same algorithm for shared memory (Algorithm .

Extension of Edge Matchings Work stealing is more complex in a distributed
environment because synchronization between branch extension tasks to avoid
duplicates (searching for an already found MCCPS) would require a significant
amount of communication between processes, making this approach inefficient.
Therefore, we have proposed a hybrid approach where the tasks of extending
an edge matching are shared among processes using the master-worker scheme,
while the threads within the same group use the work stealing approach to
manage the branch extension tasks. This helps avoid costly communications
between processes in order to prevent duplicates.

With this method, there is a risk that some processes may be underutilized
compared to others. However, by increasing the number of computing nodes, we
enhance computational power compared to a shared-memory approach. More-
over, having more computing nodes can offset the underutilization of processes
and thus improve overall efficiency.

3.4 From MCCPS to biological RNA motifs

A few constraints are necessary to transition from the mathematical object to a
relevant biological motif. It is known that interesting RNA motifs have a cyclic
structure, and each node is involved in a non-canonical interaction (interaction
labeled neither CWW nor B53) [18/[12].

As a postprocessing step, for each of the MCPPS, we iteratively remove nodes
that do not fulfill the following conditions: (1) nodes must be connected by an
interaction other than B53, (2) if two nodes ny,ny are connected by a cWw, there
must be a node n3 neighbor to ny or nsy involved in a non-canonical or stacking
interaction with a fourth node (i.e. we do not extend stacks of only canonical
base pairs), and (3) each node belongs to a cycle.

It is clear that all maximal recurrent RNA motifs must belong to an MCPPS
and be extractable from it, else another bigger RNA motif must contain it, a
contradiction.

4 Performance evaluation

We implemented these algorithms using OpenMP (4.5) provided with gee 11.4
and OpenMPI (4.1.2). The code was optimized by g++ using -O3. The per-
formance data presented in this section was measured on Calcul Québec’s ma-

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels for molecular biology 9

chine Narval?l The set of 1722 non-redundant RNA structures was taken from
RNA3DHub version 3.269 [20]. The graphs for each structure were built with
annotations of the contact geometries from FR3D [26]. The smallest graph has
two nodes and two edges, the biggest 16 770 nodes and 37 582 edges. Over 200
graphs have a node count greater than or equal to 100.

To validate the parallel constructions of MCCPS, we compared them to the
sequential version of our algorithm and also compared the results with those
from previous work [2528].

4.1 Shared memory performance

First, we compared the performance of the three shared memory algorithms
presented in Section We picked two graphs randomly; one graph has 390
vertices and 1003 edges, and the other one has 1800 vertices and 4282 edges.
The performance comparison is presented in Figure [2l We can see that all three
algorithms benefit from the parallelization when a few threads are used, and
beyond 4 threads, the performance of the nested and dynamic algorithms stalls
whereas the work-stealing algorithm keeps scaling.

175 'T— —e- dynamic - 12 --—@ dynamic —“i
Ca
150 nested 1 nested ' K/
1 -8~ work stealing 10 - =@ work stealing -
l v
= 125 - 5
= 100§ o 4
o el (O .‘
£ 75— =5 s
= \ a- / | 9.g-0-0-4
50- = [

— e
L §
= A+"'O-o-o
10

thread thread

Fig. 2. Scalability of the shared memory algorithms.

We picked randomly 7 pairs of graphs from the RNA3DHub dataset and we
compared the performance obtained with the three algorithms on these graphs
using 10 threads. As presented in Figure[3] the work-stealing approach was faster
on every graph we used.

4.2 Hybrid algorithm

Current parallel architectures are hierarchical: they are made of multi-core nodes
connected by a high-speed network. As a consequence, parallel programs can fol-
low a hybrid approach and use shared-memory algorithms on multiple cores

3 https://docs.alliancecan.ca/wiki/Narval/en

https://docs.alliancecan.ca/wiki/Narval/en
https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10 W. Agbeto et al.

| | |
200 mmm dynamic m
nested
150 Hm work stealing _
£
E
o 100 —— —
™
|_
50 1 [) [c———)) —
N NL N AT N
1 2 3 4 5 6 7

Graph comparison

Fig. 3. Performance comparison between the shared memory algorithms.

of the same node, and distributed-memory algorithms between nodes. Since
distributed-memory algorithms can be used on several cores of a given node,
the distribution of the processing units (processes and threads) between shared
memory and distributed memory is a tuning parameter of the program.

In our case, we used a multi-thread algorithm over shared memory and mul-
tiple processes over distributed memory. We evaluated the impact of the threads
times processes combination on the performance. Since Narval’s nodes feature 48
cores, we compared the performance obtained using one process and 48 threads
per process, and all integer combinations up to 48 single-threaded processes.

Based on the observations made in Section we used the work-stealing
algorithm on the multi-thread part of the computation. The performance com-
parison on a single node is presented in Figure 4l The speed-up is indicated
over every bar. We can see that the approach using 48 threads gives the best
performance.

600 1

500 4

400 4

300

Time (min)

I

2001

100 4

0 A
Ix1 1x482x24 3x16 4x12 6x8 8x6 12x4 16x3 24x2 48x1
PROCESSXTHREAD

Fig. 4. Hybrid algorithm: number of threads per process for a given number of cores.
The two graphs compared have 1247 and 1742 nodes, and 3492 and 4412 edges, respec-
tively

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels for molecular biology 11

4.3 Performance of the hybrid algorithm

Figure 5| presents the scalability of the hybrid approach. We used all the cores
of each node, with different combinations of the number of processes per node
and the number of threads per process. As explained in the previous sections, we
used the work-stealing approach. We can see that using one process per node and
48 threads per process gives the best performance, confirming the expectation
presented in Section The performance improves with the number of nodes
up to 6 nodes (288 cores). This size was sufficient for us to obtain the results
we needed: the aggregated memory of these 6 nodes was enough to perform the
computation, and the execution time was reasonable.

We tried to speed up the computation more by using a larger number of cores,
and the performance worsened. Thanks to the performance we reached with the
distributed version, it was possible to complete the computation and get re-
sults for the bioinformatics community. However, getting results faster is always
desirable, for instance to complete more computations in a given makespan.
Performance analysis suggests when the number of processes is large enough,
the workload is distributed between them over a few steps of the master-worker
scheme, and the automatic load balancing mechanism cannot compensate for
load unbalances between nodes. Future works will investigate other distributed
approaches, for example with more dynamic load-balancing approaches.

1 1 1
4 —e-: lproc/node ® .\
60 -A—— - o™ -
1 2proc/node 2p I > 5 9\
¢ -.: 4
proc/node r Ogial
— 50 ——— L I ®
£ A s, i
15 I
= 40— 2 i .
2 % N 3
— (¥p]
= 30 —':| 10 _','
i ! '.":
20 7
3 -8
.r..t:,:...-ar 5 -
25 50 7.5 10.0 25 50 7.5 10.0

Nodes Nodes

Fig. 5. Scalability of the hybrid approach. The two graphs compared have 210 and 942
nodes, and 2910 and 7235 edges, respectively

4.4 RNAs

We used our parallel program to perform a pairwise comparison of all the non-
redundant existing RNA structures to identify all the structural motifs they
contain (see Sec. It took 4 weeks on Narval, which is significantly faster than
previous works [25]28]. Tt required a total of 186 GB of memory. It is important to
note that the results obtained were not achievable with the methods proposed in
previous work, even with 8TB of RAM. Additionally, we found a larger number

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

12 W. Agbeto et al.

of structural motifs. We found 157 344 structural motifs for a total of 209 750474

occurrences. The smallest motif has 3 nodes and 6 edges, and the largest 1135
nodes and 5566 edges.

The A-minor motif is well known for its structural importance as a general
tool to join loops, yet this versatility makes it hard to predict in practice. We
show in Fig. [6] the first map of stacking variants of the A-minor motif. The
numbers on the figure indicate motif coverage.

Fig. 6. Variation of A-Minor motifs with stacking. The orange lines, oriented and
unoriented, represent stacking interactions S53 and S55, respectively.

5 Conclusion
In this paper, we present novel parallel algorithms for the exhaustive enumeration
of Maximum Common Partial Subgraphs between two arbitrary multi-directed
graphs, admitting labels over edges. This problem has a high computation com-
plexity, but its irregular nature makes it non-trivial to parallelize. We offer an
open-source implementation in C and evaluate it using complex RNA struc-
ture graphs as benchmarks. We show that our algorithms scale over shared and
distributed memory using multiple threads and multiple processes, and with
efficient memory usage.

In molecular biology, MCPS can be indicative of important functional motifs.
In the case of RNA structures that have an efficient graph representation, motifs
finding algorithms always ignored different key features such as stackings, known
to be important but too numerous to be fully taken into account, until now.

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Parallel maximal common subgraphs with labels for molecular biology 13

With the algorithms presented here, we can now exhaustively list all recurrent
motifs creating novel maps of natural variants with stackings. Such information
will be leveraged in structure prediction, molecular design, and binding target
prediction.

The abundance and size of motifs raise new questions that will require effi-
cient parallel algorithms to solve. Studying RNA structures is not a static en-
deavor, every week new structures emerge and have to be analyzed and merged
with our dataset. With over 150 000 motifs now, their organization and cluster-
ing are another challenge. Annotating all their positions in the few thousands
of known RNAs requires several terabytes of data. While the number of known
RNA structures remains low, the amount of information to analyze has been
increasing over the last decades and will continue to do so.

RNA structures are one limited example of what can be achieved now using
the computation power offered by these parallel algorithms. Labels on nodes are
currently ignored, but with new experimental techniques allowing annotation of
chemical modifications in RN As using nanopore sequencing, we can expect such
a feature to be highly desirable.

References

1. Etienne André, Coti, C., Nguyen, H.G.: Enhanced distributed behavioral cartog-
raphy of parametric timed automata. In: Proceedings of The 17th International
Conference on Formal Engineering Methods (ICFEM 2015). pp. 319-335 (Novem-
ber 2015)

2. Bahiense, L., Mani¢, G., Piva, B., De Souza, C.C.: The maximum common edge
subgraph problem: A polyhedral investigation. Discrete Appl. Math. 160(18),
2523-2541 (dec 2012)

3. Chojnowski, G., Walen, T., Bujnicki, J.M.: RNA Bricks—a database of RNA 3D
motifs and their interactions. Nucleic acids research 42(D1), D123-D131 (2014)

4. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common
subgraph detection algorithms: A performance analysis of three algorithms on a
wide database of graphs. J. Graph Algorithms Appl. 11, 99-143 (01 2007)

5. Coti, C., Monniaux, D., Yu, H.: Parallel parametric linear programming solv-
ing, and application to polyhedral computations. In: Rodrigues, J.M.F., Cardoso,
P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J.,
Sloot, P.M. (eds.) Computational Science — ICCS 2019. pp. 566-572. Springer In-
ternational Publishing, Cham (2019)

6. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janezic, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. Journal of chemical infor-
mation and modeling 53 (08 2013)

7. Djelloul, M., Denise, A.: Automated motif extraction and classification in RNA
tertiary structures. RNA 14(12), 2489-2497 (2008)

8. Huang, X., Lai, J., Jennings, S.: Maximum common subgraph: Some upper bound
and lower bound results. BMC bioinformatics 7 Suppl 4, S6 (02 2006)

9. Kann, V.: On the approximability of the maximum common subgraph problem.
pp. 377-388 (02 1992)

10. Leontis, N.B., Westhof, E.: Geometric nomenclature and classification of RNA base
pairs. Rna 7(4), 499-512 (2001)

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593525; this version posted November 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

14 W. Agbeto et al.

11. Lorenz, R., Hofacker, I.L., Stadler, P.F.: RNA folding with hard and soft con-
straints. Algorithms for Molecular Biology 11, 1-13 (2016)

12. Loyer, G., Reinharz, V.: Concurrent prediction of RNA secondary structures with
pseudoknots and local 3D motifs in an integer programming framework. Bioinfor-
matics 40(2), btae022 (2024)

13. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique al-
gorithm. Algorithms 6, 618635 (10 2013)

14. Miao, Z., Adamiak, R.W., Antczak, M., et al.: RNA-Puzzles Round IV: 3D struc-
ture predictions of four ribozymes and two aptamers. Rna 26(8), 982-995 (2020)

15. Minot, M., Ndiaye, S.N., Solnon, C.: Recherche d’un plus grand sous-graphe com-
mun par décomposition du graphe de compatibilité. In: Onziémes Journées Fran-
cophones de Programmation par Contraintes (JFPC). pp. 1-11. Bordeaux, France
(Jun 2015)

16. Mittal, A., Turner, D.H., Mathews, D.H.: NNDB: An Expanded Database of Near-
est Neighbor Parameters for Predicting Stability of Nucleic Acid Secondary Struc-
tures. Journal of Molecular Biology p. 168549 (2024)

17. Ndiaye, S.N., Solnon, C.: Cp models for maximum common subgraph problems.
In: Proceedings of the 17th International Conference on Principles and Practice of
Constraint Programming. p. 637-644. CP’11, Springer-Verlag, Berlin, Heidelberg
(2011)

18. Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure
from sequence data. Nature 452(7183), 51-55 (2008)

19. Petrov, A., Zirbel, C., Leontis, N.: Automated classification of rna 3d motifs and
the rna 3d motif atlas. RNA (New York, N.Y.) 19 (08 2013)

20. Petrov, A.L: Rna 3d motifs: Identification, clustering, and analysis (2012)

21. Quer, S., Marcelli, A., Squillero, G.: The maximum common subgraph problem: A
parallel and multi-engine approach. Computation 8, 48 (05 2020)

22. Raymond, J., Gardiner, E., Willett, P.: Rascal: Calculation of graph similarity
using maximum common edge subgraphs. Comput. J. 45, 631-644 (04 2002)

23. Raymond, J., Willett, P.: Maximum common subgraph isomorphism algorithms for
the matching of chemical structures. Journal of computer-aided molecular design
16, 521-33 (08 2002)

24. Reinharz, V., Soulé, A., Westhof, E., Waldispiihl, J., Denise, A.: Mining for re-
current long-range interactions in RNA structures reveals embedded hierarchies in
network families. Nucleic acids research 46(8), 3841-3851 (2018)

25. Reinharz, V., Soulé, A., Westhof, E., Waldispiihl, J., Denise, A.: Mining for re-
current long-range interactions in RNA structures reveals embedded hierarchies in
network families. Nucleic Acids Research 46(8), 3841-3851 (03 2018)

26. Sarver, M., Zirbel, C.L., Stombaugh, J., Mokdad, A., Leontis, N.B.: FR3D: finding
local and composite recurrent structural motifs in RNA 3D structures. Journal of
Mathematical Biology 56, 215-252 (2007)

27. Schmidt, R., Klein, R., Rarey, M.: Maximum common substructure searching in
combinatorial make-on-demand compound spaces. Journal of Chemical Informa-
tion and Modeling 62(9), 2133-2150 (2022)

28. Soulé, A., Reinharz, V., Sarrazin-Gendron, R., Denise, A., Waldispiihl, J.: Finding
recurrent RNA structural networks with fast maximal common subgraphs of edge-
colored graphs. PLOS Computational Biology 17(5), 1-28 (05 2021)

29. Tinoco Jr, I., Bustamante, C.: How RNA folds. Journal of molecular biology
293(2), 271-281 (1999)

https://doi.org/10.1101/2024.05.10.593525
http://creativecommons.org/licenses/by/4.0/

	Parallel maximal common subgraphs with labels for molecular biology

