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Summary:

Spatiotemporal recapitulation of long-range trajectories for lineages that influence body
patterning along the medio-lateral and proximal-distal axes during embryogenesis in an in vitro
system remains elusive. Here we introduce a three-dimensional organoid approach, termed
Gastruloids-Lateraloid-Musculoids (GLMs), to model human neural crest, lateral plate
mesoderm and skeletal muscle lineage development at the forelimb level following gastrulation
and during limb patterning. GLMs harvest neuro-mesodermal progenitors with the potential to
establish neural and paraxial mesodermal populations, while single cell analyses and spatial
transcriptomics demonstrate promotion of mesodermal lineage segregation during gastrulation
and spatial recapitulation of migration events along the medio-lateral axis for vagal neural crest,
hypaxial myogenesis and lateral plate mesodermal lineages. Comparative analyses to
developmental atlases and adult muscle stem cell data confirm a pool of hypaxial migrating
myogenic progenitors that in a niche dependent manner change their embryonic anatomical
developmental program to a fetal myogenic program, thus enabling them to resist specification in
a cell autonomous manner and facilitate long term in vitro expansion. GLMs model human
myogenesis at the forelimb level, establish fetal muscle stem cells equivalent to those that sustain
the growth phase of the embryo and provide a 3D in vitro system for investigating neural crest,

early fore-gut and lateral plate mesoderm development.
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Introduction

Mammalian body axis patterning, specification and elongation are initiated during gastrulation,
whereby forebrain emerges at the anterior portion of neural plate, while more posteriorly and
closer to primitive streak transient embryonic structures and signaling centers, indispensable for
successful neural tube, lateral plate mesoderm and early skeletal muscle organogenesis, are
developed during body axis elongation. The original Nieuwkoop's “activation-transformation”
hypothesis on neural induction and central nervous system development in amphibian embryos
suggested an initial anterior neural plate induction that is followed by the formation of caudal
neural regions via patterning of this anterior tissue with posteriorising signals'?. Upcoming
studies on neural induction during organogenesis updated this model by further suggesting
neuro-mesodermal progenitors (axial stem cells, NMPs), arising from primitive streak-associated
caudal lateral epiblast with a subsequent ongoing decision between neural and mesodermal fates,
as a key population influencing body axis elongation®*>%"#, Recently, single-cell transcriptomic
characterization of a gastrulating human embryo further indicated overlapping expression of
markers of established mesodermal sub-types, such as paraxial or lateral plate mesoderm’, thus
suggesting presence of transitional mesodermal states during initial body axis patterning.
Breaking medio-lateral symmetry at forelimb level following gastrulation is associated with
lateral plate mesoderm formation in a BMP dependent manner, reviewed by Prummel et al.'’,
while limb bud initiation at forelimb level is modulated by the adjacent somitic mesoderm, that
in the absence of retinoic acid signalling limb bud initiation is impaired'"-'> 1!+13-16,

17,18,19,20,21,22,23,24,25

Establishing 3D systems that simulate gastrulation in vitro , and derive neuro-

26,27,28,29,30

mesodermal progenitors from human and mouse hiPSCs offered the possibility to

investigate gene regulatory networks and signaling pathways that govern NMPs identity and
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influence body axes pattering®', while subsequent studies harness their ability to self-organize
. . 32 . . . .
and generate either neuromuscular organoids™ or via matrigel support to simulate body axis

elongation for paraxial mesodermal lineage*>***

, or in co-development with neural lineage in
mouse and human models**®. Axially patterned embryonic organoids capture cardiogenesis in
vitro’"**¥ together with fore-gut development in humans* , while recent two dimensional studies

442 To our

with hiPSCs demonstrate a neuro-mesodermal mediated neural crest origin
knowledge, current anterior-posterior patterned stem cell developmental models are unable to
spatially recapitulate developmental trajectories along the medio-lateral or proximal distal axis.
Here to address this limitation we present a method of immediate matrix support and
concomitant growth factor applications on hiPSCs aggregates to model hypaxial myogenesis,
limb mesenchyme and neural crest migration via an intermediate neuro-mesodermal progenitor
stage and to mimic patterning at forelimb level along the major body axes during embryogenesis.
GLMs (Gastruloids/Lateraloids/Musculoids) support and as a developmental model uniquely
recapitulate skeletal muscle trajectory at all stages of human fetal forelimb development. GLM-
derived myogenic progenitors and biopsy derived adult muscle stem cells were compared to
human skeletal muscle reference atlases and present the in vitro generation of fetal muscle stem
cells that exhibit properties of long-term in vitro self-renewal and specification resistance, a key

characteristic that defines in vivo fetal and adult muscle stem cells**,

Results

Gastrulation and mesodermal segregation at early stages

From a pluripotent embryonic body state, human PSC-derived aggregates expressing the
pluripotency markers, e.g NANOG, at day of Matrigel embedding (Figure 1A, Day 0),
underwent gastrulation following stimulation with Wnt activation (CHIR99021), BMP

4
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97 inhibition, (LDN193189) and bFGF. Immunocytochemistry analysis at Day 2, indicates
98 presence of epiblast NANOG®, SOX2" populations at the core of GLM, surrounded by cells
99 expressing the early gastrulation marker Goosecoid (GSC), while more ventrally and at a
100 different to NANOG®, SOX2" section planes, presence of TBXT, GATA6, and SOX17
101 populations, an indication of ongoing gastrulation and of mesodermal, primitive endodermal fate
102 (Figure 1A,H, Day2). FOXA2 expression at the core of the structure further indicates a
103 definitive endodermal/axial mesodermal fate, and of mesodermal and endodermal populations at
104 the periphery of the structure via presence of GATA6" and GATA6'/FOXA2" populations,
105 respectively (Figure 1H, Day2). This conformation along the radial axis reassembles the micro-
106 patterned induced differentiation of human embryonic stem cells (hESCs) to capture
107 gastrulation-like events in two dimensions®. Our system further, by supporting development in
108 three-dimensions, preserves a caudal epiblast state, CDX2", on a different level from the
109 mesodermal and endodermal state and generates a dorso-ventral like axis that differentiates their
110 development at following stages (Figure 1A,B,D, asterisks, 2A,F). At gastrulation stage, single
111 cell expression profiling and trajectory analysis indicates an epiblast stage, governed by HOX
112 gene regulatory networks (calculated using SCENIC pipeline®") but organoids do not exhibit any
113 axial elongation at histological level, and from a mesodermal and endodermal state (Figure
114 1E,F, Figure S1A,B). Investigation on the mesodermal differential potential and cell fate
115 probabilities at Day 5 using Palantir algorithm® indicates that from a primitive streak state
116 (SOX2",NKX1-2",TBXT"), nascent mesodermal populations bifurcate to a paraxial,
117 (FOXCI", TCF15" MEOXI") and to a lateral plate mesodermal state,
118 (FOXF1",GATA6",HAND2"). Pseudotime and RNA velocity analysis during mesodermal
119 lineage segregation indicates BMP4 and RALDH2 upregulation for lateral and paraxial

120 mesodermal fate respectively, while using Palantir algorithm we describe that each state
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121 excludes bipotent cell fate probability, thus lineage specification occurs at this stage (Figure
122 1G, Figure S1A,B). Mapping of single cell expression profiling derived from human
123 gastrulating embryo’ and GLMs at Day 7 to spatial transcriptomic data from Day5 GLMs via
124 CytoSPACE pipeline®, demonstrates similar mapping between CS7 embryo and Day7 GLMs
125 and highlights a section plane that simulates gastrulation, with presence of endodermal SOX17,
126 FOXA2 populations and an emergent mesodermal identity, that further segregates to lateral
127 plate, GATAG6", and paraxial/pre-somitic populations, TBX6" (Figure 1I, Figure SI1E-
128 G,S2A,B). Applying a Semi-supervised (SCANVI) deep learning model®'® to human
129 gastrulating embryo highlights similar dynamics during human primitive streak mesoderm
130 development, as well as predicts presence of nascent, emergent and advanced mesoderm?®, while
131 3D modelling of the CS8 human gastrulating embryo* further depicts paraxial, lateral plate and
132 intermediate mesodermal segregation at this stage (Figure S1C,D,G). Investigation at the
133 histological level depicts a core TBXT" gastrulating mesodermal population in the absence of
134 SOX2 expression (Figure 1A, Day2). Furthermore, spatial transcriptomics analysis at this stage
135 and immunocytochemistry pictures indicates an initial dorsoventral development during
136 gastrulation stage, with an epiblast/ectodermal state, expressing NANOG, CDX2, SOX2, at its
137 dorsal portion and an endodermal, mesodermal state ventrally (Figure 1A,D,H). Interestingly,
138 adapting conditions to our system that are present at tail bud stage and during axial elongation,
139 such as prolonged Wnt activation (CHIR99021), BMP inhibition, (LDN193189), and FGF
140 stimulation, induces at its dorsal caudal embryo-like epiblast portion neuro-mesodermal
141 progenitor populations, expressing, SOX2 and TBXT, and simulates body axis elongation
142 (Figure 1B,C, Figure S2C-E). This geometry influences GLMs spatiotemporal development
143 and is responsible for the two independent trajectories present during paraxial mesoderm

144 formation within GLMs. At its dorsal exterior, the neural epithelium at specific site adopts
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145 neuro-mesodermal fate and enters paraxial mesoderm and neural crest development via an
146 intermediate neuro-mesodermal progenitor (NMP stage), while at its ventral interior following
147 gastrulation it channels its differentiation via emerging mesodermal identity towards paraxial
148 mesoderm and lateral plate limb bud development ( Figure 1A,B,D,I, Figure S3D,E).

149

150 Lineage spatiotemporal development following gastrulation - Lateraloids

151 At the early stages of GLM development, stimulating PSC-derived aggregates with CHIR99021,
152 BMP inhibitor LDN193189, bFGF and retinoic acid promotes gastrulation without patterning the
153 residing CDX2'/GBX2" caudal epiblast neural populations (Figure 1A,E). To promote
154 dermomyotomal hypaxial fate on paraxial mesodermal populations, in a first step we simulated
155 developmental cues secreted from dorsal neural tube (WNT1A) and notochord (hSHH) during
156 embryogenesis while maintaining constant BMP inhibition to avoid excessive lateral plate
157 mesoderm formation, followed by a second myogenic induction step that included FGF, HGF
158 stimulation (Figure 1A). Force-directed k-nearest neighbor graph and RNA velocity
159 demonstrated spatiotemporal development and presence of mesodermal, endodermal and
160 ectodermal developmental trajectories following gastrulation (Figure 2A). At this stage WNT1,
161 an agent influencing neural crest development®’, drives differentiation of the caudal epiblast,
162 located dorsally at GLMs, towards dorsal neural tube and neural crest development (Figure 2A,
163 Figure S3C). Neural crest induction was further verified by the presence of TFAP2A™
164 populations that marked the neural plate border formation at PAX6" dorsal neural tube regions
165 and preceded the generation of a SOX10" neural crest migrating stream (Figure 2H). During
166 migration, neural crest follows cells fate decisions that lead to sensory - autonomic bifurcation
167 when mapped to mouse trunk 9.5 neural crest'”’ ( Figure S3C). Similar to the gastrulation stage,
168 we noticed that in comparison to 2D differentiation approaches® BMP inhibitor LDN193189
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169 (0.5nM) in GLMs did not inhibit lateral plate mesoderm development. Consequently, ventrally,
170 lateral plate mesoderm during the second week of GLM development differentiates towards
171 cardiac field, expressing HANDI, HANDZ2, MEIS2, GATA3, GATA4, and limb bud initiation,
172 expressing FGF10, SHOX2, PRRX2, PRRXI, HGF trajectories (Figure 2A, Figure S3A), while
173 after the second week only towards limb bud mesenchymal trajectory, PRRX1, PRRX2, TWIST]I,
174 TWIST?2, that undergoes maturation and expresses osteogenic markers, OGN, POSTN, as well as
175 establishes fibro-adipogenic progenitors, PDGFRA", PDGFRB", able to enter adipogenesis
176 (Figure 2A, Figure S3A,4G-I). Applying the Semi-supervised (SCANVI) deep learning model
177 to human embryo, at stages following gastrulation''*'"!, CS10-CS16, demonstrates medio-lateral
178 and proximal-distal development for LPM (lateral plate mesoderm) within GLMs, as GLM
179 derived limb bud exhibits forelimb axial anatomical identity, in comparison to GLM derived
180 endothelial cells and cardiac LPM, that exhibit visceral and trunk anatomical identity
181 respectively (Figure 2K,L).

182

183 Endodermal trajectory is directed towards anterior fore-gut endoderm development by
184 establishing SOX17, SOX2, KRTS8, GATA6, SHH and FOXA2 populations, an expression
185 profiling that corresponds to early pulmonary endodermal specification®® (Figure 2A,LJ,
186 Figure S3A,F). Surrounding the SOX17* endodermal, and in the proximity of GATA6" lateral
187 plate mesodermal populations, between the 2™ to 3™ week, we could detect tubular structures at
188 the periphery of GLM ventral development, expressing PAX2, PAXSE, OSR1, OSR2, WT1
189 markers, a clear indication of intermediate mesodermal identity (Figure 2A,I, Figure S3A,B,F).
190 Paraxial mesodermal trajectory undergone somitogenesis, where from a primitive steak stage and
191 through nascent and emergent mesoderm formation, directed its differentiation towards posterior
192 presomitic mesoderm (pPSM) that via a determination front (DF) state, LFNG, RIPPLY2,
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193 somitic mesoderm (S) emerged (Figure 2B). Culture conditions directed the paraxial
194 mesodermal trajectory towards hypaxial myogenesis and the generation of MET*/PAX3"SOX10r
195 migration stream lateral to the gastrulating GLM structure (Figure 2C). Spatial transcriptomics
196 and single cell expression profiling highlights hypaxial myogenesis distal to GLM gastrulating
197 structures and an expression profiling of PAX3"/cMET" myogenic progenitors that co-express
198 LBX1, PITX2, CXCR4, Ephrin A5 and FGFRI1 receptors, thereby indicating susceptibility to
199 potential limb bub mesenchyme guidance signals influencing hypaxial myogenesis’' (Figure
200 2C,D, 3D). Integration comparison to developing human embryos following gastrulation, stages
201 CS12—CS16, demonstrates that GLM derived paraxial mesodermal populations simulate a trunk
202 to limb proximal-distal transition similar to CS7 gastrulating — CS12-CS16 developing embryos
203 (Figure 2E). Upon migration within the matrigel droplet, GLM radial / medio-lateral
204 development does not correlate anymore to craniocaudal or ventro-dorsal axis, but rather
205 simulates medio-lateral and proximal distal axis during embryogenesis. Mapping of single cell
206 expression profiling derived from human CS12-CS16 embryo''' and GLMs at Day 19 to spatial
207 transcriptomic data from Dayl19 GLMs, further demonstrates craniocaudal axis development on
208 the GLMs dorsoventral axis, as its dorsal portion that harbors neural crest development simulates
209 head-upper trunk development, while its ventral harboring LPM, paraxial and endoderm
210 development simulates trunk, limb and viscera development (Figure 2F,G, Figure S3F,G).

211

212 Lateraloid to Musculoid transition signals embryonic to fetal myogenic transition

213 The benchmark and novelty of GLM as a culture system is its ability to harbor migration events
214 following dorsal neural tube, paraxial and lateral plate mesoderm formation. At all stages post
215 initial patterning, we attempted to favor skeletal muscle lineage through constant HGF

216 stimulation that compensates the absence of lateral plate mesoderm in musculoids at intervals

9
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217 associated to stages that musculoid culture grew beyond the initial matrigel droplet, past 35-42
218 days of GLM development. Spatial transcriptomic on Day 35 demonstrates reproducibility
219 between different musculoids, with presence of neural/neural crest and limb bud mesenchymal
220 trajectories, while the skeletal muscle trajectory spatial transcriptomics and
221 immunocytochemistry pictures indicate presence at the periphery of developing musculoids
222 (Figure 3B, Figure S4B). Embryonic myogenic progenitors, PAX3"/cMET", in close proximity
223 to GLM-derived trunk structures, exhibited migrating potential, presenting with uncommitted
224 (MYOD1") and up-regulated HOX genes cluster expression profiling related to forelimb bud
225 identity (Figure 3D,E, Figure S4A). Along this migration stream, embryonic PAX3 myogenic
226 progenitors triggered the fetal program and co-expressed PAX7 (Figure 3A, Figure S4A).
227 Spatial mapping to human fetal reference atlas indicates embryonic to fetal myogenic transition
228 in a radial outwards direction, with fetal stages occurring at the edge of matrigel droplet (Figure
229 3B, Figure S4C). Differential expression and gene regulatory analysis between embryonic/fetal,
230 PAX3"/PAX7", and fetal, PAX7", populations indicated that during the embryonic fetal transition
231 myogenic progenitors ceased proliferation, prolonged their G1 phase and up-regulated
232 expression of extracellular matrix (ECM) proteins and proteins associated to fetal program,
233 myogenic maturation and satellite cell response, e.g. KLF4, FOXO3, NFIA, NFIX, EGR1, EGR2
234 and EGR3 (Figure 3E, Figure S6B,C). Likewise, PAX3+ myogenic progenitors during human
235 and mouse embryonic fetal development under the influence of developing mesenchyme adapted
236 strong anatomical identity, while during the embryonic fetal transition, fetal progenitors ceased
237 proliferation, entered a prolonged G1 phase and up-regulated ECM expression (Figure
238 S4F,S5B,C.E,ILK,J). To quantitatively assess the anatomical identity (“anatomical score”) and
239 myogenesis onset (“myogenesis score”) of myogenic progenitors during human, mouse and
240 musculoid skeletal muscle development, we calculated an anatomical and myogenesis score,

10
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241 where we took the expression levels of HOX genes and markers related to fetal myogenesis in
242 individual cells into account (Table S2, methods). Scatter and spatial transcriptomic plots from
243 human fetal developing limbs and GLMs, demonstrate anatomical scores for embryonic
244 myogenic progenitors and myogenesis scores for fetal/postnatal muscle stem cells, while during
245 growth phase the anatomical score is downregulated from areas where skeletal muscle develops
246 (Figure 3C,D, Figure S4E,F,K,J, S5H, Table S2).

247

248 Next, we examined whether musculoid-derived myogenic progenitors were able to surpass the
249 embryonic fetal transition “barrier” stage™ and further maturate. Utilizing semi-supervised deep
250 learning (SCANVI) model to map embryonic (Day 19) and 5™ week musculoid- derived
251 myogenic progenitors into the human embryonic to fetal reference atlas, we demonstrate
252 maturation beyond the embryonic fetal transition and generation of a pool of myogenic
253 progenitors with fetal identity (Figure S4D). This deep learning model accurately predicts the
254 PAX3/PAX7 transition by correlating musculoid derived PAX3" progenitors to 5™ week,
255 PAX3"/PAX7" progenitors to 7" week and PAX7" progenitors to 9" week of human fetal
256 development (Figure S4C,D). Moreover, gene regulatory network analysis verified that during
257 the 8" week myogenic progenitors further up-regulated NFIX, KLF4, PAX7, MYF5 and entered
258 the fetal program (Figure S6A-C).

259

260 To evaluate myogenesis spatiotemporal development in musculoids, we applied principal graph
261 learning on PCA space to reconstruct a differentiation tree using the scFates pipeline®®”’.
262 Linearity deviation assessment indicated linearity with low deviance (bridge populations) for top
263 ranking genes (deviance <(0.024) and continuity on musculoids curved trajectory. From an

264 anterior primitive streak and posterior presomitic/somitic state, musculoids established an

11
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265 embryonic myogenic progenitors migration stream and promoted fetal maturation (Figure 3H).
266 Differential expression and gene regulatory network analysis along pseudotime reveals forelimb
267 pattering, e.g HOXA9, HOXB9, HOXC9 at presomitic (TBX6) and somitic
268 (PAX3,FOXCI1,FOXC2, TCF15) level, while upon hypaxial migration (LBX1,MET,MEOX2)
269 level, we could detect progression till the stylopod level with HOXA10, HOXC10, HOXA11
270 upregulation (Figure 4H, Figure S4M). Following that level PAX3 myogenic progenitors
271 ceased patterning, underwent embryonic to fetal transition, generated musculature and maturated
272 till late fetal stage with MYF5, CD44, VEGFA and ECM related genes upregulation (Figure 4H,
273 Figure S4M,N). At this stage, PAX7 myogenic progenitors positioned at the periphery of
274 musculature and interacted with underlying myofibers via M-Cadherin, while by expressing
275 CXCR4 they were still susceptible to attractive cues from their environment (Figure 3A,LL).
276 Human skeletal muscle trajectory exhibits similar behavior by upregulating gene ontology terms
277 related to vasculature development and ECM organization at late fetal/adult muscle stem cell
278 stages (Figure S5D,E).

279

280 Pseudotime analysis on gene regulatory networks (GRNs) and expression profiling during
281 mouse, human and musculoid embryonic to fetal myogenic development, further indicates
282 mesenchymal to myogenic developmental program and niche transition for myogenic
283 progenitors, as we could detect N-Cadherin downregulation and M-Cadherin upregulation as
284 differential expressed genes along myogenic progenitors’ developmental trajectory (Figure 3J,
285 Figure S4F,S5I). We could further verify M-Cadherin expression on fetal myogenic progenitors
286 and myofibers during fetal myogenesis occurring at the periphery of musculoids cultures (Figure
287 3A.I). On musculoids, fetal myogenesis onset occurred during 5" week, on mouse forelimbs

288 within E12.0 - E13.0 stage while in human hind-limbs during 7" week of fetal development. At
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289 all cases, myogenesis followed limb patterning. This phenotype could also attribute the reduction
290 on proliferation for fetal myogenic progenitors in a niche dependent manner, but more
291 importantly sets an onset as structure and organ formation for the skeletal muscle system during
292 development (Figure S5E,LJ). Force-directed k-nearest neighbor graph analysis demonstrated a
293 dependent loop between myogenic progenitor maturation and commitment along embryonic-
294 fetal stages. We could describe the presence of a skeletal muscle commitment trajectory that
295 influences myogenic progenitor maturation during embryonic-fetal transition, as well as a
296 secondary skeletal muscle commitment trajectory from myogenic progenitor mature stages that
297 sustains skeletal muscle niche environment for myogenic progenitors during their growth phase
298 (Figure 3K,N, Figure S6K)

299

300 Next using semi-supervised deep (SCANVI) learning classification and developmental score
301 analysis we demonstrate that musculoid trajectory is equivalent to the human myogenic reference
302 trajectory (Figure 3F, Figure S6D). We further verified through gene regulatory network
303 analysis and deep learning (SCANVI) model that musculoid myogenic progenitors established a
304 pool of progenitor cells with an identity between the fetal to adult stage (Figure 3G,H, Figure
305 S6A,B). Pseudotemporal progression on myogenic progenitors indicated an absence of
306 committed markers, such as MYOD1, MYOG and MYH3 (Figure 4A), and further verified this
307 “mosaic” profile, e.g. KLF4, CD44, CD82 and NFIX, between fetal and adult satellite cell
308 markers on the 12" week myogenic progenitors. At this stage, Myf5 expression on mouse fetal
309 myogenic progenitors establishes the developmental progenitors of adult satellite cells®, a
310 behavior that was observed during musculoid pseudotemporal trajectory and gene regulatory
311 network analysis (Figure S6C). Subclustering on myogenic progenitors indicated that they
312 reside in the activated, resisting specification and mitotic states. Progenitors in an activated,
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313 CD44", JUN", FOS®, undifferentiated state formed the main pool responsible for culture
314 progression and bulge formation (Figure S6E,H,LJ). Intercellular communication analysis
315 indicated that late fetal musculoid derived myogenic progenitors were under the influence of
316 NOTCH, laminin and collagen signaling. For those signaling pathways, inferred outgoing
317 communication patterns suggested the mitotic and resisting cluster as the main secreting source
318 and the activated cluster, through inferred incoming communication patterns, as their target
319 (Figure S6F,G). Manifold and classification learning analysis of signaling networks indicated
320 functional similarity in activated and resisting specification cluster-related signaling pathways,
321 further suggesting that these pathways exhibited similar/redundant roles in the fate of myogenic
322 progenitors (Figure 30). During musculoid development, ECM expression appeared on
323 myogenic progenitors first during the embryonic to fetal transition, followed by strong up-
324 regulation at more mature stages in the 12" week (Figure 3M). In human development similar
325 appears during the late fetal stage (17" -18"™ week) and was also observed in mouse satellite cells
326 during regeneration'®” and in human satellite cells (Figure 41, Figure S7).

327

328 In vitro derivation and characterization of late fetal muscle stem cells

329 We further verified through semi-supervised deep learning (SCANVI) modelling to human
330 reference skeletal muscle atlas that musculoid myogenic progenitors from different lines exhibit
331 high reproducibility (Pearson correlation, p=0.93-0.96), and establish a pool of progenitor cells
332 that express the core program of late fetal muscle stem cells, with an identity between the fetal
333 to adult stage (Figure 4A, Figure S6L). Next, we speculated that if our system truly harbors the
334 derivation of fetal muscle stem cells, we would be able to long-term propagate them in an
335 undifferentiated expanding state, since the default program of fetal muscle stem cells is to exhibit
336 properties of resisting specification in cell autonomous manner®. Strikingly, in two cases, one
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337 upon dissociation and sorting/re-plating CD44, CD82 populations of the initial musculoid culture
338 post 56 Days and, secondly via spontaneous detachment of myogenic progenitors from the initial
339 musculoid culture (3D) followed by monolayer propagation in musculoid maturation medium,
340 we were able to sustain them in an uncommitted, undifferentiated state for at least 10 passages
341 (approx. 100 days) in two dimensions. In the second case, together with myogenic progenitors
342 (n=4037 cells, 73,82%), neural stem cells, (PAX6, SOX2, ASCLI1-positive) were present in the
343 culture but upon long-term propagation accounted only for a small fraction of the culture (n= 696
344 cells, 12,72%)(Figure 4C). Characterization via FACS quantification indicates sustainable
345 propagation for CD44, CD82 and PAX7 myogenic populations, with 60% of the total population
346 to account for PAX7" myogenic progenitors (passage #10) (Figure 4H, Figure S8B). Similar
347 results are observed on the immunocytochemistry level at different passages for PAX7 and
348 MYOD1I-positive populations (Figure 4F, Figure S8D,E). Trichrome staining verifies ECM
349 production on myogenic progenitors from that stage, a trait highly-associated with specification
350 resistance (Figure 4J).. This observation was further verified by investigating their expression
351 profiling at single cell resolution. RNA velocity analysis on myogenic progenitors propagated for
352 100 days (passage #10) highlights low rate of differentiation for myogenic progenitors and
353 trajectories related to self-renewal, activation/regeneration and commitment (Figure 4C).
354 Investigation on myogenic progenitor differentiation potential and cell fate probabilities using
355 Palantir algorithm indicates that from a self-renewal state, CD44", ECM", NOTCH" signalling
356 upregulation, the pool of progenitors enter an activation regeneration state,CD44",
357 FOS", VEGFA", that leads to commitment, MYH3",MYOG", while self-renewal, activation states
358 excludes cell fate probability towards commitment (Figure 4C,D, Figure S8H). Cell-cell

359 communication analysis on musculoid derived myogenic progenitors expanded in 2D, further
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360 indicates cross-talk between myogenic progenitors states and self-regulation during specification
361 resistance via NOTCH, laminin and collagen signaling pathways (Figure S8F,G).

362

363 Next, we investigated the cell cycle state of myogenic progenitors propagated in 2D via FACS
364 and immunocytochemistry based EdU proliferation assay (overnight, 18hr). Strikingly, we could
365 detect 23.3% + 0.77 s.d of the cell population residing in G1 phase, predominantly presence of
366 myogenic progenitors (SOX2"), while the majority of the cells reside in S phase (59.68% = 0.97
367 s.d), and a small fraction (10.96% = 1.24 s.d) to be multi-nucleated myotubes (Figure 4G,
368 Figure S8A,B). Consequently, myogenic progenitors via ECM upregulation were not only able
369 to resist specification, but also to reside in a dormant non-dividing state. Trajectory analysis
370 based on semi-supervised SCANVI deep learning model to human skeletal muscle reference
371 atlas further highlights, similar to musculoid derived (3D, Day84), late fetal to adult muscle
372 satellite cells (MuSCs) identity (Figure 4E). Differential expression analysis between musculoid
373 derived fetal myogenic progenitors and fetal myogenic progenitors expanded in 2D for 10
374 passages (100 days) highlight high similarity (Pearson correlation, p=0.89) with both expressing
375 the core program, ECM', MYF5",NFIX", KLF4",NCAM1", MET', EGFR", from late fetal muscle
376 stem cells (Figure 4I).

377

378 Next we sought out to investigate whether our system establishes the developmental pool of
379 adult muscle stem cells and whether adult and fetal populations share common properties. Since
380 the musculoid approach simulates a constant skeletal muscle stem cell activation process,
381 comparison should be made with a system that simulates an ongoing degeneration environment
382 and promotes adult MuSCs activation, such as degenerative myopathies. To achieve this, we

383 generated filaminopathy (FLNC) patient derived hiPSC lines and compared myogenic
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384 populations derived via the musculoid approach and those from corresponding patient biopsies
385 suffering from a degenerative myopathy associated with FLNC aggregate formation™. Profiling
386 skeletal muscle biopsies at single cell resolution (Figure S9A,B,D,E) and integrative
387 comparison to human nuclei skeletal muscle reference map (Figure S9G), indicated an ongoing
388 inflammation, with high upregulation of RUNXI1, KLF6, LYVE] on immune system related
389 clusters (Figure S9H). Cell-cell communication analysis demonstrated in a less severe case
390 (p-Q1662X Biopsy), interactions between fibro-adipogenic progenitors, regenerating myofibers
391 and immune clusters, while in a more severe case (p.Y2704X Biopsy), associated with increased
392 fibrosis and proportion of immune cells, interactions only between fibro-adipogenic progenitors
393 and immune system related clusters ( Figure S9C,F,G). Furthermore, the higher proportion of
394 satellite cells in comparison to reference atlas and upregulation on gene regulatory networks,
395 such as JUN, FOS and RUNXI1, indicated an active regenerative state for MuSCs (Figure S9I).
396 Consensus clustering between p.Y2704X and p.Q1662X adult muscle stem cells indicates clear
397 separate assignment for adult muscle datasets, while differential expression matrix for each
398 cluster highlights presence of a cluster associated with myogenic commitment and active
399 regeneration predominantly of the p.Q1662X Biopsy (Figure S10F). Deep learning SCANVI
400 model indicates musculoid progenitors as late fetal (week 18) but interestingly indicates FLNC
401 satellite cells with a mosaic late fetal and adult identity (Figure 4B). This observation led us to
402 in-depth investigate the dynamics present within both populations. Integrative and differentiation
403 expression analysis between musculoid derived fetal myogenic progenitors and adult muscle
404 stems cells from corresponding biopsies highlight high similarity (Pearson correlation, p=0.84)
405 with both expressing the core MuSCs program, ECM, MYF5 NFIX, KLF4, NCAM1, MET, EGFR
406 (Figure 4I). This indicates default states for adult and fetal muscle stem cells related to
407 specification resistance and regeneration potential. GRN network analysis indicates that adult
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408 p.Q1662X and pY2704X MuSCs within a degeneration environment upregulate the transcription
409 factor RUNX1, a myogenic state, PAX7"/RUNX1", that within musculoid culture corresponds
410 to myogenic commitment and concludes to myogenic  differentiation for myogenic
411 progenitors(Figure S10E)., Hence, musculoid culture reassembles differentiation dynamics
412 similar to in vivo states and serve as a platform to investigate the skeletal muscle stem cell
413 activation process within a regenerating environment.

414

415 We reasoned that during ongoing regeneration in both systems, the niche environment for adult
416 muscle stem cells and musculoid myogenic progenitors should be mainly the adjacent myofibers.
417 Receptor - ligand analysis using NucheNet'* to infer ligand-receptor interactions between control
418 and p.Y2704X, p.Q1662X FLNC skeletal muscle biopsies, and to detect expression of
419 downstream target genes within the MuSCs, indicates presence of the MuSCs receptor repertoire,
420 FGFR1, EGFR, NCAM1, ITGB1,MET, CDH15, NOTCH2, NOTCH3, and upregulating TGFB1
421 ligand activity on p.Y2704X, p.Q1662X FLNC skeletal muscle biopsies, a pathway that is
422 described to promote cell cycle arrest and quiescence on adult MuSCs™*°, and during muscle
423 regeneration in mouse model'” (Figure S7G, S10C,D). Thus, niche environment at the biopsy
424 level promotes a quiescent dormant state for MuSCs populations upon activation. On the
425 contrary, receptor - ligand analysis between control and p.Y2704X, p.Q1662X FLNC musculoid
426 derived regenerative myofibers and myogenic progenitors, highlights upregulation on BMP7 and
427 IGF2 ligand activity, pathways described to regulate muscle growth and the generation of the
428 adult muscle stem cell pool”, a trait of an active regenerative state in our system able to support
429 the growth phase of the embryo (Figure S10A,B). Reactome'® and gene ontology analysis on
430 deferentially expressed genes between biopsy and GLM derived muscle stem cells highlights
431 significant upregulation of markers (Table S4) associated with myogenic commitment on adult
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432 muscle stem cells and markers associated to ECM, cell cycle for fetal muscle stem cells. This is a
433 clear distinction of the function between these sub-types during development, one to contributing
434 to immediate muscle repair during postnatal stages and the other to growth during fetal
435 development. (Figure S10F,G).

436

437 Musculoids provide a developmental model of human hypaxial myogenesis that involves
438 presence of variety of lineages and states at early stages, with secondary myogenesis occurring
439 only at the periphery of the structure. Thus, at ultra-structural level, we detect functional
440 sarcomeres on myotubes at random orientation”’ (Video S1). To counteract this limitation, we
441 sorted CD82 positive musculoid derived myogenic progenitors and re-plated them onto Matrigel
442 droplets (Figure 4K, 300 cells per droplet). Interestingly, upon expansion and maturation we
443 could establish myofiber networks that harbored synchronous contractions and contained mature
444 aligned sarcomeres with presence of T-Tubules and triad-like structures (Figure 4K, Video S2).
445 Isolating CD82" myogenic progenitors from infantile and late onset Pompe lines at musculoid
446 levels, followed by terminal differentiation, we could describe an early disease phenotype at
447 myotube level by detecting significant glycogen accumulation via PAS immunocytochemistry
448 staining and quantitative glycogen assay, when compared to wild type control line (Figure
449 S11B). In Morbus Pompe, a metabolic disease characterized via glycogen accumulation at the
450 skeletal muscle level, it is reported in human patients and in mouse models that MuSCs maintain
451 regenerative capacity but fail to repair disease-associated muscle damage, and it remains an open
452 question whether the absence of an activating signal or the presence of an inhibitory factor from
453 the niche environment contributes to this phenotype™™®. Using our musculoid approach to
454 model muscle regeneration in infantile (IOPD) and late (LOPD) onset Pompe lines, we profiled
455 both onsets at single cell resolution, where myogenic progenitors expressed the core fetal muscle
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456 stem cell program (Figure S6L, S11A). Interestingly, receptor - ligand analysis to infer ligand-
457 receptor interactions between control and infantile or late onset skeletal regenerating myofibers
458 and myogenic progenitors, highlights TGFBI ligand activity on LOPD and IOPD myogenic
459 progenitors during regeneration (Figure S11C-F), a pathway that promotes quiescence upon
460 activation on adult and mouse MuSCs. Thus, this phenotype resembles the alterations of
461 regenerative capacity, by affecting the transient amplification of MuSCs following their
462 activation, but not on the pool of MuSCs of Pompe patients.

463

464 Discussion

465 In summary, we report here a robust three-dimensional in vitro organoid model of skeletal
466 muscle organogenesis at forelimb level of human development using human PSCs. At the
467 gastrulation stage, GLMs exhibit spatiotemporal organization (Figure 5C) and establish
468 developmental trajectories for skeletal muscle, neural crest, lateral plate mesoderm and fore-gut
469 endoderm lineages. GLMs, as a culture system uniquely model migration events along the
470 medio-lateral and proximal-distal axes for lineages that shape body patterning during
471 embryogenesis, while when comparing to the human developing embryo their patterning is
472 equivalent to Carnegie Stage CS 13/14 (Figure 5). Continuous SF/HGF stimulation simulated
473 culture conditions that during embryogenesis control the migration of hypaxial precursors from
474 the dermomyotomal lip into the limb bud®, thereby allowed us to promote skeletal muscle
475 lineage patterning and maturation until the 18" week of human fetal development.

476

477 In GLMs and during human and mouse limb development, the embryonic to fetal transition for
478 myogenic progenitors coincided with transition for their niche environment, that was further

479 associated from mesenchyme to myofiber development. In a mouse model, it is reported that
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480 only embryonic myoblasts express a Hox code along the antero-posterior axis®'. Here we further
481 describe that during human and mouse fetal limb myogenesis and the musculoid hypaxial
482 migration stage, the cMET/PAX3 myogenic progenitors under the influence of mesenchyme as
483 their niche environment, upregulated gene regulatory networks related to axial anatomical
484 identity and were mitotically active. Following the embryonic to fetal myogenic transition, the
485 PAX7 fetal myogenic progenitors, by switching their niche environment to myofibers, are
486 characterized by ECM upregulation, prolonged G1 phase and downregulation of HOX gene
487 expression. In line, replacing PAX3 with PAX7 gene in mouse embryos caused detrimental
488 deficits at the stage of migration and proliferation for myogenic progenitors and lead to severe
489 musculature defects in a proximal — distal manner at later stages®.

490

491 During embryogenesis, this transition ideally correlates with the end of patterning and the start of
492 growth for a specific region along the proximal distal axis during human limb development, a
493 developmental process that would require potent myogenic progenitors able of resisting
494 specification and promoting self-renewal. In a growth model for myogenic transition, PAX3
495 myogenic progenitors at the hypaxial migration stage should first position within the fore/hind-
496 limb (E10.5 — E12 in mouse, 5" week to 7" week in humans), followed by embryonic to fetal
497 myogenic transition. Such model would require an early axial anatomical identity specification
498 followed by an ability for PAX7 myogenic progenitors to resist specification in a cell
499 autonomous manner and still be able to respond to guidance signals from their surroundings.
500 Consequently, myogenic progenitor maturation could be divided into two stages during fetal
501 development. One where they abolish their embryonic identity (axial/anatomical specification)
502 and a second where via musculature interaction they maturate and unlock their late fetal/ adult

503 stem cell identity.
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504

505 Bio-engineering approaches that simulate myofibers niche environment succeed to preserve
506 short-term quiescence of adult muscle stem cells but fail to promote long-term expansion®, while
507 2D and 3D hiPSCs myogenic differentiation approaches by mimicking development generate
508 myogenic progenitors®>*#0>0067857 wrofiled with an upregulated anatomical embryonic
509 developmental program (Figure S12), a myogenic state that is associated with the embryonic-
510 early fetal transition stage and is characterized as the developmental barrier for in vitro
511 differentiation approaches™. To date, in a proof of concept study’®, only in vivo matured human
512 PAX7 myogenic progenitors, following engraftment into immunodeficient mice, surpass the
513 embryonic-fetal barrier, supporting our claim of advanced in vitro maturation in our organoid
514 system. Here, we demonstrate that musculoid culture, under minimal conditions, establishes and
515 promotes maturation of late fetal myogenic progenitors which are further associated with long-
516 term in vitro expansion, self-renewal and specification resistance. Furthermore, musculoids’
517 radial extension uniquely facilitates the distinction between each developmental stage of
518 myogenic progenitors (Figure 5D).

519

520 Altogether, GLMs succeed to reassemble the in vivo skeletal muscle environment at all
521 developmental stages of human fetal myogenesis at forelimb level and are able to promote in
522 vitro PAX7" myogenic progenitor maturation, which are able to resist specification in a cell
523 autonomous manner (Figure 5E). In conclusion, our culture system presents i.) a novel and
524 detailed organoid developmental model for investigating mechanisms of human skeletal muscle
525 organogenesis, ii.) for the first time the in vitro derivation of fetal muscle stem cells and iii.)
526 provides new insights on disease onset and mechanisms for congenital muscular dystrophies and

527 on neural crest, lateral plate and fore-gut development following gastrulation.
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802 Figure 1 Gastrulation and mesodermal lineage segregation at early stages of GLM
803 development (A) Scheme depicting cytokine composition and GLM spatiotemporal
804 development of the corresponding lineages along the major body axes. Bright-field and
805 immunocytochemistry images illustrating histological key stages of GLM development
806 simulating gastrulation in a dorsoventral plane. Dorsal/central portion is composed of
807 NANOG'/SOX2" epiblast populations, that ventrally undergo gastrulation, GSC"/TBXT"
808 populations, and generate SOX17 endodermal populations. Scale Bar: 500um, 50uM in a’(B)
809 Following gastrulation at Day7 continuation of the CHIR99021, LDN198189, bFGF and Retinoc
810 acid stimulation leads to antero-posterior axis formation at GLMs dorsal part, via expansion of
811 neuro-mesodermal progenitor (NMPs) derived at Day2. The core consists of epiblast,
812 gastrulating populations, and (C) the surface from NMPs (SOX2"/TBXT") simulating tail bud
813 and body axis elongation. (D) Immunocytochemistry pictures illustrating somitogenesis at dorsal
814 location via NMP trajectory and at ventral location following gastrulation and mesoderm
815 segregation. Scale Bar: 200um,100uM in d” (E) Regulon score specificity (RSS) at neural cluster
816 highlights HOX GRNs upregulation together with NMP specific NKX1-2 Regulon. (F) Single
817 cell expression profiling (UMAP) at Day 7 indicates ongoing gastrulation and derivation of
818 mesodermal, ectodermal and endodermal populations. RNA velocity analysis on force directed
819 graph embedding indicates from a primitive streak state mesodermal lineage segregation towards
820 lateral plate and paraxial mesodermal trajectories. (G) Examining differentiation potential and
821 cell fate probabilities during mesodermal segregation using Palantir algorithm. Gene expression
822 trends for primitive streak, NKXI-2, TBXT, nascent pre-somitic mesoderm (pPSM), TBX6,
823 HES7, MSGNI, somitic, FOXCI, TCF15, MEOXI and LPM, FOXF1, GATA6, HANDZ2, markers.
824 Trends are colored based on lineages presented in Fig.1d, Shaded region represents 1 s.d. (H)

825 Immunocytochemistry picture at Day 2 at gastrulation plane during GLM development depicts at
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826 the core progenitors with axial mesodermal identity FOXA2"/GATAG6, surrounded at the
827 periphery from mesodermal, FOXA2"/GATAG6", and endodermal, FOXA2"/GATAG6" populations.
828 Scale Bar: 500um. (I) Immunocytochemistry picture at Day 5 at level ventral to gastrulation
829 plane during GLM development depicts bipotent with emerging mesodermal identity
830 progenitors, TBX6/GATAG6", together with progenitors of lateral plate mesoderm, GATAG6",

831 and of paraxial mesoderm, TBX6", origin. Scale Bar: 200um.

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

847

848
849
850
851

852

36


https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B Somitogenesis C Hypaxial Myogenesis
TBXT B PA
® Gastrulation -Mesoderm S50X2
Hypaxial M, ks 3
axial Myogenesis
vp vog FGF17 10 ke
® LPM - Cardiac rere Within Matrigel
o LPM- Limb Bud Mo s fos
e Lung Progenitors EBL){? a
. DLL. S Pos
Neurolation MESP1 &
MESP2
FOXC1 S [fos
OXC, o
RIPPLY1 ]
RIPPLYZ < |loz
LFN
ALaﬁf%fé Medlio - Lateral
g MEOX2 o0 Day > 21 Axis
= oz
FA1
SIX1
n= 55778 cells .
SIX4 E Lateraloids
PARAXIS L o M A Nomoo
Gastruloid - 1% week Lateraloid - 2" week Lateraloid - 3° week Cluster ID m @ 5:: '5: rg' r§ ’B:: ’S
Q Q Q Q Q Q
- M M
A Average Expression T Head
g4 3 D - = s 7
0.0 max { | r Viscera |
Lateraloid - 5" week Lateraloid - 8" week Musculoid - 12" week t ] Limb Viscera o
Musculoid 5 || csio g
P lusculoi P I T 1 Viscera / | )
i, e 7 B ] [ 1 Lower Trunk 0
L 1 Head / Q
e = 512
e £ 1 Upper Trunk ¢ 3
o 8 T &
&[] embryocsy S
c T cs 8
< Embryo C510 13-14
Dorsal Neural Tube
® RoofPlate Limb cs
Neural Crest Trunk | 15-16
@ Sensory Neurons
Hypaxial Myogenesis Prediction Score Assignment Score (%)
® Limb Bud I |
® Cardiac LPM 00 02 04 06 08 0 20 40 60 80
M LPM
® Lung Progenitors H

@® Head

Head - Upper Trunk ® Viscera

Lower Trunk

Trunk Limb - Viscera K
Viscera - Lower Trunk @ Limb o Splanchnic LPM Prediction Score
E5  somaticLem S—
. gk ) 0.0 05 1.0
Intermediate Mesoderm ~ E Limb
Foregut Endoderm t5 & S P e fesenment Seore ()
g E. 3(4\'4) ’d(‘\}g 6\0% a2 ((\“% A2 Q‘(\‘(\Z‘\\) |
Q S % N | \ i
0 (P(éo"ﬂ (P&o'ﬁ W Oﬁi X 0?’4‘ 50 100
Lateraloids
L 1
! e ® Limb
' en N
Dissection Part a0 Somatic
Vo8 g
® Limb LES LPm
Limb 7 Vi U8 Splanchnic
aenitors imb / Viscera 3 LPM
L P it ® Trunk \
n (i NItor.
L. _g ogenitors Viscera ‘\
g . !
e 3 ° Viscera /

Developmental System

® Endothelium
Cardiac LPM Day19
Cardiac LPM Day13
® Limb Bud Dayl3

® Limb Bud Dayl9

Lateraloids
°



https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

854 Figure 2 Lineage spatiotemporal development following gastrulation along the medio-
855 lateral axis-Lateraloids (A) Force-directed k-nearest neighbor graph on 55.778 cells at Day 7,
856 Day 13, Day 19, Day 35, Day 56 and Day 84 and RNA velocity analysis indicating lineage
857 progression following gastrulation along skeletal muscle, neural crest, dorsal neural tube, fore-
858 gut endoderm and lateral plate mesoderm (cardiac field and limb bud mesenchyme)
859 developmental trajectories. Feature plots highlight lineage representation at each stage. (B)
860 Pseudotemporal ordering of cells related to somitogenesis clusters revealed gene dynamics from
861 a tail bud /PS state, e.g. NKXI1-2, TBXT, FGF17, CDX2 that via posterior presomitic mesoderm
862 (pPSM) e.g. MSGNI, TBX6, HES7, MESP2, and determination front formation,e.g. RIPPLY2,
863 LFNG, ALDHIA2, promoted somitic mesoderm formation, e.g PAX3, EYAI, SIXI, PARAXIS.
864 PS: Primitive streak, NS: Nascent mesoderm, EM: Emerging Mesoderm, PM:Paraxial
865 Mesoderm, S: Somitic Mesoderm (C) Immunocytochemistry pictures on PAX3, SOX10, cMET
866 markers at stages post Day 21 of GLM development, depict migration waves simulating hypaxial
867 myogenesis along the medio-lateral axis for skeletal muscle lineage. Scale Bars: 500 um in c,
868 200 um in c’. (D) Spatial feature plots at Day 19, on LBXI, PAX3, cMET and MEOX2 markers
869 indicate migration waves distal to the initial GLM core structure (dashed lines) simulating
870 hypaxial myogenesis migration. (E) Heatmap with percentage of certainty and assignment score
871 from GLM cells along the hypaxial myogenesis trajectory from somite till migration stage upon
872 unbiased mapping to the in vivo counterpart, Human Carnegie Stage (CS7- CS16) embryos. (F)
873 Mapping of single cells from Day 19 GLMs and human CS12-CS16 developing embryo (G) to
874 spatial GLM sections. Top section is derived from ventral to gastrulation plane. Bottom section
875 from dorsal to gastrulation plane. (H) Immunocytochemistry pictures at 3™ week of GLM
876 development depicts a section plane that includes a section plane of dorsal neural tube and

877 neural crest development/migration (right). Scale Bars: 500uM, 100uM in h" (I)
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878 Immunocytochemistry pictures at Day 11 of GLM development depicts a section plane lower to
879 gastrulation that includes SOX17" fore-gut endodermal populations, surrounded from cells,
880 WTI/PAX2", with intermediate mesodermal identity. Scale Bars: 500uM (J)
881 Immunocytochemistry picture at Day 11 depicts organoids at section planes that combine
882 gastrulating/mesodermal (TBXT"), neural (SOX2"), LPM (GATAG6") and fore-gut endodermal
883 populations, pulmonary identity (GATA6" /SOX2"/FOXA2"). Scale Bars: 500uM. (K) Heatmap
884 with percentage of prediction and assignment score from GLM cells along the lateral plate
885 mesoderm (LPM) development upon unbiased mapping to the in vivo counterpart, splachic,
886 somatic and limb LPM derived from Human embryos between CS12- CS16, Carnegie Stages.
887 (L) UMAP plots based on semi-supervised deep learning approach (SCANVI) to map GLM
888 derived LPM at Dayl3 and Dayl9, on human CS12-CS16 LPM fetal reference atlas predicts
889 somatic LPM derivation within GLM with trunk to limb axial anatomical identity.
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903 Figure 3 Lateraloid to Musculoid transition signals embryonic to fetal myogenic transition
904 and recapitulation of skeletal muscle developmental trajectory (A) Images at the edge of
905 matrigel droplet depict embryonic (PAX3) to fetal myogenic transition (PAX7) and skeletal
906 muscle system development. Scale Bar: 50um (B) Mapping of single cells from Day 35 GLM
907 dataset to spatial GLM sections from the same stage indicates reproducibility on neural, skeletal
908 muscle and mesenchymal clusters between different organoids. (C) Spatial feature plots
909 depicting anatomical (HOX genes) and embryonic/fetal myogenic transcription factor scores
910 based on selected genes (D) Pseudotemporal ordering of cells during embryonic, fetal myogenic
911 transition reveals gene and GRN dynamics and highlight an axial/anatomical HOX gene
912 upregulation for PAX3"/LBX1" embryonic and absence on PAX77/NFIX" fetal myogenic
913 progenitors. (E) Differential expression analysis between PAX7 and PAX3/PAX7 clusters
914 highlights prolonged G1 phase, up-regulation of ECM proteins and cell cycle inhibitors in fetal
915 myogenic progenitors. Violin plots depicting cell cycle stage on PAX7 and PAX3/PAX7
916 clusters. Picture depicts hypaxial migration process away from the GLM trunk-like core
917 structure. Scale Bar: 200um (F) UMAP plots based on a semi-supervised deep learning
918 (SCANVI) approach to map myogenic progenitors from GLM derived skeletal muscle
919 developmental trajectory to the human skeletal muscle reference atlas demonstrates in vitro
920 reconstruction till late fetal stages, maturation beyond the embryonic fetal transition stage for
921 musculoid and in vivo matured PAX7 derived myogenic progenitors, while (G) Heatmap
922 depicting the predicted and observed states for musculoid trajectory based on gene networks
923 derived from the human reference myogenic map indicates developmental swift similar to human
924 reference map and the presence of adult muscle stem cell gene networks within musculoids from
925 Day 84. (H) Curved trajectory analysis on PCA space for musculoid skeletal muscle atlas.
926 Pseudotime was calculated, by learning a principal curve on the 2 first PC components using the
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927 EIPiGraph algorithm. Pseudotemporal ordering of cells during musculoid skeletal muscle atlas
928 reveals gene and GRN dynamics and highlight a continuous somitic e.g. FOXCI1, FOXC2,
929 TCF15, to hypaxial e.g. MEOX2, PAX3, LBX1 embryonic state that upon maturation opens fetal
930 /postnatal developmental program e.g PAX7, NFIX, MYF5, KLF4. (I) Musculoid development
931 at mature stages (>Day56) simulates muscle growth at the periphery of the organoid culture
932 (FastMyHC'/PAX7'NEUN" sites). Protrusions , sites exceeding initial matrigel droplet limit,
933 harbor the development of M-Cadherin positive myofibers and PAX7 positive myogenic
934 progenitors at mature stages of musculoid development and muscle growth phase. Scale Bars:
935 100uM, 500um in i" (J) Feature plots based on differential expression analysis between nodes
936 along the musculoid derived curved trajectory, depicts M-Cadherin upregulation (skeletal
937 muscle), N-Cadherin downregulation (mesenchyme) along pseudotime and indicates niche
938 transition for myogenic progenitors. (K) Force-directed k-nearest neighbour graph indicating
939 skeletal muscle trajectories present during musculoid development, one leads to myogenic
940 progenitor maturation and one to myogenic commitment. (L) Histogram illustrating FACS
941 quantification on CXCR4" myogenic progenitors post 8" week during musculoid development.
942 Red histogram: unstained population, green histogram: isotype control, gray histogram: CXCR4"
943 population. (M) Dot plot illustrating expression of ECM-related genes and for genes related the
944 activated, CD44, JUN, FOS, and a mitotic, NOTCH3, TOP2A, MKI67, state across the
945 developmental trajectory on musculoid derived myogenic progenitors. The size of each circle
946 reflects the percentage of cells in a cluster where the gene is detected, and the color reflects the
947 average expression level within each cluster (blue, low expression; red, high expression). (N)
948 DESMIN immunocytochemistry pictures at Day 56 indicate robust skeletal muscle development
949 during GLM derivation. Dashed lines illustrate protrusions that harbor PAX7°CD44" myogenic
950 progenitor maturation. Scale Bar: 500um (O) Jointly projecting and clustering signaling
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951 pathways from 12" week myogenic progenitors into a shared two-dimensional manifold
952 according to their functional similarity. Each dot represents the communication network of one
953 signaling pathway. Dot size is proportional to the total communication probability. Different

954 colors represent different groups of signaling pathways.
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980 Figure 4 In vitro derivation and characterization of late fetal muscle stem cells (A) UMAP
981 plots based on a semi-supervised deep learning (SCANVI) approach to map GLM derived
982 myogenic progenitors from Day84 - Day120 from different lines to the human skeletal muscle
983 reference atlas predicts a maturation state between the late fetal (week 17-18) and adult muscle
984 stem cells (MuSCs) identity. (B) Semi-supervised deep learning (SCANVI) approach to map
985 biopsy derived MuSCs and their equivalent musculoid derived myogenic progenitors, predicts a
986 late fetal (week 17-18) and adult muscle stem cells (MuSCs) identity for both biopsy and
987 musculoid myogenic progenitors. (C) Force-directed k-nearest neighbor graph and RNA
988 velocity analysis on a dataset from 2D expansion (>100 Days, 10 passages) late fetal myogenic
989 progenitors (established at GLM level) and neural progenitors, indicates a pool of fetal
990 myogenic progenitors with a high velocity rate for PAX7, ECM, Notch signaling following three
991 independent trajectories related to self-renewal, activation/regeneration and commitment states.
992 (D) Examining differentiation potential and cell fate probabilities during myogenic progenitor
993 differentiation using Palantir algorithm, excludes bipotent cell fate probabilities, for self-renewal,
994 activation/regeneration and commitment states. (E) Semi-supervised deep learning (SCANVI)
995 approach to map GLM derived late fetal myogenic progenitors followed by 2D expansion (>100
996 Days, 10 passages) predicts a late fetal (week 17-18) and adult muscle stem cells (MuSCs)
997 identity and demonstrates sustainability and self-renewal capability for musculoid myogenic
998 progenitors. (F) Immunocytochemistry picture illustrating PAX7" fetal myogenic and SOX2"
999 neural progenitors , established at GLM level (Day56 -Day 84) till late fetal stage, followed by
1000 100 Days of 2D expansion. Scale Bar: 500um (G) Contour plots illustrating FACS cell cycle
1001 analysis on late fetal myogenic progenitors expanded for more than 100 Days in 2D. Before
1002 analysis cells incubated with SuM EdU overnight (18hr). Immunocytochemistry images indicate
1003 proliferating (EAU/MKI67") and dormant (EdU/MKI67") fetal myogenic progenitors (PAX7"),
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1004 and proliferating neural progenitors (EAU/SOX2"). Scale Bar: 100um (H) Contour plots
1005 illustrating FACS quantification on CD82", CD44" and PAX7" fetal myogenic progenitors
1006 established at GLM level (Day56 - Day84) till late fetal stage, followed by 100 Days of 2D
1007 expansion. Black contour: unstained population, green contour: CD44 FMO control, red contour:
1008 CD82 FMO control, magenta contour: PAX7 FMO control. (I) Scatter plot depicting average
1009 expression of genes between biopsy derived MuSCs and GLM derived myogenic progenitors
1010 from same patients at musculoid level (left, Day 120), and from GLM derived myogenic
1011 progenitors at musculoid level (Day 84) and GLM derived late fetal myogenic progenitors
1012 expanded in two dimension. Selected genes from the late fetal, adult MuSCs core program,
1013 NFIX, MYF5, PAX7, and genes related to specification resistance, NOTCH, ECM, are
1014 highlighted in red. (J) Trichrome staining on late fetal myogenic progenitors, followed by 2D
1015 expansion indicates ECM expression in single cells. (K) Scheme depicting an approach for
1016 expanding CD82" myogenic progenitors on matrigel droplets and promote myofiber maturation.
1017 Immunocytochemistry picture depicts MYH1 and SPECTRIN expression on mature myofibers.
1018 Gating strategy for isolating CD82 pure positive myogenic fetal progenitors from organoid
1019 cultures for subsequent analyses. Scale Bar: 500uM. Ultrastructure images from myofibers after
1020 CD82" myogenic progenitor FACS isolation and expansion on matrigel droplets. Before
1021 sarcomeres exhibit random orientation. Signs of maturity e.g. aligned sarcomeres, presence of
1022 triad like structure and striated plasma membrane are visible following CD82" myogenic
1023 progenitor expansion. m: mitochondria, glyc: glycogen, n:nucleus. Red circles: triad-like
1024 structures. Arrow-head: T-Tubule, arrow: sarcoplasmatic reticulum.

1025

1026
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Figure 5 Gastruloids-Lateraloids-Musculoids (GLM) reassemble skeletal muscle lineage
development at forelimb level (A) A schematic representation of skeletal muscle lineage
development during embryonic/fetal stages at forelimb region (transverse plane) during human
fetal development (B) A schematic representation of skeletal muscle lineage growth during fetal
stages at forelimb region. (C) Scheme explaining lineage spatial arrangement at gastrulation
stage during GLM early patterning (D) A schematic comparison of a typical GLM migration
dynamics (plane view), with key stages and lineage development along the medio-lateral,
proximal-distal axes following gastruloid patterning for muscle organogenesis. (E) Scheme
illustrating a late fetal muscle stem cell and highlighting its main functions on niche remodeling.

resisting specification, guide signals, attachment / generating musculature and attracting

vasculature via VEGFA expression.
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1053 Methods

1054 hiPSCs culture

1055 Human induced pluripotent stem cell (hiPSC) lines, Cord Blood iPSC™, FLNC p.Q1662X,
1056 HIMRi001-A, and FLNC p.Y2704X, HIMRi005-A™7,OPD, HIMRi006-A and LOPD,
1057 HIMRi007-A", Gibco episomal iPSCs (line A18945) and lines described in”” , were cultured in
1058 TESR-E8 (StemCell Technologies) or StemFlex (ThermoFischer Scientitfic) on Matrigel GFR
1059 (Corning) coated 6 well plates. Patient cells were collected at the University Hospital
1060 Bergmannsheil. Ethical approval was obtained from the ethics committee of the Ruhr-University
1061 Bochum, Medical Faculty (15-5401, 08/2015).

1062

1063 GLM differentiation protocol

1064 Prior differentiation, undifferentiated human iPSCs, 60-70% confluent, were enzymatically
1065 detached and dissociated into single cells using TrypLE Select (ThermoFisher Scientific).
1066 Embryoid bodies formed via the hanging drop approach, with each droplet containing 4x10°
1067 human single PSCs in 20 pl were cultured hanging on TESR-E8 supplemented with Polyvinyl
1068 Alcohol (PVA) at 4mg/ml (SigmaAldrich) and rock inhibitor (Y-27632) at 10uM (StemCell
1069 Technologies) at the lid of Petri dishes. The next day, embryoid bodies at the size of 250-300pum
1070 embedded into Matrigel and cultured in DMEM/F12 basal media (ThermoFisher Scientific)
1071 supplemented with Glutamine (ThermoFisher Scientific), Non Essential Amino Acids
1072 (ThermoFisher Scientific), 100x ITS-G (ThermoFisher Scientific), (Basal Media) 3uM
1073 CHIR99021 (SigmaAldrich) and 0.5uM LDN193189 (SigmaAldrich). On day 3, human
1074 recombinant basic Fibroblast Growth Factor (bFGF) (Peprotech) at 10ng/ml final concentration
1075 was added to the media. Subsequently, on day 5 the concentration of bFGF was reduced at
1076 Sng/ml and the media was further supplemented with 10nM Retinoic Acid (SigmaAldrich). To
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1077 promote axial elongation the cytokine and growth factor cocktail, CHIR99021 (3uM),
1078 LDN193189 (0.5uM), bFGF (10ng/ml), Retinoic Acid (10nM), was applied from day7 to dayl1.
1079 Alternative the differentiation media during standard GLM differentiation protocol on day 7,
1080 supplemented only with human recombinant Sonic hedgehog (hShh) (Peprotech) at 34ng/ml,
1081 human recombinant WNTI1A (Peprotech) at 20ng/ml and 0.5uM LDN193189. On day 11 the
1082 cytokine composition of the media was changed to 10ng/ml of bFGF and human recombinant
1083 Hepatocyte Growth Factor (HGF) at 10ng/ml (Peprotech). From day 15 onwards, the basal
1084 medium supplemented with ITS-X (ThermoFisher Scientific) and human recombinant HGF at
1085 10ng/ml. In the first 3 days of the differentiation the medium was changed daily, from 3" till 30™
1086 every second day, while from day 30 onwards every third day.

1087

1088 Expanding musculoid derived fetal muscle stem cells in two dimensions (2D).

1089 Musculoids exhibiting the typical protrusions that contain myofibers and myogenic progenitors
1090 (Figure 41 N) post 8" week of three dimensional development, at 12 week, either: a)
1091 dissociated into single cells by incubation at 37°C with TryplE Select for 10 min, followed by
1092 surface antigen staining with PE-labelled anti-human CD82 (Biolegend, clone TS2/16) and
1093 Alexa 488-labelled anti-human CD44 (eBioscience, clone IM7, FITC) antibodies for 20 min
1094 incubation on ice. Cells washed twice with 1% BSA staining solution and before FACS sorting,
1095 the dissociated cells were passed through a 70 pum cell strainer to remove any remaining
1096 aggregates.. Fluorescent minus one (FMO) controls were used for correct gating (Figure 4H).
1097 CD44/CD82 positive sorted cells were seeded on matrigel coated plated in musculoid maturation
1098 media (DMEM/F12, NEAA, P/S, L-Glutamine, + 10nh/ul HGF) supplemented with 10uM Rock
1099 inhibitor at a density of 150000 -200000 cells per cm?. Or b) By transfering them with 1 mL
1100 cutted pippete tip to new matrigel coated plated. Musculoids by an attaching-detaching process
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1101 leave myogenic progenitors, myofibers on the matrigel surface, that upon propagation reach
1102 100% confluency. In both approiaches, for 2D expansion myogenic progentiors are passaged at
1103 90%-100% confluncy at 1:2 ratio. Myogenic progenitors are passaged enzymatically with TryplE
1104 Select and the musculoid maturation media the day of passaging contains rock inbitor (10uM),
1105 that is ommited the day after. Media change occurs every second date, as myogenic progenitors
1106 require active HGF within the media for expansion/propagation.

1107

1108 Replating CD82" myogenic for secondary skeletal muscle-like organoid formation

1109 Re-plating CD82" myogenic to establish myofiber networks and promote myofiber maturation :
1110 Post 8w-12w musculoids were dissociated into single cells by incubation at 37°C within papain
1111 solution for 1-2 h, followed by incubation with TryplE Select for 10 min. For surface antigen
1112 staining cells were incubated for 20 min with APC-labelled anti-human CD56 (Biolegend, clone
1113 TS2/16) and PE-labelled anti-human CD82 (Biolegend, clone ASL-24) antibodies and washed
1114 twice with 1% BSA staining solution. Then the dissociated cells were passed through a 40 pm
1115 cell strainer to remove any remaining aggregates. Briefly before FACS sorting to discriminate
1116 between dead and live cells DAPI was added to the samples. DAPI- negative / CD82 positive
1117 cells were collected using a FACSAria Fusion cell sorter (BD Biosciences). Fluorescent minus
1118 one (FMO) controls were used for correct gating (Figure 4K). Before sorting 300 CDS82 positive
1119 events/cells into each well of a 96 well plate, we generated a matrigel droplet in each well. For
1120 that we applied 30ul of matrigel in each well and let it polymerize for 20-30min. Upon matrigel
1121 polymerization we fill the well with 150ul of DMEM/F12, ITS-X basal media supplemented
1122 with 10ug/ml HGF. Upon sorting the cells the next day and for the next 2 media changes, we
1123 proceeded with 50% Basal media (+10uh/ml HGF) and 50% SkGM™-2 Skeletal Muscle Cell
1124 Growth Medium (Lonza). Subsequently, we shifted completelly to Skeletal Muscle Cell Growth
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1125 Medium till cells covered the whole matrigel sufcace before we induce maturation with
1126 DMEM/F12, ITS-X , N2 muscle fushion maturation media. Upon that stage cells were cultured
1127 up to a month. At the expansion phase (Lonza Skeletal Muscle Cell Growth Medium) media
1128 changed daily while during maturation every second day.

1129

1130 Immunocytochemistry

1131 Cryosection Immunochemistry: Organoids from different stages were fixed on 4%
1132 paraformaldehyde overnight at 4°C under shakings conditions, dehydrated (30% sucrose o/n
1133 incubation) and embedded in OCT freezing media. Cryosections were acquired on a Leica
1134 CM3050s Cryostat. For the immunostaining process, cryosections were rehydrated with PBS and
1135 followed by permeabilization once with 0.1% Tween-20 in PBS, (rinsed 3x with PBS), and then
1136 with 0.1% Triton-X in PBS (rinsed 3x with PBS). Subsequently, the sections were blocked with
1137 1% BSA / 10% NGS or 10% FBS in PBS for lhr at room temperature. Primary antibody
1138 incubations were performed overnight at 4°C, where secondary antibody incubations for 2hr at
1139 room temperature.

1140

1141 EdU staining: At 180 days post diferentiation, 12 weeks for myogenic progenitor maturation at
1142 musculoid level, and 100 Days expansion in 2D (10 passages), musculoid derived myogenic
1143 progenitor incubated overnight (18 hr) with EdU at a final concentration of 5 uM. To detect
1144 EdU, the sections were processed with Click-iT EdU Alexa Fluor 647 cell proliferation kit
1145 (Invitrogen) following the manufacturer’s instructions. The samples were incubated with
1146 secondary antibodies after the click reaction for detecting EdU.
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1148 Primary Antibodies: anti-Brachyury/TBXT (R&DSystems, 1:250), anti-TBX6 (R&DSystems,
1149 1:200), anti-PAX3 (DHSB, 1:250), anti-PAX7 (DHSB, 1:250), anti-PAX6 (Cell Signalling,
1150 clone D3A9V, 1:200), anti-SOX10 (R&DSystems,1:125), anti-FOXA2(R&DSystems,1:200),
1151 anti-Ki67 (ThermoFisher Scientific, clone SolA15, 1:100), anti-MYH1 (DHSB,1:100), anti-
1152 MYODI1 (Cell Signalling, D8G3, 1:200), anti-TFAP2A (DHSB, 3B5, 1:100), anti-SOX2
1153 (ThermoFisher Scientific, clone Btjce, 1:100; Cell signalling, clone D6D9, 1:200), anti-CD44
1154 (eBioscience, clone IM7, 1:100), anti-NeuN (Abcam, EPR12763, 1:200), anti-CDX2 (Biogenex,
1155 clone CDX2-88, 1:200), anti-GATA6 (Cell Signalling, clone D61E4, 1:200), anti-Desmin
1156 (Abcam, clone Y66, 1:200), anti-GSC (R&DSystems, 1:200), anti-SOX17 (R&DSystems,
1157 1:200), anti-PAX2 (Biolegend, , clone Poly19010, 1:200), anti-WT1 (Cell Signalling, clone
1158 DS8I7F, 1:200), anti-MET (Cell Signalling, clone D1C2, 1:200), anti-NANOG (Cell Signalling,
1159 clone D73G4, 1:200), anti-M-Cadherin (Cell Signalling, clone D4B9L, 1:200), anti-Spectrin
1160 (Novocastra, NCL-SPEC1,1:30), Mouse anti-FastMyHC (SigmaAldrich, clone MY-32, 1:300).
1161

1162 Secondary antibodies: Alexa Fluor® 647 AffiniPure Fab Fragment Goat Anti-Mouse IgM, pn
1163 Chain Specific (Jackson Immunoresearch Laboratories, 1:100), Rhodamine RedTM-X (RRX)
1164 AffiniPure Goat Anti-Mouse IgG, Fcy Subclass 1 Specific (Jackson Immunoresearch
1165 Laboratories,1:100), Alexa Fluor® 488 AffiniPure Goat Anti-Mouse IgG, Fcy subclass 2a
1166 specific (Jackson Immunoresearch Laboratories,1:100), Alexa Fluor 488, Goat anti-Rat IgG
1167 (H+L) Cross-Adsorbed Secondary Antibody, (ThermoFisher Scientific, 1:500), Alexa Fluor 488,
1168 Donkey anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, (ThermoFisher Scientific,
1169 1:500), Alexa Fluor 647, Donkey anti-Goat 1gG (H+L) Cross-Adsorbed Secondary Antibody,
1170 (ThermoFisher Scientific, 1:500), Alexa Fluor 488, Donkey anti-Goat IgG (H+L) Cross-
1171 Adsorbed Secondary Antibody, (ThermoFisher Scientific, 1:500), Alexa Fluor 568, Donkey anti-
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1172 Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, (ThermoFisher Scientific, 1:500).
1173 Images were acquired on a ZEISS LSM 770 inverted confocal microscope.

1174

1175 Flow Cytometry

1176 EdU assay: At 180 days post diferentiation, 12 weeks for myogenic progenitor maturation at
1177 musculoid level, and 100 Days expansion in 2D (10 passages), musculoid derived myogenic
1178 progenitor incubated overnight (18 hr) with EdU at a final concentration of 5 uM. The next day
1179 musculoid derived myogenic progenitor cultures were dissociated into single cells by incubation
1180 at 37°C within TryplE Select solution for 5-10 min. Then the dissociated cells were passed
1181 through a 40 um cell strainer to remove any remaining aggregates. To detect EdU, the cells were
1182 processed with Click-iT EAU Alexa Fluor 647 Flow Cytometry Assay Kit (Invitrogen) according
1183 to manufacturer instructions, nuclei werestained with Dapi solution and then analyzed on a
1184 FACSAria Fusion flow cytometer (BD Biosciences). FACs data fcs files were processed with
1185 FlowJo v10 (BD Biosciences).

1186

1187 FACS isolation and quantification of CD44", CD82", PAX7",MYODI1", CXCR4" myogenic cell
1188 population””: Organoids during 8" - 16™ week post differentiation were dissociated into single
1189 cells by incubation with Papain solution till we could observe complete dissociation upon gentle
1190 shaking (30 min — 1 h). To acquire singlets, the cells were filtered through a 40 um cell strainer
1191 and washed with 1% BSA solution. For surface antigen staining cells were incubated for 20 min
1192 with FITC-labelled anti-human CD44 (eBioscience, clone IM7) and PE-labelled anti-human
1193 CD82 (Biolegend, clone ASL-24) antibodies and washed twice with 1% BSA staining solution.
1194 Briefly before FACS sorting to discriminate between dead and live cells DAPI was added to the
1195 samples. DAPI- negative / CD82 positive cells were collected using a FACSAria Fusion cell
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1196 sorter (BD Biosciences). Fluorescent minus one (FMO) controls were used for correct gating
1197 (Figure 4H). For CXCR4 quantification, the PE anti-human CD184[CXCR4] (Biolegend, clone
1198 12G5) was applied together with the corresponding isotype control for setting the gating: PE
1199 Mouse [gG2a, « Isotype Ctrl antibody (Biolegend, clone MOPC-173) (Figure 3L)..

1200

1201 Single cell RNA sequencing expression profiling

1202 Organoid Samples and cDNA library preparation: Single cells acquired in suspension following
1203 lhr incubation with solution containing papain and EDTA for organoids at stages of ongoing
1204 development within the matrigel droplet, e.g. Day 7, Day 13, Day 19, Day 35, Day 56, Day &4,
1205 or with 15-20 min TryplE incubation for 2D cultured (>100 Days) musculoid derived myogenic
1206 progenitors and for organoids at stages that the organoid development takes place at
1207 bulge/protrusion sites, e.g. Day 120 organoids. After dissociation, cell number and viability was
1208 estimated, cells were re-suspended on solution containing 0.5% BSA and processed using the
1209 Chromium Single Cell 3’ Reagent Kits (v3): Single Cell 3’ Library & Gel Bead Kit v3 (PN-
1210 1000075), Single Cell B Chip Kit (PN-1000073) and i7 Multiplex Kit (PN-120262) (10x
1211 Genomics) according to the manufacturer’s instructions. Then, the cDNA library was run on an
1212 Illumina HiSeq 3000 or Novoseq as 150-bp paired-end reads.

1213
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1214 Single-nuclei isolation of human skeletal muscle biopsies

1215 Skeletal muscle tissues from Vastus Lateralis (p.Y2704X) and Soleus (p.Q1662X) were sampled
1216 by the surgeon and immediately frozen in liquid nitrogen. Single-nuclei isolation was performed
1217 on ice using the Chromium nuclei isolation kit according to the manufacturer’s instructions.
1218 After dissociation, nuclei number was estimated and processed immediately using the Chromium
1219 Single Cell 3’ Reagent Kits (v3).

1220

1221 Spatial gene expression assay

1222 Frozen Gastruloids/Lateraloids/Musculoids samples from Day 5, Day 9, Day19 and Day 35 were
1223 embedded in OCT (Tissue-Tek) and cryosectioned (Thermo Cryostar). The 12-um section was
1224 placed on the pre-chilled Optimization slides (Visium, 10X Genomics, PN-1000193) and the
1225 optimal lysis time was determined. The tissues were treated as recommended by 10X Genomics
1226 and the optimization procedure showed an optimal permeabilization time of 18 min of digestion
1227 and release of RNA from the tissue slide. Spatial gene expression slides (Visium, 10X
1228 Genomics, PN-1000187) were used for spatial transcriptomics following the Visium User
1229 Guides. Brightfield histological images were taken using a 20X objective on the Olympus 1X83
1230 fluorescent inverted microscope and images were stitched and analyzed with the cellSens
1231 software. Next generation sequencing libraries were prepared according to the Visium user
1232 guide. Libraries were loaded at 300 pM and sequenced on a NextSeq 1000 System (Illumina) as
1233 recommended by 10X Genomics.

1234

1235 Single cell RNA seq analysis: Sequencing data raw files were processed using Cell Ranger
1236 software (v5.0.1), following the set of analysis pipelines suggested by 10x Genomics, and the

1237 reads aligned to the human genome and transcriptome (hg38, provided by 10x Genomics) with
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1238 the default alignment parameters. For constructing the GLM developmental trajectory presented
1239 in figure 2a we included intronic reads, while for musculoid developmental trajectory and
1240 myogenic subsequent myogenic comparison we excluded intronic reads at the default alignment
1241 Cell Ranger parameters. Seurat®**#>%%% or ScanPy* pipeline was then applied for further data
1242 processing. For Seurat based normalization we followed the SCT-transform approach. To
1243 denoise the graph, in ScanPy pipeline we applied the MAGIC approach®, an unsupervised non-
1244 parametric algorithm to impute and de-noise biological single-cell RNA-seq data sets.
1245 Interoperability between Seurat and anndata was achieved via h5 Seurat function, to generate
1246 h5ad objects, while for generating loom files via as./loom function. Before comparing datasets
1247 genes related to metabolism such as mitochondrial and ribosomal genes, were excluded from
1248 subsequent analysis. In both approaches, the sequencing depth, proportions of mitochondrial
1249 transcripts, cell cycle effects®’, and when analyzing skeletal muscle lineage genes associated to
1250 stress during myogenic progenitor dissociation® were also regressed out. Unless otherwise noted,
1251 cells with less than 300 detected genes and those with mitochondrial transcripts proportion
1252 higher than 5 percent were excluded. For myogenic comparison between reference and myogenic
1253 differentiation datasets cells with less than 500 detected genes and genes detected in less than 5
1254 cells we excluded form analysis, exception was only adult and juvenile datasets™, where the
1255 threshold was adjusted to 200-300 genes per cell and 3 cells per gene. Finally, as myogenic
1256 progenitor related clusters were considered the ones expressing muscle related genes e.g. PAX3,
1257 PITX2, PAX7, SIXI, MYODI in the absence of neural markers. For consensus clustering of
1258 p-Q1662X and p.Y2704X FLNC adult muscle stem cells, first we converted seurat object into
1259 SingleCellExperiment objects, followed by SC3 R package pipeline®.

1260
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1261 Spatial transcriptomics analysis: Sequencing data raw files were processed using Spatial Ranger
1262 software (v2.1.1), following the set of analysis pipelines suggested by 10x Genomics, and the
1263 reads aligned to the human genome and transcriptome (hg38, provided by 10x Genomics) with
1264 the default parameters. Seurat or ScanPy pipeline was then applied for further data processing
1265 and visualization. For mapping the single-cell and spatial transcriptomic datasets we applied the
1266 CytoSPACE pipeline®, where labeled single-cell expression matrices mapped onto coordinates
1267 (spots) of spatial transcriptomic datasets. Before mapping single cell and spatial datasets, we
1268 subset the spatial dataset to avoid any spatial spots with no expression values
1269 (nCount_Spatial>0), and removed ribosomal and mitochondrial genes from the expression
1270 matrices.

1271

1272 Gene regulatory network analysis: For analyzing and clustering datasets based on their gene
1273 regulatory network we applied pySCENIC pipeline” on Scanpy normalized datasets. Cells with
1274 more than 6,000 or less than 200 detected genes, as well as those with mitochondrial transcripts
1275 proportion higher than 5% were excluded. Sequencing depth and proportions of mitochondrial
1276 transcripts and cell cycle effects, and genes associated to stress during myogenic progenitor
1277 dissociation when analyzing skeletal muscle lineage only, were also regressed out. When
1278 merging datasets for comparative analysis genes related to metabolism such as mitochondrial and
1279 ribosomal genes, were excluded from the normalised matrix. For GRN analysis we applied genes
1280 as ranking type and therefore we applied hg38 cisTarget databases to all datasets,
1281 (https://resources.aertslab.org/cistarget/).

1282

1283 Pseudotime analysis: GLM datasets processed with Scanpy and upon normalisation, cell cycle
1284 genes, sequencing depth and stress related genes were regressed and we further proceeded with
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1285 the generation of Force-directed layouts of single-cell graphs using the ForceAtlas2 algorithm®.
1286 To denoise the graph, we projected the dataset in DiffusionMap space and for calculating the
1287 trajectory inference we applied the Partition-based graph abstraction (PAGA) approach®.
1288 Pseudo-spatiotemporal orderings were constructed by randomly selecting a root cell from the
1289 following clusters: somitogenesis cluster (musculoid trajectory, Figure 3H); Anterior Primitive
1290 streak cluster (Somitogenesis, Figure 2B) and calculating the diffusion pseudotime distance of
1291 all remaining cells relative to the root. On Seurat normalised datasets we calculated the
1292 pseudotime by converting them into SingleCellExperiment objects, calculate the eigenvector
1293 values for each cell using destiny package (k=100) and order them by diffusion map
1294 pseudotime®. During ScanPy pipeline, for investigating cell fate probabilities and align cells
1295 along differentiation trajectories we applied Palantir algorithm and pipeline®”.

1296

1297 Advanced Pseudotime calculation: To simulate in silico myogenesis on musculoids, we applied
1298 principal graph learning on PCA space to reconstruct a differentiation tree using the ScFates
1299 package™, following the basic curved trajectory analysis pipeline. For principal graph learning
1300 we applied EIPiGraph”. In order to verify that the trajectory we are seeing is not the result of a
1301 linear mixture of two population (caused by doublets), we performed the Linearity deviation
1302 assessment test where we could describe continuity with putative progenies (paraxial
1303 mesodermal clusters), putative bridge (hypaxial migration and embryonic to fetal transition) and
1304 putative progenies (late fetal myogenic progenitors).

1305

1306 Integrative Mapping: For integrative analysis we used the Seurat(v4) package for finding
1307 anchors between reference atlases and those from differentiation protocols, using 5000 anchors
1308 (SCT transform) or 2000 anchors (log Normalization) and regressing out cell cycle genes,

59


https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1309 sequencing depth and stress related genes before integration. For predictions based on integrative
1310 analysis, following FindTransferAnchors step we applied the TransferData option from Seurat in
1311 Seurat object metadata.

1312

1313 Developmental, anatomical, fetal/postnatal and myogenesis score: Developmental score was
1314 calculated as described”. Briefly, we used the ‘‘AddModuleScore’” function to calculate
1315 embryonic and adult score using a list of differentially expressed genes (DEGs) between satellite
1316 cells and embryonic myogenic progenitor clusters. Differentially expressed genes (DEGs) were
1317 identified by ‘‘FindMarkers,” function using ‘“‘MAST”’ test” . In addition, we passed the same
1318 parameters as we did when scaling the data (‘“S.Score,”” ‘*G2M.Score,”” “‘Stress’’ and ‘‘total
1319 Count’’) to the vars.to.regress’ argument to regress out the effects of the cell cycle, dissociation-
1320 related stress as well as cell size/sequencing depth on the identification of DEGs. The
1321 developmental score was further calculated by subtracting embryonic from the adult score. The
1322 list of genes for calculating the embryonic and adult score are listed in Table S1. Anatomical,
1323 embryonic TF, fetal/postnatal TF, ECM and myogenesis score calculation were calculated via
1324 Seurat’s ‘‘AddModuleScore’” function. List of genes for calculating each score are listed in
1325 Table S2. List of genes for calculating embryonic TF, fetal/postnatal TF score we applied the
1326 genes described in human skeletal muscle reference atlas™.

1327

1328 Deep learning classification: Seurat normalised datasets converted to anndata object via
1329 h5.seurat. For deep learning classification the raw.matrix from each dataset was used. From the
1330 Scarches package”, the semi-supervised deep learning approach was applied using single-cell
1331 annotation variational inference (SCANVI) algorithm’” for training the reference atlas and

1332 transfer existing neural networks to model and train query datasets.
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1333

1334 RNA velocity: For generating count matrices for the pre-mature (unspliced) and mature (spliced)
1335 RNA abundances in our samples we applied the velocyto pipeline'®™ on FASTQ files.
1336 Subsequently, we pre-processed datasets using Scanpy pipeline and for calculating the RNA
1337 velocity we applied the ScVelo package pipeline’”.

1338

1339 Cell-Cell communication analysis: To investigate cell-cell communications among activated,
1340 mitotic, specification resistance myogenic progenitors and myofiber related clusters from 12"
1341 week musculoids we applied the CellChat R package’”, while for modeling intercellular
1342 communication by linking ligands to target genes and identify receptor-ligand interactions
1343 between musculature and MuSCs on mouse, p,Q1662X/p.Y2704X Biopsies or musculoid
1344 myogenic progenitors datasets we applied the Nichenet R package'™

1345

1346 Gene ontology enrichment analysis: Gene ontology (GO) enrichment was performed on
1347 Differentially expressed genes (DEGs), genes are listed in listed in Table S3,S4. using
1348 Metascape'® (http://metascape.org/gp/index.html#/main/stepl) against GO terms belonging to
1349 “Biological Processes” and “Hallmark Processes”. Reactome analysis'® (https://reactome.org/)
1350 was performed on differentially expressed genes (DEGs) between GLM derived fetal and biopsy
1351 derived adult MuSCs p.Q1662X,p.Y2704X lines. Genes are listed in in Table S4.

1352

1353 Transmission Electron Microscopy (TEM)

1354 Organoid cultures were prepared for electron microscopy according to standard protocols. First,

1355 they were fixed in 2 % glutaraldehyde, 2 % paraformaldehyde in 0.1 M cacodylate buffer, pH 7.2

61


https://reactome.org/
http://metascape.org/gp/index.html#/main/step1
https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1356 for at least 3 hours at room temperature. Before embedding samples were postfixed in 1 %
1357 osmium tetroxide including 1.5 % potassium cyanoferrate and dehydrated stepwise in ethanol
1358 with finally 0.5 % uranyl acetate en-bloc staining during 70 % ethanol. Then the samples were
1359 infiltrated in epon. Ultrathin sections of the polymerized sample blocks were cut in different
1360 orientation to cover all morphological features of the organoid culture. Representative pictures
1361 were imaged at the electron microscope (Tecnai 12-biotwin, Thermofisher scientific, the
1362 Netherlands) with a 2K CCD camera (Veleta , EMSIS, Muenster).

1363

1364 Trichrome staining (Gomori)

1365 Gomori’s trichrome staining was conducted using a ready-to-use kit (Trichrome Stain (Gomori)
1366 Kit, HT10, Sigma-Aldrich) as described by the manufacturer.

1367

1368 Glycogen assay

1369 Samples (three biological replicates) were washed twice with PBS and harvested in Ampuwa®
1370 using a cell scraper. The cell lysate was immediately frozen and stored in liquid nitrogen The
1371 amount of glycogen was determined as duplicates by a glycogen assay kit, which was used
1372 according to the manufacturer's protocol for colorimetric quantification. An Agilent BioTek
1373 ELX808 micro-plate reader was used to measure light absorbance at 562 nm of the colorimetric
1374 marker reaction. The amount of glycogen in the cell extracts was calculated by comparison to a
1375 standard series of glycogen solutions. The quantity of glycogen was normalized to the protein
1376 content of the sample, which was determined by a Micro BCA™ Protein Assay Kit (Thermo
1377 Fischer). The kit was used according to the manufacturer's instructions and samples were

1378 measured as triplicates. Results are presented in units of ug glycogen/pg protein

62


https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1379

1380 Cytochemical PAS staining

1381 Cells were cultured on Matrigel®-coated cover slips (in 6 well plates) and fixed with 4 % PFA
1382 for 10 min. Before the samples were incubated with 100 % isopropyl alcohol for 5 min, they
1383 were washed three times with PBS. Next the cells were incubated in 0.5 % periodic acid for 5
1384 min, and then washed in distilled water (5 min) and tap water (1 min). After 12 min of incubation
1385 in Schiff's reagent, cells were washed again for 6 min in first distilled water (5min) and then tap
1386 water (1 min). Finally the cells were covered with Aquatex® and imaged using an Olympus
1387 IX83 microscope in a bright field setup.

1388

1389 Reproducibility

1390 GLMs that showed the typical time-lapse development with dorsal neural tube epithelium and
1391 ventrally mesenchymal LPM, somitic development (successfully underwent gastrulation),
1392 followed by dense continuous migration between Day 17 to Day 35 (time-points 1 to 4), as well
1393 as were able to generate a dense network and bulge formation beyond Day 56 (time-points 5 to
1394 6) were considered successful. Batches and not individual GLMs were potential source of
1395 variability (Figure 1A,H, 21,J, 3N), namely when GLMs underwent gastrulation, followed by
1396 mesoderm segregation skeletal muscle lineage was always present. Thus, we consider a time-
1397 point for analysis to be consistent when it was associated with similar morphological changes
1398 (Figure 1,2,3) for a minimum of six independent batches during musculoid development for each
1399 cell line tested in this study.

1400

1401 Selection criteria, mentioned above, on distinguishing right forming organoids established

1402 continuous developmental trajectories similar to in vivo fetal development with overlapping
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1403 lineage representation for all our samples (n=11 scRNAseq samples, n=5 Spatial
1404 Transcriptomics samples with more than 100.000 cells analyzed. Similar behavior exhibited
1405 n=7 Bulk RNA seq samples and additional n=4 scRNAseq samples described in”’. In both cases
1406 each time-point was from independent derivation. For all following experiments, only
1407 successfully formed GLMs were used; these musculoids showed similar results in all
1408 experiments. Specifically, IF stainings were repeated with at least three independent musculoids
1409 for each line. TEM was performed on three control musculoids for adipogenesis and musculature
1410 investigation and on three CD82" skeletal muscle cultures (Figure 4K, S41) for investigating
1411 musculature maturation.

1412

1413 Data availability

1414 The gene expression datasets generated and analyzed during the current study are available in the
1415 Gene Expression Omnibus repository: Single-cell RNA sequencing data have been deposited
1416 under accession GSE210069 and Spatial transcriptomics data under accession GSE262361. The
1417 following public datasets were used for scRNA-seq analysis: the Mouse E9.5-E10.5 trunk neural
1418 crest'”’, mouse forelimb development’”, mouse satellite cells during regeneration’””, human
1419 gastrulation’, human developing embryo post gastrulation''™'"!, human skeletal muscle
1420 reference®''? and human limb development'".” All additional data supporting the findings of this
1421 study are available within the article and its Supplementary Information. All other raw data used
1422 for plotting in the figures are provided as source data. Source data are provided with this paper.
1423

1425

1426

1427
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1581 Figure S1 GLM characterization at early stages and comparison to gastrulating human
1582 embryo’ (Carnegie Stage, CS7). (A) RNA velocity analysis on force directed graph embedding
1583 indicates from a primitive streak state mesodermal lineage segregation towards lateral plate and
1584 paraxial mesodermal trajectories, and presence of an endodermal and neural cluster with pre-
1585 neuromesodermal progenitor identity. (B) Feature plots indicate RNA velocity dynamics and
1586 expression on key markers for each lineage, and highlight BPM4 upregulation for lateral plate
1587 mesoderm and Retinoc acid (ALDH1A2) for paraxial mesoderm (C) UMAP plots based on a
1588 semi-supervised deep learning (SCANVI) approach, trained on human gastrulating embryo
1589 dataset, to map population from GLM at gastrulation stage to human gastrulating embryo (CS7)
1590 demonstrates in vitro reconstruction of mesodermal lineage segregation and dynamics following
1591 gastrulation. (D) Dot plot illustrating expression of representative mesodermal, endodermal,
1592 epiblast and endothelial genes for the characterization of clusters at human gastrulating embryo.
1593 The size of each circle reflects the percentage of cells in a cluster where the gene is detected, and
1594 the color reflects the average expression level within each cluster (blue, low expression; red, high
1595 expression). (E) H&E histology pictures of GLMs at Day 5 (F) 3D model of human gastrulation,
1596 CS8 Carnegie stage, based on spatial transcriptomics, depicts mesodermal lineage segregation
1597 following gastrulation®. (https://cs8.3dembryo.com/#/model3d/embryo) (G) Mapping of single
1598 cells from Day 7 GLMs and human CS7 gastrulating embryo to spatial GLM sections from Day
1599 5 indicate similar mesodermal population dynamics on sections from gastrulating /ventral to
1600 gastrulation planes. (H) Spatial feature plots at Day 5 on primitive streak, mesoendodermal
1601 markers, TBXT, FOXA2, MIXLI, FOXHI, EOMES,, lateral plate mesodermal, BMP4, HANDI,
1602 OSRI, GATA6, and paraxial mesodermal, TBX6, HES7, MSGNI, TCF15, ALDHIA2 markers,
1603 indicate reproducibility between different GLMs at a gastrulating to mesoendodermal ventral
1604 section plane.


https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1605
A | [ ] ] B | ]
20 v 6 6 8
o % &8 & 8 &8 8
. 4 4 4
4
2 2 ;Z : 2 2 2 2 5
OF WA R e
" 3 15 15 7S 4
. . 2 . . . . 4 . 4
2 10 o 10 50 5
S %[%1 8 LB
0 0.0 0 0.0 0.0 0 0 0
& & » “ & & b
| Total Cells | | Total Cells
8 3 Cluster ID
.| o 8 &
6 2 Advanced 5
4 2 6 B Mesoderm , 4
4
slgidlal = @lelsl
2 Mesoderm 0 o
(4] 0 0
mmm Emergent
Mesoderm
e H 5 & 02— B B O
- ™ * ° Nascent - - -
o o W W W e W
3 3 6 8
. 75 . . . 100 Paraxial . ry .
2 2 75 EEE Mesoderm : 4 6 . 10.0
50 ' ' %y Gastruloid Day 7 ’ * 4 : A 75
; - 5.0 8
#8 1 1 o 0; 25 Primitive ? 2 o ﬁ" 50
0.0 0 0 BN Streak: 0 9 25
,“ ,“ “ “ Embryo CS7 h “ “
> > > > * > >
Somitic
§F ¥ F F T ® ¥ ¥
C D E



https://doi.org/10.1101/2024.05.10.593520
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593520; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1606 Figure S2 Deciphering spatial organization during GLM development at gastrulation stage
1607 via spatial transcriptomics and immunocytochemistry. (A) Heatmap illustrating cluster
1608 assignment per spot during Mapping of single cells from Day 7 GLMs and human CS7
1609 gastrulating embryo (B) to spatial GLM sections from Day 5 indicate spots with overlapping and
1610 distinct pattern expression for each cluster. (C) Brightfield image at Day 11 illustrating neuro-
1611 mesodermal (NMP) mediated body axis elongation from dorsal sites during GLM development
1612 upon continuation of the CHIR99021, LDN198189, bFGF and Retinoc acid stimulation
1613 following gastrulation at Day 7. (D) Immunocytochemistry pictures on TBXT, SOX2 markers
1614 indicates gastrulating populations at the core (TBXT") of the structure and NMP progenitors
1615 (SOX2"/TBXT") at the edge of body axis -like elongating structures. (E) Brightfield image
1616 illustrating the body axis-like elongating structures together with an immunostaining section
1617 image at the level of those structures indicates NMP progenitors (SOX2"/TBXT") identity. Scale
1618 Bars: 500um in (C),(D), 100um in (E).
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1632 Figure S3 Lineage progression investigation within GLM following gastrulation via spatial
1633 transcriptomics and comparison to human developing embryo (Carnegie Stage, CS12-
1634 CS16)"". (A) Feature plots from force-directed k-nearest neighbor graph on 55.778 cells at Day
1635 7, Day 13, Day 19, Day 35, Day 56 and Day 84 illustrate MAGIC imputed average expression
1636 levels for gastrulating/mesodermal/endodermal genes, TBXT, MILXI, MESPI, MEOXI, TBXG6,
1637 FOXF1, markers along the skeletal muscle trajectory, PAX7, MYF5, EGFR, MYH3, CDHI5,
1638 endodermal fore-gut markers, MNXI, KRTS, SOX17, SHH, EPCAM, FOXA2, cardiac field/limb
1639 bud initiation markers HANDI, HAND2, GAT6, GATA3, GATA4, SHOX2, FGF10, MEIS2, limb
1640 bud mesenchyme markers, HGF, PRRXI, PRRX2, and neural tube, PAX3, PAX6, ZICI, neural
1641 crest/sensory neurons TFAP2A4, SOX10, STMN2, MAP2. (B) Immunocytochemistry picture at
1642 Day 11 indicates presence of WT1" intermediate mesodermal cells at the periphery of GLMs,
1643 ventral to gastrulation plane. Scale Bar: (C) Heatmap with hierarchical clustering depicts the
1644 percentage of prediction and assignment score from GLM cells along the dorsal neural
1645 tube/neural crest development with evidence of sensory branch bifurcation from the main
1646 migrating NC stream upon unbiased mapping to the in vivo counterpart, mouse E9.5 stages. NC:
1647 Neural Crest, NT: Neural Tube, SN: Sensory neurons. (D) H&E hitology pictures of GLMs at
1648 Day 9. Spatial feature plots at Day 9 on lateral plate mesodermal (LPM), BMP4, GATAG,
1649 MEIS2, HANDI, TWISTI, PRRXI, paraxial(PM)/somitic/dermomyotomal, ALDH1A2, FGFRI,
1650 TBX6, CXCR4, TCF15, FOXCI, and HOX genes HOXA9,HOXBY, in the absence of neural
1651 marker SOX2 indicate reproducibility between different GLMs during mesodermal segregation
1652 and presence of LPM/PM populations at the same section plane. (E) Mapping of single cells
1653 from Day 7 GLMs to spatial GLM sections from Day 9 indicate similar mesodermal population
1654 dynamics on sections from gastrulating ventral to gastrulation planes. Heatmap illustrating

1655 cluster assignment per spot during mapping of single cells from Day 7 GLMs to spatial GLM
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sections from Day 9 indicate spots with overlapping and distinct pattern expression for each
mesodermal cluster. (F) H&E hitology pictures of GLMs at Day 19. Spatial feature plots at Day
19 on neural crest, TFAP2A4, SOX10, fore-gut/endodermal KRTS8, FOXA2, SHH, intermediate
mesodermal, WTI, PAX2, PAXS, cardiac field/limb bud, GATA6, HAND?2, TWISTI, MEIS2,
PRRX]I, and endothelial, PECAMI, KDR markers. Heatmap illustrating the mapping of single
cells per spot from Day 19 GLMs to spatial GLM sections from Day 19, indicate presence of a
ventral and a dorsal to gastrulation plane with distinct pattern of mesodermal/endodermal and
neural clusters retrospectively. (G) Mapping of single cells from CS12-CS16 human developing
embryo to spatial GLM sections from Day 19 indicate similar spatial pattern to Day 19 GLMs.
Heatmap illustrating cluster assignment per spot during Mapping of single cells from CS12-

CS16 human developing embryo to spatial GLM sections from Day 19 indicate spots with

overlapping and distinct pattern expression for each cluster.
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1680 Figure S4 Characterization of embryonic-fetal myogenic progenitors during GLM, mouse
1681 and human limb development. (A) Pseudotemporal ordering of cells related to embryonic fetal
1682 transition revealed gene dynamics on Notch signaling, e.g. HESI, LFNG, upon PAX7
1683 upregulation in myogenic progenitors. GLM picture following embryonic/fetal transition, (>
1684 Day 35) highlights absence of committed, PAX7/MYODI" myogenic progenitors at the
1685 periphery and at protrusion sites. Scale Bar: 100uM (B) Heatmap illustrating cluster assignment
1686 per spot during mapping of single cells from Day 35 GLMs to spatial GLM sections from Day
1687 35 indicate spots with overlapping and distinct pattern expression for each cluster. (C) Mapping
1688 of single cells during embryonic/fetal myogenic transition (embryonic week 5, embryonic/fetal
1689 week 7, fetal week 9) from human reference atlas GLM sections from Day 35 indicates spatial
1690 distribution of myogenic progenitors with fetal identity most prominent at the periphery of GLM
1691 structure (edge of initial matrigel droplet). (D) UMAP plots based on semi-supervised deep
1692 learning approach to map 5™ week GLM derived, PAX3", PAX3"/PAX7" and PAX7" myogenic
1693 progenitors to the human embryonic - fetal reference atlas predict maturation beyond the
1694 embryonic fetal transition stage and indicate the generation of myogenic progenitors with early
1695 fetal identity. (E) Scatter plot of anatomical — myogenesis score for myogenic progenitors at
1696 embryonic (Day19), embryonic/fetal (Day35), fetal (Day56) and late fetal (Day84) stages during
1697 GLM development. (F) Pseudotemporal ordering of cells during embryonic to fetal mouse
1698 myogenic transition (E9.5 — E15.0) reveals gene and GRN dynamics from an embryonic
1699 anatomical related mesenchymal state e.g Pax3, Lbx1, Meox2, Twistl, N-Cadherin to a fetal
1700 myogenic state e.g Pax7, Nfix, Myf5, Plagll, M-Cadherin. (G) Feature plots from force-directed
1701 k-nearest neighbor graph on 55.778 cells at Day 7, Day 13, Day 19, Day 35, Day 56 and Day 84
1702 illustrate MAGIC imputed average expression levels for HOX genes, HOXA9, HOXBY,
1703 HOXA10, HOXD10, HOXA11,HOXDI1, and fibro-adipogenic progenitor markers, PDGFRA,
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1704 PDGFRB, indicate forelimb bud identity for mesenchymal clusters (H) Differential expression
1705 analysis between mesenchymal clusters during 5™ week of musculoid development indicates
1706 mesenchyme maturation towards a chondrogenic/osteogenic state. (I) Pictures at ultra-structural
1707 level highlight developing lipid droplet, derived from fibro-adipogenic progenitors, covered by
1708 one leaflet of rER membrane during pre-adipocyte formation. Mitochondria are located in close
1709 contact to lipid droplet. LD: Lipid Droplet, gly:glycogen, m: mitochondria, arrows: rER Scale
1710 Bar: 1uM, 200nM in magnification. (J) Spatial feature plots during human hindlimb
1711 spatiotemporal development'”®, Carnegie Stages 18,19,20 and 10™ week post-fertilization,
1712 indicate absence of anatomical score based on HOX gene clusters during on going myogenesis,
1713 thus signaling the growth phase of the embryo. (K) Dot plot showing the expression of HOX
1714 genes across GLM and human embryonic-fetal development. The size of each circle reflects the
1715 percentage of cells in a cluster where the gene is detected, and the color reflects the average
1716 expression level within each cluster (blue, low expression; red, high expression). (L) Single cell
1717 expression profiling depicting embryonic fetal myogenic transition, derived from different
1718 dataset'” and technology (10x Genomics vs Drop-Seq in*?) , indicates similar dynamic with axial
1719 anatomical identity for embryonic myogenic progenitors and myogenic core program
1720 upregulation followed by downregulation of the axial anatomical program for fetal myogenic
1721 progenitors. (M) Curved trajectory analysis highlights significant upregulation on HOXAO9,
1722 HOXBY9, HOXC9, during somitic/hypaxial myogenesis stages, , followed by significant
1723 upregulation on HOXA10, HOXC10, HOXA11 genes at hypaxial myogenesis, PAX3".stage
1724 followed by upregulation of the core late fetal program, PAX7, MYF5, KLF4, CD44, during
1725 GLM development. (N) Scheme illustrating musculoid patterning during early stages and its
1726 correlation to human fetal development.
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1729 Figure S5 Developmental trajectory of human myogenic progenitors at embryonic, fetal
1730 and postnatal stages. (A) Datasets from 5" to 9" of human skeletal muscle reference map™
1731 depict embryonic fetal myogenic transition on PCA embedding. Feature plots on embryonic
1732 (PAX3"), fetal (PAX7") and committed (MYH3, MYOD1) markers, indicate developmental
1733 trajectories associated with maturation of myogenic progenitors and musculature development
1734 during embryonic fetal transition. Pseudotemporal ordering of myogenic progenitors cells
1735 highlights downregulation of mitotic marker, TOP2A, during embryonic fetal transition. (B)
1736 Differential expression analysis between embryonic and fetal stages highlights downregulation
1737 of mitotic markers, up-regulation of ECM proteins and cell cycle inhibitors on fetal myogenic
1738 progenitors and upregulation of cell cycle related genes during embryonic stages. (C) Aucell
1739 TSNE plot based on active gene regulatory networks highlights cell cycle stages during
1740 embryonic fetal reference myogenic map. (D) Overlap between gene lists at the gene level,
1741 where purple curves link identical genes; including the shared term level, where blue curves link
1742 genes that belong to the same enriched ontology term. The inner circle represents gene lists,
1743 where hits are arranged along the arc. Genes that hit multiple lists are colored in dark orange, and
1744 genes unique to a list are shown in light orange. (E) Heatmap of enriched terms across input gene
1745 lists for each stage during human skeletal muscle lineage fetal development colored by p-values.
1746 (F) Ridge plot of developmental score distribution of mesenchyme progenitors across in vivo or
1747 in vitro stages based on the difference between up-regulated markers of GLM mesenchyme
1748 progenitors at mature and premature stages, indicate similar developmental pattern within GLMs
1749 and m human reference atlas, (Supplementary Table 5). (G) UMAP together with feature plots
1750 during fetal maturation (fetal week 09-18) indicates CD44,CD82 upregulation during fetal
1751 maturation on myogenic progenitors, while MYOD1,CDS82 regulation leads to commitment and
1752 differentiation. (H) Scatter plot of anatomical — myogenesis score for myogenic progenitors
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1753 during embryonic, fetal human skeletal muscle development. (I) Curved trajectory analysis on
1754 PCA space for human skeletal muscle reference atlas. Pseudotime was calculated, by learning a
1755 principal curve on the 2 first PC components using the EIPiGraph algorithm. Significantly
1756 changing genes at each stage, embryonic, fetal, postnatal, for myogenic progenitors along the
1757 human myogenic trajectory. (J) Curved trajectory analysis on PCA space for human skeletal
1758 muscle reference atlas. Pseudotime was calculated, by learning a principal curve on the 2 first
1759 PC components using the EIPiGraph algorithm. Clustering based on significantly changing
1760 features along pseudotime highlights presence of a proliferation module at embryonic stages
1761 followed by an ECM module following embryonic to fetal transition during late fetal stages. (K)
1762 Heatmap on gene regulatory networks from embryonic (Swk - 7.75wk) and fetal (9wk - 18wk)
1763 stages, highlights HOX genes and PAX3 expression during embryonic and NFIX, NFIC, NFIA,
1764 NFIB and KLF4 expression during fetal stages. (L) Regulon score specificity (RSS) at human
1765 reference skeletal muscle developmental trajectory highlights HOX GRNs upregulation at
1766 embryonic stages and myogenic related GRN, NFIX,NFIA,NFIB, NFIC, KLF4, FOXO3,
1767 CEPBD, at fetal postnatal stages.
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1778 Figure S6 Investigating gene regulatory networks via SCENIC pipeline during GLM
1779 development and human reference skeletal muscle atlas. (A) Binary activity regulon matrix
1780 during musculoid skeletal muscle developmental trajectory. Cluster labels correspond to datasets
1781 from each stage (Day 19, Day 35, Day 56, Day 84). Master regulators are color matched with the
1782 cell types they control. (B) Heatmap on gene regulatory networks highlighting HOX gene
1783 expression on 3™ week embryonic clusters, cell cycle regulation during 5™ week and during
1784 embryonic (PAX3") to fetal (PAX7") transition up-regulation of PAX7/NFIA/KLF4/FOXO3 on
1785 5" week PAX7" fetal clusters together within the EGR family. (C) Aucell tSNE plot based on
1786 gene regulatory networks depicts further up-regulation on NFIX, PAX7, MYF5 fetal
1787 transcription factor between 5™ and 8" week musculoid derived myogenic progenitors. (D)
1788 Ridge plot of developmental score distribution of myogenic progenitors during musculoid
1789 development and across in vivo or in vitro stages based on the difference between up-regulated
1790 satellite cell and embryonic markers from human reference myogenic atlases. (E) Dot plot
1791 illustrating expression of specific genes for the activated, resisting specification, and a mitotic
1792 cluster of 12™ week musculoid derived myogenic progenitors. The size of each circle reflects the
1793 percentage of cells in a cluster where the gene is detected, and the color reflects the average
1794 expression level within each cluster (blue, low expression; red, high expression). (F) Heatmap
1795 shows the relative importance of each cell group based on the computed four network centrality
1796 measures of the Notch signaling network. (G) The inferred outgoing and incoming
1797 communication patterns of secreting cells, show the correspondence between the inferred latent
1798 patterns and cell groups, as well as signaling pathways. The thickness of the flow indicates the
1799 contribution of the cell group or signaling pathway to each latent pattern. (H) RNA velocity
1800 UMAP plot on 12" week GLM dataset highlights the pool of activated myogenic progenitors
1801 along a trajectory of myogenic specification resistance and another that leads to myogenic
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1802 commitment and myotube formation . (I) Myogenic progenitor cluster further characterized by
1803 the low rate of differentiation (Velocity length) in comparison to myotube cluster that is
1804 characterized by high rate of differentiation, while both clusters show high confidence among
1805 the cells. (J) Feature and scatter plots depicting RNA velocity and gene expression on selected
1806 markers representing the activated, CD44, resist specification, COL5A1, FBNI1, and mitotic,
1807 TOP2A, state of myogenic progenitors. (K) Brightfield images depicting morphology of mature
1808 developed musculoids with presence of the characteristic protrusions-like structures, where
1809 myogenic progenitor maturation occurs (L) Scatter plot depicting average expression of genes
1810 between control GLM derived myogenic progenitors, Day84, and GLM derived myogenic
1811 progenitors from FLNC and Pompe patients lines at GLM level (left, Day 120). Selected genes
1812 from the late fetal, adult MuSCs core program, NFIX, MYF5, PAX7, and genes related to
1813 specification resistance, NOTCH, ECM, are highlighted in red.
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1827 Figure S7 Evaluating adult mouse muscle stem cells at different stages during regeneration
1828 at single cell resolution '”. (A) UMAP plot depicting muscle stem cell populations at day 0, day
1829 2, day 5 and day 7 together with violin plots on activated, CD44, MYF5 and quiescent markers
1830 e.g. PAX7, CD34 and SPRY1. (B) Ordering of cells by diffusion map pseudotime demonstrates
1831 distinct states of muscle stem cells developmental trajectory during muscle regeneration and
1832 highlights the self renewal process. (C) Dot plot showing the expression of extracellular matrix
1833 genes, dormant genes e.g . Pax7, Cd34, activated genes e.g. Cd44, Jun and Fos during muscle
1834 stem cell regeneration process. The size of each circle reflects the percentage of cells in a cluster
1835 where the gene is detected, and the color reflects the average expression level within each cluster
1836 (blue, low expression; red, high expression). (D) UMAP plots on Pax7, Cd34 and Cd44
1837 distinguish activated, quiescent and self renewal populations during muscle regeneration. (E)
1838 Diffusion map pseudotime of muscle stem cells and cell cycle state during each stage. (F)
1839 Pseudotemporal ordering of muscle stem cells progenitors from day 0 , day 2, day 5 and day 7
1840 depicting gene expression trend for extracellular matrix genes, Pax7, Cd34, and Cd44, Jun, Fos
1841 along diffusion map pseudotime. (G) Outcome of NicheNet’s ligand activity prediction for the
1842 20 ligands best predicting the quiescent gene set, Nichenet analysis performed on differentially
1843 expressed genes between Day 7 (return to quiescence for MuSCs, receiver cell type: Quiescent
1844 MuSCs) and Day 5 (activation /transient amplification of MuSCs, sender/niche cell type:
1845 Activated/Committed MuSCs), better predictive ligands are ranked higher. Heatmap to infer
1846 receptors and top-predicted target genes of ligands that are top-ranked in the ligand activity
1847 NicheNet’s analysis (left). Ligand-receptor network inference for top-ranked ligands between
1848 activated/committed MuSCs ligands and receptors strongly expressed in quiescent MuSCs cells
1849 (right).
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1852 Figure S8 Characterization and in vifro sustainable expansion of late fetal myogenic
1853 progenitors. (A) Immunocytochemistry images indicate proliferating, EdU/PAX7", and
1854 dormant, EQU/PAX7", fetal myogenic progenitors, and proliferating neural progenitors (EdU™).
1855 (B) Density plots indicating the FACS gating during cell cycle analysis of fetal myogenic
1856 progenitors derived via GLM and expanded in 2D. Plot investigating area vs width for DAPI
1857 signal indicates presence of multi-nucleated proliferating cells in the culture. Before analysis
1858 cells incubated with 5SuM EdU overnight (18hr). Colors correspond to the same cell population
1859 among the plots. (C) Feature plots from force-directed k-nearest neighbor graph on fetal
1860 myogenic progenitors at Day 180, derived via GLM approach (Day56-Day84) and expanded in
1861 2D for 10 passages, illustrate MAGIC imputed average expression levels for core late fetal
1862 muscle stem cell program, PAX7, MYF5, NOTCH3, KLF4, PLAGLI, NFIX, NFIA, NFIB, NFIC,
1863 CD44, absence of committed markers, MYODI, MYOG, MEF2C. (D) Immunocytochemistry
1864 images from late fetal myogenic progenitors, derived via GLM and expanded in 2D, at different
1865 passages indicate at the seeding stage an initial presence of committed, MYOD1"/PAX7", and
1866 uncommitted, MYODI1/PAX7", cell populations, followed by sustainable propagation of
1867 uncommitted myogenic progenitors for at least 10 passages (> 100 Days). (E) Contour plots
1868 illustrating FACS quantification on MYOD1" and PAX7" fetal myogenic progenitors established
1869 at GLM level (Day56 - Day84) till late fetal stage, followed by 2D expansion. Black contour:
1870 unstained population, green contour: MYOD1 FMO control, red contour: PAX7 FMO control.
1871 n=number of samples and quantification represents mean values + standard deviation. (F) The
1872 inferred outgoing and incoming communication patterns of secreting cells, show the
1873 correspondence between the inferred latent patterns and cell groups, as well as signaling
1874 pathways. The thickness of the flow indicates the contribution of the cell group or signaling
1875 pathway to each latent pattern. (G) Heatmap indicating signals contributing most to the outgoing
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or incoming signalling of myogenic progenitor and neural clusters in datasets of expanded in 2D
for 10 passages myogenic progenitors. (H) Pseudotime analysis on myogenic progenitors (GLM
derived, 2D expansion for 10 passages) using Palantir pipeline. Gene expression trends for
SPRYI, CD44, FBNI, NOTCH3, highlight upregulation on their expression along pseudotime.
Trends are colored based on states/cells presented in pseudotime illustration (circles). Initial
(black circle) and activated (magenta circle), resist specification (cyan circle) , committed
(orange circle) state were calculated/selected based on RNA velocity analysis presented in Fig.

4c. Shaded region represents 1s.d. Scale Bars: 500um in (C),(D, 10" passage), 400um in (D

6™, 7" passage), 250um in (D, seeding, 5" passage).
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1901 Figure S9 Characterization of patient derived biopsies (FLNC p.Q1662X, FLNC
1902 p-Y2704X) at single cell resolution. (A) UMAP analysis on FLNC p.Q1662X Biopsy depicting
1903 cluster composition, together with (B) dot plot with representative markers for each cluster. The
1904 size of each circle reflects the percentage of cells in a cluster where the gene is detected, and the
1905 color reflects the average expression level within each cluster (blue, low expression; red, high
1906 expression). (C) Aggregated cell-cell communication network indicating the number of
1907 significant ligand-receptor pairs between any pair of two cell populations. The edge width is
1908 proportional to number of ligand-receptor pairs. (D) UMAP analysis on FLNC p.Y2704X
1909 Biopsy depicting cluster composition, together with (E) dot plot with representative markers for
1910 each cluster. The size of each circle reflects the percentage of cells in a cluster where the gene is
1911 detected, and the color reflects the average expression level within each cluster (blue, low
1912 expression; red, high expression). (F) Aggregated cell-cell communication network indicating
1913 the number of significant ligand-receptor pairs between any pair of two cell populations. The
1914 edge width is proportional to number of ligand-receptor pairs. (G) Integrative comparison
1915 between FLNC p.Q1662X, FLNC p.Y2704X biopsies and skeletal muscle reference atlas
1916 composed from young (19-22Yr) and aged (70-76Yr) datasets, indicate via the increased adult
1917 muscle stem cells and immune system representation within FLNC biopsies, signs of ongoing
1918 regeneration. FLNC p.Y2704X biopsy further exhibits increased fibrosis, a sign of disease
1919 progression. (H) Violin plots depicting expression of RUNXI, KLF6, LYVE] markers on
1920 immune related clusters from FLNC p.Q1662X, FLNC p.Y2704X biopsies and those from
1921 young (19-22Yr) and aged (70-76YT) skeletal muscle reference atlas, indicate ongoing immune
1922 response on FLNC patient derived biopsies. (I) Regulon score specificity (RSS) at human
1923 skeletal muscle biopsies highlights GRNs from nuclear factor I family, NFIX, NFIA and GRN
1924 involved in MuSCs activation, FOS, JUN, RUNXI1.
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1926 Figure S10 Characterization of control and patient derived fetal and adult MuSCs (FLNC
1927 p-Q1662X, FLNC p.Y2704X) at single cell resolution. (A) Outcome of NicheNet’s ligand
1928 activity prediction for the 20 ligands best predicting the GLM derived fetal myogenic progenitors
1929 niche gene set, Nichenet analysis performed on deferentially expressed genes between FLNC
1930 p.Q1662X, FLNC p.Y2704X (receiver cell type: Myogenic progenitors) and control GLM
1931 derived musculoid datasets (sender/niche cell type: musculature), better predictive ligands are
1932 ranked higher. Heatmap to infer receptors and top-predicted target genes of ligands that are top-
1933 ranked in the ligand activity NicheNet’s analysis (B) Ligand-receptor network inference for top-
1934 ranked ligands between myotube/myofiber ligands and receptors strongly expressed in myogenic
1935 progenitors. (C) Outcome of NicheNet’s ligand activity prediction for the 20 ligands best
1936 predicting the adult MuSCs niche gene set, Nichenet analysis performed on deferentially
1937 expressed genes between FLNC p.Q1662X, FLNC p.Y2704X (receiver cell type: MuSCs,
1938 satellite cells) and control MuSCs (sender/niche cell type: musculature), better predictive
1939 ligands are ranked higher. Heatmap to infer receptors and top-predicted target genes of ligands
1940 that are top-ranked in the ligand activity NicheNet’s analysis (D) Ligand-receptor network
1941 inference for top-ranked ligands between myofiber associated ligands and receptors strongly
1942 expressed in adult MuSCs. (E) Immunocytochemistry images from FLNC biopsies and
1943 musculoid derived myogenic progenitors indicate committed, RUNX1"/PAX7", uncommitted
1944 RUNX17/PAX7", myogenic progenitors. Brightfield plane indicates presence of RUNX1/PAX7
1945 nuclei at myoblast/myotubes. Scale Bar: 100uM (F) Differential expression analysis and SC3
1946 clustering for Biopsy derived MuSCs (FLNC p.Q1662X, FLNC p.Y2704X ) datasets, indicate
1947 committed and regeneration state predominantly for p.Q1662X MuSCs. (G) Selected enriched
1948 GO terms from DEGs enriched in p.Q1662X, p.Y2704X FLNC adult MuSCs versus GLM
1949 derived p.Q1662X, p.Y2704X FLNC myogenic progenitors (top). Selected enriched GO terms
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from DEGs enriched in GLM derived p.Q1662X, p.Y2704X FLNC myogenic progenitors

versus p.Q1662X, p.Y2704X FLNC adult MuSCs (bottom).
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1978 Figure S11 Profiling GLM derived myogenic progenitors from infantile and late onset
1979 Pompe lines at single cell resolution. (A) Curved trajectory analysis on PCA space for human
1980 skeletal muscle reference atlas. Pseudotime was calculated, by learning a principal curve on the
1981 2 first PC components using the EIPiGraph algorithm. Significantly changing genes at each
1982 stage, embryonic, fetal, postnatal, for myogenic progenitors along the human myogenic
1983 trajectory. (B) Cytochemical PAS staining and glycogen assay on control and IOPD, LOPD
1984 myotubes following differentiation indicates significant glycogen accumulation in IOPD, LOPD
1985 myotubes compared to control line. Statistical analysis was performed by a one-way ANOVA
1986 and showed a p-value <0.0001 for the comparison of wt with IOPD/LOPD. Scale Bar: 50 pum.
1987 n=4, Statistics: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: not significant. (C) Outcome
1988 of NicheNet’s ligand activity prediction for the 20 ligands best predicting the GLM derived fetal
1989 myogenic progenitors niche gene set, Nichenet analysis performed on deferentially expressed
1990 genes between late onset Pompe (receiver cell type: Myogenic progenitors) and control GLM
1991 derived musculoid datasets (sender/niche cell type: musculature), better predictive ligands are
1992 ranked higher. Heatmap to infer receptors and top-predicted target genes of ligands that are top-
1993 ranked in the ligand activity NicheNet’s analysis (D) Ligand-receptor network inference for top-
1994 ranked ligands between myotube/myofiber ligands and receptors strongly expressed in myogenic
1995 progenitors. (E) Outcome of NicheNet’s ligand activity prediction for the 20 ligands best
1996 predicting the GLM derived fetal myogenic progenitors niche gene set, Nichenet analysis
1997 performed on deferentially expressed genes between infantile onset Pompe (receiver cell type:
1998 Myogenic progenitors) and control GLM derived musculoid datasets (sender/niche cell type:
1999 musculature), better predictive ligands are ranked higher. Heatmap to infer receptors and top-
2000 predicted target genes of ligands that are top-ranked in the ligand activity NicheNet’s analysis
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(F) Ligand-receptor network inference for top-ranked ligands between myotube/myofiber

ligands and receptors strongly expressed in myogenic progenitors.
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Figure S12 Profiling myogenic progenitors derived via GLM and 2D or 3D in vitro
differentiation approaches. (A) Scatter plots illustrating “pseudobulk” profiles derived
following integration of single cell RNA seq data using the AggregateExpression
command from Seurat. Gene expression profile comparison between adult, fetal and embryonic
stages of myogenic progenitors during human development, between GLM derived and adult,
fetal and embryonic in vivo myogenic progenitors, and between GLM derived myogenic
progenitors and those derived from the state of the art 2D or 3D in vitro differentiation

approaches. Red circle indicates ECM and fetal/adult muscle stem cells related genes. Blue circle

indicates Hox gene expression.
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	Single-nuclei isolation of human skeletal muscle biopsies
	Skeletal muscle tissues from Vastus Lateralis (p.Y2704X) and Soleus (p.Q1662X) were sampled by the surgeon and immediately frozen in liquid nitrogen. Single-nuclei isolation was performed on ice using the Chromium nuclei isolation kit according to the manufacturer’s instructions. After dissociation, nuclei number was estimated and processed immediately using the Chromium Single Cell 3′ Reagent Kits (v3).
	Spatial gene expression assay
	​ Gene ontology enrichment analysis: Gene ontology (GO) enrichment was performed on Differentially expressed genes (DEGs), genes are listed in listed in Table S3,S4. using Metascape105 (http://metascape.org/gp/index.html#/main/step1) against GO terms belonging to “Biological Processes” and “Hallmark Processes”. Reactome analysis106 (https://reactome.org/) was performed on differentially expressed genes (DEGs) between GLM derived fetal and biopsy derived adult MuSCs p.Q1662X,p.Y2704X lines. Genes are listed in in Table S4.

	Trichrome staining (Gomori)
	Reproducibility

