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Abstract

PET-based connectivity computation is a molecular approach that complements fMRI-derived
functional connectivity. However, the diversity of methodologies and terms employed in PET
connectivity analysis has resulted in ambiguities and confounded interpretations, highlighting

the need for a standardized nomenclature.

Drawing parallels from other imaging modalities, we propose “molecular connectivity” as an
umbrella term to characterize statistical dependencies between PET signals across brain
regions at the individual level (within-subject). Like fMRI resting-state functional connectivity,
“molecular connectivity” leverages temporal associations in the PET signal to derive brain
network associations. Another within-subject approach evaluates regional similarities of tracer
kinetics, which are unique in PET imaging, thus referred to as “kinetic connectivity”. On the
other hand, “molecular covariance” denotes group-level computations of covariance matrices
across-subject. Further specification of the terminology can be achieved by including the
employed radioligand, such as “metabolic connectivity/covariance” for ['®F]FDG as well as

“tau/amyloid covariance” for ['8F]flutemetamol / ['®F]flortaucipir.

To augment these distinctions, high-temporal resolution functional ['®F]FDG PET scans from
17 healthy participants were analysed with common techniques of molecular connectivity and
covariance, allowing for a data-driven support of the above terminology. Our findings
demonstrate that temporal band-pass filtering yields structured network organization, whereas
other techniques like 3™ order polynomial fitting, spatio-temporal filtering and baseline
normalization require further methodological refinement for high-temporal resolution data.
Conversely, molecular covariance from across-subject data provided a simple means to

estimate brain region interactions through regularized or sparse inverse covariance estimation.

A standardized nomenclature in PET-based connectivity research can reduce ambiguity,
enhance reproducibility, and facilitate interpretability across radiotracers and imaging

modalities. Via a data-driven approach, this work provides a transparent framework for
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80 categorizing and comparing PET-derived connectivity and covariance metrics, laying the

81  foundation for future investigations in the field.
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g2  Introduction

83 The assessment of resting-state functional brain networks, as mostly elucidated through
84  functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG), has been
85 a cornerstone of neuroimaging research for decades due to its low risk, low cost, and widely
86 available hard- and software. Resting-state functional connectivity (FC) has provided valuable
87 insights into the organization of the brain and network interactions by correlating moment-to-
88 moment fluctuations of signals between spatially distinct brain regions at rest. Positron
89  Emission Tomography (PET) enables imaging of physiological processes at the molecular
90 level, capable of detecting energy metabolism, neuronal receptors, enzymes, and other targets
91 at nanomolar concentrations. However, its application in connectivity analyses remains
92 relatively unexplored. While molecular connectivity is a concept dating back to the 1980s ' and
93  1990s 23, little progress has been made, in part due to technological constraints in PET imaging
94  that resulted in limited count rates at high temporal resolutions. These constraints precluded
95 the reconstruction of dynamic PET data in the range of seconds and thus, the estimation of
96 connectivity at the individual level. Consequently, and due in part to its simplicity, the
97  computation of covariance (i.e., not in a statistical sense) metrics across subjects remained
98 the commonest approach as a proxy for molecular connectivity. The widespread availability of
99  ['®F]Fluorodeoxyglucose (['®F]FDG) for metabolic connectivity (i.e., molecular connectivity for
100  glucose metabolism), represents a promising avenue for probing brain interactions based on
101  metabolic demands, complementing its fMRI counterparts 4% However, the inherent
102 disadvantage of estimating associations across an entire group of subjects instead of
103  connectivity at the subject level is a major obstacle regarding its individual biological
104  interpretation %10, Figure 1 presents a graphical overview of common techniques used to

105  assess brain connectivity in humans in vivo.

106  Recent technological progress has transformed the landscape of molecular connectivity
107  research. With increased sensitivity PET scanners, standardized infusion protocols (i.e., bolus

108  + constantinfusion), refined reconstruction algorithms, and advanced pre-processing including
6
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109 filtering techniques and post-processing, researchers are now better equipped to investigate
110  brain networks on a molecular level. These advances allow using PET data at previously
111  unprecedented temporal resolutions within the range of minutes and seconds "2, more akin
112 to that of fMRI ". This has established the foundation for estimating individual temporal
113 molecular connectivity through various computational methodologies. These include the
114  application of within-subject Euclidean distance metrics '3, a third-order polynomial function
115 415 gpatiotemporal filters °, as well as the utilization of across-subject covariance matrices 6
116 "9 as well as hybrid approaches to integrate fMRI and PET metrics 2%2'. Most of these
117  approaches aim to compute connectivity at an individual level by using temporal information
118 from the PET data. Furthermore, the 3 order polynomial, spatiotemporal filter and baseline
119  normalization aim to correlate moment-to-moment fluctuations in the PET signal, while the
120  Euclidian distance evaluates differences in tracer kinetics. Exceptions to this are covariance
121  matrices and sparse inverse covariance estimation (SICE), which compute associations

122 between brain regions across a group of subjects.

123 Unfortunately, each technique has been labelled as molecular connectivity, despite differences
124  in the underlying assumptions, computations, and outcome metrics, resulting in ambiguous
125 terminology. Moreover, related terms such as “metabolic connectivity mapping” are employed

126  to describe various outcomes, leading to potential confusion 1329,

127  As the field experiences a growth in utilization and methodological diversity, there is a pressing
128 need for standardization in nomenclature. The absence of a unified terminology poses
129 challenges in synthesizing findings across studies and impedes the establishment of a
130 cohesive framework for interpreting PET connectivity outcomes. Discussions regarding the
131  definition of molecular connectivity and covariance, as well as the distinct yet valuable insights
132  offered by each approach, have already commenced %'%'8, However, previous work either
133  compared only a subset of approaches or was qualitative in nature, while widespread

134  consensus grounded in the actual outcome parameters of each technique is missing.
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We aim to address this gap by proposing a standardized nomenclature for the most utilized
PET connectivity techniques across a multidisciplinary, international group of researchers in
the field. Our proposed nomenclature is based on a comprehensive review of existing literature
on molecular connectivity and covariance techniques (part 1: nomenclature). To validate this
proposal, we conducted a showcase using high-temporal resolution ['8F]FDG data, which was
previously unavailable for such analyses (part 2: experimental data). This approach ensures
that our terminology not only aligns with established methodologies but also demonstrates
practical feasibility in an experimental setting. By integrating theoretical foundations with
empirical comparisons, we establish a cohesive and robust framework for defining molecular

connectivity metrics.
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145 Nomenclature of molecular connectivity and covariance

146  The standardization of nomenclature for quantification of PET radioligands 22 has significantly
147  enhanced the clarity of subsequent research, fostering greater consistency in findings. Given
148 the substantial growth in interest in PET connectivity research in recent years, the
149 standardization of its nomenclature is fundamental, as it addresses several pivotal issues
150  within the field. Firstly, the utilization of a single term to describe multiple distinct concepts (and
151  vice versa) can cause confusion among researchers, impeding the interpretation of study
152  outcomes. By harmonizing terminology, researchers can facilitate seamless communication
153  and collaboration, thereby increasing the reproducibility of findings across studies. Additionally,
154  astandardized nomenclature enhances comprehension, particularly among diverse audiences
155  and within broader contexts. Neuroimaging traverses’ various disciplines and encompasses
156  researchers with diverse levels of expertise. Standardized terminology enables researchers
157  from disparate backgrounds to readily compare findings, fostering knowledge exchange and

158 interdisciplinary cooperation.

159  Historically, the grouping of PET connectivity methodologies has delineated the term
160  "molecular connectivity" (and with the common use of ["®F]FDG also “metabolic connectivity”)
161 as an umbrella concept encompassing both within-subject connectivity and across-subject
162  metrics. However, the interchangeable use of "molecular connectivity" for within-subject and
163  across-subject associations is problematic, as these represent fundamentally distinct
164 measures. Most imaging modalities use “connectivity” to characterize the strength (and
165  potential directionality) of couplings between brain regions within individuals (Figure 1). This is
166 true for functional connectivity obtained from fMRI and EEG data and structural connectivity
167 derived from diffusion-weighted MRI. On the other hand, “covariance” metrics gauge the
168  statistical associations between regions of interest of a static outcome metric across
169 individuals, such as gray matter volume obtained from T1-weighted structural images 2324 or
170 SUVR % in PET imaging. A clear differentiation between these concepts is imperative to

171  prevent misinterpretation and ensure accurate communication of study findings (Figure 2).

9
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172 For “molecular connectivity” analyses, we therefore suggest that this term may encompass all
173  approaches that use moment-to-moment fluctuations in the PET signal to estimate connectivity
174  (like “functional connectivity” used in fMRI). In this context, further detail emerges for within-
175  subject connectivity methods, each capturing temporal dynamics within an individual,
176  contingent upon the method employed to estimate connectivity metrics. On the other hand,
177  “molecular covariance” should be used for the estimation of network interactions across-
178  subjects. The discourse on the disparities between molecular connectivity and molecular
179  covariance is not novel 1926 and will therefore not be repeated here. Nevertheless, these
180  discussions underscore the relevance of within-subject and across-subject connectivity metrics
181  in PET connectivity research and their inherent differences. While within-subject connectivity
182  furnishes insights into individual variability and dynamic network properties, across-subject
183  covariance offers a broader perspective on shared connectivity patterns across populations.
184  Another PET-specific approach distinct from all former methods is the Euclidean distance
185  calculation. This divergence stems from the diversity of inputs it accommodates (raw or
186  compartment specific TACs) and how connectivity is calculated (Euclidean distance between
187 TACs). In this regard, the method is theoretically limited to estimating solely positive
188  connectivity metrics. The assumptions and calculations of this technique are based on the
189  kinetics of the radiotracer across an entire PET scan, leading us to propose the term “kinetic
190 connectivity” for a clear distinction of this PET approach. Notably, extension with kinetic
191 modelling allows to derive kinetic connectivity for the individual compartments, yielding
192  relevant information regarding the separation of the transport across the blood-brain barrier
193 (K4, k2) and irreversible uptake into the cells (ks). The proposed terminology also reflects these

194 distinct effects.

195 Regarding different radiotracers, we would like to propose that the term “molecular
196  connectivity/covariance” serves well as an umbrella term for PET-based estimation of network
197 interactions in general. This also leaves ample opportunity for further specification of different
198 radioligands and targets such as “metabolic connectivity/covariance” when using ['®F]FDG, “5-

199  HTia covariance” for [carbonyl-""C]WAY100635 27, “SERT covariance” for ["'"C]DASB 28 or
10
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200 “tau/amyloid covariance” for ['®F]flutemetamol (amyloid-B) / ['®F]flortaucipir (tau) 2° (see
201  supplementary table 1 for a list of examples). Likewise, the term “kinetic connectivity” can be
202  extended for the employed radiotracer and/or target, such as “metabolic kinetic connectivity,”
203  when using ["®F]FDG. We expect that this field will experience rapid growth and application to
204  other target structures in the near future, further underlining the need for standardized
205 terminology and assessment of the feasibility and interpretation for radioligands beyond

206  ['8F]FDG.

207  Recently, also hybrid connectivity and covariance techniques have emerged, leveraging the
208 complementary strengths of static PET and fMRI-based functional connectivity to delineate
209  molecular covariance 2! or estimate directional connectivity 2°. Notably, recent advancements
210 have also integrated dynamic fPET with fMRI to investigate task-related neuronal responses
211 30, Further extension of such combined analyses to connectivity and exploration of hybrid
212 methods, which integrate data from multiple modalities such as fPET, fMRI and EEG, holds
213  promise for providing a comprehensive understanding of brain connectivity. These hybrid
214  approaches could also enable the investigation of directional connectivity (such as dynamic
215  causal modeling for fMRI data), shedding light on the causal interactions between brain regions
216 and enhancing our ability to elucidate complex neural networks underlying cognition and
217  behavior. As the field expands, the agreement and adoption of specific terms will become

218 increasingly necessary, see Table 1 for an overview of the proposed terms and their definitions.

11
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219  Experimental data

220 Inthis chapter we aim to augment the literature-based nomenclature by comparing established
221  methodologies for estimating molecular connectivity and molecular covariance using high-
222  temporal resolution ['®F]FDG fPET data at resting-state alongside their fMRI-derived functional
223 connectivity counterparts. We aim to show the similarities and differences between these
224  methodologies, thereby providing a data-driven standardization of PET connectivity

225 nomenclature.
226  Participants and demographics

227  Seventeen healthy volunteers (mean age + SD = 24.6 £ 3.5 ranging from 21 to 32 years old,
228 10 female) were recruited for the fPET molecular connectivity analysis, while 62 healthy
229  participants (mean age + SD = 29.0 + 9.25 ranging from 18 to 51 years old, 35 female) were

230 recruited for the fMRI functional connectivity analysis.

231  Participants' general health status was evaluated through a comprehensive medical
232 evaluation, including medical history, physical examination, electrocardiogram, and routine
233 laboratory tests. The Structured Clinical Interview for DSM-IV for Axis | disorders (SCID-I) was
234  employed to exclude any prior or current psychiatric disorders. Exclusion criteria encompassed
235 chronic medical conditions, psychiatric disorders, current or past substance use disorder,
236  psychopharmacological treatment, and contraindications for PET/MR scans, such as implants,
237  claustrophobia, and research-specific radiation exposure. Urine drug tests were conducted
238  during screening, and pregnancy tests were administered to female participants both at
239  screening and before each scan. All participants provided written informed consent and

240 received financial compensation for their involvement.

241  This study was approved by the ethics committee of the Medical University of Vienna (EK
242 1307/2014) and adhered to the principles outlined in the Declaration of Helsinki. This
243  investigation constitutes a component of a larger preregistered study (clinicaltrials.gov,

244 NCT02711215).

12
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245  Study design

246  Forthe fPET acquisition, each participant underwent two 50-minute hybrid ['®F]FDG fPET/fMRI
247 scans. Following a baseline acquisition of 20 minutes at resting-state, a double-blind
248  pharmacological challenge of either citalopram 8 mg or saline was administered. While
249  performing connectivity analyses in the current project, data between 5 (i.e. after radiotracer
250 uptake is in a steady state for bolus + infusion 3'32) and 20 minutes were extracted from the
251  first measurement, i.e. before any drug application occurred. This allowed the participants to

252  be in the same cognitive state (here: resting-state) during the experiment.

253  fMRI acquisition was carried out in a similar manner and using the same scanner system,
254  though in different individuals as described previously 3. Here, 10-minute resting-state fMRI
255 data from the placebo measurement were utilized, a more detailed description of the study

256  design can be found in 3.

257 Data acquisition

258 Participants were instructed to fast, except for water intake, for a minimum of 5.5 hours
259  preceding the administration of the radioligand 34. A cannula was inserted into the radial artery
260  for arterial blood sampling (which was not used in this work), while two cannulas were placed
261 in a cubital vein of the contralateral arm for the infusion of the radiotracer ['®F]JFDG and study
262  medication (citalopram or placebo). Synthesis of ['®F]JFDG was conducted following a well-
263  established protocol 3. The radiotracer (5.1 MBqg/kg) was administered as a bolus (1020
264  kBg/kg/min, 1 minute) followed by a continuous infusion (83.3 kBg/kg/min, 49 minutes) utilizing
265  a perfusion pump (Syramed pSP6000, Arcomed, Regensdorf, Switzerland) situated within an
266  MR-shielded environment (UniQUE, Arcomed). All scans were conducted using a hybrid 3T

267  PET/MRI scanner (mMR Biograph, Siemens Healthineers, Germany).

268 Resting-state fMRI data was acquired for 10 min using an echo-planar imaging sequence
269 (TE/TR= 30/2440 ms, 2.1 x 2.1 mm in-plane resolution, 3 mm slice thickness with 0.75 mm

270  gap), 100 x 100 voxels in-plane, 36 slices, GRAPPA 2.

13
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271  Before radiotracer administration, a structural image was obtained using a T1-weighted
272 MPRAGE sequence with the following parameters: TE/TR = 4.21/2200 ms, Tl = 900 ms, flip
273 angle = 9°, matrix size = 240x256, 160 slices, voxel size =1x1x 1 mm + 0.1 mm gap, TA =
274  7:41 min, which was used for spatial normalization of the fPET data. fPET acquisition

275 commenced subsequently, following the protocol described above and in previous work 2.

276  fMRI preprocessing and filtering

277  fMRI data were preprocessed in SPM12 and ArtRepair toolbox 3¢, following an established
278  protocol ¥. In brief, the data underwent correction for transient slice artifacts and slice-timing
279  discrepancies, followed by realignment and reslicing of the realigned images. Pre-smoothing
280  with a4 mm FWHM Gaussian kernel was applied, followed by motion regression, detection of
281  motion outliers, and subsequent regression 38 followed by despiking 3¢. Subsequently, the data
282  were normalized to MNI space with an isotropic resolution of 2 mm 3. Acknowledging the
283  substantial variability in fMRI connectivity patterns across preprocessing steps, including
284  common corrections for cerebrospinal fluid and white-matter signals in resting-state fMRI data,
285  we intentionally omitted such corrections. This decision was made to ensure consistency in

286  data preprocessing across modalities. Data were band-pass filtered (0.01-0.1 Hz) 3240,

287  fPET preprocessing

288  fPET image reconstruction and preprocessing followed established protocols outlined in our
289  previous publications 11241 keeping the processing as similar as possible to fMRI. List-mode
290 PET data underwent reconstruction into frames of 3 seconds utilizing an ordinary Poisson-
291  ordered subset expectation maximization algorithm (3 iterations and 21 subsets, OP-OSEM),
292  with a matrix size of 344 x 344 and 127 slices with a voxel size of 2.09 x 2.09 x 2.03 mm and
293  a NEMA resolution of 4.3 mm 42, Attenuation and scatter correction were performed using a
294  pseudo-CT approach based on the structural T1-weighted image 43. fPET data were
295  preprocessed utilizing SPM12 (Wellcome Trust Centre for Neuroimaging) and included head
296 movement correction (quality = best, registration to mean image) and coregistration to the

297  structural image. The structural MRI was spatially normalized to the standard space defined
14
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298 by the Montreal Neurological Institute (MNI), and the transformation matrix was applied to the
299  coregistered fPET data. Spatial and temporal smoothing was performed using a dynamic non-
300 local means (NLM) filter with a search window of D = 11 voxels and a patch size of 3 x 3 x 3
301 voxels and 5 frames 444%, followed by Gaussian smoothing with a FWHM of 5 mm ''. Compared
302 to a standard 3D Gaussian filter, this approach has the advantage of increasing the signal-to-

303 noise ratio while enabling the capture of acute temporal changes in the signal 4.
304 Connectivity and covariance estimation

305 To distinguish between the different type of connectivity and covariance methods, within-

306  subject measures are prefixed with (A) and across-subject with (B).

307 (A1) 3" order Polynomial: The application of a 3™ order polynomial fitting is employed to
308 model the cumulative behavior of ['"8F]FDG uptake extracted from the time course of each brain
309 region. This method, as outlined by #'% aims to capture the temporal dynamics of metabolic
310 activity. By fitting a polynomial function to the time-activity curves (TACs), it enables the
311  characterization and subsequent removal of the overall trend in radiotracer uptake over time.
312  The residuals derived from this polynomial fit represent a possibility to obtain inherent
313  physiological fluctuations, facilitating subsequent calculations of inter-regional molecular

314  connectivity.

315 (A2) Spatiotemporal Filter: The spatiotemporal gradient filter, as employed by °, targets short-
316  term fluctuations in glucose uptake. This filter isolates short-term resting-state fluctuations by
317  removing the effect of radiotracer accumulation and low-frequency components of the signal.
318 It effectively adjusts for the mean signal without resorting to global signal regression, thereby
319 avoiding the creation of spurious anticorrelations in the data. The filter utilized a spatial
320 Gaussian standard deviation of one voxel and a temporal Gaussian standard deviation of 2

321 frames as suggested by Jamadar et al °.

322  (A3) Band-pass Filter: In fMRI connectivity analysis, a band-pass filter is commonly applied

323  to isolate the frequency range corresponding to the resting-state fluctuations of interest. By
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324  selectively passing frequencies within this range, the band-pass filter enhances the detection
325  of (presumably) coherent neural activity while suppressing noise and artifacts. Like fMRI
326 resting-state analyses, a band-pass filter can also be applied to fPET TACs. We set the

327 passband frequency for the fPET data to match that used in the fMRI analysis [0.01, 0.1].Hz.

328 (A4) Baseline normalization: This involves a systematic normalization and correlation-based
329 approach. Initially, the entire brain's mean signal intensity is computed at each time point,
330 serving as a reference for subsequent normalization. Each ROl is then adjusted relative to this
331 global mean value (i.e. dividing a regional TAC by the global TAC at each time point),

332 facilitating comparability across brain regions 4748,

333  (A5) Euclidean distance: In contrast to the approaches above, which necessitates prior
334 filtering to mitigate the influence of baseline uptake, utilizing Euclidean similarity on PET data
335 does not require such preprocessing. Euclidean similarity is based on the Euclidean distance
336  between each pair of time-activity curves (TACs). It is defined as one minus the normalized
337 distance i.e. divided by the maximum distance among pairs of TACs, resulting in values scaled
338 to the range [0, 1]. Due to the heavy-tailed (left-skewed) distribution of Euclidean similarity
339 values, a Fisher z-transformation is applied to normalize the data. Following the
340 transformation, the values are rescaled to the range [0, 1] to maintain consistency with the

341  original scale 3.

342  (B1) Covariance matrix: refers to the statistical covariation of radiotracer activity levels across
343  different brain regions over a group of individuals and previously served as a surrogate
344  measure for PET connectivity 234°. This approach mostly involves constructing a single image
345  for each participant from the PET data, typically the standard uptake value (SUV). To facilitate
346  inter-subject comparison and mitigate individual variability, these images are typically
347 normalized by the average grey matter value (SUVR), ensuring that differences in global

348  metabolic activity levels are accounted for 5.

349 (B2) SICE: Sparse inverse covariance estimation, also known as Gaussian graphical models

350 or graphical Lasso, is a refined method used for estimating molecular covariance. SICE
16


https://doi.org/10.1101/2024.05.10.593490
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.10.593490; this version posted May 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

351 identifies the conditional dependencies between variables in a dataset while promoting
352  sparsity, meaning many entries in the inverse covariance matrix are forced to be zero. This is
353  achieved through regularization techniques that penalize the absolute values of the matrix
354  entries, resulting in a sparse representation that highlights the most significant relationships
355 among variables. This approach is particularly useful in scenarios where the number of
356  subjects included in the analysis is smaller than the number of ROIs, which is valuable in
357  connectivity studies aimed at assessing the whole-brain connectome 1626, In this scenario, we
358 used the graphical Lasso approach with the regularization parameter set to 0.1 and the

359 maximum number of iterations was set to one thousand.

360  Statistical comparison

361 To estimate and visualize the different molecular connectivity or covariance matrices for each
362 method across various levels of network granularity, three functional atlases were selected:
363 the Yeo (17 Network) atlas °° combined with other regions from the Harvard-Oxford atlas
364  distributed with FSL (ROI 18: Striatum & Thalamus; ROI 19: Amygdala & Hippocampus) and
365 the Schaefer 100 and 300 parcellation atlas ®', whose networks have been related to the Yeo
366  atlas. Molecular (PET) and functional (fMRI) connectivity was assessed by computing
367 Pearson’s partial correlation of the residual time courses between pairs of brain regions 5253,
368 Head motion was accounted for by incorporating the six realignment parameters as nuisance
369 variables in the partial correlation calculation. We calculated partial correlations for connectivity
370 estimated using the 3™ order polynomial, baseline normalization, spatiotemporal filter for fPET,
371 and band-pass filtering for both fPET and fMRI. For the estimate of molecular covariance
372  metrics, partial correlations were similarly employed, but instead of head motion correction,
373  correlations were adjusted for signal contributions from other brain regions. This approach
374  facilitated the isolation of pairwise information while reducing confounding effects, resulting in

375 a more precise characterization of covariance patterns 26,

376  To aggregate findings across participants, correlation coefficients of all connectivity metrics
377 were averaged after Fisher Z-transformation. Finally, the average Fisher Z-values were
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inverted back to the correlation values. Next, each method's average connectivity or
covariance matrix was subjected to hierarchical clustering, with chebychev/max distance
serving as the distance metric. This approach enabled both visualization and quantification of
the distinct differences in patterns generated by each approach. Eigenvalue decomposition
was conducted to better assess the spatial structure of each filter's correlation/covariance

matrix, and the results were visualized using a scree plot.
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332 Experimental Results

385 Correlation and Covariance Matrices

386 The correlation matrices in Figure 3 illustrate distinct molecular connectivity/covariance

387 patterns between the various techniques.

388  Matrices obtained with the band-pass filter and baseline normalization were characterized by
389  structured network organization and high correlation values indicative of strong inter-regional
390 interactions (Figure 3f-g). However, correlations were markedly influenced by residual baseline
391 radiotracer uptake for the latter approach. This suggests that the normalization does not
392  sufficiently remove this effect (Figure 4d), leading to correlation values primarily driven by
393  baseline uptake rather than moment-to-moment fluctuations. The Euclidian distance metric
394  showed intermediate network structure, most likely due to the similarity of TACs across brain
395 regions (Figure 4a). Compared to fMRI-based functional connectivity, the band-pass filter
396  showed network structure to a similar extent but different organizational pattern, highlighting
397 the difference between the various imaging modalities (Figure 3 and 6g-h). In contrast, the 3-
398 order polynomial and spatial-temporal filter methods yield matrices almost devoid of network
399  structure (Figure 3 and 6¢-d), attributed to low correlation values, which in turn emerged from
400 high levels of noise in the signal (Figure 4b-c). These methods operate like high-pass filters,
401  effectively eliminating low-frequency baseline tracer uptake (Figure 4). However, the band-
402  pass filter successfully removes high-frequency noise, yielding the highest molecular
403  connectivity values. Among the across-subject molecular covariance and SICE methods, both
404  exhibited high correlation values, but the latter showed less network organization, (Figure 3

405  and 6a-b).
406  Hierarchical Clustering and eigenvalue decomposition

407  Hierarchical clustering provides a data-driven approach to discern differences among
408 techniques. As depicted in Figure 4, the linkage tree highlights the dissimilarity of across-

409  subject methods such as SICE and molecular covariance from others. The 3™ order
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410 polynomial, temporal-spatial, and band-pass filter methods cluster closely together, with
411  baseline normalization and functional connectivity grouped in proximity. This observation did

412  not change considerably with the number of brain regions (Supplementary Figure 1).

413  Eigenvalue decomposition correlations' and covariance matrices' network organization (Figure
414  3). The results confirmed that the band-pass filter and fMRI functional connectivity exhibited
415  significantly higher loading on the first eigenvalue than others (Figure 6g-h). Across-subject
416 molecular covariance, Euclidean distance, and baseline normalization displayed a reduced
417  organization (Figure 6a, e-f). In contrast, SICE, 3rd degree polynomial, and spatio-temporal

418 filters showed low eigenvalue loadings, suggesting low network organization (Figure 6b-d).

419 These findings underscore the nuanced differences across various approaches at high-
420 temporal resolution, highlighting the importance of methodological considerations when

421  interpreting molecular connectivity estimates.
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222 Discussion of Experimental data

423  The experimental work supports the standardized nomenclature for commonly employed
424  molecular connectivity and covariance techniques based on available literature, aiming to
425  provide a clearer understanding of their practical application. Using high-temporal resolution
426  ["®F]FDG fPET data, this data-driven approach represents a showcase of the feasibility for
427  deriving molecular connectivity and covariance using common techniques. Thus, the
428 combination of literature-based nomenclature with a data-driven approach provides a robust

429  and comprehensive framework.

430 Computing associations of moment-to-moment fluctuations in the metabolic signal using a
431  band-pass filter showed a similar level of network organization but a different pattern to rsfMRI
432  functional connectivity. In contrast, other methodological approaches require further
433  development to obtain robust molecular connectivity through more accurately elimination of
434  baseline uptake (baseline normalization approach) or high frequency noise (3 order
435  polynomial and spatio-temporal filter, Figure 3 and 4). However, studies have demonstrated
436  the efficacy of the latter two at lower temporal resolutions, such as 16 seconds ° or 1 minute
437 5. At a high temporal resolution, these issues can be overcome e.g., by a band-pass filter,
438  which removes both low-frequency signal changes in radiotracer uptake (such as irreversible
439  binding for ["®F]FDG) as well as high-frequency noise (Figure 4). Furthermore, the 3 order
440  polynomial filter approach was able to eliminate the baseline uptake, making the computation
441  of task effects feasible 44154 Of note, when using irreversibly binding radioligands, such as
442  ["®F]FDG, a bolus + infusion protocol allows for a more accurate computation of molecular
443  connectivity from moment-to-moment signal fluctuations, since free radioligand is constantly

444  provided throughout the experiment.

445  On the other hand, associations in radiotracer kinetics are unique to PET imaging, showing a
446  distinct kinetic connectivity structure across the brain. Conversely, the computation of
447  covariance matrices unveils reduced network organization. Particularly, SICE yields a sparse

448  covariance matrix, prioritizing the identification of conditional dependencies among variables.
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449  This emphasis on uncovering direct relationships between variables proves invaluable,

450  especially in scenarios where understanding the relations within a specific cohort is paramount.

451  Without dynamic PET data, molecular covariance can be estimated. This method holds
452  promise for its straightforward application and data acquisition within clinical settings, (only
453  requiring a static image per subject). However, covariance metrics are not without their
454  limitations, e.g., when conducting a connectome-wide investigation, where the number of ROls
455  surpasses the number of subjects and relatively small sample sizes may introduce a potential
456  bias, which are commonplace in PET studies. Recently, it has been suggested that partial
457  correlation analysis should be used, overcoming the constraints of simple correlation analysis,
458  which solely captures pairwise information and fails to characterize the effects of multiple brain
459  regions interacting collectively 2. A more advanced approach, SICE, has been advocated to
460  address this concern. Our findings reveal that while molecular covariance and SICE methods
461  use the same data, SICE diverges from molecular connectivity metrics and its covariance
462  counterpart. While covariance metrics primarily assess the relationships between variables,
463  reflecting their co-variation, SICE delves into conditional dependencies. This emphasis renders
464  SICE particularly adept at uncovering nuanced associations within complex datasets, focusing

465  on only the strongest association within a group.

466 In juxtaposing molecular connectivity with its fMRI counterpart functional connectivity, it
467  becomes evident that both methods yield divergent connectivity measures and can offer
468  complementary perspectives on brain connectivity, accentuating the importance of multimodal
469  approaches to connectivity studies. Thus, the integration of individual-level fMRI and fPET
470  connectivity presents intriguing avenues for investigating brain function across various
471  organizational levels, given the different underlying basis of BOLD fMRI functional connectivity
472  (blood flow and oxygenation) and ['®F]FDG fPET molecular connectivity (glucose metabolism),
473  which are connected through overlapping neurophysiological effects (glutamate and GABA

474  signaling) 4741,
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475 Limitations, Outlook, and Conclusion

476  This work does not aim to provide an in-depth comparison of all available techniques or
477  determination of optimal parameter settings for each method. This exceeds the scope of the
478  current manuscript but on the other hand would hardly affect the terminology. The main goal
479 was to define a common nomenclature for the available techniques, drawing from both
480 literature and empirical data perspectives. More specifically, this work highlights the different
481  opportunities to derive individual-level molecular connectivity and kinetic connectivity as well
482  as group-level molecular covariance from PET data. We would like to emphasize that all these
483  approaches are valid and valuable but require distinct terminology due to the underlying
484  differences in the assumptions, calculations, and outcome metrics. We also acknowledge that
485  PET-based connectivity/covariance and fMRI functional connectivity were obtained from
486  different subjects. As the evaluation of moment-to-moment fluctuations in PET signals is still
487  inits infancy, future work should aim to identify the underlying neurophysiological mechanisms.
488  This will boost the interpretation of PET-based connectivity approaches and may aid in the

489 identification of pathophysiological processes in brain disorders.

490 Investigating the differences in brain network interactions based on different imaging
491  techniques represents a promising opportunity for future work. While, exploring alternative
492  tracers and more advanced methodologies, such as directional molecular connectivity, holds
493  great promise for advancing knowledge of brain networks, this progress requires a clear

494  terminology for the distinct types of brain connectivity.
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699  Figure 1: Graphical overview of common neurophysiological techniques used to assess
700  brain connectivity. (a) Acquisition: Each voxel represents a common imaging method where
701  the position on the x-axis indicates the temporal resolution of each technique as an input for
702  different connectivity measures. The voxel itself is representative of the spatial resolution of
703  the technique. (b) Radiotracer administration: In the field of PET imaging, application of the
704 radiotracer as bolus enables to obtain static images and tracer kinetics, while a bolus+constant
705 infusion protocol additionally allows to capture moment-to-moment signal fluctuations. (c) Input
706  for connectivtiy estimation: Dynamic approaches enable the computation of within-subject
707  connectivity, which is commonly calculated by correlating the time courses of amoung brain
708  regions. For PET this is derived from either bolus plus constant infusion or simple bolus. In
709  contrast, across-subject covariance is estimated over a group of participants as it lacks the
710 temporal component. As such, these techniques use different input signals to estimate
711  connectivity, (i.e., moment-to-moment fluctuations in the signal or radiotracer kinetics) and
712 across-subjects PET signal covariance (i.e., static images). Furthermore, static images can

713  also be obtained from dynamic PET data, e.g., through kinetic modeling, and subsequently
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714  enable estimaton of covariance metrics. EEG: electroencephalography, fMRI: functional
715  magnetic resonance imaging, fPET: functional positron emission tomography, SUV(R):

716  standardized uptake value (ratio).
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Figure 2: Summary of techniques and proposed nomenclature of PET-based connectivity. Within-subject connectivity is broadly separated

into the assessment of moment-to-moment signal fluctuations and radiotracer kinetics. The former requires the elimination of the low-frequency

baseline radiotracer uptake and reducing high-frequency noise, which a band-pass filter can achieve. In their current form, the 3 order polynomial

and spatio-temporal filter were not able to remove noise, and the baseline normalization still included pronounced baseline radiotracer uptake.

Despite their different preprocessing, correlation of moment-to-moment signal fluctuations was used for all approaches to estimate “molecular
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723 connectivity”, which is also most alike to fMRI-based functional connectivity. On the other hand, the Euclidian distance of time activity curves
724  identifies differences in radiotracer kinetics between brain regions, thus termed “kinetic connectivity”. The across-subject metrics use static images

725  as input and after the computation of covariance and SICE yield “molecular covariance”
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Figure 3: Overview of averaged connectivity/covariance matrices estimated using
different techniques divided into regions and fMRI-based networks by the Schaefer 100
atlas. The highest network structure was observed for the band-pass filter, baseline
normalization and Euclidian distance metric, whereas the 3™ order polynomial and spatio-
temporal filter lacked organizational structure and low correlation values. For the across-

subject metrics, the covariance matrix showed higher structure than SICE.
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733

734  Figure 4: Time course of two brain regions from the frontoparietal network from a
735 representative subject before and after the application of each filtering technique. The
736  raw TACs (a) are used as inputs for the Euclidian distance metric. All other approaches aim to
737  compute connectivity by correlation of moment-to-moment fluctuations in the signal. While the
738 3™ order polynomial (b) and spatio-temporal filter (c) were able to remove the baseline
739 radiotracer uptake, this was not the case for the baseline normalization approach (d),
740 demonstrating that residual baseline radiotracer uptake (instead of moment-to-moment
741  fluctuations) drives the correlations. Still, signals in b and ¢ were characterized by high noise

742  levels, which were effectively removed by the band-pass filter (e).
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Figure 5: Data-driven clustering of the different connectivity/covariance metrics from
the Schaefer 300 Network atlas. Most of the within-subject techniques grouped together, in
particular the 3™ order polynomial, spatio-temporal filter and band-pass filter, which is evident

since the former two act as high-pass filters.
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Figure 6: Eigenvalue decomposition of the averaged connectivty/covariance matrices
estimated using each technique divided into regions and fMRI-based networks by the
Schaefer 100 atlas. A high eigenvalue component suggests the presence of strong underlying
structures or patterns within the data, which can be seen in the covariance SUVR, band-pass
and functional connectivity methods and, to a lesser extent, euclidean distance and baseline

normalization. Conversely, the absence of clear peaks suggests a correlation matrix with weak
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755  or random associations among variables, implying a less organized or structured dataset, as

756  seen in SICE, 3rd degree polynomial and spatio-tempral filter.
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Term Abbreviation | Level Definition
PET-based connectivity refers to the assessment of
connections and interactions between molecular entities
PET-based Connectivity
within the brain. It is an umbrella term that encompasses
all subsequent terms.
Molecular connectivity estimates associations between
Within- brain regions at the individual subject level, e.g. by
Molecular Connectivity MC
subject correlation of moment-to-moment signal fluctuations. This
is akin to functional connectivity obtained with fMRI.
Kinetic connectivity evaluates the similarity of radiotracer
Within-
Kinetic Connectivity KC kinetics across various brain regions, as identified through
subject
time-activity curves within an individual.
Molecular covariance utilize PET-derived static images
(SUV/SUVR, binding potential, etc.) across subjects to
Across-
Molecular Covariance MCov estimate interregional associations within the brain. This is
subject

akin to structural covariance obtained with T1-weighted

MRI.

757 Table 1: Description of each PET connectivity and covariance term and its respective

758  abbreviation, level of estimation and definition.

759
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762  Supplementary figure 1: Data-driven clustering performed on different
763  connectivity/covariance metrics derived from the (a) Yeo 17 Networks, (b) Schaefer 100,
764  and (c) Schaefer 300 Network atlases. Notably, regardless of network granularity (i.e., the
765 number of ROIs), the clustered techniques demonstrated stability. The majority of within-
766  subject techniques, notably the 3™ order polynomial, spatio-temporal filter, and band-pass
767  filter, remained closely grouped together. In contrast, covariance and SICE metrics exhibited
768  distinct clustering, indicating greater dissimilarity from other methods in terms of connectivity

769  patterns.
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Tracer Molecular Kinetic connectivity | Molecular
connectivity (KC) term covariance (MCov)
(MC) term term
Metabolic Metabolic covariance
Metabolic kinetic
['®F]FDG connectivity (M- o (M-MCov)
connectivity (M-KC)
MC)
Cerebral blood | Cerebral blood flow Cerebral blood flow
['0O]H20 flow connectivity | kinetic connectivity covariance (CBF-
(CBF-MC) (CBF-KC) MCov)
Dopamine _ _ Dopamine synthesis
. Dopamine synthesis .
synthesis o o covariance (DAS-
['®F]FDOPA o kinetic connectivity
connectivity MCov)
(DAS-KC)
(DAS-MC)
[carbonyl- 5-HT1a 5-HT1a kinetic 5-HT1a covariance (5-
"CJWAY 100635 connectivity (5- | connectivity (5-HT1a- | HT1a-MCov)
HT1A-MC) KC)
[""C]DASB SERT SERT kinetic SERT covariance
connectivity connectivity (SERT- (SERT-MCov)
(SERT-MC) KC)
['8F]flutemetamol Amyloid beta Amyloid beta kinetic | Amyloid beta
connectivity connectivity (Abeta- covariance (Abeta-
(Abeta-MC) KC) MCov)
['8F]flortaucipir Tau connectivity | Tau kinetic Tau covariance (tau-
(tau-MC) connectivity (tau-KC) | MCov)

Supplementary Table 1: Exemplary overview of proposed terms for PET connectivity
and covariance terms based on radioligands. A naming convention is proposed for additional
radiotracers, wherein the convention involves stating the target (prefix) followed by the utilized
connectivity or covariance. It is important to note that the feasibility of estimating molecular
connectivity (i.e., moment-to-moment fluctuations) for all radiotracers in this list is not yet

established (marked italics).
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