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Abstract 54 

PET-based connectivity computation is a molecular approach that complements fMRI-derived 55 

functional connectivity. However, the diversity of methodologies and terms employed in PET 56 

connectivity analysis has resulted in ambiguities and confounded interpretations, highlighting 57 

the need for a standardized nomenclature.  58 

Drawing parallels from other imaging modalities, we propose “molecular connectivity” as an 59 

umbrella term to characterize statistical dependencies between PET signals across brain 60 

regions at the individual level (within-subject). Like fMRI resting-state functional connectivity, 61 

“molecular connectivity” leverages temporal associations in the PET signal to derive brain 62 

network associations. Another within-subject approach evaluates regional similarities of tracer 63 

kinetics, which are unique in PET imaging, thus referred to as “kinetic connectivity”. On the 64 

other hand, “molecular covariance” denotes group-level computations of covariance matrices 65 

across-subject. Further specification of the terminology can be achieved by including the 66 

employed radioligand, such as “metabolic connectivity/covariance” for [18F]FDG as well as 67 

“tau/amyloid covariance” for [18F]flutemetamol / [18F]flortaucipir.  68 

To augment these distinctions, high-temporal resolution functional [18F]FDG PET scans from 69 

17 healthy participants were analysed with common techniques of molecular connectivity and 70 

covariance, allowing for a data-driven support of the above terminology. Our findings 71 

demonstrate that temporal band-pass filtering yields structured network organization, whereas 72 

other techniques like 3rd order polynomial fitting, spatio-temporal filtering and baseline 73 

normalization require further methodological refinement for high-temporal resolution data. 74 

Conversely, molecular covariance from across-subject data provided a simple means to 75 

estimate brain region interactions through regularized or sparse inverse covariance estimation.  76 

A standardized nomenclature in PET-based connectivity research can reduce ambiguity, 77 

enhance reproducibility, and facilitate interpretability across radiotracers and imaging 78 

modalities. Via a data-driven approach, this work provides a transparent framework for 79 
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categorizing and comparing PET-derived connectivity and covariance metrics, laying the 80 

foundation for future investigations in the field.  81 
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Introduction 82 

The assessment of resting-state functional brain networks, as mostly elucidated through 83 

functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG), has been 84 

a cornerstone of neuroimaging research for decades due to its low risk, low cost, and widely 85 

available hard- and software. Resting-state functional connectivity (FC) has provided valuable 86 

insights into the organization of the brain and network interactions by correlating moment-to-87 

moment fluctuations of signals between spatially distinct brain regions at rest. Positron 88 

Emission Tomography (PET) enables imaging of physiological processes at the molecular 89 

level, capable of detecting energy metabolism, neuronal receptors, enzymes, and other targets 90 

at nanomolar concentrations. However, its application in connectivity analyses remains 91 

relatively unexplored. While molecular connectivity is a concept dating back to the 1980s 1 and 92 

1990s 2,3, little progress has been made, in part due to technological constraints in PET imaging 93 

that resulted in limited count rates at high temporal resolutions. These constraints precluded 94 

the reconstruction of dynamic PET data in the range of seconds and thus, the estimation of 95 

connectivity at the individual level. Consequently, and due in part to its simplicity, the 96 

computation of covariance (i.e., not in a statistical sense) metrics across subjects remained 97 

the commonest approach as a proxy for molecular connectivity. The widespread availability of 98 

[18F]Fluorodeoxyglucose ([18F]FDG) for metabolic connectivity (i.e., molecular connectivity for 99 

glucose metabolism), represents a promising avenue for probing brain interactions based on 100 

metabolic demands, complementing its fMRI counterparts 4-8. However, the inherent 101 

disadvantage of estimating associations across an entire group of subjects instead of 102 

connectivity at the subject level is a major obstacle regarding its individual biological 103 

interpretation 9,10. Figure 1 presents a graphical overview of common techniques used to 104 

assess brain connectivity in humans in vivo. 105 

Recent technological progress has transformed the landscape of molecular connectivity 106 

research. With increased sensitivity PET scanners, standardized infusion protocols (i.e., bolus 107 

+ constant infusion), refined reconstruction algorithms, and advanced pre-processing including 108 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.10.593490doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593490
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

filtering techniques and post-processing, researchers are now better equipped to investigate 109 

brain networks on a molecular level. These advances allow using PET data at previously 110 

unprecedented temporal resolutions within the range of minutes and seconds 9,11,12, more akin 111 

to that of fMRI 11. This has established the foundation for estimating individual temporal 112 

molecular connectivity through various computational methodologies. These include the 113 

application of within-subject Euclidean distance metrics 13, a third-order polynomial function 114 

14,15, spatiotemporal filters 9, as well as the utilization of across-subject covariance matrices 16-115 

19 as well as hybrid approaches to integrate fMRI and PET metrics 20,21. Most of these 116 

approaches aim to compute connectivity at an individual level by using temporal information 117 

from the PET data. Furthermore, the 3rd order polynomial, spatiotemporal filter and baseline 118 

normalization aim to correlate moment-to-moment fluctuations in the PET signal, while the 119 

Euclidian distance evaluates differences in tracer kinetics. Exceptions to this are covariance 120 

matrices and sparse inverse covariance estimation (SICE), which compute associations 121 

between brain regions across a group of subjects. 122 

Unfortunately, each technique has been labelled as molecular connectivity, despite differences 123 

in the underlying assumptions, computations, and outcome metrics, resulting in ambiguous 124 

terminology. Moreover, related terms such as “metabolic connectivity mapping” are employed 125 

to describe various outcomes, leading to potential confusion 13,20. 126 

As the field experiences a growth in utilization and methodological diversity, there is a pressing 127 

need for standardization in nomenclature. The absence of a unified terminology poses 128 

challenges in synthesizing findings across studies and impedes the establishment of a 129 

cohesive framework for interpreting PET connectivity outcomes. Discussions regarding the 130 

definition of molecular connectivity and covariance, as well as the distinct yet valuable insights 131 

offered by each approach, have already commenced 9,10,18. However, previous work either 132 

compared only a subset of approaches or was qualitative in nature, while widespread 133 

consensus grounded in the actual outcome parameters of each technique is missing. 134 
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We aim to address this gap by proposing a standardized nomenclature for the most utilized 135 

PET connectivity techniques across a multidisciplinary, international group of researchers in 136 

the field. Our proposed nomenclature is based on a comprehensive review of existing literature 137 

on molecular connectivity and covariance techniques (part 1: nomenclature). To validate this 138 

proposal, we conducted a showcase using high-temporal resolution [18F]FDG data, which was 139 

previously unavailable for such analyses (part 2: experimental data). This approach ensures 140 

that our terminology not only aligns with established methodologies but also demonstrates 141 

practical feasibility in an experimental setting. By integrating theoretical foundations with 142 

empirical comparisons, we establish a cohesive and robust framework for defining molecular 143 

connectivity metrics.  144 
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Nomenclature of molecular connectivity and covariance 145 

The standardization of nomenclature for quantification of PET radioligands 22 has significantly 146 

enhanced the clarity of subsequent research, fostering greater consistency in findings. Given 147 

the substantial growth in interest in PET connectivity research in recent years, the 148 

standardization of its nomenclature is fundamental, as it addresses several pivotal issues 149 

within the field. Firstly, the utilization of a single term to describe multiple distinct concepts (and 150 

vice versa) can cause confusion among researchers, impeding the interpretation of study 151 

outcomes. By harmonizing terminology, researchers can facilitate seamless communication 152 

and collaboration, thereby increasing the reproducibility of findings across studies. Additionally, 153 

a standardized nomenclature enhances comprehension, particularly among diverse audiences 154 

and within broader contexts. Neuroimaging traverses’ various disciplines and encompasses 155 

researchers with diverse levels of expertise. Standardized terminology enables researchers 156 

from disparate backgrounds to readily compare findings, fostering knowledge exchange and 157 

interdisciplinary cooperation.  158 

Historically, the grouping of PET connectivity methodologies has delineated the term 159 

"molecular connectivity" (and with the common use of [18F]FDG also “metabolic connectivity”) 160 

as an umbrella concept encompassing both within-subject connectivity and across-subject 161 

metrics. However, the interchangeable use of "molecular connectivity" for within-subject and 162 

across-subject associations is problematic, as these represent fundamentally distinct 163 

measures. Most imaging modalities use “connectivity” to characterize the strength (and 164 

potential directionality) of couplings between brain regions within individuals (Figure 1). This is 165 

true for functional connectivity obtained from fMRI and EEG data and structural connectivity 166 

derived from diffusion-weighted MRI. On the other hand, “covariance” metrics gauge the 167 

statistical associations between regions of interest of a static outcome metric across 168 

individuals, such as gray matter volume obtained from T1-weighted structural images 23,24 or 169 

SUVR 25 in PET imaging. A clear differentiation between these concepts is imperative to 170 

prevent misinterpretation and ensure accurate communication of study findings (Figure 2). 171 
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For “molecular connectivity” analyses, we therefore suggest that this term may encompass all 172 

approaches that use moment-to-moment fluctuations in the PET signal to estimate connectivity 173 

(like “functional connectivity” used in fMRI). In this context, further detail emerges for within-174 

subject connectivity methods, each capturing temporal dynamics within an individual, 175 

contingent upon the method employed to estimate connectivity metrics. On the other hand, 176 

“molecular covariance” should be used for the estimation of network interactions across-177 

subjects. The discourse on the disparities between molecular connectivity and molecular 178 

covariance is not novel 9,10,26, and will therefore not be repeated here. Nevertheless, these 179 

discussions underscore the relevance of within-subject and across-subject connectivity metrics 180 

in PET connectivity research and their inherent differences. While within-subject connectivity 181 

furnishes insights into individual variability and dynamic network properties, across-subject 182 

covariance offers a broader perspective on shared connectivity patterns across populations. 183 

Another PET-specific approach distinct from all former methods is the Euclidean distance 184 

calculation. This divergence stems from the diversity of inputs it accommodates (raw or 185 

compartment specific TACs) and how connectivity is calculated (Euclidean distance between 186 

TACs). In this regard, the method is theoretically limited to estimating solely positive 187 

connectivity metrics. The assumptions and calculations of this technique are based on the 188 

kinetics of the radiotracer across an entire PET scan, leading us to propose the term “kinetic 189 

connectivity” for a clear distinction of this PET approach. Notably, extension with kinetic 190 

modelling allows to derive kinetic connectivity for the individual compartments, yielding 191 

relevant information regarding the separation of the transport across the blood-brain barrier 192 

(K1, k2) and irreversible uptake into the cells (k3). The proposed terminology also reflects these 193 

distinct effects. 194 

Regarding different radiotracers, we would like to propose that the term “molecular 195 

connectivity/covariance” serves well as an umbrella term for PET-based estimation of network 196 

interactions in general. This also leaves ample opportunity for further specification of different 197 

radioligands and targets such as “metabolic connectivity/covariance” when using [18F]FDG, “5-198 

HT1A covariance” for [carbonyl-11C]WAY100635 27, “SERT covariance” for [11C]DASB 28 or 199 
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“tau/amyloid covariance” for [18F]flutemetamol (amyloid-β) / [18F]flortaucipir (tau) 29 (see 200 

supplementary table 1 for a list of examples). Likewise, the term “kinetic connectivity” can be 201 

extended for the employed radiotracer and/or target, such as “metabolic kinetic connectivity,” 202 

when using [18F]FDG. We expect that this field will experience rapid growth and application to 203 

other target structures in the near future, further underlining the need for standardized 204 

terminology and assessment of the feasibility and interpretation for radioligands beyond 205 

[18F]FDG. 206 

Recently, also hybrid connectivity and covariance techniques have emerged, leveraging the 207 

complementary strengths of static PET and fMRI-based functional connectivity to delineate 208 

molecular covariance 21 or estimate directional connectivity 20. Notably, recent advancements 209 

have also integrated dynamic fPET with fMRI to investigate task-related neuronal responses 210 

30. Further extension of such combined analyses to connectivity and exploration of hybrid 211 

methods, which integrate data from multiple modalities such as fPET, fMRI and EEG, holds 212 

promise for providing a comprehensive understanding of brain connectivity. These hybrid 213 

approaches could also enable the investigation of directional connectivity (such as dynamic 214 

causal modeling for fMRI data), shedding light on the causal interactions between brain regions 215 

and enhancing our ability to elucidate complex neural networks underlying cognition and 216 

behavior. As the field expands, the agreement and adoption of specific terms will become 217 

increasingly necessary, see Table 1 for an overview of the proposed terms and their definitions.218 
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Experimental data 219 

In this chapter we aim to augment the literature-based nomenclature by comparing established 220 

methodologies for estimating molecular connectivity and molecular covariance using high-221 

temporal resolution [18F]FDG fPET data at resting-state alongside their fMRI-derived functional 222 

connectivity counterparts. We aim to show the similarities and differences between these 223 

methodologies, thereby providing a data-driven standardization of PET connectivity 224 

nomenclature. 225 

Participants and demographics 226 

Seventeen healthy volunteers (mean age ± SD = 24.6 ± 3.5 ranging from 21 to 32 years old, 227 

10 female) were recruited for the fPET molecular connectivity analysis, while 62 healthy 228 

participants (mean age ± SD = 29.0 ± 9.25 ranging from 18 to 51 years old, 35 female) were 229 

recruited for the fMRI functional connectivity analysis.  230 

Participants' general health status was evaluated through a comprehensive medical 231 

evaluation, including medical history, physical examination, electrocardiogram, and routine 232 

laboratory tests. The Structured Clinical Interview for DSM-IV for Axis I disorders (SCID-I) was 233 

employed to exclude any prior or current psychiatric disorders. Exclusion criteria encompassed 234 

chronic medical conditions, psychiatric disorders, current or past substance use disorder, 235 

psychopharmacological treatment, and contraindications for PET/MR scans, such as implants, 236 

claustrophobia, and research-specific radiation exposure. Urine drug tests were conducted 237 

during screening, and pregnancy tests were administered to female participants both at 238 

screening and before each scan. All participants provided written informed consent and 239 

received financial compensation for their involvement.  240 

This study was approved by the ethics committee of the Medical University of Vienna (EK 241 

1307/2014) and adhered to the principles outlined in the Declaration of Helsinki. This 242 

investigation constitutes a component of a larger preregistered study (clinicaltrials.gov, 243 

NCT02711215).  244 
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Study design 245 

For the fPET acquisition, each participant underwent two 50-minute hybrid [18F]FDG fPET/fMRI 246 

scans. Following a baseline acquisition of 20 minutes at resting-state, a double-blind 247 

pharmacological challenge of either citalopram 8 mg or saline was administered. While 248 

performing connectivity analyses in the current project, data between 5 (i.e. after radiotracer 249 

uptake is in a steady state for bolus + infusion 31,32) and 20 minutes were extracted from the 250 

first measurement, i.e. before any drug application occurred. This allowed the participants to 251 

be in the same cognitive state (here: resting-state) during the experiment.  252 

fMRI acquisition was carried out in a similar manner and using the same scanner system, 253 

though in different individuals as described previously 33. Here, 10-minute resting-state fMRI 254 

data from the placebo measurement were utilized, a more detailed description of the study 255 

design can be found in 33. 256 

Data acquisition  257 

Participants were instructed to fast, except for water intake, for a minimum of 5.5 hours 258 

preceding the administration of the radioligand 34. A cannula was inserted into the radial artery 259 

for arterial blood sampling (which was not used in this work), while two cannulas were placed 260 

in a cubital vein of the contralateral arm for the infusion of the radiotracer [18F]FDG and study 261 

medication (citalopram or placebo). Synthesis of [18F]FDG was conducted following a well-262 

established protocol 35. The radiotracer (5.1 MBq/kg) was administered as a bolus (1020 263 

kBq/kg/min, 1 minute) followed by a continuous infusion (83.3 kBq/kg/min, 49 minutes) utilizing 264 

a perfusion pump (Syramed µSP6000, Arcomed, Regensdorf, Switzerland) situated within an 265 

MR-shielded environment (UniQUE, Arcomed). All scans were conducted using a hybrid 3T 266 

PET/MRI scanner (mMR Biograph, Siemens Healthineers, Germany). 267 

Resting-state fMRI data was acquired for 10 min using an echo-planar imaging sequence 268 

(TE/TR= 30/2440 ms, 2.1 x 2.1 mm in-plane resolution, 3 mm slice thickness with 0.75 mm 269 

gap), 100 x 100 voxels in-plane, 36 slices, GRAPPA 2.  270 
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Before radiotracer administration, a structural image was obtained using a T1-weighted 271 

MPRAGE sequence with the following parameters: TE/TR = 4.21/2200 ms, TI = 900 ms, flip 272 

angle = 9°, matrix size = 240x256, 160 slices, voxel size = 1 x 1 x 1 mm + 0.1 mm gap, TA = 273 

7:41 min, which was used for spatial normalization of the fPET data. fPET acquisition 274 

commenced subsequently, following the protocol described above and in previous work 12.  275 

fMRI preprocessing and filtering 276 

fMRI data were preprocessed in SPM12 and ArtRepair toolbox 36, following an established 277 

protocol 37. In brief, the data underwent correction for transient slice artifacts and slice-timing 278 

discrepancies, followed by realignment and reslicing of the realigned images. Pre-smoothing 279 

with a 4 mm FWHM Gaussian kernel was applied, followed by motion regression, detection of 280 

motion outliers, and subsequent regression 38 followed by despiking 36. Subsequently, the data 281 

were normalized to MNI space with an isotropic resolution of 2 mm 3. Acknowledging the 282 

substantial variability in fMRI connectivity patterns across preprocessing steps, including 283 

common corrections for cerebrospinal fluid and white-matter signals in resting-state fMRI data, 284 

we intentionally omitted such corrections. This decision was made to ensure consistency in 285 

data preprocessing across modalities. Data were band-pass filtered (0.01-0.1 Hz) 39,40.  286 

fPET preprocessing  287 

fPET image reconstruction and preprocessing followed established protocols outlined in our 288 

previous publications 11,12,41, keeping the processing as similar as possible to fMRI. List-mode 289 

PET data underwent reconstruction into frames of 3 seconds utilizing an ordinary Poisson-290 

ordered subset expectation maximization algorithm (3 iterations and 21 subsets, OP-OSEM), 291 

with a matrix size of 344 x 344 and 127 slices with a voxel size of 2.09 x 2.09 x 2.03 mm and 292 

a NEMA resolution of 4.3 mm 42. Attenuation and scatter correction were performed using a 293 

pseudo-CT approach based on the structural T1-weighted image 43. fPET data were 294 

preprocessed utilizing SPM12 (Wellcome Trust Centre for Neuroimaging) and included head 295 

movement correction (quality = best, registration to mean image) and coregistration to the 296 

structural image. The structural MRI was spatially normalized to the standard space defined 297 
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by the Montreal Neurological Institute (MNI), and the transformation matrix was applied to the 298 

coregistered fPET data. Spatial and temporal smoothing was performed using a dynamic non-299 

local means (NLM) filter with a search window of D = 11 voxels and a patch size of 3 x 3 x 3 300 

voxels and 5 frames 44,45, followed by Gaussian smoothing with a FWHM of 5 mm 11. Compared 301 

to a standard 3D Gaussian filter, this approach has the advantage of increasing the signal-to-302 

noise ratio while enabling the capture of acute temporal changes in the signal 46. 303 

Connectivity and covariance estimation 304 

To distinguish between the different type of connectivity and covariance methods, within-305 

subject measures are prefixed with (A) and across-subject with (B). 306 

(A1) 3rd order Polynomial: The application of a 3rd order polynomial fitting is employed to 307 

model the cumulative behavior of [18F]FDG uptake extracted from the time course of each brain 308 

region. This method, as outlined by 14,15, aims to capture the temporal dynamics of metabolic 309 

activity. By fitting a polynomial function to the time-activity curves (TACs), it enables the 310 

characterization and subsequent removal of the overall trend in radiotracer uptake over time. 311 

The residuals derived from this polynomial fit represent a possibility to obtain inherent 312 

physiological fluctuations, facilitating subsequent calculations of inter-regional molecular 313 

connectivity.  314 

(A2) Spatiotemporal Filter: The spatiotemporal gradient filter, as employed by 9, targets short-315 

term fluctuations in glucose uptake. This filter isolates short-term resting-state fluctuations by 316 

removing the effect of radiotracer accumulation and low-frequency components of the signal. 317 

It effectively adjusts for the mean signal without resorting to global signal regression, thereby 318 

avoiding the creation of spurious anticorrelations in the data. The filter utilized a spatial 319 

Gaussian standard deviation of one voxel and a temporal Gaussian standard deviation of 2 320 

frames as suggested by Jamadar et al 9. 321 

(A3) Band-pass Filter: In fMRI connectivity analysis, a band-pass filter is commonly applied 322 

to isolate the frequency range corresponding to the resting-state fluctuations of interest. By 323 
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selectively passing frequencies within this range, the band-pass filter enhances the detection 324 

of (presumably) coherent neural activity while suppressing noise and artifacts. Like fMRI 325 

resting-state analyses, a band-pass filter can also be applied to fPET TACs. We set the 326 

passband frequency for the fPET data to match that used in the fMRI analysis [0.01, 0.1].Hz. 327 

(A4) Baseline normalization: This involves a systematic normalization and correlation-based 328 

approach. Initially, the entire brain's mean signal intensity is computed at each time point, 329 

serving as a reference for subsequent normalization. Each ROI is then adjusted relative to this 330 

global mean value (i.e. dividing a regional TAC by the global TAC at each time point), 331 

facilitating comparability across brain regions 47,48. 332 

(A5) Euclidean distance: In contrast to the approaches above, which necessitates prior 333 

filtering to mitigate the influence of baseline uptake, utilizing Euclidean similarity on PET data 334 

does not require such preprocessing. Euclidean similarity is based on the Euclidean distance 335 

between each pair of time-activity curves (TACs). It is defined as one minus the normalized 336 

distance i.e. divided by the maximum distance among pairs of TACs, resulting in values scaled 337 

to the range [0, 1]. Due to the heavy-tailed (left-skewed) distribution of Euclidean similarity 338 

values, a Fisher z-transformation is applied to normalize the data. Following the 339 

transformation, the values are rescaled to the range [0, 1] to maintain consistency with the 340 

original scale 13. 341 

(B1) Covariance matrix: refers to the statistical covariation of radiotracer activity levels across 342 

different brain regions over a group of individuals and previously served as a surrogate 343 

measure for PET connectivity 2,3,49. This approach mostly involves constructing a single image 344 

for each participant from the PET data, typically the standard uptake value (SUV). To facilitate 345 

inter-subject comparison and mitigate individual variability, these images are typically 346 

normalized by the average grey matter value (SUVR), ensuring that differences in global 347 

metabolic activity levels are accounted for 15.  348 

(B2) SICE: Sparse inverse covariance estimation, also known as Gaussian graphical models 349 

or graphical Lasso, is a refined method used for estimating molecular covariance. SICE 350 
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identifies the conditional dependencies between variables in a dataset while promoting 351 

sparsity, meaning many entries in the inverse covariance matrix are forced to be zero. This is 352 

achieved through regularization techniques that penalize the absolute values of the matrix 353 

entries, resulting in a sparse representation that highlights the most significant relationships 354 

among variables. This approach is particularly useful in scenarios where the number of 355 

subjects included in the analysis is smaller than the number of ROIs, which is valuable in 356 

connectivity studies aimed at assessing the whole-brain connectome 16,26. In this scenario, we 357 

used the graphical Lasso approach with the regularization parameter set to 0.1 and the 358 

maximum number of iterations was set to one thousand. 359 

Statistical comparison  360 

To estimate and visualize the different molecular connectivity or covariance matrices for each 361 

method across various levels of network granularity, three functional atlases were selected: 362 

the Yeo (17 Network) atlas 50 combined with other regions from the Harvard-Oxford atlas 363 

distributed with FSL (ROI 18: Striatum & Thalamus; ROI 19: Amygdala & Hippocampus) and 364 

the Schaefer 100 and 300 parcellation atlas 51, whose networks have been related to the Yeo 365 

atlas. Molecular (PET) and functional (fMRI) connectivity was assessed by computing 366 

Pearson’s partial correlation of the residual time courses between pairs of brain regions 52,53. 367 

Head motion was accounted for by incorporating the six realignment parameters as nuisance 368 

variables in the partial correlation calculation. We calculated partial correlations for connectivity 369 

estimated using the 3rd order polynomial, baseline normalization, spatiotemporal filter for fPET, 370 

and band-pass filtering for both fPET and fMRI. For the estimate of molecular covariance 371 

metrics, partial correlations were similarly employed, but instead of head motion correction, 372 

correlations were adjusted for signal contributions from other brain regions. This approach 373 

facilitated the isolation of pairwise information while reducing confounding effects, resulting in 374 

a more precise characterization of covariance patterns 26. 375 

To aggregate findings across participants, correlation coefficients of all connectivity metrics 376 

were averaged after Fisher Z-transformation. Finally, the average Fisher Z-values were 377 
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inverted back to the correlation values. Next, each method's average connectivity or 378 

covariance matrix was subjected to hierarchical clustering, with chebychev/max distance 379 

serving as the distance metric. This approach enabled both visualization and quantification of 380 

the distinct differences in patterns generated by each approach. Eigenvalue decomposition 381 

was conducted to better assess the spatial structure of each filter's correlation/covariance 382 

matrix, and the results were visualized using a scree plot.  383 
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Experimental Results 384 

Correlation and Covariance Matrices 385 

The correlation matrices in Figure 3 illustrate distinct molecular connectivity/covariance 386 

patterns between the various techniques.  387 

Matrices obtained with the band-pass filter and baseline normalization were characterized by 388 

structured network organization and high correlation values indicative of strong inter-regional 389 

interactions (Figure 3f-g). However, correlations were markedly influenced by residual baseline 390 

radiotracer uptake for the latter approach. This suggests that the normalization does not 391 

sufficiently remove this effect (Figure 4d), leading to correlation values primarily driven by 392 

baseline uptake rather than moment-to-moment fluctuations. The Euclidian distance metric 393 

showed intermediate network structure, most likely due to the similarity of TACs across brain 394 

regions (Figure 4a). Compared to fMRI-based functional connectivity, the band-pass filter 395 

showed network structure to a similar extent but different organizational pattern, highlighting 396 

the difference between the various imaging modalities (Figure 3 and 6g-h). In contrast, the 3rd-397 

order polynomial and spatial-temporal filter methods yield matrices almost devoid of network 398 

structure (Figure 3 and 6c-d), attributed to low correlation values, which in turn emerged from 399 

high levels of noise in the signal (Figure 4b-c). These methods operate like high-pass filters, 400 

effectively eliminating low-frequency baseline tracer uptake (Figure 4). However, the band-401 

pass filter successfully removes high-frequency noise, yielding the highest molecular 402 

connectivity values. Among the across-subject molecular covariance and SICE methods, both 403 

exhibited high correlation values, but the latter showed less network organization, (Figure 3 404 

and 6a-b). 405 

Hierarchical Clustering and eigenvalue decomposition 406 

Hierarchical clustering provides a data-driven approach to discern differences among 407 

techniques. As depicted in Figure 4, the linkage tree highlights the dissimilarity of across-408 

subject methods such as SICE and molecular covariance from others. The 3rd order 409 
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polynomial, temporal-spatial, and band-pass filter methods cluster closely together, with 410 

baseline normalization and functional connectivity grouped in proximity. This observation did 411 

not change considerably with the number of brain regions (Supplementary Figure 1).  412 

Eigenvalue decomposition correlations' and covariance matrices' network organization (Figure 413 

3). The results confirmed that the band-pass filter and fMRI functional connectivity exhibited 414 

significantly higher loading on the first eigenvalue than others (Figure 6g-h). Across-subject 415 

molecular covariance, Euclidean distance, and baseline normalization displayed a reduced 416 

organization (Figure 6a, e-f). In contrast, SICE, 3rd degree polynomial, and spatio-temporal 417 

filters showed low eigenvalue loadings, suggesting low network organization (Figure 6b-d). 418 

These findings underscore the nuanced differences across various approaches at high-419 

temporal resolution, highlighting the importance of methodological considerations when 420 

interpreting molecular connectivity estimates.  421 
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Discussion of Experimental data  422 

The experimental work supports the standardized nomenclature for commonly employed 423 

molecular connectivity and covariance techniques based on available literature, aiming to 424 

provide a clearer understanding of their practical application. Using high-temporal resolution 425 

[18F]FDG fPET data, this data-driven approach represents a showcase of the feasibility for 426 

deriving molecular connectivity and covariance using common techniques. Thus, the 427 

combination of literature-based nomenclature with a data-driven approach provides a robust 428 

and comprehensive framework.  429 

Computing associations of moment-to-moment fluctuations in the metabolic signal using a 430 

band-pass filter showed a similar level of network organization but a different pattern to rsfMRI 431 

functional connectivity. In contrast, other methodological approaches require further 432 

development to obtain robust molecular connectivity through more accurately elimination of 433 

baseline uptake (baseline normalization approach) or high frequency noise (3rd order 434 

polynomial and spatio-temporal filter, Figure 3 and 4). However, studies have demonstrated 435 

the efficacy of the latter two at lower temporal resolutions, such as 16 seconds 9 or 1 minute 436 

15. At a high temporal resolution, these issues can be overcome e.g., by a band-pass filter, 437 

which removes both low-frequency signal changes in radiotracer uptake (such as irreversible 438 

binding for [18F]FDG) as well as high-frequency noise (Figure 4). Furthermore, the 3rd order 439 

polynomial filter approach was able to eliminate the baseline uptake, making the computation 440 

of task effects feasible 4,41,54. Of note, when using irreversibly binding radioligands, such as 441 

[18F]FDG, a bolus + infusion protocol allows for a more accurate computation of molecular 442 

connectivity from moment-to-moment signal fluctuations, since free radioligand is constantly 443 

provided throughout the experiment. 444 

On the other hand, associations in radiotracer kinetics are unique to PET imaging, showing a 445 

distinct kinetic connectivity structure across the brain. Conversely, the computation of 446 

covariance matrices unveils reduced network organization. Particularly, SICE yields a sparse 447 

covariance matrix, prioritizing the identification of conditional dependencies among variables. 448 
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This emphasis on uncovering direct relationships between variables proves invaluable, 449 

especially in scenarios where understanding the relations within a specific cohort is paramount. 450 

Without dynamic PET data, molecular covariance can be estimated. This method holds 451 

promise for its straightforward application and data acquisition within clinical settings, (only 452 

requiring a static image per subject). However, covariance metrics are not without their 453 

limitations, e.g., when conducting a connectome-wide investigation, where the number of ROIs 454 

surpasses the number of subjects and relatively small sample sizes may introduce a potential 455 

bias, which are commonplace in PET studies. Recently, it has been suggested that partial 456 

correlation analysis should be used, overcoming the constraints of simple correlation analysis, 457 

which solely captures pairwise information and fails to characterize the effects of multiple brain 458 

regions interacting collectively 26. A more advanced approach, SICE, has been advocated to 459 

address this concern. Our findings reveal that while molecular covariance and SICE methods 460 

use the same data, SICE diverges from molecular connectivity metrics and its covariance 461 

counterpart. While covariance metrics primarily assess the relationships between variables, 462 

reflecting their co-variation, SICE delves into conditional dependencies. This emphasis renders 463 

SICE particularly adept at uncovering nuanced associations within complex datasets, focusing 464 

on only the strongest association within a group. 465 

In juxtaposing molecular connectivity with its fMRI counterpart functional connectivity, it 466 

becomes evident that both methods yield divergent connectivity measures and can offer 467 

complementary perspectives on brain connectivity, accentuating the importance of multimodal 468 

approaches to connectivity studies. Thus, the integration of individual-level fMRI and fPET 469 

connectivity presents intriguing avenues for investigating brain function across various 470 

organizational levels, given the different underlying basis of BOLD fMRI functional connectivity 471 

(blood flow and oxygenation) and [18F]FDG fPET molecular connectivity (glucose metabolism), 472 

which are connected through overlapping neurophysiological effects (glutamate and GABA 473 

signaling) 4-7,41.  474 
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Limitations, Outlook, and Conclusion 475 

This work does not aim to provide an in-depth comparison of all available techniques or 476 

determination of optimal parameter settings for each method. This exceeds the scope of the 477 

current manuscript but on the other hand would hardly affect the terminology. The main goal 478 

was to define a common nomenclature for the available techniques, drawing from both 479 

literature and empirical data perspectives. More specifically, this work highlights the different 480 

opportunities to derive individual-level molecular connectivity and kinetic connectivity as well 481 

as group-level molecular covariance from PET data. We would like to emphasize that all these 482 

approaches are valid and valuable but require distinct terminology due to the underlying 483 

differences in the assumptions, calculations, and outcome metrics. We also acknowledge that 484 

PET-based connectivity/covariance and fMRI functional connectivity were obtained from 485 

different subjects. As the evaluation of moment-to-moment fluctuations in PET signals is still 486 

in its infancy, future work should aim to identify the underlying neurophysiological mechanisms. 487 

This will boost the interpretation of PET-based connectivity approaches and may aid in the 488 

identification of pathophysiological processes in brain disorders. 489 

Investigating the differences in brain network interactions based on different imaging 490 

techniques represents a promising opportunity for future work. While, exploring alternative 491 

tracers and more advanced methodologies, such as directional molecular connectivity, holds 492 

great promise for advancing knowledge of brain networks, this progress requires a clear 493 

terminology for the distinct types of brain connectivity.  494 
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Figures 697 

 698 

Figure 1: Graphical overview of common neurophysiological techniques used to assess 699 

brain connectivity. (a) Acquisition: Each voxel represents a common imaging method where 700 

the position on the x-axis indicates the temporal resolution of each technique as an input for 701 

different connectivity measures. The voxel itself is representative of the spatial resolution of 702 

the technique. (b) Radiotracer administration: In the field of PET imaging, application of the 703 

radiotracer as bolus enables to obtain static images and tracer kinetics, while a bolus+constant 704 

infusion protocol additionally allows to capture moment-to-moment signal fluctuations. (c) Input 705 

for connectivtiy estimation: Dynamic approaches enable the computation of within-subject 706 

connectivity, which is commonly calculated by correlating the time courses of amoung brain 707 

regions. For PET this is derived from either bolus plus constant infusion or simple bolus. In 708 

contrast, across-subject covariance is estimated over a group of participants as it lacks the 709 

temporal component. As such, these techniques use different input signals to estimate 710 

connectivity, (i.e., moment-to-moment fluctuations in the signal or radiotracer kinetics) and 711 

across-subjects PET signal covariance (i.e., static images). Furthermore, static images can 712 

also be obtained from dynamic PET data, e.g., through kinetic modeling, and subsequently 713 
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enable estimaton of covariance metrics. EEG: electroencephalography, fMRI: functional 714 

magnetic resonance imaging, fPET: functional positron emission tomography, SUV(R): 715 

standardized uptake value (ratio).  716 
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 717 

Figure 2: Summary of techniques and proposed nomenclature of PET-based connectivity. Within-subject connectivity is broadly separated 718 

into the assessment of moment-to-moment signal fluctuations and radiotracer kinetics. The former requires the elimination of the low-frequency 719 

baseline radiotracer uptake and reducing high-frequency noise, which a band-pass filter can achieve. In their current form, the 3rd order polynomial 720 

and spatio-temporal filter were not able to remove noise, and the baseline normalization still included pronounced baseline radiotracer uptake. 721 

Despite their different preprocessing, correlation of moment-to-moment signal fluctuations was used for all approaches to estimate “molecular 722 
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connectivity”, which is also most alike to fMRI-based functional connectivity. On the other hand, the Euclidian distance of time activity curves 723 

identifies differences in radiotracer kinetics between brain regions, thus termed “kinetic connectivity”. The across-subject metrics use static images 724 

as input and after the computation of covariance and SICE yield “molecular covariance”725 
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 726 

Figure 3: Overview of averaged connectivity/covariance matrices estimated using 727 

different techniques divided into regions and fMRI-based networks by the Schaefer 100 728 

atlas. The highest network structure was observed for the band-pass filter, baseline 729 

normalization and Euclidian distance metric, whereas the 3rd order polynomial and spatio-730 

temporal filter lacked organizational structure and low correlation values. For the across-731 

subject metrics, the covariance matrix showed higher structure than SICE.  732 
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 733 

Figure 4: Time course of two brain regions from the frontoparietal network from a 734 

representative subject before and after the application of each filtering technique. The 735 

raw TACs (a) are used as inputs for the Euclidian distance metric. All other approaches aim to 736 

compute connectivity by correlation of moment-to-moment fluctuations in the signal. While the 737 

3rd order polynomial (b) and spatio-temporal filter (c) were able to remove the baseline 738 

radiotracer uptake, this was not the case for the baseline normalization approach (d), 739 

demonstrating that residual baseline radiotracer uptake (instead of moment-to-moment 740 

fluctuations) drives the correlations. Still, signals in b and c were characterized by high noise 741 

levels, which were effectively removed by the band-pass filter (e).  742 
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 743 

Figure 5: Data-driven clustering of the different connectivity/covariance metrics from 744 

the Schaefer 300 Network atlas. Most of the within-subject techniques grouped together, in 745 

particular the 3rd order polynomial, spatio-temporal filter and band-pass filter, which is evident 746 

since the former two act as high-pass filters. 747 
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 748 

Figure 6: Eigenvalue decomposition of the averaged connectivty/covariance matrices 749 

estimated using each technique divided into regions and fMRI-based networks by the 750 

Schaefer 100 atlas. A high eigenvalue component suggests the presence of strong underlying 751 

structures or patterns within the data, which can be seen in the covariance SUVR, band-pass 752 

and functional connectivity methods and, to a lesser extent, euclidean distance and baseline 753 

normalization. Conversely, the absence of clear peaks suggests a correlation matrix with weak 754 
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or random associations among variables, implying a less organized or structured dataset, as 755 

seen in SICE, 3rd degree polynomial and spatio-tempral filter.   756 
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Term  Abbreviation  Level  Definition 

PET‐based Connectivity     

PET‐based  connectivity  refers  to  the  assessment  of 

connections and  interactions between molecular entities 

within the brain. It is an umbrella term that encompasses 

all subsequent terms. 

Molecular Connectivity  MC 
Within‐

subject 

Molecular  connectivity  estimates  associations  between 

brain  regions  at  the  individual  subject  level,  e.g.  by 

correlation of moment‐to‐moment signal fluctuations. This 

is akin to functional connectivity obtained with fMRI. 

Kinetic Connectivity  KC 
Within‐

subject 

Kinetic connectivity evaluates the similarity of radiotracer 

kinetics across various brain regions, as identified through 

time‐activity curves within an individual. 

Molecular Covariance  MCov 
Across‐

subject 

Molecular  covariance  utilize  PET‐derived  static  images 

(SUV/SUVR,  binding  potential,  etc.)  across  subjects  to 

estimate interregional associations within the brain. This is 

akin  to  structural  covariance  obtained with  T1‐weighted 

MRI. 

Table 1: Description of each PET connectivity and covariance term and its respective 757 

abbreviation, level of estimation and definition. 758 

  759 
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Supplementary Figure and Table 760 

 761 

Supplementary figure 1: Data-driven clustering performed on different 762 

connectivity/covariance metrics derived from the (a) Yeo 17 Networks, (b) Schaefer 100, 763 

and (c) Schaefer 300 Network atlases. Notably, regardless of network granularity (i.e., the 764 

number of ROIs), the clustered techniques demonstrated stability. The majority of within-765 

subject techniques, notably the 3rd order polynomial, spatio-temporal filter, and band-pass 766 

filter, remained closely grouped together. In contrast, covariance and SICE metrics exhibited 767 

distinct clustering, indicating greater dissimilarity from other methods in terms of connectivity 768 

patterns. 769 
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Tracer Molecular 

connectivity 

(MC) term 

Kinetic connectivity 

(KC) term 

Molecular 

covariance (MCov) 

term 

[18F]FDG 

Metabolic 

connectivity (M-

MC) 

Metabolic kinetic 

connectivity (M-KC) 

Metabolic covariance 

(M-MCov) 

[15O]H2O 

Cerebral blood 

flow connectivity 

(CBF-MC) 

Cerebral blood flow 

kinetic connectivity 

(CBF-KC) 

Cerebral blood flow 

covariance (CBF-

MCov) 

[18F]FDOPA 

Dopamine 

synthesis 

connectivity 

(DAS-MC) 

Dopamine synthesis 

kinetic connectivity 

(DAS-KC) 

Dopamine synthesis 

covariance (DAS-

MCov) 

[carbonyl-

11C]WAY100635 

5-HT1A 

connectivity (5-

HT1A-MC) 

5-HT1A kinetic 

connectivity (5-HT1A-

KC) 

5-HT1A covariance (5-

HT1A-MCov) 

[11C]DASB SERT 

connectivity 

(SERT-MC) 

SERT kinetic 

connectivity (SERT-

KC) 

SERT covariance 

(SERT-MCov) 

[18F]flutemetamol Amyloid beta 

connectivity 

(Abeta-MC) 

Amyloid beta kinetic 

connectivity (Abeta-

KC) 

Amyloid beta 

covariance (Abeta-

MCov) 

[18F]flortaucipir Tau connectivity 

(tau-MC) 

Tau kinetic 

connectivity (tau-KC) 

Tau covariance (tau-

MCov) 

Supplementary Table 1: Exemplary overview of proposed terms for PET connectivity 770 

and covariance terms based on radioligands. A naming convention is proposed for additional 771 

radiotracers, wherein the convention involves stating the target (prefix) followed by the utilized 772 

connectivity or covariance. It is important to note that the feasibility of estimating molecular 773 

connectivity (i.e., moment-to-moment fluctuations) for all radiotracers in this list is not yet 774 

established (marked italics). 775 
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