

Unraveling Morphogenesis, Starvation, and Light Responses in a Mushroom-Forming Fungus, *Coprinopsis cinerea*, Using Long Read Sequencing and Extensive Expression Profiling

Botond Hegedüs¹, Neha Sahu¹, Balázs Bálint¹, Sajeet Haridas², Viktória Bense¹, Zsolt Merényi¹, Máté Virágħ¹, Hongli Wu¹, Xiao-Bin Liu¹, Robert Riley², Anna Lipzen², Maxim Koriabine², Emily Savage², Jie Guo², Kerrie Barry², Vivian Ng², Péter Urbán³, Attila Gyenesi³, Michael Freitag⁴, Igor V. Grigoriev^{2,5}, László G. Nagy¹

¹Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary

²U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America

³János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary

⁴Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States of America

⁵Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, United States of America

Abstract

Mushroom-forming fungi (Agaricomycetes) are emerging as pivotal players in several fields, as drivers of nutrient cycling, sources of novel applications, and the group includes some of the most morphologically complex multicellular fungi. Genomic data for Agaricomycetes are accumulating at a steady pace, however, this is not paralleled by improvements in the quality of genome sequence and associated functional gene annotations, which leaves gene function notoriously poorly understood in comparison with other fungi and model eukaryotes. We set out to improve our functional understanding of the model mushroom *Coprinopsis cinerea* by integrating a new, chromosome-level assembly with high-quality gene predictions and functional information derived from gene-expression profiling data across 67 developmental, stress, and light conditions. The new annotation has considerably improved quality metrics and includes 5'- and 3'-untranslated regions (UTRs), polyadenylation sites (PAS), upstream ORFs (uORFs), splicing isoforms, conserved sequence motifs (e.g., TATA and Kozak boxes) and microexons. We found that alternative polyadenylation is widespread in *C. cinerea*, but that it is not specifically regulated across the various conditions used here. Transcriptome profiling allowed us to delineate core gene sets corresponding to carbon starvation, light-response, and hyphal differentiation, and uncover new aspects of the light-regulated phases of life cycle. As a result, the genome of *C. cinerea* has now become the most comprehensively annotated genome among mushroom-forming fungi, which will contribute to multiple rapidly expanding fields, including research on their life history, light and stress responses, as well as multicellular development.

42 Introduction

43 Global concern for sustainability increased interest in environmentally friendly solutions for
44 old industrial problems, for which the kingdom fungi offers remarkable biological agents. The
45 class Agaricomycetes (mushroom-forming fungi) contains the most powerful degraders of plant
46 lignocellulosic biomass and species that produce the most morphologically complex fruiting
47 bodies, which are commercially cultivated by the rapidly expanding mushroom industry(1, 2).

48 These two traits, among others, have fueled Agaricomycete genomics, which led to the
49 proliferation of draft genome sequences, of which currently there are >500 in various
50 repositories, such as MycoCosm (3). However, a limiting factor in documenting the genetics of
51 key traits in the Agaricomycetes, as compared to the Ascomycota, has been the paucity of high
52 quality annotations on chromosome-level genome assemblies , and the shortage of knowledge
53 on gene function. This stems from the large diversity of basidiomycete model systems (4), the
54 lack of systematic gene deletion projects, and the difficulty of extrapolating gene function from
55 well-researched organisms, such as *Saccharomyces cerevisiae*, simply based on homology.
56 Recent efforts have culminated in the publication of several chromosome-level assemblies of
57 various Agaricomycetes (5–11). While these genomes represent a significant step in
58 understanding the biology of these organisms, improvements of gene annotations did not follow
59 that of contiguity. To the best of our knowledge, there is no Agaricomycetes species in which
60 full-length transcripts, untranslated regions (UTRs), intergenic regions, upstream ORFs
61 (uORFs) or polyadenylation sites (PAS) have been determined with high precision. The
62 problem cannot be easily alleviated by *in silico* predictions due to the genome architecture of
63 fungi, necessitating the use of appropriate experimental data for precise annotations.

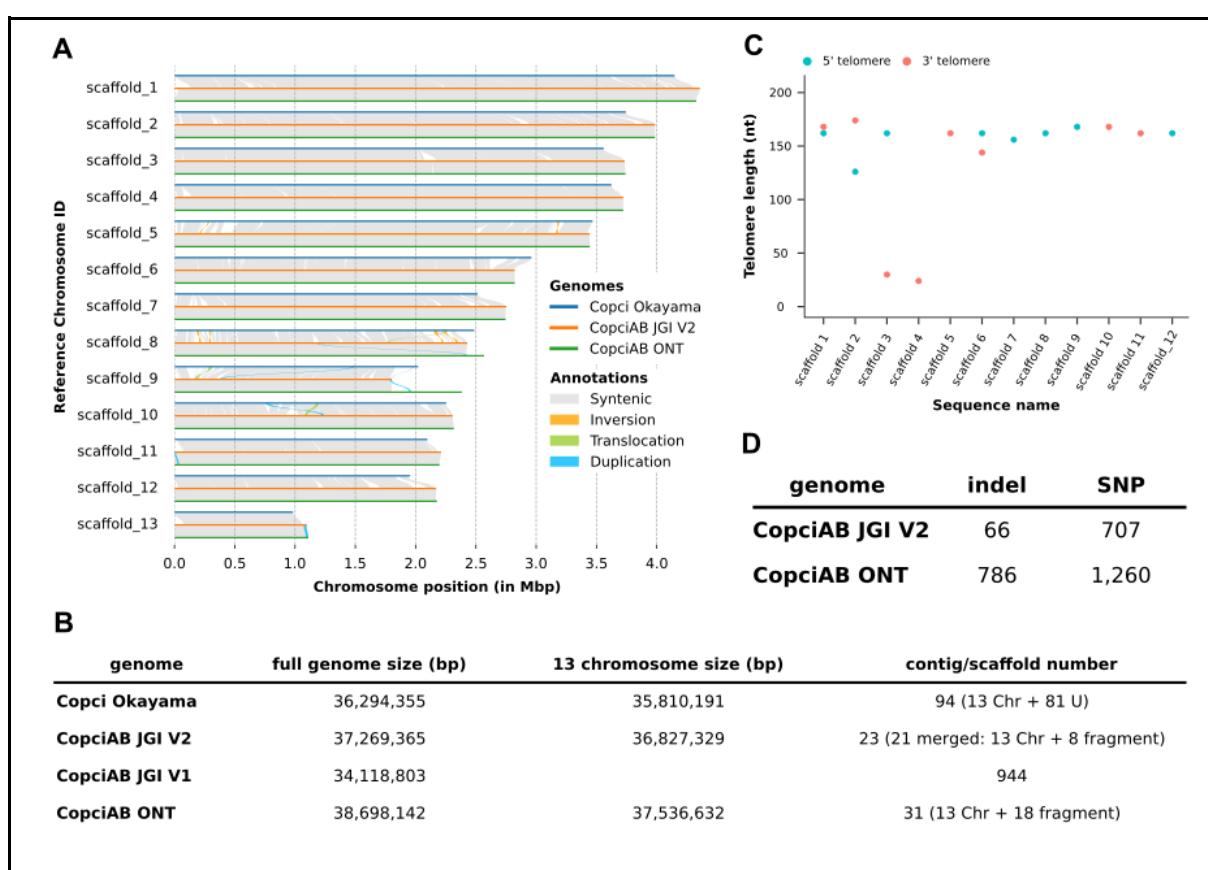
64 Fungal genomes are relatively compact, usually with short intergenic spaces and few
65 and short introns (12). Gene spacing is often so tight that the untranslated regions (UTRs) of
66 adjacent genes overlap. Overlaps of 3' UTRs of adjacent convergently transcribed genes are
67 widespread in fungi, and can play direct or indirect roles in regulating each other's expression
68 (13, 14). The situation is further complicated by prevalent polycistronic transcription (15, 16),
69 which could be the result from transcriptional readthrough due to weak termination signals (15).
70 The identification of the UTR regions is important because they can contain (un)structured
71 elements, such as uORFs in the 5' UTR that may modulate translation initiation and stalling
72 (17–19). The 3' UTR may contain elements that regulate mRNA stability, translation, or
73 localization (19). The presence of functional elements on the 3'UTR region is regulated through
74 the process of alternative polyadenylation (APA) (20–22).

75 *Coprinopsis cinerea* is one of the most widely used model mushroom species, with a
76 history of investigations dating back to the early 20th century (23). It has been used to
77 understand principles of mushroom development, meiosis and mitosis, and photobiology,
78 among others, and is currently one of the main model species for research on fungal
79 multicellularity (24) and developmental biology (23, 25, 26). In terms of lifestyle, *C. cinerea* is
80 a litter decomposer (LD), it feeds on non-woody lignocellulosic plant biomass, such as grasses,
81 straw or manure (27). Two chromosome-level and a draft assembly for the two most relevant
82 strains (Okayama7 #130 and Amut1Bmut1 #326) have been published (26, 28, 29). This fungus
83 is easy to culture in the laboratory on defined media (30). In wildtype strains haploid spores
84 (1n) germinate into monokaryotic hyphae (1n), which fuse to form dikaryons (2n), which can
85 produce sexual fruiting bodies and spores, if different alleles are present at both *A* and *B* mating-
86 type loci. In contrast, the widely used Amut1Bmut1 #326 strain is self-compatible due to a
87 mutation in mating type genes and produces dikaryotic cells with two identical nuclei. In
88 response to light and nutritional cues the dikaryon forms sexual fruiting bodies, in which a
89 complex morphogenetic process culminates in meiosis and spore formation (23). While the
90 importance of light and starvation on fruiting body development are well-known (31), the

91 molecular underpinnings of these responses and their relationship to fruiting body development
92 are poorly understood.

93 In this study we assembled a chromosome-level genome for the *C. cinerea*
94 Amut1Bmut1 #326 strain, sequenced full-length transcripts using Oxford Nanopore and PacBio
95 isoform sequencing, and profiled its transcriptome across a broad panel of conditions using
96 QuantSeq. Long Nanopore and PacBio reads provide an accurate picture of full-length
97 transcripts and their diversity, which allowed us to improve gene models, annotate uORFs,
98 intergenic regions, 5'-, 3' UTRs, and polyadenylation sites. Long-reads also helped to correctly
99 identify microexons (32), which can have regulatory roles in vertebrates (33–36), insects (37,
100 38), and plants (39–41) but are barely studied in fungi. We amalgamate these annotations with
101 transcriptional profiling of densely sampled time course experiments, to improve the functional
102 annotation of *C. cinerea* genes. Using these data we show that events preceding fruiting body
103 development of *C. cinerea* comprise a mixture of starvation and light responses as well as
104 morphogenesis. We disentangled the gene sets belonging to each of these phenomena, and
105 provide consensus gene lists underlying starvation, light response, and the differentiation of
106 aerial and submerged mycelium. Finally, we made these resources openly available as a website
107 (mushroomdb.brc.hu) for use by the community.

108 Results


109 New assembly for *C. cinerea*

110 We sequenced and assembled the 13 chromosomes of the homokaryotic Amut1Bmut1 #326
111 strain of *C. cinerea* genome into 23 scaffolds using PacBio reads, with an estimated 75x
112 coverage (Figure 1/A). Based on the scaffold length distribution a nearly 10-fold decrease is
113 observable between the fifteenth longest scaffold (1,097,509 bp) and the following scaffold
114 (162,061 bp). After comparison of the draft genome with the available chromosomal level
115 Okayama 7 #130 (26) and Amut1Bmut1 #326 (29) genome assemblies we found that the 15
116 largest scaffolds corresponded to the 13 chromosomes of *C. cinerea*, with two chromosomes
117 each broken into two contigs. These were joined, based on a previous Nanopore-based assembly
118 (29) that contains a linker sequence of 1000 unknown nucleotides (N1000). The size of the
119 resulting new assembly (CopciAB V2) is slightly shorter than the previous Nanopore-based
120 assembly; however, both of them are longer than the Okayama 7 and the published Illumina-
121 based Amut1Bmut1 assembly (CopciAB V1) (Figure 1/B).

122 Whole genome alignments showed a 99.11% and 99.98% average identity between
123 CopciAB V2 and the Okayama and Nanopore-based *C. cinerea* assemblies, respectively.
124 Analyses of structural variations between the three assemblies revealed high synteny which is
125 more pronounced between the CopciAB V2 and the Nanopore-based genome, probably because
126 these are from the same strain (Figure 1/A). Mapping Illumina reads on the Nanopore-based
127 AmutBmut assemblies revealed that our new assembly contains at least tenfold fewer indels
128 and twofold fewer SNPs than the previous Nanopore-based assembly (Figure 1/D).

129 In 12 of the 13 chromosomes, telomeric on at least one end repeat were identified; four
130 chromosomes have both telomeres (Figure 1/C). On average the telomere sequences are 150 bp
131 long (25 complete consecutive repeats) and unlike the budding and fission yeast, the tandemly
132 repeated sequence [5'-(CCCTAA)_n/(TTAGGG)_n-3'] is identical to repeats from other
133 filamentous fungi (42) and the typical human sequence (43–45). Identical telomere repeats were
134 also identified in the case of other basidiomycetes, *Ustilago maydis* (also 150bp), *Armillaria*
135 *ostoyae*, *Pleurotus ostreatus* (46–48) and in other diverse fungi (49, 50).

136

Figure 1. Characterisation of the new genome assembly in the light of the previous assemblies

- A.** Observed structural variance between the 13 chromosomes of the three *C. cinerea* genomes. The Nucmer function from the MUMmer v4.0 package was used for the comparisons. SyRI was used to identify genomic rearrangements and local sequence differences. Visualization was performed with plotsr.
- B.** Comparison of the genome size and scaffold numbers of the available *C. cinerea* genomes. Copci Okayama stands for the short-read based *C. cinerea* Okayama assembly, CopciAB JGI V1, V2, ONT for the short-read, PacBio and ONT based assembly of the *C. cinerea* Amut1Bmut1 strains, respectively.
- C.** Identified telomere repeat sequence length distribution
- D.** The number of indels and SNPs occurring in the two chromosome-level CopciAB genome assemblies. Variants were called in the assemblies based on Illumina genomic read mapping.

137

138 **Genome annotation using Nanopore and PacBio cDNA-Seq**

139 To create the most complete annotation possible, we used Nanopore and PacBio IsoSeq cDNA-
140 seq datasets obtained from libraries enriched for full-length transcripts. We also integrated
141 information from the two available annotations of *C. cinerea* Amut1Bmut1 #326 genomes (28,
142 29), followed by manually checking and correction of misidentified splice sites, transcript
143 flanking regions and CDSs, among others. In this way, we managed to compensate most of the
144 weaknesses of the two sequencing techniques, such as the lower read output of the PacBio
145 IsoSeq, the lower fraction of longer transcripts in the Nanopore output (51, 52) or the truncation
146 of transcripts with internal poly(A) or poly(T) runs by both techniques (53, 54).

147 For the ONT dataset, five separate samples were collected from different *C. cinerea*
148 developmental stages, while for the PacBio Iso-Seq dataset transcript diversity was captured by
149 pooling various tissue types. To improve ONT reads we used previously published Illumina
150 reads (24). As a result, the quality of polished reads approaches that observed for PacBio reads
151 (Supplementary Figure 1/B). After polishing we obtained approximately 4 million high quality
152 reads per sample using Nanopore, in total ~20 million reads. Over 4 million reads were gained
153 from Iso-Seq (Supplementary Figure 1/A). The median read length in the ONT datasets is
154 roughly half (943 bp) that of the IsoSeq dataset (1,867 bp), likely because PacBio's IsoSeq
155 protocol is optimized for transcripts centered around 2 kb when no size selection is used.

156 For gene model prediction, we combined numerous sources of information and manual
157 curation steps (see Methods), with ONT and Iso-Seq transcripts forming the core of the
158 annotation, supplemented with gene models from previous *C. cinerea* Amut1Bmut1 #326
159 annotations (28, 29). As a result, 13,617 gene models with 14,750 transcripts were predicted.
160 Of these, 11,583 had support by at least one long-read dataset. The resulting number of genes
161 is slightly lower than in previous annotations (28, 29), possibly because we excluded genes that
162 had neither functional annotations, nor detectable expression, or homology outside *C. cinerea*.
163 BUSCO indicates that the new annotation is highly complete, with minor improvements over
164 previous *C. cinerea* genomes (Table 1). The average number and length of CDSs, exons and
165 introns are higher than in previous annotations (Table 2). The long-read cDNA data allowed us
166 to annotate untranslated regions (UTRs), with 12,011 and 12,130 genes having 5'- and 3'-
167 UTRs, respectively (Table 2).
168

Description	JGI V1	JGI V2	ONT
Complete BUSCOs (C)	1,723 (97.7%)	1,761 (99.8%)	1,698 (96.3%)
Complete and single-copy BUSCOs (S)	1,715 (97.2%)	1,750 (99.2%)	1,681 (95.3%)
Complete and duplicated BUSCOs (D)	8 (0.5%)	11 (0.6%)	17 (1%)
Fragmented BUSCOs (F)	23 (1.3%)	1 (0.1%)	50 (2.8%)
Missing BUSCOs (M)	18 (1%)	2 (0.1%)	16 (0.9%)

Table 1. BUSCO-based comparison of the three available *C. cinerea* AmutBmut genomes. Completeness of the annotation of CopciAB strains was determined using the basidiomycota_db10 database of BUSCO.

169

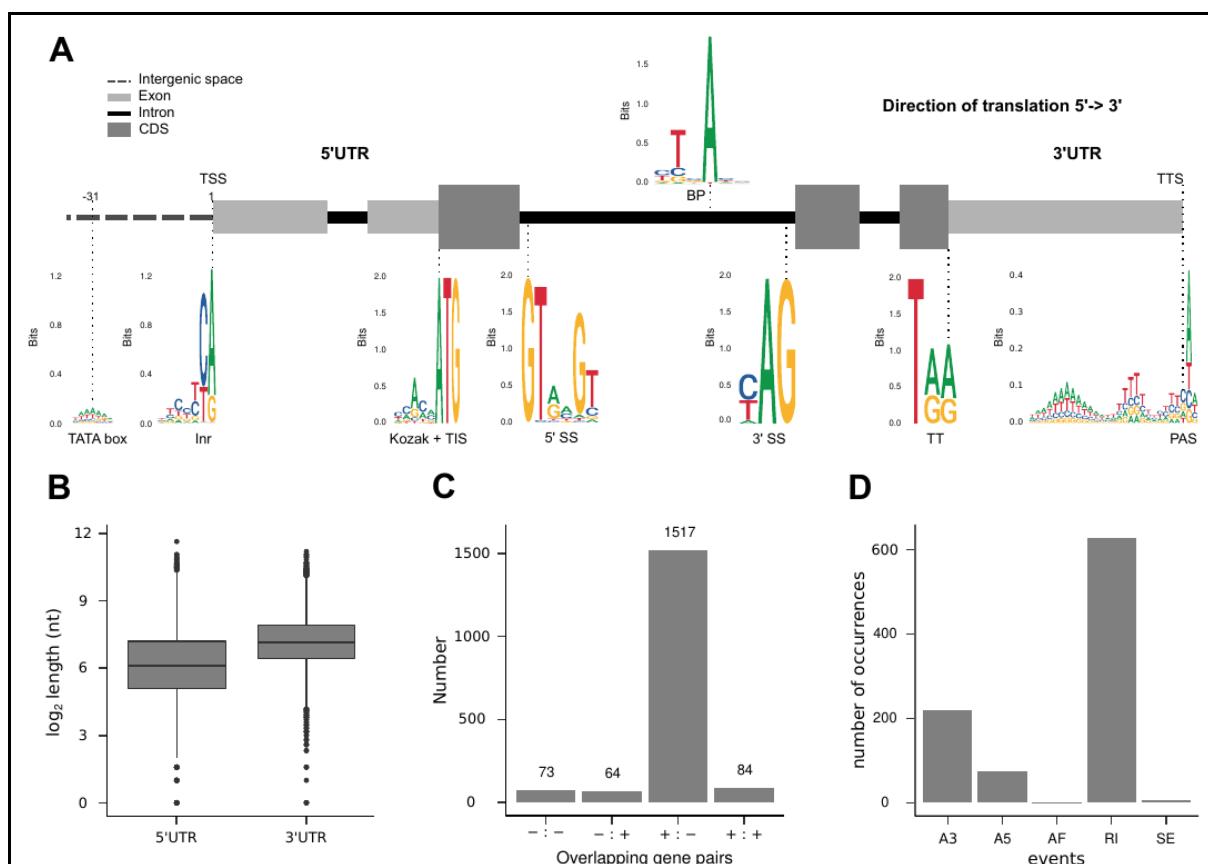
		JGI V1	JGI V2	ONT	Okayama
gene	number	14,242	13,617	15,250	13,393
	average length	1748.24	1981.68	1796.85	1763.01
	number	75,485	75,118	80,939	75,320
cds	average number	5.30	5.52	5.31	5.62
	average length	1300.33	1351.49	1281.34	1385.96
	number	77,000	78,990	83,580	75,796
exon	average number	5.41	5.80	5.48	5.66
	average cumulative length per gene	1435.96	1667.23	1485.25	1426.82
	number	62,758	65,373	68,510	62,403
intron	average number	4.41	4.80	4.49	4.66
	average cumulative length per gene	312.28	314.44	311.61	336.19
	number of genes with utr	5,759	12,011	5,560	2,071
5'UTR	percent of genes with utr	40%	88%	36%	15%
	average utr length of genes with utr region	153.76	147.54	253.60	89.53
	number of genes with utr	5,728	12,130	5,100	2,111
3'UTR	percent of genes with utr	40%	89%	33%	16%
	average utr length of genes with utr region	182.62	208.36	329.23	171.39

Table 2. Properties of *C. cinerea* protein coding gene models of CopciAB V2 compared with prior genome annotation versions. The term “genes” is defined as the complete, unmatured mRNA transcript, which consists of exons and introns. Exons describe the mature part of the mRNA, which may or may not code for a polypeptide. The CDS, or coding DNA site, is the coding part of the exon. The length is given in base pairs (bp).

170

171 Small exons are the hallmark of complex gene models

172 We identified several extremely short, internally located exons, which are often referred to as
173 microexons (32) in the literature. Correct identification of these small exons, especially those
174 below the limit of mapping software (<15 nt), can be particularly important as their omission
175 in the annotation can strongly influence the gene model. In the new annotation 1,165 gene
176 models (~9%) have at least one internal microexon of ≤ 15 nt; in 835 cases (~6 %), the omission
177 of one of these would create a premature stop codon. Notably, 89 gene models have at least one
178 exon ≤ 3 nt (1 nt: 13 exons in 13 genes, 2 nt: 57 exons in 50 genes, 3 nt: 27 exons in 26 genes)
179 and of these, an alternative stop codon is created in 62 gene models when the microexon is
180 omitted. We found that microexons are enriched in certain gene families, among others, two
181 families containing domains of unknown function and in cytochrome P450 encoding genes
182 (Supplementary Figure 2) consistent with previous reports from fungi (55).


183 Conserved genomic elements in the new *C. cinerea* annotation

184 The long-read-based gene models were used to identify conserved genomic elements located
185 around protein coding genes. First, in ± 50 nt flanking the Transcription Start Site (TSS) of
186 long-read based gene models with 5'UTR region (n:11,483) we identified patterns consistent
187 with the eukaryotic Initiator sequence (Inr) minimal consensus (C/T)(A/G), where A/G is the

188 TSS (Figure 2/A), in line with previous results in other organisms (56–60). Within 50 nt
 189 upstream of the TSS, 20% (n:2,323) of genes have at least one TATA box-like sequence
 190 (TATANN), 1,376 of which had a canonical TATA box (TATATA or, TATAAA). Of the
 191 identified canonical TATA boxes, 83% (n: 1,151), start between -38 and -31 nt (most frequent:
 192 -34 nt). Noncanonical TATA boxes were also enriched in these locations. The location of
 193 TATA boxes is similar to that observed in *Aspergillus nidulans* (59) and *Schizosaccharomyces*
 194 *pombe* (60) where TATA boxes are located -45 to -30 nt, or -32 to -25 nt upstream of the TSS,
 195 respectively.

196 We also identified signals for the Kozak consensus sequence in the vicinity of the most
 197 likely AUG start codon in the top 10% of all transcribed genes based on long-read support (n:
 198 1,096) (Figure 2/A), which is similar to that of other fungal species (56). Regarding splice sites,
 199 99.8% found in 10,890 gene models with at least one splice site belonged to the GT-AG, GC-
 200 AG and AT-AC subtypes (Figure 2/A), which is consistent with the literature (61). The
 201 translation termination site is represented by one of the three stop codons (UAA, UGA, UAG),
 202 and for the long-read-based annotations these codons were almost evenly used (30.4%, 37.8%,
 203 31.8%, respectively) (Figure 2/A). We detected motifs around the Transcription Termination
 204 Site (TTS) (Figure 2/A) similar to those observed in other fungal species especially in
 205 *Schizosaccharomyces pombe* (62, 63), *Magnaporthe oryzae* (64), *Fusarium graminearum* (16),
 206 *Saccharomyces cerevisiae* (63), as well as in other multicellular organisms (65).

207

Figure 2. Presentation of the characteristic features of the predicted gene models of *C. cinerea*.

A. Schematic representation of a typical *C. cinerea* protein coding gene model, highlighting conserved motifs. TATA box and initiator (Inr) consensus motifs

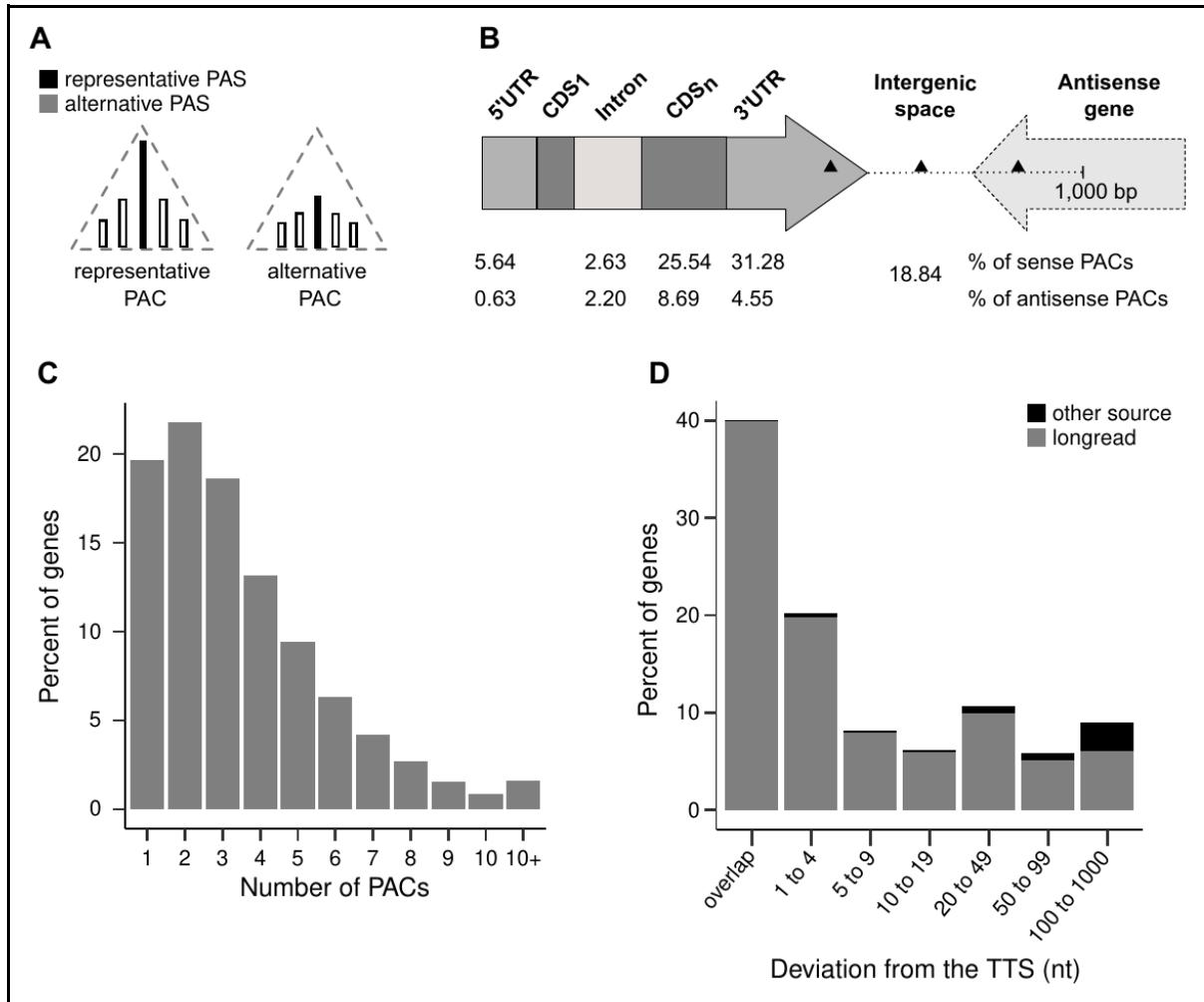
typically associated with highly expressed promoters and located in close proximity to transcription start site (TSS). Kozak sequence context localizes adjacent to the translation initiation site (TIS) and regulates its selection. Conserved 5' splice site (5' SS), branch point (BP) and 3' splice site (3'SS) motifs coordinate the spliceosome activity. Translation termination (TT) marks the sequence context defined by the stop codons. The transcription termination site (TTS) marks the 3' end of the transcript, which is defined by the polyadenylation site (PAS).

- B. UTR length distributions plotted as boxplots. The bottom of the box represents the first quartile of the data, the black line in the middle of the box represents the median of the data, and the top of the box represents the third quartile of the data.
- C. The distribution of the overlapping gene pairs in four possible combinations of gene orientation. The combinations were indicated in the following way: -/- expressed from the antisense strands in the same direction, +/+ expressed from the sense strands in the same direction, -/+ expressed divergently from antisense and sense strands, and +/- expressed convergently from the sense and antisense strands.
- D. Distribution of the alternative splicing events across alternative 3' splice site (A3), alternative 5' splice site (A5), alternative first exon (AF), retained intron (RI) and skipping exon (SE).

208
209 **uORFs** - Reliable identification of 5'UTRs provided an opportunity to investigate the
210 occurrence of uORFs in *C. cinerea*. We considered all alternative ORFs whose start codon is
211 within the 5'UTR region as uORFs as long as they encode at least one amino acid before a stop
212 codon (i.e., at least 9 nt long) (66). We identified a total of 8,704 uORFs, with median predicted
213 peptide length of 19 aa (mean 29.22 aa), found in 26% (n: 2,982) of the 11,483 predicted genes.
214 The largest proportion (46%) of these genes have a single uORF. The observed proportion of
215 genes possessing uORFs (56, 66, 67) and the median peptide length of the uORFs is not unusual
216 compared to previously described uORFs (66). We identified a putative homolog of the arginine
217 attenuator peptide (AAP), which was first described in the 5'UTR of the arg-2 gene of
218 *Neurospora crassa* (68, 69), in the 5'UTR of the orthologous *C. cinerea* gene
219 (CopciAB_446268) (Supplementary Figure 3). These data indicate that, similarly to other
220 fungal and eukaryotic genomes, uORFs are widespread in 5'UTRs of *C. cinerea* genes and that
221 some uORFs are highly conserved across fungi.

222 **UTRs** - Across all gene models (n=13,617), 88% and 89% of the genes have a 5'UTR and
223 3'UTR annotation, respectively. The median length of the 3'UTR regions is at least twice larger
224 than that of 5'UTRs (5'UTR: 68 nt, 3'UTR: 141 nt) (Figure 2/B). We found 1,738 long-read
225 based adjacent gene pairs with overlapping UTR annotations, with a median overlap of 99 nt.
226 1,517 of these overlaps were found between convergently oriented gene pairs (+><-), whereas
227 in other orientations the overlap was considerably less frequent (Figure 2/C). Such overlapping
228 UTRs in convergently oriented gene pairs are a common feature in fungal genomes and can
229 affect their transcription and translation (13, 14, 70, 71).

230 **Transcript isoforms and alternative splicing** - As described earlier, an appropriately sensitive
231 method will eventually detect splice variants for every multi-exon gene (72), not all of which
232 may be biologically relevant. Therefore, only gene isoforms with a read support of at least 10%
233 of total read for each gene were considered here. Using this conservative approach, 1,053 genes,
234 7.7% of all genes, were found to have at least one isoform, which is consistent with previous
235 studies (73), but considerably fewer than Illumina-based splicing inferences from two recent
236 studies (24, 74). The relative frequencies of splicing events was consistent with those reported
237 earlier (16, 73, 75), with retained introns being most common (67.5%), followed by alternative


238 3' splice site (23.5%), alternative 5' splice site (8.2%), exon skipping (0.5%) and alternative first
239 exon (0.2%) (Figure 2/D).

240 Alternative polyadenylation

241 To annotate and explore the use of polyadenylation sites (PAS) in *C. cinerea*, we profiled gene
242 expression across 67 different conditions covering several aspects of the biology of the fungus.
243 We used QuantSeq, a 3' sequencing approach that yields information on the junction of 3'UTRs
244 and poly(A) tail (76) and thus can provide PAS information (56). In the first round all the
245 available QuantSeq reads were used to identify 339,309 PAS. Because we applied stringent
246 filtering criteria (see Methods), we could use only 356 million of the 27 billion QuantSeq reads.
247 Nearby PAS were clustered into single polyadenylation site clusters (PACs) by allowing a
248 maximum of 10 nt intra-cluster distance, yielding 76,879 PACs. Within a PAC the PAS with
249 the highest read support serves as the representative PAS for the cluster (Figure 3/A), and we
250 used its genomic coordinate for defining a specific PAC.

251 PACs are enriched in the “sense” orientation in 3'UTRs (31.28%) and CDS (25.54%)
252 regions of the gene models (Figure 3/B). PACs annotated to non-3'UTR parts of the gene
253 models may be results of internal priming or template switching at sites with >3-5 adenines
254 (54), to which the QuantSeq protocol is susceptible, and can thus produce false-positive PAC
255 predictions. The presence of spurious PACs is suggested by the ~3x higher median expression
256 of the representative PAS site of PACs in the 3'UTRs than that in the other annotation entries
257 (Supplementary Table 1). Therefore, we further filtered PACs based on localization,
258 orientation, keeping in mind that due to the frequent overlap of 3' UTR regions between fungal
259 genes, relevant PACs can also be located in neighboring genes. In this way, we obtained 40,994
260 PACs which were assigned to 11,628 gene models. Over 80% of the genes with an assigned
261 PAC have more than one PAC and we thus considered them as genes with putative alternative
262 polyadenylation (APA) (Figure 3/C). For each APA gene, the PAC whose representative PAS
263 had the highest count is hereafter referred to as the best-supported PAC (Figure 3/A).

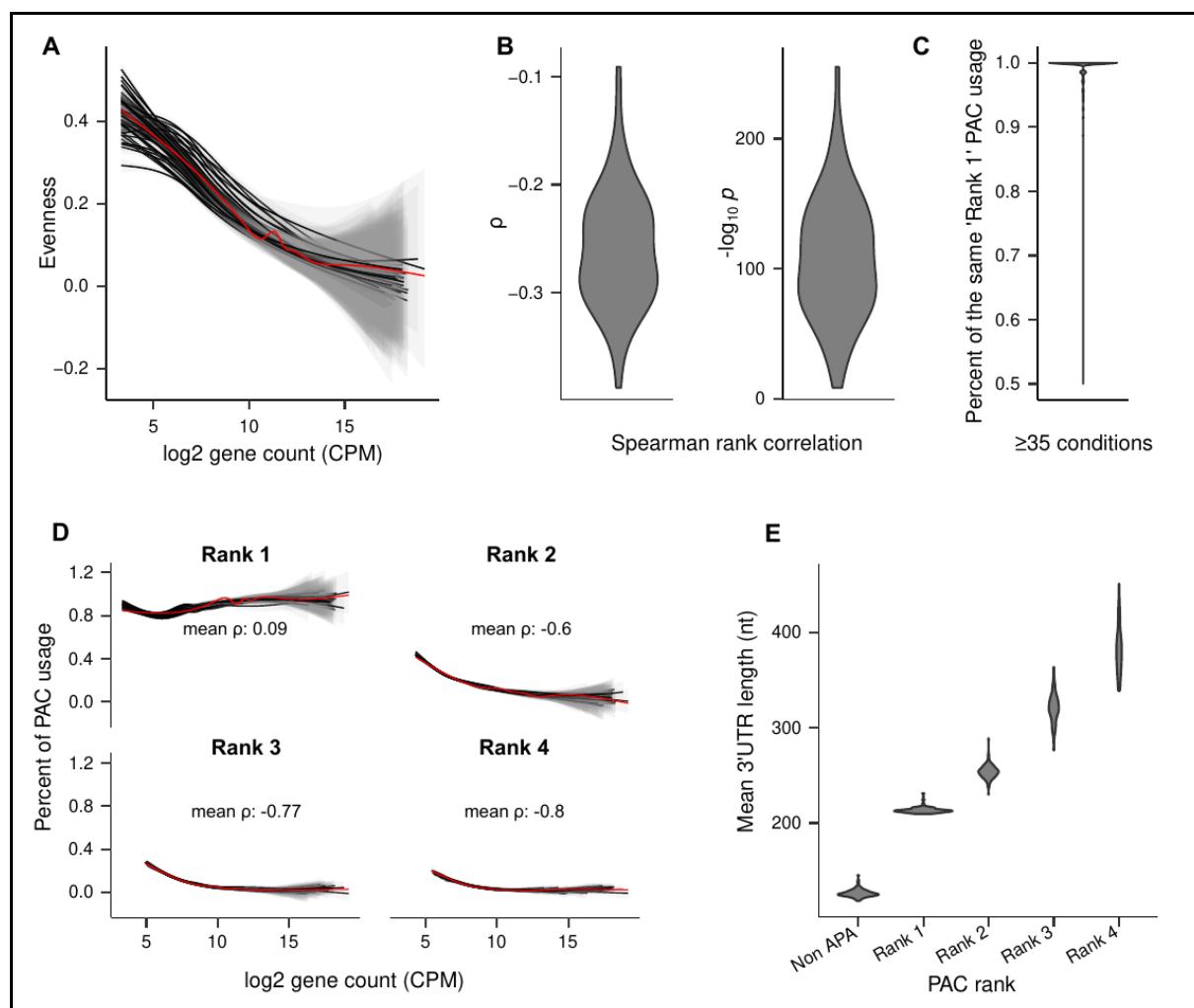
264 Transcription termination site coordinates of genes from the long-read-based annotation
265 perfectly overlap with the coordinates of the best-supported PAC in ~40% of genes and deviates
266 from it by at most 4 nt in another 19.75% (Figure 3/D). In contrast, the distances of non-long-
267 read-based gene models from their best-supported PAC are considerably larger (Figure 3/C),
268 perhaps due to the possible absence or misannotation of the 3' UTR regions.
269

Figure 3. Description of the relationship between the predicted gene models and the PACs

- Schematic diagram illustrating the hierarchy of PASs within PACs. The representative PAS with the largest read support is colored black. The best supported PAC in the case of APA is marked by gray background.
- Proportions of 76,879 PAC mapping to parts of a gene model and intergenic region. 40,994 PAC, marked with black triangle, were assigned to the genes when located in the 3'UTR of the gene, in the intergenic region or in the genic region of downstream antisense genes <1,000 bp from the gene's TTS. Note that, if the gene is followed by another in the same orientations, then different rules were used (see Methods).
- Proportion of genes with different number of PACs.
- Percentage of genes whose TTS is within a certain distance from the PAC site in genes of different origins in the annotation.

270

271 To understand the diversity of PAC usage in APA genes across biological conditions,
272 we calculated the evenness in each experiment for each APA gene with an expression ≥ 10 count
273 per million (CPM). Figure 4/A-C shows that there is a significant negative correlation between
274 evenness and gene expression level, that is, the higher the gene's expression, the less diverse
275 its PAC usage is. This could indicate that for each gene a certain PAC is preferred over others,
276 which is especially notable for highly expressed genes. To gain insight into the preferred PAC
277 among the different biological conditions, we ranked PACs based on their relative expression,


278 calculated as the expression value of the PAC divided by the summed expression of all PACs
279 of the gene (77).

280 We found that for most genes the transcriptional machinery used the same, most highly
281 expressed (Rank 1) PAC under all biological conditions we tested (Figure 4/C). We also found
282 that this correlation held strongly for highly expressed genes (Figure 4/D).

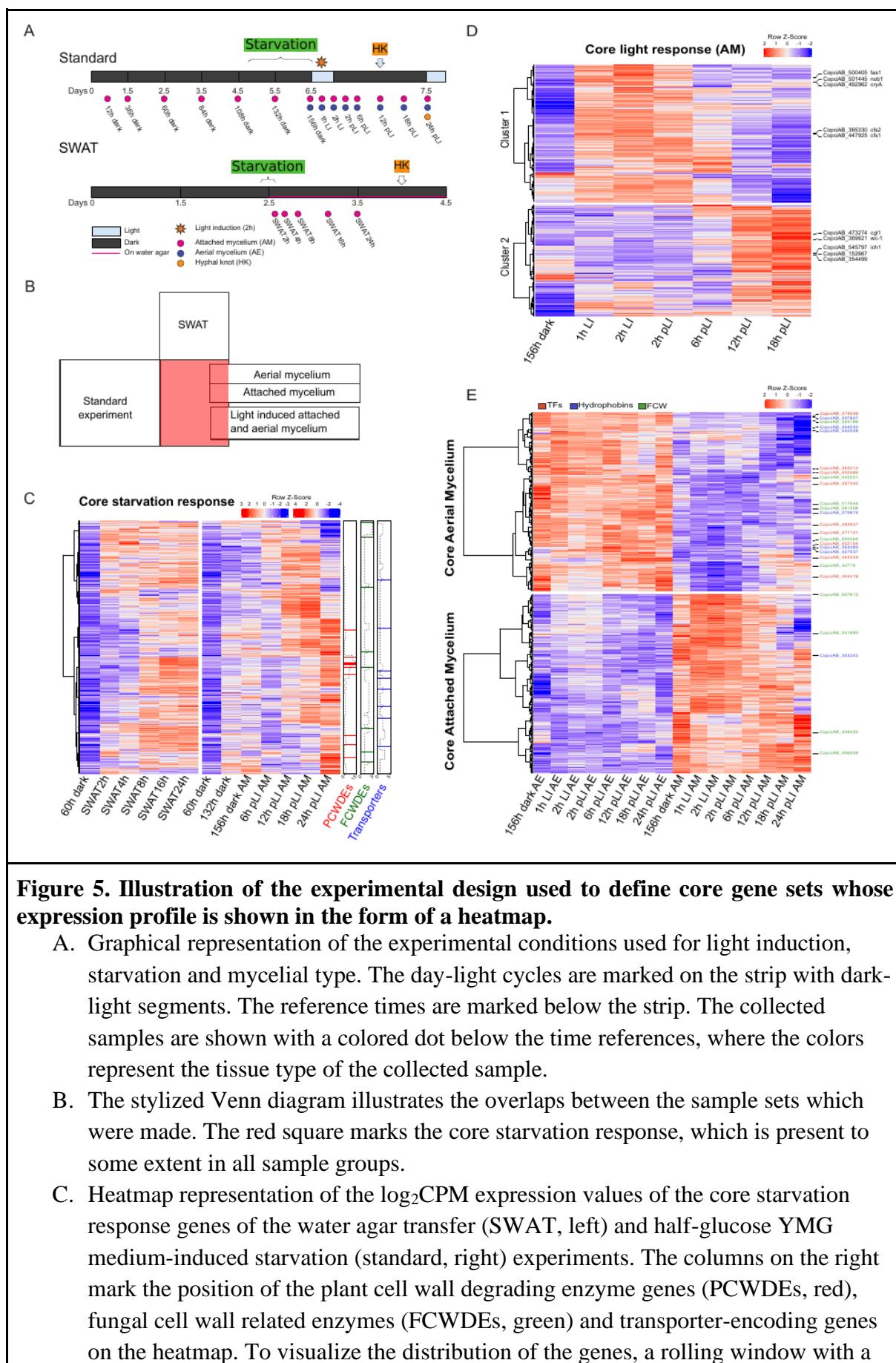
283 When we checked the mean 3' UTR length variation in the first four APA ranks together
284 with that of non-APA genes (≥ 10 CPM), we found that the non-APA genes had shorter 3' UTRs
285 region followed by the highest expressed PAC (Rank 1) and other PACs in order of decreasing
286 read support (Rank 2 to Rank 4) (Figure 4/E). Thus, there is a clear correlation between PAC
287 use frequency and distance from the CDS; that is, the higher the relative expression of the PAC,
288 the shorter the resulting 3' UTR. This suggests that *C. cinerea* most often expresses the
289 transcript with the shortest 3' UTR version. At the same time, we did not find significant
290 variation of PAC usage across biological conditions, which suggests that APA is a prevalent
291 though probably not influential phenomenon in *C. cinerea*. This is consistent with views that
292 suggest that APA represents “transcriptional noise” and not an actively regulated process (77).

293 Collectively, the annotated polyadenylation clusters correspond very closely with the
294 predicted TTS of the gene models derived from long reads, indicating that our long-read-based
295 gene models, including their 3' UTRs represent robust annotations. In terms of alternative
296 polyadenylation, it appears that most genes, especially highly expressed ones, prefer one PAC,
297 and mainly the one that results in the shortest 3' UTR.

298

Figure 4. Characterization of PACs use preference in *C. cinerea*.

- A. Negative correlation between evenness of PAC site usage and gene expression in APA genes. Note that the higher the expression the less diverse PAC usage is. Lines represent 67 biological conditions analyzed by QuantSeq. The red line represents a mean across all biological conditions.
- B. Violin diagrams of the distribution of the Spearman rank correlation rho (ρ) and the $-\log_{10} p$ values of the correlation between evenness and \log_2 gene count across the 67 biological conditions.
- C. Violin diagram showing the relative usage of the PAC with highest read support (Rank 1) for APA genes expressed in at least 35 biological conditions. Only APA genes with at least 1 PAC having >10 CPM were considered.
- D. The correlation between the frequency of a given PAC rank and gene expression. The black lines represent 67 biological conditions. The red line represents a mean across all biological conditions.
- E. The association between PAC usage and mean 3' UTR length across non-APA and APA genes. Note the clear correlation between rank (i.e., decreasing expression) and 3' UTR length. Violin plots represent 3' UTR length distributions across biological conditions.


299

300 **Expression data disentangle light and starvation responses and**
301 **morphogenesis**

302 In contrast to Ascomycota, where extrapolations from model organisms and a long tradition of
303 both forward and reverse genetics studies yielded functional information for a considerable
304 proportion of genes, Basidiomycota gene function is notoriously poorly understood. To mitigate
305 this, we took advantage of the improved annotation of *C. cinerea* and profiled gene expression
306 under a broad panel of conditions (201 samples for 67 conditions), covering basidiospore and
307 oidium germination, mycelium growth in the dark and after light induction, hyphal knot,
308 sclerotium and fruiting body development, carbon starvation, as well as 11 different stress
309 conditions. These data were used to generate functional insights into the *C. cinerea* gene
310 repertoire. Differential gene expression analyses identified a total of 12,569 differentially
311 expressed genes (DEGs, BH adjusted $p \leq 0.05$, fold-change ≥ 2) (Supplementary Figure 4),
312 indicating that the 67 conditions induced significantly altered expression of 92.3% of all genes.

313 Here we focus more closely on densely sampled time course data for light induction,
314 morphogenesis and starvation (Figure 5/A). Fruiting body development in the basidiomycetes
315 happens in response to changing environmental variables (31, 78), of which the most important
316 are carbon starvation and light (31). However, under standard fruiting conditions distinguishing
317 the specific gene expression responses attributable to starvation and light induction from those
318 associated with morphogenesis has not been possible. To this end, we obtained consensus gene
319 lists by comparing differentially expressed genes in two starvation-inducing experiments, after
320 light-induction and two mycelial types (aerial and attached mycelium). Figure 5/B shows how
321 comparisons of DEGs from these experiments yielded functional gene groups we designate as
322 'core starvation response', 'core light response' and 'core mycelium differentiation genes' in
323 *C. cinerea*.

324

Figure 5. Illustration of the experimental design used to define core gene sets whose expression profile is shown in the form of a heatmap.

- Graphical representation of the experimental conditions used for light induction, starvation and mycelial type. The day-light cycles are marked on the strip with dark-light segments. The reference times are marked below the strip. The collected samples are shown with a colored dot below the time references, where the colors represent the tissue type of the collected sample.
- The stylized Venn diagram illustrates the overlaps between the sample sets which were made. The red square marks the core starvation response, which is present to some extent in all sample groups.
- Heatmap representation of the $\log_2\text{CPM}$ expression values of the core starvation response genes of the water agar transfer (SWAT, left) and half-glucose YMG medium-induced starvation (standard, right) experiments. The columns on the right mark the position of the plant cell wall degrading enzyme genes (PCWDEs, red), fungal cell wall related enzymes (FCWDEs, green) and transporter-encoding genes on the heatmap. To visualize the distribution of the genes, a rolling window with a

width of 20 genes and a length of 20 steps was used and shown with a dashed line.

DEFINE all abbreviations here

- D. Heatmap representation of the \log_2 CPM expression values of the core light response genes in the AM samples. Genes were hierarchically clustered into two groups using the WardD method based on the Euclidean distance between the Z-score-normalized \log_2 CPM gene expression values. Genes identified in the literature as early and late light-induced genes are marked on the right side of the figure.
- E. Heatmap representation of the \log_2 CPM expression values of the core aerial and attached mycelium specific genes in the aerial and attached mycelium samples. Putative TF-, hydrophobin- and FCWDE-encoding genes are marked with red, blue and green colors on the right side of the figure.

325

326 **Carbon starvation** - We induced starvation by growing *C. cinerea* on Yeast-Malt-Glucose
327 (YMG) plates with reduced (0.2%) glucose content (called “Standard” experiment) (28) and by
328 transferring 60 h old dark-grown colonies to water-agar in the darkness, which contained no
329 nutrients (hereafter called “SWAT” experiment) (Figure 5/A). In both the Standard and SWAT
330 experiments, DEG analyses were run with the 60 h dark mycelium sample as the reference. In
331 the standard experiment nutrients deplete gradually, whereas in the SWAT experiments nutrient
332 depletion is abrupt, expected to induce a stronger starvation response. Accordingly, in SWAT
333 experiments most gene expression changes are observable at 8 h, whereas in the standard
334 experiment upregulation patterns are more diverse, which could stem from a combination of
335 milder starvation, light irradiation and tissue differentiation. We found 3,242 and 2,348
336 significantly upregulated genes ($p \leq 0.05$, fold change ≥ 2) in the Standard and SWAT
337 experiments, respectively. Of these, 1,759 genes were upregulated in both experiments and are
338 hereafter refer to as “core starvation response genes” (Supplementary Table 2).

339 GO enrichment analyses provided a clear signal for the upregulation of genes encoding
340 plant cell wall degrading enzymes (PCWDEs) and transporters, among others (Supplementary
341 Figure 5). As expected, several enriched GO terms related to carbohydrate utilization were
342 linked to PCWDEs. Based on these findings and previous considerations of starvation, we
343 prioritized plant cell wall degrading CAZymes (PCWDEs) and transporters, as well as
344 autophagy and fungal cell wall degrading CAZymes (FCWDEs) for deeper scrutiny.

345 The two most abundant functional groups in the core starvation response, consistent
346 with GO enrichment results, were PCWDEs and plasma membrane transporters. Out of the 213
347 PCWDEs and 375 transporters of *C. cinerea*, 136 and 134 were upregulated in at least one of
348 the starvation experiments and 96 and 55 (Supplementary Figure 6) were among the core
349 starvation response genes, respectively. We also compared these gene lists with *C. cinerea*
350 genes upregulated in carbon-catabolite repressor (*Cre1*, CopciAB_466792) gene deletion
351 strains (79) and found that starvation-induced PCWDEs and transporters overlap considerably
352 with those upregulated in the *Δcre1* strains. Of the 62 PCWDEs and 19 transporters upregulated
353 in *Δcre1*, 52 (83.9%) and 10 (52.6%) were also part of the core starvation response,
354 respectively.

355 Core starvation-responsive PCWDEs had diverse predicted substrates and included 67
356 cellulose (e.g. AA9, CBM1, GH3, GH5, GH6, GH7, expansins), 30 hemicellulose (e.g. GH11,
357 GH31, GH93), 16 pectin (GH28, GH88, various PL families) but none of the few lignin
358 degradation related genes of *C. cinerea*. Of the 364 transcription factors (TFs) identified in *C.*
359 *cinerea*, the ortholog (CopciAB_447627) of the cellulase-activating *roc1* transcription factor of
360 *Schizophyllum commune* (80) was part of the core starvation response genes together with

361 additional 39 TFs. Five of these TFs genes, including *roc1*, were also upregulated in the Δ Cre1
362 strains indicating that regulators of PCWDEs also respond to starvation.

363 Among transporters, the core starvation response contained many members of the Major
364 facilitator superfamily (MFS) (IPR036259) some of which are putative orthologs of
365 experimentally characterized Ascomycota glucose and xylose transporters, including
366 HGT1/HGT-1 of *Candida albicans* and *N. crassa* (CopciAB_501903) or XtrD of *Aspergillus*
367 *nidulans* (CopciAB_358584). MFS transporters in the core starvation response and upregulated
368 in the Δ Cre1 strain included putative orthologs of transporters involved in the transport of
369 cellulose degradation intermediates. For example, CopciAB_496081 and CopciAB_496145
370 encode putative orthologs of the *N. crassa* cellobextrin transporter CLP1 and hexose transporter
371 CDT-2 (81, 82) (Supplementary Figure 7).

372 The core starvation response contains several genes which were considered essential for
373 fruiting body formation. The *dst-2* gene (CopciAB_361584) (83) with a FAD domain was
374 hypothesized to be a photoreceptor for blue light and has been proven essential for
375 photomorphogenesis in *C. cinerea*. Its upregulation in the SWAT experiments is surprising
376 given that these experiments did not receive light. Two fungal galectins, Cgl1 and Cgl2
377 (CopciAB_473274, CopciAB_488611) (84), which are considered to be involved in hyphal
378 knot induction were responsive to starvation. This is in line with publications (84, 85) showing
379 the link between starvation and fruiting body induction. None of these genes was upregulated
380 in the Δ Cre1 strain.

381 One of the hallmarks of starvation is autophagy and hyphal autolysis, which may be
382 associated with increased expression of autophagy and fungal cell wall remodeling CAZyme
383 genes (86–88), respectively. In *C. cinerea* we found 12 putative orthologs (reciprocal best hits)
384 of 35 previously reported autophagy genes of *S. cerevisiae* (88). Eight of these showed
385 increasing expression 2h after transfer to water-agar (Supplementary Figure 8), however, only
386 one of them (CopciAB_375414) was significantly differentially expressed. Of the 138 *C.*
387 *cinerea* genes encoding CAZymes with an activity on fungal cell wall, 52 and 59 were
388 upregulated in the SWAT and standard experiments, respectively, and 40 were part of the core
389 response (Supplementary Figure 6). This suggests that there is active remodeling and/or
390 digestion of the fungal cell wall, which could indicate autolytic processes in starving *C. cinerea*
391 cultures.

392 Taken together, we defined a core set of genes induced upon starvation, which can be
393 used to understand how the fungus prepares for fruiting body development, the main inducer
394 of which is nutrient depletion. These genes indicated that upon starvation, *C. cinerea* was
395 probably released from carbon catabolite repression, transcribed genes associated with plant
396 cell wall degradation and morphogenesis and showed signs of autophagy or autolysis. These
397 observations are similar to those made in starving Ascomycota cultures (86, 88, 89). Autophagy
398 has also been detected upon prolonged starvation in the basidiomycete *Paxillus involutus* (87).
399 In the ascomycetes the carbon starvation response overlaps with the response to lignocellulosic
400 carbon sources, in that it comprises the induction of several PCWDEs (86, 90, 91). We found
401 similar patterns in *C. cinerea* and hypothesize that this is because, upon glucose depletion, the
402 fungus explores available alternative carbon sources by expressing a broad panel of hydrolytic
403 enzymes. Such scouting enzymes may generate simple sugars that transporters import into the
404 cell, which may trigger positive regulatory feedback loops that strengthen the transcription of
405 genes related to the carbon source found (89, 92).

406 **Light-induced genes** - We examined the effects of light induction by using the synchronized
407 growth protocol developed previously (28), which involved a 2 h light induction followed by
408 24 h in the dark and then alternating 12 h light/dark cycles. We sampled aerial and attached
409 mycelium separately for eight time points (Figure 5/A), and identified light-induced genes by
410 comparing all time points to 6.5-day-old dark-grown aerial or attached mycelium as reference

411 (called 156 h dark, see Figure 5/A). We identified 2,453 and 2,065 DEGs in the attached and
412 aerial mycelium samples (Supplementary Table 3), respectively. Aerial and attached mycelia
413 shared 1,251 DEGs, indicating high similarity in light response irrespective of mycelial type.
414 We used the union of 2,453 and 2,065 genes and removed genes that belong to the core
415 starvation response to identify 2,340 genes specifically induced by light irrespective of mycelial
416 type, but not by starvation. We hereafter refer to these as “core light induced genes” (Figure
417 5/B, Supplementary Table 3).

418 To understand the tempo and mode of light induced gene expression changes we
419 analyzed the expression of 2,340 core light induced genes in attached mycelium samples
420 (Figure 5/D), and noted that aerial mycelia show similar, though noisier patterns (see
421 Supplementary Figure 9). An expression heatmap revealed two clear waves of gene
422 upregulation, one evident 1 h after the start of light induction and decreasing expression after 6
423 h post light induction (pLi) and another wave starting around 12 h pLi (Figure 5/D).
424 Hierarchical clustering recovered two clusters corresponding to these two waves. We hereafter
425 refer to cluster 1 (1,291 genes) and cluster 2 (1,049 genes) as early and late genes, respectively,
426 which probably correspond to the two waves of light responsive gene induction reported earlier
427 (85). The expression of early genes started to decline relatively quickly, consistent with
428 photoadaptation mechanisms that inhibit White Collar Complex (WCC) activity. We note that
429 the first hyphal knots emerged at 12 h pLi, so it is possible that late genes include ones related
430 to the onset of hyphal knot development.

431 GO analyses revealed a significant effect of early light induction on peptide metabolism
432 (GO:0006518), translation (GO:0006412), ribosome biogenesis (GO:0015934), lipid
433 metabolism (GO:0006629), DNA repair (GO:0006281), chromatin remodeling (GO:0006338),
434 mitotic cell cycle (GO:1903047), GPI-anchor biosynthesis (GO:0006506) and mitochondrion
435 organization (GO:0007005), among others (Supplementary Figure 10). Of these the
436 significance of chromatin remodeling has been shown for sexual development of *C. cinerea*
437 during the examination of the Cc.snf5 (CopciAB_365798) (93). In contrast, late light induced
438 genes show an enrichment of different GO terms, including those related to transcription
439 regulation (GO:0006355), fungal-type cell wall (GO:0009277), DNA packaging (GO:0044815)
440 or G-protein signaling (GO:0007186) (Supplementary Figure 10), consistent with the
441 appearance of the first hyphal knots 12 h pLi.

442 Among the early light-induced genes we found four *C. cinerea* genes (*fas1*, *nod1*, *cfs1*
443 and *cfs2*) that were reported earlier to respond quickly to blue light (85, 94). The ortholog of
444 the *A. nidulans* blue light sensor/photolyase *cryA* (CopciAB_492962), is part of the early gene
445 set, while the other well characterized blue-light sensor gene, *wc-1* (*dst1*, CopciAB_369621) is
446 part of the late gene set. Similarly, *cgl2* (CopciAB_488611), which was proposed to be a marker
447 gene of primary hyphal knots (23), was among the early light-induced genes, with an
448 upregulation 1 h after the start of light irradiation, whereas *cgl1* (CopciAB_473274), a proposed
449 marker of secondary hyphal knots only followed later, 12 h pLi. The *wc-2* ortholog
450 (CopciAB_8610) (95) was not upregulated in the tested samples.

451 We also identified diverse genes related to DNA-repair (GO:0006281) (Supplementary
452 Figure 11), possibly for alleviating the effects of DNA damage caused by the ultraviolet
453 component of white light. For example, we detected an ortholog of the *S. pombe* UV-
454 endonuclease, *uvdE* (CopciAB_359391) and a *cryA* ortholog photolyase (CopciAB_492962),
455 which is WCC-activated in *Ustilago* (96), *Schizophyllum* (97) and *Neurospora* (98) and provide
456 protection from phototoxicity. These observations suggest that these and other early genes
457 might be WCC-activated in *C. cinerea*, and may be part of a conserved light-responsive DNA
458 repair network. We hypothesize that the broad upregulation of DNA repair genes is related to
459 repairing DNA damage caused by UV or ROS generated by photons (99).

460 Early light-induction resulted in the upregulation of diverse lipid metabolism and genes
461 related to Glycosylphosphatidylinositol-anchor synthesis. Of the nine predicted fatty acid
462 desaturases, which include linoleic acid synthases, five can be found in the early light response
463 gene set (cluster 1) and only one among late light response genes (cluster 2). The upregulation
464 of putatively linoleic acid producing fatty acid desaturase genes suggest that membrane fluidity
465 is regulated in response to light, similar to what was found in fruiting bodies (78).

466 In summary, our data show that light induces broad transcriptional changes in *C.*
467 *cinerea*, with the early light-response comprising 1,291 genes, ~10% of all genes of the fungus.
468 These patterns are similar to the situation reported in *N. crassa*, where an early wave of light
469 induction is regulated by the WCC. We note that the early wave of gene expression in *C. cinerea*
470 (0-6h pLi) is considerably slower than that of *N. crassa* (45min) (100) and more research is
471 needed to clarify if they represent homologous responses. We hypothesize that *C. cinerea* early
472 genes are also regulated by the WCC, even though motif analyses did not recover a motif similar
473 to that reported in *N. crassa* (101) or *Lentinula edodes* (102). It is also noteworthy that late light
474 induced genes show up in a consensus catalog of conserved fruiting-related genes (78),
475 indicating that illumination induces light-responsive genes also during fruiting body
476 development. Finally, it should be noted that here we specifically analyzed upregulated genes,
477 analyses of light-repressed genes might yield additional insights into the photobiology of *C.*
478 *cinerea*.

479 **Genes related to mycelial type** - In fungal colonies hyphae might be submerged in or attached
480 to the substrate or be erect, forming the aerial mycelium. Fruiting bodies develop from hyphal
481 knots, which in turn emerge by the branching of erect hyphae (23, 103, 104), indicating that
482 aerial mycelium may have an important role in fruiting body formation. The transition from
483 attached to aerial mycelium is thus an important step, however, in contrast to fruiting body
484 development, very few reports have scrutinized it (103–105). Therefore, we analyzed gene
485 expression separately for the aerial vs. attached mycelia at each time point in our light induction
486 time course experiment (Figure 5/A). Since each pair of samples compared received the same
487 light treatment, we expect DEGs to reflect differences mainly related to tissue type. We
488 identified 501 - 1,275 and 574 - 1,135 DEGs upregulated genes in attached and aerial mycelium
489 across the time course, respectively (Supplementary table 4).

490 GO enrichment analysis revealed that diverse metabolic processes dominated DEGs
491 upregulated in attached mycelia, whereas in aerial-mycelium, terms related to transcription
492 regulation (GO:000635), the cell wall (GO:0009277), transporters (GO:0055085) were
493 consistently enriched, among others (Supplementary Figure 12-13). This suggests that the two
494 mycelial types perform divergent functions; in the attached mycelium more housekeeping and
495 metabolic functions might be active, while the transcriptome of aerial mycelium reflects
496 differentiation and consequences of an oxygen-rich environment (e.g., response to oxidative
497 stress). The term “Fungal-type cell wall” (GO:0009277), which is linked, among others to
498 hydrophobin (IPR001338) upregulation was enriched in both mycelial types, however,
499 considerably more strongly in aerial mycelium (Supplementary Figure 12-13). Aerial mycelia
500 further showed GO enrichment signal for lipid (GO:0006629), steroid (GO:0006694) and
501 sphingolipid (GO:0006665) metabolism (Supplementary Figure 12-13). To follow up the GO
502 results, we analyzed the expression of genes encoding hydrophobins, cell wall synthesis and
503 remodeling enzymes and transcription factors. Aerial mycelia displayed a considerably stronger
504 hydrophobin gene expression than attached mycelium (Supplementary Figure 14) in line with
505 previous studies (103, 106, 107). Hydrophobin and FCWDE-related CAZyme gene
506 upregulation in the aerial mycelium became stronger as time progressed, possibly indicating
507 increasing specialization at the cell surface. Generally, more TFs were upregulated in the aerial
508 than in the attached mycelium, though the numbers converged as time progressed and at 24 h
509 pLi the attached mycelium had more upregulated TFs than the aerial mycelium.

510 We next attempted to identify a core set of genes that are consistently upregulated in
511 attached or aerial mycelium. This yielded 407 and 387 upregulated in at least five out of eight
512 comparisons in the aerial and attached mycelia, respectively. After removing genes that are also
513 members of the core starvation response, we obtained 197 and 247 genes (Figure 5/E,
514 Supplementary Table 5, Supplementary Figure 15). This low overlap suggests that there is a
515 considerable turnover of gene expression through the time points. Among these, aerial mycelia
516 had nine TFs, six hydrophobins and six FCW genes upregulated, whereas attached mycelia had
517 no, one, or four upregulated genes in these categories, respectively. The nine TFs consistently
518 upregulated in aerial mycelium suggest there are specific regulatory patterns in this tissue type.
519 One of these is orthologous to *hom1* of *S. commune* (CopciAB_493627), which was reported
520 to regulate vegetative growth and fruiting body development (108, 109).

521 **Website**

522 The *C. cinerea* 2.0 genome has been deposited in MycoCosm (3) and, to make the genome
523 sequence, gene models, functional annotations and gene expression data accessible to the
524 community, in a new a website (mushroomdb.brc.hu) that contains all of the above data in an
525 easy-to-use format was generated. The website offers the possibility to identify the desired gene
526 based on sequence similarity and keywords from the functional annotation, incorporates a
527 genome viewer and browser (long-read alignments, Illumina and QuantSeq read coverage), data
528 on gene conservation, orthology in other mushroom-forming fungi and tools to analyze gene
529 expression levels in new and published datasets (24, 110–112). We anticipate MushroomDB
530 will be a useful resource for mushroom science.

531 **Discussion**

532 In this study, we produced a high-quality annotation of protein-coding genes of *C. cinerea*
533 Amut1Bmut1 #326 by combining a new, chromosome-level assembly, Nanopore and PacBio
534 IsoSeq cDNA-seq data, information from two available annotations and several rounds of
535 manual correction. To improve functional descriptions of genes, their expression profile was
536 determined under several conditions, which we used to glean novel insights into the
537 transcriptome states related to starvation, light induction and mycelial differentiation.

538 The new *C. cinerea* genome eliminates several problems associated with previous
539 annotated genomes of this species and Agaricomycetes in general. First, most Agaricomycete
540 genomes are drafts and only a few are chromosome level assemblies (5–11), which limits their
541 usefulness for downstream analyses. In addition, gene annotation is usually based on short-read
542 assisted automatic pipelines, which fail to capture key gene features (e.g., APA, uORFs, UTRs)
543 and often yield imprecise gene models; and thus incorrect or incomplete protein predictions due
544 to challenges posed by overlapping gene models, polycistronic transcription (15, 16), or
545 microexons, among others. It has been shown that such annotation errors can propagate across
546 genomes (113) and can reduce the accuracy of functional annotation terms which leads to poor
547 predictions of the biological function of genes and encoded proteins.

548 The new *C. cinerea* genome has better quality metrics than previous ones, such as fewer
549 indels and mismatches, at least one telomeric repeat region at the termini of twelve of the 13
550 chromosomes, higher annotation completeness as suggested by BUSCO, 85% of the 13,617
551 gene models confirmed with at least one long read, or 5' and 3' UTR annotations for 88% and
552 89% of the gene models, respectively. Comprehensive UTR annotations enabled the detection
553 of (un)structured elements, such as uORFs associated with 2,982 genes. By uncovering these
554 genomic features in *C. cinerea*, this study adds the first multicellular Basidiomycota to the
555 considerably denser array of Ascomycota (e.g. *S. cerevisiae*, *N. crassa*, *S. pombe*, *C. albicans*)
556 in which these features have been already analyzed in detail, enabling comparative analyses.

557 For example, we confirmed the presence of an uORF in the 5' UTR of the *arg2* gene of *C. cinerea* (69), which, together with its ortholog in *N. crassa*, indicate 500 million years of
558 conservation for this uORF. The improved annotation enabled the detection of conserved
559 sequence motifs (e.g., Inr, TATA-box) and will help defining cis-regulatory elements. We
560 found a large number of microexons which, in our experience, are often overlooked by
561 automatic annotators and can lead to premature stop codons. To further validate gene models
562 we utilized QuantSeq's ability to capture the junction of the 3' UTRs and the poly(A) tail. This
563 way we were able to confirm the PAS of the gene models and also obtained information on
564 alternative polyadenylation (APA).

565 By building on the improved gene models and gene expression profiling under 67
566 conditions we enriched the annotation with expression-derived descriptions of gene function.
567 Gene expression data covered light-induced developmental processes, carbon starvation as well
568 as eleven stress conditions. We focused on a subset of these to define functional gene sets
569 representing the core response to starvation (1,759 genes), light induction (2,340 genes) and
570 hyphal differentiation (197 and 247 genes in aerial and attached mycelium). These three factors
571 are usually simultaneously present to varying extents in fruiting experiments (31) and previous
572 studies could not tease apart the transcriptomic responses attributable to them from those of
573 fruiting body morphogenesis. The gene sets we defined displayed characteristic functional
574 enrichment patterns and were free of contaminating effects across these three phenomena. Thus,
575 we consider the establishment of the four core genes sets as a significant improvement over
576 previous RNA-seq based treatments of the basidiomycete life cycle and we anticipate that
577 beyond starvation, photobiology and mycelial differentiation, these data will contribute to a
578 better understanding of the fruiting process. We also expect the data to provide further insights
579 into the photobiology of basidiomycetes and open the way to comparative analyses of light
580 responses of basidiomycetes with those of the Ascomycota (e.g. *N. crassa*), in which the process
581 is much better understood (114).

582 These expression data, along with the new and a previously published *C. cinerea*
583 genome, annotation and transcriptomes, were integrated into a new website
584 (mushroomdb.brc.hu), which we plan to update regularly to provide a reference resource for
585 the mushroom science community for future functional analyses. The website is centered
586 around *C. cinerea*, as the currently best-known mushroom-forming model species, but includes
587 data from several industrially relevant and commercially produced mushroom-forming species
588 too.

589 Some limitations resulting from the employed technologies should be mentioned. While
590 we expect the vast majority of genes to be correctly annotated, the annotation of some genes
591 (e.g., lowly expressed long genes) or features (e.g., TSS) should be improved further. Given
592 that we used stringent filtering criteria to assemble the gene catalog, it is possible that future
593 studies will discover that some, albeit likely not many, further genes can be found in *C. cinerea*.
594 While we validated the TTS positions of the gene models by Quantseq, the TSS were not
595 experimentally checked. This may lead to some imprecisions in the TSS positions, which may
596 be remedied by assays such as SAGE, CAGE (58, 115). The expression data generated in this
597 study allowed the identification of genes responsive for light, starvation and tissue type.
598 However, given the diversity of conditions, we envision, these data could be used for addressing
599 more complex questions on gene expression, such as co-expression patterns or global regulatory
600 networks. The integration of the data into a dedicated website (mushroomdb.brc.hu) is a step in
601 this direction, whereas global gene regulatory network reconstruction is a future challenge. An
602 exciting next step towards network-based approaches is exploring patterns of cis-regulation in
603 *C. cinerea*, by high-throughput functional assays (e.g., ATAC-, DAP-, or ChIP-seq), which will
604 allow deeper understanding of the mechanism of gene expression regulation under diverse
605 conditions. Regulatory interactions could also be interrogated by directed perturbation of the

607 network by reverse genetics, as shown recently by analyses of the *cre1*, *snb1* and *nsdD1* and
608 *nsdD2* genes (79, 94, 116). Another possible extension of this work is improving the assemblies,
609 annotations and gene functions in other non-model basidiomycetes too, to enable rigorous
610 comparative analysis of gene model and expression patterns across species.

611 Taken together, this study has improved the genome assembly, annotation as well as
612 expanded our functional knowledge of protein-coding genes of *C. cinerea*. With these
613 improvements, *C. cinerea* emerges as potentially the most comprehensively annotated species
614 among the Agaricomycetes. We anticipate this work will serve as a foundational resource for
615 further studies, particularly those in which genome integrity and accurate gene model prediction
616 are essential, and will facilitate further research on mushroom-forming and lignocellulose-
617 degrading Agaricomycetes as well as facilitate functional genomic comparisons across the
618 fungal kingdom.

619

620 Materials and methods

621 Growth conditions

622 For all experiments we used the *C. cinerea* #326 Amut1Bmut1 PABA- strain (FGSC#25122),
623 which carries mutations in both mating type factors that overcomes the self-incompatibility of
624 monokaryotic strains (117). High molecular weight DNA for PacBio sequencing was extracted
625 from mycelium samples grown in liquid YMG (0.4 % yeast extract, 1% malt extract, 0.4%
626 glucose medium at 28 °C without shaking using the Blood and Cell Culture DNA Maxi Kit
627 (Qiagen, catalog number: 13362) following the manufacturer's instructions. RNA for Nanopore
628 and IsoSeq was extracted from mycelium and fruiting body tissues using Quick-RNA Miniprep
629 kit (Zymo Research, USA, catalog number: R1054), following the manufacturer's instructions.
630 The same kit was used for RNA extraction for gene expression profiling. Supplementary Table
631 5 provides detailed growth conditions and protocols for gene expression profiling experiments.

632 Genome sequencing and assembly

633 Approximately 10 µg of genomic DNA was sheared to 30-50 kb using the Megaruptor 3
634 (Diagenode). The sheared DNA was treated with exonuclease to remove single-stranded ends,
635 DNA damage repair enzyme mix, end-repair A-tailing mix, and ligated with overhang adapters
636 using SMRTbell Express Template Prep Kit 2.0 (PacBio) and purified with AMPure PB Beads
637 (PacBio). Individual libraries were size-selected (20 kb) using the 0.75% agarose gel cassettes
638 with Marker S1 and High Pass protocol on the Blue Pippin instrument (Sage Science). PacBio
639 sequencing primer was then annealed to the SMRTbell template library and sequencing
640 polymerase was bound with a Sequel II Binding kit 2.0. The prepared SMRTbell template
641 libraries were then sequenced on a Pacific Biosystems Sequel II sequencer using tbd-sample
642 dependent sequencing primer, 8M v1 SMRT cells, and Version 2.0 sequencing chemistry with
643 1x1800 sequencing movie run times.

644 Filtered subread data was processed with the JGI QC pipeline to remove artifacts.

645 The mitochondrial genome was assembled separately with the CCS reads using an in-
646 house tool, used to filter the CCS reads, and polished with two rounds of Racon version 1.4.13
647 (118) racon [-u -t 36] (118). The mitochondria-filtered CCS reads were then assembled with
648 Flye version 2.8.1-b1676 (119) [-g 40M --asm-coverage 50 -t 32 --pacbio-hifi] to generate an
649 assembly and polished with two rounds of RACON version 1.4.13 (118) racon [-u -t 36].

650 Ribosomal DNA was assembled separately from a subset of CCS reads identified using
651 kmer matching against the UNITE database with BBTools version 38.79 (120) bbdsk.sh [k=31
652 mm=f mkf=0.05 ow=true]. Matching reads were subsampled to 600000bp with BBTools (120)
653 reformat.sh [sampleseed=1 samplebasestart=600000 prioritizelength=t ow=true] and

654 assembled with Flye version 2.8.1 --py37h4bd9754_0 (119) [--hifi-error 0.01 --meta --keep-
655 haplotypes --genome-size 12K -t 16 --pacbio-hifi] and polished with two rounds of RACON
656 version 1.4.13 (118) racon [-u -t 36].

657 Eukaryotic internal transcribed spacer (ITS) was identified and extracted from the rDNA
658 assembly using ITSx version quay.io/biocontainers/itsx1.1b--2 (121) [--detailed_results T --
659 anchor 100 --cpu 16 -t F -o ITS]. Results were used to orient and trim the rDNA contig to 100bp
660 SSU - 1Kb LSU.

661 **PacBio Iso-seq library preparation, sequencing and read processing**

662 Full-length cDNA was synthesized using template switching technology with NEBNext Single
663 Cell/Low Input cDNA Synthesis & Amplification Module kit. The first-strand cDNA was
664 amplified and multiplexed with NEBNext High-Fidelity 2X PCR Master Mix using Barcoded
665 cDNA PCR primers. The amplified cDNA was purified using 1.3X ProNex beads. Similar sizes
666 were pooled at equimolar ratios in a designated Degree-of-Pool using PacBio Multiplexing
667 Calculator. The pooled samples were end-repaired, A-tailed and ligated with overhang non-
668 barcoded adaptors using SMRTbell Express 2.0 kit. PacBio Sequencing primer was then
669 annealed to the SMRTbell template library and sequencing polymerase was bound to them
670 using Sequel II Binding kit 2.0. The prepared SMRTbell template libraries were then sequenced
671 on a Pacific Biosystems' Sequel II sequencer using sequencing primer, 8M v1 SMRT cells, and
672 Version 2.0 sequencing chemistry with 1x1800 sequencing movie run times.

673 PacBio subreads were used as an input to generate the polished Circular Consensus
674 Sequence by pbccs (version 4). In pbccs the accuracy rate and the minimum pass number were
675 set to 98% and 3 (ccs --min-passes 3 --min-snr 4 --max-length 21000 --min-length 10 --min-rq
676 0.98). For the classification of the css reads into full length category according to the presence
677 of the 5' primer, 3' primer and poly(A) tail lima was used. For the further classification only,
678 the full-length reads were kept. In the further steps isoseq3 refine function was used to remove
679 poly(A) tails and cluster function to cluster all the full length css reads.

680 **Oxford nanopore cDNA library preparation, sequencing and read 681 processing**

682 From each of the five purified total RNA samples, 2 μ g of RNA was used to prepare full-length
683 cDNA libraries using the TeloPrime Full-Length cDNA Amplification Kit V2 (Lexogen,
684 Vienna) protocol. Endpoint PCR was performed using the same kit with 12 to 18 cycles. The
685 concentration and integrity of the samples were determined using a Qubit 2.0 fluorometer with
686 the Qubit (ds)DNA HS Assay Kit (Thermo Fisher Scientific) and the Bioanalyzer 2100 (Agilent
687 Technologies) with the DNA 7500 chip. The amplified cDNA samples were barcoded using
688 the Oxford Nanopore Native Barcoding Expansion Kit (EXP-NBD104). The proportionally
689 mixed barcoded samples were used to prepare libraries with the Ligation Sequencing Kit (SQK-
690 LSK109, Oxford Nanopore Technologies), which were then sequenced on two MinION flow
691 cells (FLO-MIN106 R9.4.1, Oxford Nanopore Technologies). Base calling and demultiplexing
692 were performed using Guppy v3.2.4. Only reads with a Q value ≥ 7 were used in further steps.
693 The base called reads were adapter trimmed and oriented using Pychopper v2.3.1 (122). Any
694 reads shorter than 50 bp were excluded. Errors in ONT reads were polished using LoRDEC
695 v0.9 (123). For the polishing process BBTools reformat.sh (120) was used to randomly sample
696 approximately 20M R1 Illumina reads from a previous dataset (24). To remove redundant or
697 poor-quality reads from the sampled dataset prior to the polishing step, reads were further
698 sampled using ORNA (124). To evaluate the indel and mismatch ratios of the long reads
699 assembled with CopciAB V2, the functions stats_from_bam and summary_from_stats from P
700 (125) were used, which output summary statistics for each read.

701 Quantseq library preparation, sequencing

702 The libraries were generated using the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for
703 Illumina (Lexogen, Vienna). To begin, 100 ng of total RNA was used as input for first strand
704 cDNA generation with an oligo-dT primer, followed by RNA removal. Next, second strand
705 synthesis was initiated with random priming and the resulting products were purified with
706 magnetic beads. Finally, the libraries were amplified and barcoded using PCR. The Agilent
707 4200 TapeStation (Agilent) was used to assess all libraries for the formation of adapter dimers
708 during PCR. The QuantSeq libraries were sequenced on the Illumina NextSeq550 platform,
709 producing 75 bp single-end reads.

710 Genome comparison, structural variation identification

711 To study the differences in chromosomes (C13) three genomes were compared using the dnadiff
712 function of the MUMmer v4.0 package (126) with CopciAB V2 as a reference. We identified
713 structural variations (SVs) between the genomes using SyRI (127). For this purpose,
714 chromosome-level alignment was performed between *C. cinerea* Okayama (reference) and
715 CopciAB V2 (query) genomes, as well as between CopciAB V2 (reference) and ONT-based
716 (query) genomes using Nucmer from the MUMmer package. The alignments were used as input
717 for SyRI to identify the genomic rearrangements and local sequence differences. The output of
718 SyRI was plotted using plotsr (128).

719 Determination of indel, SNP variation between the CopciAB V2 and Copci 720 ONT genomes

721 Genomic Illumina reads (SRR10162428) (29) were trimmed with fastp v0.21.0 (129) and then
722 mapped to the CopciAB V2 and CopciAB ONT genomes with bwa v0.7.17-r1198-dirty (130).
723 After sorting and preprocessing the bam alignment files with samtools v1.13 (131) and picard
724 package AddOrReplaceReadGroups v2.18.14-SNAPSHOT function (132), the indels and SNPs
725 were called using GATK3 (133).

726 Long-read based gene model prediction

727 During gene model prediction, the main objective was to integrate data from all available
728 genomes and associated annotations into a more complete long-read based annotation. To
729 accomplish this we iteratively utilized the Illumina (28), ONT (29) and the new PacBio genome.
730 During each iteration, we incorporated manually curated gene models from the reference
731 genome and newly created ONT based gene models into the resulting annotation. In the final
732 polishing step, we integrated the information carried by the PacBio Isoseq reads into the
733 reference annotation, resulting in the final form.

734 In detail, we performed the following steps. Firstly, we separately mapped the polished
735 ONT reads from five different samples to the CopciAB V1 genome (28) using DeSALT (134).
736 We chose this aligner due to its higher observed precision in *de novo* mapping of transcripts
737 with shorter exons compared to other long read aligners (minimap2 v2.24-r1122 (135),
738 magicblast: v1.5.0 (136), and GraphMap v0.6.3 (137)). The aligned reads were processed using
739 samclip (<https://github.com/tseemann/samclip>) to remove long soft clip sequences. The
740 resulting trimmed alignments were then utilized to predict gene models with the TAMA
741 software package (138). Using TAMA, we initially collapsed mapped reads by samples
742 [tama_collapse.py -s \$inputBAMfile -b BAM -f \$refgenomePath -p \$outTag -x capped -icm
743 ident_map -a 50 -z 50]. Subsequently, we filtered out collapsed reads with low read support (at
744 least 2 reads in at least 1 sample) [tama_remove_single_read_models_levels.py -b
745 \$annotationBedFile -r \$readSupportFile -l transcript -k remove_multi -o \$outputPrefix].
746 Finally, we merged the collapsed reads from the different samples [tama_merge.py -f \$fileList
747 -p \$outputPrefix -a 50 -z 50].

748 It was observed that TAMA often fails to separate overlapping neighboring gene
749 models. To address this issue, we reviewed the length of each TAMA-suggested transcript
750 isoform for each gene model and. To eliminate exceptionally long, possible erroneous isoforms,
751 we filtered out any isoforms with a length twice as larger as the geometric mean of the gene's
752 isoforms. The remaining isoforms were clustered based on their overlap ratio. If the pairwise
753 overlap was less than 50%, the isoforms were reassigned to a separate gene model represented
754 by the isoform with the highest read support. To preserve all the data, the previously filtered
755 out, especially long isoforms were later added back to the gene cluster with the highest read
756 support. In a further step, ORFik (139) was then utilized to predict coding DNA sites (CDSs)
757 with a minimum length of 30 amino acids on the gene/transcript models. Transcript models
758 without CDS predictions were omitted from further analysis.

759 To identify the primary transcript isoform of the gene for further manual curation,
760 certain filter criteria were required to be met. Firstly, a transcript must be longer than the 80%
761 of the geometric mean of all transcripts in the cluster. Secondly, if a transcript has at least 4
762 times higher expression than the second highest expressed transcript, it becomes the primary
763 isoform. Otherwise, the longest isoform is selected. The primary isoforms selected were
764 manually checked. To aid in the curation process, Illumina reads (24) were aligned to the
765 reference genome using the STAR v2.6.1a_08-27 aligner. Non-canonical splice sites, splice
766 junctions (SJ) with low Illumina read support (≤ 5 reads), or alignment errors (indel, mismatch)
767 around the SJ were given special attention and were manually checked and corrected if
768 necessary. At this point, any gene clusters that were removed due to the above 80% filter were
769 restored. Also, partial primary isoforms were corrected to accurately reflect the CDS. Gene
770 models not present in the primary isoforms, but present in the CopciAB V1 annotations were
771 incorporated.

772 The primary isoforms defined in the CopciAB V1 genome were mapped onto the ONT-
773 based genome (29) using DeSALT. We included gene models that were exclusively present in
774 the ONT-based genome to the primary isoform set. In case when there was a match between
775 the gene models of the ONT-based genome and CopciAB V1 genome, we gave priority to the
776 ones that originated from the ONT-based genome over the CopciAB V1. We utilized SQANTI3
777 (140) to identify overlapping gene models. We then used DeSALT to map the extended primary
778 isoform set onto the PacBio-based genome. To detect alignment errors for manual curation, we
779 aligned Illumina reads as previously mentioned.

780 To further improve annotation, we incorporated PacBio Isoseq reads. We aligned ONT
781 and PacBio reads to the reference genome using minimap2 with the assistance of reference
782 annotation. We excluded long reads that had a perfect SJ match with the reference annotation
783 and only considered them as read support for the corresponding gene. The remaining long reads
784 were utilized for an additional round of transcript model prediction with TAMA.

785 The second round of TAMA transcript/gene models were compared with the corrected
786 extended primary isoform. If the length of the CDS encoded by the new gene/transcript model
787 was longer than the counterpart in the reference genome, then the new gene/transcript model
788 was accepted. If the CDS was identical to a CopciAB V1 (28) or the ONT-based (29) gene in
789 the reference genome then, it was also replaced with the new gene model. If it was missing, it
790 was transferred to the corrected extended primary isoform. The gene models that were taken
791 from the new TAMA run underwent manual checking before being accepted. To support the
792 representation of the long gene models with low expression in the long-read based annotation,
793 the long genes with one PacBio Isoseq read support were also accepted after consideration.

794 Transcript isoforms were accepted if they had a read support of at least 10 reads and
795 accounted for at least 10% of the gene's total read support, which includes both ONT and
796 PacBio Isoseq reads.

797 To identify falsely predicted gene models, we first identified genes with extremely low
798 expression. We collected 165 RNA-seq samples from five studies, each with at least two
799 biological replicates, including two published (24, 112), one published with the current work
800 (Quantseq data), and two currently unpublished studies (CPM values available on the
801 mushroomdb.brc.hu webpage). For each gene in each sample, we calculated the mean count
802 per million (CPM). Next, we focused on the highest possible mean CPM of the gene reached
803 per study. We marked genes whose maximum expression fell in the lowest 10% of the
804 expression maxima in all five studies as low expressed genes. Low expressed genes without
805 similarity to proteins outside of *C. cinerea* (mmseqs, evalue $\leq 1e-10$, qcov ≥ 0.5), lacking
806 Interpro annotation and long read support, were filtered out from the reference annotation. The
807 completeness of the new annotation was assessed using BUSCO v3.0.2 with
808 basidiomycota_db10 database (141).

809 **Determination of isoforms**

810 SUPPA2 (142) was used for splice isoform classification. To improve the detection of intron
811 retention events (RI), the program was executed in two rounds. Initially, the default parameters
812 were utilized, followed by a more permissive second run using the parameters -b V -t 50. The
813 RI events from the first run were supplemented by the RI events from the second run.

814 **Identification of the conserved genomic elements**

815 To identify the conserved genomic elements around transcription start site (TSS), we retrieved
816 sequences of ± 50 nt flanking the TSS position of the long-read-based gene models with 5'UTR
817 region. For the sequence context of the transcription initiation site (TIS), we retrieved sequences
818 of ± 12 nt flanking the ATG position of the long-read-based gene models with a minimum 12
819 nt long 5'UTR region. In the case of the splice site, 6 nt from the 5' end and 3 nt from the 3'
820 end of the intron sequences were retrieved and used to identify 5'ss and 3'ss. Finally, in the case
821 of the transcriptional termination site (TTS), ± 50 nt of sequence flanking the TTS were
822 recovered from long-read-based gene models with 3'UTR region. The sequences obtained were
823 analyzed using ggseqlogo (143). For the identification of the branch point (BP) the
824 branchpointer v1.14 R package was used (144).

825 **PASs, PACs identification. Relative PAC usage determination.**

826 For polyadenylation site (PAS) identification, the DPAC tool (145) was used all corresponding
827 QuantSeq reads. Briefly, the QuantSeq reads were adapter and poly(A) trimmed and the length
828 of the poly(A) tail was recorded. Reads with at least 15 A's were mapped to the reference
829 genome. The 3' end of all reads was used to identify the position of PASs in the reference
830 genome. PASs with at least 20 reads, each with a poly(A) tail of at least 15 A's, were retained.
831 PASs were further filtered for internal priming and template switching by counting the number
832 of A's in the reference genome immediately downstream of the identified PAS. If at least a 4
833 nt long poly(A) stretch was found immediately downstream of the PAS or, $\geq 70\%$ of the As
834 were in a 10 nt long downstream window, the PAS was filtered out from the further analysis.

835 The PAS were further clustered into polyadenylation site clusters (PAC) by allowing a
836 maximum intra-cluster distance of 10 nt. Within a PAC, the PAS with the highest read support
837 serves as the representative PAS of the cluster and lends its read support and genomic
838 coordinate to the PAC (Figure 3/A). This common coordinate was used to assign the PACs to
839 the different entries of the genome annotation and to identify the associated gene models by
840 assigning them to the TTS of the closest gene. To further reduce the negative effects of internal
841 priming and template switching on PAC identification, we only accepted those PACs which are
842 located in the 3'UTR of the associated gene and in the downstream intergenic space, or in the
843 genomic region of the antisense gene within 1,000 nt of the TTS of the associated gene (Figure
844 3/B). A distinction was made between PACs based on read support. The PACs of the gene with

845 the highest read support, the highest representative PAS read support, were considered the best
846 supported PAC.

847 PAC usage across biological conditions was defined by sample-wise counting of
848 mapped 3' ends of the previously trimmed QuantSeq reads on the defined PACs. PAC read
849 counts were normalized to CPM. The normalized counts were pooled by conditions for
850 increased sensitivity.

851 To determine the evenness value of APA genes with ≥ 10 CPM, the vegan R package
852 (146) was used to calculate the Shannon diversity index for the PAC sites and dividing by the
853 logarithmic value of the number of PAC sites. The line graph showing the correlation between
854 the value of the evenness of the APA gene PAC sites and the value of gene expression was
855 generated using ggplot2 (147). The lines were smoothed using a generalized additive model
856 (GAM) (148).

857 **Gene expression analysis**

858 The new *C. cinerea* Amut1Bmut1 #326 genome and gene model prediction were used as a
859 reference for gene expression analysis. The quality of the raw and trimmed QuantSeq reads was
860 assessed using the FastQC (149) and MultiQC (150) tools. The raw reads were trimmed using
861 the BBduk.sh script from BBtools 38.92 (120) and then mapped to the reference genome using
862 STAR version 2.6.1a_08-27 (151). The trimming and mapping parameters were set according
863 to the manufacturer's recommendations (<https://www.lexogen.com/quantseq-data-analysis/>).
864 The number of reads overlapping the transcript annotations was determined using the
865 featureCounts function of the Rsubread package version 2.6.4 (152). For differential gene
866 expression analysis, the edgeR version 3.34.0 (153) and limma version 3.48.3 (154) packages
867 were used. To minimize the number of misidentified differentially expressed genes (DEGs),
868 only genes whose expression reached at least 1 CPM in at least one experiment were included
869 in the analysis. Genes with a fold change $\geq |2|$ and a Benjamini-Hochberg (BH) adjusted *p* value
870 ≤ 0.05 were considered as significantly differentially expressed DEGs. To further minimize the
871 number of misidentified DEGs, we only included those DEGs in the further analysis that had
872 an average of at least 2 CPM in at least one of the conditions during comparison. The
873 ComplexHeatmap R library (155) was used to generate expression heatmaps.

874 **Functional annotation and GO enrichment analysis**

875 InterPro (IPR) and GO functional annotations were defined using InterProScan version 93
876 (156). Putative CAZymes were identified using dbCAN (157) and further categorized based on
877 their substrate specificity as described in previous publications (158). Based on the substrate
878 specificity information, the groups of plant cell wall degrading CAZymes (PCWDEs) and
879 fungal cell wall degrading CAZymes (FCWDEs) were defined (available at
880 mushroomdb.brc.hu). The gene sets for transcription factors (TFs) and transporters were
881 defined using InterPro entry information and evidence from previous publications (available at
882 mushroomdb.brc.hu). GO enrichment analysis was performed using topGO version 2.40.0
883 (159) in conjunction with GO.db version 3.17.0 (160). The significantly enriched GO terms
884 were plotted with the R package ggplot2 (147).

885 **Acknowledgements**

886 The authors appreciate valuable discussions and suggestions on Nanopore sequencing from
887 Zsolt Boldogkoi and Dora Tombacz (University of Szeged).

888 **Funding**

889 We acknowledge support by the 'Momentum' program of the Hungarian Academy of Sciences
890 (contract no. LP2019-13/2019 to LGN) the European Research Council (grant no. 758161 and

891 101086900 to LGN) as well as the Eotvos Lorand Research Network (SA-109/2021). The
892 work (proposal: 10.46936/10.25585/60001201 and 10.46936/10.25585/60001186) conducted
893 by the U.S. Department of Energy Joint Genome Institute (<https://ror.org/04xm1d337>), a DOE
894 Office of Science User Facility, is supported by the Office of Science of the U.S. Department
895 of Energy operated under Contract No. DE-AC02-05CH11231.

896 Data availability

897

898 References

- 899 1. Floudas,D., Binder,M., Riley,R., Barry,K., Blanchette,R., Henrissat,B., Martínez,A.T.,
900 Otillar,R., Spatafora,J.W., Yadav,J.S., *et al.* (2012) The Paleozoic Origin of Enzymatic
901 Lignin Decomposition Reconstructed from 31 Fungal Genomes. *Science*, **336**, 1715–
902 1719.
- 903 2. Virág, M., Merényi, Z., Csernetics, Á., Földi, C., Sahu, N., Liu, X.-B., Hibbett, D.S. and
904 Nagy, L.G. (2021) Evolutionary Morphogenesis of Sexual Fruiting Bodies in
905 Basidiomycota: Toward a New Evo-Devo Synthesis. *Microbiol. Mol. Biol. Rev.*, **86**,
906 e00019-21.
- 907 3. Grigoriev,I.V., Nikitin,R., Haridas,S., Kuo,A., Ohm,R., Otillar,R., Riley,R., Salamov,A.,
908 Zhao,X., Korzeniewski,F., *et al.* (2014) MycoCosm portal: Gearing up for 1000 fungal
909 genomes. *Nucleic Acids Res.*, **42**, 699–704.
- 910 4. Kües,U. and Navarro-González,M. (2015) How do Agaricomycetes shape their fruiting
911 bodies? 1. Morphological aspects of development. *Fungal Biol. Rev.*, **29**, 63–97.
- 912 5. Yang,C., Ma,L., Xiao,D., Liu,X., Jiang,X., Ying,Z. and Lin,Y. (2021) Chromosome-scale
913 assembly of the Sparassis latifolia genome obtained using long-read and Hi-C
914 sequencing. *G3 Genes Genomes Genet.*, **11**.
- 915 6. Yu,H., Zhang,L., Shang,X., Peng,B., Li,Y., Xiao,S., Tan,Q. and Fu,Y. (2022) Chromosomal
916 genome and population genetic analyses to reveal genetic architecture, breeding history
917 and genes related to cadmium accumulation in Lentinula edodes. *BMC Genomics*, **23**,
918 1–14.
- 919 7. Jo,I.H., Kim,J., An,H., Lee,H.Y., So,Y.S., Ryu,H., Sung,G.H., Shim,D. and Chung,J.W.
920 (2022) Pseudo-Chromosomal Genome Assembly in Combination with Comprehensive
921 Transcriptome Analysis in Agaricus bisporus Strain KMCC00540 Reveals Mechanical
922 Stimulus Responsive Genes Associated with Browning Effect. *J. Fungi*, **8**, 1–15.
- 923 8. Zhu,Y., Xu,J., Sun,C., Zhou,S., Xu,H., Nelson,D.R., Qian,J., Song,J., Luo,H., Xiang,L., *et*
924 *al.* (2015) Chromosome-level genome map provides insights into diverse defense
925 mechanisms in the medicinal fungus Ganoderma sinense. *Sci. Rep.*, **5**, 1–14.
- 926 9. Yu,H., Zhang,M., Sun,Y., Li,Q., Liu,J., Song,C., Shang,X., Tan,Q., Zhang,L. and Yu,H.
927 (2022) Whole-genome sequence of a high-temperature edible mushroom Pleurotus
928 giganteus (zhudugu). *Front. Microbiol.*, **13**, 1–11.

929 10. Sonnenberg,A.S.M., Sedaghat-Telgerd,N., Lavrijssen,B., Ohm,R.A., Hendrickx,P.M.,
930 Scholtmeijer,K., Baars,J.J.P. and van Peer,A. (2020) Telomere-to-telomere assembled
931 and centromere annotated genomes of the two main subspecies of the button mushroom
932 *Agaricus bisporus* reveal especially polymorphic chromosome ends. *Sci. Rep.*, **10**, 1–
933 15.

934 11. Lee,Y.Y., de Ulzurrun,G.V.D., Schwarz,E.M., Stajich,J.E. and Hsueh,Y.P. (2021) Genome
935 sequence of the oyster mushroom *Pleurotus ostreatus* strain PC9. *G3 Genes Genomes*
936 *Genet.*, **11**.

937 12. Galagan,J.E., Henn,M.R., Ma,L.J., Cuomo,C.A. and Birren,B. (2005) Genomics of the
938 fungal kingdom: Insights into eukaryotic biology. *Genome Res.*, **15**, 1620–1631.

939 13. Wang,L., Jiang,N., Wang,L., Fang,O., Leach,L.J., Hu,X. and Luo,Z. (2014) 3' Untranslated
940 Regions Mediate Transcriptional Interference between Convergent Genes Both Locally
941 and Ectopically in *Saccharomyces cerevisiae*. *PLoS Genet.*, **10**, 1–12.

942 14. Gilet,J., Conte,R., Torchetti,C., Benard,L. and Lafontaine,I. (2019) Additional Layer of
943 Regulation via Convergent Gene Orientation in Yeasts. *Mol. Biol. Evol.*, **37**, 365–378.

944 15. Gordon,S.P., Tseng,E., Salamov,A., Zhang,J., Meng,X., Zhao,Z., Kang,D., Underwood,J.,
945 Grigoriev,I.V., Figueroa,M., *et al.* (2015) Widespread polycistronic transcripts in fungi
946 revealed by single-molecule mRNA sequencing. *PLoS ONE*, **10**, 1–15.

947 16. Lu,P., Chen,D., Qi,Z., Wang,H., Chen,Y., Wang,Q., Jiang,C., Xu,J.R. and Liu,H. (2022)
948 Landscape and regulation of alternative splicing and alternative polyadenylation in a
949 plant pathogenic fungus. *New Phytol.*, **235**, 674–689.

950 17. Leppek,K., Das,R. and Barna,M. (2018) Functional 5' UTR mRNA structures in eukaryotic
951 translation regulation and how to find them. *Nat. Rev. Mol. Cell Biol.*, **19**, 158–174.

952 18. Araujo,P.R., Yoon,K., Ko,D., Smith,A.D., Qiao,M., Suresh,U., Burns,S.C. and
953 Penalva,L.O.F. (2012) Before it gets started: Regulating translation at the 5' UTR.
954 *Comp. Funct. Genomics*, **2012**.

955 19. Mayr,C. (2017) Regulation by 3'-Untranslated Regions. <https://doi.org/10.1146/annurev-genet-120116-024704>.

956 20. Ransom,B., Goldman,S.A., Meldolesi,J., Zhou,L., Murai,K.K., Harris,K.M.,
957 McCarthy,K.D., Li,N., Doyle,R.T., Haydon,P.G., *et al.* (2008) Proliferating Cells
958 Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target
959 Sites. *Science*, **320**, 1643–1647.

960 21. Mayr,C. and Bartel,D.P. (2009) Widespread Shortening of 3'UTRs by Alternative Cleavage
961 and Polyadenylation Activates Oncogenes in Cancer Cells. *Cell*, **138**, 673–684.

962 22. Tushev,G., Glock,C., Heumüller,M., Biever,A., Jovanovic,M. and Schuman,E.M. (2018)
963 Alternative 3' UTRs Modify the Localization, Regulatory Potential, Stability, and
964 Plasticity of mRNAs in Neuronal Compartments. *Neuron*, **98**, 495–511.e6.

965 23. Kües,U. (2000) Life History and Developmental Processes in the Basidiomycete *Coprinus*
966 *cinereus*. *Microbiol. Mol. Biol. Rev.*, **64**, 316–353.

968 24. Krizsan,K., Almasi,E., Merenyi,Z., Sahu,N., Viragh,M., Koszo,T., Mondo,S., Kiss,B.,
969 Balint,B., Kues,U., *et al.* (2019) Transcriptomic atlas of mushroom development
970 highlights an independent origin of complex multicellularity in fungi. *Proc. Natl. Acad.*
971 *Sci. U. S. A.*, 10.1073/pnas.1817822116.

972 25. Virágh,M., Merényi,Z., Csernetics,Á., Földi,C., Sahu,N., Liu,X. and Hibbett,D.S.
973 Evolutionary morphogenesis of sexual fruiting bodies in Basidiomycota: toward a new
974 evo- devo synthesis Máté Virágh. **26**.

975 26. Stajich,J.E., Wilke,S.K., Ahrén,D., Au,C.H., Birren,B.W., Borodovsky,M., Burns,C.,
976 Canbäck,B., Casselton,L.A., Cheng,C.K., *et al.* (2010) Insights into evolution of
977 multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis
978 cinerea (Coprinus cinereus). *Proc. Natl. Acad. Sci. U. S. A.*, **107**, 11889–11894.

979 27. Ruiz-Dueñas,F.J., Barrasa,J.M., Sánchez-García,M., Camarero,S., Miyauchi,S.,
980 Serrano,A., Linde,D., Babiker,R., Drula,E., Ayuso-Fernández,I., *et al.* (2021) Genomic
981 Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase
982 Diversity. *Mol. Biol. Evol.*, **38**, 1428–1446.

983 28. Muraguchi,H., Umezawa,K., Niikura,M., Yoshida,M., Kozaki,T., Ishii,K., Sakai,K.,
984 Shimizu,M., Nakahori,K., Sakamoto,Y., *et al.* (2015) Strand-specific RNA-seq analyses
985 of fruiting body development in Coprinopsis cinerea. *PLoS ONE*, **10**, 1–23.

986 29. Xie,Y., Zhong,Y., Chang,J. and Kwan,H.S. (2021) Chromosome-level de novo assembly
987 of Coprinopsis cinerea A43mut B43mut pab1-1 #326 and genetic variant identification
988 of mutants using Nanopore MinION sequencing. *Fungal Genet. Biol.*, **146**, 103485.

989 30. Pukkila,P.J. (2011) Coprinopsis cinerea. *Curr. Biol.*, **21**, R616–R617.

990 31. Sakamoto,Y. (2018) Influences of environmental factors on fruiting body induction,
991 development and maturation in mushroom-forming fungi. *Fungal Biol. Rev.*, **32**, 236–
992 248.

993 32. Ustianenko,D., Weyn-Vanhentenryck,S.M. and Zhang,C. (2017) Microexons: discovery,
994 regulation, and function. *Wiley Interdiscip. Rev. RNA*, **8**.

995 33. Li,Y.I., Sanchez-Pulido,L., Haerty,W. and Ponting,C.P. (2015) RBFOX and PTBP1
996 proteins regulate the alternative splicing of micro-exons in human brain transcripts.
997 *Genome Res.*, **25**, 1–13.

998 34. Irimia,M., Weatheritt,R.J., Ellis,J.D., Parikshak,N.N., Gonatopoulos-Pournatzis,T.,
999 Babor,M., Quesnel-Vallières,M., Tapial,J., Raj,B., O'Hanlon,D., *et al.* (2014) A highly
1000 conserved program of neuronal microexons is misregulated in autistic brains. *Cell*, **159**,
1001 1511–1523.

1002 35. Cooper,T.A. and Ordahl,C.P. (1985) A single cardiac troponin T gene generates embryonic
1003 and adult isoforms via developmentally regulated alternate splicing. *J. Biol. Chem.*, **260**,
1004 11140–11148.

1005 36. Parada,G.E., Munita,R., Georgakopoulos-Soares,I., Fernandes,H.J.R., Kedlian,V.R.,
1006 Metzakopian,E., Andres,M.E., Miska,E.A. and Hemberg,M. (2021) MicroExonator

1007 enables systematic discovery and quantification of microexons across mouse embryonic
1008 development. *Genome Biol.*, **22**, 43.

1009 37. McAllister,L., Rehm,E.J., Goodman,C.S. and Zinn,K. (1992) Alternative splicing of micro-
1010 exons creates multiple forms of the insect cell adhesion molecule fasciclin I. *J. J.
1011 Neurosci.*, **12**, 895–905.

1012 38. Chang,L.W., Tseng,I.C., Wang,L.H. and Sun,Y.H. (2020) Isoform-specific functions of an
1013 evolutionarily conserved 3 bp micro-exon alternatively spliced from another exon in
1014 Drosophila homothorax gene. *Sci. Rep.*, **10**, 1–13.

1015 39. Guo,L. and Liu,C.M. (2015) A single-nucleotide exon found in Arabidopsis. *Sci. Rep.*, **5**,
1016 1–5.

1017 40. Song,Q., Lv,F., Qamar,M.T.U., Xing,F., Zhou,R., Li,H. and Chen,L.L. (2019) Identification
1018 and analysis of micro-exon genes in the rice genome. *Int. J. Mol. Sci.*, **20**, 1–14.

1019 41. Wang,K., Wang,D., Zheng,X., Qin,A., Zhou,J., Guo,B., Chen,Y., Wen,X., Ye,W., Zhou,Y.,
1020 et al. (2019) Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional
1021 landscape in cotton. *Nat. Commun.*, **10**.

1022 42. Schotanus,K., Soyer,J.L., Connolly,L.R., Grandaubert,J., Happel,P., Smith,K.M.,
1023 Freitag,M. and Stukenbrock,E.H. (2015) Histone modifications rather than the novel
1024 regional centromeres of *Zymoseptoria tritici* distinguish core and accessory
1025 chromosomes. *Epigenetics Chromatin*, **8**, 41.

1026 43. Sepsiova,R., Necasova,I., Willcox,S., Prochazkova,K., Gorilak,P., Nosek,J., Hofr,C.,
1027 Griffith,J.D. and Tomaska,L. (2016) Evolution of Telomeres in *Schizosaccharomyces*
1028 pombe and Its Possible Relationship to the Diversification of Telomere Binding
1029 Proteins. *PLoS ONE*, **11**, e0154225.

1030 44. Wellinger,R.J. and Zakian,V.A. (2012) Everything You Ever Wanted to Know About
1031 Saccharomyces cerevisiae Telomeres: Beginning to End. *Genetics*, **191**, 1073–1105.

1032 45. de Lange,T. (2004) T-loops and the origin of telomeres. *Nat. Rev. Mol. Cell Biol.*, **5**, 323–
1033 329.

1034 46. Swapna,G., Yu,E.Y. and Lue,N.F. (2018) Single telomere length analysis in *Ustilago*
1035 maydis, a high-resolution tool for examining fungal telomere length distribution and C-
1036 strand 5'-end processing. *Microb. Cell*, **5**, 393–403.

1037 47. Heinzelmann,R., Rigling,D., Sipos,G., Münsterkötter,M. and Croll,D. (2020) Chromosomal
1038 assembly and analyses of genome-wide recombination rates in the forest pathogenic
1039 fungus *Armillaria ostoyae*. *Heredity*, **124**, 699–713.

1040 48. Pérez,G., Pangilinan,J., Pisabarro,A.G. and Ramírez,L. (2009) Telomere organization in the
1041 ligninolytic basidiomycete *pleurotus ostreatus*. *Appl. Environ. Microbiol.*, **75**, 1427–
1042 1436.

1043 49. Saud,Z., Kortsoglou,A.M., Kouvelis,V.N. and Butt,T.M. (2021) Telomere length de novo
1044 assembly of all 7 chromosomes and mitogenome sequencing of the model

1045 entomopathogenic fungus, *Metarhizium brunneum*, by means of a novel assembly
1046 pipeline. *BMC Genomics*, **22**, 1–15.

1047 50. Ke,H.-M., Lee,H.-H., Lin,C.-Y.I., Liu,Y.-C., Lu,M.R., Hsieh,J.-W.A., Chang,C.-C., Wu,P.-
1048 H., Lu,M.J., Li,J.-Y., *et al.* (2020) Mycena genomes resolve the evolution of fungal
1049 bioluminescence. *Proc. Natl. Acad. Sci.*, **117**, 31267–31277.

1050 51. Jenjaroenpun,P., Wongsurawat,T., Pereira,R., Patumcharoenpol,P., Ussery,D.W.,
1051 Nielsen,J. and Nookaew,I. (2018) Complete genomic and transcriptional landscape
1052 analysis using third-generation sequencing: a case study of *Saccharomyces cerevisiae*
1053 CEN.PK113-7D. *Nucleic Acids Res.*, 10.1093/nar/gky014.

1054 52. Weirather,J.L., de Cesare,M., Wang,Y., Piazza,P., Sebastian,V., Wang,X.-J., Buck,D. and
1055 Au,K.F. (2017) Comprehensive comparison of Pacific Biosciences and Oxford
1056 Nanopore Technologies and their applications to transcriptome analysis.
1057 *F1000Research*, **6**, 100.

1058 53. Sessegolo,C., Cruaud,C., Da Silva,C., Cologne,A., Dubarry,M., Derrien,T., Lacroix,V. and
1059 Aury,J.M. (2019) Transcriptome profiling of mouse samples using nanopore
1060 sequencing of cDNA and RNA molecules. *Sci. Rep.*, **9**, 1–12.

1061 54. Balázs,Z., Tombácz,D., Csabai,Z., Moldován,N., Snyder,M. and Boldogkoi,Z. (2019)
1062 Template-switching artifacts resemble alternative polyadenylation. *BMC Genomics*, **20**,
1063 1–10.

1064 55. Doddapaneni,H., Chakraborty,R. and Yadav,J.S. (2005) Genome-wide structural and
1065 evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot
1066 fungus *Phanerochaete chrysosporium* : Evidence for gene duplications and extensive
1067 gene clustering. *BMC Genomics*, **6**, 92.

1068 56. Wallace,E.W.J., Maufrais,C., Sales-Lee,J., Tuck,L.R., de Oliveira,L., Feuerbach,F.,
1069 Moyrand,F., Natarajan,P., Madhani,H.D. and Janbon,G. (2020) Quantitative global
1070 studies reveal differential translational control by start codon context across the fungal
1071 kingdom. *Nucleic Acids Res.*, **48**, 2312–2331.

1072 57. Zhang,Z. and Dietrich,F.S. (2005) Mapping of transcription start sites in *Saccharomyces*
1073 *cerevisiae* using 5' SAGE. *Nucleic Acids Res.*, **33**, 2838–2851.

1074 58. Hashimoto,S.I., Suzuki,Y., Kasai,Y., Morohoshi,K., Yamada,T., Sese,J., Morishita,S.,
1075 Sugano,S. and Matsushima,K. (2004) 5'-end SAGE for the analysis of transcriptional
1076 start sites. *Nat. Biotechnol.*, **22**, 1146–1149.

1077 59. Sibthorp,C., Wu,H., Cowley,G., Wong,P.W.H., Palaima,P., Morozov,I.Y., Weedall,G.D.
1078 and Caddick,M.X. (2013) Transcriptome analysis of the filamentous fungus *Aspergillus*
1079 *nidulans* directed to the global identification of promoters. *BMC Genomics*, **14**.

1080 60. Li,H., Hou,J., Bai,L., Hu,C., Tong,P., Kang,Y., Zhao,X. and Shao,Z. (2015) Genome-wide
1081 analysis of core promoter structures in *Schizosaccharomyces pombe* with DeepCAGE.
1082 *RNA Biol.*, **12**, 525–537.

1083 61. Kupfer,D.M., Drabenstot,S.D., Buchanan,K.L., Lai,H., Zhu,H., Dyer,D.W., Roe,B.A. and
1084 Murphy,J.W. (2004) Introns and splicing elements of five diverse fungi. *Eukaryot. Cell*,
1085 **3**, 1088–1100.

1086 62. Mata,J. (2013) Genome-wide mapping of polyadenylation sites in fission yeast reveals
1087 widespread alternative polyadenylation. *RNA Biol.*, **10**, 1407–1414.

1088 63. Liu,X., Hoque,M., Larochelle,M., Lemay,J.F., Yurko,N., Manley,J.L., Bachand,F. and
1089 Tian,B. (2017) Comparative analysis of alternative polyadenylation in *S. Cerevisiae* and
1090 *S. Pombe*. *Genome Res.*, **27**, 1685–1695.

1091 64. Rodríguez-Romero,J., Marconi,M., Ortega-Campayo,V., Demuez,M., Wilkinson,M.D. and
1092 Sesma,A. (2019) Virulence- and signaling-associated genes display a preference for
1093 long 3'UTRs during rice infection and metabolic stress in the rice blast fungus. *New
1094 Phytol.*, **221**, 399–414.

1095 65. Zhao,J., Hyman,L. and Moore,C. (1999) Formation of mRNA 3' Ends in Eukaryotes:
1096 Mechanism, Regulation, and Interrelationships with Other Steps in mRNA Synthesis.
1097 *Microbiol. Mol. Biol. Rev.*, **63**, 405–445.

1098 66. Neafsey,D.E. and Galagan,J.E. (2007) Dual modes of natural selection on upstream open
1099 reading frames. *Mol. Biol. Evol.*, **24**, 1744–1751.

1100 67. Galagan,J.E., Calvo,S.E., Cuomo,C., Ma,L.-J., Wortman,J.R., Batzoglou,S., Lee,S.-I.,
1101 Baştürkmen,M., Spevak,C.C., Clutterbuck,J., *et al.* (2005) Sequencing of *Aspergillus
1102 nidulans* and comparative analysis with *A. fumigatus* and *A. oryzae*. *Nature*, **438**, 1105–
1103 1115.

1104 68. Dever,T.E., Ivanov,I.P. and Sachs,M.S. (2020) Conserved Upstream Open Reading Frame
1105 Nascent Peptides That Control Translation. *Annu. Rev. Genet.*, **54**, 237–264.

1106 69. Spevak,C.C., Ivanov,I.P. and Sachs,M.S. (2010) Sequence requirements for ribosome
1107 stalling by the arginine attenuator peptide. *J. Biol. Chem.*, **285**, 40933–40942.

1108 70. Sinturel,F., Navickas,A., Wery,M., Desrimes,M., Morillon,A., Torchet,C. and Benard,L.
1109 (2015) Cytoplasmic Control of Sense-Antisense mRNA Pairs. *Cell Rep.*, **12**, 1853–
1110 1864.

1111 71. Prescott,E.M. and Proudfoot,N.J. (2002) Transcriptional collision between convergent
1112 genes in budding yeast. *Proc. Natl. Acad. Sci. U. S. A.*, **99**, 8796–8801.

1113 72. Fox-Walsh,K.L. and Hertel,K.J. (2009) Splice-site pairing is an intrinsically high fidelity
1114 process. *Proc. Natl. Acad. Sci.*, **106**, 1766–1771.

1115 73. Grützmann,K., Szafranski,K., Pohl,M., Voigt,K., Petzold,A. and Schuster,S. (2014) Fungal
1116 alternative splicing is associated with multicellular complexity and virulence: A
1117 genome-wide multi-species study. *DNA Res.*, **21**, 27–39.

1118 74. Xie,Y., Chan,P.-L., Kwan,H.-S. and Chang,J. (2023) The Genome-Wide Characterization
1119 of Alternative Splicing and RNA Editing in the Development of *Coprinopsis cinerea*. *J.
1120 Fungi*, **9**, 915.

1121 75. Fang,S., Hou,X., Qiu,K., He,R., Feng,X. and Liang,X. (2020) The occurrence and function
1122 of alternative splicing in fungi. *Fungal Biol. Rev.*, **34**, 178–188.

1123 76. Corley,S.M., Troy,N.M., Bosco,A. and Wilkins,M.R. (2019) QuantSeq. 3' Sequencing
1124 combined with Salmon provides a fast, reliable approach for high throughput RNA
1125 expression analysis. *Sci. Rep.*, **9**, 18895.

1126 77. Xu,C. and Zhang,J. (2018) Alternative Polyadenylation of Mammalian Transcripts Is
1127 Generally Deleterious, Not Adaptive. *Cell Syst.*, **6**, 734-742.e4.

1128 78. Nagy,L.G., Vonk,P.J., Künzler,M., Földi,C., Virágħ,M., Ohm,R.A., Hennicke,F., Bálint,B.,
1129 Csemethics,Á., Hegedüs,B., *et al.* (2023) Lessons on fruiting body morphogenesis from
1130 genomes and transcriptomes of Agaricomycetes. *Stud. Mycol.*, **104**, 1–85.

1131 79. Pareek,M., Hegedüs,B., Hou,Z., Csernetics,Á., Wu,H., Virágħ,M., Sahu,N., Liu,X.-B. and
1132 Nagy,L. (2022) Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion
1133 Identifies the Carbon Catabolite Repressor and Its Target Genes in *Coprinopsis cinerea*.
1134 *Appl. Environ. Microbiol.*, 10.1128/aem.00940-22.

1135 80. Marian,I.M., Vonk,P.J., Valdes,I.D., Barry,K., Bostock,B., Carver,A., Daum,C., Lerner,H.,
1136 Lipzen,A., Park,H., *et al.* (2022) The Transcription Factor Roc1 Is a Key Regulator of
1137 Cellulose Degradation in the Wood-Decaying Mushroom *Schizophyllum commune*.
1138 *mBio*, **13**, e00628-22.

1139 81. Cai,P., Wang,B., Ji,J., Jiang,Y., Wan,L., Tian,C. and Ma,Y. (2015) The Putative
1140 Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in
1141 *Neurospora crassa**. *J. Biol. Chem.*, **290**, 788–796.

1142 82. Znameroski,E.A., Li,X., Tsai,J.C., Galazka,J.M., Glass,N.L. and Cate,J.H.D. (2014)
1143 Evidence for Transceptor Function of Cellodextrin Transporters in *Neurospora crassa**.
1144 *J. Biol. Chem.*, **289**, 2610–2619.

1145 83. Kuratani,M., Tanaka,K., Terashima,K., Muraguchi,H., Nakazawa,T., Nakahori,K. and
1146 Kamada,T. (2010) The dst2 gene essential for photomorphogenesis of *Coprinopsis*
1147 *cinerea* encodes a protein with a putative FAD-binding-4 domain. *Fungal Genet. Biol.*,
1148 **47**, 152–158.

1149 84. Boulianane,R.P., Liu,Y., Aebi,M., Lu,B.C. and Kues,U. (2000) Fruiting body development
1150 in *Coprinus cinereus*: Regulated expression of two galectins secreted by a non-classical
1151 pathway. *Microbiology*, **146**, 1841–1853.

1152 85. Sakamoto,Y., Sato,S., Ito,M., Ando,Y., Nakahori,K. and Muraguchi,H. (2018) Blue light
1153 exposure and nutrient conditions influence the expression of genes involved in
1154 simultaneous hyphal knot formation in *Coprinopsis cinerea*. *Microbiol. Res.*, **217**, 81–
1155 90.

1156 86. van Munster,J.M., Daly,P., Delmas,S., Pullan,S.T., Blythe,M.J., Malla,S., Kokolski,M.,
1157 Noltorp,E.C.M., Wennberg,K., Fetherston,R., *et al.* (2014) The role of carbon starvation
1158 in the induction of enzymes that degrade plant-derived carbohydrates in *Aspergillus*
1159 *niger*. *Fungal Genet. Biol.*, **72**, 34–47.

1160 87. Ellström,M., Shah,F., Johansson,T., Ahrén,D., Persson,P. and Tunlid,A. (2015) The carbon
1161 starvation response of the ectomycorrhizal fungus *Paxillus involutus*. *FEMS Microbiol.*
1162 *Ecol.*, **91**, fiv027.

1163 88. Nitsche,B.M., Jørgensen,T.R., Akeroyd,M., Meyer,V. and Ram,A.F.J. (2012) The carbon
1164 starvation response of *Aspergillus niger* during submerged cultivation: Insights from
1165 the transcriptome and secretome. *BMC Genomics*, **13**.

1166 89. Glass,N.L., Schmoll,M., Cate,J.H.D. and Coradetti,S. (2013) Plant Cell Wall
1167 Deconstruction by Ascomycete Fungi. *Annu. Rev. Microbiol.*, **67**, 477–498.

1168 90. Benz,J.P., Chau,B.H., Zheng,D., Bauer,S., Glass,N.L. and Somerville,C.R. (2014) A
1169 comparative systems analysis of polysaccharide-elicited responses in *Neurospora crassa*
1170 reveals carbon source-specific cellular adaptations. *Mol. Microbiol.*, **91**, 275–299.

1171 91. Coradetti,S.T., Craig,J.P., Xiong,Y., Shock,T., Tian,C. and Glass,N.L. (2012) Conserved
1172 and essential transcription factors for cellulase gene expression in ascomycete fungi.
1173 *Proc. Natl. Acad. Sci.*, **109**, 7397–7402.

1174 92. Delmas,S., Pullan,S.T., Gaddipati,S., Kokolski,M., Malla,S., Blythe,M.J., Ibbett,R.,
1175 Campbell,M., Liddell,S., Aboobaker,A., *et al.* (2012) Uncovering the Genome-Wide
1176 Transcriptional Responses of the Filamentous Fungus *Aspergillus niger* to
1177 Lignocellulose Using RNA Sequencing. *PLOS Genet.*, **8**, e1002875.

1178 93. Ando,Y., Nakazawa,T., Oka,K., Nakahori,K. and Kamada,T. (2013) Cc.snf5, a gene
1179 encoding a putative component of the SWI/SNF chromatin remodeling complex, is
1180 essential for sexual development in the agaricomycete *Coprinopsis cinerea*. *Fungal*
1181 *Genet. Biol.*, **50**, 82–89.

1182 94. Liu,C., Kang,L., Lin,M., Bi,J., Liu,Z. and Yuan,S. (2022) Molecular Mechanism by Which
1183 the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of
1184 *Coprinopsis cinerea* under Dark or Light Conditions. *mBio*, **13**.

1185 95. Nakazawa,T., Ando,Y., Kitaaki,K., Nakahori,K. and Kamada,T. (2011) Efficient gene
1186 targeting in Δ Cc.ku70 or Δ Cc.lig4 mutants of the agaricomycete *Coprinopsis cinerea*.
1187 *Fungal Genet. Biol.*, **48**, 939–946.

1188 96. Brych,A., Mascarenhas,J., Jaeger,E., Charkiewicz,E., Pokorny,R., Böller,M.,
1189 Doeblemann,G. and Batschauer,A. (2016) White collar 1-induced photolyase
1190 expression contributes to UV-tolerance of *Ustilago maydis*. *MicrobiologyOpen*, **5**, 224–
1191 243.

1192 97. Ohm,R.A., Aerts,D., Wösten,H.A.B. and Lugones,L.G. (2013) The blue light receptor
1193 complex WC-1/2 of *Schizophyllum commune* is involved in mushroom formation and
1194 protection against phototoxicity. *Environ. Microbiol.*, **15**, 943–955.

1195 98. Froehlich,A.C., Chen,C.H., Belden,W.J., Madeti,C., Roenneberg,T., Merrow,M., Loros,J.J.
1196 and Dunlap,J.C. (2010) Genetic and molecular characterization of a cryptochrome from
1197 the filamentous fungus *Neurospora crassa*. *Eukaryot. Cell*, **9**, 738–750.

1198 99. Chen,C., Ringelberg,C.S., Gross,R.H., Dunlap,J.C. and Loros,J.J. (2009) Genome-wide
1199 analysis of light-inducible responses reveals hierarchical light signalling in *Neurospora*.
1200 *EMBO J.*, **28**, 1029–1042.

1201 100. Wu,C., Yang,F., Smith,K.M., Peterson,M., Dekhang,R., Zhang,Y., Zucker,J.,
1202 Bredeweg,E.L., Mallappa,C., Zhou,X., *et al.* (2014) Genome-Wide Characterization of
1203 Light-Regulated Genes in *Neurospora crassa*. *G3 GenesGenomesGenetics*, **4**, 1731–
1204 1745.

1205 101. Smith,K.M., Sancar,G., Dekhang,R., Sullivan,C.M., Li,S., Tag,A.G., Sancar,C.,
1206 Bredeweg,E.L., Priest,H.D., McCormick,R.F., *et al.* (2010) Transcription factors in
1207 light and circadian clock signaling networks revealed by genomewide mapping of direct
1208 targets for *neurospora* white collar complex. *Eukaryot. Cell*, **9**, 1549–1556.

1209 102. Sano,H., Kaneko,S., Sakamoto,Y., Sato,T. and Shishido,K. (2009) The basidiomycetous
1210 mushroom *Lentinula edodes* white collar-2 homolog PHRB, a partner of putative blue-
1211 light photoreceptor PHRA, binds to a specific site in the promoter region of the *L.*
1212 *edodes* tyrosinase gene. *Fungal Genet. Biol.*, **46**, 333–341.

1213 103. Pelkmans,J.F., Lugones,L.G. and Wösten,H.A.B. (2016) 15 Fruiting Body Formation in
1214 Basidiomycetes. In Wendland,J. (ed), *Growth, Differentiation and Sexuality*, The
1215 Mycota. Springer International Publishing, Cham, pp. 387–405.

1216 104. Wösten,H.A.B., Wetter,M.-A. van, Lugones,L.G., Mei,H.C. van der, Busscher,H.J. and
1217 Wessels,J.G.H. (1999) How a fungus escapes the water to grow into the air. *Curr. Biol.*,
1218 **9**, 85–88.

1219 105. Erdmann,S., Freihorst,D., Raudaskoski,M., Schmidt-Heck,W., Jung,E.-M., Senftleben,D.
1220 and Kothe,E. (2012) Transcriptome and Functional Analysis of Mating in the
1221 Basidiomycete *Schizophyllum commune*. *Eukaryot. Cell*, **11**, 571–589.

1222 106. Sammer,D., Krause,K., Gube,M., Wagner,K. and Kothe,E. (2016) Hydrophobins in the
1223 Life Cycle of the Ectomycorrhizal Basidiomycete *Tricholoma vaccinum*. *PLOS ONE*,
1224 **11**, e0167773.

1225 107. Bayry,J., Aimanianda,V., Guijarro,J.I., Sunde,M. and Latgé,J.-P. (2012) Hydrophobins—
1226 Unique Fungal Proteins. *PLoS Pathog.*, **8**, e1002700.

1227 108. Ohm,R.A., de Jong,J.F., de Bekker,C., Wösten,H.A.B. and Lugones,L.G. (2011)
1228 Transcription factor genes of *Schizophyllum commune* involved in regulation of
1229 mushroom formation. *Mol. Microbiol.*, **81**, 1433–1445.

1230 109. Pelkmans,J.F., Patil,M.B., Gehrmann,T., Reinders,M.J.T., Wösten,H.A.B. and
1231 Lugones,L.G. (2017) Transcription factors of *schizophyllum commune* involved in
1232 mushroom formation and modulation of vegetative growth. *Sci. Rep.*, **7**, 1–11.

1233 110. Plaza,D.F., Lin,C.W., van der Velden,N.S.J., Aebi,M. and Künzler,M. (2014)
1234 Comparative transcriptomics of the model mushroom *Coprinopsis cinerea* reveals
1235 tissue-specific armories and a conserved circuitry for sexual development. *BMC*
1236 *Genomics*, **15**, 1–17.

1237 111. Kombrink,A., Tayyrov,A., Essig,A., Stöckli,M., Micheller,S., Hintze,J., van Heuvel,Y.,
1238 Dürig,N., Lin,C. wei, Kallio,P.T., *et al.* (2019) Induction of antibacterial proteins and
1239 peptides in the coprophilous mushroom *Coprinopsis cinerea* in response to bacteria.
1240 *ISME J.*, **13**, 588–602.

1241 112. Xie,Y., Chang,J. and Kwan,H.S. (2020) Carbon metabolism and transcriptome in
1242 developmental paths differentiation of a homokaryotic *Coprinopsis cinerea* strain.
1243 *Fungal Genet. Biol.*, **143**, 103432.

1244 113. Salzberg,S.L. (2019) Next-generation genome annotation: we still struggle to get it right.
1245 *Genome Biol.*, **20**, 92.

1246 114. Chen,C.-H. and Loros,J.J. (2009) Neurospora sees the light: Light signaling components
1247 in a model system. *Commun. Integr. Biol.*, **2**, 448–451.

1248 115. Kodzius,R., Kojima,M., Nishiyori,H., Nakamura,M., Fukuda,S., Tagami,M., Sasaki,D.,
1249 Imamura,K., Kai,C., Harbers,M., *et al.* (2006) CAGE: cap analysis of gene expression.
1250 *Nat. Methods*, **3**, 211–222.

1251 116. Földi,C., Merényi,Z., Balázs,B., Csernetics,Á., Miklovics,N., Wu,H., Hegedüs,B.,
1252 Virág,M., Hou,Z., Liu,X.-B., *et al.* (2023) Snowball: a novel gene family required for
1253 developmental patterning in fruiting bodies of mushroom-forming fungi
1254 (Agaricomycetes). 10.1101/2023.11.13.566867.

1255 117. Swamy,S., Uno,I. and Ishikawa,T. (1984) Morphogenetic Effects of Mutations at the A
1256 and B Incompatibility Factors in *Coprinus cinereus*. *Microbiology*, **130**, 3219–3224.

1257 118. Vaser,R., Sović,I., Nagarajan,N. and Šikić,M. (2017) Fast and accurate de novo genome
1258 assembly from long uncorrected reads. *Genome Res.*, **27**, 737–746.

1259 119. Kolmogorov,M., Yuan,J., Lin,Y. and Pevzner,P.A. (2019) Assembly of long, error-prone
1260 reads using repeat graphs. *Nat. Biotechnol.*, **37**, 540–546.

1261 120. Bushnell,B., Rood,J. and Singer,E. (2017) BBMerge – Accurate paired shotgun read
1262 merging via overlap. *PLOS ONE*, **12**, e0185056.

1263 121. Bengtsson-Palme,J., Ryberg,M., Hartmann,M., Branco,S., Wang,Z., Godhe,A., De Wit,P.,
1264 Sánchez-García,M., Ebersberger,I., de Sousa,F., *et al.* (2013) Improved software
1265 detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and
1266 other eukaryotes for analysis of environmental sequencing data. *Methods Ecol. Evol.*,
1267 **4**, 914–919.

1268 122. epi2me-labs/pychopper (2024).

1269 123. Salmela,L. and Rivals,E. (2014) LoRDEC: Accurate and efficient long read error
1270 correction. *Bioinformatics*, **30**, 3506–3514.

1271 124. Durai,D.A. and Schulz,M.H. (2019) Improving in-silico normalization using read weights.
1272 *Sci. Rep.*, **9**, 1–10.

1273 125. nanoporetech/pomoxis (2024).

1274 126. Marçais,G., Delcher,A.L., Phillippy,A.M., Coston,R., Salzberg,S.L. and Zimin,A. (2018)
1275 MUMmer4: A fast and versatile genome alignment system. *PLoS Comput. Biol.*, **14**, 1–
1276 14.

1277 127. Goel,M., Sun,H., Jiao,W.B. and Schneeberger,K. (2019) SyRI: finding genomic
1278 rearrangements and local sequence differences from whole-genome assemblies.
1279 *Genome Biol.*, **20**, 1–13.

1280 128. Goel,M. and Schneeberger,K. (2022) Plotsr: Visualizing Structural Similarities and
1281 Rearrangements Between Multiple Genomes. *Bioinformatics*, **38**, 2922–2926.

1282 129. Chen,S., Zhou,Y., Chen,Y. and Gu,J. (2018) fastp: an ultra-fast all-in-one FASTQ
1283 preprocessor. *Bioinformatics*, **34**, i884–i890.

1284 130. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-Wheeler
1285 transform. *Bioinforma. Oxf. Engl.*, **25**, 1754–1760.

1286 131. Danecek,P., Bonfield,J.K., Liddle,J., Marshall,J., Ohan,V., Pollard,M.O., Whitwham,A.,
1287 Keane,T., McCarthy,S.A., Davies,R.M., *et al.* (2021) Twelve years of SAMtools and
1288 BCFtools. *GigaScience*, **10**, giab008.

1289 132. broadinstitute/picard (2024).

1290 133. McKenna,A., Hanna,M., Banks,E., Sivachenko,A., Cibulskis,K., Kernytsky,A.,
1291 Garimella,K., Altshuler,D., Gabriel,S., Daly,M., *et al.* (2010) The Genome Analysis
1292 Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
1293 *Genome Res.*, **20**, 1297–1303.

1294 134. Liu,B., Liu,Y., Li,J., Guo,H., Zang,T. and Wang,Y. (2019) DeSALT: Fast and accurate
1295 long transcriptomic read alignment with De Bruijn graph-based index. *Genome Biol.*,
1296 **20**, 1–14.

1297 135. Li,H. Minimap2: pairwise alignment for nucleotide sequences.
1298 10.1109/bioinformatics/bty191.

1299 136. Boratyn,G.M., Thierry-Mieg,J., Thierry-Mieg,D., Busby,B. and Madden,T.L. (2019)
1300 Magic-BLAST, an accurate RNA-seq aligner for long and short reads. *BMC
1301 Bioinformatics*, **20**, 1–19.

1302 137. Marić,J., Sović,I., Križanović,K., Nagarajan,N. and Šikić,M. (2019) Graphmap2 - splice-
1303 aware RNA-seq mapper for long reads. *bioRxiv*, 10.1101/720458.

1304 138. Kuo,R.I., Cheng,Y., Zhang,R., Brown,J.W.S., Smith,J., Archibald,A.L. and Burt,D.W.
1305 (2020) Illuminating the dark side of the human transcriptome with long read transcript
1306 sequencing. *BMC Genomics*, **21**, 1–22.

1307 139. Tjeldnes,H., Labun,K., Torres Cleuren,Y., Chyżyska,K., Świrski,M. and Valen,E. (2021)
1308 ORFik: a comprehensive R toolkit for the analysis of translation. *BMC Bioinformatics*,
1309 **22**, 336.

1310 140. Tardaguila,M., Fuente,L. de la, Martí,C., Pereira,C., Pardo-Palacios,F.J., Risco,H. del,
1311 Ferrell,M., Mellado,M., Macchietto,M., Verheggen,K., *et al.* (2018) SQANTI:

extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. *Genome Res.*, **28**, 396–411.

141. Waterhouse,R.M., Seppey,M., Simão,F.A., Manni,M., Ioannidis,P., Klioutchnikov,G., Kriventseva,E.V. and Zdobnov,E.M. (2018) BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. *Mol. Biol. Evol.*, **35**, 543–548.

142. Trincado,J.L., Entizne,J.C., Hysenaj,G., Singh,B., Skalic,M., Elliott,D.J. and Eyras,E. (2018) SUPPA2: Fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. *Genome Biol.*, **19**, 1–11.

143. Wagih,O. (2017) ggseqlogo: a versatile R package for drawing sequence logos. *Bioinformatics*, **33**, 3645–3647.

144. Signal,B., Gloss,B.S., Dinger,M.E. and Mercer,T.R. (2018) Machine learning annotation of human branchpoints. *Bioinformatics*, **34**, 920–927.

145. Routh,A. (2019) DPAC: A tool for differential poly(A)-cluster usage from poly(A)-targeted RNAseq data. *G3 Genes Genomes Genet.*, **9**, 1825–1830.

146. Oksanen,J., Simpson,G.L., Blanchet,F.G., Kindt,R., Legendre,P., Minchin,P.R., O’Hara,R.B., Solymos,P., Stevens,M.H.H., Szoecs,E., *et al.* (2022) vegan: Community Ecology Package.

147. Wickham,H., Chang,W., Henry,L., Pedersen,T.L., Takahashi,K., Wilke,C., Woo,K., Yutani,H., Dunnington,D., Posit, *et al.* (2023) ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.

148. Wood,S.N. (2017) Generalized Additive Models: An Introduction with R, Second Edition 2nd ed. Chapman and Hall/CRC, Boca Raton.

149. Andrews,S. (2010) FastQC A Quality Control tool for High Throughput Sequence Data.

150. Ewels,P., Magnusson,M., Lundin,S. and Käller,M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*, **32**, 3047–3048.

151. Dobin,A., Davis,C.A., Schlesinger,F., Drenkow,J., Zaleski,C., Jha,S., Batut,P., Chaisson,M. and Gingeras,T.R. (2013) STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics*, **29**, 15–21.

152. Liao,Y., Smyth,G.K. and Shi,W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*, **30**, 923–930.

153. Robinson,M.D., McCarthy,D.J. and Smyth,G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, **26**, 139–140.

154. Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and Smyth,G.K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.*, **43**, e47.

1349 155. Gu,Z. (2022) Complex heatmap visualization. *iMeta*, **1**, e43.

1350 156. Jones,P., Binns,D., Chang,H.-Y., Fraser,M., Li,W., McAnulla,C., McWilliam,H.,
1351 Maslen,J., Mitchell,A., Nuka,G., *et al.* (2014) InterProScan 5: genome-scale protein
1352 function classification. *Bioinformatics*, **30**, 1236–1240.

1353 157. Zheng,J., Ge,Q., Yan,Y., Zhang,X., Huang,L. and Yin,Y. (2023) dbCAN3: automated
1354 carbohydrate-active enzyme and substrate annotation. *Nucleic Acids Res.*, **51**, W115–
1355 W121.

1356 158. Sahu,N., Indic,B., Wong-Bajracharya,J., Merényi,Z., Ke,H.-M., Ahrendt,S., Monk,T.-L.,
1357 Kocsubé,S., Drula,E., Lipzen,A., *et al.* (2023) Vertical and horizontal gene transfer
1358 shaped plant colonization and biomass degradation in the fungal genus *Armillaria*. *Nat.*
1359 *Microbiol.*, **8**, 1668–1681.

1360 159. topGO *Bioconductor*.

1361 160. GO.db *Bioconductor*.

1362

1363

1364