

1 **Title:** Imaging the extracellular matrix in live tissues and organisms with a glycan-binding  
2 fluorophore  
3

4 **Authors:** Antonio Fiore<sup>1</sup>, Guoqiang Yu<sup>1</sup>, Jason J. Northey<sup>2</sup>, Ronak Patel<sup>1</sup>, Thomas A.  
5 Ravenscroft<sup>1</sup>, Richard Ikegami<sup>1</sup>, Wiert Kolkman<sup>1</sup>, Pratik Kumar<sup>1</sup>, Jonathan B. Grimm<sup>1</sup>, Tanya  
6 L. Dilan<sup>1</sup>, Virginia M.S. Ruetten<sup>1</sup>, Misha B. Ahrens<sup>1</sup>, Hari Shroff<sup>1</sup>, Luke D. Lavis<sup>1</sup>, Shaohe  
7 Wang<sup>1</sup>, Valerie M. Weaver<sup>2</sup>, Kayvon Pedram<sup>1\*</sup>  
8

9 **Affiliations:**

10 <sup>1</sup>Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.  
11

12 <sup>2</sup>Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of  
13 California, San Francisco (UCSF), San Francisco, CA, USA.  
14

15 \*Correspondence: [pedramk@hhmi.janelia.org](mailto:pedramk@hhmi.janelia.org)  
16

17 **Abstract**  
18

19 All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that  
20 play important roles in both biochemical and mechanical signaling. Though the spatial  
21 arrangement of these extracellular assemblies is critical to their biological functions,  
22 visualization of ECM structure is challenging, in part because the biomolecules that compose  
23 the ECM are difficult to fluorescently label individually and collectively. Here, we present a  
24 cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts  
25 upon reversible binding to glycans. Given that most ECM components are densely  
26 glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from *in*  
27 *vitro* substrates to *in vivo* mouse mammary tumors. Relative to existing techniques, Rhobo6  
28 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and  
29 negligible photobleaching. This work establishes a straightforward method for imaging the  
30 distribution of ECM in live tissues and organisms, lowering barriers for investigation of  
31 extracellular biology.  
32

33 **Introduction**  
34

35 The term “extracellular matrix” encompasses the cell membrane-tethered glycocalyx, the  
36 interstitial matrix that permeates the spaces between cells, basement membranes which  
37 provide a substrate for cell growth, and connective tissues such as fascia, tendons, and  
38 ligaments. The ECM is therefore a multi-scale and heterogeneous body-wide structure.  
39 Throughout the lifespan of an organism, extracellular matrices are actively remodeled by  
40 myriad cell types and play important roles in both biochemical and mechanical signaling<sup>1,2</sup>.  
41 For example, local increases in ECM stiffness can pattern the global orientation of  
42 developing mammary epithelium<sup>3</sup>, mechanical compaction of the ECM is sufficient to drive  
43 folding in engineered tissues<sup>4</sup>, and aberrant glycosylation can drive tumor immune evasion  
44 and metastasis<sup>5</sup>. In those examples, as well as many others, the three-dimensional  
45 arrangement of ECM biomolecules over time is critical to their individual activities and  
46 composite properties, motivating a longstanding interest in imaging the ECM in live tissues<sup>6-8</sup>.  
47

48 Existing methods to fluorescently label extracellular biomolecules with affinity agents,  
49 genetic tags, and chemical labels, however, are challenging to apply in live tissues. Protein-  
50 based affinity reagents such as antibodies and lectins are severely limited by poor spatial  
51 diffusivity<sup>9</sup>. Genetic tagging of ECM components with fluorescent proteins can be challenging  
52 given viral packaging constraints and endogenous genetic tags require significant  
53 optimization to avoid perturbation of extracellular assemblies that are critical for  
54

55 developmental viability<sup>10,11</sup>. More broadly, antibodies and genetic tagging are typically used  
56 to visualize one or a few targets in a given sample, but are difficult to multiplex sufficiently to  
57 provide a comprehensive view of ECM structure, especially given heterogeneities in ECM  
58 composition across cells of a tissue, tissues of an organism, and organisms. These  
59 challenges are illustrated well by the dominance of label-free approaches such as second  
60 harmonic generation microscopy<sup>12</sup> for visualization of the 28-member collagen family, as well  
61 as efforts to develop collagen-binding small molecule fluorophores<sup>13,14</sup>.  
62

63 Glycosylation is a feature shared by nearly all ECM components<sup>15</sup>. As such, glycan-directed  
64 strategies have the potential to allow visualization of the ECM *en masse*. Glycan labeling  
65 techniques can be divided into two broad categories: metabolic incorporation with unnatural  
66 sugars and chemoenzymatic labeling<sup>16</sup>. Metabolic labeling is routinely used for imaging the  
67 glycocalyx in cultured cell systems and *ex vivo* tissue models, but generally requires >24 h  
68 of incubation with metabolic labels and is dependent on sample-specific glycosylation  
69 pathways<sup>17</sup>. Chemoenzymatic labeling, which is able to label a broader range of substrates,  
70 involves addition of an enzyme to the sample and is therefore subject to the spatial diffusivity  
71 of other protein-based methods<sup>18</sup>. An older technique for installing fluorophores on glycans,  
72 which involves sodium periodate oxidation followed by aniline-catalyzed oxime formation<sup>19</sup>,  
73 is toxic to live samples, necessitating staining at 4 °C and subsequent fixation. In general,  
74 since extracellular spaces, and by extension ECM, are not protected by a plasma  
75 membrane, methods that involve buffer exchanges are more likely to induce chemical,  
76 mechanical, and mass action driven perturbations to extracellular structures.  
77

78 We envisioned that collective labeling of the ECM could be achieved with a cell-impermeable  
79 small molecule probe that increases in fluorescence upon reversible interaction with a  
80 chemical functionality found broadly on glycans (Fig. 1a). A small molecule would exhibit  
81 superior tissue penetration; low affinity, reversible binding would have the advantage of  
82 minimal perturbation to native structures and low photobleaching due to a large excess of  
83 unbound dye<sup>20</sup>. Further, by analogy to widely used DNA minor groove binding fluorogenic  
84 small molecules (e.g., Hoechst), such a dye could be employed as a one-step, wash-free  
85 dilution from a stock solution and would be applicable to a wide range of sample types. If  
86 successful, this method would lower barriers for testing hypotheses related to the composite  
87 properties of the ECM and by extension, to biological phenomena in extracellular spaces.  
88

89 Boronic acids have been known for decades to exhibit reversible binding to 1,2- and 1,3-  
90 diols with dissociation constants in the tens of millimolar range<sup>21</sup>. Such diols are found in  
91 glycans and rarely elsewhere (e.g., on the ribose at the 3' end of RNA), to the extent that  
92 boronic acids are employed for affinity purification of carbohydrates from complex biological  
93 samples<sup>22</sup>. In addition, boronic acids have a rich history of conjugation to fluorophores to  
94 give so-called “boronolectins”. This class of molecule, which includes boronated cyanines,  
95 rhodamines, BODIPY dyes, and others<sup>23–25</sup>, served as our starting point.  
96

## 97 **Results**

### 100 **Probe design and photophysical characterization**

101 Of the previously described boronic acid-dye scaffolds, we were drawn to a Rhodamine 110-  
102 derived boronolectin, termed “Rhobo”, that had been developed by Strongin as a saccharide  
103 sensor for liquid chromatography<sup>26,27</sup> and employed by Schepartz to bind tetraserine motifs  
104 on peptides<sup>28</sup>. First, Rhobo contains a phenylboronic acid on each side of the xanthene core,  
105 increasing affinity towards saccharides via avidity<sup>29</sup>. Second, Rhobo's boronic acids are of  
106 the Wulff type, defined by the presence of an aminomethyl group *ortho* to the phenylboronic  
107 acid. Extensive studies by Anslyn, James, Shinkai, and Wang have shown that *ortho*-  
108

109 aminomethylphenyl boronic acids have the dual advantage of (i) lowering the pKa of the  
110 boronic acids and thereby enhancing the thermodynamics of sugar binding at neutral pH and  
111 (ii) increasing the kinetics of sugar binding via ammonium-mediated intramolecular general  
112 acid-catalysis<sup>30</sup>. Finally, fluorescence turn-on and spectral red shifts have been observed  
113 upon *in vitro* incubation of Rhobo with monosaccharides<sup>27,28</sup>.

114  
115 Rhobo was reported to rapidly cross cell membranes and label intracellular structures when  
116 applied to cells at low micromolar concentrations, an observation that was confirmed with  
117 cultured cell monolayers (Extended Data Fig. 1a-b). Intracellular dye accumulation was  
118 unacceptable for imaging of ECM components, as it would (i) deplete dye from extracellular  
119 spaces and (ii) significantly reduce the signal to background ratio in cell-rich tissues.

120  
121 Addition of functional groups that are charged at physiological pH is well known to reduce  
122 cell permeability of small molecule dyes (e.g., calcein<sup>31,32</sup>). A cell-impermeable Rhobo  
123 derivative was generated by addition of a carboxylic acid substituent at the 6-position of the  
124 dye, via a one-step reductive amination reaction with commercially available 6-  
125 carboxyrhodamine 110 and 2-formylphenylboronic acid (cf. *Methods*) (Fig. 1b). The resulting  
126 molecule, which we term “Rhobo6”, exhibited dramatically reduced cell permeability relative  
127 to Rhobo during 6 h of incubation on cultured cell monolayers (Extended Data Fig. 1a-b).

128  
129 Photophysical characterization of Rhobo6 in diol-free buffer revealed an approximately 20-  
130 nm shift in absorbance and emission maxima relative to the parent dye 6-carboxyrhodamine  
131 110, closely matching reported values for dibenzylrhodamine (i.e. a dye with *N*-benzyl  
132 groups lacking boronic acids)<sup>33</sup>. Next, a saturating concentration of the sugar alcohol sorbitol  
133 was added to generate the diol-bound form of the dye (Extended Data Fig. 1c-d). Relative to  
134 the unbound form, the bound form exhibited an increase in molar absorptivity, an increase in  
135 quantum yield, a 13 nm red shift in the absorbance peak, and a 14 nm red shift in the  
136 emission peak (Fig. 1c-d). Rhobo6 therefore turns on and red shifts upon binding diols. As a  
137 result of the red shift, the choice of excitation wavelength and emission filters will influence  
138 observed contrast (Extended Data Fig. 1e-h). Excitation with a 561 nm laser line coupled  
139 with a 575 nm longpass filter, corresponding to commonly used red fluorescent protein  
140 (RFP) imaging parameters, provided near-optimal fluorescence contrast, with a measured *in*  
141 *vitro* fluorescence change ( $\Delta F/F$ ) of 7.3. The two-photon (2P) excitation spectra of Rhobo6  
142 exhibited an 800 nm peak, which increased in the diol-bound state (Extended Data Fig. 1i).

#### 143 144 **Labeling profile for purified glycans and ECM components**

145  
146 To assess the specificity of Rhobo6 for glycans, a commercially printed glycan array was  
147 incubated with buffer containing 5  $\mu$ M Rhobo6 and imaged without washing using a confocal  
148 microscope (Extended Data Fig. 2). Of the 100 glycans in the array, 98 showed a statistically  
149 significant increase in binding relative to negative controls, indicating a broad specificity for  
150 glycans and glycoconjugates. The glycans for which Rhobo6 showed relatively lower binding  
151 were enriched in negatively charged structures, suggesting that charge-charge interactions  
152 may influence Rhobo6 binding.

153  
154 Next, Rhobo6 was applied at 5  $\mu$ M in phosphate-buffered saline (PBS) to purified ECM  
155 constituents, including fibrillar glycoproteins (collagen I, fibronectin), network-forming  
156 glycoproteins (collagen IV, laminin), a proteoglycan (aggrecan), and a polysaccharide  
157 (hyaluronan) (Fig. 2a; images are not contrast normalized). Fluorescence contrast was  
158 observed across all substrates, with hyaluronan showing the weakest signal, possibly due to  
159 a lack of condensed structures (see discussion of  $K_D$ , below). Pre-treatment with sodium  
160 periodate, which destroys 1,2-diols, reduced labeling of collagen I, laminin, and fibronectin,  
161 and pre-treatment with the glycosidase chondroitinase reduced labeling of aggrecan,  
162 indicating that Rhobo6-mediated fluorescence contrast is dependent on the presence of

163 glycans (Fig. 2b and Extended Data Fig. 3a). Spectral imaging of a collagen I gel incubated  
164 with 5  $\mu$ M Rhobo6 showed a red-shift in a region of interest (ROI) within the gel relative to an  
165 ROI within the buffer (Fig. 2c). Spatial mapping of the excitation maximum detected at each  
166 pixel gave a spectral contrast image (Fig. 2d). Comparison of spectral and intensity  
167 contrasted images confirmed the presence of both free and bound Rhobo6 in the field of  
168 view, with collagen-bound molecules exhibiting a red-shifted excitation maximum.  
169

170 Next, to estimate an apparent dissociation constant ( $K_D$ ) for Rhobo6 binding to ECM  
171 substrates, the observed equilibrium constant ( $k_{obs}$ ) as a function of Rhobo6 concentration  
172 was measured using collagen I as a substrate (Fig. 2e)<sup>34</sup>. A linear fit allowed extrapolation of  
173  $k_{on}$  (12.8  $M^{-1}s^{-1}$ ),  $k_{off}$  ( $6.77 \times 10^{-4} s^{-1}$ ), and  $K_D$  (53  $\mu$ M) (Fig. 2f). Our measured apparent  
174 dissociation constant is roughly two orders of magnitude greater than reported  $K_D$  values for  
175 binding of phenylboronic acid with monosaccharides<sup>21</sup>. These results suggest that a high  
176 effective molarity of diols is required for achieving substrate binding at micromolar  
177 concentrations of Rhobo6. At 5  $\mu$ M Rhobo6 concentration, the time to reach fifty percent of  
178 maximum signal was 15 minutes, with over ninety percent of signal achieved at 60 mins,  
179 which motivated our incubation time of 1 h for biological samples.  
180

181 Finally, the sensitivity of Rhobo6 labeling to photobleaching over repeated rounds of imaging  
182 was assessed. If, as expected, a reversible equilibrium existed between free and bound dye  
183 in a sample, the pool of excess free dye would replenish transiently bound photobleached  
184 molecules, resulting in a stable signal over time<sup>20</sup>. Indeed, using coated aggrecan as a  
185 substrate, no loss of fluorescence was observed over 9 h of acquisition at one frame per  
186 minute (Extended Data Fig. 3b-c and Supplementary Video 1).  
187

## 188 Glycan-dependent labeling on cell surfaces

189

190 Next, Rhobo6 was applied at 5  $\mu$ M in serum-free media to an immortalized mammary  
191 epithelial cell line (MCF10A) in which the extent of cell surface glycosylation could be  
192 predictably modulated via doxycycline-inducible expression of the heavily O-glycosylated  
193 transmembrane protein Mucin-1 lacking its C-terminal cytosolic domain (MUC1 $\Delta$ CT)<sup>35</sup>. After  
194 1 h of incubation with Rhobo6 at 37 °C, MUC1-dependent Rhobo6 labeling of cell surfaces  
195 was observed, and this signal was ablated when cells were pre-treated with a mucin-  
196 selective protease (Fig. 2g)<sup>5</sup>. MUC1-dependent signal was reduced upon addition of  
197 exogenous sorbitol or serum-containing media, the latter of which is expected to be rich in  
198 glycoconjugates. Rhobo6 staining is not compatible with samples that are chemically fixed or  
199 otherwise exhibit compromised cellular membranes, as the dye will internalize, resulting in  
200 intracellular fluorescence that drowns out cell surface fluorescence signal (Extended Data  
201 Fig. 3d and Extended Data Fig. 4d).  
202

203 Modulation of fluorescence lifetime upon changes of nitrogen atom substitution in rhodamine  
204 dyes has been reported<sup>36</sup>. Those results, alongside our observed increase in quantum yield  
205 upon diol binding, suggested that free and bound Rhobo6 populations could exhibit  
206 measurable differences in their fluorescence lifetimes. Indeed, fluorescence lifetime imaging  
207 microscopy (FLIM) of MUC1-expressing cells enabled gating of two populations, centered at  
208 2 ns and 3.5 ns, which corresponded to free and bound dye populations, respectively (Fig.  
209 2h).  
210

## 211 Benchmarking Rhobo6 in excised tissues

212

213 To further benchmark Rhobo6, samples with complex, multi-component extracellular  
214 matrices were required (Fig. 3a). We turned to mouse submandibular salivary glands  
215 isolated at embryonic day 13 or 14 (E13-E14) and cultured *ex vivo*. These glands continue to  
216 develop over the course of days in culture, undergoing budding and ductal morphogenesis<sup>37</sup>.  
217

217 To assess the biocompatibility of Rhobo6, growth and morphogenesis of paired salivary  
218 glands from seven embryos cultured with or without Rhobo6 over 48 h were assessed.  
219 Rhobo6 caused no difference in the overall morphology or the number of epithelial buds  
220 (Fig. 3b and Extended Data Fig. 4a), suggesting it is neither toxic nor perturbative to a  
221 primary embryonic organ explant.

222  
223 Next, 6-carboxyrhodamine 110 and Rhobo6 each at 5  $\mu$ M were added to a salivary gland for  
224 1 h at 37 °C. Live two-color imaging was possible due to the ~20 nm spectral separation of  
225 these two dyes (see above). The cell impermeable fluorophore 6-carboxyrhodamine 110,  
226 which does not contain boronic acids and therefore cannot bind glycans, filled extracellular  
227 spaces, similar to dextran-fluorophore conjugates and charged small molecule fluorophores  
228 that are routinely used for that purpose<sup>31,32</sup> (Fig. 3c, top). Meanwhile, the boronic acid-  
229 functionalized dye Rhobo6, which binds to glycans, revealed a network of fibrillar material  
230 surrounding epithelial buds and mesenchymal cells (Fig. 3c, bottom). Next, Rhobo6 was  
231 compared with the previously reported cell-permeable analog Rhobo. Rhobo was not able to  
232 label structures of the ECM, likely due to depletion of the extracellular pool of dye following  
233 irreversible sequestration into epithelial and mesenchymal cells (Extended Data Fig. 4d-e).

234  
235 To explore the identities of the molecules underlying observed Rhobo6 signal, glands were  
236 stained live with Rhobo6 and fluorescently labeled protein-based affinity reagents, followed  
237 by two-color imaging. In various fields of view, co-localization of Rhobo6 signal was  
238 observed with anti-collagen-IV antibody, with anti-laminin-1 antibody, and with CNA35, a 39  
239 kDa truncation of the collagen adhesion protein from *S. aureus* which binds various forms of  
240 fibrillar collagen (Fig. 3d)<sup>38</sup>.

241  
242 As a second test system, adult mouse pancreatic tissue was excised and bathed in buffer  
243 containing 5  $\mu$ M Rhobo6 and 2  $\mu$ g/mL Hoechst for 1 h. Confocal imaging of a 23  $\mu$ m deep  
244 volume near to the tissue surface provided a view of the Rhobo6-stained fascia and  
245 embedded cellular nuclei, in a one-step, wash-free protocol (Fig. 3e). As the excised  
246 pancreatic tissue preparation is exsanguinated (cf. *Methods*), live antibody labeling was  
247 possible. The tissue was bathed with a fluorophore conjugated mouse anti-collagen I  
248 antibody alongside Rhobo6 for 1 h, then a 100  $\mu$ m x 100  $\mu$ m x 100  $\mu$ m volume was acquired  
249 using a confocal microscope. The anti-collagen-1 antibody labeled a pancreatic duct, while  
250 Rhobo6 labeled the duct, surface fascia, and interstitial matrix (Fig. 3f), underscoring that  
251 Rhobo6 trades molecular specificity for a holistic view of ECM architecture. Since Rhobo6 is  
252 a rhodamine-based dye, it is compatible with live super-resolution imaging of the ECM using  
253 stimulated emission depletion (STED) microscopy<sup>39</sup>, as was demonstrated in freshly excised  
254 mouse pancreatic tissue (Extended Data Fig. 4f-h).

255  
256 **Rhobo6 applied to non-mammalian model organisms**

257  
258 Glycosylation is a feature of extracellular biomolecules across the kingdoms of life. To test  
259 Rhobo6's performance in non-mammalian systems, we turned to *D. melanogaster*, *C.*  
260 *elegans*, *D. rerio*, and *A. thaliana* model systems. In each case, our aim was to assess two  
261 features: (i) cell impermeability and (ii) ability to label material in the ECM.

262  
263 Adult *D. melanogaster* brains were excised into saline containing 5  $\mu$ M Rhobo6, incubated  
264 for 1 h at room temperature, then imaged live. A pattern of labeling was observed that  
265 suggested targeting of structures that surround neuronal cells, such as those in the  
266 mushroom body, central complex, and optic lobe (Extended Data Fig. 5a). Two-color imaging  
267 using a fly line with neurons expressing cytosolically targeted GFP confirmed that Rhobo6  
268 labeling was excluded from cell interiors (Extended Data Fig. 5b). Adult *C. elegans* worms  
269 were injected with 10 pL of 100  $\mu$ M Rhobo6 in each proximal arm of the gonad. Structures  
270 including yolk, eggshells, and the vulva were labeled (Extended Data Fig. 5c)<sup>40</sup>. A pattern of

271 signal that based on bright field co-localization appeared to be within the oviduct was also  
272 observed. Two-color imaging with Rhobo6 in a worm line expressing endogenously tagged  
273 Nidogen-1-GFP<sup>41</sup>, however, revealed that the signal was concentrated at the sp-ut valve  
274 within the lumen of that cell, not within its cytosol (Extended Data Fig. 5d). In larval zebrafish  
275 (8 days post fertilization [d.p.f]), Rhobo6 was added at 5  $\mu$ M to tank water and delivered via  
276 incisions to the tail. Rhobo6 visualized structural ECM components in the tail and notochord  
277 of the fish during a time-lapse of wound healing (Extended Data Fig. 5e and Supplementary  
278 Video 2). Finally, Arabidopsis seedlings were grown on agar from seed (cf. *Methods*).  
279 Seedlings were watered with 5  $\mu$ M Rhobo6, incubated overnight, then imaged. Rhobo6  
280 signal localized to root cell surfaces, consistent with previously observed distributions of  
281 metabolically incorporated azido-monosaccharides (Extended Data Fig. 5f)<sup>42</sup>. Taken  
282 together, these data confirm that Rhobo6 is compatible with a wide array of biological  
283 samples using a wash-free labeling protocol.

284

### 285 **Tissue distribution of Rhobo6 upon injection in mice**

286

287 Given the absence of toxicity observed with application of Rhobo6 to developing salivary  
288 glands (Fig. 3b), we next investigated whether Rhobo6 could be administered to mice via  
289 injection (Fig. 4a). Retroorbital injection of 100 nmol (~3.5 mg/kg) Rhobo6 did not result in  
290 apparent toxicity to 8-12 weeks old C57BL6/J females. To assess the distribution of the dye,  
291 mice were euthanized 30 mins post injection, and excised organs were placed on glass  
292 coverslips for imaging (cf. *Methods*). A panel of 12 live tissues was collected in this fashion  
293 using 2P microscopy, acquiring 2 mm x 2 mm areas and 70  $\mu$ m x 70  $\mu$ m x 50  $\mu$ m volumes  
294 for each. Labeling of structures in the ECM was observed in all tissues except for the brain,  
295 where the dye is likely excluded by the blood brain barrier (Fig. 4b-d and Supplementary  
296 Videos 3-4; numbered arrows indicate tissue landmarks described in the caption to Fig. 4c-  
297 d). These images and volumes underscore the heterogeneity of ECM structures across  
298 tissues of the mouse and the broad distribution of Rhobo6 across organs, including relatively  
299 low blood flow areas such as tendon. Additionally, the presence of blood serum in these  
300 tissues did not interfere with Rhobo6 contrast, possibly due to the higher effective molarity of  
301 available diols in tissue ECM relative to cultured cell surfaces.

302 For a subset of the tissues, head-to-head comparisons were performed with second  
303 harmonic generation microscopy and two-photon autofluorescence imaging, which are often  
304 used for imaging collagen and elastin, respectively<sup>6</sup>. Rhobo6 enabled visualization of both  
305 collagen and elastin structures simultaneously using between 15- and 40-fold lower light  
306 dose (1.1-3.3 J/cm<sup>2</sup> vs 50.6 J/cm<sup>2</sup> per sampled confocal voxel) along with a 40-fold lower  
307 detector gain (Extended Data Fig. 6).

308

### 310 **Intravital imaging of mouse mammary tumors**

311

312 Malignancy in mammary tissue is accompanied by profound changes to the ECM, such as  
313 the accumulation and remodeling of fibrillar collagen into dense, linear and stiffened fibers<sup>43-</sup>  
314 <sup>45</sup>. To examine the potential for Rhobo6 labeling to help distinguish these ECM alterations at  
315 different stages of cancer progression, two photon intravital imaging was performed using  
316 mouse mammary tumor virus (MMTV)-driven polyoma middle T oncogene (PyMT) mice as  
317 representative of a well characterized genetically engineered mouse model of breast cancer.

318 PyMT rapidly induces spontaneous multifocal tumors in mice in a manner that is comparable  
319 to the stages of progression observed in human disease<sup>46</sup>. Mice were imaged at 10 weeks of  
320 age, when approximately 50% of MMTV-PyMT mammary glands contained advanced late  
321 carcinoma along with a mixture of adenoma/mammary intraepithelial neoplasia (MIN) and  
322 early carcinoma<sup>46</sup>. Two-photon imaging of tissue architecture in MMTV-PyMT mice was  
323 compared to that present in wild-type mammary glands (Fig. 5a). In live wild-type mice,

325 Rhobo6 labeled the ECM surrounding ductal epithelium and fibrillar structures between  
326 stromal adipocytes (Fig. 5b). This contrasts with Rhobo6 imaging derived from MMTV-PyMT  
327 glands which demonstrated significant alterations to ECM architecture (Fig. 5c). Even at an  
328 adenoma/MIN or early stage of carcinoma (Fig. 5c, top), there was a thickening of the  
329 basement membrane around malignant foci and an increased presence of ECM between  
330 individual foci. In more advanced carcinoma, Rhobo6 distinguished a basket-like network of  
331 fibrillar ECM surrounding tumor nodules with many fibers oriented at more perpendicular  
332 angles rather than tangentially to the tumor margins; a phenotype associated with enhanced  
333 tumor cell invasion<sup>47</sup>.

334

335 Following intravital imaging, whole mammary glands were resected and fixed for histological  
336 analysis. Immunofluorescence labeling of actin (phalloidin) and cell nuclei (DAPI) was  
337 performed to visualize cellular architecture and localize malignant regions. In addition,  
338 CNA35 was included for comparison with Rhobo6-derived images. Differences in tissue  
339 architecture between mammary tumors and healthy ductal epithelium were apparent from  
340 the actin and nuclear labeling (Extended Data Fig. 7). Moreover, CNA35 mediated labeling  
341 demonstrated collagenous structures that corresponded well with the intravital imaging, with  
342 substantial infiltration of ECM and stroma between tumor foci and thick fibers oriented at  
343 increasing angles from the tumor margin (Extended Data Fig. 7). These studies confirm the  
344 ability of Rhobo6 to efficiently label ECM *in vivo* and effectively distinguish tumor-associated  
345 ECM from healthy ECM structures in an intravital imaging setting.

346

347

## 348 Discussion

349

350 Our aim was to develop a method that enables one-step, wash-free visualization of ECM  
351 architecture in a wide variety of tissues. To achieve that goal, we developed a cell  
352 impermeable small molecule fluorophore, Rhobo6, that turns on and red shifts upon  
353 reversible binding to glycans, a nearly universal feature of ECM biomolecules. Rhobo6 has a  
354 number of characteristics that warrant discussion and will inform use cases.

355

356 First, a key enabling feature of Rhobo6 is its cell impermeability, which prevents irreversible  
357 intracellular accumulation and subsequent depletion of extracellular dye (Extended Data Fig.  
358 4d-e). As such, Rhobo6 is incompatible with cellular samples that have been chemically  
359 fixed or where plasma membranes have been otherwise compromised (Extended Data Fig.  
360 3d).

361

362 Second, the affinity of boronic acid groups for single monosaccharides is low, with  
363 dissociation constants expected to be in the range of tens of millimolar<sup>21</sup>. It is therefore  
364 expected that the high, local effective molarity of glycans in a biological sample drives the  
365 observed pattern of labeling (for estimation of effective  $K_D$  on a purified substrate see Fig.  
366 2e-f). As a consequence, certain biological samples will have too low a density of available  
367 diols to be targeted by Rhobo6. For example, Rhobo6 appears to label the glycocalyx of  
368 cultured cells poorly (see MCF10A cells lacking MUC1 $\Delta$ CT expression, Fig. 2g and  
369 Extended Data Fig. 3d), suggesting that methods such as metabolic incorporation and  
370 chemoenzymatic labeling<sup>16</sup> will remain preferable to Rhobo6 for labeling the glycocalyx.

371

372 Third, when Rhobo6 is applied at low micromolar concentrations to a sample, an equilibrium  
373 exists between free and bound dye, with an excess of free dye available to replenish bound  
374 molecules. Such reversible, low affinity binding likely enables Rhobo6 to be minimally  
375 perturbative to native ECM structures in tissues, as demonstrated in the developing  
376 embryonic salivary gland (Fig. 3b and Extended Data Fig. 4a). The equilibrium also prevents  
377 photobleaching (Extended Data Fig. 3b-c and Supplementary Video 1), an advantage for  
378 studying tissue ECM dynamics which often occur over long timescales<sup>1,2</sup>. Finally, Rhobo6

379 labeling is reversible upon buffer exchange (Extended Data Fig. 4e), meaning repeated  
380 rounds of washing and labeling should enable spectral multiplexing and multi-timepoint  
381 imaging in a single sample<sup>20</sup>.  
382  
383 Fourth, Rhobo6 is designed to selectively bind extracellular glycans, but it does not exhibit  
384 specificity for any one glycan or ECM component (cf. glycan array, Extended Data Fig. 2).  
385 Rather, Rhobo6 broadly labels glycoconjugates of the ECM with a range of intensities that  
386 are not necessarily correlated with the abundance of the underlying biomolecules but instead  
387 the effective concentration and local environment of available diols. Imaging settings and  
388 image viewing settings therefore must be adjusted to highlight different ECM components  
389 (compare collagen I to hyaluronan in Fig. 2a and the laminin-rich band to collagen IV rich  
390 epithelial bud in Fig. 3d). Lowering image gamma, as was done for several tissues (cf.  
391 Supplementary Table 1), can overcome limitations in the dynamic range of viewing screens  
392 and human eyes.  
393  
394 Overall, Rhobo6 provides a holistic view of ECM architecture at the cost of molecular  
395 specificity. By analogy, live cell nuclear stains such as Hoechst take advantage of the fact  
396 that the nucleus is rich in a class of fundamental biopolymer (DNA) which has a unique motif  
397 (a minor groove). Though the specificity of Hoechst to DNA is complicated by base pair  
398 sequence preferences and by minor groove accessibility, in most sample types there is a  
399 sufficient quantity of substrate sites available for the dye to be used to visualize the  
400 distribution of nuclei in tissues<sup>48</sup>. Rhobo6, meanwhile, takes advantage of the fact that the  
401 ECM is rich in a different fundamental biopolymer (glycans) which also have a unique motif  
402 (1,2- and 1,3-diols). We envision Rhobo6 will find use as a straightforward and reliable  
403 counterstain for visualizing the distribution of ECM in tissues.  
404  
405 Looking ahead, opportunities exist for further development of phenylboronic acid modified  
406 fluorophores as ECM labels. First, a rich body of work suggests that the precise spacing of  
407 boronic acid groups can endow selectivity for monosaccharides and even oligosaccharides  
408 such as the Lewis antigen<sup>24</sup>. Second, though instability of Rhobo6 was not observed over  
409 days at room temperature (Extended Data Fig. 8b), enhanced oxidative stability may be  
410 advantageous in complex cellular environments and could be achieved with boralactones<sup>21</sup>.  
411 Finally, a color palette of Rhobo6 analogs could be generated via previously reported  
412 modifications to the rhodamine scaffold<sup>27,49</sup>. In all cases, molecular design efforts would be  
413 aided by characterization of the mechanism underlying both the fluorogenicity and spectral  
414 shift of Rhobo6 in the presence of sugars. Upon sugar binding, the majority of reported  
415 *ortho*-aminomethylphenyl boronic acid functionalized dyes exhibit turn on but do not red  
416 shift<sup>30</sup>. Rhobo6 differs from these molecules in that the *ortho*-aminomethyl group is directly  
417 attached via its nitrogen atom to the conjugated system of the fluorophore. Notably, a  
418 molecule synthesized by Shinkai in 1995 composed of an *ortho*-aminomethyl group attached  
419 in a similar fashion to the conjugated system of a coumarin also showed a spectral red shift  
420 upon sugar binding<sup>50</sup>.  
421  
422 Opportunities exist also for application of Rhobo6 using fluorescence imaging modalities  
423 aside from those presented here. Approaches for fast volumetric imaging such as two-  
424 photon structured illumination microscopy (2P ISIM)<sup>51</sup> and adaptive optics lattice light sheet  
425 microscopy (AO-LLS)<sup>52</sup> and could be applied to visualize ECM dynamics within scattering and  
426 inhomogeneous tissues. A low concentration of Rhobo6 applied to relatively immobile  
427 samples may allow points accumulation for imaging in nanoscale topography (PAINT)  
428 microscopy, which provides nanometer precision single molecule localizations<sup>53,54</sup>.  
429 Generation of a large ground truth dataset of known labels co-localized with Rhobo6 may  
430 open the door to machine vision annotation of ECM components based on properties such  
431 as persistence length and cellular context, providing a degree of molecular information in  
432 single-color Rhobo6 images<sup>55</sup>.

433

434 Finally, our intravital imaging results suggest that Rhobo6 or future analogs may find utility  
435 as diagnostic tools for human biopsy samples, in diagnostic imaging, or in fluorescence-  
436 guided surgery. To explore that possibility, dye pharmacokinetics will need to be  
437 characterized and fluorescence contrast in clinical settings will need to be assessed.

438 **Acknowledgements**

439  
440 We thank Andrew Krasley, Daniel Feliciano, Boaz Mohar, Damien Alcor, Ellen Quarles,  
441 Isabel Espinosa-Medina, Allyson Sgro, Aishwarya Korgaonkar, Jacob Smith, Christopher  
442 Obara, and William Lemon (all at Janelia), along with Stephen Adams (University of  
443 California, San Diego), Thomas Boltje (Radboud University), and Helene Langevin (NIH) for  
444 helpful discussions. We thank Gerald Rubin, David Clapham, and Timothy Brown (all at  
445 Janelia) for helpful discussions and for providing support to T.A.R., T.L.D., and R.P.,  
446 respectively, during the course of this work. We thank Meng Wang and Tao Chen (Janelia)  
447 for advice on two-photon and second harmonic generation microscopy. We thank Andrian  
448 Gutu (Janelia) for access to a 2P microscope. We thank Matthew Paszek (Cornell) for  
449 MCF10A GFP-MUC1 $\Delta$ CT cells. We thank the staff within the Biological Imaging  
450 Development CoLab (BIDC) at UCSF Parnassus Heights for training and use of 2P and  
451 spinning disk microscopes. *C. elegans* strains were provided by the Caenorhabditis Genetics  
452 Center, which is funded by NIH Office of Research Infrastructure Programs (P40  
453 OD010440). Work at UCSF was supported by National Institutes of Health grant  
454 1R35CA242447-01A1 to V.M.W. Work at Janelia was supported by the Howard Hughes  
455 Medical Institute.

456

457

458 **Author contributions**

459

460 A.F. and K.P. designed, performed, and analyzed experiments unless noted otherwise. G.Y.  
461 and W.K. performed chemical syntheses, with advice from P.K., J.B.G., and L.D.L. P.K.  
462 designed the Rhobo6 stability experiment. J.J.N. and V.M.W. designed and performed  
463 intravital mouse tumor experiments. R.P. and L.D.L. contributed to photophysical  
464 characterizations. T.A.R. contributed to *D. melanogaster* experiments. R.I. and H.S.  
465 contributed to *C. elegans* experiments. V.M.S.R. and M.B.A. contributed to *D. rerio*  
466 experiments. T.L.D. contributed to excised pancreas experiments. S.W. contributed to  
467 salivary gland experiments and designed and analyzed the gland viability time course  
468 experiment. A.F. and K.P. wrote the manuscript with input from all authors.

469

470

471 **Competing Interests**

472

473 A patent application relating to this work has been filed by the Howard Hughes Medical  
474 Institute (internal reference 2024-017-01).

475 **References**

- 477 1. Wu, D., Yamada, K. M. & Wang, S. Tissue Morphogenesis Through Dynamic Cell and  
478 Matrix Interactions. *Annu. Rev. Cell Dev. Biol.* **39**, 123–144 (2023).
- 479 2. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of  
480 extracellular matrix viscoelasticity on cellular behaviour. *Nature* **584**, 535–546 (2020).
- 481 3. Nerger, B. A., Jaslove, J. M., Elashal, H. E., Mao, S., Košmrlj, A., Link, A. J. & Nelson, C.  
482 M. Local accumulation of extracellular matrix regulates global morphogenetic patterning  
483 in the developing mammary gland. *Curr. Biol.* **31**, 1903-1917.e6 (2021).
- 484 4. Hughes, A. J., Miyazaki, H., Coyle, M. C., Zhang, J., Laurie, M. T., Chu, D., Vavrušová,  
485 Z., Schneider, R. A., Klein, O. D. & Gartner, Z. J. Engineered Tissue Folding by  
486 Mechanical Compaction of the Mesenchyme. *Dev. Cell* **44**, 165-178.e6 (2018).
- 487 5. Pedram, K., Shon, D. J., Tender, G. S., Mantuano, N. R., Northey, J. J., Metcalf, K. J.,  
488 Wisnovsky, S. P., Riley, N. M., Forcina, G. C., Malaker, S. A., Kuo, A., George, B. M.,  
489 Miller, C. L., Casey, K. M., Vilches-Moure, J. G., Ferracane, M. J., Weaver, V. M., Läubli,  
490 H. & Bertozzi, C. R. Design of a mucin-selective protease for targeted degradation of  
491 cancer-associated mucins. *Nat. Biotechnol.* 1–11 (2023). doi:10.1038/s41587-023-  
492 01840-6
- 493 6. Poole, J. J. A. & Mostaço-Guidolin, L. B. Optical Microscopy and the Extracellular Matrix  
494 Structure: A Review. *Cells* **10**, 1760 (2021).
- 495 7. Hu, M., Ling, Z. & Ren, X. Extracellular matrix dynamics: tracking in biological systems  
496 and their implications. *J. Biol. Eng.* **16**, 13 (2022).
- 497 8. Isser, S., Maurer, A., Reischl, G., Schaller, M., Gonzalez-Menendez, I., Quintanilla-  
498 Martinez, L., Gawaz, M., Pichler, B. J. & Beziere, N. Radiolabeled GPVI-Fc for PET  
499 Imaging of Multiple Extracellular Matrix Fibers: A New Look into Pulmonary Fibrosis  
500 Progression. *J. Nucl. Med.* **64**, 940–945 (2023).
- 501 9. Xenaki, K. T., Oliveira, S. & van Bergen en Henegouwen, P. M. P. Antibody or Antibody  
502 Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors.  
503 *Front. Immunol.* **8**, (2017).
- 504 10. Morgner, J., Bornes, L., Hahn, K., López-Iglesias, C., Kroese, L., Pritchard, C. E. J.,  
505 Vennin, C., Peters, P. J., Huijbers, I. & Rheezen, J. van. A Lamb1Dendra2 mouse model  
506 identifies basement-membrane-producing origins and dynamics in PyMT breast tumors.  
507 *Dev. Cell* **58**, 535-549.e5 (2023).
- 508 11. Jones, R. A., Trejo, B., Sil, P., Little, K. A., Pasolli, H. A., Joyce, B., Posfai, E. &  
509 Devenport, D. An mTurq2-Col4a1 mouse model allows for live visualization of  
510 mammalian basement membrane development. *J. Cell Biol.* **223**, e202309074 (2023).
- 511 12. Chen, X., Nadiarynk, O., Plotnikov, S. & Campagnola, P. J. Second harmonic  
512 generation microscopy for quantitative analysis of collagen fibrillar structure. *Nat. Protoc.*  
513 **7**, 654–669 (2012).
- 514 13. Junqueira, L. C., Cossermelli, W. & Brentani, R. Differential staining of collagens type I, II  
515 and III by Sirius Red and polarization microscopy. *Arch. Histol. Jpn. Nihon Soshikigaku  
516 Kiroku* **41**, 267–274 (1978).

517 14. Biela, E., Galas, J., Lee, B., Johnson, G. L., Darzynkiewicz, Z. & Dobrucki, J. W. Col-F, a  
518 fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues.  
519 *Cytometry A* **83A**, 533–539 (2013).

520 15. Karamanos, N. K., Theocharis, A. D., Piperigkou, Z., Manou, D., Passi, A., Skandalis, S.  
521 S., Vynios, D. H., Orian-Rousseau, V., Ricard-Blum, S., Schmelzer, C. E. H., Duca, L.,  
522 Durbeej, M., Afratis, N. A., Troeberg, L., Franchi, M., Masola, V. & Onisto, M. A guide to  
523 the composition and functions of the extracellular matrix. *FEBS J.* **288**, 6850–6912  
524 (2021).

525 16. Griffin, M. E. & Hsieh-Wilson, L. C. Tools for mammalian glycoscience research. *Cell*  
526 S0092867422007218 (2022). doi:10.1016/j.cell.2022.06.016

527 17. Cheng, B., Tang, Q., Zhang, C. & Chen, X. Glycan Labeling and Analysis in Cells and In  
528 Vivo. *Annu. Rev. Anal. Chem.* **14**, 363–387 (2021).

529 18. Lopez Aguilar, A., Briard, J. G., Yang, L., Ovryn, B., Macauley, M. S. & Wu, P. Tools for  
530 Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling. *ACS Chem.*  
531 *Biol.* **12**, 611–621 (2017).

532 19. Zeng, Y., Ramya, T. N. C., Dirksen, A., Dawson, P. E. & Paulson, J. C. High-efficiency  
533 labeling of sialylated glycoproteins on living cells. *Nat. Methods* **6**, 207–209 (2009).

534 20. Albertazzi, L. & Heilemann, M. When Weak Is Strong: A Plea for Low-Affinity Binders for  
535 Optical Microscopy. *Angew. Chem. Int. Ed.* **62**, e202303390 (2023).

536 21. Graham, B. J., Windsor, I. W., Gold, B. & Raines, R. T. Boronic acid with high oxidative  
537 stability and utility in biological contexts. *Proc. Natl. Acad. Sci.* **118**, (2021).

538 22. Li, D., Chen, Y. & Liu, Z. Boronate affinity materials for separation and molecular  
539 recognition: structure, properties and applications. *Chem. Soc. Rev.* **44**, 8097–8123  
540 (2015).

541 23. Fang, G., Wang, H., Bian, Z., Sun, J., Liu, A., Fang, H., Liu, B., Yao, Q. & Wu, Z. Recent  
542 development of boronic acid-based fluorescent sensors. *RSC Adv.* **8**, 29400–29427  
543 (2018).

544 24. Williams, G. T., Kedge, J. L. & Fossey, J. S. Molecular Boronic Acid-Based Saccharide  
545 Sensors. *ACS Sens.* **6**, 1508–1528 (2021).

546 25. Sun, X., Zhai, W., Fossey, J. S. & James, T. D. Boronic acids for fluorescence imaging of  
547 carbohydrates. *Chem. Commun.* **52**, 3456–3469 (2016).

548 26. Kim, K. K., Escobedo, J. O., St. Luce, N. N., Rusin, O., Wong, D. & Strongin, R. M.  
549 Postcolumn HPLC Detection of Mono- and Oligosaccharides with a Chemosensor. *Org.*  
550 *Lett.* **5**, 5007–5010 (2003).

551 27. Sibrian-Vazquez, M., Escobedo, J. O., Lowry, M. & Strongin, R. M. Progress toward red  
552 and near-infrared (NIR) emitting saccharide sensors. *Pure Appl. Chem.* **84**, 2443–2456  
553 (2012).

554 28. Halo, T. L., Appelbaum, J., Hobert, E. M., Balkin, D. M. & Schepartz, A. Selective  
555 Recognition of Protein Tetraserine Motifs with a Cell-Permeable, Pro-fluorescent Bis-  
556 boronic Acid. *J. Am. Chem. Soc.* **131**, 438–439 (2009).

557 29. James, T. D. & Shinkai, S. in *Host-Guest Chem. Mimetic Approaches Study Carbohydr.*  
558 *Recognit.* (ed. Penadés, S.) 159–200 (Springer, 2002). doi:10.1007/3-540-45010-6\_6

559 30. Sun, X., Chapin, B. M., Metola, P., Collins, B., Wang, B., James, T. D. & Anslyn, E. V.  
560 The mechanisms of boronate ester formation and fluorescent turn-on in ortho-  
561 aminomethylphenylboronic acids. *Nat. Chem.* **11**, 768–778 (2019).

562 31. Tønnesen, J., Inavalli, V. V. G. K. & Nägerl, U. V. Super-Resolution Imaging of the  
563 Extracellular Space in Living Brain Tissue. *Cell* **172**, 1108-1121.e15 (2018).

564 32. Velicky, P., Miguel, E., Michalska, J. M., Lyudchik, J., Wei, D., Lin, Z., Watson, J. F.,  
565 Troidl, J., Beyer, J., Ben-Simon, Y., Sommer, C., Jahr, W., Cenameri, A., Broichhagen, J.,  
566 Grant, S. G. N., Jonas, P., Novarino, G., Pfister, H., Bickel, B. & Danzl, J. G. Dense 4D  
567 nanoscale reconstruction of living brain tissue. *Nat. Methods* 1–10 (2023).  
568 doi:10.1038/s41592-023-01936-6

569 33. Grimm, J. B. & Lavis, L. D. Synthesis of Rhodamines from Fluoresceins Using Pd-  
570 Catalyzed C–N Cross-Coupling. *Org. Lett.* **13**, 6354–6357 (2011).

571 34. Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and  
572 evaluate binding affinities. *eLife* **9**, e57264 (2020).

573 35. Shurer, C. R., Kuo, J. C.-H., Roberts, L. M., Gandhi, J. G., Colville, M. J., Enoki, T. A.,  
574 Pan, H., Su, J., Noble, J. M., Hollander, M. J., O'Donnell, J. P., Yin, R., Pedram, K.,  
575 Möckl, L., Kourkoutis, L. F., Moerner, W. E., Bertozzi, C. R., Feigenson, G. W., Reesink,  
576 H. L. & Paszek, M. J. Physical Principles of Membrane Shape Regulation by the  
577 Glycocalyx. *Cell* **177**, 1757-1770.e21 (2019).

578 36. Zhang, X.-F., Zhang, Y. & Liu, L. Fluorescence lifetimes and quantum yields of ten  
579 rhodamine derivatives: Structural effect on emission mechanism in different solvents. *J.  
580 Lumin.* **145**, 448–453 (2014).

581 37. Wang, S., Matsumoto, K., Lish, S. R., Cartagena-Rivera, A. X. & Yamada, K. M. Budding  
582 epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. *Cell* **184**, 3702-  
583 3716.e30 (2021).

584 38. Aper, S. J. A., van Spreeuwel, A. C. C., van Turnhout, M. C., van der Linden, A. J.,  
585 Pieters, P. A., van der Zon, N. L. L., de la Rambelje, S. L., Bouten, C. V. C. & Merkx, M.  
586 Colorful Protein-Based Fluorescent Probes for Collagen Imaging. *PLoS ONE* **9**, e114983  
587 (2014).

588 39. Lukinavičius, G., Reymond, L., D'Este, E., Masharina, A., Göttfert, F., Ta, H., Güther, A.,  
589 Fournier, M., Rizzo, S., Waldmann, H., Blaukopf, C., Sommer, C., Gerlich, D. W., Arndt,  
590 H.-D., Hell, S. W. & Johnsson, K. Fluorogenic probes for live-cell imaging of the  
591 cytoskeleton. *Nat. Methods* **11**, 731–733 (2014).

592 40. Laughlin, S. T. & Bertozzi, C. R. In Vivo Imaging of *Caenorhabditis elegans* Glycans.  
593 *ACS Chem. Biol.* **4**, 1068–1072 (2009).

594 41. Keeley, D. P., Hastie, E., Jayadev, R., Kelley, L. C., Chi, Q., Payne, S. G., Jeger, J. L.,  
595 Hoffman, B. D. & Sherwood, D. R. Comprehensive Endogenous Tagging of Basement  
596 Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. *Dev.  
597 Cell* **54**, 60-74.e7 (2020).

598 42. Hoogenboom, J., Berghuis, N., Cramer, D., Geurts, R., Zuilhof, H. & Wennekes, T. Direct  
599 imaging of glycans in *Arabidopsis* roots via click labeling of metabolically incorporated  
600 azido-monosaccharides. *BMC Plant Biol.* **16**, 220 (2016).

601 43. Acerbi, I., Cassereau, L., Dean, I., Shi, Q., Au, A., Park, C., Chen, Y. Y., Liphardt, J.,  
602 Hwang, E. S. & Weaver, V. M. Human breast cancer invasion and aggression correlates  
603 with ECM stiffening and immune cell infiltration. *Integr. Biol.* **7**, 1120–1134 (2015).

604 44. Maller, O., Drain, A. P., Barrett, A. S., Borgquist, S., Ruffell, B., Zakharevich, I., Pham, T.  
605 T., Gruosso, T., Kuasne, H., Lakins, J. N., Acerbi, I., Barnes, J. M., Nemkov, T., Chauhan,  
606 A., Gruenberg, J., Nasir, A., Bjarnadottir, O., Werb, Z., Kabos, P., Chen, Y.-Y., Hwang, E.  
607 S., Park, M., Coussens, L. M., Nelson, A. C., Hansen, K. C. & Weaver, V. M. Tumour-  
608 associated macrophages drive stromal cell-dependent collagen crosslinking and  
609 stiffening to promote breast cancer aggression. *Nat. Mater.* **20**, 548–559 (2021).

610 45. Northey, J. J., Przybyla, L. & Weaver, V. M. Tissue Force Programs Cell Fate and Tumor  
611 Aggression. *Cancer Discov.* **7**, 1224–1237 (2017).

612 46. Lin, E. Y., Jones, J. G., Li, P., Zhu, L., Whitney, K. D., Muller, W. J. & Pollard, J. W.  
613 Progression to Malignancy in the Polyoma Middle T Oncoprotein Mouse Breast Cancer  
614 Model Provides a Reliable Model for Human Diseases. *Am. J. Pathol.* **163**, 2113–2126  
615 (2003).

616 47. Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G. & Keely, P.  
617 J. Collagen reorganization at the tumor-stromal interface facilitates local invasion. *BMC  
618 Med.* **4**, 38 (2006).

619 48. Bucevičius, J., Lukinavičius, G. & Gerasimaitė, R. The Use of Hoechst Dyes for DNA  
620 Staining and Beyond. *Chemosensors* **6**, 18 (2018).

621 49. Grimm, J. B., Tkachuk, A. N., Xie, L., Choi, H., Mohar, B., Falco, N., Schaefer, K., Patel,  
622 R., Zheng, Q., Liu, Z., Lippincott-Schwartz, J., Brown, T. A. & Lavis, L. D. A general  
623 method to optimize and functionalize red-shifted rhodamine dyes. *Nat. Methods* **17**,  
624 815–821 (2020).

625 50. Sandanayake, K. R. A. S., Imazu, S., James, T. D., Mikami, M. & Shinkai, S. Molecular  
626 Fluorescence Sensor for Saccharides Based on Amino Coumarin. *Chem. Lett.* **24**, 139–  
627 140 (1995).

628 51. Winter, P. W., York, A. G., Nogare, D. D., Ingaramo, M., Christensen, R., Chitnis, A.,  
629 Patterson, G. H. & Shroff, H. Two-photon instant structured illumination microscopy  
630 improves the depth penetration of super-resolution imaging in thick scattering samples.  
631 *Optica* **1**, 181–191 (2014).

632 52. Liu, T.-L., Upadhyayula, S., Milkie, D. E., Singh, V., Wang, K., Swinburne, I. A.,  
633 Mosaliganti, K. R., Collins, Z. M., Hiscock, T. W., Shea, J., Kohrman, A. Q., Medwig, T.  
634 N., Dambournet, D., Forster, R., Cunniff, B., Ruan, Y., Yashiro, H., Scholpp, S.,  
635 Meyerowitz, E. M., Hockemeyer, D., Drubin, D. G., Martin, B. L., Matus, D. Q., Koyama,  
636 M., Megason, S. G., Kirchhausen, T. & Betzig, E. Observing the cell in its native state:  
637 Imaging subcellular dynamics in multicellular organisms. *Science* **360**, eaaq1392 (2018).

638 53. Riera, R., Hogervorst, T. P., Doelman, W., Ni, Y., Pujals, S., Bolli, E., Codée, J. D. C., van  
639 Kasteren, S. I. & Albertazzi, L. Single-molecule imaging of glycan–lectin interactions on  
640 cells with Glyco-PAINT. *Nat. Chem. Biol.* **17**, 1281–1288 (2021).

641 54. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-  
642 resolution microscopy with DNA-PAINT. *Nat. Protoc.* **12**, 1198–1228 (2017).

643 55. Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M. & Van Valen, D. Deep learning for  
644 cellular image analysis. *Nat. Methods* **16**, 1233–1246 (2019).

645 56. Bloom, W. & Fawcett, D. W. *A Textbook of Histology*. (Chapman & Hall, 1994).

646 57. *Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas*. (Academic  
647 Press, 2017).

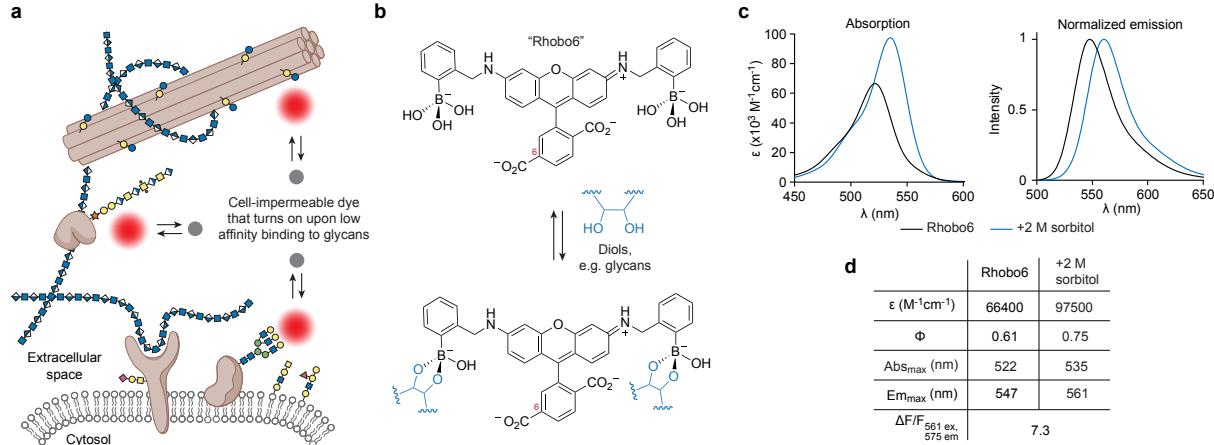
648 58. Lim, S., Escobedo, J. O., Lowry, M. & Strongin, R. M. Detecting specific saccharides via  
649 a single indicator. *Chem. Commun.* **47**, 8295 (2011).

650 59. Mütze, J., Iyer, V., Macklin, J. J., Colonell, J., Karsh, B., Petrášek, Z., Schwille, P.,  
651 Looger, L. L., Lavis, L. D. & Harris, T. D. Excitation Spectra and Brightness Optimization  
652 of Two-Photon Excited Probes. *Biophys. J.* **102**, 934–944 (2012).

653 60. Makarov, N. S., Drobizhev, M. & Rebane, A. Two-photon absorption standards in the  
654 550–1600 nm excitation wavelength range. *Opt. Express* **16**, 4029–4047 (2008).

655 61. Rieckher, M. & Tavernarakis, N. Generation of *Caenorhabditis elegans* Transgenic  
656 Animals by DNA Microinjection. *Bio-Protoc.* **7**, e2565 (2017).

657 62. Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase  
658 transgene expression in *Drosophila*. *Proc. Natl. Acad. Sci.* **109**, 6626–6631 (2012).


659 63. Dawson, C. A., Mueller, S. N., Lindeman, G. J., Rios, A. C. & Visvader, J. E. Intravital  
660 microscopy of dynamic single-cell behavior in mouse mammary tissue. *Nat. Protoc.* **16**,  
661 1907–1935 (2021).

662

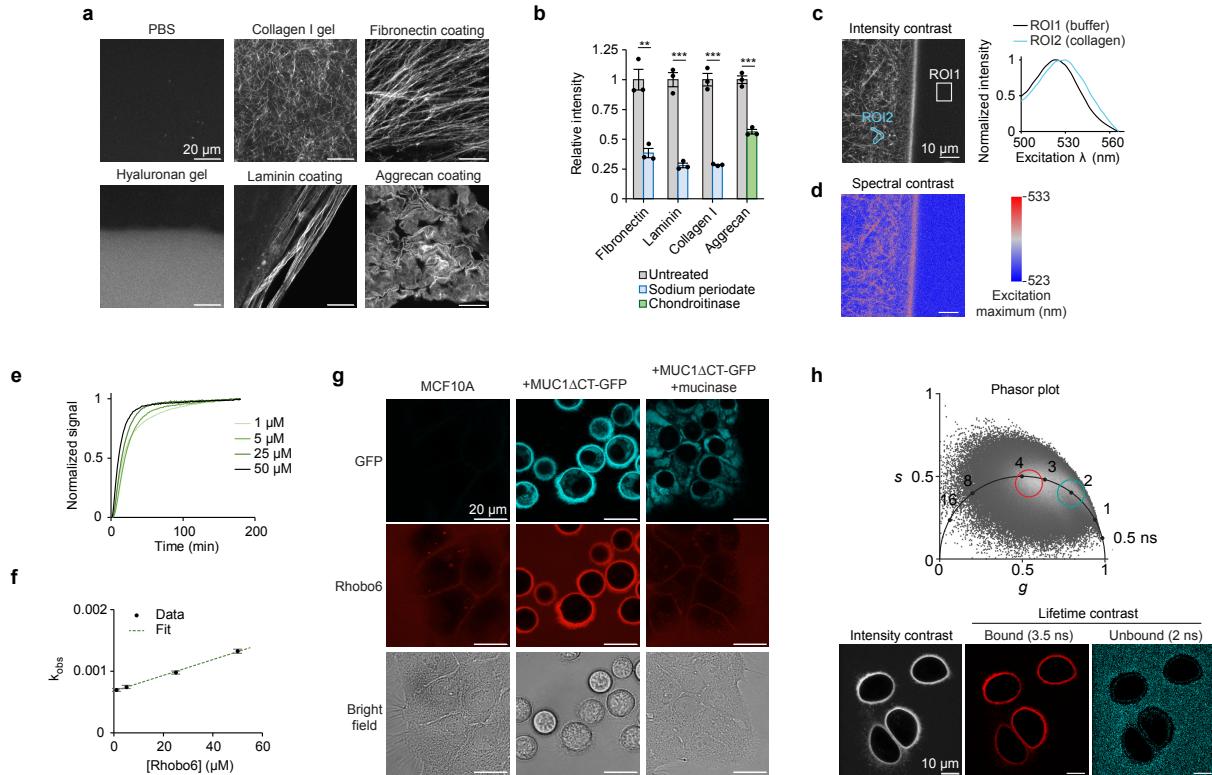
663

664 **Figures and Figure Captions**

665  
666



667  
668


**Figure 1. Photophysical characterization of the glycan-binding fluorophore Rhob06.**

**a**, ECM labeling strategy. A cell impermeable dye is added to a biological sample such that it disperses into extracellular spaces. Upon reversible association with glycoconjugates (colored shapes) of the extracellular matrix, the dye increases its fluorescence output.

**b**, Rhob06 structure and propensity for glycan binding. The carboxylic acid on the 6-position of Rhob06 (red numbering) is charged at physiological pH, rendering the molecule cell impermeable. The  $pK_a$  for *ortho*-aminomethylphenyl boronic acid is within the range of 5 to 7<sup>30</sup>, meaning the boronate and borate ester dominate in aqueous buffer at physiological pH. Rhob06 is therefore expected to carry a net charge of negative three.

**c**, Absorption and normalized emission spectra for Rhob06 in unbound (5  $\mu\text{M}$  dye in PBS) and bound (5  $\mu\text{M}$  dye in PBS containing 2 M sorbitol) states. Emission spectra were measured with excitation wavelength at 490 nm. For 2P spectra see [Extended Data Fig. 1i](#).

**d**, Table of photophysical properties. Molar extinction ( $\epsilon$ ) is reported at peak absorption. Quantum yield ( $\Phi$ ) is measured as average value measured between 475 nm and 535 nm. Contrast is measured as relative fluorescence signal change between bound and unbound states ( $\Delta F/F$ ), when exciting at 561 nm and detecting fluorescence signal at 575 nm. Because of redshift in both absorption and emission, this value is highly dependent on both excitation and emission parameters (see also [Extended Data Fig. 1e-h](#)).



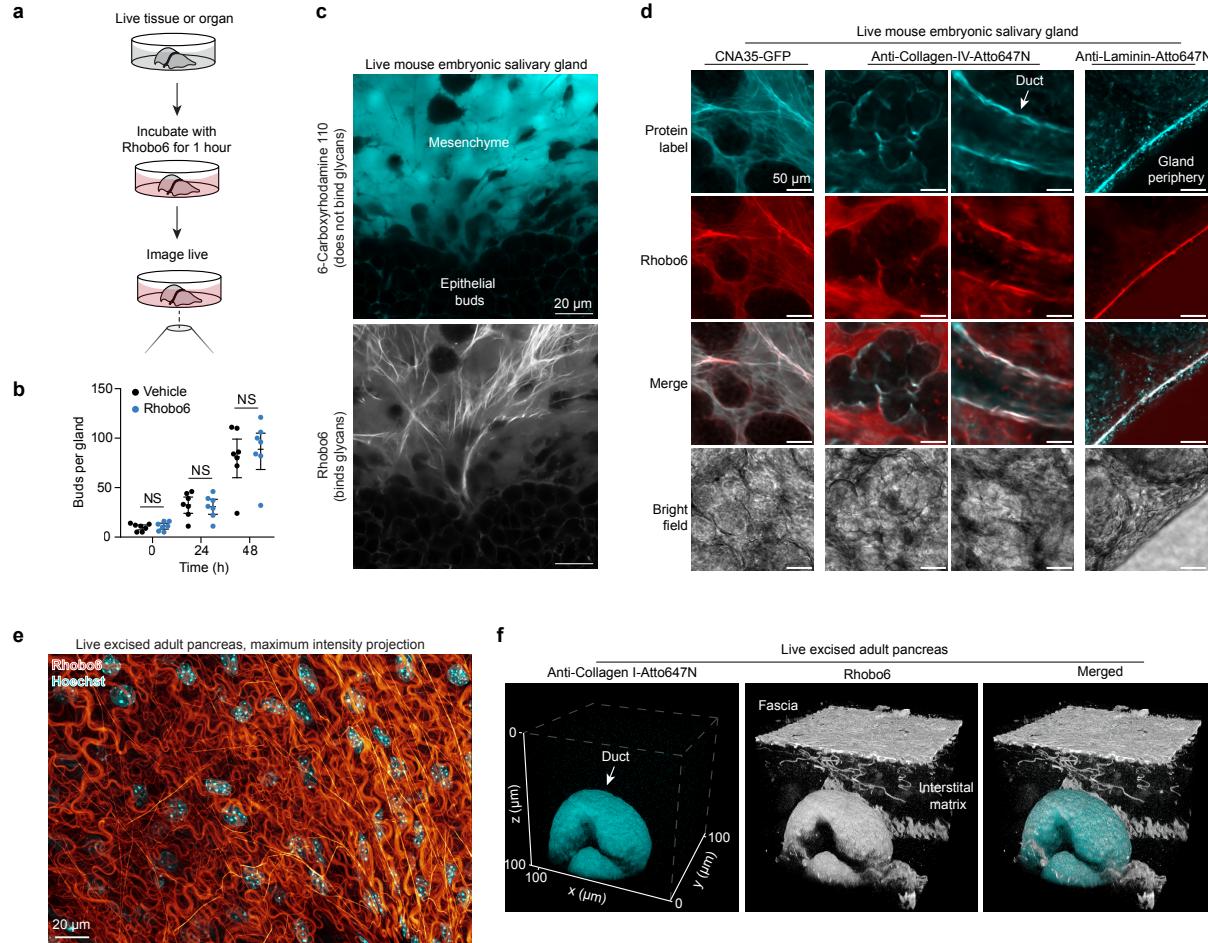
**Figure 2. In vitro and in cellulo validation of Rhobo6 labeling.**

687  
688

689 **a**, Rhobo6 labeling of purified ECM components. Substrates were prepared as glass  
690 coatings or gels (cf. *Methods*), and incubated with Rhobo6 at 5  $\mu$ M for 1 h in PBS. Images  
691 were acquired with a confocal microscope. Contrast is not normalized across images.  
692

693 **b**, ECM components were treated with 10 mM sodium periodate (blue) or with  
694 Chondroitinase ABC (green), and signal intensity quantified from confocal microscopy  
695 images. For representative images used for quantification, see Extended Data Figure 3a.  $N$   
696 = 3, error bars represent SEM.  $P$  values were determined by using two-tailed t-test; \*\* $P$  <  
697 0.005; \*\*\* $P$  < 0.0005.

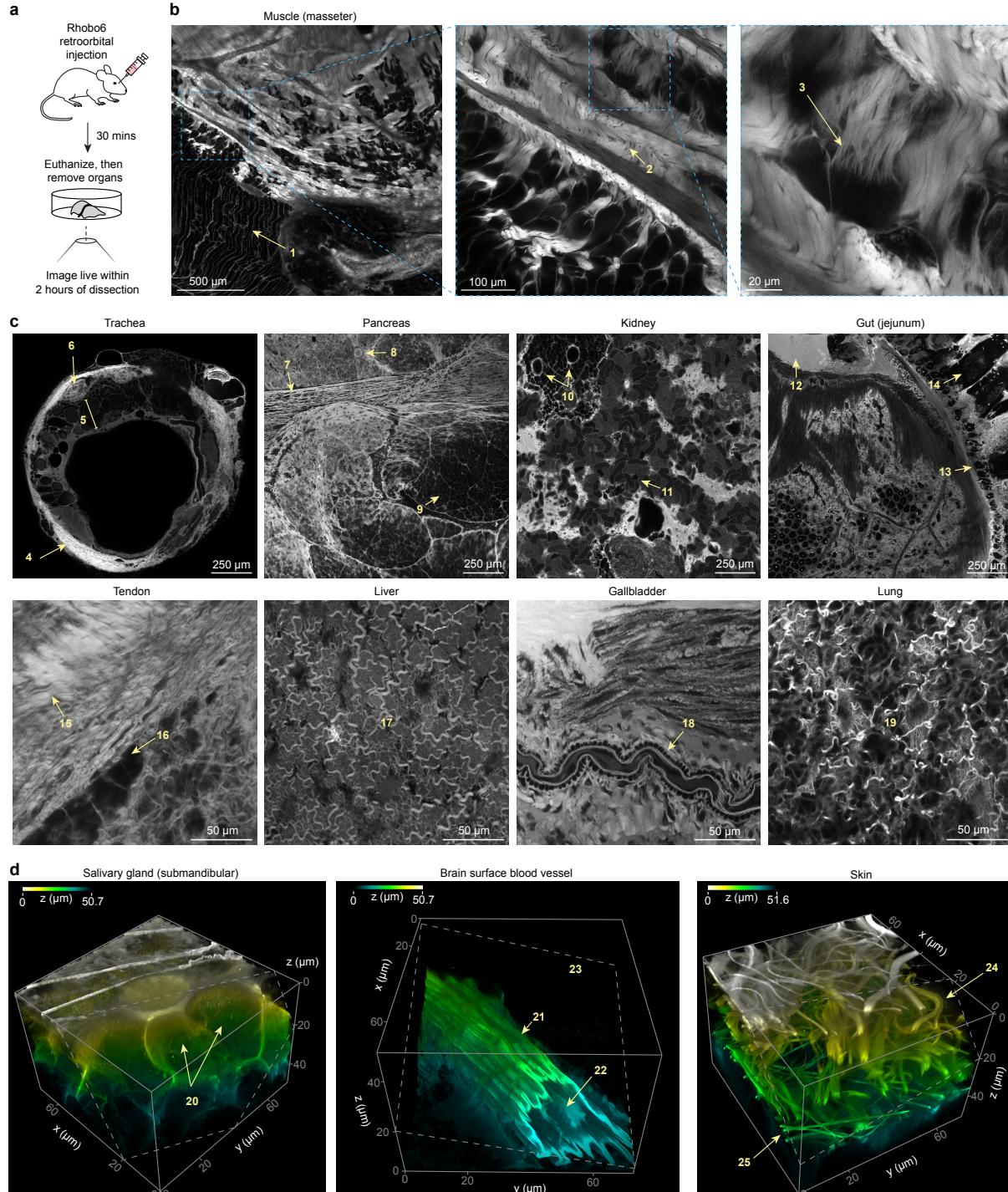
698 **c**, Spectral imaging at the boundary of a collagen I gel and the surrounding buffer containing  
699 5  $\mu$ M Rhobo6, performed via excitation scan 500-566 nm and detection of fluorescence at  
700 575-630 nm (cf. Supplementary Table 1). Intensity contrast image (*left*) obtained at 560 nm  
701 excitation with manually traced ROIs to capture an area rich in collagen fibers and an area  
702 within the surrounding buffer. Excitation spectra (*right*) corresponding to the manually drawn  
703 ROIs.


704 **d**, A spectral contrast image generated by plotting excitation maxima for each pixel in (**c**).  
705 Binning = 2 pixels for the image shown.

706 **e**, Time course of Rhobo6 fluorescence signal upon incubation with collagen I gels, at  
707 varying concentrations. Binding curves were used to extract a value for the observed  
708 equilibrium constant ( $k_{obs}$ ) at each concentration (cf. *Methods*).

709 **f**, Linear fit between  $k_{obs}$  and Rhobo6 concentrations from (**e**), allowing extrapolation of  
710 binding constants  $k_{on}$  and  $k_{off}$ . An apparent dissociation constant  $K_D$  of 53  $\mu$ M was  
711 determined by the ratio of the two. Error bars represent 95% confidence interval for fitted  $k_{obs}$   
712 values.

713 **g**, Confocal microscopy of MCF10A cells labeled with Rhobo6. Expression of GFP-  
714 MUC1 $\Delta$ CT was induced via addition of doxycycline. Mucin domains, which are N-terminal to  
715 GFP, were degraded enzymatically via live cell treatment with the mucinase StcE<sup>5</sup>. Note that  
716 mucin overexpression in these cells induces them to lift from their growth substrate, causing  
717 a spherical appearance with no loss in viability<sup>35</sup>. Contrast is normalized for each channel  
718 across experimental conditions.


719 **h**, FLIM microscopy of MCF10A+GFP-MUC1 $\Delta$ CT cells labeled with Rhobo6. Phasor plot  
720 (*top*) of lifetime distribution, with ROIs marking unbound and bound Rhobo6 population.  
721 *Bottom*, Intensity contrast image compared to lifetime bandpass images for each population  
722 (cf. [Supplementary Table 1](#)).

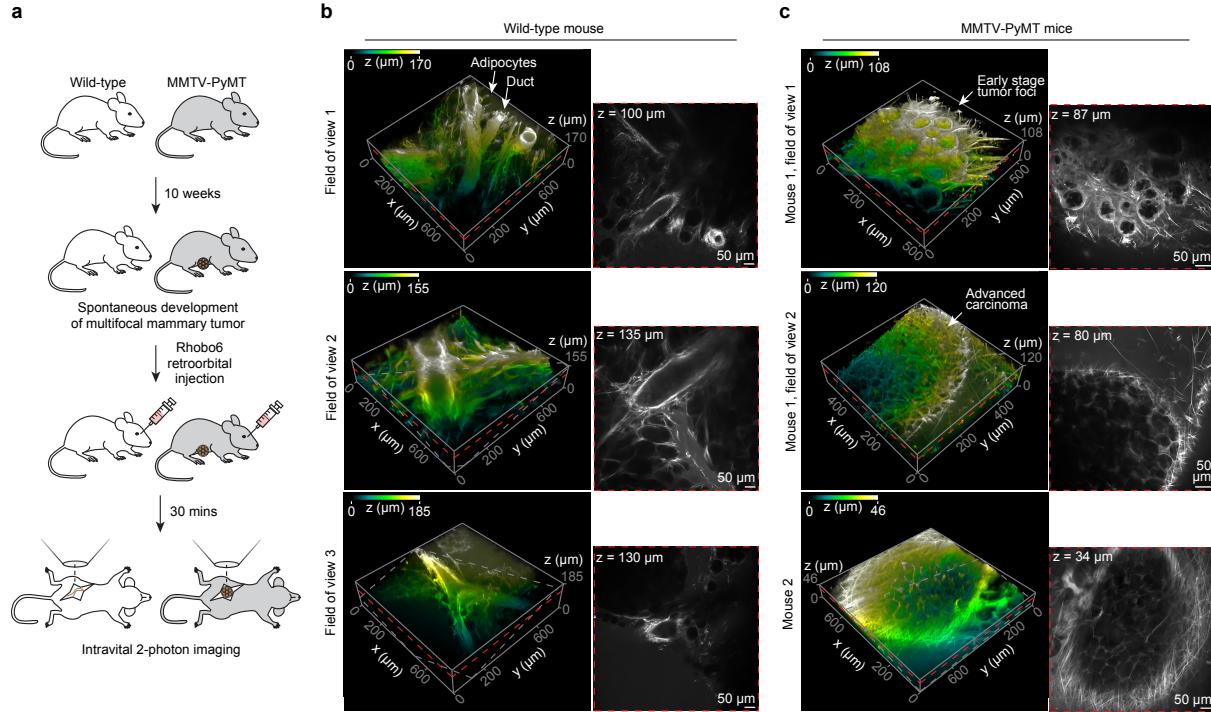


**Figure 3. Labeling of excised tissues by bathing in Rhobo6-containing media.**

723  
724  
725 **a**, Cartoon illustrating the labeling approach. Freshly dissected or cultured tissues were  
726 labeled with 5  $\mu$ M Rhobo6 for 1 h, with sample-specific media (cf. *Methods*).  
727  
728 **b**, Viability and morphogenesis of mouse embryonic salivary glands upon incubation with  
729 Rhobo6.  $N = 14$  glands were split into two paired groups, with each pair corresponding to  
730 glands from a single embryo. The first group was incubated with 5  $\mu$ M Rhobo6 in media  
731 containing 0.5% DMSO, and the second group was incubated in media containing 0.5%  
732 DMSO, as a vehicle control. Viability and morphogenesis were assessed by counting  
733 epithelial buds every 24 h for 2 days. Paired groups were compared by paired t-tests; NS =  
734 not significant.  
735 **c**, Mouse embryonic submandibular salivary gland (E14) cultured *ex vivo* for 5 days, then  
736 labeled by bathing concurrently with Rhobo6 and 6-carboxyrhodamine 110. The latter dye  
737 differs from Rhobo6 only in that it does not contain the two *ortho*-aminomethylphenyl boronic  
738 acid groups, which are necessary for binding to extracellular glycans. Images were denoised  
739 (see *Extended Data Fig. 4b-c* for comparison of raw and denoised salivary gland images;  
740 *Supplementary Table 1* reports image processing workflow for all datasets).  
741 **d**, Comparison of live Rhobo6 labeling to live labeling with protein-based affinity reagents  
742 against common ECM components, including fibrous collagen (CNA35), network-forming  
743 collagen (anti-collagen IV) and laminins. Glands were incubated with purified CNA35-GFP or  
744 Atto647N conjugated antibodies in solution along with Rhobo6, and imaged with a confocal  
745 microscope. Contrast not normalized. Images were denoised (cf. *Supplementary Table 1*).  
746 **e**, Freshly dissected and exsanguinated mouse pancreatic tissue, labeled by bathing with  
747 Rhobo6 (red), to highlight ECM, and Hoechst (cyan), to localize nuclei. Image shows a  
748 maximum intensity projection over a depth spanning 23  $\mu$ m. Images were denoised (cf.  
749 *Supplementary Table 1*).

750 **f**, Two-color labeling of exsanguinated adult mouse pancreatic tissue labeled by both  
751 Rhobo6 (red) and Anti-collagen-I-ATTO647N (cyan) antibody. Tissue was labeled by bathing  
752 for 1 h with both probes, and imaged with a confocal microscope. Image shows three-  
753 dimensional reconstruction of the (100  $\mu\text{m}$ )<sup>3</sup> volume.




754  
755

**Figure 4. Rhobo6 distributes across mouse organs and labels the ECM upon retroorbital injection.**

758 **a**, Cartoon illustrating labeling approach. Anesthetized mice were injected retroorbitally with  
759 100  $\mu$ l of a 1 mM Rhobo6 solution in PBS containing 10% DMSO. Mice were allowed to  
760 recover for 30 min on a warming pad, then euthanized by cervical dislocation. Live tissues  
761 were harvested, placed on a glass bottom dish and imaged within 2 h of dissection.

762 **b**, Two photon image of a 2 mm by 2 mm area of muscle tissue (masseter). Insets show  
763 sequential crops of the original image, highlighting both macroscopic and microscopic ECM  
764 features made visible by Rhobo6 labeling. For annotations of numbered landmarks see (c).

765 **c**, Individual fields of view cropped from 2 mm by 2 mm two-photon images of the indicated  
766 tissues. Numbers in yellow correspond to features consistent with histological  
767 annotations<sup>56,57</sup>. Muscle (cf. **(b)**): (1) skeletal muscle fibers, (2) collagen-rich fascia, and (3)  
768 basal lamina surrounding myofibrils. Trachea: (4) tracheal cartilage ring, (5) submucosal  
769 layer with basement membrane, and (6) a tracheal gland encased in ECM. Pancreas: (7)  
770 longitudinal section of an interlobular duct, (8) the cross section of an intercalated duct, and  
771 (9) acinar tissue. Kidney: (10) a collecting tubule with a branching point, and (11) proximal  
772 and distal convoluted tubules. Jejunum: (12) mucus layer, (13) stratified squamous epithelial  
773 layer, and (14) villi. Tendon: (15) fascia of tertiary fiber bundle, and (16) fibroblasts. Liver:  
774 (17) entire field of view shows the fascia layer superficial to hepatocyte layer. Gallbladder:  
775 (18) longitudinal section of a capillary. Lung: (19) entire field of view shows alveolar tissue  
776 encased in ECM. All tissues, including images in **(b)** and **(d)**, were acquired on the same day  
777 from 4 different mice of same strain and age (cf. *Methods*). Contrast not normalized across  
778 samples.  
779 **d**, Three-dimensional reconstructions of three tissues, from two-photon microscopy volumes.  
780 Depth color coding applied. Histological annotations are numbered in yellow. Salivary gland:  
781 (20) epithelial buds. Brain: (21) a blood vessel on the brain surface, (22) red blood cells  
782 excluded from Rhob06 labeling within the vessel, and (23) brain tissue which is not labeled  
783 by Rhob06, therefore appearing dark. Skin (24) collagen fibers and (25) elastin fibers.  
784 Contrast and depth-coded lookup table not normalized across samples. Images in **(d)** were  
785 denoised (cf. *Supplementary Table 1*).



786  
787

**Figure 5. Intravital 2P imaging of ECM in a mouse model of mammary carcinoma.**

788 **a**, Cartoon representing experimental timeline, along with intravital imaging strategy for wild-  
789 type and mammary tumor bearing MMTV-PyMT mice.  
790

791 **b**, Rhob6 imaging with three fields of view from the same mammary gland marking the  
792 extracellular matrix surrounding normal ductal architecture. *Left*, Volume rendering (depth-  
793 color coding applied). Arrows indicate adipocytes and epithelial ducts. *Right*, A single  
794 confocal slice from the adjacent volume (red dashed plane, with Z-height indicated)  
795 illustrating Rhob6 labeling. Contrast is not normalized. Images were denoised (cf.  
796 Supplementary Table 1).

797 **c**, The same as in **(b)** for two individual MMTV-PyMT mice. Two FOVs are presented for  
798 mouse 1 and one FOV for mouse 2. Arrows indicate early stage and late stage carcinomas.  
799 Contrast is not normalized. Images were denoised (cf. Supplementary Table 1).

800 **Methods**

801 **Microscopy methods**

802 **Supplementary Table 1** tabulates microscopy platforms, imaging parameters, and data  
803 processing steps for all datasets. Unless noted otherwise, image processing was performed  
804 in Fiji/ImageJ (National Institute of Health, USA).

805 **Considerations for multiplexing.** Rhobo6, particularly in the unbound state, can be excited by  
806 a 488 nm laser line to some degree (see **Extended Data Fig. 1e-h**). As a result, multiplexing  
807 with green fluorophores, e.g. GFP, requires attention to emission filters to minimize  
808 fluorescence crosstalk. In particular, we typically employed a cut-off wavelength of 525 nm  
809 for the green emission filter, while keeping the Rhobo6 emission filter above 575 nm  
810 (**Supplementary Table 1**). For multiplexing with far red probes such as Atto647N, we set the  
811 upper cutoff for the Rhobo6 emission filter to 630 nm.

812 **Organic synthesis and chemical characterization**

813 **General considerations.** All chemicals were obtained from commercial suppliers in reagent  
814 grade or higher and used as received. Reactions were conducted in 2-5 mL Biotage  
815 microwave vials sealed with Biotage microwave proof caps and heated in a Biotage Initiator+  
816 microwave synthesizer. Reactions were monitored by LC/MS (Phenomenex Kinetex 2.1 × 30  
817 mm 2.6  $\mu$ m C18 column; 2-10  $\mu$ L injection; 5-98% MeCN/H<sub>2</sub>O, linear gradient, with constant  
818 0.1% v/v HCO<sub>2</sub>H additive; 6 min run; 0.5 mL/min flow; ESI; positive ion mode). Reaction  
819 products were purified by preparative HPLC (Phenomenex Gemini 30 × 150 mm 5  $\mu$ m NX-  
820 C18 column). Analytical HPLC analysis was performed with an Agilent Eclipse 4.6 × 150 mm  
821 5  $\mu$ m XDB-C18 column under the indicated conditions. High-resolution mass spectrometry  
822 was performed by the High Resolution Mass Spectrometry Facility at the University of Iowa.  
823 NMR spectra were recorded on a Bruker Avance II 400 MHz spectrometer. Chemical shifts  
824 are reported in parts per million (ppm) relative to residual solvent peaks. <sup>1</sup>H NMR data are  
825 presented as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q  
826 = quartet, dd = doublet of doublets, dt = doublet of triplets, ttd = doublet of triplet of  
827 doublets, m = multiplet), coupling constant in Hertz (Hz), integration.

828  
829  
830  
831  
832 (E)-2-((2-boronobenzyl)amino)-3-((2-boronobenzyl)iminio)-3H-xanthen-9-yl)benzoate  
833 (Rhobo) was synthesized as previously reported<sup>58</sup>.

834 **Synthesis of (E)-2-((2-boronobenzyl)amino)-3-((2-boronobenzyl)iminio)-3H-xanthen-9-yl)-**  
835 **4-carboxybenzoate (Rhobo6):** 6-Carboxyrhodamine 110 (HCl salt, 51 mg, 0.124 mmol, 1  
836 eq), 2-formylphenylboronic acid (100 mg, 0.667 mmol, 5.4 eq), sodium triacetoxylborohydride  
837 (90 mg, 0.425 mmol, 3.4 eq), and anhydrous DMF (1.7 mL) were added to a microwave vial  
838 containing a magnetic stir bar. The mixture was homogenized by ultrasonication at room  
839 temperature for 1 min, and concentrated acetic acid (50  $\mu$ L, 0.874 mmol, 7.0 eq) was added.  
840 The vial was sealed with a microwave proof cap and stirred at room temperature for 1 min.  
841 The reaction was then run at 130 °C for 60 min in the microwave synthesizer. After the vial  
842 was cooled to room temperature, the cap was removed and ~20 mL of MeOH was added to  
843 dilute the reaction mixture. Purification by preparative HPLC (25 - 50% MeCN/H<sub>2</sub>O, linear  
844 gradient, with constant 0.1% v/v TFA additive) yielded red Rhobo6 solid (TFA salt, 33.2 mg,  
845 35%). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD):  $\delta$  8.40 – 8.36 (m, 2H), 7.97 – 7.95 (m, 1H), 7.42 – 7.28  
846 (m, 8H), 7.04 (d,  $J$  = 9.4 Hz, 2H), 6.89 (dd,  $J$  = 9.3, 2.2 Hz, 2H), 6.79 (s, 2H), 4.73-4.60 (m,  
847 4H). Analytical HPLC:  $t_R$  = 10.4 min, 95.4% purity (10 – 95% MeCN/H<sub>2</sub>O, linear gradient,  
848 with constant 0.1% v/v TFA additive; 20 min run; 1 mL/min flow; ESI; positive ion mode;  
849 detection at 254 nm); HRMS (ESI) calculated for C<sub>35</sub>H<sub>28</sub>B<sub>2</sub>N<sub>2</sub>O<sub>9</sub> [M+H]<sup>+</sup> 643.2054, found  
850 643.2065.

851  
852

853 **Dye storage.** Freshly prepared Rhobo6 solid was dissolved in anhydrous DMSO at 10 mM,  
854 and subsequently distributed into 10  $\mu$ L aliquots in screw top vials, which were stored at -80  
855 °C. Unless noted, aliquots were thawed at room temperature, diluted with anhydrous DMSO  
856 to 1 mM then frozen once again at -80 °C. 1 mM DMSO aliquots were diluted 1:200 into  
857 sample buffer to yield 5  $\mu$ M working concentrations, and freeze/thawed 5 times or fewer  
858 before being discarded.

859  
860 **Stability of Rhobo6 by HPLC.** An aliquot of Rhobo6 (10  $\mu$ L of 10 mM in DMSO) was diluted  
861 with DMSO (40  $\mu$ L) and PBS (50  $\mu$ L) to a final concentration of 1 mM and then stored at  
862 room temperature in darkness. Its purity was assessed at 0, 1, 2, 4, 8, 24, 48, and 72 h by  
863 an analytical HPLC (Phenomenex Gemini 4.6  $\times$  250 mm 5  $\mu$ m NX-C18 column; 5  $\mu$ L  
864 injection; 5 – 95% MeCN/H<sub>2</sub>O, linear gradient, with constant 0.1% v/v TFA additive; 25 min  
865 run; 1 mL/min flow; detection at 254 nm).

866  
867 **Monosaccharides and monosaccharide analogs**  
868 0.4 M solutions of D-Glucose (Millipore Sigma, G7021), D-Galactose (Fisher Scientific,  
869 BP656-500), D-Mannose (Millipore Sigma, M8574), D-Fructose (Millipore Sigma, F0127),  
870 sorbitol (Millipore Sigma, PHR1006) were prepared in 0.5 mL PBS. The pH of all solutions  
871 was adjusted to be in the 7.3-7.4 range using a pH-meter (Mettler Toledo S470 coupled with  
872 Ultra-Micro-ISM pH probe) before reaching the total PBS volume. Three 10  $\mu$ M Rhobo6  
873 solutions were prepared separately in 10 mL of PBS starting from three different 10 mM  
874 aliquots of dye. Each compound was measured in triplicates, and for each of the three  
875 measurements 25  $\mu$ L of 0.4 M monosaccharide solution was combined with 25  $\mu$ L of one of  
876 the dye solutions. Dilution was performed directly in a 96 well plate with black walls (Greiner  
877 Bio-One, 655900), followed by 1 h incubation to allow for binding to stabilize. Fluorescence  
878 emission was then measured using a Tecan Spark plate reader, with 555 nm excitation and  
879 570 to 630 nm emission range with 2 nm step, and 40  $\mu$ s integration time. As controls, both  
880 PBS (buffer only) and each of the dye solutions (dye only) were also acquired. Spectra were  
881 then analyzed by subtracting background counts (estimated by the buffer only signal at each  
882 wavelength) and averaging the maximum signal for each spectrum across the three  
883 measurements.

884  
885 **Photophysical characterization**  
886 Rhobo6 solutions were prepared by diluting 1 mM dye stock in either PBS (Corning,  
887 MT21040CV) or PBS solution containing 2 M sorbitol (Millipore Sigma, S1876). Absorbance  
888 measurements were performed using a UV-Vis spectrometer (Cary 100, Agilent  
889 technologies) at 5  $\mu$ M dye. Extinction coefficients were calculated at peak absorbance in  
890 both conditions. Fluorescence emission spectra were measured using a spectrofluorometer  
891 (Cary Eclipse, Varian Inc.) with excitation set at 490 nm. Quantum Yield measurements were  
892 performed using an integration sphere spectrometer (Quantaurus, Hamamatsu), averaging  
893 values measured between 475 and 535 nm, with a 5 nm increment.

894  
895 To measure the contrast at different excitation wavelengths, we acquired emission spectra of  
896 both bound and unbound solutions while exciting at 490 nm and 561 nm. The reported  
897 contrast  $\Delta F/F_{561\text{ex}/575\text{em}}$ , i.e. the fluorescent contrast at 561 nm excitation and 575 nm  
898 emission, was calculated as relative signal change at 575 nm emission, calculated from the  
899 561 nm excitation dataset.

900  
901 To renormalize spectra to a given excitation wavelength both emission spectra were  
902 normalized to a wavelength-specific excitation coefficient. This coefficient was estimated as:

$$E_{\lambda\text{ex}} \sim \Phi(1 - 10^{-A_{\lambda\text{ex}}})$$

903 Where  $E_{\lambda\text{ex}}$  denotes the estimated excitation at a given excitation wavelength  $\lambda$ ,  $\Phi$  denotes  
904 the measured quantum yield, and  $A_{\lambda\text{ex}}$  denotes the measured absorbance at  $\lambda$ .

907 *Two photon excitation.* Two-photon excitation spectral measurements were performed as  
908 previously described<sup>59</sup>. Dye solutions of 1  $\mu$ M concentration in 100 mM phosphate buffer, pH  
909 7.4 or the same with 1 M galactose were prepared. Spectral measurements were performed  
910 using an inverted microscope (IX81, Olympus) equipped with a 60X, 1.2NA water immersion  
911 objective (Olympus). Dye samples were excited with pulses from an 80 MHz Ti-Sapphire  
912 laser (Chameleon Ultra II, Coherent) for 710-1080 nm range, and with an OPO (Chameleon  
913 Compact OPO, Coherent) for the 1000-1500nm range. Fluorescence collected by the  
914 objective was filtered through a dichroic (675DCSXR, Omega and FF825-SDio1, Semrock)  
915 and an emission filter (539BP278 and 709BP167, Semrock), before detection by a fiber-  
916 coupled Avalanche Photodiode (APD) (SPCM\_AQRH-14, Perkin Elmer). Two-photon  
917 excitation spectra were obtained from 1  $\mu$ M dye samples at 1 mW of laser power across the  
918 spectral range of 710 nm to 1080 nm using Ti:Saphire and at 2 mW of laser power for  
919 spectral range of 1000-1500 nm using OPO. The excitation spectra have been normalized  
920 for the laser power and corrected for the transmission of the dichroic, emission filter, and  
921 quantum efficiency of the detector across wavelengths. As control, we acquired and reported  
922 RhodamineB two-photon excitation spectrum measured in the same manner, which is also  
923 reported in the literature<sup>60</sup>. All spectra are averages of  $n = 2$  measures.  
924

## 925 **Glycan array**

926 To test specificity of glycan binding across various glycoconjugates we used a glycan array  
927 (RayBiotech, GA-Glycan-100-1), which is manufactured as a glass slide divided in wells  
928 containing one array replicate; each array consists of 100 different glycans printed in 4  
929 replicate spots, along with two sets of 4 negative control spots. The glass slide was  
930 equilibrated from storage temperature (-20 °C) to room temperature for 90 minutes;  
931 subsequently wells were rehydrated by incubating in PBS for 60 minutes. Then, PBS buffer  
932 was replaced with a 5  $\mu$ M Rhob06 solution in PBS. Three arrays were incubated at least 90  
933 minutes before being imaged sequentially with a confocal microscope. From incubation to  
934 imaging completion a maximum of 6 h elapsed. Fluorescence signal and local background  
935 for each glycan was quantified using a MATLAB (R2022a, MathWorks) script receiving user  
936 input, followed by a background corrected signal normalization within each array to account  
937 for slight changes in imaging conditions. Data was visualized and analyzed for statistical  
938 significance using PRISM (GraphPad); statistical significance was determined through  
939 Dunnett-corrected t-test for multiple comparisons to a control group, with assumption of  
940 unequal variance across groups.  
941

## 942 **Purified extracellular matrix components**

943 *Coatings.* Human fibronectin (Corning, 354008) was resuspended in water at 1 mg/ml, gently  
944 mixed and incubated at 37 °C for 20 minutes before being used or aliquoted and frozen at -  
945 20 °C. Laminin (Thermo Fisher Scientific, 23017015) is supplied at 0.5-2 mg/ml in 50 mM  
946 Tris-HCL (pH 7.4), 0.15 M NaCl and was aliquoted and stored at -20 °C. Lyophilized  
947 aggrecan (Millipore Sigma, A1960-1MG) was resuspended at 2 mg/ml in PBS, aliquoted and  
948 stored at -20 °C. After thawing an aliquot of each solution at 4 °C, 10  $\mu$ l of each substrate  
949 was deposited in an untreated glass-bottom well (Ibidi, 80807), and dried over a hot plate set  
950 to 37 °C for 4 h prior to use.  
951

952 *Collagen gels.* Collagen I gels at 0.15 mg/ml were prepared starting from collagen type I  
953 (Ibidi, 50201) thawed at 4 °C over few hours and diluted in 17.5 mM acetic acid to 4 mg/ml. A  
954 solution was then prepared with 6.67% 10x DMEM (Millipore Sigma, D2429-100ML), 6.67%  
955 NaOH 1M solution in water, 18.5% distilled water, 3.33% of NaHCO<sub>3</sub> 89 mM solution in  
956 water, 33.33% of 1x DMEM (Thermo Fisher Scientific, 21041025) and 37.5% of collagen I  
957 solution at 4 mg/ml. The solution was quickly distributed in 20  $\mu$ l droplet in an untreated  
958 glass-bottom well (Ibidi, 80807), and incubated at 37 °C, 95% humidity, 5% CO<sub>2</sub> for at least  
959 one hour prior to use.  
960

961 *Hyaluronan gels.* To high MW hyaluronan (1500 kDa, 10 mg, R&D Systems) in a 1.5 mL  
962 Eppendorf microcentrifuge tube was added 90  $\mu$ L of 0.25 M NaOH aqueous solution. The  
963 mixture was centrifuged at 5500 rpm and vortexed for 2 min, respectively, until the  
964 hyaluronan was dissolved. 1,4-Butanediol diglycidyl ether (BDDE, 1  $\mu$ L) was diluted with  
965 0.25 M NaOH aqueous solution (10  $\mu$ L) and then added to the hyaluronan solution. The  
966 mixture was centrifuged at 5500 rpm and vortexed for 30 s, respectively, and then  
967 centrifuged at 22500 rpm for 5 min to get rid of bubbles. 2  $\mu$ L of the solution was pipetted  
968 onto each well of an 8 well plate. The well plate was surrounded with water to prevent the  
969 hyaluronan solution from drying and placed in an oven at 40 °C for 16 h during which time  
970 the hyaluronan was crosslinked by the BDDE to form a gel.

971  
972 *Sodium periodate and chondroitinase treatments.* A 10 mM solution of sodium  
973 (meta)periodate (MilliporeSigma, 71859-100G) was prepared in PBS, added to substrate  
974 wells and incubated for 6 h. The reaction was then quenched with 0.1 M glycerol solution. At  
975 this point the wells were washed three times with PBS and subsequently imaged.  
976 ChondroitinaseABC (MilliporeSigma, C3667-10UN) was aliquoted at 50 units/mL in PBS.  
977 Upon use, aliquots were diluted 1:15 in PBS, added to the treated wells. Samples were then  
978 incubated for 6 h, and subsequently washed three times with PBS and imaged. Coatings  
979 and gels were prepared in triplicates for both untreated and treated conditions. Collagen-I,  
980 fibronectin and laminin were treated with sodium periodate while aggrecan was treated with  
981 ChondroitinaseABC. Three control wells were left with PBS only as control. After treatment,  
982 all wells were incubated in a 5  $\mu$ M Rhbo6 solution in PBS for 1 h and imaged with a  
983 confocal microscope. Fluorescence signal was quantified in each field of view as average  
984 intensity in a manually traced region of interest containing the signal.  
985

### 986 **Spectral imaging**

987 A collagen-I gel was prepared following methods described above, and then incubated in a 5  
988  $\mu$ M Rhbo6 solution in PBS for 1 h. Excitation scan modality was selected on a Leica  
989 Stellaris 8 confocal microscope, scanning excitation wavelength from 500-566 nm with 2 nm  
990 incremental steps, and emission detected in the 575-630 nm range. The result was a three-  
991 dimensional image in which each pixel contains an absorption spectrum. Spectra for  
992 'Collagen' and 'PBS' was plotted averaging pixel value in manually traced regions of interest.  
993 Spectral contrast image was generated plotting the maximum absorbance wavelength in  
994 each pixel using MATLAB (R2022a, MathWorks).  
995

### 996 **Estimation of Rhbo6 binding affinity**

997 Binding affinity to collagen type-I was measured following the fit of equilibrium constants<sup>34</sup>.  
998 Four collagen-I gels (10  $\mu$ L volume each) were prepared following methods described above  
999 in a 50 mm glass bottom petri dish (MatTek, P50G-1.5-14-F). Right after deposition of  
1000 collagen solution on glass, a gentle tap was applied to distribute the gel on a larger surface,  
1001 reducing its thickness. Upon use, each gel equilibrated at room temperature in 2 mL of PBS  
1002 for 60 minutes. Then, it was placed on a confocal microscope and a focal plane within the  
1003 collagen gel was established using brightfield contrast. The microscope was set up to  
1004 acquire a 3 h timelapse at 1 frame per minute rate. After the first timepoint was acquired  
1005 setting initial conditions, 2 mL of a Rhbo6 solution at twice the target concentration were  
1006 added, resulting in a 1:1 dilution. The concentration of Rhbo6 solution was changed each  
1007 time as the independent variable. After the acquisition, the mean intensity over the full field  
1008 of view was extracted, and the observed equilibrium constant  $k_{obs}$  determined by fitting the  
1009 following equation in MATLAB (R2022a, MathWorks):  
1010

$$I(t) = I_{max} \left(1 - e^{(-k_{obs}(t-t_0))}\right) + b$$

1011 Where  $I$  is the measured intensity,  $t$  is the time,  $b$  is the background intensity and  $t_0$  is a time  
1012 delay parameter to take into account the arbitrary moment in which dye solution was added.

1013 Once all binding curves were acquired, a linear fit was performed between concentration and  
1014 observed equilibrium constant following the relationship:

$$k_{\text{obs}} = k_{\text{on}}[\text{Rhob6}] + k_{\text{off}}$$

1015 Where  $k_{\text{on}}$  and  $k_{\text{off}}$  are the binding and unbinding constants, respectively. A dissociation  
1016 constant  $K_D$  for collagen type-I was thus estimated as  $K_D = k_{\text{off}}/k_{\text{on}}$ .

1017

### 1018 **Photobleaching test**

1019 A well within a glass bottom 8-well plate (Ibidi, 80807) was coated with aggrecan following  
1020 the protocol described above and incubated overnight with a 5  $\mu\text{M}$  solution of Rhob6 in  
1021 PBS. The well was then completely filled with Rhob6 solution and sealed with parafilm to  
1022 prevent evaporation. The sample was imaged with a confocal microscope at 1 image per  
1023 minute overnight. The signal was plotted over time, calculated as the mean pixel value in  
1024 manually traced ROIs containing the sample.

1025

### 1026 **Mammalian cell culture experiments**

1027 *Cell culture conditions.* Cells were maintained at 37 °C and 5% CO<sub>2</sub>. MCF10A GFP-  
1028 MUC1 $\Delta$ CT cells (Paszek Lab, Cornell) were cultured in phenol red-free 1:1 DMEM:F12  
1029 supplemented with 5% New Zealand horse serum (Thermo Fisher Scientific, 16050122), 20  
1030 ng/ml epidermal growth factor (Peprotech), 0.5  $\mu\text{g}/\text{ml}$  hydrocortisone (Millipore Sigma,  
1031 H0888-1G), 100 ng/ml cholera toxin (Millipore Sigma, C8052-5MG), 10  $\mu\text{g}/\text{ml}$  insulin  
1032 (Millipore Sigma, I1882-100MG) and 1% penicillin/streptomycin (P/S) (Thermo Fisher  
1033 Scientific, 15070063). PC-3 (ATCC, CRL-1435) cells were cultured in RPMI-1640 (Thermo  
1034 Fisher Scientific, 11875093) supplemented with 10% heat-inactivated fetal bovine serum  
1035 (Thermo Fisher Scientific, 10-438-026) and 1% P/S.

1036

1037 *Dye penetration experiment.* PC3 cells were plated in an 8-well plate (Ibidi, 80807) at 10,000  
1038 cells per well and cultured for 2 days. Rhob6 or Rhob6 were added at 5  $\mu\text{M}$  via a 1:200  
1039 dilution from a 1 mM DMSO stock. Images were acquired on a confocal microscope upon  
1040 addition (t = 0) and after 1, 2 and 6 h; cells were incubated at 37 °C and 5% CO<sub>2</sub> between  
1041 time points. Intracellular dye presence was quantified as average fluorescence signal within  
1042 manually traced ROIs along cell perimeters for  $N = 9$  cells for each condition and timepoint.

1043

1044 *MCF10A GFP-MUC1 $\Delta$ CT experiments.* Cells were plated at 10,000 cells per well in an 8-  
1045 well dish (Ibidi, 80807) and cultured for 2 days. Doxycycline (Panreac AppliChem, A2951)  
1046 was added a 1  $\mu\text{g}/\text{mL}$  via a 1:1000 dilution from a 1 mg/mL stock in DMSO and cells were  
1047 incubated for another 2 days. Doxycycline induces the overexpression of the surface  
1048 glycoprotein MUC1 that is lacking its C-terminal cytosolic domain (MUC1 $\Delta$ CT).  
1049 Overexpression of MUC1 $\Delta$ CT causes cells to ball up and lift from their growth substrate<sup>35</sup>.  
1050 Once lifting was observed in the majority of cells, the wells were washed 1x with PBS, and  
1051 the PBS was replaced with the indicated media containing 5  $\mu\text{M}$  Rhob6. Fixation was  
1052 performed with 4% paraformaldehyde (Electron Microscopy Sciences, 19202) in PBS for 30  
1053 mins at room temperature and mucinase treatment was performed with 100 nM StcE  
1054 mucinase (expressed and purified as previously reported<sup>5</sup>) for 4 h at 37 °C.

1055

### 1056 **FLIM microscopy**

1057 MCF10A cells expressing GFP-MUC $\Delta$ CT were plated and cultured as described above.  
1058 Before imaging, cells were washed 3 times in PBS, and then incubated in a 5  $\mu\text{M}$  Rhob6  
1059 solution in PBS for 1 h at standard cell culture conditions (37 °C, 95% humidity, 5% CO<sub>2</sub>).  
1060 FLIM microscopy was performed using an Abberior Facility Line microscope. Lifetime  
1061 contrast images, phasor plot coordinates and lifetime bandpass images were generated  
1062 within the microscope software. The reported phasor plot was generated in MATLAB  
1063 (R2022a, Mathworks).  
1064

1065

### 1066 **Mouse embryonic salivary glands**

1067 *Dissection and culture.* All experiments complied with protocols approved by the Institutional  
1068 Animal Care and Use Committee (IACUC) at Janelia Research Campus (protocol number  
1069 22-0230). Submandibular salivary glands (SMG) were harvested and cultured *in vitro*  
1070 following the protocol reported by Wang *et al.*<sup>37</sup>. Briefly, mouse submandibular salivary  
1071 glands were dissected from 13- to 14-day old embryos (E13-E14). The embryos were  
1072 isolated from timed pregnant CD-1 outbred mice (Charles River Laboratories). Isolated  
1073 salivary glands were cultured on 13 mm diameter 0.1  $\mu$ m pore polycarbonate filters  
1074 (MilliporeSigma, WHA110405) floating on 1 mL Organ Culture Medium (see below) in a 35-  
1075 mm dish at 37°C with 5% CO<sub>2</sub>. Base Medium was DMEM/F-12 (Thermo Fisher Scientific,  
1076 11039047) supplemented with 2 mM L-glutamine (Thermo Fisher Scientific, 25030081) and  
1077 1x PenStrep (100 units/mL penicillin, 100  $\mu$ g/mL streptomycin; Thermo Fisher Scientific,  
1078 15140163). Organ Culture Medium was Base Medium supplemented with 150  $\mu$ g/mL vitamin  
1079 C (MilliporeSigma, A7506) and 50  $\mu$ g/mL transferrin (MilliporeSigma, T8158).  
1080

1081 *Rhobo6 incubation and mounting for imaging.* For Rhobo or Rhobo6 dye labeling, 5  $\mu$ L of 1  
1082 mM stock was diluted in 1 mL of Organ Culture Medium to make a 5  $\mu$ M labeling solution.  
1083 Culture medium was replaced with the labeling solution followed by a 1 h incubation at 37 °C  
1084 with 5% CO<sub>2</sub>. In order to mount the samples for inverted microscope imaging, we used  
1085 double-adhesive imaging spacers (Grace Bio-labs, 654002) attached to the 27 mm glass  
1086 wide bottoms of 35 mm dishes (Thermo Fisher Scientific, 150682). Under a dissecting  
1087 microscope, 5  $\mu$ L Organ Culture Medium was transferred to the center of the imaging  
1088 spacer, and the filter with glands was flipped onto the imaging spacer using a pair of forceps  
1089 so that glands were sandwiched between the filter and the dish bottom. Care was taken to  
1090 ensure the filter was flat and center-aligned with the imaging spacer. The edge of the filter  
1091 was pressed to ensure tight adherence to the imaging spacer. 1 mL Organ Culture Medium  
1092 with 5  $\mu$ M Rhobo dye was then added on top of the flipped filter. The mounted glands were  
1093 imaged right away.  
1094

1095 *Toxicity test during ex vivo culture.* To evaluate whether Rhobo6 adversely affects the  
1096 growth or branching morphogenesis of ex vivo cultured embryonic salivary glands, paired  
1097 glands from the same embryo were separated into two groups, which were treated with 5  $\mu$ M  
1098 Rhobo6 (1 mM stock in DMSO) or 0.5% DMSO. Phase contrast images of cultured glands  
1099 were acquired at 0, 24, and 48 h. The number of buds were counted manually on these  
1100 images in Fiji using an ImageJ macro to facilitate recording of the results. To minimize bias,  
1101 file names of all images were scrambled for observer blinding using a Python script before  
1102 counting. The counting results were subsequently decoded and analyzed using customized  
1103 Python scripts. The paired t-test function from the SciPy package was used for pairwise  
1104 comparison of the bud count between control and Rhobo6 treated groups.  
1105

1106 *Comparison of Rhobo and Rhobo6 labeling, along with washout.* Salivary glands were  
1107 cultured in Organ Culture Media for 4 days (see above). Two glands from the batch were  
1108 incubated with Rhobo or Rhobo6 at 5  $\mu$ M in Organ Culture Media, along with 2  $\mu$ g/mL  
1109 Hoechst 33342 (Thermo Fisher Scientific, 62249) to visualize nuclei, and Nucspot650  
1110 (Biotium, 41034-T) at 1:500 dilution to visualize dead cells. After 2 h of incubation, glands  
1111 were mounted as previously described and imaged on a confocal microscope. Subsequently,  
1112 samples were washed once with fresh warm media and incubated at 37 °C with 5% CO<sub>2</sub> for  
1113 15 minutes, then imaged on a confocal microscope. Two more washes with fresh warm  
1114 media were conducted during 180 minutes of total incubation time before being imaged a  
1115 third and final time.  
1116

1117 *Antibody and protein labeling of live salivary glands.* Anti-Collagen Type IV antibody (Sigma-  
1118 Aldrich, AB769) and Anti-Laminin antibody (Sigma-Aldrich, L9393) were fluorescently labeled  
1119 with Atto647N NHS ester (AAT Bioquest, 2856) following manufacturer instructions. Briefly,  
1120 antibody vials were adjusted to pH ~8 via addition of 1:20 v/v of 2 M sodium bicarbonate, pH

1121 9. Atto647N NHS ester was dissolved to a concentration of 10 mM in anhydrous DMSO and  
1122 incubated with each pH-corrected antibody at a 20:1 molar ratio for 1 h in the dark at room  
1123 temperature. Free dye was removed using Zeba™ Spin Desalting Columns, 40K MWCO,  
1124 0.5 mL (Thermo Fisher Scientific). Note, anti-laminin antibody from the manufacturer  
1125 contained 1% w/v BSA as a stabilizer, which was fluorophore-labeled alongside the antibody,  
1126 likely contributing to background signal in live salivary glands. CNA35-GFP was a gift from  
1127 Jason Northey (UCSF) and was expressed and purified as previously reported<sup>38</sup>. E13  
1128 submandibular salivary glands were isolated as above and cultured for 2 days. Rhobo6 was  
1129 added at 5  $\mu$ M alongside ~10  $\mu$ g/mL protein label for 1 h. Imaging was performed in the  
1130 staining solution.

1131  
1132 **Mouse excised pancreatic tissue**

1133 *Tissue harvesting.* All experiments complied with protocols approved by the Institutional  
1134 Animal Care and Use Committee (IACUC) at Janelia Research Campus (protocol number  
1135 16-142). C57BL/6J mice were obtained from the Jackson Laboratory. All surgical procedures  
1136 were performed under general anesthesia via administration of ketamine/xylazine (10 mg/kg  
1137 :10 mg/kg). Krebs-Ringer bicarbonate buffer (KRBH) containing 3 mM D-glucose was  
1138 injected into the distally clamped bile duct using a 1 mL insulin syringe and a 31G needle.  
1139 The exsanguinated pancreas was then removed from the peritoneal cavity and cut into 0.5-  
1140 1.0 cm<sup>3</sup> pieces in size. Tissue pieces were placed in Krebs-Ringer bicarbonate buffer  
1141 (KRBH) containing 3 mM D-glucose with 5  $\mu$ M Rhobo6, 2  $\mu$ g/mL Hoechst 33342 (Thermo  
1142 Fisher Scientific, 62249), and/or 10  $\mu$ g/mL Atto647N-anti-collagen 1 (Novus Biologicals,  
1143 NB600-408, fluorescently labeled as above). After 1 h of incubation at 37 °C, the tissue was  
1144 mounted for imaging using double-adhesive imaging spacers and 35 mm glass bottom  
1145 dishes, as was done with salivary glands (see above).

1146  
1147 *STED microscopy.* All experiments complied with protocols approved by the Institutional  
1148 Animal Care and Use Committee (IACUC) at Janelia Research Campus (protocol number  
1149 22-0211). An 8-weeks old C57BL/6J female mouse weighting 20 g was euthanized by  
1150 cervical dislocation and dissected to extract pancreatic tissue. The tissue sample was cut  
1151 into ~5 mm<sup>3</sup> pieces which were incubated in 3 mL of RPMI-1640 phenol red-free media  
1152 supplemented with 20 mM HEPES and 5  $\mu$ M Rhobo6 for 1 h at 37 °C, 95% humidity, 5%  
1153 CO<sub>2</sub>. To mount the tissue pieces stably for STED microscopy, samples were placed on a  
1154 35mm glass bottom dish (Thermo Fisher Scientific, 150682), and secured by a metal slice  
1155 anchor (Warner Instruments, 64-1415); 500  $\mu$ L of Rhobo6-containing media was added on  
1156 the sample to prevent drying. The mounted sample was imaged within 2 h using a Leica SP8  
1157 STED microscope. Both confocal and STED images were acquired of the same field of view  
1158 to be subsequently compared. After acquisition, images were denoised (cf. **Supplementary**  
1159 **Table 1**) and an intensity plot was generated in Fiji/ImageJ by extracting pixel value along a  
1160 line profile averaged over ten pixels.

1161  
1162 **Dye administration to mice and live tissue imaging**

1163 All experiments complied with protocols approved by the Institutional Animal Care and Use  
1164 Committee (IACUC) at Janelia Research Campus (protocol number 22-0211). Mice used  
1165 were between 8- and 12-weeks old C57BL/6J females (Jackson Laboratory) weighting  
1166 between 20 and 22 grams. 10  $\mu$ L of Rhobo6 solution at 10 mM in DMSO were diluted with  
1167 sterile PBS to 100  $\mu$ L volume to give a 1 mM concentration. A mouse was transferred in an  
1168 induction chamber and anesthetized with 2.5% isoflurane at a 1.0 L/min oxygen flow rate.  
1169 The 1 mM Rhobo6 solution was then injected retro-orbitally using a 0.5 mL tuberculin  
1170 syringe with 27G needle (BD, 305620). Mice were allowed to recover in their cage over 30  
1171 mins then euthanized by cervical dislocation. Tissues were dissected onto 35 mm glass  
1172 bottom dishes (Thermo Fisher Scientific, 150682). For all tissues except for the trachea, the  
1173 tissues were laid onto the glass whole, for imaging through the fascia into the lumen. The  
1174 trachea was mounted transversely, with the cross section facing the glass. Notably, mouse

1175 urine was bright pink within the 30-minute recovery period prior to euthanasia, indicating that  
1176 the dye is cleared via glomerular filtration, as expected for a small molecule dye.  
1177

1178 *Second harmonic imaging (SHG) and two-photon excitation autofluorescence microscopy*  
1179 (*TPEF*). Jejunum, pancreas and muscle tissues were harvested post Rhobo6 retro-orbital  
1180 injection as described above. Once tissues were transferred to a 35 mm glass bottom dish  
1181 (Thermo Fisher Scientific, 150682), they were placed on a two-photon microscope. Once a  
1182 suitable field of view was identified, images of Rhobo6 fluorescence, TPEF autofluorescence  
1183 and SHG were acquired (cf. *Supplementary Table 1*). A control mouse (no Rhobo6 injection),  
1184 was euthanized and dissected to harvest the same tissue, mounted and imaged in a similar  
1185 orientation.  
1186

#### 1187 ***C. elegans* husbandry and dye administration**

1188 Animals were reared at 20 °C on nematode growth media (NGM) plates seeded with HB101  
1189 bacteria. Injections were done at room temperature into the syncytium of the distal gonad  
1190 arm of young to mid-adult N2 or NK2443 [*nid-1(qy38[nid-1::mNG+loxP]) V*] using standard  
1191 procedures<sup>61</sup>. Animals were injected with approximately 10 pL of PBS or PBS + dye into  
1192 each gonad arm. After injections, animals were rehydrated in M9 buffer and transferred to  
1193 NGM plates seeded with HB101 to recover for 30-60 min. Injected animals were  
1194 anaesthetized with 5 mM sodium azide and mounted on 2% agarose pads and imaged. For  
1195 Rhobo6 injections, dye aliquots were prepared by diluting with PBS to a final concentration  
1196 of 100 µM dye and 1% DMSO and stored at -80 °C. Prior to injection, an aliquot was thawed,  
1197 briefly centrifuged for 5 min at 13000 x g and loaded into the microinjection needle.  
1198

#### 1199 ***D. melanogaster* husbandry and dye administration**

1200 All flies in this study were raised at 25 °C with a 12-hour light-dark cycle. The following fly  
1201 stocks were used (stock numbers are from the Bloomington Drosophila Stock Center):  
1202 Control (w[1118] (#3605)), neuronal cell driver ( w[1118]; P{y[+t7.7] w[+mC]=GMR57C10-  
1203 GAL4}attP2 (#39171)) and the GFP fluorescent label (w[\*]; P{y[+t7.7] w[+mC]= 10XUAS-  
1204 IVS-Syn21-GFP-p10}attP2<sup>62</sup>. Fly brains were dissected in a chilled modified saline solution  
1205 of 103 mM NaCl, 3 mM KCl, 5 mM TES, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO<sub>3</sub>,  
1206 1 mM NaH<sub>2</sub>PO<sub>4</sub>, 2 mM CaCl<sub>2</sub> and 4 mM MgCl<sub>2</sub> at pH 7.4 and placed in a glass bottom 8-well  
1207 plate (Ibidi, 80807). The fly brains were oriented posterior side down on the plate. Once  
1208 stuck to the base, the saline solution was removed and Rhobo6 was added at 5 µM. Brains  
1209 were imaged within 1 h of dissection.  
1210

#### 1211 ***D. rerio* husbandry and dye administration**

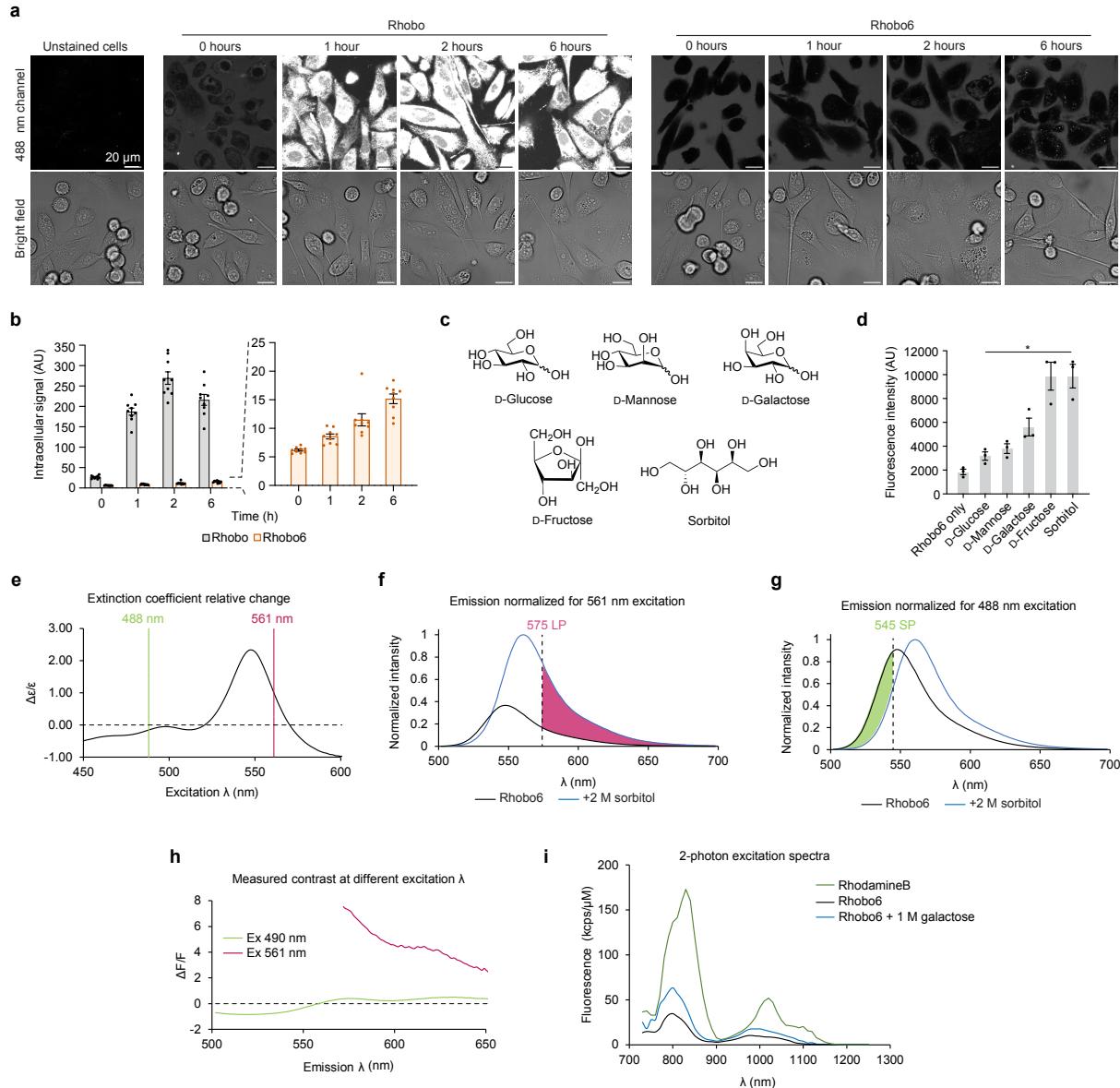
1212 All experiments complied with protocols approved by the Institutional Animal Care and Use  
1213 Committee (IACUC) at Janelia Research Campus (protocol number 22-0216). Larvae were  
1214 reared at 28.5 °C in 14-10 light-dark cycles. Zebrafish from 5 d.p.f. were fed rotifers and  
1215 used for experiments at 8 d.p.f. Zebrafish sex cannot be determined until ~4 weeks post-  
1216 fertilization, so experimental animals' sex was unknown. Fish were embedded in a drop of  
1217 2% low-melting-temperature agarose in a glass-bottom petri dish. Agarose surrounding the  
1218 tail was removed and fish anesthetized with MS-222 (0.16 mg/ml). Water in the sample  
1219 chamber was then replaced with Rhobo6 solution at 5 µM diluted in fish water containing  
1220 MS-222. To enable dye delivery an incision in the tail fin was made using a tungsten needle  
1221 (1 µm tip). Fish were incubated 30 minutes and then imaged.  
1222

#### 1223 ***A. thaliana* husbandry and dye administration**

1224 *Arabidopsis thaliana* seeds were obtained from the Arabidopsis Biological Resource Center  
1225 (stock no. CS4004) and placed on a Lloyd & McCown Woody Plant Basal Medium with  
1226 Vitamins (PhytoTec Labs) agar pad sitting atop a 35 mm glass bottom dish (Thermo Fisher  
1227 Scientific, 150682). The pad and seeds were incubated at 4 °C for 3 days, then moved to  
1228 room temperature under lab bench lights for 9 days. Rhobo6 was added at 5 µM to water

1229 surrounding the agar pad overnight. Root structures within the agar pad were imaged the  
1230 following morning.

1231  
1232 **Intravital imaging of wild-type and MMTV-PyMT mice**  
1233 *Animals and animal care.* Animal husbandry of mice was carried out in Laboratory Animal  
1234 Resource Center (LARC) facilities at UCSF Parnassus in accordance with the guidelines  
1235 stipulated by the IACUC protocol number AN194983, which adhere to the NIH Guide for the  
1236 Care and Use of Laboratory Animals. Mice were maintained in pathogen-free, ventilated  
1237 HEPA-filtered cages under stable housing conditions of 30-70% humidity, a temperature of  
1238 20-26°C, and a 12:12 hour dark:light cycle. 10-week-old female FVB/NJ and MMTV-PyMT  
1239 mice on an FVB/NJ background were used for intravital imaging experiments.


1240  
1241 *Intravital imaging of the mammary gland.* Intravital imaging of live animals was conducted  
1242 according to the IACUC protocol number AN194983 within the Biological Imaging  
1243 Development Center which was approved by the UCSF IACUC for non-survival experiments.  
1244 The procedure followed was similar to that described in Dawson *et al.*<sup>63</sup>. Prior to imaging  
1245 mice were anesthetized in a chamber using oxygen-delivered isoflurane gas (oxygen ~1  
1246 L/min flow rate and isoflurane vaporizer at ~3%) and Rhob06 was quickly administered via  
1247 retroorbital injection before mice were allowed to recover for 15 minutes. Mice were then  
1248 anesthetized as above before transferring them to a nose cone that was secured to a  
1249 custom heated microscope stage attachment beneath the microscope objective. Depth of  
1250 anesthesia was monitored by pedal or toe pinch reflex and breathing rate and adjusted as  
1251 needed throughout the imaging session. Two small midline incisions were made to open a  
1252 flap of skin in the mouse which was gently pulled back to reveal the inguinal mammary gland  
1253 for imaging. A custom metal annulus attached to the stage with height adjustable metal rods  
1254 was positioned over the mammary gland and pressed to form a seal. A glass coverslip was  
1255 then affixed to the annulus over the mammary gland with vacuum grease and a drop of  
1256 water was placed on the coverslip. The stage position was adjusted to place the imaging  
1257 window directly below the objective lens.

1258  
1259 *Immunofluorescence of wholermounted mammary glands.* The same mammary glands that  
1260 were imaged by intravital microscopy (Figure 5) were resected and fixed in 4%  
1261 paraformaldehyde for 20 mins. They were then washed with PBS, permeabilized with 0.3%  
1262 Triton X-100 in PBS for 15 mins before being blocked in PBS with 0.3% Triton X-100, 5%  
1263 goat serum and 3% bovine serum albumin for 1 h. Mammary glands were then incubated  
1264 with CNA35-GFP and Phalloidin-647 for 30 mins to stain fibrillar collagens and filamentous  
1265 actin respectively before being washed with PBS and incubated with DAPI for 10 mins to  
1266 stain nuclei. A final PBS wash was performed prior to mounting glands with aquamount and  
1267 a coverslip on a microscope slide. All incubations were done at room temperature and small  
1268 weights were placed over coverslips to flatten mounted mammary gland tissues as they  
1269 dried overnight.

1270  
1271 **Data availability**  
1272 Data supporting the findings of this study are available within the article and its  
1273 Supplementary Information. Unprocessed imaging datasets are available to reviewers on  
1274 Figshare and will be made publicly available following peer review and publication.

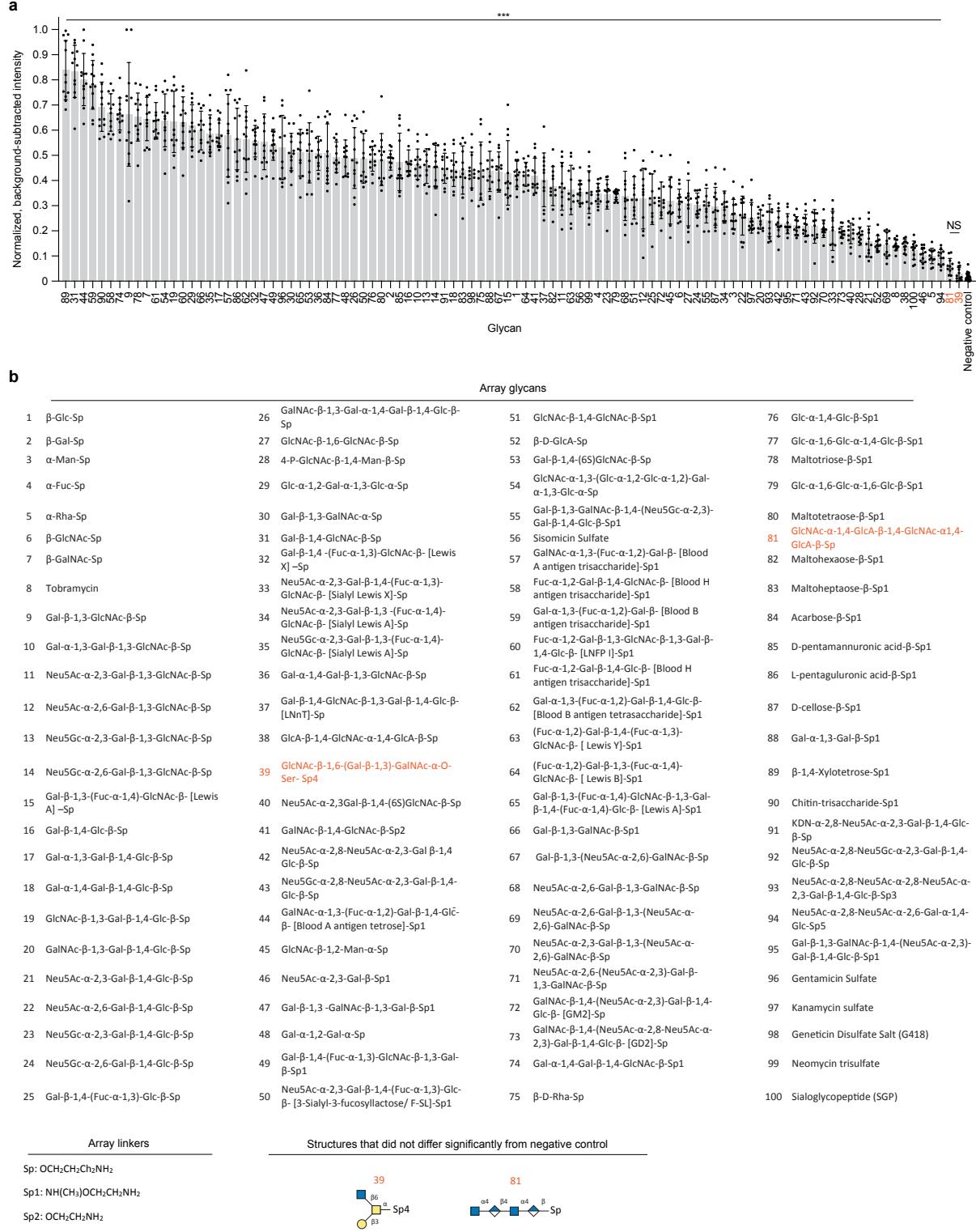
1276 **Extended Data Figures and Figure Captions**

1277  
1278



1279  
1280

1281 **Extended Data Figure 1. Rhobo6 cell impermeability and additional photophysical**  
1282 **characterization**

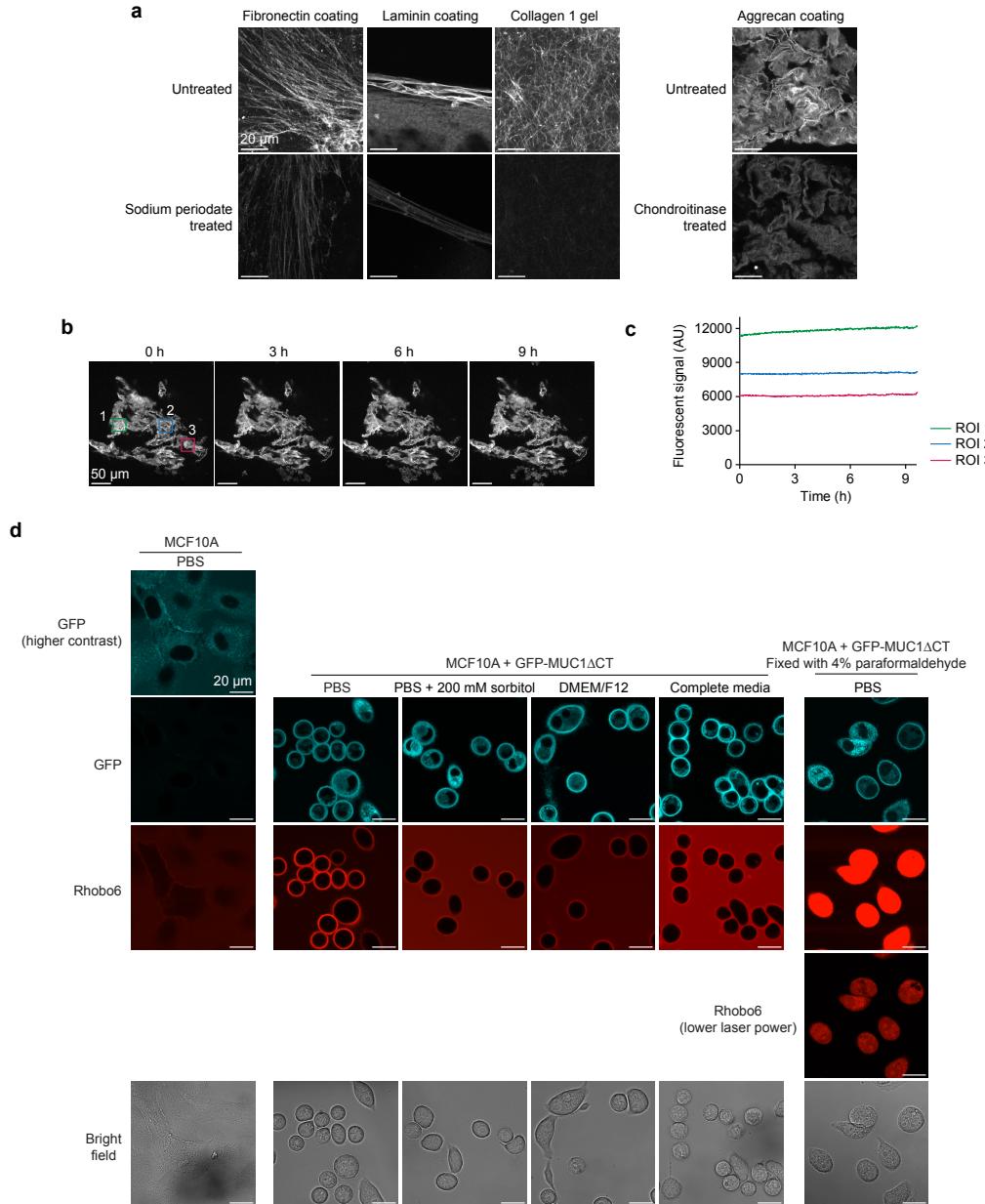

1283 **a**, Comparison between Rhobo and Rhobo6 cell permeability over time. PC3 cells were  
1284 incubated with Rhobo or Rhobo6 at 5  $\mu$ M concentration in serum-containing media. Wells  
1285 were then imaged directly after addition of dye ( $t = 0$  h) and following a 1, 2, and 6 h  
1286 incubation at 37 °C and 5% CO<sub>2</sub>. Cell surface signal is absent in this experiment due to the  
1287 presence of serum-containing media (cf. Extended Data Fig. 3d) and excitation at 488 nm  
1288 (cf. (e)-(h)).

1289 **b**, Quantified intracellular signal for Rhobo and Rhobo6 over time as determined by manually  
1290 drawn regions of interest of  $N = 9$  cells per condition. Error bars represent SEM.

1291 **c**, Monosaccharides and monosaccharide analogs used in (d).

1292 **d**, Quantified fluorescence of Rhobo6 measured by exciting at 555 nm and detecting  
1293 fluorescence intensity maxima between 570 and 630 nm. All sugars were prepared in PBS  
1294 solutions at 200 mM with 5  $\mu$ M Rhobo6, pH 7.3-7.4, and incubated for 1 h at room

1295 temperature.  $N = 3$ , error bars represent SEM.  $P$  values were determined by unpaired t-test  
1296 with Welch's correction, relative to dye only control;  $*P < 0.05$ .  
1297 **e**, Relative change in extinction coefficient between bound and unbound Rhob06 as function  
1298 of excitation wavelength calculated as  $(\epsilon_{\text{bound}} - \epsilon_{\text{unbound}})/\epsilon_{\text{unbound}}$ . Position of standard laser lines  
1299 488 nm and 561 nm are shown to highlight that longer wavelength excitation preferentially  
1300 excites bound dye, enhancing observed contrast.  
1301 **f**, Emission spectra of bound and unbound Rhob06 normalized to 488 nm excitation (cf.  
1302 *Methods*). A standard emission filter for green fluorescence (545 nm short pass [SP]) will  
1303 preferentially collect light from unbound dye, reducing observed contrast.  
1304 **g**, Emission spectra of bound and unbound Rhob06 normalized for 561 nm excitation. A  
1305 standard emission filter for red fluorescence (575 nm long pass [LP]) will preferentially  
1306 collect light from bound dye, enhancing observed contrast.  
1307 **h**, Measured contrast (calculated as  $\Delta F/F$  between bound and unbound Rhob06), as  
1308 function of emission wavelength for 490 nm and 561 nm excitation. The plot agrees with  
1309 renormalized spectral data in (f)-(g), with measured optimal contrast at 561 nm excitation  
1310 and 570-580 nm emission.  
1311 **i**, Two-photon excitation spectra for Rhob06 in 100 mM phosphate buffer, pH 7.4 (unbound  
1312 state) and 100 mM phosphate buffer containing 1 M galactose, pH 7.4 (bound state). The  
1313 measured excitation spectrum of Rhodamine B is shown for reference.




1314  
1315

### 1316 **Extended Data Figure 2. Application of Rhobo6 to a commercial glycan array**

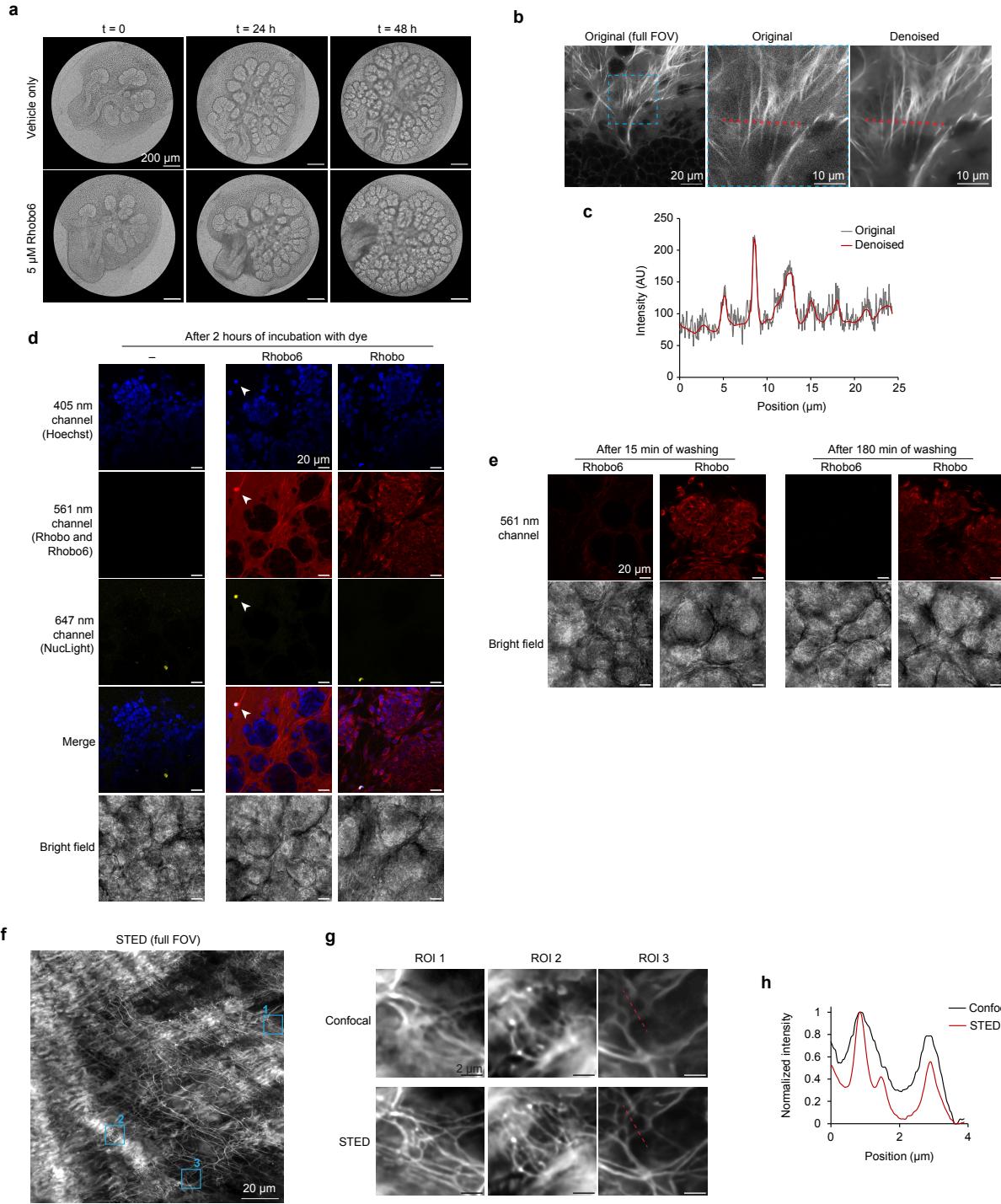
1317 **a**, Normalized fluorescence signal of Rhobo6 measured by quantifying three glycan arrays  
1318 with four glycan replicates each, printed on a single glass slide. Fluorescence signal was  
1319 background corrected and normalized within each array.  $N = 12$  for glycans,  $N = 24$  for  
1320 negative control, error bars represent standard deviation. Statistical significance was  
1321 determined through Dunnett-corrected t-test for multiple comparisons to a negative control

1322 group, with assumption of unequal variance across groups; NS = not significant (orange  
1323 text), \*\*\*P < 0.0005. For all glycans not marked “NS”, average signal was confirmed to be  
1324 greater than two times the standard deviation of local background.  
1325 **b**, Array glycans and glycan linkers. Glycans marked “NS” in (a) are colored orange. Note  
1326 that linker “Sp4” carries a carboxylic acid, which is negatively charged at physiological pH.



1327  
1328

**Extended Data Figure 3. *In vitro* and *in cellulo* Rhobo6 characterization, related to Fig. 2.**


1329 **a**, Representative field of views from triplicates shown in Fig. 2b. Contrast is normalized  
1330 within each sample type (columns). Signal intensity is reduced upon treatment, as quantified  
1331 in Fig. 2c.

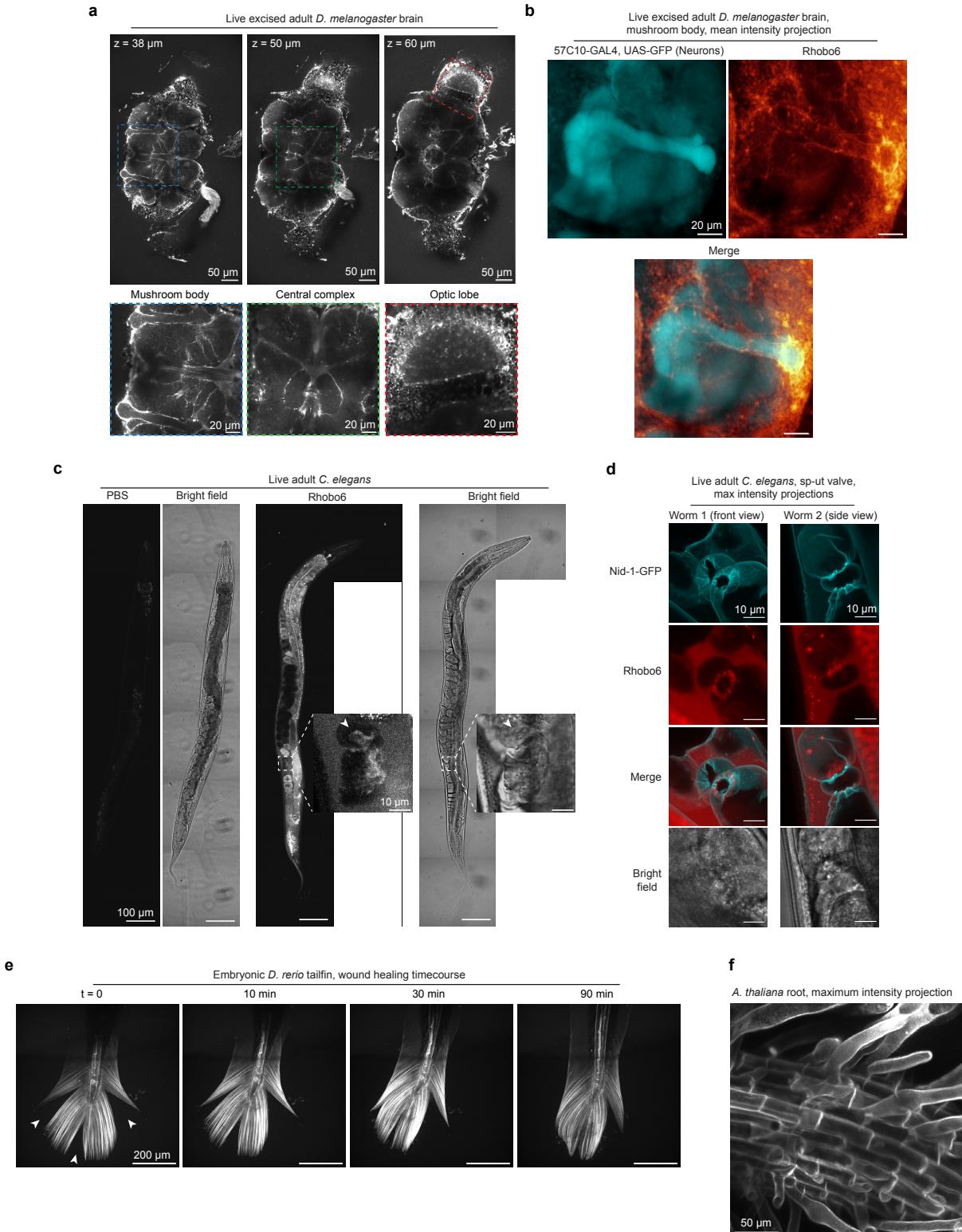
1332 **b**, Frames extracted from 9.6 h imaging, at one frame per minute, on a coated aggrecan  
1333 substrate incubated with 5  $\mu$ M Rhobo6. ROIs analyzed in (c) are highlighted in the first  
1334 frame.

1335 **c**, Time trace of signal, calculated as mean intensity within three different manually traced  
1336 ROIs, from (b). Photobleaching was not observed over the course of imaging.

1337 **d**, Effect of imaging buffer, mucin expression, and cell fixation on cell surface Rhobo6 signal.  
1338 MCF10A+GFP-MUC1 $\Delta$ CT were incubated with doxycycline to induce GFP-tagged mucin  
1339 expression, and imaged in different buffers containing 5  $\mu$ M Rhobo6. PBS shows the best  
1340 signal to background ratio. Cell surface signal can be partially competed upon addition of  
1341 200 mM sorbitol (cf. Extended Data Figure 1d), confirming that Rhobo6 binding is diol-  
1342 dependent and reversible. DMEM/F12 media contains 17.5 mM D-Glucose, likely  
1343

1345 contributing to a higher background than PBS. Supplementation of DMEM/F12 with the  
1346 remaining complete media components (cf. *Methods*) results in the lowest observed signal-  
1347 to-background ratio, likely due to the abundance of glyconjugates in serum. MCF10A cells  
1348 that were not induced to express GFP-MUC1 $\Delta$ CT were also imaged in PBS and exhibited  
1349 dramatically reduced cell surface Rhobo6 labeling, possibly due to the low density of binding  
1350 sites on these cells. Finally, mucin-expressing cells were imaged after fixation with 4%  
1351 paraformaldehyde; as a result of the fixation, membrane integrity is compromised, allowing  
1352 Rhobo6 to accumulate in the cytosol. Rhobo6 is therefore not suitable for use with  
1353 chemically fixed samples as it will accumulate non-specifically in fixed cells.




#### Extended Data Figure 4. Rhobo6 toxicity, reversibility in comparison to Rhobo, related to Fig. 3

**a**, Brightfield images of a representative pair of glands from Fig. 3b.

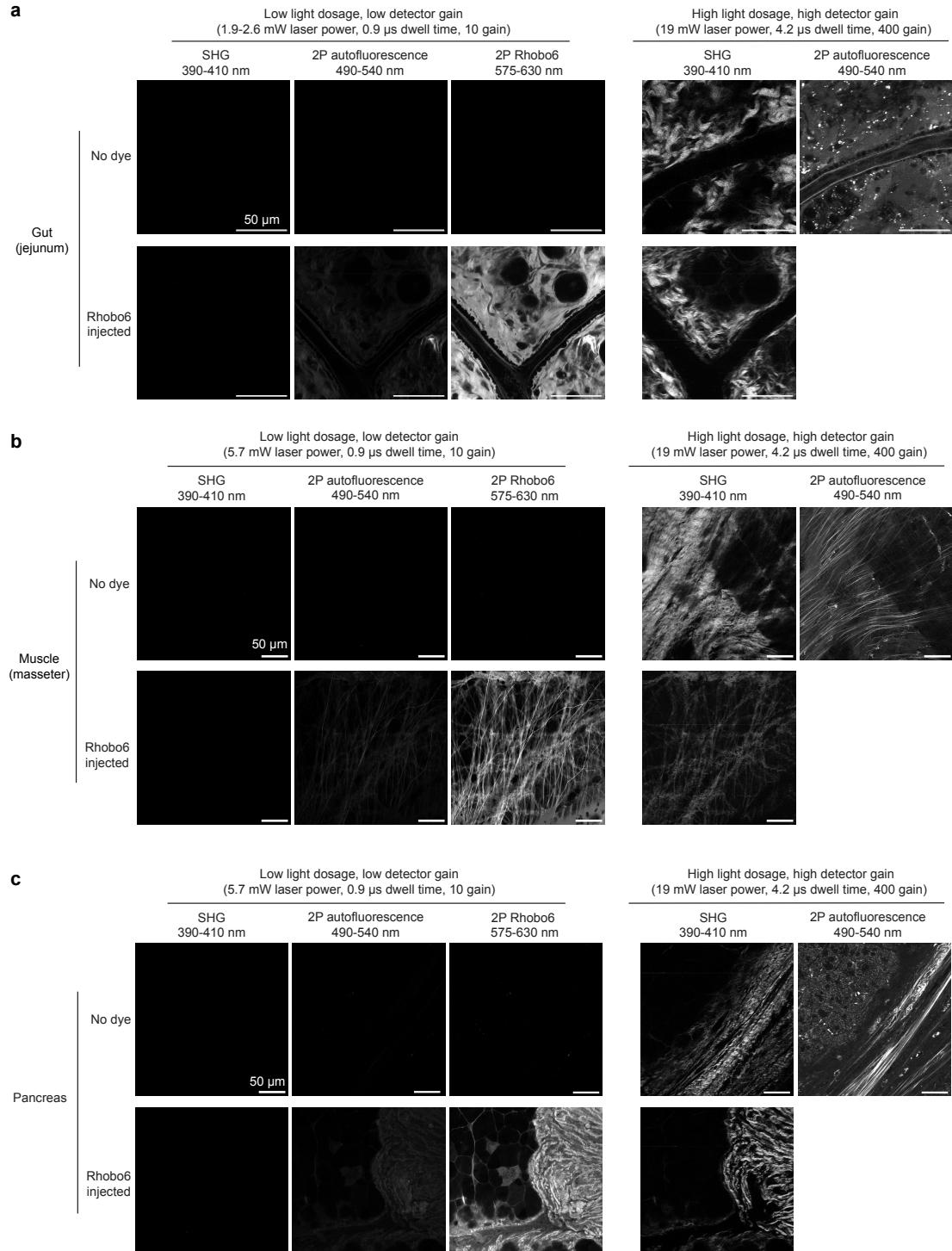
**b**, Raw image of embryonic salivary gland labeled with Rhob06 reported in Fig. 3c. Inset shows comparison between raw and denoised dataset, confirming no visual artifacts are introduced in the process. Denoise was performed through Nikon NIS Elements AI Denoise (cf. Supplementary Table 1). Line plot of red region is reported in **(c)**.

**c**, Line plot of red outlined region from (b). Denoising increases signal to noise without altering biological features.

1365 **d**, Mouse embryonic salivary glands labeled with 5  $\mu$ M Rhobo or Rhobo6, along with  
1366 Hoechst (nuclear stain) and NucSpot650 (dead cell stain). Glands were incubated for 1 h  
1367 with all probes and imaged. Rhobo6 labeling is confined in the extracellular space, but  
1368 colocalizes with dead cells due to compromised membrane integrity (arrows). On the other  
1369 hand, Rhobo labeling accumulates intracellularly in both live and dead cells.  
1370 **e**, Glands from (b) were washed three times over the course of 3 h with DMEM/F12. Rhobo6  
1371 labeling was rapidly reversible, while Rhobo labeling was not diminished by washing over  
1372 the course of the experiment. Rhobo images are contrast normalized across (d) and (e) and  
1373 Rhobo6 images are independently normalized across (d) and (e). Notably, Rhobo is not able  
1374 to label structures of the extracellular matrix in these glands, likely due to cytosolic  
1375 sequestration.  
1376 **f**, Representative STED image of mouse pancreatic ECM obtained by imaging freshly  
1377 excised tissue labeled with Rhobo6. Depletion was achieved with a 660 nm laser.  
1378 **g**, Three regions of interest (ROIs) from (f), comparing confocal and STED imaging. Contrast  
1379 is not normalized across imaging conditions and fields of view. Images were denoised (cf.  
1380 Supplementary Table 1).  
1381 **h**, Intensity plot of red line from (g) displaying the increased resolving power achieved by  
1382 STED microscopy when compared to diffraction-limited confocal microscopy.  
1383



1384

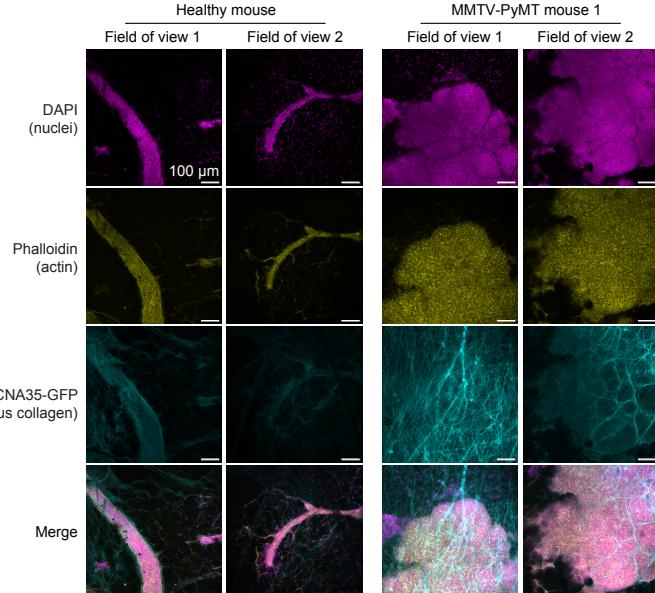

1385

1386 **Extended Data Figure 5. ECM labeling in non-mammalian organisms.**

1387 **a**, Volume of an adult *Drosophila* brain labeled by bathing with 5  $\mu$ M Rhobo6 in saline.  
 1388 Imaging at different planes reveals labeling surrounding landmarks in the fly brain, including  
 1389 neuron tracts between the optic lobe and the central brain, the central complex, and the  
 1390 mushroom body. Images were denoised (cf. Supplementary Table 1).

1391 **b**, Mean intensity projection of a confocal volume capturing the mushroom body in a  
 1392 *Drosophila* brain. The sample endogenously expressed GFP in neuronal cells and was

1393 labeled with Rhob06 upon dissection (cf. *Methods*). Images were denoised (cf.  
1394 **Supplementary Table 1**).  
1395 **c**, Brightfield and confocal fluorescence images of whole *C. elegans* injected with 10 pL of  
1396 100  $\mu$ M Rhob06 in PBS containing 1% DMSO. Contrast is normalized between PBS-injected  
1397 and Rhob06 injected animals. Inset is a crop and enlargement of the oviduct region.  
1398 **d**, Max intensity projections of confocal volumes taken at the oviduct of animals  
1399 endogenously expressing Nidogen-1-mNeonGreen (Nid-1-GFP) to highlight oviduct  
1400 surfaces, co-localized to Rhob06 labeling. Rhob06 signal is enriched at the sp-ut valve within  
1401 the lumen of the oviduct. Rhob06 does not label the Nid-1-rich oviduct basement membrane,  
1402 which is not in contact with the lumen of gonad arm.  
1403 **e**, Time course of wound healing in zebrafish larvae (8 d.p.f.) incubated with 5  $\mu$ M Rhob06 in  
1404 tank water. Tail nicks (arrows) were necessary for dye delivery. Structures of the tail ECM  
1405 and notochord are labeled.  
1406 **f**, Max intensity projection of an *Arabidopsis* root after labeling overnight with 5  $\mu$ M Rhob06  
1407 in pure water. Root cell surfaces are labeled.




1408  
1409

1410 **Extended Data Figure 6. Comparison between 2-photon Rhob6 imaging and label-  
1411 free ECM imaging techniques**

1412 **a-c**, Gut (jejunum), muscle (masseter), and pancreas from both a control mouse and a  
1413 mouse retroorbitally injected with 100 nmol of Rhob6 were imaged using second harmonic  
1414 generation microscopy (SHG), two photon excitation autofluorescence (2P autofluorescence,  
1415 also known as TPEF) and two photon excitation fluorescence (2P Rhob6). Fields of view  
1416 were imaged with a low light dosage highlighting the efficiency of 2P Rhob6 compared to  
1417 SHG and TPEF, followed by a high light dosage for SHG and TPEF, in order to obtain  
1418 contrast with those methods (cf. Supplementary Table 1). Contrast was normalized across all


1419 low dosage images within each tissue type. High dosage SHG images are normalized to  
1420 each other and high dosage TPEF images are not normalized to any other image. Reported  
1421 laser power is average measured power at sample plane for 120 fs pulse at 80 MHz  
1422 repetition rate.



1423  
1424

1425 **Extended Data Figure 7. Immunostaining of wild-type and tumor-bearing mouse**  
1426 **mammary glands**

1427 Immunofluorescence of fixed and wholermounted mammary glands using phalloidin (yellow)  
1428 and CNA35-GFP (cyan) to mark filamentous actin and fibrillar collagen, respectively, and  
1429 DAPI to stain cell nuclei (magenta). Two fields of view are shown for each of the mammary  
1430 glands presented in Fig. 5, resected from the wild-type mouse (left) and MMTV-PyMT mouse  
1431 1.



1432  
1433

1434 **Extended Data Figure 8.** Chemical characterization of Rhobo6.  
1435 **a**, Analytical liquid chromatography trace with absorbance detection at 254 nm (top) and  
1436 mass spectrum of main peak (bottom).  
1437 **b**, Stability of Rhobo6 at room temperature in 1:1 DMSO:PBS over time, as assessed by  
1438 HPLC with absorbance detection at 254 nm. Calculated Rhobo6 purity ranged from 95-96%  
1439 over the 72 h period.