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Abstract

Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and
each program is associated with human malignancies. However, knowledge remains incomplete
of epigenetic mechanisms that maintain the highly restricted latency | program, present in
memory and Burkitt lymphoma cells, in which EBNAL1 is the only EBV-encoded protein
expressed. Given increasing appreciation that higher order chromatin architecture is an important
determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein
Homolog (WAPL), a host factor that unloads cohesins to control DNA loop size and that was
discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed
LMP1 and LMP2A expression but not other EBV oncogenes to yield a viral program reminiscent
of EBV latency I1, whichisrarely observed in B-cells. WAPL KO also increased LM P1/2A
levelsin latency 111 lymphaoblastoid cells. WAPL KO altered EBV genome architecture,
triggering formation of DNA loops between the LM P promoter region and the EBV origins of
Iytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprograms EBV
genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone
repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate

latent membrane protein expression to maintain Burkitt latency I.

Author Summary

EBV isahighly prevalent herpesvirus etiologically linked to multiple lymphomas, gastric and
nasopharyngeal carcinomas, and multiple sclerosis. EBV persistsin the human host in B-cells
that express a series of latency programs, each of which is observed in adistinct type of human

lymphoma. The most restricted form of EBV latency, called latency I, is observed in memory
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cells and in most Burkitt lymphomas. In this state, EBNAL1 is the only EBV-encoded protein
expressed to facilitate infected cell immunoevasion. However, epigenetic mechanisms that
repress expression of the other eight EBV-encoded latency proteins remain to be fully elucidated.
We hypothesized that the host factor WAPL might have arole in restriction of EBV genes, asit is
amajor regulator of long-range DNA interactions by negatively regulating cohesin proteins that
stabilize DNA loops, and WAPL was found in ayeast 2-hybrid screen for EBNA2-interacting
host factors. Using CRISPR together with Hi-ChlP and Hi-C DNA architecture analyses, we
uncovered WAPL rolesin suppressing expression of LMP1 and LMP2A, which mimic signaling
by CD40 and B-cell immunoglobulin receptors, respectively. These proteins are expressed
together with EBNA1 in the latency |1 program. We demonstrate that WAPL KO changes EBV
genomic architecture, including allowing the formation of DNA loops between the oriLyt
enhancers and the LM P promoter regions. Collectively, our study suggests that WAPL reinforces
Burkitt latency | by preventing the formation of DNA loops that may instead support the latency

[l program.

Key words:
EBV genome, genomic looping, viral genome architecture, WAPL, latency I, latency I11, latency

11, HIChIR, Hi-C
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Introduction

Epstein-Barr virus (EBV) infects >95% of adults and causes ~200,000 cancers/year, including
Burkitt and Hodgkin lymphomas and nasopharyngeal and gastric carcinomas [1-5]. Upon
infection, the double-stranded DNA EBV genomeis circularized and chromatinized, though
much remains to be learned about how it folds into higher order structures. Upon B-cell
infection, EBV switches between the pre-latency latency 11b and latency 111 programs [6-8], the
latter of which expresses six Epstein-Barr nuclear antigens (EBNA) and two latent membrane
proteins (LMP), LMP1 and LMP2A. LMP1 mimics signaling from activated CD40 receptors
[9,10], whereas LM P2A subverts B-cell receptor signaling [11].

Microenvironmental cuestrigger EBV to switch to latency 11a, where the Q promoter (Qp)
and LMP promoters (LMPp) drive expression of EBNAL, LMP1, and LMP2A, respectively.
Cytokines, in particular IL-15 and IL-21, downmodulate EBNA expression while supporting
LMP1 expression [12-15]. Latency Ila B-cdlls further differentiate into memory cells, the EBV
reservoir, where EBNAL isthe only viral protein expressed [1]. Latency llaisobserved in
Hodgkin Reed-Sternberg tumor cells[1,2,16], while Burkitt lymphoma and gastric carcinoma
use latency | [17] (Fig. 1B). However, much remains to be learned about the transition from
latency llato latency | and about chromatin-based mechanisms that maintain latency |.

Three-dimensional genome architecture is amagjor determinant of EBV gene expression [18—
21]. The cohesin complex, comprised of SMC1, SMC3, and RAD21 subunits, forms aring-
shaped structure that encircles DNA to mediate long-range genomic interactions [22]. CTCF and
cohesin are loaded onto discrete EBV and host genomic sites[18,21,23-31]. For instance, DNA

loops juxtapose the EBV genomic origin of plasmid replication (OriP) enhancer with Cp and also
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with the LM P1/2p region to support latency 111 [24,31,32]. However, the OriP/LMPp loop is
observed in latency | cells and is not sufficient to drive LM P1/2A expression [31].

Several factors limit DNA loop size [21,24-26]. First, paired CTCF sites block cohesin-driven
loop extrusion to anchor DNA loops. Second, WAPL (wings apart-like protein homolog) [33,34]
limits DNA loop size by opening agate from which DNA can exit cohesin loops [35,36].
Consequently, large DNA loops are observed in WAPL deficient cells [34] (Fig. 1A). Notably,
WAPL was discovered in a yeast-2 hybrid screen for host factors that associate with EBNA2 and
was therefore originally named friend-of-EBNAZ2 (FOE) [37]. Despite this intriguing connection
to EBV latency, WAPL rolesin EBV-infected cells are unstudied.

Here, we tested the hypothesis that EBV utilizes WAPL to regulate viral gene expression.
WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A, but not other EBV
latency genes, suggestive of a switch to latency Ila. Long-range DNA analyses demonstrated that
WAPL KO altered specific EBV genomic DNA loops, in particular at the LMP promoter regions

and at the EBV oriLyt enhancers.
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102  Results

103 WAPL isnecessary for maintenance of EBV latency |

104 To test the role of WAPL in regulation of EBV gene expression, we knocked out WAPL in
105 latency | Burkitt MUTU 1 or in latency 111 GM 12878 lymphoblastoid cells (LCL) (Fig. S1A, B).
106 WAPL KO did not significantly alter proliferation of either MUTU | or GM 12878, even though
107 it dramatically altered nuclear morphology (Fig. S1A-D), consistent with prior studiesin EBV-
108 negative cancer cell models[33,34].

109 To define how WAPL KO affects host and EBV gene expression, we performed RNA

110  sequencing (RNA-seq) following acute WAPL KO or in control MUTU | and GM12878. While
111  theexpression of most EBV genes was not significantly changed by WAPL KO, LMP1 and

112 LMP2A levels were significantly increased in MUTU 1 (Fig. 1C, Table S1). By contrast,

113 EBNAZ2 was not substantially increased, suggesting an aternative mechanism increased

114  LMPL/2A co-expression, perhaps reminiscent of latency I1. Likewise, WAPL KO did not

115 increase most EBV lytic genes or change EBV genome copy number (Fig. 1C, 1E, S1E, Table
116  S1). WAPL KO also increased expression of LMP1/2A, but not of EBNA2 in GM 12878 (Fig.
117 1D, 1F, S1F, Table S1).

118 We next interrogated WAPL KO effects on host gene expression. Consistent with LMP1 de-
119  repression, LMP1/NF-xB target genes were amongst the most highly induced by WAPL [38],
120  including MRNASs encoding the chemokines CCL3, CCL4 and CCL22, BIRC3 (which encodes
121  clAP2), and BCL2A1 (which encodes BFL1) (Fig. S2A). Gene ontology analyses identified that
122 chemotaxis/chemokine pathways were the most highly upregulated by Burkitt WAPL KO (Fig.
123  S2B). GM 12878 WAPL KO also upregulated CCL3 and CCL4, together with antiviral responses

124  and responseto type Il interferon (Fig. S2C-D).
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Subcellular distribution of de-repressed LMP1 and LMP2A

LMP1 and LMP2A signal from plasma membrane and endosomal sites, where they form
puncta or membrane caps [39-44]. We asked whether WAPL KO induced typical LMP1 and
LMP2A subcellular distribution. LM P1 puncta were observed in a significant proportion of
WAPL KO, but rarely in control MUTU | (Fig. 2A-B). Similar results were obtained for
LMP2A, in which LM P2A was de-repressed by WAPL KO and had ssimilar subcellular
distribution asin GM 12878 (Fig. 2C-D).

Since latency lla B cell models are unavailable, we next asked whether LMP1 and LMP2A
formed membrane punctain WAPL KO P3HR-1 Burkitt cells, which harbor an EBNA2 deletion
[45-48]. Indeed, WAPL KO de-repressed LMP1 and LMP2A in P3HR-1, which formed
characteristic puncta (Fig. S3A-E), indicating that WAPL is required to repress Burkitt LMP
expression even in the absence of EBNA2. However, the percentage of cells that de-repressed
LMP1 and LMP2A were somewhat lower than in MUTU | or GM12878. This may be related to

disruption of EBV genomic architecture by the deletion present in P3HR-1.

WAPL regulates LM P region looping

To test the hypothesis that WAPL KO atered EBV genomic architecture to de-repress
LMP1/2A, we performed EBV genomic Hi-C, which measures long-range DNA contacts using
proximity ligation with high-throughput sequencing [28,49,50] (Fig. 3A). At a cutoff of FDR <
0.05 and Z-score > 1, Hi-C identified that 60 EBV genomic loops were gained upon WAPL KO
(Fig. 3B, Table S2), including between the LM P region and the rightward oriLyt (oriLyt")
enhancer. A loop was also gained between the LM P region and BKRF2, which in turn looped to

the BLRF2 and EBNA-1 region (Fig 3B). WAPL depletion significantly decreased 138 EBV
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148 DNA loops at the cutoff of FDR < 0.05 and Z-score < -1 (Fig. 3C, Table S2), including from the
149  LMPregion to multiple EBV genomic locations, including the leftward oriLyt (oriLyt") (Fig.
150  3C).

151 We next used HiChlP [51] to define how WAPL KO altered long-range EBV genomic

152  interactions between areas of activated chromatin [52,53], marked by histone 3 lysine 27 acetyl
153  (H3K27Ac) (Fig. 4A). HiChlIPidentified a higher frequency of interactions between LMP and
154  both oriLyt regions (Fig. 4B-D, Fig $S4A-B, Table S3). By contrast, WAPL KO decreased

155 interactions between H3K27Ac-marked LMP and severa other EBV genomic regions (S4A-B).
156  Thus, both Hi-C and HiChlIP detected formation of aloop between oriLyt® and the LMP

157  promoter region formed upon WAPL KO.

158 We next characterized how WAPL KO altered LMP1 promoter region histone marks. WAPL
159 KO significantly increased repressive histone 3 lysine 9 and lysine 27 trimethylation

160 (H3K9mMe3/H3K27me3) levels at both the LMPL1 and LM P2A promoter regions (Fig. 4E-F).
161  While polycomb repressive complex | mediated histone 2A lysine 119 monoubiquitination

162  (H2AK199UDb) represses Burkitt LMP1 and LM P2A [54], itslevels were not significantly

163  changed by WAPL KO at LMP1 or LMP2A promoter regions (Fig. SbA-B). WAPL KO did not
164  significantly change H3K27Ac marks at the LM P1 promoter and decreased them at the LMP2A
165  promoter (Fig. S5A-B). These results suggest that WAPL supports EBV latency | by altering
166  EBV genomic structure to increase repressive LM Pp H3K9me3 and H3K27me3 marksto

167 enforcelatency | maintenance (Fig 4G).
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168  Discussion

169 Much remains to be learned about epigenetic mechanisms that maintain latency |. Here, we
170  found that the cohesin release factor WAPL suppresses LMP1 and LMP2A expression in Burkitt
171  latency | by supporting higher order EBV genomic architecture. WAPL KO triggered DNA loops
172  between oriLyt and LMPp, decreased LM Pp repressive H3K9me3/H3K 27me3 marks, and de-
173 repressed LMP1/2A co-expression, even in the absence of EBNA2. These results highlight an
174  important WAPL role in preventing reversion to latency Il.

175 Loss of WAPL permits cohesin to slide beyond host CTCF anchors and enlarges host DNA
176  loops[33]. Our findings suggest that WAPL KO likewise regulates EBV genome architecture. To
177  our knowledge, WAPL effects on viral genomes have not previoudly been defined. Furthermore,
178  our results suggest that EBV genomic structure may be distinct between germinal center B-cells
179 inlatency llaversus memory B-cdlsin latency I. Therefore, important future objectives will be
180  to determine (1) whether WAPL abundance or activity differs between EBV-infected germinal
181  center and memory B-cells and (2) to define germinal center versus memory B-cell EBV

182  genomic architecture as technologies become available to do so on the single cell level as these
183  populationsarerarein vivo.

184 WAPL KO reduced LMPp histone repressive marks in latency |, suggesting that WAPL

185  supportsan EBV genomic configuration that contributesto LMP1 and LMP2A repression. While
186  we cannot rule out that WAPL KO instead alters a host factor that alters LM Pp epigenetic marks,
187 RNAseqg analysis did not reveal significant changesin the expression of H3K9me3 or

188  H3K27me3 writers or erasers. Thus, we instead favor the model that WAPL prevents the

189  formation of loops between oriLyt and LM Pp that induce LMP1/2A co-expression. Notably,

190 DNA loops between oriLyt and LM P promoter regions have been described in gastric carcinoma
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and natural killer cells [26,55], but not previously in B-cdlls. Instead, in latency 111, cohesin and
CTCF bind to the LMP1 and LMP2A control region at a site that overlaps the first LMP2A intron
and the LMP1 3’ untranslated region to drive aloop between the oriP enhancer and LMPp in
support of LMP1 and LMP2A expression. However, the oriP:.LMPp loop is present in MUTU |,
where LMP1/2A are epigenetically silenced [31], suggesting that additional mechanisms repress
LMP expression in latency |. Furthermore, cohesin knockdown elevates LCL LMP1/2A levels,
and deletion of the LMP region CTCF site increases repressive LMP2p H3K9me3 and DNA
methylation marks [24,31,32], consistent with our finding that DNA loop(s) can repress
LMP1/2A.

Although WAPL was discovered as an EBNAZ2 binding partner [37], the role of WAPL in EBV
genome regulation had remained unstudied. Since EBNAZ2 isamajor inducer of LMP1 and
LMP2A in EBV latency I11, an intriguing possibility is that EBNAZ2 not only activates LMPp
chromatin but may also dismiss WAPL from thiskey EBV genomic region. In this manner,
EBNA2 may alter EBV genomic architecture to reduce H3K9me3/H3K27me3 repressive marks
in support of LMP expression in newly infected cells. It may also work in latency 111 inasmilar
manner while being supported by recruitment of co-activators and effects on DNA
hypomethylation [56,57]. Taken together, we now propose that WAPL prevents loops between
oriLyt and LMPp to repress LMPL/2A in latency |, whereas adistinct oriP/LM Pp loop supports
LMP expression in latency Ill.

In conclusion, EBV coopts WAPL in latency | to regulate higher order EBV genome
architecture to restrict LMP1 and LM P2A expression. It provides a new latency Il B-cell model

and lays the foundation for future studies of how WAPL remodels enhancer/promoter

10
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communication for EBV and for the three-dimensional genome regulation of other double

stranded DNA viruses.

Materialsand Methods

RNA-seq

RNA was extracted from B-cells and poly-A enrichment was performed prior to library
preparation and next generation sequencing. Reads were mapped to the hgl9 human (GRCh37)
and Akata EBV genomes. Salmon (v1.0.0) was used to quantify the transcripts [58], and DESeq
v1.14.1]59] was used to determine differentially expressed genes. Genes that had alog,(fold
change) of at least 0.6 (actual fold change of 1.5) and an adjusted p-value of < 0.05 were

considered significant.

Hi-C
The Hi-C assay was performed as previously described [28]. Significantly changed associations
(FDR < 0.05 and Z-score > 1 or < -1) were plotted as circos graphs using the circlize package

(version 0.4.12) of R (version 4.0.5) [60].

HiChlP

HiChlP was performed as previously described [51]. In brief, HiChlP read |oops between EBV
genomic bins (1.5kb) were quantified followed by normalization using loops per 10k total read
pairs. Wilcoxon Rank Sum test was used to evaluate loop differences between conditions. Top
differential loops (p-value < 0.1, difference > 3 normalized read pairs, mean read pairs> 2 in at

least one condition) were visualized by circlize v0.4.15 R package [60].

11
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Data availability

Extended methods are available in the supplementary information. RNA-seq, HiChIP, and Hi-C
data are deposited on the NIH GEO database using accession numbers GSE248336, GSE248335,
and GSE264502 respectively. All figures were made using commercially available GraphPad,

Adobe Illustrator, or packagesin R.
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Figure 1. WAPL negatively regulates LM P1 and L MP2A expression.

(A) Schematic of WAPL antagonism of cohesin-mediated DNA loop formation. WAPL releases
cohesin to promote dissolution of chromatin loops. Upon WAPL KO, cohesin occupancy on
chromatin increases, resulting in larger DNA loops. (B) Schematic diagram of EBV latency
programs. (C-D) Volcano plots of RNA-seq analysis visualizing -logio(p-value) vs. logy(fold
change of EBV mRNA abundance) from (C) Cas9+ MUTU I Burkitt lymphoma cells and (D)
Cas9+ GM 12878 LCLs expressing WAPL vs. control sgRNAS, from n = 3 independent
biological replicates. (E-F) Immunoblot analysis of whole cell lysates (WCL) from (E) MUTU |
cellsand (F) GM 12878 LCLsthat expressed control or WAPL sgRNAS, as indicated,

representative of n = 3 biological replicates.

Figure 2. Subcellular distribution of LMP1 and L M P2A de-repressed by WAPL KO.

(A) Representative confocal microscopy images from n = 3 biological replicates of anti-LMP1
(green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU | cells that expressed control or WAPL
sgRNAs, as indicated. Shown at right are zoomed images of a representative cell (indicated by
the white box). (B) Mean + standard deviation (SD) percentage of LM P1+ cells per field of view,
from n = 3 fields of view from each of three biological replicates. P-values shown as calculated
by one-way ANOVA. (B) Representative confocal microscopy images from n = 3 biological
replicates of anti-LMP2A (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU | that
expressed control or WAPL sgRNAs with zoomed images presented to theright, asin (A). (D)
Mean = SD percentage of LMP2A+ cells per field of view, from n = 3 fields of view from each

of three biological replicates. P-values shown as calculated by one-way ANOVA.
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Figure 3. WAPL KO altershigher order latency | Burkitt EBV genome confor mation.

(A) Schematic of Hi-C workflow and output. Exposed DNA ends were biotinylated and then
ligated to capture close DNA contacts. Ligated DNA was sheared, and biotinylated DNA was
precipitated. EBV DNA was captured to enhance viral DNA Hi-C signal. (B) Hi-C maps of EBV
genomic loops that were enriched in WAPL KO vs. control MUTU | cells, from n = 2 biological
replicates. LMPp and oriLyt regions are indicated. (C) Hi-C maps of EBV genomic loops that

were depleted in WAPL KO vs. control MUTU | cells, from n = 2 biological replicates, asin (B).

Figure4. WAPL KO alterslatency | Burkitt EBV genomic activated chromatin loops and
represses LM P promoter epigenetic marks.

(A) Schematic of H3K27Ac HiChlP sample preparation and output. Chromatin was
formaldehyde crosslinked and fragmented. Exposed DNA ends were biotinylated and then
ligated to capture close DNA contacts. Ligated DNA was sheared, DNA was immunopurified by
o—H3K27Ac antibody, and biotinylated DNA was captured via streptavidin. (B) EBV genomic
H3K27Ac HiChlP map depicting loops enriched (red) versus depleted (blue) in WAPL KO
MUTU I cels, relativeto levelsin control cells, from n = 3 biological replicates. (C-D)
Normalized (C) LMP region-oriLyt" loop and (D) LMP region-oriLyt® loop read counts from n =
3replicates, asin (B). EBV genome kilobase coordinates for each looping region are indicated at
top. * P<0.05, ** P <0.01, as calculated by atwo-tailed Student’s t-test. (E-F) ChIP-qgPCR
analysis of H3K9me3 and H3K27me3 abundances at the (E) LMP1 promoter and (F) LMP2A
promoter in Cas9+ MUTU | cells expressing control or WAPL sgRNAs. Shown are mean fold
change of the percentage input values = SD from n = 3 biological replicates. ** P <0.01, *** P

<0.001, as calculated by a two-tailed Welch’'s t-test. (G) Model of WAPL effects on EBV
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genomic architecture. When present, WAPL releases cohesin at the targeted DNA loop (latency
1), which inhibits LM P expression. In the absence of WAPL antagonism, cohesins are loaded
onto the EBV genome to form loops between the LM P promoter region and oriLyt regions.
Juxtaposition of the oriLyt enhancer reduces repressive H3K9me3 and H3K27me3 marks and
supports LMP1 and LMP2A co-expression in the absence of EBNAZ2 (latency I1). In latency I,
an alternative loop forms between the oriP and the Cp to drive expression of all of the EBNA

genes.
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496  Figure 1. WAPL negatively regulates LM P1 and L M P2A expression.
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497  (A) Schematic of WAPL antagonism of cohesin-mediated DNA loop formation. WAPL releases
498  cohesin to promote dissolution of chromatin loops. Upon WAPL KO, cohesin occupancy on
499  chromatin increases, resulting in larger DNA loops. (B) Schematic diagram of EBV latency

500 programs. (C-D) Volcano plots of RNA-seq analysis visualizing -logio(p-value) vs. logx(fold
501 change of EBV mRNA abundance) from (C) Cas9+ MUTU | Burkitt lymphoma cells and (D)
502 Cas9+ GM 12878 LCLs expressing WAPL vs. control sgRNAS, from n = 3 independent

503 biological replicates. (E-F) Immunoblot analysis of whole cell lysates (WCL) from (E) MUTU |
504 cdlsand (F) GM 12878 LCLs that expressed control or WAPL sgRNAS, as indicated,

505 representative of n = 3 biological replicates.

506
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509 (A) Representative confocal microscopy images from n = 3 biological replicates of anti-LMP1
510 (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU | cells that expressed control or WAPL
511 sgRNAs, asindicated. Shown at right are zoomed images of arepresentative cell (indicated by
512 thewhite box). (B) Mean * standard deviation (SD) percentage of LMP1+ cells per field of view,
513  fromn = 3fields of view from each of three biological replicates. P-values shown as calculated
514 by one-way ANOVA. (B) Representative confocal microscopy images from n = 3 biological

515 replicates of anti-LMP2A (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU | that

516  expressed control or WAPL sgRNAs with zoomed images presented to theright, asin (A). (D)
517 Mean = SD percentage of LMP2A+ cells per field of view, from n = 3 fields of view from each
518 of three biological replicates. P-values shown as calculated by one-way ANOVA.

519
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522  Figure 3. WAPL KO altershigher order latency | Burkitt EBV genome confor mation.
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523  (A) Schematic of Hi-C workflow and output. Exposed DNA ends were biotinylated and then
524 ligated to capture close DNA contacts. Ligated DNA was sheared, and biotinylated DNA was
525 precipitated. EBV DNA was captured to enhance viral DNA Hi-C signal. (B) Hi-C maps of EBV
526  genomic loops that were enriched in WAPL KO vs. control MUTU | célls, from n = 2 biological
527  replicates. LMPp and oriLyt regions are indicated. (C) Hi-C maps of EBV genomic loops that
528 weredepleted in WAPL KO vs. control MUTU | cells, from n = 2 biological replicates, asin (B).
529
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Figure4. WAPL KO alterslatency | Burkitt EBV genomic activated chromatin loops and
represses LM P promoter epigenetic marks.

(A) Schematic of H3K27Ac HiChlP sample preparation and output. Chromatin was
formaldehyde crosslinked and fragmented. Exposed DNA ends were bictinylated and then
ligated to capture close DNA contacts. Ligated DNA was sheared, DNA was immunopurified by
o—H3K27Ac antibody, and biotinylated DNA was captured via streptavidin. (B) EBV genomic
H3K27Ac HiChlP map depicting loops enriched (red) versus depleted (blue) in WAPL KO
MUTU I cels, relativeto levelsin control cells, from n = 3 biological replicates. (C-D)
Normalized (C) LMP region-oriLyt" loop and (D) LMP region-oriLyt® loop read counts from n =
3replicates, asin (B). EBV genome kilobase coordinates for each looping region are indicated at
top. * P<0.05, ** P <0.01, as calculated by atwo-tailed Student’s t-test. (E-F) ChiP-gPCR
analysis of H3K9me3 and H3K27me3 abundances at the (E) LMP1 promoter and (F) LMP2A
promoter in Cas9+ MUTU | cells expressing control or WAPL sgRNAs. Shown are mean fold
change of the percentage input values = SD from n = 3 biological replicates. ** P <0.01, *** P
< 0.001, as calculated by atwo-tailed Welch's t-test. (G) Model of WAPL effects on EBV
genomic architecture. When present, WAPL releases cohesin at the targeted DNA loop (latency
1), which inhibits LM P expression. In the absence of WAPL antagonism, cohesins are loaded
onto the EBV genome to form loops between the LM P promoter region and oriLyt regions.
Juxtaposition of the oriLyt enhancer reduces repressive H3K9me3 and H3K 27me3 marks and
supports LMP1 and LMP2A co-expression in the absence of EBNAZ2 (latency I1). In latency 1,
an alternative loop forms between the oriP and the Cp to drive expression of all of the EBNA
genes.
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