

1 **Full Title:** The DNA loop release factor WAPL suppresses Epstein-Barr virus latent membrane
2 protein expression to maintain the highly restricted latency I program

3

4 **Short Title:** WAPL represses LMP1 and LMP2A to maintain EBV Burkitt latency I

5

6 **Authors:** Laura A. Murray-Nerger¹⁻³, Davide Maestri^{4,5#}, Xiang Liu^{6#}, Zhixuan Li^{1-3#}, Italo
7 Tempera⁴, Mingxiang Teng⁶, and Benjamin E. Gewurz^{1-3*}

8

9 **Author affiliations:**

10 ¹Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181
11 Longwood Avenue, Boston, MA 02115, USA

12 ²Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Harvard
13 Program in Virology, Boston, MA 02115, USA

14 ³Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA

15 ⁴The Wistar Institute, Philadelphia, PA 19104, USA

16 ⁵Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy

17 ⁶Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research
18 Institute, Tampa, FL, 33612, USA

19 [#]these authors contributed equally

20

21 * Corresponding author

22 Email: bgewurz@bwh.harvard.edu

23 **Abstract**

24 Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and
25 each program is associated with human malignancies. However, knowledge remains incomplete
26 of epigenetic mechanisms that maintain the highly restricted latency I program, present in
27 memory and Burkitt lymphoma cells, in which EBNA1 is the only EBV-encoded protein
28 expressed. Given increasing appreciation that higher order chromatin architecture is an important
29 determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein
30 Homolog (WAPL), a host factor that unloads cohesins to control DNA loop size and that was
31 discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed
32 LMP1 and LMP2A expression but not other EBV oncogenes to yield a viral program reminiscent
33 of EBV latency II, which is rarely observed in B-cells. WAPL KO also increased LMP1/2A
34 levels in latency III lymphoblastoid cells. WAPL KO altered EBV genome architecture,
35 triggering formation of DNA loops between the LMP promoter region and the EBV origins of
36 lytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprograms EBV
37 genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone
38 repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate
39 latent membrane protein expression to maintain Burkitt latency I.

40

41 **Author Summary**

42 EBV is a highly prevalent herpesvirus etiologically linked to multiple lymphomas, gastric and
43 nasopharyngeal carcinomas, and multiple sclerosis. EBV persists in the human host in B-cells
44 that express a series of latency programs, each of which is observed in a distinct type of human
45 lymphoma. The most restricted form of EBV latency, called latency I, is observed in memory

46 cells and in most Burkitt lymphomas. In this state, EBNA1 is the only EBV-encoded protein
47 expressed to facilitate infected cell immunoevasion. However, epigenetic mechanisms that
48 repress expression of the other eight EBV-encoded latency proteins remain to be fully elucidated.
49 We hypothesized that the host factor WAPL might have a role in restriction of EBV genes, as it is
50 a major regulator of long-range DNA interactions by negatively regulating cohesin proteins that
51 stabilize DNA loops, and WAPL was found in a yeast 2-hybrid screen for EBNA2-interacting
52 host factors. Using CRISPR together with Hi-ChIP and Hi-C DNA architecture analyses, we
53 uncovered WAPL roles in suppressing expression of LMP1 and LMP2A, which mimic signaling
54 by CD40 and B-cell immunoglobulin receptors, respectively. These proteins are expressed
55 together with EBNA1 in the latency II program. We demonstrate that WAPL KO changes EBV
56 genomic architecture, including allowing the formation of DNA loops between the oriLyt
57 enhancers and the LMP promoter regions. Collectively, our study suggests that WAPL reinforces
58 Burkitt latency I by preventing the formation of DNA loops that may instead support the latency
59 II program.

60

61 **Key words:**

62 EBV genome, genomic looping, viral genome architecture, WAPL, latency I, latency III, latency
63 II, HiChIP, Hi-C

64 **Introduction**

65 Epstein-Barr virus (EBV) infects >95% of adults and causes ~200,000 cancers/year, including
66 Burkitt and Hodgkin lymphomas and nasopharyngeal and gastric carcinomas [1–5]. Upon
67 infection, the double-stranded DNA EBV genome is circularized and chromatinized, though
68 much remains to be learned about how it folds into higher order structures. Upon B-cell
69 infection, EBV switches between the pre-latency latency IIb and latency III programs [6–8], the
70 latter of which expresses six Epstein-Barr nuclear antigens (EBNA) and two latent membrane
71 proteins (LMP), LMP1 and LMP2A. LMP1 mimics signaling from activated CD40 receptors
72 [9,10], whereas LMP2A subverts B-cell receptor signaling [11].

73 Microenvironmental cues trigger EBV to switch to latency IIa, where the Q promoter (Qp)
74 and LMP promoters (LMPp) drive expression of EBNA1, LMP1, and LMP2A, respectively.
75 Cytokines, in particular IL-15 and IL-21, downmodulate EBNA expression while supporting
76 LMP1 expression [12–15]. Latency IIa B-cells further differentiate into memory cells, the EBV
77 reservoir, where EBNA1 is the only viral protein expressed [1]. Latency IIa is observed in
78 Hodgkin Reed-Sternberg tumor cells [1,2,16], while Burkitt lymphoma and gastric carcinoma
79 use latency I [17] (**Fig. 1B**). However, much remains to be learned about the transition from
80 latency IIa to latency I and about chromatin-based mechanisms that maintain latency I.

81 Three-dimensional genome architecture is a major determinant of EBV gene expression [18–
82 21]. The cohesin complex, comprised of SMC1, SMC3, and RAD21 subunits, forms a ring-
83 shaped structure that encircles DNA to mediate long-range genomic interactions [22]. CTCF and
84 cohesin are loaded onto discrete EBV and host genomic sites [18,21,23–31]. For instance, DNA
85 loops juxtapose the EBV genomic origin of plasmid replication (OriP) enhancer with Cp and also

86 with the LMP1/2p region to support latency III [24,31,32]. However, the OriP/LMPp loop is
87 observed in latency I cells and is not sufficient to drive LMP1/2A expression [31].

88 Several factors limit DNA loop size [21,24–26]. First, paired CTCF sites block cohesin-driven
89 loop extrusion to anchor DNA loops. Second, WAPL (wings apart-like protein homolog) [33,34]
90 limits DNA loop size by opening a gate from which DNA can exit cohesin loops [35,36].
91 Consequently, large DNA loops are observed in WAPL deficient cells [34] (**Fig. 1A**). Notably,
92 WAPL was discovered in a yeast-2 hybrid screen for host factors that associate with EBNA2 and
93 was therefore originally named friend-of-EBNA2 (FOE) [37]. Despite this intriguing connection
94 to EBV latency, WAPL roles in EBV-infected cells are unstudied.

95 Here, we tested the hypothesis that EBV utilizes WAPL to regulate viral gene expression.
96 WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A, but not other EBV
97 latency genes, suggestive of a switch to latency IIa. Long-range DNA analyses demonstrated that
98 WAPL KO altered specific EBV genomic DNA loops, in particular at the LMP promoter regions
99 and at the EBV oriLyt enhancers.

100
101

102 **Results**

103 **WAPL is necessary for maintenance of EBV latency I**

104 To test the role of WAPL in regulation of EBV gene expression, we knocked out WAPL in
105 latency I Burkitt MUTU I or in latency III GM12878 lymphoblastoid cells (LCL) (**Fig. S1A, B**).
106 WAPL KO did not significantly alter proliferation of either MUTU I or GM12878, even though
107 it dramatically altered nuclear morphology (**Fig. S1A-D**), consistent with prior studies in EBV-
108 negative cancer cell models [33,34].

109 To define how WAPL KO affects host and EBV gene expression, we performed RNA
110 sequencing (RNA-seq) following acute WAPL KO or in control MUTU I and GM12878. While
111 the expression of most EBV genes was not significantly changed by WAPL KO, LMP1 and
112 LMP2A levels were significantly increased in MUTU I (**Fig. 1C, Table S1**). By contrast,
113 EBNA2 was not substantially increased, suggesting an alternative mechanism increased
114 LMP1/2A co-expression, perhaps reminiscent of latency II. Likewise, WAPL KO did not
115 increase most EBV lytic genes or change EBV genome copy number (**Fig. 1C, 1E, S1E, Table**
116 **S1**). WAPL KO also increased expression of LMP1/2A, but not of EBNA2 in GM12878 (**Fig.**
117 **1D, 1F, S1F, Table S1**).

118 We next interrogated WAPL KO effects on host gene expression. Consistent with LMP1 de-
119 repression, LMP1/NF- κ B target genes were amongst the most highly induced by WAPL [38],
120 including mRNAs encoding the chemokines CCL3, CCL4 and CCL22, BIRC3 (which encodes
121 cIAP2), and BCL2A1 (which encodes BFL1) (**Fig. S2A**). Gene ontology analyses identified that
122 chemotaxis/chemokine pathways were the most highly upregulated by Burkitt WAPL KO (**Fig.**
123 **S2B**). GM12878 WAPL KO also upregulated CCL3 and CCL4, together with antiviral responses
124 and response to type II interferon (**Fig. S2C-D**).

125 **Subcellular distribution of de-repressed LMP1 and LMP2A**

126 LMP1 and LMP2A signal from plasma membrane and endosomal sites, where they form
127 puncta or membrane caps [39–44]. We asked whether WAPL KO induced typical LMP1 and
128 LMP2A subcellular distribution. LMP1 puncta were observed in a significant proportion of
129 WAPL KO, but rarely in control MUTU I (**Fig. 2A-B**). Similar results were obtained for
130 LMP2A, in which LMP2A was de-repressed by WAPL KO and had similar subcellular
131 distribution as in GM12878 (**Fig. 2C-D**).

132 Since latency IIa B cell models are unavailable, we next asked whether LMP1 and LMP2A
133 formed membrane puncta in WAPL KO P3HR-1 Burkitt cells, which harbor an EBNA2 deletion
134 [45–48]. Indeed, WAPL KO de-repressed LMP1 and LMP2A in P3HR-1, which formed
135 characteristic puncta (**Fig. S3A-E**), indicating that WAPL is required to repress Burkitt LMP
136 expression even in the absence of EBNA2. However, the percentage of cells that de-repressed
137 LMP1 and LMP2A were somewhat lower than in MUTU I or GM12878. This may be related to
138 disruption of EBV genomic architecture by the deletion present in P3HR-1.

139

140 **WAPL regulates LMP region looping**

141 To test the hypothesis that WAPL KO altered EBV genomic architecture to de-repress
142 LMP1/2A, we performed EBV genomic Hi-C, which measures long-range DNA contacts using
143 proximity ligation with high-throughput sequencing [28,49,50] (**Fig. 3A**). At a cutoff of FDR <
144 0.05 and Z-score > 1, Hi-C identified that 60 EBV genomic loops were gained upon WAPL KO
145 (**Fig. 3B, Table S2**), including between the LMP region and the rightward oriLyt (oriLyt^R)
146 enhancer. A loop was also gained between the LMP region and BKRF2, which in turn looped to
147 the BLRF2 and EBNA-1 region (**Fig 3B**). WAPL depletion significantly decreased 138 EBV

148 DNA loops at the cutoff of FDR < 0.05 and Z-score < -1 (**Fig. 3C, Table S2**), including from the
149 LMP region to multiple EBV genomic locations, including the leftward oriLyt (oriLyt^L) (**Fig.**
150 **3C**).

151 We next used HiChIP [51] to define how WAPL KO altered long-range EBV genomic
152 interactions between areas of activated chromatin [52,53], marked by histone 3 lysine 27 acetyl
153 (H3K27Ac) (**Fig. 4A**). HiChIP identified a higher frequency of interactions between *LMP* and
154 both oriLyt regions (**Fig. 4B-D, Fig S4A-B, Table S3**). By contrast, WAPL KO decreased
155 interactions between H3K27Ac-marked LMP and several other EBV genomic regions (**S4A-B**).
156 Thus, both Hi-C and HiChIP detected formation of a loop between oriLyt^R and the LMP
157 promoter region formed upon WAPL KO.

158 We next characterized how WAPL KO altered LMP1 promoter region histone marks. WAPL
159 KO significantly increased repressive histone 3 lysine 9 and lysine 27 trimethylation
160 (H3K9me3/H3K27me3) levels at both the LMP1 and LMP2A promoter regions (**Fig. 4E-F**).
161 While polycomb repressive complex I mediated histone 2A lysine 119 monoubiquitination
162 (H2AK199Ub) represses Burkitt LMP1 and LMP2A [54], its levels were not significantly
163 changed by WAPL KO at LMP1 or LMP2A promoter regions (**Fig. S5A-B**). WAPL KO did not
164 significantly change H3K27Ac marks at the LMP1 promoter and decreased them at the LMP2A
165 promoter (**Fig. S5A-B**). These results suggest that WAPL supports EBV latency I by altering
166 EBV genomic structure to increase repressive LMPp H3K9me3 and H3K27me3 marks to
167 enforce latency I maintenance (**Fig 4G**).

168 **Discussion**

169 Much remains to be learned about epigenetic mechanisms that maintain latency I. Here, we
170 found that the cohesin release factor WAPL suppresses LMP1 and LMP2A expression in Burkitt
171 latency I by supporting higher order EBV genomic architecture. WAPL KO triggered DNA loops
172 between *oriLyt* and LMPp, decreased LMPp repressive H3K9me3/H3K27me3 marks, and de-
173 repressed LMP1/2A co-expression, even in the absence of EBNA2. These results highlight an
174 important WAPL role in preventing reversion to latency II.

175 Loss of WAPL permits cohesin to slide beyond host CTCF anchors and enlarges host DNA
176 loops [33]. Our findings suggest that WAPL KO likewise regulates EBV genome architecture. To
177 our knowledge, WAPL effects on viral genomes have not previously been defined. Furthermore,
178 our results suggest that EBV genomic structure may be distinct between germinal center B-cells
179 in latency IIa versus memory B-cells in latency I. Therefore, important future objectives will be
180 to determine (1) whether WAPL abundance or activity differs between EBV-infected germinal
181 center and memory B-cells and (2) to define germinal center versus memory B-cell EBV
182 genomic architecture as technologies become available to do so on the single cell level as these
183 populations are rare *in vivo*.

184 WAPL KO reduced LMPp histone repressive marks in latency I, suggesting that WAPL
185 supports an EBV genomic configuration that contributes to LMP1 and LMP2A repression. While
186 we cannot rule out that WAPL KO instead alters a host factor that alters LMPp epigenetic marks,
187 RNAseq analysis did not reveal significant changes in the expression of H3K9me3 or
188 H3K27me3 writers or erasers. Thus, we instead favor the model that WAPL prevents the
189 formation of loops between *oriLyt* and LMPp that induce LMP1/2A co-expression. Notably,
190 DNA loops between *oriLyt* and LMP promoter regions have been described in gastric carcinoma

191 and natural killer cells [26,55], but not previously in B-cells. Instead, in latency III, cohesin and
192 CTCF bind to the LMP1 and LMP2A control region at a site that overlaps the first *LMP2A* intron
193 and the LMP1 3' untranslated region to drive a loop between the oriP enhancer and LMPp in
194 support of LMP1 and LMP2A expression. However, the oriP:LMPp loop is present in MUTU I,
195 where LMP1/2A are epigenetically silenced [31], suggesting that additional mechanisms repress
196 LMP expression in latency I. Furthermore, cohesin knockdown elevates LCL LMP1/2A levels,
197 and deletion of the LMP region CTCF site increases repressive LMP2p H3K9me3 and DNA
198 methylation marks [24,31,32], consistent with our finding that DNA loop(s) can repress
199 LMP1/2A.

200 Although WAPL was discovered as an EBNA2 binding partner [37], the role of WAPL in EBV
201 genome regulation had remained unstudied. Since EBNA2 is a major inducer of LMP1 and
202 LMP2A in EBV latency III, an intriguing possibility is that EBNA2 not only activates LMPp
203 chromatin but may also dismiss WAPL from this key EBV genomic region. In this manner,
204 EBNA2 may alter EBV genomic architecture to reduce H3K9me3/H3K27me3 repressive marks
205 in support of LMP expression in newly infected cells. It may also work in latency III in a similar
206 manner while being supported by recruitment of co-activators and effects on DNA
207 hypomethylation [56,57]. Taken together, we now propose that WAPL prevents loops between
208 oriLyt and LMPp to repress LMP1/2A in latency I, whereas a distinct oriP/LMPp loop supports
209 LMP expression in latency III.

210 In conclusion, EBV coopts WAPL in latency I to regulate higher order EBV genome
211 architecture to restrict LMP1 and LMP2A expression. It provides a new latency II B-cell model
212 and lays the foundation for future studies of how WAPL remodels enhancer/promoter

213 communication for EBV and for the three-dimensional genome regulation of other double
214 stranded DNA viruses.

215

216 **Materials and Methods**

217 **RNA-seq**

218 RNA was extracted from B-cells and poly-A enrichment was performed prior to library
219 preparation and next generation sequencing. Reads were mapped to the hg19 human (GRCh37)
220 and Akata EBV genomes. Salmon (v1.0.0) was used to quantify the transcripts [58], and DESeq
221 v1.14.1[59] was used to determine differentially expressed genes. Genes that had a $\log_2(\text{fold}$
222 $\text{change})$ of at least 0.6 (actual fold change of 1.5) and an adjusted p-value of < 0.05 were
223 considered significant.

224

225 **Hi-C**

226 The Hi-C assay was performed as previously described [28]. Significantly changed associations
227 (FDR < 0.05 and Z-score > 1 or < -1) were plotted as circos graphs using the circlize package
228 (version 0.4.12) of R (version 4.0.5) [60].

229

230 **HiChIP**

231 HiChIP was performed as previously described [51]. In brief, HiChIP read loops between EBV
232 genomic bins (1.5kb) were quantified followed by normalization using loops per 10k total read
233 pairs. Wilcoxon Rank Sum test was used to evaluate loop differences between conditions. Top
234 differential loops (p-value < 0.1 , difference > 3 normalized read pairs, mean read pairs ≥ 2 in at
235 least one condition) were visualized by circlize v0.4.15 R package [60].

236

237 **Data availability**

238 Extended methods are available in the supplementary information. RNA-seq, HiChIP, and Hi-C
239 data are deposited on the NIH GEO database using accession numbers GSE248336, GSE248335,
240 and GSE264502 respectively. All figures were made using commercially available GraphPad,
241 Adobe Illustrator, or packages in R.

242

243

244 **Acknowledgements**

245 We thank members of the Gewurz and Zhao labs for helpful feedback and Rui Guo for advice on
246 RNA-seq data analysis. This work was supported by T32 AI007245 and F32 AI172329 to
247 L.A.M.N., by U01 CA275301, R01 CA228700, R01 AI164709, and R21 AI170751 to B.E.G.,
248 and by P01 CA269043 to I.T. and B.E.G. I.T. and D.M. were also supported by R01 AI130209.
249 We appreciate the support of the Molecular Biology Genomics Core at the Dana Farber Cancer
250 Center for RNA-seq and Hi-ChIP data acquisition.

251

252 **Author contributions**

253 L.A.M.N., D.M, Z.L., and B.E.G. designed experiments. L.A.M.N., D.M., and Z.L. performed
254 experiments. L.A.M.N., D.M., X.L., Z.L., I.T., M.T., and B.E.G. analyzed data. L.A.M.N., D.M.,
255 X.L., Z.L., I.T., M.T., and B.E.G. wrote the manuscript.

256

257

258 **Figure legends**

259 **Figure 1. WAPL negatively regulates LMP1 and LMP2A expression.**

260 **(A)** Schematic of WAPL antagonism of cohesin-mediated DNA loop formation. WAPL releases
261 cohesin to promote dissolution of chromatin loops. Upon WAPL KO, cohesin occupancy on
262 chromatin increases, resulting in larger DNA loops. **(B)** Schematic diagram of EBV latency
263 programs. **(C-D)** Volcano plots of RNA-seq analysis visualizing $-\log_{10}(p\text{-value})$ vs. $\log_2(\text{fold}$
264 $\text{change of EBV mRNA abundance})$ from (C) Cas9+ MUTU I Burkitt lymphoma cells and (D)
265 Cas9+ GM12878 LCLs expressing WAPL vs. control sgRNAs, from $n = 3$ independent
266 biological replicates. **(E-F)** Immunoblot analysis of whole cell lysates (WCL) from (E) MUTU I
267 cells and (F) GM12878 LCLs that expressed control or WAPL sgRNAs, as indicated,
268 representative of $n = 3$ biological replicates.

269

270 **Figure 2. Subcellular distribution of LMP1 and LMP2A de-repressed by WAPL KO.**

271 **(A)** Representative confocal microscopy images from $n = 3$ biological replicates of anti-LMP1
272 (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU I cells that expressed control or WAPL
273 sgRNAs, as indicated. Shown at right are zoomed images of a representative cell (indicated by
274 the white box). **(B)** Mean \pm standard deviation (SD) percentage of LMP1+ cells per field of view,
275 from $n = 3$ fields of view from each of three biological replicates. P -values shown as calculated
276 by one-way ANOVA. **(B)** Representative confocal microscopy images from $n = 3$ biological
277 replicates of anti-LMP2A (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU I that
278 expressed control or WAPL sgRNAs with zoomed images presented to the right, as in (A). **(D)**
279 Mean \pm SD percentage of LMP2A+ cells per field of view, from $n = 3$ fields of view from each
280 of three biological replicates. P -values shown as calculated by one-way ANOVA.

281

282 **Figure 3. WAPL KO alters higher order latency I Burkitt EBV genome conformation.**

283 **(A)** Schematic of Hi-C workflow and output. Exposed DNA ends were biotinylated and then
284 ligated to capture close DNA contacts. Ligated DNA was sheared, and biotinylated DNA was
285 precipitated. EBV DNA was captured to enhance viral DNA Hi-C signal. **(B)** Hi-C maps of EBV
286 genomic loops that were enriched in WAPL KO vs. control MUTU I cells, from n = 2 biological
287 replicates. LMPp and oriLyt regions are indicated. **(C)** Hi-C maps of EBV genomic loops that
288 were depleted in WAPL KO vs. control MUTU I cells, from n = 2 biological replicates, as in (B).

289

290 **Figure 4. WAPL KO alters latency I Burkitt EBV genomic activated chromatin loops and**
291 **represses LMP promoter epigenetic marks.**

292 **(A)** Schematic of H3K27Ac HiChIP sample preparation and output. Chromatin was
293 formaldehyde crosslinked and fragmented. Exposed DNA ends were biotinylated and then
294 ligated to capture close DNA contacts. Ligated DNA was sheared, DNA was immunopurified by
295 α -H3K27Ac antibody, and biotinylated DNA was captured via streptavidin. **(B)** EBV genomic
296 H3K27Ac HiChIP map depicting loops enriched (red) versus depleted (blue) in WAPL KO
297 MUTU I cells, relative to levels in control cells, from n = 3 biological replicates. **(C-D)**
298 Normalized (C) LMP region-oriLyt^L loop and (D) LMP region-oriLyt^R loop read counts from n =
299 3 replicates, as in (B). EBV genome kilobase coordinates for each looping region are indicated at
300 top. * P \leq 0.05, ** P \leq 0.01, as calculated by a two-tailed Student's t-test. **(E-F)** ChIP-qPCR
301 analysis of H3K9me3 and H3K27me3 abundances at the (E) LMP1 promoter and (F) LMP2A
302 promoter in Cas9+ MUTU I cells expressing control or WAPL sgRNAs. Shown are mean fold
303 change of the percentage input values \pm SD from n = 3 biological replicates. ** P \leq 0.01, *** P
304 \leq 0.001, as calculated by a two-tailed Welch's t-test. **(G)** Model of WAPL effects on EBV

305 genomic architecture. When present, WAPL releases cohesin at the targeted DNA loop (latency
306 I), which inhibits LMP expression. In the absence of WAPL antagonism, cohesins are loaded
307 onto the EBV genome to form loops between the LMP promoter region and oriLyt regions.
308 Juxtaposition of the oriLyt enhancer reduces repressive H3K9me3 and H3K27me3 marks and
309 supports *LMP1* and *LMP2A* co-expression in the absence of EBNA2 (latency II). In latency III,
310 an alternative loop forms between the oriP and the Cp to drive expression of all of the EBNA
311 genes.

312

313

314 **References**

315 [1] Gewurz BE, Longnecker R, Cohen JI. Epstein-Barr Virus. In: Knipe D, Howley P, editors.
316 Fields Virol. 7th ed. 7th ed., Wolters Kluwer; 2021, p. 324–89.

317 [2] Farrell PJ. Epstein-Barr Virus and Cancer. *Annu Rev Pathol* 2019;14:29–53.
318 <https://doi.org/10.30560/mhs.v2n1p1>.

319 [3] Young LS, Yap LF, Murray PG. Epstein-Barr virus: More than 50 years old and still
320 providing surprises. *Nat Rev Cancer* 2016;16:789–802.
321 <https://doi.org/10.1038/nrc.2016.92>.

322 [4] Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease.
323 *Cell* 2022;185:3652–70. <https://doi.org/10.1016/j.cell.2022.08.026>.

324 [5] Yu H, Robertson ES. Epstein–Barr Virus History and Pathogenesis. *Viruses* 2023;15.
325 <https://doi.org/10.3390/v15030714>.

326 [6] Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. *Semin
327 Immunopathol* 2020;42:131–42. <https://doi.org/10.1007/s00281-020-00792-2>.

328 [7] Price AM, Luftig MA. To Be or Not IIb: A Multi-Step Process for Epstein-Barr Virus
329 Latency Establishment and Consequences for B Cell Tumorigenesis. *PLoS Pathog*
330 2015;11:1–7. <https://doi.org/10.1371/journal.ppat.1004656>.

331 [8] Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, et al. Molecular basis
332 of epstein–barr virus latency establishment and lytic reactivation. *Viruses* 2021;13:1–20.
333 <https://doi.org/10.3390/v13122344>.

334 [9] Kieser A, Sterz KR. The latent membrane protein 1 (LMP1). vol. 391. 2015.
335 https://doi.org/10.1007/978-3-319-22834-1_4.

336 [10] LW W, S J, BE G. Epstein-Barr Virus LMP1-Mediated Oncogenicity. *J Virol*
337 2017;91:e01718-16.

338 [11] Fish K, Comoglio F, Shaffer AL, Ji Y, Pan KT, Scheich S, et al. Rewiring of B cell
339 receptor signaling by Epstein-Barr virus LMP2A. *Proc Natl Acad Sci U S A*
340 2020;117:26318–27. <https://doi.org/10.1073/pnas.2007946117>.

341 [12] Liao Y, Yan J, Beri NR, Roth LG, Cesarman E, Gewurz BE. Germinal Center Cytokines
342 Drive Epigenetic Control of Epstein-Barr Virus Latency Gene Expression. *PLoS Pathog*
343 2024;20:e1011939.

344 [13] Konforte D, Simard N, Paige CJ. Interleukin-21 regulates expression of key Epstein-Barr
345 virus oncoproteins, EBNA2 and LMP1, in infected human B cells. *Virology*
346 2008;374:100–13. <https://doi.org/10.1016/j.virol.2007.12.027>.

347 [14] Kis LL, Takahara M, Nagy N, Klein G, Klein E. Cytokine mediated induction of the
348 major Epstein-Barr virus (EBV)-encoded transforming protein, LMP-1. *Immunol Lett*
349 2006;104:83–8. <https://doi.org/10.1016/j.imlet.2005.11.003>.

350 [15] Li X, Bhaduri-McIntosh S. A central role for STAT3 in gammaherpesvirus-life cycle and

351 -diseases. *Front Microbiol* 2016;7:1–10. <https://doi.org/10.3389/fmicb.2016.01052>.

352 [16] Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. *Leukemia*
353 2021;35:968–81. <https://doi.org/10.1038/s41375-021-01204-6>.

354 [17] Yang J, Liu Z, Zeng B, Hu G, Gan R. Epstein–Barr virus-associated gastric cancer: A
355 distinct subtype. *Cancer Lett* 2020;495:191–9.
356 <https://doi.org/10.1016/j.canlet.2020.09.019>.

357 [18] Holdorf MM, Cooper SB, Yamamoto KR, Miranda JJL. Occupancy of chromatin
358 organizers in the Epstein-Barr virus genome. *Virology* 2011;415:1–5.
359 <https://doi.org/10.1016/j.virol.2011.04.004>.

360 [19] Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle. *Curr Opin Virol*
361 2022;52:78–88. <https://doi.org/10.1016/j.coviro.2021.11.013>.

362 [20] Lieberman P. Chromatin Structure of Epstein-Barr Virus Latent Episomes. vol. 390. 2015.
363 <https://doi.org/10.1007/978-3-319-22822-8>.

364 [21] Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV
365 Genome: A Crucial Factor in Viral Infection. *Viruses* 2023;15:1–14.
366 <https://doi.org/10.3390/v15051088>.

367 [22] Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K. The cohesin ring
368 concatenates sister DNA molecules. *Nature* 2008;454:297–301.
369 <https://doi.org/10.1038/nature07098>.

370 [23] Salamon D, Banati F, Koroknai A, Ravasz M, Szenthe K, Bathori Z, et al. Binding of
371 CCCTC-binding factor in vivo to the region located between Rep* and the C promoter of
372 Epstein-Barr virus is unaffected by CpG methylation and does not correlate with Cp
373 activity. *J Gen Virol* 2009;90:1183–9. <https://doi.org/10.1099/vir.0.007344-0>.

374 [24] Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin
375 conformations. *PLoS Pathog* 2011;7:e1002180.
376 <https://doi.org/10.1371/journal.ppat.1002180>.

377 [25] Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC Controls the
378 Epstein-Barr Virus Lytic Switch. *Mol Cell* 2020;78:653-669.e8.
379 <https://doi.org/10.1016/j.molcel.2020.03.025>.

380 [26] Ding W, Wang C, Narita Y, Wang H, Leong MML, Huang A, et al. The Epstein-Barr
381 Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines. *J Virol*
382 2022;96:e0073922.

383 [27] Tempera I, Lieberman PM. Chromatin organization of gammaherpesvirus latent genomes.
384 *Biochim Biophys Acta - Gene Regul Mech* 2010;1799:236–45.
385 <https://doi.org/10.1016/j.bbagr.2009.10.004>.

386 [28] Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, et al. The three-
387 dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated
388 by PARP1 enzymatic activity. *Nat Commun* 2022;13. <https://doi.org/10.1038/s41467-021-27894-1>.

390 [29] Hughes DJ, Marendy EM, Dickerson CA, Yetming KD, Sample CE, Sample JT.
391 Contributions of CTCF and DNA Methyltransferases DNMT1 and DNMT3B to Epstein-
392 Barr Virus Restricted Latency. *J Virol* 2012;86:1034–45.
393 <https://doi.org/10.1128/jvi.05923-11>.

394 [30] Lee SH, Kim KD, Cho M, Huh S, An SH, Seo D, et al. Characterization of a new
395 CCCTC-binding factor binding site as a dual regulator of Epstein-Barr virus latent
396 infection. vol. 19. 2023. <https://doi.org/10.1371/journal.ppat.1011078>.

397 [31] Chen H-S, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, et al. Epigenetic
398 Deregulation of the LMP1/LMP2 Locus of Epstein-Barr Virus by Mutation of a Single
399 CTCF-Cohesin Binding Site. *J Virol* 2014;88:1703–13. <https://doi.org/10.1128/jvi.02209-13>.

400

401 [32] Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, et al. An atlas of
402 the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory
403 interactions. *Cell Host Microbe* 2012;12:233–45.
404 <https://doi.org/10.1016/j.chom.2012.06.008>.

405 [33] Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M, van Ruiten
406 MS, et al. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. *Cell*
407 2017;169:693-707.e14. <https://doi.org/10.1016/j.cell.2017.04.013>.

408 [34] Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A, Schirghuber E, et al. Wapl is an
409 essential regulator of chromatin structure and chromosome segregation. *Nature*
410 2013;501:564–8. <https://doi.org/10.1038/nature12471>.

411 [35] Beckouët F, Srinivasan M, Roig MB, Chan KL, Scheinost JC, Batty P, et al. Releasing
412 Activity Disengages Cohesin’s Smc3/Scc1 Interface in a Process Blocked by Acetylation.
413 *Mol Cell* 2016;61:563–74. <https://doi.org/10.1016/j.molcel.2016.01.026>.

414 [36] Murayama Y, Uhlmann F. DNA Entry into and Exit out of the Cohesin Ring by an
415 Interlocking Gate Mechanism. *Cell* 2015;163:1628–40.
416 <https://doi.org/10.1016/j.cell.2015.11.030>.

417 [37] Kwiatkowski BA, Ragoczy T, Ehly J, Schubach WH. Identification and cloning of a novel
418 chromatin-associated protein partner of Epstein-Barr nuclear protein 2. *Exp Cell Res*
419 2004;300:223–33. <https://doi.org/10.1016/j.yexcr.2004.06.028>.

420 [38] Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization
421 of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential
422 for B-cell transformation. *MBio* 2023;14. <https://doi.org/10.1128/mbio.02338-23>.

423 [39] Longnecker R, Kieff E. A second Epstein-Barr virus membrane protein (LMP2) is
424 expressed in latent infection and colocalizes with LMP1. *J Virol* 1990;64:2319–26.
425 <https://doi.org/10.1128/jvi.64.5.2319-2326.1990>.

426 [40] Longnecker R, Druker B, Roberts TM, Kieff E. An Epstein-Barr virus protein associated
427 with cell growth transformation interacts with a tyrosine kinase. *J Virol* 1991;65:3681–92.
428 <https://doi.org/10.1128/jvi.65.7.3681-3692.1991>.

429 [41] Lam N, Sugden B. LMP1, a viral relative of the TNF receptor family, signals principally
430 from intracellular compartments. *EMBO J* 2003;22:3027–38.
431 <https://doi.org/10.1093/emboj/cdg284>.

432 [42] Meckes DG, Menaker NF, Raab-Traub N. Epstein-Barr Virus LMP1 Modulates Lipid
433 Raft Microdomains and the Vimentin Cytoskeleton for Signal Transduction and
434 Transformation. *J Virol* 2013;87:1301–11. <https://doi.org/10.1128/jvi.02519-12>.

435 [43] Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, et al. Epstein-Barr virus subverts
436 mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival.
437 vol. 15. 2019. <https://doi.org/10.1371/journal.ppat.1008030>.

438 [44] Liebowitz D, Wang D, Kieff E. Orientation and patching of the latent infection membrane
439 protein encoded by Epstein-Barr virus. *J Virol* 1986;58:233–7.
440 <https://doi.org/10.1128/jvi.58.1.233-237.1986>.

441 [45] King W, Dambaugh T, Heller M, Dowling J, Kieff E. Epstein-Barr virus DNA XII. A
442 variable region of the Epstein-Barr virus genome is included in the P3HR-1 deletion. *J*

443 Virol 1982;43:979–86. <https://doi.org/10.1128/jvi.43.3.979-986.1982>.

444 [46] Bornkamm GW, Hudewenz J, Freese UK, Zimber U. Deletion of the Nontransforming
445 Epstein-Barr Virus Strain P3HR-1 Causes Fusion of the Large Internal Repeat to the DS L
446 Region . J Virol 1982;43:952–68. <https://doi.org/10.1128/jvi.43.3.952-968.1982>.

447 [47] Rabson M, Gradoville L, Heston L, Miller G. Non-immortalizing P3J-HR-1 Epstein-Barr
448 virus: a deletion mutant of its transforming parent, Jijoye. J Virol 1982;44:834–44.
449 <https://doi.org/10.1128/jvi.44.3.834-844.1982>.

450 [48] Rowe D, Heston L, Metlay J, Miller G. Identification and expression of a nuclear antigen
451 from the genomic region of the Jijoye strain of Epstein-Barr virus that is missing in its
452 nonimmortalizing deletion mutant, P3HR-1. Proc Natl Acad Sci U S A 1985;82:7429–33.
453 <https://doi.org/10.1073/pnas.82.21.7429>.

454 [49] Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s guide to Hi-C analysis: Practical
455 guidelines. Methods 2015;72:65–75. <https://doi.org/10.1016/j.ymeth.2014.10.031>.

456 [50] Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A
457 3D map of the human genome at kilobase resolution reveals principles of chromatin
458 looping. Cell 2014;159:1665–80. <https://doi.org/10.1016/j.cell.2014.11.021>.

459 [51] Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP:
460 Efficient and sensitive analysis of protein-directed genome architecture. Nat Methods
461 2016;13:919–22. <https://doi.org/10.1038/nmeth.3999>.

462 [52] Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al.
463 Histone H3K27ac separates active from poised enhancers and predicts developmental
464 state. Proc Natl Acad Sci U S A 2010;107:21931–6.
465 <https://doi.org/10.1073/pnas.1016071107>.

466 [53] Jenuwein T, Allis CD. Translating the histone code. *Science* (80-) 2001;293:1074–80.

467 <https://doi.org/10.1126/science.1063127>.

468 [54] Guo R, Zhang Y, Teng M, Jiang C, Schineller M, Zhao B, et al. DNA methylation

469 enzymes and PRC1 restrict B-cell Epstein–Barr virus oncoprotein expression. *Nat*

470 *Microbiol* 2020;5:1051–63. <https://doi.org/10.1038/s41564-020-0724-y>.

471 [55] Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-

472 dimensional structure of the EBV genome plays a crucial role in regulating viral gene

473 expression in EBVaGC. *Nucleic Acids Res* 2023;51:12092–110.

474 <https://doi.org/10.1093/nar/gkad936>.

475 [56] Lu F, Wiedmer A, Martin KA, Wickramasinghe PJMS, Kossenkov A V., Lieberman PM.

476 Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of

477 Latent Epstein-Barr Virus. *J Virol* 2017;91:e00804-17. <https://doi.org/10.1128/jvi.00804-17>.

479 [57] Wille C.K., Li Y., Rui L., Johannsen E.C. KSC. Restricted TET2 Expression in Germinal

480 Center Type B Cells Promotes Stringent Epstein-Barr Virus Latency. *J Virol*

481 2017;91:e01987-16.

482 [58] Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-

483 aware quantification of transcript expression. *Nat Methods* 2017;14:417–9.

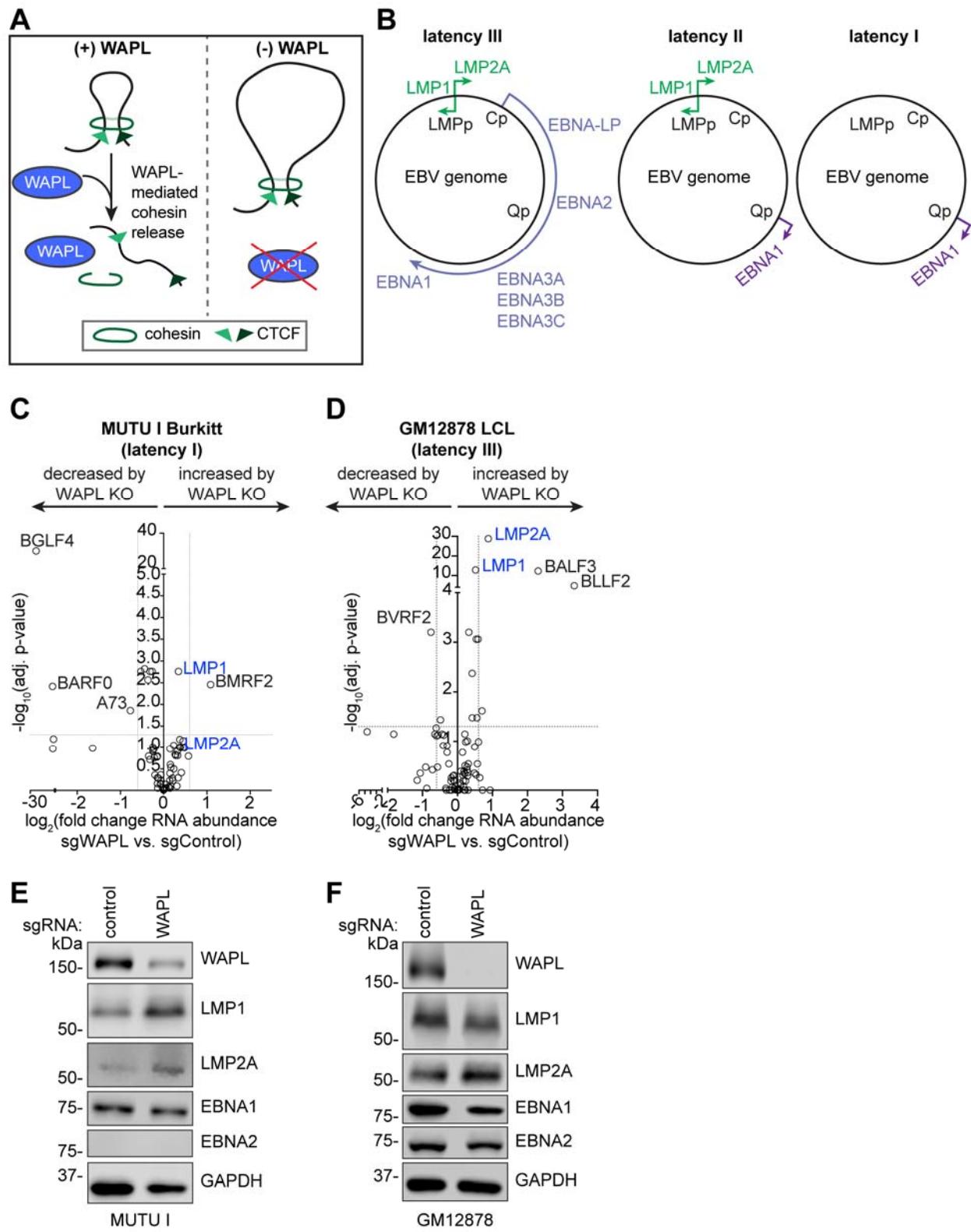
484 <https://doi.org/10.1038/nmeth.4197>.

485 [59] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for

486 RNA-seq data with DESeq2. *Genome Biol* 2014;15:1–21. <https://doi.org/10.1186/s13059-014-0550-8>.

488 [60] Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular

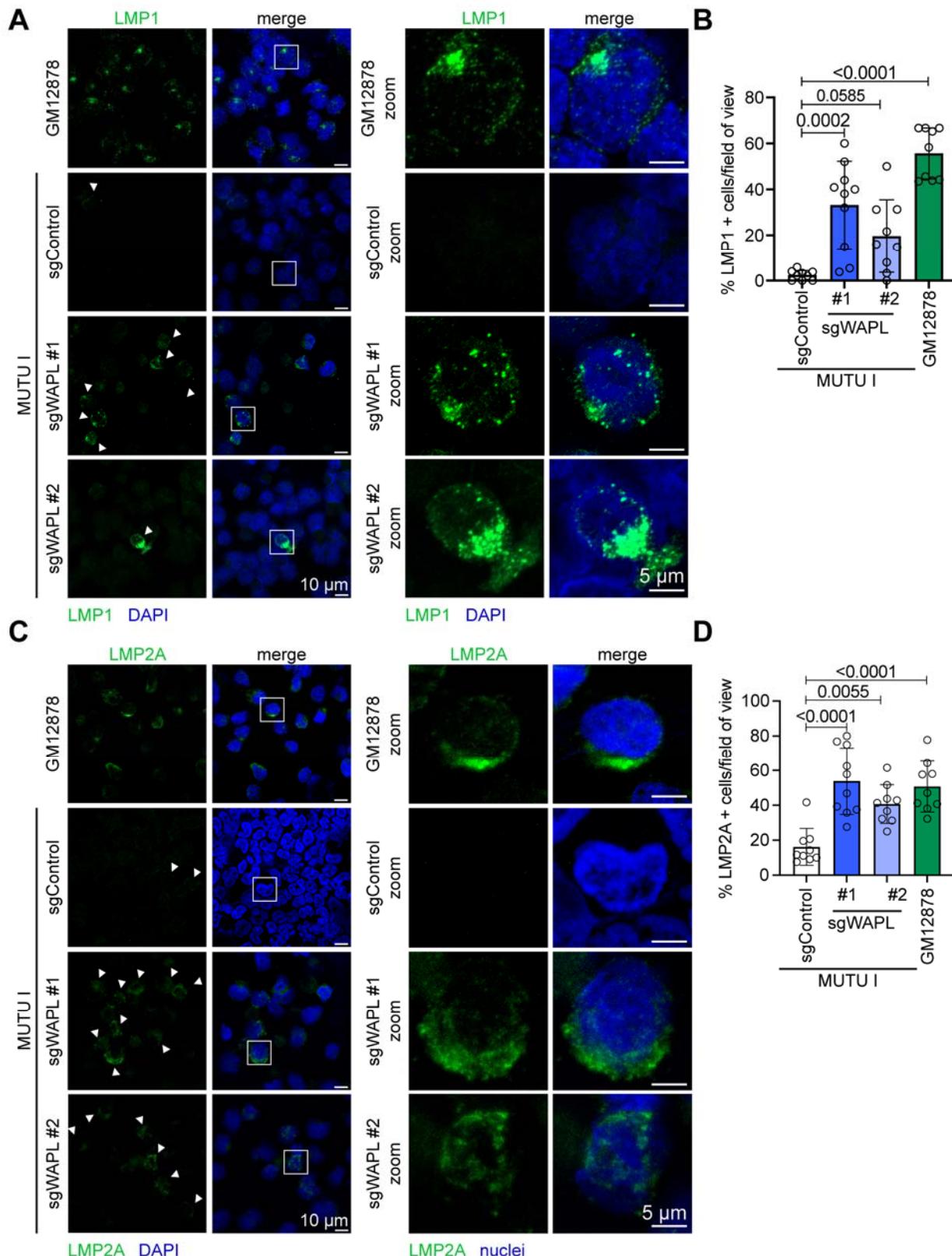
489 visualization in R. Bioinformatics 2014;30:2811–2.


490 <https://doi.org/10.1093/bioinformatics/btu393>.

491

492 **Competing interests**

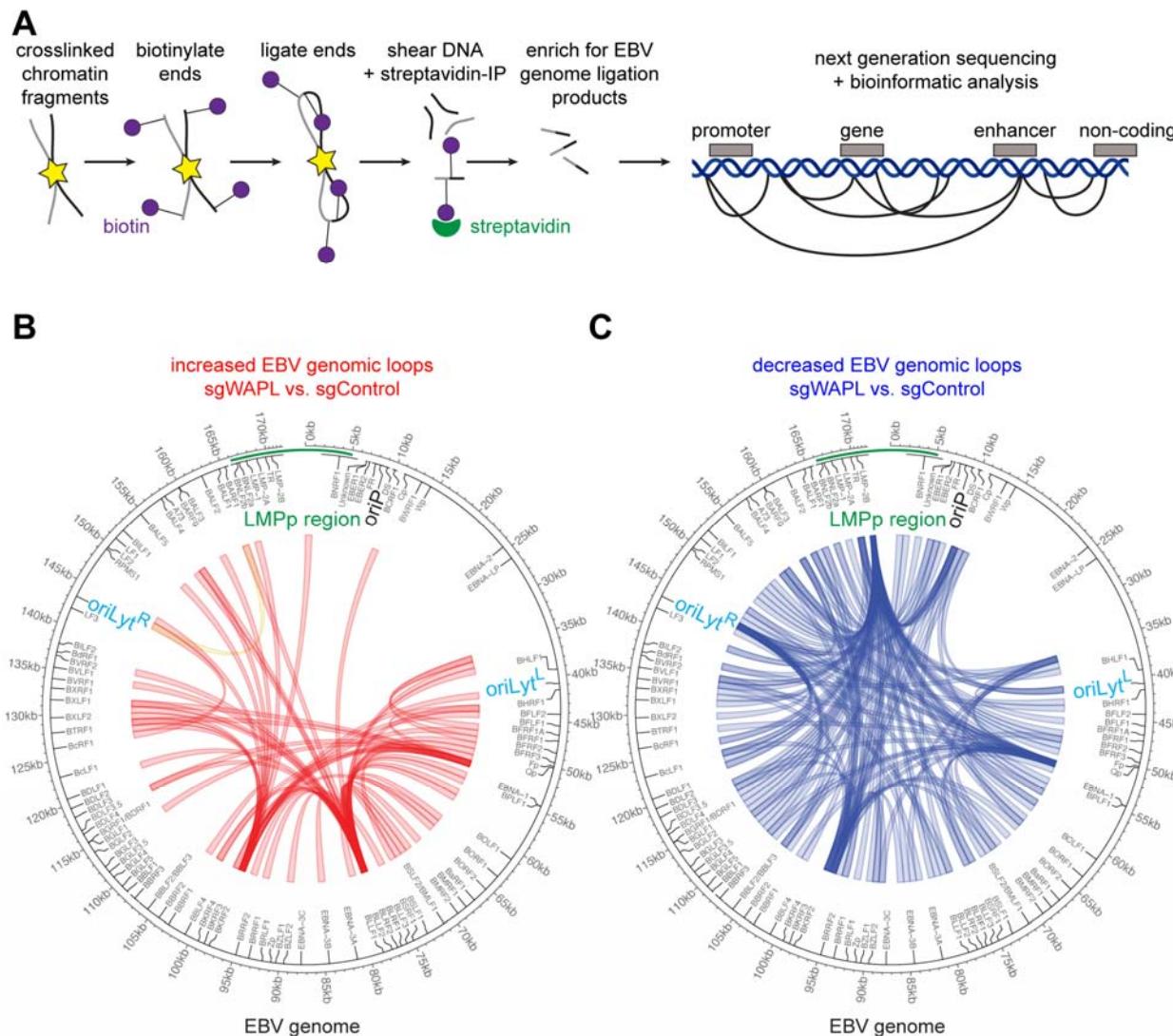
493 The authors have no conflicts of interest.


494

495

496 **Figure 1. WAPL negatively regulates LMP1 and LMP2A expression.**

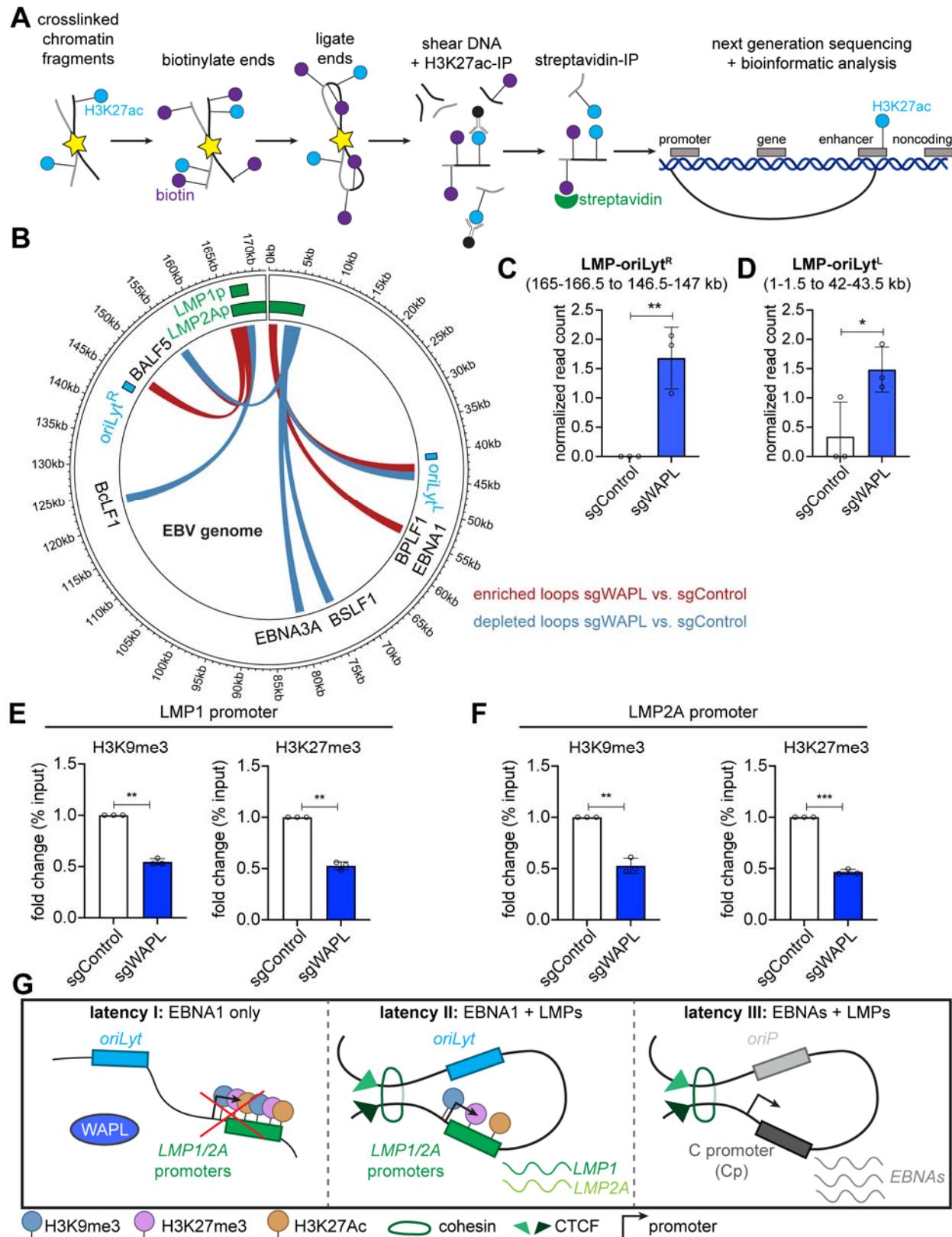
497 (A) Schematic of WAPL antagonism of cohesin-mediated DNA loop formation. WAPL releases
498 cohesin to promote dissolution of chromatin loops. Upon WAPL KO, cohesin occupancy on
499 chromatin increases, resulting in larger DNA loops. (B) Schematic diagram of EBV latency
500 programs. (C-D) Volcano plots of RNA-seq analysis visualizing $-\log_{10}(p\text{-value})$ vs. $\log_2(\text{fold}$
501 change of EBV mRNA abundance) from (C) Cas9+ MUTU I Burkitt lymphoma cells and (D)
502 Cas9+ GM12878 LCLs expressing WAPL vs. control sgRNAs, from $n = 3$ independent
503 biological replicates. (E-F) Immunoblot analysis of whole cell lysates (WCL) from (E) MUTU I
504 cells and (F) GM12878 LCLs that expressed control or WAPL sgRNAs, as indicated,
505 representative of $n = 3$ biological replicates.
506



507

508 **Figure 2. Subcellular distribution of LMP1 and LMP2A de-repressed by WAPL KO.**

509 (A) Representative confocal microscopy images from $n = 3$ biological replicates of anti-LMP1
510 (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU I cells that expressed control or WAPL
511 sgRNAs, as indicated. Shown at right are zoomed images of a representative cell (indicated by
512 the white box). (B) Mean \pm standard deviation (SD) percentage of LMP1+ cells per field of view,
513 from $n = 3$ fields of view from each of three biological replicates. P -values shown as calculated
514 by one-way ANOVA. (B) Representative confocal microscopy images from $n = 3$ biological
515 replicates of anti-LMP2A (green) vs. nuclear DAPI (blue) staining of Cas9+ MUTU I that
516 expressed control or WAPL sgRNAs with zoomed images presented to the right, as in (A). (D)
517 Mean \pm SD percentage of LMP2A+ cells per field of view, from $n = 3$ fields of view from each
518 of three biological replicates. P -values shown as calculated by one-way ANOVA.
519


520

521

522 **Figure 3. WAPL KO alters higher order latency I Burkitt EBV genome conformation.**

523 (A) Schematic of Hi-C workflow and output. Exposed DNA ends were biotinylated and then
524 ligated to capture close DNA contacts. Ligated DNA was sheared, and biotinylated DNA was
525 precipitated. EBV DNA was captured to enhance viral DNA Hi-C signal. (B) Hi-C maps of EBV
526 genomic loops that were enriched in WAPL KO vs. control MUTU I cells, from $n = 2$ biological
527 replicates. LMPp and oriLyt regions are indicated. (C) Hi-C maps of EBV genomic loops that
528 were depleted in WAPL KO vs. control MUTU I cells, from $n = 2$ biological replicates, as in (B).
529

531 **Figure 4. WAPL KO alters latency I Burkitt EBV genomic activated chromatin loops and**
532 **represents LMP promoter epigenetic marks.**

533 (A) Schematic of H3K27Ac HiChIP sample preparation and output. Chromatin was
534 formaldehyde crosslinked and fragmented. Exposed DNA ends were biotinylated and then
535 ligated to capture close DNA contacts. Ligated DNA was sheared, DNA was immunopurified by
536 α -H3K27Ac antibody, and biotinylated DNA was captured via streptavidin. (B) EBV genomic
537 H3K27Ac HiChIP map depicting loops enriched (red) versus depleted (blue) in WAPL KO
538 MUTU I cells, relative to levels in control cells, from $n = 3$ biological replicates. (C-D)
539 Normalized (C) LMP region-oriLyt^L loop and (D) LMP region-oriLyt^R loop read counts from $n =$
540 3 replicates, as in (B). EBV genome kilobase coordinates for each looping region are indicated at
541 top. * $P \leq 0.05$, ** $P \leq 0.01$, as calculated by a two-tailed Student's t-test. (E-F) ChIP-qPCR
542 analysis of H3K9me3 and H3K27me3 abundances at the (E) LMP1 promoter and (F) LMP2A
543 promoter in Cas9+ MUTU I cells expressing control or WAPL sgRNAs. Shown are mean fold
544 change of the percentage input values \pm SD from $n = 3$ biological replicates. ** $P \leq 0.01$, *** P
545 ≤ 0.001 , as calculated by a two-tailed Welch's t-test. (G) Model of WAPL effects on EBV
546 genomic architecture. When present, WAPL releases cohesin at the targeted DNA loop (latency
547 I), which inhibits LMP expression. In the absence of WAPL antagonism, cohesins are loaded
548 onto the EBV genome to form loops between the LMP promoter region and oriLyt regions.
549 Juxtaposition of the oriLyt enhancer reduces repressive H3K9me3 and H3K27me3 marks and
550 supports *LMP1* and *LMP2A* co-expression in the absence of EBNA2 (latency II). In latency III,
551 an alternative loop forms between the oriP and the Cp to drive expression of all of the EBNA
552 genes.

553