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Abstract

The cortico-basal ganglia network in Parkinson’s disease (PD) is characterized by the
emergence of transient episodes of exaggerated beta frequency oscillatory synchrony known
as bursts. Although it is well established that bursts of prolonged duration associate closely
with motor impairments, the mechanisms leading to burst initiation remain poorly understood.
Crucially, it is unclear whether there are features of basal ganglia activity which reliably predict
burst onset. Current adaptive Deep Brain Stimulation (aDBS) approaches can only reactively
deliver stimulation following burst detection and are unable to stimulate proactively to prevent
burst onset. The discovery of predictive biomarkers could allow for such proactive stimulation,
thereby offering potential for improvements in therapeutic efficacy. Here, using deep learning,
we show that the timing of subthalamic nucleus (STN) beta bursts can be accurately predicted
up to 60 ms prior to onset. Furthermore, we highlight that a dip in the beta amplitude - which
is likely to be indicative of a phase reset of oscillatory populations occurring between 80-100
ms prior to burst onset - is a predictive biomarker for burst occurrence. These findings
demonstrate proof-of-principle for the feasibility of beta burst prediction for DBS and provide

insights into the mechanisms of burst initiation.
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Introduction

Parkinson’s disease (PD) is a common neurodegenerative condition which is characterised by
nigrostriatal dopamine depletion and the emergence of stereotyped patterns of oscillatory
synchrony within cortico-basal ganglia circuits?. Excessive synchronisation across the beta
frequency range (13-30 Hz) characterises the parkinsonian dopamine depleted state and is
believed to relate directly to motoric impairment3#. Therapeutic approaches such as both STN
DBS and dopaminergic medication lead to a suppression of basal ganglia beta oscillatory
synchrony, with the degree of suppression correlating positively with motor improvements®38,
Furthermore, a causal effect of beta oscillations on movement is suggested by the observation

that entraining motor cortical beta rhythms results in movement slowing?.

Recent observations highlight that beta activity is not continuous but occurs in short-lived
packets known as bursts 0, Although the mechanisms of beta burst generation remain poorly
understood, it is increasingly believed that bursts of longer duration and amplitude may be
particularly detrimental to motor function in PD*!, This finding has led to beta activity being
used as a control signal in amplitude-responsive closed loop DBS, where stimulation is
delivered only when beta amplitude rises above a certain threshold'-16, Studies reveal that beta
triggered adaptive DBS (aDBS) is more effective than conventional continuous DBS®:18,
Additionally, by virtue of selectively targeting a pathophysiological signal of interest, aDBS
may offer additional benefits including reduced stimulation requirement and a lower incidence
of stimulation induced side effects such as dyskinesia, gait impairment and speech

impairment?’.

One drawback of aDBS is that stimulation is initiated after some fixed delay following the
actual occurrence of a burst'®. This delay, which can be up to hundreds of milliseconds, will
be the sum of the time taken for the burst to be detected and the system delay between burst
detection and stimulation initiation'®. This means that aDBS can only reactively suppress beta
bursts after they have developed and propagated within the cortico-basal ganglia circuit. The
discovery of a reliable biomarker that could allow for the prediction of bursts would facilitate
the development of proactive DBS approaches with the capability of either preventing bursts
or suppressing them earlier following their onset'®. Proactive DBS approaches are likely to be
more energy efficient *° and could lead to improvements in both the efficacy and the side effect
profile of DBS for PD.
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In this work, we test the hypothesis that STN activity includes features which reliably predict
beta burst onset. To address this question, we developed a deep neural network architecture -
based on Convolutional Neural Networks (CNNSs) - that modelled burst prediction as a binary
classification problem (outputting either 1 or 0 depending on whether or not a burst was
expected to occur). Our network was trained on STN local field potential (LFP) activity
recorded from PD patients undergoing functional neurosurgery for the insertion of STN DBS
electrodes. Importantly, we train and test our neural network architecture on patient specific
beta band filtered STN activity, which has emerged as a robust biomarker of motoric state for

aDBS applications 1%20-22,

Our trained network was able to reliably predict burst onset in unseen test data. Furthermore,
by considering predictive segments within the test data, we reveal a pathophysiological state
transition characterised by a reduction followed by a rise in the beta amplitude, which occurs
prior to the onset of each burst. Our findings provide proof of principle for the feasibility of
burst prediction for proactive DBS, as well as shedding light on the pathophysiological

mechanisms of beta burst initiation.
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Methods

Patients and experimental details

We studied STN activity in 16 PD patients undergoing bilateral implantation of STN DBS
electrodes at the National Hospital for Neurology and Neurosurgery (UCL). In all cases, a
Medtronic model 3389 electrode with four platinum-iridium contacts was implanted.
Recordings were performed 3-6 days after electrode implantation, before connection and
insertion of the implantable pulse generator (see Error! Reference source not found. for further
clinical details). Further details of the surgical procedure can be found in other reports 2324, PD
diagnoses were made in accordance with the Queen Square Brain Bank Criteria®®. All patients
provided written informed consent and research protocols were approved by the local research

ethics committee.

To maximise the probability of beta burst occurrence, recordings were performed following
overnight withdrawal from dopaminergic medication (OFF medication). LFP activity was
collected using a battery powered and mains optically isolated BrainAmp system (Brain
Products) with a sampling frequency of 2400 Hz. Three bipolar channels (0-1, 1-2, 2-3) were
recorded from each electrode and the data were subsequently high pass filtered at 1 Hz in the
hardware to avoid amplifier saturation due to large DC offsets. Although recordings of cortical
activity using magnetoencephalography (MEG) >1826:27 were collected at the same time as LFP
recordings, in this analysis we focus explicitly on beta burst prediction from the STN LFP

alone.

A neurologist was present during the recordings and patients were requested to keep their eyes
open and to remain still. Either one or two rest recording sessions were performed. The duration
of each session varied between 188 and 253 seconds (with a mean and standard error of the

mean (SEM) of 198+4, see Error! Reference source not found.).
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Table 1. Clinical characteristics of patients and details of STN recordings. LDE = levodopa dose equivalent. The total pre-
operative UPDRS part I11 score is presented in the on and off medication states. S1 and S2 indicate duration of STN recordings
for sessions 1 and 2. Burst characteristics are presented separately for data from the right (R) and left (L) hemispheres.

Case Ageand  Disease Preoperative ~ UPDRS Il  Data No. of Mean duration  No. of bursts
gender duration  medication pre-op length (s) bursts of bursts (ms) per second
(years) (mg) off/on S1/S2 R/L R/L R/L

1 54 F 10 LDE 1158 35/9 192/193 667/623 126.6/123.3 1.7/1.6

2 54 M 15 LDE 1150 53/19 190/193 545/509 148.3/173.3 1.4/1.3

3 58 F 3 LDE 390 41/9 191 305/262 133.3/144.1 1.6/1.4

4 47TM 8 LDE 2264 46/4 190/188 500/559 128.3/126.6 1.3/1.5

5 57M 8 LDE 1229 41/19 238/195 513/583 130.0/156.6 1.2/1.3

6 60 M 27 LDE 2048 63/8 194/189 615/597 136.6/131.6 1.6/1.5

7 57 M 17 LDE 1460 54/14 190 279/265 138.3/150.0 1.4/1.4

8 52M 13 LDE 1484 35/10 191 225/241 148.3/151.6 1.1/1.3

9 58 M 11 LDE 1320 43/25 201 340/304 132.5/130.0 1.7/1.5

10 2M 9 LDE 1281 28/5 192 316/307 127.5/130.0 1.6/1.6

11 60 M 11 LDE 1012 28/5 190/201 431/675 138.3/121.6 1.1/1.7

12 43M 9 LDE 1650 63/40 253 346/340 134.1/150.8 1.3/1.3

13 41 M 6 LDE 1220 50/22 188 279/313 126.0/128.3 1.5/1.7

14 58 M 12 LDE 1500 38/14 202 282/250 140.8/141.6 1.4/1.2

15 60 M 10 LDE 1560 56/10 190 205/194 175.0/189.2 1.1/1.0

16 61F 11 LDE 1049 35/4 192/225 626/566 119.1/150.0 1.5/1.3
Mean+  55.7+1.8 11.2+1.3 1361+107 44.3+2.8/ 198+4 404438/  136.4+3.2/ 1.440/1.440
SEM 13.54+2.4 411441 143.644.6

Determination of beta peak frequency and annotation of beta bursts

To determine the beta peak frequency, the power spectrum of the STN LFP from each bipolar
contact was obtained using the short-time Fourier transform (STFT). A Hamming window with
a length of 1 second and an overlap of 50% was used for spectral estimation. The squared
magnitude of the resulting complex spectrum was computed and averaged across all time
windows for visualisation between frequencies of 1 and 100 Hz (with a resolution of 1 Hz; see
Error! Reference source not found.a for an exemplar spectrum). For each participant, the single
bipolar LFP channel from each hemisphere with the highest amplitude peak within the beta
frequency range (13-30 Hz) - which we term the beta channel - was selected for further

analysis.

LFP time series from the beta channel were bandpass filtered within a +3 Hz window centred
on the beta peak frequency, using a causal 6th order Butterworth filter implemented in the SciPy
library for Python (https://scipy.org/). The application of a causal filter served to prevent future

samples from impacting current or past filter outputs which would be used for prediction. We

limited our analysis to individual patient beta band filtered signals as these are typically used

in aDBS implementations'>2021, After filtering, data were downsampled to 600 Hz (to reduce
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computational cost) and rectified prior to the peak values being linearly interpolated to produce
the beta amplitude envelope of the signal. Finally, beta burst timings were defined as time points
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Figure 1. Determination of beta peak frequency, labelling of beta bursts and data segmentation for training of the neural
network. (a) Exemplar power spectra of right and left hemisphere STN LFP signals (recorded from bipolar contact pairs 01,
12 and 23) from patient 5 are displayed. In this case, channel STN-R01 from the right hemisphere and channel STN-LO01 from
the left hemisphere provided the highest amplitude peak within the beta frequency range (peak frequencies at 18 Hz and 16
Hz) and were therefore selected as the beta channels for the corresponding hemispheres for further analysis. (b) A 4s long
segment of data from the right hemispheric channel STN-RO01 of patient 5 is displayed. Data were first filtered (+3 Hz) around
the beta peak frequency before being rectified and interpolated. The 75™ percentile of the interpolated signal amplitude
distribution (dashed green line) was used as a threshold to define the onset and offset of beta bursts (burst timings are shown
in the green rectangular boxes). (c) lllustration of the fixed window approach, where 200 ms long data segments ending at
fixed time intervals (0, 20, 40, 60, 80, or 100ms) prior to the onset of a burst are labelled as being predictive (Class 1) of
subsequent burst onset. Non-predictive data segments (Class 0) terminated at least 150 ms prior to the onset of a burst. (d)
Demonstration of the sliding window approach. A 200 ms long window with a stride length of 30 ms was passed along the
beta filtered time series. 12 windowed segments with a shortened stride length of 5 ms (see main text) were labelled as being
predictive of subsequent burst occurrence (Class 1). Windows that ended during the occurrence of a burst (Class Burst) were

excluded from subsequent analysis, whilst the remaining data segments were labelled as being non-predictive (Class 0).
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where the beta amplitude envelope exceeded its 75th percentile'®?° (see Figure 1b). The number
of bursts, their duration, and the number of bursts per second are illustrated for each hemisphere
separately in Table 1. The mean duration of bursts was 136.4 and 143.6 ms for right and left
hemispheres. The mean number of bursts per second was 1.4 for both hemispheres.

Labelling of data for neural network classification

To train and test our network, we segmented beta band filtered STN timeseries using both
sliding window and fixed window approaches. The fixed window approach allowed us to
evaluate prediction performance at specific, consistent intervals leading up to the onset of
bursts. In this approach, 200 ms long segments of the band filtered LFP, ending at designated
intervals (0, 20, 40, 60, 80 or 100 ms) prior to the onset of each burst, were labelled as being
predictive (Class 1) as per Figure 1c. Additionally, data terminating at least 150 ms before
burst onset (excluding periods that coincided with burst timing) were divided into 200 ms long
segments - with a stride of 50 ms - and categorized as non-predictive (Class 0). During training,
the number of Class 0 data segments was selected to match the number of Class 1 data

segments. All segments were however classified during the validation and test phases.

The sliding window approach, using a 200 ms long window with stride lengths of 20, 25, or 30
ms, was designed to mimic real-time burst prediction for controlling the timing of stimulation
delivery (Figure 1d shows an example with a stride length of 30 ms). If the end of a windowed
segment overlapped with the occurrence of a burst, that segment was excluded from subsequent
analysis (see green segments labelled Class Burst in Error! Reference source not found.1d).
For training the network to learn burst predictive features, the final three data segments
occurring prior to each burst were subsampled with a smaller stride length of 5 ms, yielding
twelve 200 ms long data segments that terminated within 30-90 ms of burst onset (referred to
as Class 1 in Figure 1d). This smaller stride length served to expand the size of the training
dataset and to allow the network to be sensitive to data features that exhibit subtly variable
timing (smoothness) in relation to burst onset. The remaining 200 ms long data segments were
associated with the absence of a subsequent burst and were labelled as being non-predictive

(referred to as Class 0 in Figure 1d).

The choice of sliding window length and stride length was made empirically, based on
performance metrics from the validation datasets (see below section titled Beta burst

prediction network). After testing three different window lengths (200, 250 and 300 ms) and
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seven stride lengths (10, 20, 25, 30, 35, 40, and 50 ms), we found that a 200 ms window with

stride lengths between 20-30 ms resulted in optimal performance.
Beta burst prediction network

The prediction network, illustrated in Figure 2, was constructed using a CNN architecture
implemented in TensorFlow, using the Keras API (https://www.tensorflow.org and
https://keras.io/api/). The LFP signal was passed through a sequence of 1D convolution,
followed by a rectified linear unit (ReLU) activation function and 1D max pooling. This process
was repeated three times to capture deep temporal features. The output from the final max
pooling layer was flattened and connected to a dense layer, before a sigmoid function was used
to perform binary classification (yielding an output of 0 or 1, corresponding to each of the
classes). A kernel size of 5 was used for the 1D convolution layers, whilst a pooling size of 2
was used for the 1D max pooling layers to half the temporal dimensionality. The dense layer
employed a dropout rate of 50%. The network was trained to minimize the categorical cross-

entropy loss function, using the Adam optimizer with a learning rate of 0.0001%,

LFP data from each patient were split into training, validation, and test datasets. For patients
with two recording sessions, one session was used exclusively for training, whilst the other was
split evenly between validation and test datasets (50%-50%). For patients with only one
recording session, the data were partitioned with 70% allocated for training, and 15% for each
of validation and testing. The training data were used to fit multiple candidate models, while

the validation set was utilized for selecting the best model architecture and optimizing

LFP

Signal 1|0

B 1D ConviReLU [ 1D Max Pooling || Flatten [ Dense

Figure 2. Architecture of the burst prediction network. The input beta filtered LFP is passed through a sequence of ConviD,
ReLU, and Max pooling (see main text). This process is repeated thrice, before the resulting outputs are flattened and passed
to a dense layer. A single unit is then used for binary classification using a sigmoid activation function. In this analysis, data
were segmented into 200 ms long epochs with a sampling rate of 600Hz, meaning that L = 120. M represents the number of

filters in the convolutional layers and was selected to be 128. N indicates the number of neurons in the dense layer, N=512.
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hyperparameters (e.g., learning rate and the threshold of the final sigmoid output for binary

classification). Final model performance was assessed and reported using the test dataset.

Prediction performance metrics

Based on the comparison of test data labels and the model prediction, we calculated the

following classification metrics:

True positives (TP) — this is the number of burst predictive data segments (Class 1) that
were correctly identified by the model.

True negatives (TN) — this is the number of non-predictive data segments (Class 0) that
were correctly identified by the model.

False positives (FP) — this refers to non-predictive data segments (Class 0) where the model
incorrectly predicted subsequent burst occurrence.

False negatives (FN) — this refers to predictive data segments (Class 1), where the model
failed to predict subsequent burst occurrence.

False positives per minute (FP/min) — this quantifies the rate of false positive occurrence.
Accuracy (ACC) — this indicates the proportion of correct predictions and is defined as:
ACC = (TP+TN)/(TP+TN+FP+FN).

Precision (PRC) — tells us the proportion of correct positive predictions and is defined as:
PRC = TP/(TP+FP).

Sensitivity (SEN) — also known as recall, this illustrates how well the model predicts the
occurrence of bursts and is defined as: SEN=TP/(TP+FN).

Area under the receiver operating characteristic curve (AUC-ROC) - this is a
performance metric that considers the trade-off between sensitivity and the false positive
rate at various thresholds. It provides a measure of the classifiers ability to correctly
distinguish between classes and was used for the fixed window approach where class
membership was balanced.

Area under the precision-recall curve (AUC-PR) — this is a performance metric that
considers the trade-off between precision and sensitivity at various thresholds and is
therefore not influenced by a disproportionately high occurrence of true negative
predictions 2%, The AUC-PR was used instead of the AUC-ROC for the sliding window
approach, owing to its increased effectiveness for classification evaluation on imbalanced

datasets.
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e Prediction time prior to burst occurrence (PT-PBO) — this metric was computed for the
sliding window approach as the mean time interval between the end of the first true positive

prediction (within 90 ms of burst onset) and the start of a burst.
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Results

STN beta bursts can be predicted in advance of their onset

For the fixed window approach, we were able to achieve high burst prediction performance up
to 60 ms before burst onset (mean values at -60 ms of: ACC = 0.78, SEN = 0.79, SPC = 0.78,
AUC-PR = 0.73, AUC-ROC = 0.87). Supplementary Tables 1-5 show burst prediction
performance metrics for each patient, for each of the six different predictive window
termination timepoints relative to burst onset (0, 20, 40, 60, 80 and 100 ms). This information
is summarized in Figure 3, which shows mean estimates of ACC, SEN, SPC, AUC-PR, and

AUC-ROC across patients for the six different predictive window termination timepoints.

Individual patient prediction metrics for the sliding window approach, with a stride length of
30 ms, are shown in Table 2. Our model achieved a high performance for burst prediction, with
a low false positive rate (mean sensitivity = 79%; mean precision = 88.8%; mean AUC-PR =
0.77; mean FP/min = 8.1). Importantly, the mean prediction time (PT-PBO) was 49.5 ms, which
corresponds closely to the result obtained using the fixed window approach. The results of
prediction performance using different stride lengths of 20 and 25 ms are shown in
Supplementary Tables 6-7. Using these shorter stride lengths, it can be seen that prediction

performance can be improved at the cost of a shorter prediction time (PT-PBO).

1.0

— ACC
— SEN
— SPC
— AUC-PR
AUC-ROC
0.6 , ;

100 -80 -60 -40 -20 0
Time interval (ms)

Performance
o
(0]

Figure 3. Burst prediction performance metrics for the fixed window approach. Results for each of the six different predictive
window termination timepoints relative to burst onset are averaged across patients (ACC = accuracy; SEN = sensitivity; SPC
= specificity; AUC-PR = area under the precision-recall curve; AUC-ROC = area under the ROC curve). Solid lines represent
the mean, with the shaded regions indicating the standard error of the mean. Prediction performance metrics remain high as

early as 60 ms prior to burst onset (see main Results for further discussion).
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Table 2. Individual patient burst prediction performance metrics for the sliding window approach.

Subject  Hemis TP FP_FN TN SEN (%) PRC (%) AUC-PR  FP/ PT-PBO

phere min (ms)
R* - - - - - - -
! L 11 14 34 2121 765 88.8 0.72 87 475
R 133 8 20 1842  86.9 943 0.81 49 480
2 L 121 13 24 1696 834 90.3 0.84 80 553
R a 5 6 491 872 89.1 0.80 104 468
3 L 42 4 9 43 823 913 0.74 83 428
R 92 14 26 2171 780 86.8 0.78 89 551
4 L 101 16 41 2020 711 86.3 0.80 101 520
R 105 19 37 2757 739 84.6 0.73 95 491
5 L 101 10 38 1731 726 91.0 0.83 61  46.0
R 118 19 38 1676 756 86.1 0.81 120 526
6 L 110 22 33 2041 769 833 0.76 139 515
R 30 0 17 573 638 100 0.81 0 43.0
! L 30 4 11 517 731 88.2 0.75 84 440
R 23 6 11 624 676 793 0.61 125 417
8 L 25 1 10 659 714 96.1 0.74 20 468
R 38 3 7 614 844 92.6 0.86 59 536
9 L 31 6 9 624 775 83.7 0.74 119 454
R* - L - - - - -
10 L 47 4 5 489 903 92.1 0.77 83 446
R 67 13 11 2607 859 83.7 0.82 82 595
11 . B e ) ) ) ) )
o R 42 4 2 832 96 916 0.82 63 504
L 47 1 6 772 86 97.9 0.84 15 542
R 32 4 13 577 711 88.8 0.76 85 468
13 L 34 2 15 530 693 94.4 0.73 42 455
R 25 3 8 123 757 89.2 0.78 594 648
14 L 33 4 4 503 891 89.1 0.81 79 554
R 2% 4 7 489 787 86.6 0.72 84 473
15 L 2% 7 3 597 896 787 0.77 147 553
R 151 22 38 2234 799 872 0.73 117 445
16 L 104 17 33 1730 759 85.9 0.76 106 473
Sm - 1888 249 516 34766 - - - - -
MeantSEM - - S 790421  888+13 077400 8141 49.5+15

*These cases did not show a clear beta peak in the power spectrum and were therefore excluded from further analysis.
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Classification threshold controls the trade-off between sensitivity and false positive rate

An ideal burst prediction model should have a high sensitivity and a low false positive rate. The
trade-off between these two performance metrics is determined by the sigmoid classification
threshold of the output layer (see Figure 2), which binarises burst predictions. Figure 4a and
b show the effect of varying the classification threshold on the SEN and FP rate for each
patient’s burst prediction model, for the sliding window approach using a stride length of 30
ms. It is seen that lowering the threshold results in increased sensitivity at the cost of an
increased FP rate. Analogous profiles for the sliding window approach using stride lengths of

20 and 25 ms are shown in Supplementary Figure 1.

a b
1.01 ——
0.8
i 0.6 0.6 — 13
14
0.4 e
: — 16
0.2
40 50

FP/min FP/min

Figure 4. Classification threshold and the trade-off between sensitivity and false positive rate. Sensitivity (SEN) is plotted
against the false positive rate (FP/min), for each patient’s prediction model, separately for the left (a) and right (b) hemispheric
STN channels. Each coloured line represents a different patient. Lowering the classification threshold increases SEN, at the
cost of an increased FP/min. Note that the left hemisphere of subject 11 and the right hemisphere of subjects 1 and 10 did not

show a clear beta peak in the power spectrum and were therefore excluded from further analysis.

Beta amplitude modulations predict subsequent burst occurrence

Our results reveal that beta burst occurrence may be accurately predicted as early as 60 ms
before burst onset. But is there a consistent data feature allowing for this prediction which could
be used in aDBS applications? To address this question, we examined mean beta amplitude
envelopes for test data segments leading to TP, FP, and FN predictions. This procedure was
performed separately for the right and left hemispheres, for each patient in the sliding window
approach. In the case of TP and FN predictions, we selected the latest predictive data segment

which terminated within 30 ms of burst onset (see Figure 1).

Figure 5 and Figure 6 show the individual patient results of this analysis, separately for the
right and left hemispheres. Crucially, the plots reveal that for TP predictions there is a consistent
dip (fall followed by a subsequent rise) in the beta amplitude across patients, which occurs

approximately 80-100 ms prior to beta burst onset. Note that in these figures the predictive
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Figure 5. Individual patient beta envelope amplitudes for (200ms long) data segments leading to TP, TN, and FP predictions
with the sliding window approach for the right hemispheric STN LFP. Solid lines indicate the mean, whilst shaded areas
represent the standard error of the mean. For each patient the amplitude threshold (75" percentile) for defining burst occurrence
is also indicated by the green dashed line. For patient 7 there were no FP predictions. The right hemisphere of subjects 1 and

10 did not show a clear beta peak in the power spectrum and were therefore excluded from further analysis.

window ends within 30 ms of burst onset. As expected, the beta amplitude profile of FP
predictions closely matched that of TP predictions. FN predictions in contrast exhibited less
pronounced beta amplitude dips. Taken together, these results highlight that a dip in the beta
amplitude, occurring between 80-100 ms prior to burst onset, can be a reliable predictive
biomarker of burst occurrence (see Discussion for further comments regarding this

phenomenon).
Validation of findings using surrogate data

We next sought to validate our findings, by generating surrogate data that preserved beta burst
characteristics of the original data whilst destroying pathophysiological signal properties

occurring within non-bursting time periods. We expected to see that this manipulation would


https://doi.org/10.1101/2024.05.09.593398
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.09.593398; this version posted October 18, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1 2 3 36 4
0.3
3.0
02 K 9.0] Emmm—— —| 20
T ik 20 = =
EN e~ 6.0 -
FP X
Threshold
0.1 1.0 3.0 1.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
5 6 7 8
5.0 5.0
1.6 3.0
4.0 4.0 1.2
S . . 0sl B 2.0
i 20 R o 3.0 = 3 : —
>
3 0.4
o 20 2.0 1.0
- 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
;‘:Ef 9 10 12 13
g 04 4.0 1.6
3.5
S 3.0
03 BNS 1.2
- 0.2 2.0 = . : 0.8
15 - < 1.0 0.4
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
14 15 16
8.0 9.0 1.0
6.0
7.0 0.8
4.0 —
5.0 = 0.6
2.0 =
) ) ) | 30 i ) | o0a4f ) ) ) ]
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (ms)

Figure 6. Individual patient beta envelope amplitudes for (200ms long) data segments leading to TP, TN, and FP predictions
with the sliding window approach for the left hemisphere. Solid lines indicate the mean, whilst shaded areas represent the
standard error of the mean. For each patient the amplitude threshold (75" percentile) for defining burst occurrence is also
indicated in the green dashed line. For patients 8 and 12, there was only one FP prediction. The left hemisphere of subject 11
did not show a clear beta peak in the power spectrum and was therefore excluded from further analysis.

lead to significantly impaired burst prediction performance metrics when training and testing

our burst prediction network on surrogate data.

The original signal from each patient and hemisphere was bandpass filtered (using a zero-phase
6™ order Butterworth filter with pass band of +3 Hz around the beta peak frequency) to define
periods of bursting activity. A surrogate signal was then created by preserving the original data
from periods of bursting activity and randomly shuffling (in time) the data belonging to non-
bursting time periods. The surrogate timeseries were then processed with the same causal filter
used for the corresponding original dataset. A sliding window approach, with a stride length of
30 ms was employed to train and test the prediction network as before. Supplementary Table

8 shows the performance of the prediction model using surrogate data. As anticipated, the model
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achieved poor performance compared to the original data, indicating that the network relies on
the physiological signatures present in the original data to predict bursts, and that the narrow-

band filter has no effect on training the network.
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Discussion

Our study demonstrates that the timing of pathological beta bursts within the parkinsonian STN
can be accurately predicted from preceding STN beta activity. By training patient specific deep
learning models, we show that bursts can be predicted with high sensitivity, accuracy, and
precision up to 60 ms prior to their onset. Importantly, our approach requires only short
amounts of training data - averaging less than 3 minutes for each patient — and can be deployed
in real-time. Furthermore, by studying the characteristics of predictive data segments, we show
that a dip in the beta amplitude, which occurs between 80-100 ms prior to burst onset, is a
predictive biomarker of burst occurrence. These results provide proof-of-principle for the
feasibility of burst prediction and also provide insights into the neurophysiological mechanisms

leading to burst initiation.
Translational potential of burst prediction

Beta frequency oscillatory activity within the parkinsonian cortico-basal ganglia circuit has
proven to be a robust biomarker of motoric impairments — particularly bradykinesia and
rigidity*7:3334 Moreover, aDBS approaches which involve the delivery of STN stimulation
only after the detection of beta bursts are more effective in terms of achieving motor benefit
and limiting stimulation related side effects than conventional continuous DBS>1735,
Although aDBS has been shown to be effective, a key drawback of beta amplitude triggered
approaches is that they cannot prevent the onset of pathological beta bursts, but rather respond
with stimulation delivery after some fixed delay following burst onset. Consequently, aDBS
may be acting too late to optimally prevent the initiation and propagation of pathological
oscillatory activity within the cortico-basal ganglia circuit (akin to closing the stable door after
the horse has bolted). This drawback speaks to the utility of patient specific burst prediction
approaches which allow for the earlier detection of bursts, and consequently the earlier delivery

of stimulation to facilitate their termination.

Although our findings provide the first demonstration of proof-of-principle, further real-time
clinical testing of our approach in externalized patients is warranted before moving towards the
implementation of prediction-based stimulation algorithms in DBS devices. Interestingly, our
approach also draws important parallels with prior work exploring seizure forecasting from
intracranial recordings. Deep learning-based approaches including CNNs have proven to be
successful in this regard and may allow for the more rapid delivery of seizure abortive

treatments such as medication or therapeutic stimulation 3638, Theoretically, our approach may
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also be leveraged to predict other oscillatory features within and across frequency bands, which
have been shown to relate to distinct cognitive and motor symptoms of PD 323941 sych as

dyskinesia.
Insights into network mechanisms leading to burst generation

A key finding of our work is that the beta amplitude displays a stereotyped pattern of
modulation prior to the onset of bursts. Figures 5 and 6 reveal the precise nature of this
modulation, with the beta amplitude initially falling, reaching a nadir at approximately 80-100
ms prior to burst onset, and then subsequently rising again towards burst initiation. But what
are the neural mechanisms which might explain this phenomenon? Computational models
relying upon stochastic (noisy) inputs to neuronal populations as a primary driver of bursting
cannot easily recapitulate the pre-burst amplitude dip 84243, Usually in such models, noisy
inputs determine transitions of the system between stable (non-oscillatory) and unstable
(oscillatory) states via a bifurcation, meaning that oscillatory amplitudes can only change in
one direction (either increase or decrease). A more plausible explanation for the beta amplitude
dip might relate to the communication through coherence hypothesis, which proposes that
maximal oscillatory entrainment within a network requires optimal phase alignment of
interacting oscillatory populations 4446, Switching to an optimal phase alignment for burst
initiation requires a coordinated phase reset of oscillatory populations within the cortico-basal
ganglia circuit, which could account for the transient decrease in the beta amplitude observed

in our work 46
Study limitations

Our findings should be interpreted in the context of the following limitations. Firstly, STN
recordings were performed a few days after electrode implantation, whilst patients were at rest
and off dopaminergic medication. This meant that clinical constraints, including patient
fatigue, allowed for only relatively short duration recordings. Nevertheless, our ongoing related
work highlights that similar neural network architectures can be used to accurately predict burst
properties across different behavioural and medication states in patients with sensing enabled
DBS devices that allow for prolonged recordings #’. Importantly in this regard, the availability
of longer training data can allow further improvements in prediction performance metrics.
Finally, we have predicted STN beta bursts from STN activity and have therefore not included
nodes within the cortico-basal ganglia circuit — such as primary motor cortex (M1) - whose

activities may facilitate the prediction of STN bursts 3% Although electrocorticographic
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recordings from M1 are currently performed only for research purposes during DBS
procedures, there is growing evidence to suggest that these may provide complementary
information about clinical states (e.g., dyskinesia), particularly when the fidelity of subcortical

recordings is compromised by the presence of stimulation artefacts®2.

Summary

We have harnessed deep neural networks to show that the timing of pathological beta bursts
within the STN can be predicted in patients with PD. An important biomarker for this
prediction is a dip in the beta amplitude, which occurs consistently between 80-100 ms prior
to burst onset and may be indicative of a phase reset of oscillatory cortico-basal ganglia
neuronal populations. Crucially, our findings motivate the development of a new generation of
predictive DBS algorithms which are capable of either preventing pathological bursts or

terminating them earlier following their onset.
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