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Abstract  

The cortico-basal ganglia network in Parkinson’s disease (PD) is characterized by the 

emergence of transient episodes of exaggerated beta frequency oscillatory synchrony known 

as bursts. Although it is well established that bursts of prolonged duration associate closely 

with motor impairments, the mechanisms leading to burst initiation remain poorly understood. 

Crucially, it is unclear whether there are features of basal ganglia activity which reliably predict 

burst onset. Current adaptive Deep Brain Stimulation (aDBS) approaches can only reactively 

deliver stimulation following burst detection and are unable to stimulate proactively to prevent 

burst onset. The discovery of predictive biomarkers could allow for such proactive stimulation, 

thereby offering potential for improvements in therapeutic efficacy. Here, using deep learning, 

we show that the timing of subthalamic nucleus (STN) beta bursts can be accurately predicted 

up to 60 ms prior to onset. Furthermore, we highlight that a dip in the beta amplitude - which 

is likely to be indicative of a phase reset of oscillatory populations occurring between 80-100 

ms prior to burst onset - is a predictive biomarker for burst occurrence. These findings 

demonstrate proof-of-principle for the feasibility of beta burst prediction for DBS and provide 

insights into the mechanisms of burst initiation.  
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Introduction  

Parkinson’s disease (PD) is a common neurodegenerative condition which is characterised by 

nigrostriatal dopamine depletion and the emergence of stereotyped patterns of oscillatory 

synchrony within cortico-basal ganglia circuits1,2. Excessive synchronisation across the beta 

frequency range (13-30 Hz) characterises the parkinsonian dopamine depleted state and is 

believed to relate directly to motoric impairment3,4. Therapeutic approaches such as both STN 

DBS and dopaminergic medication lead to a suppression of basal ganglia beta oscillatory 

synchrony, with the degree of suppression correlating positively with motor improvements5–8. 

Furthermore, a causal effect of beta oscillations on movement is suggested by the observation 

that entraining motor cortical beta rhythms results in movement slowing9.   

Recent observations highlight that beta activity is not continuous but occurs in short-lived 

packets known as bursts 10. Although the mechanisms of beta burst generation remain poorly 

understood, it is increasingly believed that bursts of longer duration and amplitude may be 

particularly detrimental to motor function in PD11. This finding has led to beta activity being 

used as a control signal in amplitude-responsive closed loop DBS, where stimulation is 

delivered only when beta amplitude rises above a certain threshold12–16. Studies reveal that beta 

triggered adaptive DBS (aDBS) is more effective than conventional continuous DBS15,16. 

Additionally, by virtue of selectively targeting a pathophysiological signal of interest, aDBS 

may offer additional benefits including reduced stimulation requirement and a lower incidence 

of stimulation induced side effects such as dyskinesia, gait impairment and speech 

impairment17. 

One drawback of aDBS is that stimulation is initiated after some fixed delay following the 

actual occurrence of a burst15. This delay, which can be up to hundreds of milliseconds, will 

be the sum of the time taken for the burst to be detected and the system delay between burst 

detection and stimulation initiation15. This means that aDBS can only reactively suppress beta 

bursts after they have developed and propagated within the cortico-basal ganglia circuit. The 

discovery of a reliable biomarker that could allow for the prediction of bursts would facilitate 

the development of proactive DBS approaches with the capability of either preventing bursts 

or suppressing them earlier following their onset18.  Proactive DBS approaches are likely to be 

more energy efficient 19 and could lead to improvements in both the efficacy and the side effect 

profile of DBS for PD.   
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In this work, we test the hypothesis that STN activity includes features which reliably predict 

beta burst onset. To address this question, we developed a deep neural network architecture - 

based on Convolutional Neural Networks (CNNs) - that modelled burst prediction as a binary 

classification problem (outputting either 1 or 0 depending on whether or not a burst was 

expected to occur). Our network was trained on STN local field potential (LFP) activity 

recorded from PD patients undergoing functional neurosurgery for the insertion of STN DBS 

electrodes. Importantly, we train and test our neural network architecture on patient specific 

beta band filtered STN activity, which has emerged as a robust biomarker of motoric state for 

aDBS applications 15,20–22.  

Our trained network was able to reliably predict burst onset in unseen test data.  Furthermore, 

by considering predictive segments within the test data, we reveal a pathophysiological state 

transition characterised by a reduction followed by a rise in the beta amplitude, which occurs 

prior to the onset of each burst. Our findings provide proof of principle for the feasibility of 

burst prediction for proactive DBS, as well as shedding light on the pathophysiological 

mechanisms of beta burst initiation.   
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Methods 

Patients and experimental details 

We studied STN activity in 16 PD patients undergoing bilateral implantation of STN DBS 

electrodes at the National Hospital for Neurology and Neurosurgery (UCL). In all cases, a 

Medtronic model 3389 electrode with four platinum-iridium contacts was implanted. 

Recordings were performed 3-6 days after electrode implantation, before connection and 

insertion of the implantable pulse generator (see Error! Reference source not found. for further 

clinical details). Further details of the surgical procedure can be found in other reports 23,24. PD 

diagnoses were made in accordance with the Queen Square Brain Bank Criteria25. All patients 

provided written informed consent and research protocols were approved by the local research 

ethics committee.  

To maximise the probability of beta burst occurrence, recordings were performed following 

overnight withdrawal from dopaminergic medication (OFF medication). LFP activity was 

collected using a battery powered and mains optically isolated BrainAmp system (Brain 

Products) with a sampling frequency of 2400 Hz. Three bipolar channels (0-1, 1-2, 2-3) were 

recorded from each electrode and the data were subsequently high pass filtered at 1 Hz in the 

hardware to avoid amplifier saturation due to large DC offsets. Although recordings of cortical 

activity using magnetoencephalography (MEG) 5,18,26,27 were collected at the same time as LFP 

recordings, in this analysis we focus explicitly on beta burst prediction from the STN LFP 

alone.  

A neurologist was present during the recordings and patients were requested to keep their eyes 

open and to remain still. Either one or two rest recording sessions were performed. The duration 

of each session varied between 188 and 253 seconds (with a mean and standard error of the 

mean (SEM) of 198±4, see Error! Reference source not found.).  
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Table 1. Clinical characteristics of patients and details of STN recordings. LDE = levodopa dose equivalent. The total pre-

operative UPDRS part III score is presented in the on and off medication states. S1 and S2 indicate duration of STN recordings 

for sessions 1 and 2. Burst characteristics are presented separately for data from the right (R) and left (L) hemispheres.  

Case Age and 

gender 

Disease 

duration 

(years) 

Preoperative 

medication 

(mg) 

UPDRS III 

pre-op 

off/on 

Data 

length (s) 

S1/ S2 

No. of 

bursts 

R/L 

Mean duration 

of bursts (ms) 

R/L 

No. of bursts 

per second 

R/L 

1 54 F 10 LDE 1158 35/9 192/193 667/623 126.6/123.3 1.7/1.6 

2 54 M 15 LDE 1150 53/19 190/193 545/509 148.3/173.3 1.4/1.3 

3 58 F 3 LDE 390 41/9 191 305/262 133.3/144.1 1.6/1.4 

4 47 M 8 LDE 2264 46/4 190/188 500/559 128.3/126.6 1.3/1.5 

5 57 M 8 LDE 1229 41/19 238/195 513/583 130.0/156.6 1.2/1.3 

6 60 M 27 LDE 2048 63/8 194/189 615/597 136.6/131.6 1.6/1.5 

7 57 M 17 LDE 1460 54/14 190 279/265 138.3/150.0 1.4/1.4 

8 52 M 13 LDE 1484 35/10 191 225/241 148.3/151.6 1.1/1.3 

9 58 M 11 LDE 1320 43/25 201 340/304 132.5/130.0 1.7/1.5 

10 72 M 9 LDE 1281 28/5 192 316/307 127.5/130.0 1.6/1.6 

11 60 M 11 LDE 1012 28/5 190/201 431/675 138.3/121.6 1.1/1.7 

12 43 M 9 LDE 1650 63/40 253 346/340 134.1/150.8 1.3/1.3 

13 41 M 6 LDE 1220 50/22 188 279/313 126.0/128.3 1.5/1.7 

14 58 M 12 LDE 1500 38/14 202 282/250 140.8/141.6 1.4/1.2 

15 60 M 10 LDE 1560 56/10 190 205/194 175.0/189.2 1.1/1.0 

16 61 F 11 LDE 1049 35/4 192/225 626/566 119.1/150.0 1.5/1.3 

Mean±
SEM 

55.7±1.8 11.2±1.3 1361±107 44.3±2.8/ 

13.5±2.4 

198±4 404±38/

411±41 

136.4±3.2/ 

143.6±4.6 

1.4±0/1.4±0 

 

Determination of beta peak frequency and annotation of beta bursts 

To determine the beta peak frequency, the power spectrum of the STN LFP from each bipolar 

contact was obtained using the short-time Fourier transform (STFT). A Hamming window with 

a length of 1 second and an overlap of 50% was used for spectral estimation. The squared 

magnitude of the resulting complex spectrum was computed and averaged across all time 

windows for visualisation between frequencies of 1 and 100 Hz (with a resolution of 1 Hz; see 

Error! Reference source not found.a for an exemplar spectrum). For each participant, the single 

bipolar LFP channel from each hemisphere with the highest amplitude peak within the beta 

frequency range (13-30 Hz) - which we term the beta channel - was selected for further 

analysis. 

LFP time series from the beta channel were bandpass filtered within a ±3 Hz window centred 

on the beta peak frequency, using a causal 6th order Butterworth filter implemented in the SciPy 

library for Python (https://scipy.org/). The application of a causal filter served to prevent future 

samples from impacting current or past filter outputs which would be used for prediction. We  

limited our analysis to individual patient beta band filtered signals as these are typically used 

in aDBS implementations15,20,21.  After filtering, data were downsampled to 600 Hz (to reduce 
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computational cost) and rectified prior to the peak values being linearly interpolated to produce 

the beta amplitude envelope of the signal. Finally, beta burst timings were defined as time points 

Figure 1. Determination of beta peak frequency, labelling of beta bursts and data segmentation for training of the neural 

network. (a) Exemplar power spectra of right and left hemisphere STN LFP signals (recorded from bipolar contact pairs 01, 

12 and 23) from patient 5 are displayed. In this case, channel STN-R01 from the right hemisphere and channel STN-L01 from 

the left hemisphere provided the highest amplitude peak within the beta frequency range (peak frequencies at 18 Hz and 16 

Hz) and were therefore selected as the beta channels for the corresponding hemispheres for further analysis. (b) A 4s long 

segment of data from the right hemispheric channel STN-R01 of patient 5 is displayed. Data were first filtered (±3 Hz) around 

the beta peak frequency before being rectified and interpolated. The 75th percentile of the interpolated signal amplitude 

distribution (dashed green line) was used as a threshold to define the onset and offset of beta bursts (burst timings are shown 

in the green rectangular boxes). (c) Illustration of the fixed window approach, where 200 ms long data segments ending at 

fixed time intervals (0, 20, 40, 60, 80, or 100ms) prior to the onset of a burst are labelled as being predictive (Class 1) of 

subsequent burst onset. Non-predictive data segments (Class 0) terminated at least 150 ms prior to the onset of a burst.  (d) 

Demonstration of the sliding window approach. A 200 ms long window with a stride length of 30 ms was passed along the 

beta filtered time series. 12 windowed segments with a shortened stride length of 5 ms (see main text) were labelled as being 

predictive of subsequent burst occurrence (Class 1). Windows that ended during the occurrence of a burst (Class Burst) were 

excluded from subsequent analysis, whilst the remaining data segments were labelled as being non-predictive (Class 0). 
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where the beta amplitude envelope exceeded its 75th percentile10,20 (see Figure 1b). The number 

of bursts, their duration, and the number of bursts per second are illustrated for each hemisphere 

separately in Table 1. The mean duration of bursts was 136.4 and 143.6 ms for right and left 

hemispheres. The mean number of bursts per second was 1.4 for both hemispheres.  

Labelling of data for neural network classification 

To train and test our network, we segmented beta band filtered STN timeseries using both 

sliding window and fixed window approaches. The fixed window approach allowed us to 

evaluate prediction performance at specific, consistent intervals leading up to the onset of 

bursts. In this approach, 200 ms long segments of the band filtered LFP, ending at designated 

intervals (0, 20, 40, 60, 80 or 100 ms) prior to the onset of each burst, were labelled as being 

predictive (Class 1) as per Figure 1c. Additionally, data terminating at least 150 ms before 

burst onset (excluding periods that coincided with burst timing) were divided into 200 ms long 

segments - with a stride of 50 ms - and categorized as non-predictive (Class 0). During training, 

the number of Class 0 data segments was selected to match the number of Class 1 data 

segments. All segments were however classified during the validation and test phases.   

The sliding window approach, using a 200 ms long window with stride lengths of 20, 25, or 30 

ms, was designed to mimic real-time burst prediction for controlling the timing of stimulation 

delivery (Figure 1d shows an example with a stride length of 30 ms). If the end of a windowed 

segment overlapped with the occurrence of a burst, that segment was excluded from subsequent 

analysis (see green segments labelled Class Burst in Error! Reference source not found.1d). 

For training the network to learn burst predictive features, the final three data segments 

occurring prior to each burst were subsampled with a smaller stride length of 5 ms, yielding 

twelve 200 ms long data segments that terminated within 30-90 ms of burst onset (referred to 

as Class 1 in Figure 1d). This smaller stride length served to expand the size of the training 

dataset and to allow the network to be sensitive to data features that exhibit subtly variable 

timing (smoothness) in relation to burst onset. The remaining 200 ms long data segments were 

associated with the absence of a subsequent burst and were labelled as being non-predictive 

(referred to as Class 0 in Figure 1d).  

The choice of sliding window length and stride length was made empirically, based on 

performance metrics from the validation datasets (see below section titled Beta burst 

prediction network). After testing three different window lengths (200, 250 and 300 ms) and 
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seven stride lengths (10, 20, 25, 30, 35, 40, and 50 ms), we found that a 200 ms window with 

stride lengths between 20-30 ms resulted in optimal performance.  

Beta burst prediction network 

The prediction network, illustrated in Figure 2, was constructed using a CNN architecture 

implemented in TensorFlow, using the Keras API (https://www.tensorflow.org and 

https://keras.io/api/). The LFP signal was passed through a sequence of 1D convolution, 

followed by a rectified linear unit (ReLU) activation function and 1D max pooling. This process 

was repeated three times to capture deep temporal features. The output from the final max 

pooling layer was flattened and connected to a dense layer, before a sigmoid function was used 

to perform binary classification (yielding an output of 0 or 1, corresponding to each of the 

classes). A kernel size of 5 was used for the 1D convolution layers, whilst a pooling size of 2 

was used for the 1D max pooling layers to half the temporal dimensionality. The dense layer 

employed a dropout rate of 50%. The network was trained to minimize the categorical cross-

entropy loss function, using the Adam optimizer with a learning rate of 0.000128.   

LFP data from each patient were split into training, validation, and test datasets. For patients 

with two recording sessions, one session was used exclusively for training, whilst the other was 

split evenly between validation and test datasets (50%-50%). For patients with only one 

recording session, the data were partitioned with 70% allocated for training, and 15% for each 

of validation and testing. The training data were used to fit multiple candidate models, while 

the validation set was utilized for selecting the best model architecture and optimizing 

Figure 2. Architecture of the burst prediction network. The input beta filtered LFP is passed through a sequence of Conv1D, 

ReLU, and Max pooling (see main text). This process is repeated thrice, before the resulting outputs are flattened and passed 

to a dense layer. A single unit is then used for binary classification using a sigmoid activation function.  In this analysis, data 

were segmented into 200 ms long epochs with a sampling rate of 600Hz, meaning that L = 120. M represents the number of 

filters in the convolutional layers and was selected to be 128. N indicates the number of neurons in the dense layer, N=512. 
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hyperparameters (e.g., learning rate and the threshold of the final sigmoid output for binary 

classification). Final model performance was assessed and reported using the test dataset. 

Prediction performance metrics  

Based on the comparison of test data labels and the model prediction, we calculated the 

following classification metrics: 

• True positives (TP) – this is the number of burst predictive data segments (Class 1) that 

were correctly identified by the model. 

• True negatives (TN) – this is the number of non-predictive data segments (Class 0) that 

were correctly identified by the model.  

• False positives (FP) – this refers to non-predictive data segments (Class 0) where the model 

incorrectly predicted subsequent burst occurrence.   

• False negatives (FN) – this refers to predictive data segments (Class 1), where the model 

failed to predict subsequent burst occurrence.   

• False positives per minute (FP/min) – this quantifies the rate of false positive occurrence.  

• Accuracy (ACC) – this indicates the proportion of correct predictions and is defined as:  

ACC = (TP+TN)/(TP+TN+FP+FN).  

• Precision (PRC) – tells us the proportion of correct positive predictions and is defined as: 

PRC = TP/(TP+FP). 

• Sensitivity (SEN) – also known as recall, this illustrates how well the model predicts the 

occurrence of bursts and is defined as: SEN=TP/(TP+FN). 

• Area under the receiver operating characteristic curve (AUC-ROC) – this is a 

performance metric that considers the trade-off between sensitivity and the false positive 

rate at various thresholds.  It provides a measure of the classifiers ability to correctly 

distinguish between classes and was used for the fixed window approach where class 

membership was balanced. 

• Area under the precision-recall curve (AUC-PR) – this is a performance metric that 

considers the trade-off between precision and sensitivity at various thresholds and is 

therefore not influenced by a disproportionately high occurrence of true negative 

predictions 29,30. The AUC-PR was used instead of the AUC-ROC for the sliding window 

approach, owing to its increased effectiveness for classification evaluation on imbalanced 

datasets. 
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• Prediction time prior to burst occurrence (PT-PBO) – this metric was computed for the 

sliding window approach as the mean time interval between the end of the first true positive 

prediction (within 90 ms of burst onset) and the start of a burst.  
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Results 

STN beta bursts can be predicted in advance of their onset 

For the fixed window approach, we were able to achieve high burst prediction performance up 

to 60 ms before burst onset (mean values at -60 ms of: ACC = 0.78, SEN = 0.79, SPC = 0.78, 

AUC-PR = 0.73, AUC-ROC = 0.87). Supplementary Tables 1-5 show burst prediction 

performance metrics for each patient, for each of the six different predictive window 

termination timepoints relative to burst onset (0, 20, 40, 60, 80 and 100 ms). This information 

is summarized in Figure 3, which shows mean estimates of ACC, SEN, SPC, AUC-PR, and 

AUC-ROC across patients for the six different predictive window termination timepoints.  

 

Individual patient prediction metrics for the sliding window approach, with a stride length of 

30 ms, are shown in Table 2. Our model achieved a high performance for burst prediction, with 

a low false positive rate (mean sensitivity = 79%; mean precision = 88.8%; mean AUC-PR = 

0.77; mean FP/min = 8.1). Importantly, the mean prediction time (PT-PBO) was 49.5 ms, which 

corresponds closely to the result obtained using the fixed window approach. The results of 

prediction performance using different stride lengths of 20 and 25 ms are shown in 

Supplementary Tables 6-7. Using these shorter stride lengths, it can be seen that prediction 

performance can be improved at the cost of a shorter prediction time (PT-PBO).   

Figure 3. Burst prediction performance metrics for the fixed window approach. Results for each of the six different predictive 

window termination timepoints relative to burst onset are averaged across patients (ACC = accuracy; SEN = sensitivity; SPC 

= specificity; AUC-PR = area under the precision-recall curve; AUC-ROC = area under the ROC curve). Solid lines represent 

the mean, with the shaded regions indicating the standard error of the mean. Prediction performance metrics remain high as 

early as 60 ms prior to burst onset (see main Results for further discussion). 
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Table 2. Individual patient burst prediction performance metrics for the sliding window approach. 

Subject Hemis

phere 

TP FP FN TN SEN (%) PRC (%) AUC-PR FP/ 

min 

PT-PBO 

(ms) 

1 
R* - - - - - - - - - 

L 111 14 34 2121 76.5 88.8 0.72 8.7 47.5 

2 
R 133 8 20 1842 86.9 94.3 0.81 4.9 48.0 

L 121 13 24 1696 83.4 90.3 0.84 8.0 55.3 

3 
R 41 5 6 491 87.2 89.1 0.80 10.4 46.8 

L 42 4 9 436 82.3 91.3 0.74 8.3 42.8 

4 
R 92 14 26 2171 78.0 86.8 0.78 8.9 55.1 

L 101 16 41 2020 71.1 86.3 0.80 10.1 52.0 

5 
R 105 19 37 2757 73.9 84.6 0.73 9.5 49.1 

L 101 10 38 1731 72.6 91.0 0.83 6.1 46.0 

6 
R 118 19 38 1676 75.6 86.1 0.81 12.0 52.6 

L 110 22 33 2041 76.9 83.3 0.76 13.9 51.5 

7 
R 30 0 17 573 63.8 100 0.81 0 43.0 

L 30 4 11 517 73.1 88.2 0.75 8.4 44.0 

8 
R 23 6 11 624 67.6 79.3 0.61 12.5 41.7 

L 25 1 10 659 71.4 96.1 0.74 2.0 46.8 

9 
R 38 3 7 614 84.4 92.6 0.86 5.9 53.6 

L 31 6 9 624 77.5 83.7 0.74 11.9 45.4 

10 
R* - - - - - - - - - 

L 47 4 5 489 90.3 92.1 0.77 8.3 44.6 

11 
R 67 13 11 2607 85.9 83.7 0.82 8.2 59.5 

L* - - - - - - - - - 

12 
R 44 4 2 832 95.6 91.6 0.82 6.3 50.4 

L 47 1 6 772 88.6 97.9 0.84 1.5 54.2 

13 
R 32 4 13 577 71.1 88.8 0.76 8.5 46.8 

L 34 2 15 530 69.3 94.4 0.73 4.2 45.5 

14 
R 25 3 8 723 75.7 89.2 0.78 5.94 64.8 

L 33 4 4 593 89.1 89.1 0.81 7.9 55.4 

15 
R 26 4 7 489 78.7 86.6 0.72 8.4 47.3 

L 26 7 3 597 89.6 78.7 0.77 14.7 55.3 

16 
R 151 22 38 2234 79.9 87.2 0.73 11.7 44.5 

L 104 17 33 1730 75.9 85.9 0.76 10.6 47.3 

Sum - 1888 249 516 34766 - - - - - 

 Mean±SEM - - - - - 79.0±2.1 88.8±1.3 0.77± 0.0 8.1±1 49.5±1.5 

*These cases did not show a clear beta peak in the power spectrum and were therefore excluded from further analysis.   
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Classification threshold controls the trade-off between sensitivity and false positive rate 

An ideal burst prediction model should have a high sensitivity and a low false positive rate. The 

trade-off between these two performance metrics is determined by the sigmoid classification 

threshold of the output layer (see Figure 2), which binarises burst predictions. Figure 4a and 

b show the effect of varying the classification threshold on the SEN and FP rate for each 

patient’s burst prediction model, for the sliding window approach using a stride length of 30 

ms. It is seen that lowering the threshold results in increased sensitivity at the cost of an 

increased FP rate. Analogous profiles for the sliding window approach using stride lengths of 

20 and 25 ms are shown in Supplementary Figure 1.                                                                                                                                   

Beta amplitude modulations predict subsequent burst occurrence 

Our results reveal that beta burst occurrence may be accurately predicted as early as 60 ms 

before burst onset. But is there a consistent data feature allowing for this prediction which could 

be used in aDBS applications? To address this question, we examined mean beta amplitude 

envelopes for test data segments leading to TP, FP, and FN predictions. This procedure was 

performed separately for the right and left hemispheres, for each patient in the sliding window 

approach. In the case of TP and FN predictions, we selected the latest predictive data segment 

which terminated within 30 ms of burst onset (see Figure 1).  

Figure 5 and Figure 6 show the individual patient results of this analysis, separately for the 

right and left hemispheres. Crucially, the plots reveal that for TP predictions there is a consistent 

dip (fall followed by a subsequent rise) in the beta amplitude across patients, which occurs 

approximately 80-100 ms prior to beta burst onset. Note that in these figures the predictive 

Figure 4. Classification threshold and the trade-off between sensitivity and false positive rate. Sensitivity (SEN) is plotted 

against the false positive rate (FP/min), for each patient’s prediction model, separately for the left (a) and right (b) hemispheric 

STN channels. Each coloured line represents a different patient. Lowering the classification threshold increases SEN, at the 

cost of an increased FP/min. Note that the left hemisphere of subject 11 and the right hemisphere of subjects 1 and 10 did not 

show a clear beta peak in the power spectrum and were therefore excluded from further analysis.    
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window ends within 30 ms of burst onset. As expected, the beta amplitude profile of FP 

predictions closely matched that of TP predictions. FN predictions in contrast exhibited less 

pronounced beta amplitude dips. Taken together, these results highlight that a dip in the beta 

amplitude, occurring between 80-100 ms prior to burst onset, can be a reliable predictive 

biomarker of burst occurrence (see Discussion for further comments regarding this 

phenomenon).   

Validation of findings using surrogate data  

We next sought to validate our findings, by generating surrogate data that preserved beta burst 

characteristics of the original data whilst destroying pathophysiological signal properties 

occurring within non-bursting time periods. We expected to see that this manipulation would 

Figure 5. Individual patient beta envelope amplitudes for (200ms long) data segments leading to TP, TN, and FP predictions 

with the sliding window approach for the right hemispheric STN LFP. Solid lines indicate the mean, whilst shaded areas 

represent the standard error of the mean. For each patient the amplitude threshold (75th percentile) for defining burst occurrence 

is also indicated by the green dashed line. For patient 7 there were no FP predictions. The right hemisphere of subjects 1 and 

10 did not show a clear beta peak in the power spectrum and were therefore excluded from further analysis.    
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lead to significantly impaired burst prediction performance metrics when training and testing 

our burst prediction network on surrogate data.   

The original signal from each patient and hemisphere was bandpass filtered (using a zero-phase 

6th order Butterworth filter with pass band of ±3 Hz around the beta peak frequency) to define 

periods of bursting activity. A surrogate signal was then created by preserving the original data 

from periods of bursting activity and randomly shuffling (in time) the data belonging to non-

bursting time periods. The surrogate timeseries were then processed with the same causal filter 

used for the corresponding original dataset. A sliding window approach, with a stride length of 

30 ms was employed to train and test the prediction network as before. Supplementary Table 

8 shows the performance of the prediction model using surrogate data. As anticipated, the model 

Figure 6. Individual patient beta envelope amplitudes for (200ms long) data segments leading to TP, TN, and FP predictions 

with the sliding window approach for the left hemisphere. Solid lines indicate the mean, whilst shaded areas represent the 

standard error of the mean. For each patient the amplitude threshold (75th percentile) for defining burst occurrence is also 

indicated in the green dashed line. For patients 8 and 12, there was only one FP prediction. The left hemisphere of subject 11  

did not show a clear beta peak in the power spectrum and was therefore excluded from further analysis.     
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achieved poor performance compared to the original data, indicating that the network relies on 

the physiological signatures present in the original data to predict bursts, and that the narrow-

band filter has no effect on training the network. 
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Discussion 

Our study demonstrates that the timing of pathological beta bursts within the parkinsonian STN 

can be accurately predicted from preceding STN beta activity. By training patient specific deep 

learning models, we show that bursts can be predicted with high sensitivity, accuracy, and 

precision up to 60 ms prior to their onset. Importantly, our approach requires only short 

amounts of training data - averaging less than 3 minutes for each patient – and can be deployed 

in real-time. Furthermore, by studying the characteristics of predictive data segments, we show 

that a dip in the beta amplitude, which occurs between 80-100 ms prior to burst onset, is a 

predictive biomarker of burst occurrence. These results provide proof-of-principle for the 

feasibility of burst prediction and also provide insights into the neurophysiological mechanisms 

leading to burst initiation.  

Translational potential of burst prediction 

Beta frequency oscillatory activity within the parkinsonian cortico-basal ganglia circuit has 

proven to be a robust biomarker of motoric impairments – particularly bradykinesia and 

rigidity4,7,33,34. Moreover, aDBS approaches which involve the delivery of STN stimulation 

only after the detection of beta bursts are more effective in terms of achieving motor benefit 

and limiting stimulation related side effects than conventional continuous DBS15–17,35. 

Although aDBS has been shown to be effective, a key drawback of beta amplitude triggered 

approaches is that they cannot prevent the onset of pathological beta bursts, but rather respond 

with stimulation delivery after some fixed delay following burst onset. Consequently, aDBS 

may be acting too late to optimally prevent the initiation and propagation of pathological 

oscillatory activity within the cortico-basal ganglia circuit (akin to closing the stable door after 

the horse has bolted). This drawback speaks to the utility of patient specific burst prediction 

approaches which allow for the earlier detection of bursts, and consequently the earlier delivery 

of stimulation to facilitate their termination.  

Although our findings provide the first demonstration of proof-of-principle, further real-time 

clinical testing of our approach in externalized patients is warranted before moving towards the 

implementation of prediction-based stimulation algorithms in DBS devices. Interestingly, our 

approach also draws important parallels with prior work exploring seizure forecasting from 

intracranial recordings. Deep learning-based approaches including CNNs have proven to be 

successful in this regard and may allow for the more rapid delivery of seizure abortive 

treatments such as medication or therapeutic stimulation 36–38. Theoretically, our approach may 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.05.09.593398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.09.593398
http://creativecommons.org/licenses/by-nc/4.0/


also be leveraged to predict other oscillatory features within and across frequency bands, which 

have been shown to relate to distinct cognitive and motor symptoms of PD 32,39–41, such as 

dyskinesia.  

Insights into network mechanisms leading to burst generation 

A key finding of our work is that the beta amplitude displays a stereotyped pattern of 

modulation prior to the onset of bursts. Figures 5 and 6 reveal the precise nature of this 

modulation, with the beta amplitude initially falling, reaching a nadir at approximately 80-100 

ms prior to burst onset, and then subsequently rising again towards burst initiation. But what 

are the neural mechanisms which might explain this phenomenon? Computational models 

relying upon stochastic (noisy) inputs to neuronal populations as a primary driver of bursting 

cannot easily recapitulate the pre-burst amplitude dip 18,42,43. Usually in such models, noisy 

inputs determine transitions of the system between stable (non-oscillatory) and unstable 

(oscillatory) states via a bifurcation, meaning that oscillatory amplitudes can only change in 

one direction (either increase or decrease). A more plausible explanation for the beta amplitude 

dip might relate to the communication through coherence hypothesis, which proposes that 

maximal oscillatory entrainment within a network requires optimal phase alignment of 

interacting oscillatory populations 44–46. Switching to an optimal phase alignment for burst 

initiation requires a coordinated phase reset of oscillatory populations within the cortico-basal 

ganglia circuit, which could account for the transient decrease in the beta amplitude observed 

in our work 46.  

Study limitations 

Our findings should be interpreted in the context of the following limitations. Firstly, STN 

recordings were performed a few days after electrode implantation, whilst patients were at rest 

and off dopaminergic medication. This meant that clinical constraints, including patient 

fatigue, allowed for only relatively short duration recordings. Nevertheless, our ongoing related 

work highlights that similar neural network architectures can be used to accurately predict burst 

properties across different behavioural and medication states in patients with sensing enabled 

DBS devices that allow for prolonged recordings 47. Importantly in this regard, the availability 

of longer training data can allow further improvements in prediction performance metrics. 

Finally, we have predicted STN beta bursts from STN activity and have therefore not included 

nodes within the cortico-basal ganglia circuit – such as primary motor cortex (M1) - whose 

activities may facilitate the prediction of STN bursts 18,31. Although electrocorticographic 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.05.09.593398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.09.593398
http://creativecommons.org/licenses/by-nc/4.0/


recordings from M1 are currently performed only for research purposes during DBS 

procedures, there is growing evidence to suggest that these may provide complementary 

information about clinical states (e.g., dyskinesia), particularly when the fidelity of subcortical 

recordings is compromised by the presence of stimulation artefacts32.   

 

Summary  

We have harnessed deep neural networks to show that the timing of pathological beta bursts 

within the STN can be predicted in patients with PD. An important biomarker for this 

prediction is a dip in the beta amplitude, which occurs consistently between 80-100 ms prior 

to burst onset and may be indicative of a phase reset of oscillatory cortico-basal ganglia 

neuronal populations. Crucially, our findings motivate the development of a new generation of 

predictive DBS algorithms which are capable of either preventing pathological bursts or 

terminating them earlier following their onset. 
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