

Specialized Pericyte Subtypes in the Pulmonary Capillary

Timothy Klouda^{1*}, Yunhye Kim^{1*}, Seung-Han Baek^{1*}, Mantu Bhaumik², Yu Liu³, Tiffany Liu¹, Jianwen Que⁴, Joseph C Wu³, Benjamin A Raby¹, Vinicio de Jesus Perez⁵#, Ke Yuan¹#

¹Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA

²Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.

³Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA.

⁴Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.

⁵Division of Pulmonary and Allergy Critical Care Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA

*Authors contributed equally to this work.

#Authors contributed equally to this work.

Lead Correspondence:

Ke Yuan, Ke.Yuan@childrens.harvard.edu

Abstract: Pericytes (PCs) play crucial roles in capillary maturation, stability, and homeostasis. Impaired PC coverage and function are implicated in various diseases, including pulmonary arterial hypertension (PAH). Challenges investigating PC biology are largely due to the lack of a concise marker, resulting in difficulty distinguishing PCs from other mural cell populations, including smooth muscle cells (SMCs) and fibroblasts (FBs). Utilizing bioinformatic analysis and RNAscope, we identified HIG hypoxia-inducible domain family member 1B (*Higd1b*) as a unique and conserved gene marker for PCs and generated a novel knockin mouse line, *Higd1b-CreERT2*, which precisely labels PCs in the lung and heart. Human lung single-cell RNAseq suggested the presence of two *HIGD1B*⁺ PC subtypes with different functions. By lineage tracing pulmonary *Higd1b*⁺ cells exposed to hypoxia *in vivo*, we identified Type 1 PCs remained in the capillary network, while Type 2 PCs accumulated in the arterioles and coexpressed SMC markers and increased levels of Vimentin, associated with focal adhesion pathways. These results suggest that Type 1 PCs are specialized for supporting capillary EC homeostasis and quiescent, while Type 2 PCs are lineage active and located close to the border zone of the arterioles and capillaries, which may be motile and transition to SMC-like cells in hypoxia-induced pulmonary hypertension. The discovery of PC-type specialization in capillaries transforms our understanding of the structure, function and regulation of pulmonary capillary circulation and their contribution to vascular remodeling.

Keywords: pericytes, Higd1b, capillary, endothelial cells, pulmonary hypertension, single-cell RNA sequence

46 **Introduction:**

47 Pericytes (PCs) are mural cells that reside in the circulatory system's microvasculature and maintain
48 direct contact with capillary endothelial cells (ECs).¹ Embedded within the basement membrane, they
49 have critical roles in capillary homeostasis, angiogenesis, immune surveillance, and vessel maturation.²⁻⁵
50 The loss of PC function or coverage is associated with numerous diseases, including Alzheimer's,
51 diabetic retinopathy, cancer, and pulmonary arterial hypertension (PAH).⁶⁻⁸ Despite their involvement in
52 pathological processes across multiple organ systems, PCs' contribution to disease development is
53 elusive in many circumstances. A significant limitation in studying PC biology arises from lacking a
54 specific and unique cell marker, making it difficult to distinguish them from other mural cell populations
55 under physiological and pathological conditions.⁹

56 Commonly used cell markers to identify PCs include Chondroitin Sulfate Proteoglycan 4 (CSPG4,
57 aka Neuroglial Antigen NG2) and Platelet-Derived Growth Factor Receptor-β (PDGFR β aka
58 CD140b).^{10,11} However, these markers lack specificity and uniqueness to PCs, as they are co-expressed
59 in various cell types across multiple organ systems, including vascular smooth muscle cells (SMCs)
60 expressing *Acta2* and *Tagln*, FBs expressing *Col1a1* and *Fbln1*, and oligodendrocytes expressing *Cspg4*
61 and *Olig2*.¹²⁻¹⁵ To distinguish PCs from other mural cell populations, investigators rely on these cell
62 markers combined with the PC's distinct morphology (oval cell bodies with multiple, thin, prolonged and
63 elongated branches/processes) and location in the circulatory system (abundantly encircling capillaries
64 with a small population residing on the capillary-arterioles and capillary venule borders).^{7,9,16} Recent
65 advances in single-cell RNA sequencing (scRNA-seq) have revealed organ-specific gene expression in
66 PCs, reflecting their multifaceted functions throughout the body.¹⁷ Due to these limitations, there is a
67 critical need to identify and validate a PC-specific cell marker.

68 PCs play a crucial role in supporting the circulatory system and exhibit multipotent stem cell-like
69 properties.^{18,19} A notable histopathological feature of PAH is the excessive proliferation and accumulation
70 of SMCs in the distal arterioles.²⁰ Our group has demonstrated that in response to chronic hypoxia (Hx),
71 NG2+ mural cells contribute to developing pulmonary hypertension (PH) and vascular remodeling by
72 accumulating in the microvasculature and transitioning into SMC-like cells.⁷ PCs' adaptability in response
73 to Hx and organ injury positions them as promising targets for cell-directed therapies, not only in PAH
74 but also in other disease processes.²¹ Through analysis of murine and human scRNA-seq databases,
75 our group has previously identified HIG1 hypoxia-inducible domain family member 1B (*Higd1b*) as a gene
76 exclusively expressed in *Cspg4+/Pdgfr β +* mural cells in the heart and lungs.¹⁷

77 In this study, we utilize additional scRNA-seq databases and spatial transcriptomic analysis from
78 human and murine lungs and hearts to identify *Higd1b* as a PC-specific gene marker. We employed the
79 Cre-LoxP and CRISPR techniques to construct a novel, tamoxifen-inducible *Higd1b-CreERT2* mouse
80 model. Validation with reporter lines (*R26-tdTomato* and *R26-mTmG*) confirmed *Higd1b-Cre+* cells
81 effectively labeled PCs in abundance in the lung and heart, and some in skeletal muscle, connective

82 tissue, retina, and brain without labeling any other mural cells. Lastly, through lineage tracing studies, we
83 demonstrated that two subtypes of PCs marked by *Higd1b-Cre* exist in the pulmonary circulation. Type
84 1 PCs are quiescent on capillaries, and Type 2 PCs exhibit multipotent properties and accumulate in the
85 arterioles after exposure to Hx. These PCs likely undergo a transition into SMC-like cells via Vimentin
86 activation, thereby contributing to vascular remodeling and the development of Hx-induced PH. This
87 discovery positions *Higd1b* as a potential and unique cell marker for studying PCs in cardiorespiratory
88 and vascular diseases. Additionally, the identification of PC subtypes in both humans and rodents will
89 empower future investigators to delve into the dynamic role of PCs in disease development and pave the
90 way for disease-modifying therapies targeting specific subgroups of PCs.

91
92 **Results**
93

94 **Identification of *Higd1b* as a unique PC marker in human and murine lungs and hearts**

95 Using murine and human scRNA-seq datasets from multiple tissue types, we identified several PC
96 organ specific markers, including *Kcnk3* (lung), *Rgs4* (heart), and *Higd1b* (lung and heart), whose
97 expression was restricted to annotated stringent PC clusters co-expressing both *Cspg4* and *Pdgfrb*.¹⁷ Of
98 these candidates, *Higd1b* was particularly interesting because its expression was conserved in both
99 human lung and heart tissues. We speculated that *HIGD1B* would distinguish human and murine PCs
100 from other mural cell populations in the cardiorespiratory system.

101 To further explore *HIGD1B* as a potential marker for PCs in lung and heart tissues, we examined
102 the expression of *CSPG4*, *PDGFRB*, and *HIGD1B* in the human (Human Lung Cell Atlas Core) and
103 murine (Tabula Muris Senis) single-cell datasets. The Human Lung Cell Atlas is a publicly accessible
104 database comprising scRNA-seq on 584,944 human lung cells and circulating blood collected from 107
105 healthy individuals.²² The Tabula Muris Senis compendium (<https://tabula-muris.ds.czbiohub.org/>) is a
106 publicly available single-cell transcriptomic atlas covering the lifespan of *Mus musculus*, including data
107 from 23 tissues and organs. For cardiac tissues, the Human Heart dataset consists of scRNAseq on
108 486,134 human cells from all heart compartments and 14 individuals of both sexes, ranging in age from
109 40 to 75.²³ The Mouse Heart dataset is from the C57BL/6 wildtype mouse strain, which consists of 25,436
110 cardiac cells.²⁴ Utilizing the original UMAP coordinates and cell type annotations from each dataset, we
111 mapped the annotated PCs onto the UMAP. We assessed their expression levels for known PC markers
112 -*CSPG4*(*Cspg4*), *PDGFRB*(*Pdgfrb*), and *HIGD1B*(*Higd1b*)-in both human and murine scRNA-seq lung
113 datasets (**Fig 1A**). The expression of *HIGD1B* was found exclusive to pulmonary PCs, while *PDGFRB*
114 was expressed in PCs at equal levels and was also present in multiple FB subtypes, indicating broader
115 cellular expression. Although *CSPG4* was also exclusively expressed in PCs, less than 30% of annotated
116 PCs expressed *CSPG4*, and its relative expression to *HIGD1B* was reduced by about half (**Fig 1B**). A
117 similar trend regarding *Higd1b* expression was seen in the Tabula Muris Senis dataset, as *Higd1b* was
118 exclusively expressed in PCs without labeling other mural cells, while *Pdgfrb* was highly expressed in the

119 PC population but also more broadly in other mural cells and *Cspg4* was exclusive to PCs but at
120 significantly lower levels (**Fig 1C**). The expression of *CSPG4*(*Cspg4*), *PDGFRB*(*Pdgfrb*), and
121 *HIGD1B*(*Higb1b*) for all 20 annotated human cell types and 30 murine cells can be seen in **Fig S1A**. In
122 human and mouse heart scRNAseq, all three genes-*CSPG4*, *PDGFRB*, and *HIGD1B*-demonstrated
123 relatively high expression within PC populations (**Fig S1B**). However, *HIGD1B* expression was not
124 exclusive to PCs, as we observed a subset of SMCs also expressing it. Notably, *Higd1b*'s expression, in
125 comparison to *Cspg4* and *Pdgfrb*, was both high and more specific to mouse heart PCs (**Fig S1C**).

126 To further explore the spatial distribution of PCs within lung tissue, we analyzed the spatial
127 transcriptomic data from the 'Xenium Human Lung Preview Data (Non-diseased Lung)' provided by 10x
128 Genomics. By projecting cells onto a two-dimensional UMAP space and performing unsupervised
129 clustering, we identified 20 distinct cell clusters (**Fig 1D**). Among these, Cluster 8 exhibited high
130 expression levels of *CSPG4*, *PDGFRB*, and *HIGD1B*. Notably, *CSPG4* and *HIGD1B* expression were
131 specific to Cluster 8, whereas expression of *PDGFRB*, and to a lesser extent *CSPG4*, was observed in
132 other clusters (**Fig 1E**). These findings were consistent with the expression patterns observed in the
133 scRNA-seq datasets annotated with PCs, which suggested that Cluster 8 (light grey) predominantly
134 consisted of PCs. To investigate the spatial arrangement and location of these cells within the lung tissue,
135 we focused on a lung section with well-preserved architecture exhibiting clearly defined alveolar and
136 capillary structures. Within this structure, we were able to label cell types based on prior cell clustering
137 and identify the location of PCs within the lung (**Fig S2A&B**). After mapping lung cells to their respective
138 clusters, we investigated a random area of the lung section (coordinates: x:1200-2900, y:3750-4550) to
139 better visualize individual cell borders and localize the expression of *CSPG4* (red dots), *PDGFRB* (blue
140 dots), and *HIGD1B* (purple dots) among all cell clusters captured within this region. *HIGD1B* expression
141 showed a broader distribution and was predominantly localized in cells originating from Cluster 8 (**Fig**
142 **1F, Panel A-D**). In contrast, *PDGFRB* was mingled with *CSPG4*, and both were predominantly around
143 the smooth muscle layer of an artery when tracing the distribution pattern of Cluster 4(light blue) (**Fig 1F,**
144 **Panel E-H**). In summary, using human and murine scRNA-seq datasets from lung and heart tissue along
145 with spatial transcriptomics, we identified *HIGD1B* as a more specific marker for pulmonary PCs
146 compared to *CSPG4* or *PDGFRB*.

147

148

149 **Construction of *Higd1b*-CreERT2 knockin mouse line**

150 To validate *Higd1b* as a PC-specific cell marker, we designed *Higd1b*-mRNA probes and performed
151 RNAscope on *Cspg4*-CreERTM::R26-*tdTomato* (NG2-*tdT*) lungs. In precision cut lung slices(PCLSS),
152 parenchymal *tdT*+ cells clearly demonstrated classical PC morphology, including an oval cell body and
153 long punctate processes partially wrapping capillary ECs (**Fig 2A**). We applied *Higd1b* probes on OCT
154 embedded NG2-*tdT* lungs and found 100% co-localization of *Higd1b* mRNA with endogenous *tdT* (**Fig**

155 **2B**). *Higd1b* positive punctate dots also stained some cells without tdT, suggesting incomplete tamoxifen
156 induction of NG2-tdT recombination. In larger-sized arteries, no *Higd1b* staining was found in the smooth
157 muscle layers (**Fig S3**). After RNAscope validation, we sought to generate a novel, tamoxifen-inducible,
158 knockin mouse line using the Cre-LoxP system using CRISPR (**Fig 2C**). A total of 47 pups were screened
159 by PCR using Cre-specific primers, and two founders were identified, which were #12 and #25. The
160 genotyping results shown were from mouse #25. To confirm target specific intact integration of the donor
161 construct in the *Higd1b* locus, for LHA the forward primer LF is designed in the intronic region between
162 exon-1 and exon-2 and C1 reverse primer in 5' region of Cre (1.9kb); the RHA is screened using forward
163 primer C4 located in 3' of Cre and reverse primer RR is outside of RHA in intron (2.3kb) (**Fig 2C**). Sanger
164 sequencing of PCR products from left and right homology arms confirmed knock-in of *Higd1b-P2A-CRE-ERT2*
165 construct in exon 4 (**Supple Table 1**).

166
167
168 ***Higd1b-Cre+* specifically labels PCs in the lungs and hearts *in vivo***

169 To further validate *Higd1b* sensitivity for PCs, we bred *Higd1b-CreERT2* with an *R26-tdTomato*
170 (referred to as *Higd1b-tdT*) and an *R26-mTmG* (referred to as *Higd1b-mTmG*) reporter mouse and
171 treated both with tamoxifen to confirm endogenous labeling of PCs.

172 Examination of PCLSs from *Higd1b-tdT* with confocal microscopy revealed endogenous reporter
173 tdT cells with morphology representative of pulmonary PCs; a central, oval body with multiple, elongated
174 processes (**Fig 3A**). These cells were found distributed through the capillaries of the pulmonary
175 parenchyma but not in distal arterioles (>25 μ m). More importantly, there was no co-expression of tdT
176 positive (+) cells colocalized with either EC marker CD31 (green) or SMC marker SMA (white). (**Fig 3A, top and middle rows**). Furthermore, the majority of tdT+ cells were found to co-express PDGFR β
177 (green), although PDGFR β staining was also seen in tdT negative(-) cells in arterioles/arteries,
178 highlighting non-specificity for *Pdgfrb* to identify PCs (**Fig 3A, bottom row**). We then evaluated precision
179 cut heart slices from *Higd1b-tdT* due to our prior scRNA-seq results suggesting the expression of *Higd1b*
180 in cardiac PCs¹⁷. We observed tdT+ cells stained for red-fluorescent protein (RFP) labeled PCs in
181 capillaries throughout the myocardium, which did not coexpress SMA (**Fig 3B**). Notably, IF staining and
182 confocal microscopy from *Higd1b-mTmG* mice demonstrated similar findings, with cells endogenously
183 labeled with green fluorescent protein (GFP) reporter in PC-shaped cells distributed throughout the
184 parenchyma in direct contact with ECs (CD31). Compared to *Higd1b-tdT*, *Higd1b-mTmG* seemed to
185 label more PC cytoplasmic processes. The majority of GFP-labeled cells coexpressed staining for
186 PDGFR β , but no visualized cells were positive for SMA (**Fig 3C**). Both *WT-tdT+/-* and *WT-mTmG+/-* mice
187 injected with similar doses of tamoxifen and knockin mice (*Higd1b-td+/-* and *Higd1b-mTmG+/-*) without
188 tamoxifen treatment did not express endogenous labeling for tdT or GFP (**Fig S4A&B**), suggesting
189 recombinant reporter color is driven by tamoxifen induction.

191 In addition to the cardiorespiratory system, PCs contribute to numerous diseases, including
192 Alzheimer's, diabetic retinopathy, renal fibrosis, and more in numerous organ systems²⁵. We, therefore,
193 examined additional tissues harvested from *Higd1b-tdT* mice for the endogenous labeling of PCs. Similar
194 to heart and lung samples, confocal microscopy of skeletal muscle and connective tissues of descending
195 aorta from *Higd1b-tdT+/-* mice revealed SMA-negative, tdT-positive PCs in direct contact with the
196 microvasculature (**Fig S5A&B**) Retina from *Higd1b-tdT+/-* mice also demonstrated minimal labeling of
197 PCs(~4.6%) (**Fig S5C**). Finally, considering the importance of PCs to the maintenance of the blood-brain
198 barrier, we evaluated murine brain tissue.²⁶ Sections of *Higd1b-tdT+/-* brain demonstrated few tdT+ cells
199 lining the blood vessels (**Fig S5D**). There was no consistent identification or expression of tdT in cells
200 from either the kidney or liver of *Higd1b-tdT* mice (**Fig S6**).

201

202

203 PCs translocate dynamically in 3wk hypoxia induced PH and recovery models

204 Utilizing NG2-tdT, our group previously showed that NG2+ mural cells accumulate in the
205 microvasculature and contribute to the development of Hx induced PH.⁷ Since NG2 is a shared cell
206 marker expressed in multiple mural cell populations, particularly in SMCs, we can not conclude that PC's
207 direct contribution to arteriole muscularization and vascular remodeling. Thus, we performed lineage-
208 tracing studies using *Higd1b-tdT+/-* and *Higd1b-mTmG+/-* mice to precisely describe the contribution of
209 PCs to vascular remodeling across different periods of Hx.

210 After verifying the appropriate and selective labeling of PCs in *Higd1b-tdT+/-* mice after tamoxifen
211 injection and allowing rest for up to 2 weeks, we exposed mice to Hx (1wk, 2wks, 3wks) and harvested
212 lung tissues.^{27,28} Using confocal microscopy and IF staining, we described morphology, distribution, and
213 expression of SMC cell markers in *Higd1b-tdT+/-* positive cells in response to Hx. After 1wk of Hx,
214 endogenously labeled tdT+ cells were found in close proximity to the distal arterioles (<50 μm). A small
215 subset of tdT+ cells were found directly in muscularized vessels expressing positive SMCs (SMA+)
216 staining. Compared to normoxic samples, PCs in the distal arterioles demonstrated a spindle-shaped
217 morphology that closely resembled SMCs with reduced process length compared to normoxic PCs. The
218 majority of PCs, however, were still found within the lung parenchyma and in direct contact with capillary
219 ECs (**Fig 4A, top panel**). After prolonged exposure to Hx for up to 3 weeks, the quantity of tdT+ cells
220 with spindle-shaped(shorter processes) morphology in the remodeled arterioles was increased,
221 suggesting PCs were in direct contact with the muscularized vasculature. Notably, many PCs remained
222 in the lung parenchyma and in direct contact with capillary ECs with potentially longer and increased
223 surface areas of processes (**Figure 4A, bottom panel**). Additional IF staining for the mature SMC marker
224 SMMHC in mice exposed to Hx revealed coexpression of tdT+ PCs with SMMHC and SMA (**Fig S7A**).

225 Next, we performed similar lineage-tracing experiments in *Higd1b-mTmG+/-* mice to further
226 validate our findings. In normoxic conditions, PCLSSs from *Higd1b-mTmG+/-* mice demonstrated

227 endogenously labeled GFP+ cells (PCs) within the lung parenchyma and morphology representative of
228 a PC. No visualized GFP+ cells had coexpression for SMA or were located on arterioles (**Fig 4B, top**
229 **panel**). After 3 wks of Hx, GFP+ was found accumulated in the distal arterioles (25-50 μ m), expressing
230 SMA and with a spindle-like shape compared to normoxic conditions (**Fig 4B, bottom panel**). The
231 parenchymal GFP+ showed increased process coverage.

232 The chronic Hx mouse model is a well-established experimental PH model and all of the Hx-
233 induced PH and pulmonary vascular alterations are fully reversed after 3 weeks of normoxia recovery
234 (referred to as Recovery model).²⁹ Upon returning hypoxic *Higd1b-tdT+/-* and *Higd1b-mTmG+/-* mice to
235 normoxic conditions, we observed the loss of PC accumulation on distal arterioles and restorations of
236 normal PC morphology similar to baseline conditions, suggesting a dynamic movement of PC in
237 pathological conditions (**Fig 4C & D**). However, we noticed that a small portion (2.5%) of tdT+ or GFP+
238 cells still wrapped and resided in the very distal arterioles but no longer expressed SMA. We speculate
239 that longer exposure to normoxia may result in a complete return of PC to their parenchymal location.
240
241

242 **Two PC subtypes are identified in capillary networks**

243 A key finding in our fate-mapping experiments was the distinct location and morphological change
244 of *Higd1b*+ PCs after exposure to Hx. Since *Higd1b*+ cells accumulated in remodeled arterioles or
245 remained in the capillaries after exposure to Hx, we speculated that there may be different PC subtypes
246 within the pulmonary capillaries. These subsets of PCs may have different roles in disease development
247 and be distinguished from one another using known PC markers *Higd1b*, *Pdgfrb*, and *Cspg4*. Therefore,
248 we sought to determine if such PC subsets could be identified, providing further insight into the role of
249 PCs in the development of Hx-induced vascular remodeling using scRNA-seq and spatial
250 transcriptomics.

251 To explore the heterogeneity within PC sub-populations in relation to *HIGD1B* expression, we first
252 subset the annotated PC cluster from the “Human Lung Cell Atlas”.²² Utilizing Harmony³⁰ to remove the
253 batch effect from sub-clustering, we identified four distinct PC sub-Clusters(**Fig 5A** and **Fig S8**). Notably,
254 sub-Cluster 0 and 1 exhibited high expression levels of *HIGD1B*, whereas sub-Cluster 2 and 3 displayed
255 relatively lower expression. Particularly, despite its lower *HIGD1B* expression, sub-Cluster 3
256 demonstrated a higher expression of *CSPG4* and *PDGFRB*.

257 To further dissect the molecular difference between PCs with high and low *HIGD1B* expression, we
258 performed differential expression (DE) analysis between sub-clusters 0 and 3, utilizing the Wilcoxon rank-
259 sum test. Subsequently, we conducted a pre-ranked Gene Set Enrichment Analysis (GSEA) to identify
260 key pathways and genes distinguishing these sub-populations (**Fig 5B**). Our analysis revealed that the
261 relative expression levels of *HIGD1B* were significantly higher in sub-Cluster 0, whereas the relative
262 expression levels of *PDGFRB* were found to be significantly higher in sub-Cluster 3. The GSEA

underscored functional disparities between the two sub-populations. In sub-Cluster 0, pathways associated with metabolic activity, such as oxidative phosphorylation and glycolysis, were prominent, suggesting a metabolically active phenotype. Additionally, this sub-cluster showed enrichment in the reactive oxygen species pathway and TNF- α signaling and NF- κ B, highlighting potential roles in cellular stress response and inflammation. Intriguingly, sub-Cluster 3 displayed enrichment in pathways related to cell cycle and development, such as mitotic spindle and G2M checkpoint, which may reflect a proliferation-associated state. The presence of pathways like estrogen response early and epithelial-mesenchymal transition indicates a potential involvement in tissue remodeling and hormonal responses. KEGG pathways, including focal adhesion, ECM receptor interaction, vascular smooth muscle contraction, and regulation of actin cytoskeleton, suggested cellular motility, contractility, and lineage transition. These divergent pathways between sub-Cluster 0 and 3 suggest a different functional state of PCs, with sub-Cluster 0 displaying PC classic characteristics of metabolic and structure maintenance within the lung tissue, while sub-Cluster 3 aligns with stress response engagement, including cellular proliferation, movement, and lineage transition. A full list of enriched pathways identified in PCs from sub-Cluster 0 and sub-Cluster 3 can be seen in **Fig S9**.

Next, we re-analyzed idiopathic pulmonary arterial hypertension (IPAH) PCs and control PCs utilizing previously published scRNASeq data sets and analysis methods.^{31,32} Among the sub-reclustered 13 mural cell clusters, only sub-Clusters 5 and 6 had expressions of *HIGD1B* (**Fig 5C, left**). Voline plots show that sub-Cluster 5 is *HIGD1B* *low* *PDGFRB* *high* as defined as Type 2 PCs whereas sub-Cluster 6 is *HIGD1B* *high* *PDGFRB* *low* as defined as Type 1 PCs. Peudotime analysis suggests that Type 2 PCs are lineage active by purple/green, whereas Type 1 PCs are quiescent and have mature lineage status by yellow using the color code scale (**Fig 5C, right**). Differentially expressed genes (DEG) to compare IPAH Type 2 PCs with healthy Type 2 PCs only revealed two significantly altered genes (adjusted $P < 0.02$), which are *VIM* (**Fig 5D**) and *ITM2C*. IPAH Type 1 PCs compared to healthy Type 1 PCs also only show two significantly altered genes (adjusted $P < 0.02$), which are *MT2A* and *MT1M*. When re-analyzed hypoxic murine mural cells scRNASeq datasets from our recent published work³¹, we identified PC clusters from other mural populations using high expression levels of *Higd1b* (**Fig 5E**). Due to limited cell numbers, we can not further sub-cluster the murine PC population. By DEG analysis, *Vim* was significantly upregulated in 3.4-fold hypoxic PCs than normoxic PCs (**Fig 5F**).

292 293 294 **Type 2 PCs express upregulated levels of Vimentin after 3wk Hx**

295 We then performed confocal microscopy and IF staining in normoxic and hypoxic *Higd1b-tdT*+/− mice to determine if Vimentin would be upregulated in PCs. Under normoxic conditions, Type 2 PCs (**Fig 6A Panel a''**) were close to a SMA+ arteriole and had a decreased number of processes compared to Type 1 PCs located in the parenchymal capillaries (**Panel a'**). Vimentin was seen scattered throughout the parenchyma. Under increased magnification, there was no expression of Vimentin in Type 1 or Type

300 2 PCs (**Fig 6A, Panel a'&a''**). However, after exposure to Hx, Vimentin was upregulated in the out layer
301 of distal arterioles and only in Type 2 PCs, which wrapped around a muscularized distal arteriole (< 50
302 μm) coexpressing SMA (**Fig 6A, panel b''**). This staining result was consistent with the Violin plot results
303 seen in **Fig 5D**. Type 2 PCs also demonstrated distinct morphology (**Panel b''**, spindle shape and shorter
304 processes) compared to normoxic Type 2 PCs(**Panel a''**, an oval body and thin processes). Hypoxic
305 Type 1 PCs showed an increased number of processes (**Panel b'**) compared to normoxic Type 1 PCs
306 (**Panel a'**). Taken together, our scRNA-seq analysis and experiments in PC lineage tracing mice using
307 *Higd1b* as a specific PC marker suggested upon Hx, a subset of PCs (Type 2) relocated in the distal
308 arterioles and express higher levels of Vimentin and lower levels of typical PCs genes including *Higd1b*,
309 *Cspg4*, and *Pdgfrb*. This was in contrast to Type 1 PCs, which, under physiological conditions, have a
310 low relative expression of *Vimentin* and higher expressions of *Higd1b*, *Cspg4*, and *Pdgfrb* (**Fig 6B**). These
311 findings suggest, for the first time, a heterogeneity of PCs in the capillary networks and that treatments
312 targeting PCs and/or mural cells may affect a wide range of cells and may lead to disruption of the
313 microvasculature homeostasis and structure support rather than reversing the vascular remodeling seen
314 in PH. Instead, therapeutic approaches should be considered to exclusively target Type 2 PCs and have
315 no effects on Type 1 PCs.

316

317 **Discussion**

318 In this study, we identified *Higd1b* as a unique and specific PC marker for both humans and mice
319 in the cardiopulmonary system using scRNA-seq, spatial transcriptomics, and RNAscope (**Fig 1**). Utilizing
320 the Cre-LoxP and CRISPR technologies, we generated a novel, tamoxifen inducible knockin mouse line
321 (*Higd1b*-CreERT2), which effectively and specifically labeled PCs in abundance in the lung and heart
322 (**Fig 2&3**). Through lineage tracing studies, we demonstrated two subtypes of PCs within the pulmonary
323 capillary networks capable of dynamic transition (**Fig 4 &5**). Type 1 PCs located within the capillary
324 network (diameter <10 μm) maintain capillary homeostasis and integrity and were quiescent. Type 2 PCs
325 located the zone between capillary and arterioles (diameter <25 μm) and were lineage active and had
326 multipotent properties, including the ability to transition into SMC-like cells, relocating to the arterioles in
327 response to Hx, contributing to vascular remodeling and the development of Hx-induced PH (**Fig 6**).

328 PCs are an essential component of microvasculature and play key roles in regulating capillary
329 homeostasis, angiogenesis, immune cell recruitment, vascular remodeling, and maintenance of the
330 blood-brain barrier.^{9,33-35} They have been implicated in the development of numerous disease processes
331 throughout the body, including PAH, Alzheimer's disease, and diabetic retinopathy. A significant limitation
332 and challenge in studying PCs is the lack of a clear and specific cell marker to distinguish them from
333 other mural cell populations. Genetic mouse models, combining cell markers, fluorescent reporters, and
334 lineage-tracing lines, represent powerful tools for genetically labeling PCs and tracking their behavior
335 during development and in pathological conditions. Commonly used promoters for PC labeling include

336 *Pdgfrb*^{36,37}, *Cspg4*^{7,38,39}, *Tbx18*³⁹, *LepR*⁴⁰, Alkaline Phosphatase AP⁴⁰, *Myh11*⁴¹, *Foxj1*⁴¹, and *Foxd1*⁴² and
337 even dual reporter systems by *Pdgfrb-flp* and *Cspg4-FSF-CreER*⁴² or *PdgfraDreER* negative
338 *PdgfrbCreER* positive⁴³. However, it is essential to emphasize that none of these markers are exclusive
339 to PCs, as SMCs, FBs, myofibroblasts, and other non-mural cells share these markers with PCs.
340 Consequently, PC lineage-tracing studies cannot definitively rule out potential contamination from other
341 cell types. scRNA-seq is an emerging and powerful tool for analyzing the genetic signature of individual
342 cells, enabling the identification of genes for future diagnostic and therapeutic strategies. Through data
343 mining from publicly available sources, we have identified *HIGD1B* as a unique and specific PC gene.
344 Combining scRNA-seq with corresponding spatial transcriptomic data, our goal was to determine the
345 subcellular location of mRNA molecules for *CSPG4*, *PDGFRB*, or *HIGD1B* and assign different cell types
346 to their locations in a normal human lung section. *CSPG4* or *PDGFRB* was located around large-sized
347 vessels, predominantly highlighted by Cluster 8, while *HIGD1B* was mostly found in the parenchyma and
348 tentatively around capillaries (**Fig 1F**). The HIG1 hypoxia inducible domain (HIGD) gene family is
349 comprised of five genes: *Higd1a*, -1b, -1c, -2a, -2b.⁴⁴ *Higd1a* is regulated by hypoxia-inducible factor-1
350 (HIF1) and has roles promoting cell survival under hypoxic conditions.^{45,46} Previous studies have
351 indicated that *Higd1b* promotes cardiomyocyte survival by maintaining mitochondrial integrity and its
352 overexpression promotes cell survival through altered activation of caspase-3 and -9, but its role in
353 pulmonary cells is currently unknown.⁴⁴ Notably, PCs in different organs reside at different locations
354 throughout the capillary microcirculation, thus leading to distinct morphological characteristics and
355 signature genes.⁴⁷ Our previous work suggested that PC markers may be organ specific and conserved
356 in human and mouse hearts and lungs.¹⁷ The difference in PC gene expression between organs warrants
357 further investigation in the future, as specific gene expression patterns in PCs may control cell
358 dedifferentiation and be an important mechanism to understand when developing PC specific treatment
359 strategies. Intriguingly, the *Higd1bCreERT2* mice truly reflect the PC specificity in different organs, as
360 *Higd1bCre+* were abundant in hearts and lungs with decreased labeling in other organs, including the
361 brain, retina, skeletal muscles, kidney, liver, and pancreas. Therefore, *Higd1b/HIGD1B* is an ideal cell
362 marker to study PCs contribution to cardiopulmonary diseases.

363 Due to their close origin, PCs giving rise to SMCs or other mural cells have been extensively
364 studied in many organs during development and under pathological conditions. For example, PCs
365 coordinate the behavior of epithelial and vascular cells during lung morphogenesis.⁴⁸ PCs serve as a
366 source of SMC precursors during collateral artery formation in heart development.³⁸ Resident PCs in
367 postnatal skeletal muscle play a crucial role in contributing to differentiation in both the smooth muscle
368 layer of blood vessels and the development of skeletal muscle fibers.⁴⁹ FoxD1-lineage PC-like cells also
369 contribute to the myofibroblast population following bleomycin-induced lung injury.⁴⁸ PCs give rise to
370 microglial cells after ischemic brain injury.⁵⁰ PCs participate in vascular and fibrotic remodeling after
371 ischemic damage in the heart.⁵¹ PCs in kidneys differentiate into myofibroblasts which contribute to

372 collagen deposition and fibrosis.^{14,35,52,53} In contrast, some studies suggest that endogenous PCs in the
373 heart, brain, skeletal muscle, and fat tissues do not behave as multipotent tissue-resident progenitors⁵⁴.
374 These discrepancies may be due to different PC subtypes, suggesting a potential diversity of plasticity
375 and function. However, the classification of proposed PC subtypes remains challenging, again, due to
376 the lack of PC-specific markers. Without a consensus, PCs have been defined by the inclusion and
377 exclusion of numerous markers. PCs in the cerebral circulatory system closer to the arteriole end of the
378 capillary bed may be involved in regulating blood flow, while PCs on the capillary bed more vital to
379 maintaining the function of the blood-brain barrier, and PCs at the venule end of the capillary network
380 regulate immune cell infiltration.^{33,55-58} Skeletal muscle Type 1 (Nestin-NG2+) PCs are fibrogenic and
381 adipogenic in old and diseased muscle, while Type 2 PCs (Nestin+NG2+) generate new muscle tissue
382 after injury.⁵⁹ Additionally, Type 2 PCs recover blood flow in a mouse model of hindlimb ischemia.⁶⁰ Two
383 types of PCs specified as CD274+ capillary and DLK1+ arteriolar PCs are differentiated from human
384 pluripotent stem cells.⁶¹ Applying scRNA-seq to IPAH and control lung cells, two subgroups of PCs were
385 identified (**Fig 5C**). Type 1 are classical or synthetic PCs enriched with *HIGD1B* but with lower expression
386 of SMC signature mRNAs, including *PDGFRB*, *ACTA2*, and *MYH11*. They have long punctate processes
387 that partially wrap around capillary ECs within the basement membrane. They reside only on capillary
388 beds, with one cell covering roughly 3-4 capillary nets. Type 1 PCs maintain capillary homeostasis and
389 inhibit EC proliferation under normal conditions. They are fully differentiated and quiescent, thus having
390 fewer multipotent properties. Under hypoxic conditions, their process surface area expands, and they
391 wrap tighter around capillary EC junctions in response to arteriolar vasoconstriction, protecting against
392 capillary leakage. Selective ablation of brain PCs provokes exuberant extension of processes from
393 neighboring PCs to contact uncovered endothelium regions.⁶² We speculated that Type 1 PC process
394 expansion may be a dynamic event similar to brain PCs due to the absence/movement of neighboring
395 Type 2 PCs, but it requires further experimental evidence.

396 Type 2 are contractile PCs with relatively lower expression of *HIGD1B* and higher expression of
397 SMC signature mRNAs, including *PDGFRb*, *ACTA2*, and *MYH11*, compared to Type 1 PCs. They reside
398 at the border zone of capillary nets and arterioles (15-25 μ m). Their processes are shorter, making
399 detachment and transmigration easier. Similar to Type 1 PC inhibition to EC growth, Type 2 PC's main
400 functions may prevent arteriolar SMCs from migrating to capillaries and maintain the homeostasis
401 balance of the SMC-PC-capillary compartments. Under hypoxic conditions, Type 2 PCs translocate out
402 of the border zone and reside on arterioles (diameter >25 μ m) and coexpress Sma+ Smmhc+, suggesting
403 they have multipotent stem cell properties under pathological conditions and may be more motile SMC-
404 like in response to arteriolar vasoconstriction. Vimentin orchestrates cytoskeletal and microtubule
405 rearrangements and mechano-signaling to promote cell migration and polarity.⁶³⁻⁶⁵ Its upregulation in
406 hypoxic Type 2 PCs may reduce cell-cell contact and drive cell translocation. In a recovery model where
407 mice are re-exposed to normoxia after 3 weeks of Hx, PH is completely reversed. Intriguingly, the vast

408 majority of Type 2 PCs are no longer required for remodeling and vasoconstriction and move back to the
409 border zone, while Type 1 PC processes restore back to their normal size.

410 More studies are required to distinguish Type 1 and Type 2 PCs using unique markers and to
411 further characterize and validate their function and plasticity. Their cellular and genetic identities should
412 be further validated using clonal expansion and multiple color reporter systems, such as Confetti reporter
413 lines. Additionally, subtypes of PCs in the capillary circulation of human lungs need to be carefully
414 examined and characterized. Despite its advantages, scRNA-seq does not describe cell location and
415 spatial information. Understanding PC spatial orientation is crucial for comprehending PC distribution or
416 morphological changes in disease pathogenesis, especially if we can identify them in patient biopsy
417 samples in relation to disease progression and severity. The other major limitation is that the geographic
418 differences of human donor PCs regarding sex, age, and ethnicity are not explored. To more specifically
419 label PC subtypes, barcoding cells with synthetic DNA sequences such as DARLIN, an inducible Cas9
420 barcoding mouse line, may be a useful tool to generate massive lineage barcodes across tissues and
421 enable the detection of edited barcodes in profiled single cells.⁶⁶ In future studies, the molecular
422 mechanisms of Vimentin regulation in PC migration and polarity are necessary. PC lineage changes in
423 other lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary
424 fibrosis (IPF) should be carefully examined and investigated. Additionally, the role of PCs in the heart
425 microvasculature is overlooked under pathological conditions. Targeting PC malfunction reveals
426 enormous therapeutic possibilities, as PC-directed therapies have the potential to reverse or prevent
427 disease progression and development in multiple scenarios. For example, human pluripotent stem cell-
428 derived PCs have been successfully engrafted into the vasculature of ischemic murine limbs and
429 promoted vascularization and muscle regeneration, highlighting the high ceiling of their potential as a
430 therapeutic target.⁶⁷ The proliferation of SMCs in PAH may be targeted using a PDGFR β inhibitor (such
431 as imatinib). However, PDGFR β is expressed not only on SMCs but also on PCs, which play a crucial
432 role in maintaining capillary homeostasis. Therefore, reducing the PC population with a PDGFR β inhibitor
433 may disrupt capillary homeostasis, leading to unexpected side effects and vascular leakage. To
434 specifically target SMC proliferation, it may be more effective to use surface markers that are more
435 specific to SMCs and exclude PC inhibition.

436 In summary, we identified *Higd1b* as a specific and unique cell marker able to differentiate PCs
437 from other mural cell populations. We generated a novel, tamoxifen-inducible, PC reporter mouse
438 *Higd1b-CreERT2* and confirmed the selective and appropriate labeling of PCs dominantly in the lungs
439 and hearts. Our study, for the first time, suggests the existence of PC subtypes in the pulmonary
440 circulation with different functions and dynamic changes in their morphologies under hypoxic conditions.
441 This new cell marker and knockin mouse will provide the field of vascular biology with the necessary tools
442 to perform fate mapping and gene knock-out experiments specific for PCs and lead to new discoveries
443 on their contribution to disease development.

444 **Materials and Methods**

445

446 ***HIGD1B* expression in Single-cell Databases Annotating PCs**

447 We employed integrated datasets from the 'Human Lung Cell Atlas (core)' and the 'Tabula Muris Senis'
448 to investigate the expression of *CSPG4*, *PDGFRB*, and *HIGD1B* in PCs of human and mouse lungs,
449 respectively^{22,68}. Additionally, single-cell sequencing data from Litvinukova et al. (2020) and Feng et al.
450 (2022) were utilized for analogous investigations in human and mouse hearts^{24,69}. These datasets,
451 which included annotations for PCs, were derived from healthy subjects or mice. We used the Seurat R
452 package to specifically examine the expression of *CSPG4*, *PDGFRB*, and *HIGD1B* across different cell
453 types utilizing dot plots and density plots, employing the original UMAP coordinates from each dataset
454 for visualization⁷⁰. The analysis methods applied for Figure 5C-F were previously published in PMID:
455 38243138.

456

457 **Spatial Analysis of *HIGD1B* in lung tissue**

458 We analyzed the 'Non-diseased Lung' dataset from the 'Xenium Human Lung Preview Data' to examine
459 *CSPG4*, *PDGFRB*, and *HIGD1B* expression in lung tissue. The dataset underwent normalization with
460 SCTransform, followed by dimensionality reduction using Principal Component Analysis (PCA)^{70,71}. We
461 selected the top 30 principal components based on the percentage of variance explained for subsequent
462 analysis. These components were used to project the cells into a two-dimensional space using the
463 Uniform Manifold Approximation and Projection (UMAP) algorithm⁷². Unsupervised clustering was
464 performed with the FindClusters function (resolution set at 0.3), identifying distinct cell clusters⁷⁰. We then
465 utilized dot and density plots to investigate the expression patterns of *CSPG4*, *PDGFRB*, and *HIGD1B*
466 across these clusters. For spatial visualization, a specific lung section (coordinates: x: 1200-2900, y:
467 3750-4550) was chosen to illustrate cell segmentation boundaries and the localization of individual
468 *CSPG4*, *PDGFRB*, and *HIGD1B* molecules. Cells within this section were color-coded according to their
469 cluster membership, enabling a detailed examination of spatial expression patterns.

470

471

472 **Sub-clustering Pericyte cluster utilizing Harmony**

473 The Pericyte cluster, annotated from respiratory airway and lung parenchyma tissue was extracted
474 from the 'Human Lung Cell Atlas (core)'. We applied PCA to this focused dataset, selecting the top five
475 principal components based on their contribution to variance. To mitigate the effects of potential
476 confounders, Harmony was utilized, adjusting for variables including 'dataset', 'assay', 'tissue sampling
477 method', 'sequencing platform', 'development stage', 'tissue', 'subject type', 'study', 'lung condition',
478 'sex', 'self-reported ethnicity' and 'age or mean of age range'³⁰. These principal components were
479 subsequently used to project the cells into a two-dimensional space via the UMAP algorithm. Following
480 this, unsupervised clustering was conducted using Seurat's FindClusters function, with the resolution
481 parameter set to 0.2. We then utilized dot and density plots to investigate the expression patterns of
482 *CSPG4*, *PDGFRB*, and *HIGD1B* across these Pericyte sub-clusters.

483

484

485 **Differential Gene (DE) Expression Analysis and Gene Set Enrichment Analysis (GSEA)**

486 DE analysis was carried out to compare Pericyte sub-clusters 0 and 3 using the Wilcoxon rank sum
487 test⁷⁰. In this analysis, a positive log2 fold change (log2FC) indicates higher gene expression in sub-
488 cluster 0 relative to sub-cluster 3. DE genes were ranked in descending order based on their log2FC to
489 create a pre-ranked gene list for subsequent analysis. We employed the GSEAp to perform GSEA on
490 this pre-ranked gene list against curated gene sets from the Hallmark collection, and the Kyoto
491 Encyclopedia of Genes and Genomes (KEGG)⁷³. Statistical significance for pathway enrichment was
492 assessed using a permutation test, with pathways exhibiting an adjusted q-value below 0.05 considered
493 statically significant.

494

495

496

497

498 Data Availability

499 For experiments pertaining to scRNA-seq, microfluid, droplet based data was processed using the 10x
500 Genomics platform (10x3'v2) of the (1) Tabula Muris Senis, (2) Human Lung Cell Atlas, (3) Adult Human
501 Heart, and (4) The Mouse Heart datasets, which were obtained from the Cellxgene collections
502 (<https://cellxgene.cziscience.com>) (16, 24, 25). The pre-processed, publically available scRNA-seq
503 datasets utilized in experiments include:

- 504 1. Tabula Muris Senis compendium for murine lung tissue:
<https://cellxgene.cziscience.com/collections/0b9d8a04-bb9d-44da-aa27-705bb65b54eb>.
- 505 2. The Human Lung Cell Atlas dataset for human lung tissue:
<https://cellxgene.cziscience.com/collections/5d445965-6f1a-4b68-ba3a-b8f765155d3a>.
- 506 3. The Adult Human Heart dataset for human cardiac cells:
<https://cellxgene.cziscience.com/collections/b52eb423-5d0d-4645-b217-e1c6d38b2e72>.
- 507 4. The Mouse Heart dataset for murine cardiac cells:
<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193346>.

511

512 Spatial transcriptomics of the human lung was obtained from the Xenium Human Lung Preview Data
513 (Non-diseased Lung) using 10x Genomics Datasets which can be found at:
514 (<https://www.10xgenomics.com/datasets/xenium-human-lung-preview-data-1-standard>).

515

516 Experimental animals

517 All animal procedures conducted in this study were approved by the Institutional Animal Care and Use
518 Committee (IACUC) guidelines at Boston Children's Hospital (BCH) and adhered to the published
519 guidelines of the National Institutes of Health (NIH) on the use of laboratory animals. Mice were housed
520 in the animal facility at BCH with a 12-hour light/dark cycle and ad libitum access to rodent chow and
521 water.

522

523 The founder #25 *Higd1b-CreERT2* was crossbred with Ai14 (*Higd1b-CreER::R26-tdTomato*) for
524 generation of the *Higd1b-tdT* and also crossbred with the Rosa26-
525 *mTmG*(<https://www.jax.org/strain/007576>) to generate *Higd1b-mTmG*. Ear clip-based genotyping was
526 used to identify knockin and control mice. *Cspg4-CreERTM*(<https://www.jax.org/strain/008538>) was
527 crossbred with Ai14 for the generation of the *NG2-tdT* and tamoxifen induction following the previously
528 published protocol.⁷

529

530 Donor plasmid and Guide RNA

531 Higdb1-P2A-CRE-ERT2 targeting vector (donor) was generated by assembling 1kb left (LHA) and 1kb
532 right homology (RHA) arms flanked by P2A-CRE-ERT2 (Fig 1-A) and designed and purchased by
533 Vectorbuilder Inc(cat# VB220531-1072sdb). Two gRNA (27F & 37F) were used for CRISPR/Cas9
534 mediated knock-in into Higdb1 exon 4. 0.61pmol each of crRNA and tracrRNA was conjugated and
535 incubated with Cas9 protein (30ng/ul) to prepare ribonucleoprotein complex (RNP) according to Aida et
536 al and donor DNA (10ng/ul) was mixed with RNP for microinjection cocktail.

537

538 Microinjection

539 For knock-in mouse generation - microinjection cocktail was injected into 0.5dpc embryos harvested after
540 mating C57Bl6-Hsd (Envigo). Post-injection embryos were reimplanted into CD1 (Envigo) pseudo-
541 pregnant foster females and allowed to term. Tail snip biopsies were collected from pups at P7.

542

543 Genotyping

544 Tail snip genomic DNA was prepared from pups and analyzed by PCR using the following primer pairs
545 (Fig 2C). Primer pairs LF + C1 for LHA, C2 + C3 for Cre, C4 + RR for RHA. PCR reaction containing
546 0.5uM each primer pair, 1xQ5 MM buffer (NEB), 100ng genomic DNA and was amplified using a
547 thermocycler (BioRad) : 95°C-3 min. 95°C - 30sec. annealing 67 °C to 72 °C, 72 °C 1 min. for 35 cycles
548 and final extension at 72 °C for 5 min. PCR products were analyzed on 1% agarose gel (Seakem - GTG),

549

550 1XTAE buffer, and DNA was purified from gel using a Gel Extraction kit (QIAQuick - Qiagen) and cloned
551 using TOPO cloning Kit (Invitrogen).

552
553 Plasmid DNA was prepared using miniprep kit (Qiagen) and Sanger sequenced using primers: S1
554 forward primer outside of LHA and S2 reverse primer at the 5' of CRE; S3 forward primer at the 3' of
555 CRE, S4 forward primer in ERT2 and S5 reverse primer outside of RHA.
556

557 **Reporter gene activation via tamoxifen injection**

558 For tamoxifen induction, *Higd1b-tdT* mice were injected with 6 mg of tamoxifen dissolved in corn oil (20
559 mg/ml) over 3 days (143mg/kg for 30g mouse). The median age and weight of *Higd1b-tdT* male mice
560 used in this study was 7.47 +/-1.22weeks and the average body weight 28.14 +/- 1.17grams at the time
561 of injection. The median age of female mice was 7.35+/-1.22 weeks and the average body weight 28.1+/-
562 1.17grams.
563

564 *Higd1b-mTmG* mice were injected with 4 mg of tamoxifen dissolved in corn oil (20 mg/ml) over 2 days
565 (~133 mg/kg for 30g mouse). The median age and weight of *Higd1b-mTmG* male mice used in this study
566 was 7.55 +/-1.04 weeks and the average body weight 28.53 +/- 1.2 grams. The median age of female
567 mice was 7.86 +/-1.04 weeks and the average body weight 28.55 +/- 1.2grams at the time of injection.
568

569 All mice were allowed to rest for 7-14 days before being exposed to Hx or undergoing tissue harvest. As
570 negative controls, tissue from mice (*Higd1b-tdT*+/- and *Higd1b-mTmG*+/-) without tamoxifen and wildtype
571 mice (Cre positive flox negative or Cre negative flox positive as *WT-tdT*+/- and *WT-mTmG*+/-) injected
572 with similar doses of tamoxifen were harvested and underwent inspection for endogenous PC labeling.
573 Experimental animals are defined as heterozygous of Cre and flox.
574

575 **Hypoxia Studies**

576 Mice were placed in a Hx chamber and exposed to 10% FiO₂ with ad libitum access to rodent chow and
577 water for up to three weeks. The environment within the chamber was established through a continuous
578 mixture of room air and nitrogen gas. The chamber environment was continuously monitored using an
579 oxygen analyzer (Servomex, Sugar Land, TX). CO₂ was removed with lime granules, and the temperature
580 was maintained between 22-24°C. The chamber was inspected at least daily for animal welfare, O₂
581 concentration, CO₂ concentration, and humidity.
582

583 **Vibratome tissue preparation**

584 Animals were euthanized with controlled isoflurane and cervical dislocation. After euthanasia, mice were
585 secured in the supine position, and a midline incision was made to expose the abdominal and thoracic
586 cavities. The sternum was dissected to expose the contents of the mediastinum and then the abdominal
587 aorta was located and severed. A 25G butterfly needle was inserted into the right ventricle (RV) and
588 slowly perfused with 15cc of ice-cold 1X phosphate buffered saline (PBS) to flush the red blood cells from
589 the circulatory system. Once the lungs were white in appearance, the trachea was cannulated and the
590 lungs inflated with 2% low-melting point agarose in 1X PBS. After complete inflation, the trachea was tied
591 and cold 1x PBS poured over the lungs to solidify the agarose and preserve the structure of the lung.
592 The lungs were then carefully removed from the mediastinum and placed in 4% paraformaldehyde (PFA)
593 at 4°C overnight, followed by washing in 1X PBS the next day. Lung lobes were then separated and
594 sectioned with a vibratome machine (Leica VT1000 S) at a thickness of 300μm for IF staining and
595 microscopy.²⁸
596

597 The heart was removed from the mediastinum after flushing with 15cc of 1X PBS and the right and left
598 atrium dissected to expose ventricles. Heart samples were washed in 1X PBS and then fixed in 4% PFA
599 overnight at 4°C. After three washes in 1X PBS (one hour each), the samples were placed in 4°C
600 overnight on a rotating plate. The next day, samples were removed and sectioned with a vibratome
601 machine at a thickness of 300μm.
602

603 **Optical cutting temperature (OCT) tissue preparation**

604 After appropriate euthanasia, the hind leg of the mice was secured and an incision was made into the
605 subcutaneous tissue located over the femur to expose the muscle. Skeletal muscle from the femur,
606 identified by its striations and orientation of muscle fibers, was carefully dissected and removed. For
607 connective tissue preparation, the tissue surrounding the descending aorta in the abdominal cavity was
608 identified and dissected after the removal of the mediastinal contents as previously described.³¹
609 Connective tissue and skeletal muscle were placed in 4% PFA at 4°C overnight and then washed in 1X
610 PBS for another day.

611
612 Brain tissue was harvested from mice by first securing the mouse in the prone position after euthanasia
613 and dissecting away the hair and subcutaneous tissue to expose the skull. The skull was carefully pierced
614 at the estimated location of the sagittal suture, and the cranial bones were dissected, being careful not
615 to damage the brain tissue underneath. Once an opening was created and the brain removed from the
616 skull, the tissue was placed in 4% PFA at 4°C overnight. Tissues were washed in 1X PBS for an additional
617 day.

618
619 The liver and kidney were located and carefully removed after euthanasia and flushing of red blood cells
620 from the vasculature. The tissue was fixed in 4% PFA at 4°C overnight and then washed in 1X PBS.

621
622 All the above samples were completely submerged in a 30% sucrose/PBS solution and placed at 4°C
623 overnight on a rotating plate for several days until they sunk to the bottom. They were embedded with
624 100% OCT and stored at -80°C for future experiments. OCT-prepared samples were then sectioned with
625 a Cryostat machine (RWD, FS800A Cryostats) at a thickness of 10 um and mounted on microscopy
626 slides for IF staining.

627
628 The heart was removed from the mediastinum after flushing with 15cc of 1X PBS and the right and left
629 atrium dissected to expose ventricles. Heart samples were embedded in 100% OCT solution. The next
630 day, samples were removed and sectioned with a Cyrostat machine at a thickness of 10µm.

631
632 Retina were dissected from mice after euthanasia and fixed in 4% PFA for one hour and then washed
633 with 1x PBS overnight at 4°C. The samples were carefully dissected under a dissecting microscope to
634 expose the optic nerve and surrounding vasculature. Fixed retina were stored at 4°C until IF staining.
635 After staining, the samples were placed on microscopy slides with Prolong Gold Antifade Solution
636 containing DAPI.

637
638 **Immunofluorescence staining**
639 Vibratome-prepared precision cut lung sections (PCLSs) and heart tissues were blocked with 5% goat
640 serum in 0.5% Triton X-100/PBS (PBS-T) for one hour at room temperature. Samples were incubated
641 with primary antibodies diluted in 5% goat or donkey serum and 0.5% PBS-T at 4°C for 48 hours. PCLSs
642 were then washed three times in 1X PBS (fifteen minutes per wash) followed by incubation with 488, 555,
643 or 647 fluorophores containing secondary antibodies (1:250 concentration) overnight at 4°C. Samples
644 were then washed again and placed on microscopy slides with Prolong Gold Antifade Solution containing
645 DAPI (Life Technologies Corporation). After thawing to room temperature, OCT-prepared tissue and
646 retina were stained following a similar technique. All images were captured using a Zeiss confocal 880
647 Airyscan 2 microscope and processed by Aivia software.

648
649 The following antibodies were used for IF staining:
650 Mouse-anti-mouse/human SMA-647 (1:100; sc-32251-AF647, Santa Cruz Biotechnology)
651 Rat-anti-mouse CD31(1:100; 553370, BD-Pharmingen)
652 Rabbit-anti-mouse PDGFR-β (1:100; MA5-15143, Thermo Scientific)
653 Rabbit-anti-mouse MYH11 (1:100; AB53219, ABCAM)
654 Isolectin GS-IB₄-488 (1:100; I21411, Thermo Fisher Scientific/Invitrogen)
655 Goat-anti-mouse Cardiac Troponin 1 (1:100); ab56357, Abcam)

656
657 **Disclosure Statement:** The authors declare no competing interests relevant to this work.

658

659 **Funding:**

660 NIH NHLBI 5R01HL150106, 1R01HL171405, ATS/PHA Aldrighetti Research Award for Young
661 Investigators, Bayer PHAB awards, PHA Innovation Research Award, BCH Start-up fund (to K.Y.);
662 F32HL167554 and the ATS Early Career Investigator Award in Pulmonary Vascular Disease (T.K.).
663

664 **Acknowledgements:**

665 We thank the IDDRC Gene Manipulation Core at Boston Children's Hospital, funded by NIH P50
666 HD105351. We thank We thank the Neurobiology Department and the Neurobiology Imaging Facility for
667 consultation and instrument availability that supported this work by NINDS P30 Core Center Grant
668 #NS072030 from Harvard NIF core for imaging or analysis. We thank the Harvard Digestive Disease
669 Center and NIH grant P30DK034854 in all publications and presentations emerging from HDDC core
670 services, resources, technology, and expertise. We thank Joint Biology Consortium (JBC) of BWH/BCH
671 grant number NIH/NIAMS 2P30AR070253 to support our work. NIH R01 HL141851, R01 HL145676 (to
672 JCW); NINDS P30 Core Center Grant #NS072030 from Harvard NIF core for imaging or analysis;
673 NIH/NIAMS 2P30AR070253 from JBC consortium; the Harvard Digestive Disease Center and NIH grant
674 P30DK034854 in all publications and presentations emerging from HDDC core services, resources,
675 technology, and expertise.
676

677

678 **Author Contributions:**

679 Conceptualization: KY; data curation: TK, YK, SHB, MB, YL, TL, KY; investigation and methodology: TK,
680 YK, SHB, MB, YL, TL, KY; supervision: KY; writing-original draft: TK, SHB, MB, YK; providing reagents:
681 JQ, JCW, BAR, VdJP; writing-review and editing: TK, YK, SHB, KY. All authors reviewed and approved
the final manuscript.
682

683 **Figure Legends**

684

685 **Figure 1. *HIGD1B/Higd1b* is identified as a unique and exclusive marker for human and murine 686 PCs.**

687 (A) UMAP visualization of PC distributions within human and mouse lung tissues, using original UMAP
688 coordinates and cell type annotations from the 'Human Lung Cell Atlas (core)' and 'Tabula Muris Senis'.
689 The three panels on the right reveal the expression of known PC markers CSPG4, PDGFRB, and
690 HIGD1B, with a magnified image showing expression among annotated PCs in the top right corner.
691 (B) Dot plot shows expressions of *CSPG4*, *PDGFRB*, and *HIGD1B* in nine different cell types from the
692 Human Lung Atlas. Note the exclusive expression of *HIGD1B* in PCs compared to other mural and
693 vascular cells. Comprehensive expression data across all annotated cell types are presented in
694 Supplementary Figure 1.

695 (C) Dot plot shows expressions of *Cspg4*, *Pdgfrb* and *Higd1b* in eight different vascular cell types from
696 the Tabula Muris Senis compendium. As seen in the Human Lung Cell Atlas, the exclusive expression of
697 *Higd1b* in PCs was found when compared to other mural and vascular cells.
698

699 (D) UMAP shows 20 specific cell clusters derived from the spatial transcriptomic analysis using the
700 'Xenium Human Lung Preview Data (Non-diseased Lung)'. PCs are annotated in Cluster 8 (light gray)
701 based on expressions of *CSPG4*, *PDGFRB*, and *TRPC6*. The density plots specifically highlight the
702 expression of *CSPG4*, *PDGFRB*, and *HIGD1B* across all clusters.
703

704 (E) Dot plot illustrates the expressions of *CSPG4*, *PDGFRB*, and *HIGD1B* across 20 cell clusters
705 identified by the spatial transcriptomic analysis of the 'Xenium Human Lung Preview Data (Non-
706 diseased Lung)'. Again, note the *HIGD1B* expression is exclusive to PCs (Cluster 8).
707

708 (F) Detailed spatial plots for a selected lung tissue section (coordinates: x: 1200-2900, y: 3750-4550)
709 utilizing 'ImageDimPlot' function in Seurat. This visualization focuses on well-defined stromal and
710 capillary structures, showcasing the spatial distribution of cells in Cluster 8, predominantly consisting of
711 PCs. Cells are color-coded by cluster, highlighting the localization of *CSPG4*(red), *PDGFRB*(blue), and
HIGD1B(purple). Panels A-D show magnified lung microvasculature and the high expression of
HIGD1B in PCs (light gray) annotated/colocalized in Cluster 8. The full lung tissue section can be found
in Supplementary Figure 2.
712

712 **Figure 2: *Higd1b*-CreERT2 knockin mouse line is constructed by CRISPR.**
713 (A) Precision cut lung slice(PCLSs) were obtained from *Cspg4-CreERTM::Ai14* (NG2-tdT) mice. Scale
714 bar: 20 μ m.
715 (B) RNA scope of the *NG2-tdT+/-* mouse OCT sections shows the coexpression of *Higd1b* mRNA (green
716 and white) and the tdT reporter (red). Nuclei stained with DAPI (blue). Scale bar: 20 μ m.
717 (C) Schematic figure for Cre-ER insertion and PCR validation of insertion. a: *Higd1b* locus exon 1-4 and
718 location of two gRNA and sequences in green, PAM sites in red and adjacent nucleotides in black after
719 ATG. b: the Knock-in targeting construct: left (LHA) and right homology arms (RHA) flanked by P2A-
720 CRE-ERT2, c. genomic structure after P2A-CRE-ERT2 knock-in. Primer pair LF+C1 identifies 5' end,
721 and C4+RR identifies ERT2 and 3' end, C2+C3 Cre gene. Left: Two founder mice, #12 and #25, were
722 identified by Cre-specific PCR using C2+C3 (lane 3) primers LF is located outside of LHA, C1 is located
723 5' of Cre, C4 is located at the 3' of Cre, and RR is outside of RHA.
724

725 **Figure 3: *Higd1b*-Cre+ cells precisely label pulmonary and cardiac PCs.**
726 (A) Representative images of lung tissues from *Higd1b-tdT+/-* mice were stained for SMA (SMC marker:
727 white), CD31 (EC marker: green), PDGFR β (mural marker: green), and nuclei (DAPI: blue). PCs labeled
728 with tdT reporter (red) are endogenous colors without antibody staining. Note the distinct morphology of
729 tdT+ cells with an ovoid body and elongating processes wrapped around the capillary networks. tdT+
730 cells had no expressions of SMA or CD31. However, the majority (but not all) of tdT+ demonstrate
731 coexpression with mural cell marker PDGFR β . Scale bar: 50 μ m.
732 (B) Vibratome was prepared for heart tissue from *Higd1b-tdT+/-* mice after IF staining for RFP (left). Scale
733 bar: 500 μ m. The right panels show an area under increased magnification and RFP-positive cells without
734 coexpression of SMA (cyan). Scale bar: 25 μ m.
735 (C) Representative images show GFP reporter labeled PCs (green) from lung tissue of *Higd1b-mTmG+/-*
736 mice with staining for SMA (white, top panel), CD31 (white, middle panel), PDGFR β (white, bottom
737 panel), and DAPI (blue). Scale bar: 50 μ m.
738

739 **Figure 4: Lineage tracing shows that *Higd1b*-Cre+ cells accumulate in muscularized distal
740 arterioles at different hypoxic exposure times.**
741 (A) PCLSs from *Higd1b-tdT+/-* mice exposed to Hx stained for CD31 (EC marker: green), SMA (SMC
742 marker, white), and nuclei (DAPI: blue). Note tdT+ (red) reporter cells without antibody labeling(indicated
743 by yellow arrowheads) accumulated in the distal vasculature after 1 week of Hx and increased coverage
744 on arterioles after prolonged exposure for up to 3 weeks. Scale bar: 50 μ m.
745 (B) Lineage tracing experiments for *Higd1b-mTmG+/-* mice with IF staining for SMA (white) and nuclei
746 (DAPI). The yellow boxes demonstrate areas of increased magnification in the right panel, showing
747 spindle-shaped morphology of GFP+ PCs (yellow arrowheads) coexpress SMA after exposure to 3wk
748 of Hx in the distal vasculature compared to normoxic controls. Scale bar: 50 μ m.
749 (C) Lineage tracing for the recovery model using *Higd1b-tdT+/-* mice exposed to Hx then returned to
750 normoxia for 3wks and stained for SMA (SMC marker, white), and nuclei (DAPI: blue). Note that the
751 majority of tdT+ (red) reporter cells returned to the parenchymal capillary. Only a small number of tdT
752 remained on the distal arterioles(hollow arrowheads). Scale bar: 50 μ m.
753 (D) Lineage tracing for the recovery model using *Higd1b-mTmG+/-* mice exposed to Hx then returned to
754 normoxia for 3wks and stained for SMA (SMC marker, white), and nuclei (DAPI: blue). Note that the
755 majority of GFP+ (green) reporter cells returned to the parenchymal capillary. Only a small number of
756 GFP remained on the distal arterioles(hollow arrowheads). Scale bar: 50 μ m.
757
758
759

760 **Figure 5: Two subtypes of PCs are identified using human lung scRNASeq.**
761 (A) UMAP visualization of four PC sub-populations within the annotated PC cluster from the 'Human
762 Lung Cell Atlas (core)'. The density and dot plots distinctly illustrate the expression levels of *CSPG4*,
763 *PDGFRB*, and *HIGD1B*, revealing the heterogeneity within the PC sub-clusters based on these marker
764 genes.

765 (B) Gene Set Enrichment Analysis (GSEA) comparing PC sub-Cluster 0 and 3. Sub-Cluster 0, marked
766 by significantly higher expression of *HIGD1B*, is characterized by enrichment in metabolic activity and
767 stress response pathways. Sub-cluster 3, with a notably higher expression of *PDGFRB*, is associated
768 with pathways involved in focal adhesion, cell cycle regulation and movement. A comprehensive list of
769 enriched pathways with an FDR below 0.05 can be found in Supplementary Figure 9.
770 (C) Human IPAH and control mural cell subtypes were re-clustered from the previously published
771 analysis. Sub-clusters 5 and 6 were enriched with expression profiles of *HIGD1B* designated as
772 pericyte clusters. The violin plot shows the gene expression level of *HIGD1B* in subclusters 5 and 6 but
773 is higher in subcluster 6. The Violin plot shows the gene expression level of *PDGFRB* in sub-Clusters 5
774 and 6 but is higher in sub-Cluster 5. Pseudotime analysis shows Type 1 PCs (sub-Cluster 6,
775 *HIGD1B*^{high} *PDGFRB*^{low}) have a majority of late lineages (yellow), whereas Type 2 PCs (sub-Cluster 5,
776 *HIGD1B*^{low} *PDGFRB*^{high}) have a mixture of early (purple) and middle lineages (green).
777 (C) The Violin plot shows the gene expression level of *VIMENTIN*(*VIM*) is increased in IPAH Type 2
778 PCs vs healthy donor Type 2 PCs in sub-Cluster 5.
779 (E) The UMAP plot of mouse lung mural cells that underwent hypoxia vs. normoxia was reanalyzed
780 from previously published work, and the PC cluster was identified in the dashed area.
781 (F) The Violin plot shows the gene expression level of *Vimentin*(*Vim*) is increased in hypoxic PCs vs
782 normoxic PCs.
783
784
785

786 **Figure 6: Type 2 PCs express upregulated Vimentin after Hx.**

787 (A) PCLSs were obtained from *Higd1b-tdT*^{+/−} murine lungs exposed for 3wks of Hx or normoxia and
788 stained for Vimentin (green), SMA (white) and nuclei (DAPI, blue). Scale bar: 50 µm. Panel a' shows a
789 Type 1 PC, with long and thin processes, which is located in the capillaries. Panel a'' shows a Type 2
790 PC, which is located close to an SMA+ arteriole. Panel b' shows a hypoxic Type 1 PC, with longer and
791 thicker processes than normoxic Type 1 PC, located in the capillaries. Panel b'' shows hypoxic Type 2
792 PCs, which accumulate and wrap around a SMA+ (white) arteriole, coexpressing Vimentin (green). Only
793 hypoxic Type 2 PCs coexpress Vimentin. Scale bar: 20 µm.

794 (B) The proposed model shows the location of PC subtypes and arteriolar SMCs in the pulmonary
795 vasculature under physiological conditions and in the development of PH. Type 2 PCs upregulate
796 vimentin in Hx-induced PH and have increased motility and lineage activity. Italic: gene expression. Non-
797 Italic: protein expression.

798 **Supplemental Figure Legends**

800 **Supplemental Figure 1: Human and murine lung scRNA-seq analysis demonstrates unique 801 expression of *HIGD1B* to PCs.**

802 (A) Dot plots show expression levels of *CSPG4*, *PDGFRB*, and *HIGD1B* within all annotated cell types
803 in human and mouse lung tissues. Note the expression of *HIGD1B* is exclusive to human and mouse
804 PCs.

805 (B) Dot plots show expression levels of *CSPG4*, *PDGFRB*, and *HIGD1B* within all annotated cell types
806 in human and mouse heart tissues.

807 (C) UMAP visualization of PC distributions within human and mouse heart tissues, using original UMAP
808 coordinates and cell type annotations of single-cell sequencing data from Litvinukova et al. (2020) and
809 Feng et al. (2022). The density plot specifically highlights the expression of *CSPG4*, *PDGFRB*, and
810 *HIGD1B*.

812 **Supplemental Figure 2: Spatial Analysis of PC markers in Non-Diseased Lung Tissue.**

813 (A) Spatial transcriptomic analysis shows the distribution of *CSPG4*, *PDGFRB*, and *HIGD1B* across the
814 full lung tissue section.

817 (B) Magnified area of spatial transcriptomic map shows the distribution of *CSPG4*(red), *PDGFRB*
818 (blue), and *HIGD1B* (green) across the selected lung tissue section (coordinates: x: 1200-2900, y:
819 3750-4550).

821
822 **Supplemental Figure 3: *Higd1b* mRNA expression is absent in arterial SMC layers.**
823 RNAscope shows the absence of *Higd1b* (white) expression in arterial SMC layers. Autofluorescence:
824 green, indicating a SMC layer. DAPI: blue. Scale bar: 50 μ m.

825
826 **Supplemental Figure 4: Control experiments for *Higd1b-tdT* or *Higd1b-mTmG* mouse lungs and**

827 **WT lungs.**
828 (A) PCLSs from *WT-tdT+/-* mice after tamoxifen administration and *Higd1b-tdT+/-* mice without tamoxifen
829 revealing an absence of tdT+ cells (red). DAPI: blue. Scale bar: 100 μ m.
830 (B) PCLSs from *WT-mTmG+/-* mice with tamoxifen and *Higd1b-mTmG+/-* mice without tamoxifen
831 showing no membrane GFP reporter (green) expression but the presence of membrane tdT color(red).
832 tdT reporter: red. DAPI: blue. Scale bar: 100 μ m.

833
834 **Supplemental Figure 5: *Higd1b-tdT+/-* labels some PCs in other organs *in vivo*.**

835 (A) Skeletal muscle from *Higd1b-tdT+/-* mice with staining for CD31 (green), SMA (white), and DAPI
836 (blue). tdT reporter: red. Scale bar: 50 μ m.
837 (B) Connective tissues surrounding the descending aorta from *Higd1b-tdT+/-* mice were stained with
838 CD31: green, SMA: white, and DAPI: blue. tdT reporter: red. Scale bar: 50 μ m.
839 (C) Retina from *Higd1b-tdT+/-* mice and IF staining for SMA (green). tdT reporter: red. Scale bar: 50 μ m.
840 (D) IF staining of cerebral tissue from *Higd1b-tdT+/-* mice for CD31 (green) and DAPI (blue). tdT reporter:
841 red. Scale bar: 30 μ m.

842
843 **Supplemental Figure 6: *Higd1b-tdT+/-* PCs are absent in the liver and the kidney.**

844 (A) Liver (top panel) and kidney (bottom panel) tissue from *Higd1b-tdT+/-* mice with staining for SMA
845 (SMCs: white), CD31 (ECs: green), and DAPI (nuclei: blue) reveals a lack of tdT-positive PCs (red). Scale
846 bar: 50 and 20 μ m.

847
848
849 **Supplemental Figure 7: Lineage tracing shows that *Higd1b-Cre+* cells are accumulated in**
850 **muscularized distal arterioles by different hypoxic exposure times.**(A) Accumulation of tdT-positive
851 PCs (red) in muscularized distal arterioles with staining for SMC markers SMMHC (green) and SMA
852 (white) after 1, 2, and 3 weeks of Hx. DAPI: blue. Scale bar: 50 μ m.

853
854 **Supplementary Figure 8: Patient demographics from annotated PC subclusters are included.**

855 UMAP visualization of Pericyte sub-populations within the annotated PC cluster from the 'Human Lung
856 Cell Atlas (core)'. The representation highlights the demographic distributions, categorizing cells
857 according to the sex and age of the donors.

858
859 **Supplementary Figure 9: Gene Set Enrichment Analysis in PC sub-Cluster 0 and 3 is performed.**

860 A full list shows the results of Gene Set Enrichment Analysis (GSEA) comparing PC sub-Cluster 0 and
861 3 with an FDR below 0.05.

862
863
864
865

866 **References:**

867 1 Allt, G. & Lawrenson, J. G. Pericytes: cell biology and pathology. *Cells Tissues Organs*
868 **169**, 1-11, doi:10.1159/000047855 (2001).

869 2 Chatterjee, S. & Naik, U. P. Pericyte-endothelial cell interaction: a survival mechanism
870 for the tumor vasculature. *Cell Adh Migr* **6**, 157-159, doi:10.4161/cam.20252 (2012).

871 3 Fuxe, J. *et al.* Pericyte requirement for anti-leak action of angiopoietin-1 and vascular
872 remodeling in sustained inflammation. *Am J Pathol* **178**, 2897-2909,
873 doi:10.1016/j.ajpath.2011.02.008 (2011).

874 4 Gaengel, K., Genové, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in
875 vascular development and angiogenesis. *Arterioscler Thromb Vasc Biol* **29**, 630-638,
876 doi:10.1161/atvaha.107.161521 (2009).

877 5 Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. *Cell*
878 *Tissue Res* **314**, 15-23, doi:10.1007/s00441-003-0745-x (2003).

879 6 Hammes, H. P. *et al.* Pericytes and the pathogenesis of diabetic retinopathy. *Diabetes*
880 **51**, 3107-3112, doi:10.2337/diabetes.51.10.3107 (2002).

881 7 Yuan, K. *et al.* Mural Cell SDF1 Signaling Is Associated with the Pathogenesis of
882 Pulmonary Arterial Hypertension. *Am J Respir Cell Mol Biol* **62**, 747-759,
883 doi:10.1165/rcmb.2019-0401OC (2020).

884 8 Halliday, M. R. *et al.* Accelerated pericyte degeneration and blood-brain barrier
885 breakdown in apolipoprotein E4 carriers with Alzheimer's disease. *J Cereb Blood Flow*
886 *Metab* **36**, 216-227, doi:10.1038/jcbfm.2015.44 (2016).

887 9 Yuan, K. *et al.* Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology.
888 *Compr Physiol* **11**, 2227-2247, doi:10.1002/cphy.c200027 (2021).

889 10 Schiffer, D. *et al.* The Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in
890 Human Gliomas. *Int J Mol Sci* **19**, doi:10.3390/ijms19092724 (2018).

891 11 Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGF beta
892 receptor in mouse models with normal and deficient PDGF beta receptor signaling. *Mol*
893 *Neurodegener* **5**, 32, doi:10.1186/1750-1326-5-32 (2010).

894 12 Ligon, K. L. *et al.* Development of NG2 neural progenitor cells requires Olig gene
895 function. *Proc Natl Acad Sci U S A* **103**, 7853-7858, doi:10.1073/pnas.0511001103
896 (2006).

897 13 Jin, S. *et al.* Notch signaling regulates platelet-derived growth factor receptor-beta
898 expression in vascular smooth muscle cells. *Circ Res* **102**, 1483-1491,
899 doi:10.1161/circresaha.107.167965 (2008).

900 14 Chen, Y. T. *et al.* Platelet-derived growth factor receptor signaling activates pericyte-
901 myofibroblast transition in obstructive and post-ischemic kidney fibrosis. *Kidney Int* **80**,
902 1170-1181, doi:10.1038/ki.2011.208 (2011).

903 15 Muhl, L. *et al.* Single-cell analysis uncovers fibroblast heterogeneity and criteria for
904 fibroblast and mural cell identification and discrimination. *Nat Commun* **11**, 3953,
905 doi:10.1038/s41467-020-17740-1 (2020).

906 16 Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and
907 pathological perspectives, problems, and promises. *Dev Cell* **21**, 193-215,
908 doi:10.1016/j.devcel.2011.07.001 (2011).

909 17 Baek, S. H. *et al.* Single Cell Transcriptomic Analysis Reveals Organ Specific Pericyte
910 Markers and Identities. *Front Cardiovasc Med* **9**, 876591,
911 doi:10.3389/fcvm.2022.876591 (2022).

912 18 Courtney, J. M. & Sutherland, B. A. Harnessing the stem cell properties of pericytes to
913 repair the brain. *Neural Regen Res* **15**, 1021-1022, doi:10.4103/1673-5374.270301
914 (2020).

915 19 Ahmed, T. A. & El-Badri, N. Pericytes: The Role of Multipotent Stem Cells in Vascular
916 Maintenance and Regenerative Medicine. *Adv Exp Med Biol* **1079**, 69-86,
917 doi:10.1007/5584_2017_138 (2018).

918 20 Stenmark, K. R., Frid, M. G., Graham, B. B. & Tuder, R. M. Dynamic and diverse
919 changes in the functional properties of vascular smooth muscle cells in pulmonary
920 hypertension. *Cardiovasc Res* **114**, 551-564, doi:10.1093/cvr/cv004 (2018).

921 21 Mills, S. J., Cowin, A. J. & Kaur, P. Pericytes, Mesenchymal Stem Cells and the Wound
922 Healing Process. *Cells* **2**, 621-634 (2013).

923 22 Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA
924 sequencing. *Nature* **587**, 619-625, doi:10.1038/s41586-020-2922-4 (2020).

925 23 Litviňuková, M. et al. Cells of the adult human heart. *Nature* **588**, 466-472,
926 doi:10.1038/s41586-020-2797-4 (2020).

927 24 Feng, W. et al. Single-cell transcriptomic analysis identifies murine heart molecular
928 features at embryonic and neonatal stages. *Nat Commun* **13**, 7960,
929 doi:10.1038/s41467-022-35691-7 (2022).

930 25 Li, P. & Fan, H. Pericyte Loss in Diseases. *Cells* **12**, doi:10.3390/cells12151931 (2023).

931 26 Armulik, A. et al. Pericytes regulate the blood-brain barrier. *Nature* **468**, 557-561,
932 doi:10.1038/nature09522 (2010).

933 27 Klouda, T. et al. From 2D to 3D: Promising Advances in Imaging Lung Structure. *Front
934 Med (Lausanne)* **7**, 343, doi:10.3389/fmed.2020.00343 (2020).

935 28 Klouda, T., Kim, H., Kim, J., Visner, G. & Yuan, K. Precision Cut Lung Slices as an
936 Efficient Tool for Ex vivo Pulmonary Vessel Structure and Contractility Studies. *J Vis
937 Exp*, doi:10.3791/62392 (2021).

938 29 Bonnet, S. et al. Reversal of chronic hypoxia-induced alterations in pulmonary artery
939 smooth muscle electromechanical coupling upon air breathing. *Cardiovasc Res* **53**,
940 1019-1028, doi:10.1016/s0008-6363(01)00548-x (2002).

941 30 Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with
942 Harmony. *Nat Methods* **16**, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019).

943 31 Kim, H. et al. Pericytes contribute to pulmonary vascular remodeling via HIF2alpha
944 signaling. *EMBO Rep* **25**, 616-645, doi:10.1038/s44319-023-00054-w (2024).

945 32 Saygin, D. et al. Transcriptional profiling of lung cell populations in idiopathic pulmonary
946 arterial hypertension. *Pulm Circ* **10**, doi:10.1177/2045894020908782 (2020).

947 33 Proebstl, D. et al. Pericytes support neutrophil subendothelial cell crawling and
948 breaching of venular walls in vivo. *J Exp Med* **209**, 1219-1234,
949 doi:10.1084/jem.20111622 (2012).

950 34 Hartmann, D. A., Coelho-Santos, V. & Shih, A. Y. Pericyte Control of Blood Flow Across
951 Microvascular Zones in the Central Nervous System. *Annu Rev Physiol* **84**, 331-354,
952 doi:10.1146/annurev-physiol-061121-040127 (2022).

953 35 Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human
954 organs. *Cell Stem Cell* **3**, 301-313, doi:10.1016/j.stem.2008.07.003 (2008).

955 36 Jung, B., Arnold, T. D., Raschperger, E., Gaengel, K. & Betsholtz, C. Visualization of
956 vascular mural cells in developing brain using genetically labeled transgenic reporter
957 mice. *J Cereb Blood Flow Metab* **38**, 456-468, doi:10.1177/0271678x17697720 (2018).

958 37 Cuervo, H. et al. PDGFR β -P2A-CreER(T2) mice: a genetic tool to target pericytes in
959 angiogenesis. *Angiogenesis* **20**, 655-662, doi:10.1007/s10456-017-9570-9 (2017).

960 38 Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle. *eLife* **4**,
961 doi:10.7554/eLife.10036 (2015).

962 39 Zhu, X., Hill, R. A. & Nishiyama, A. NG2 cells generate oligodendrocytes and gray
963 matter astrocytes in the spinal cord. *Neuron Glia Biol* **4**, 19-26,
964 doi:10.1017/s1740925x09000015 (2008).

965 40 Butiaeva, L. I. *et al.* Leptin receptor-expressing pericytes mediate access of
966 hypothalamic feeding centers to circulating leptin. *Cell Metab* **33**, 1433-1448.e1435,
967 doi:10.1016/j.cmet.2021.05.017 (2021).

968 41 Hess, D. L. *et al.* Perivascular cell-specific knockout of the stem cell pluripotency gene
969 Oct4 inhibits angiogenesis. *Nat Commun* **10**, 967, doi:10.1038/s41467-019-08811-z
970 (2019).

971 42 Rock, J. R. *et al.* Multiple stromal populations contribute to pulmonary fibrosis without
972 evidence for epithelial to mesenchymal transition. *Proc Natl Acad Sci U S A* **108**,
973 E1475-1483, doi:10.1073/pnas.1117988108 (2011).

974 43 Sun, C. *et al.* Mosaic Mutant Analysis Identifies PDGFR α /PDGFR β as Negative
975 Regulators of Adipogenesis. *Cell Stem Cell* **26**, 707-721.e705,
976 doi:10.1016/j.stem.2020.03.004 (2020).

977 44 Pang, Y. *et al.* HIGD-1B inhibits hypoxia-induced mitochondrial fragmentation by
978 regulating OPA1 cleavage in cardiomyocytes. *Mol Med Rep* **24**,
979 doi:10.3892/mmr.2021.12188 (2021).

980 45 An, H. J. *et al.* The survival effect of mitochondrial Higd-1a is associated with
981 suppression of cytochrome C release and prevention of caspase activation. *Biochim
982 Biophys Acta* **1813**, 2088-2098, doi:10.1016/j.bbamcr.2011.07.017 (2011).

983 46 Bedo, G., Vargas, M., Ferreiro, M. J., Chalar, C. & Agrati, D. Characterization of hypoxia
984 induced gene 1: expression during rat central nervous system maturation and evidence
985 of antisense RNA expression. *Int J Dev Biol* **49**, 431-436, doi:10.1387/ijdb.041901gb
986 (2005).

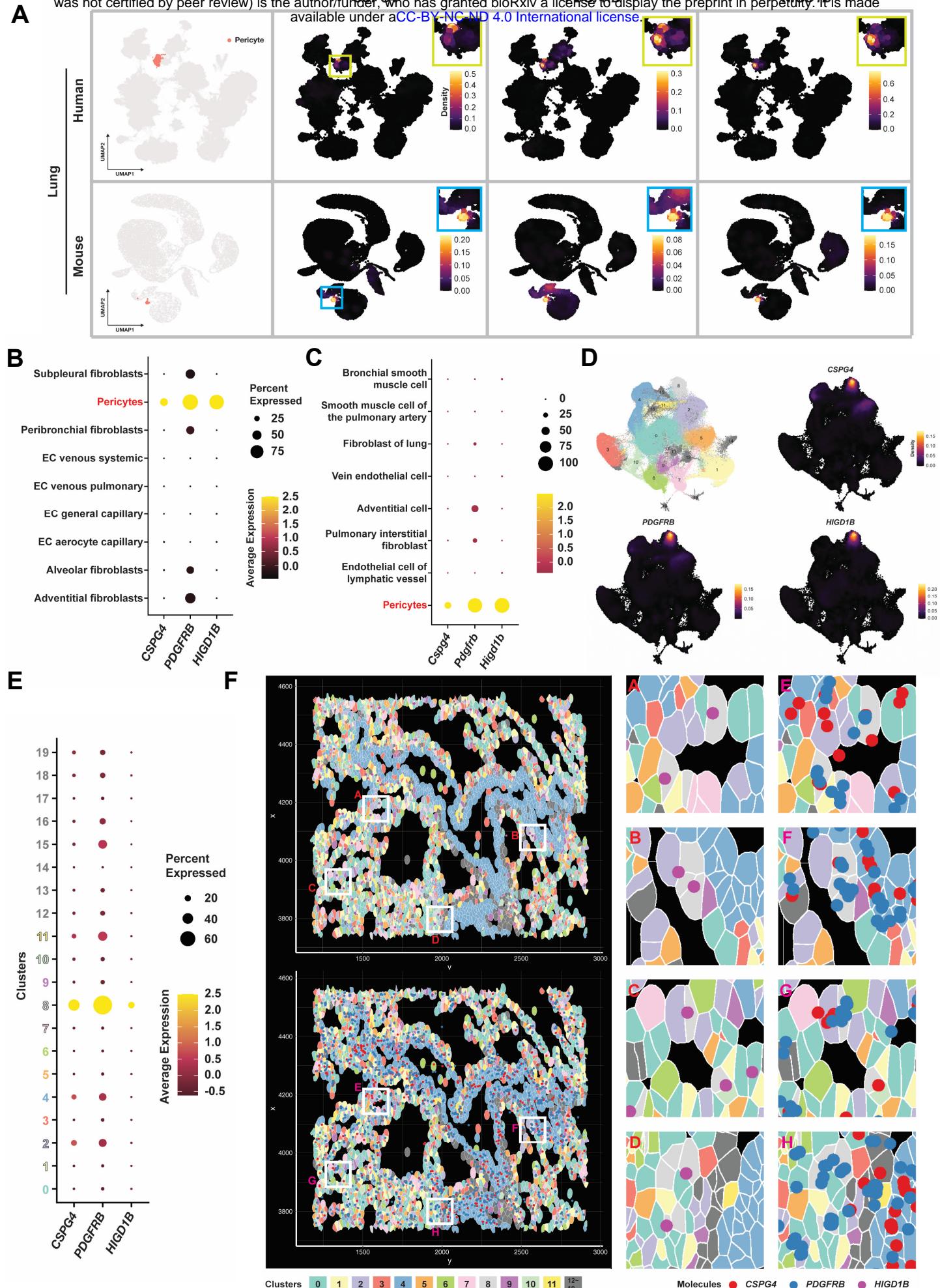
987 47 Grant, R. I. *et al.* Organizational hierarchy and structural diversity of microvascular
988 pericytes in adult mouse cortex. *J Cereb Blood Flow Metab* **39**, 411-425,
989 doi:10.1177/0271678x17732229 (2019).

990 48 Kato, K. *et al.* Pulmonary pericytes regulate lung morphogenesis. *Nat Commun* **9**, 2448,
991 doi:10.1038/s41467-018-04913-2 (2018).

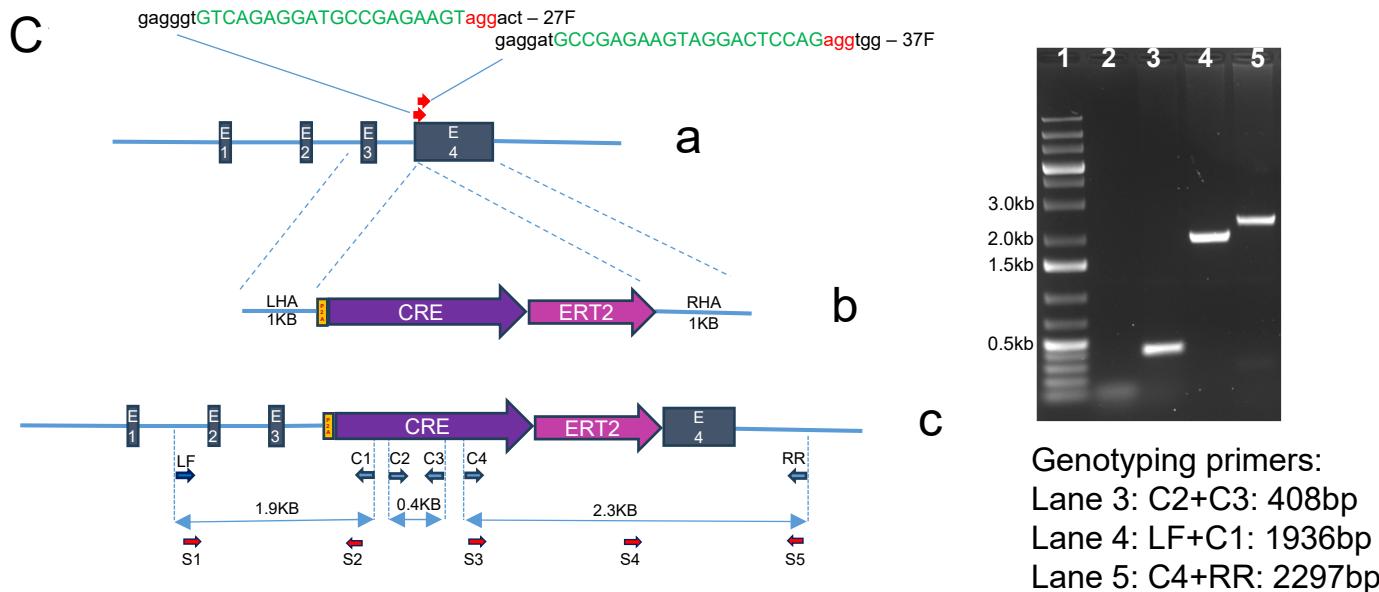
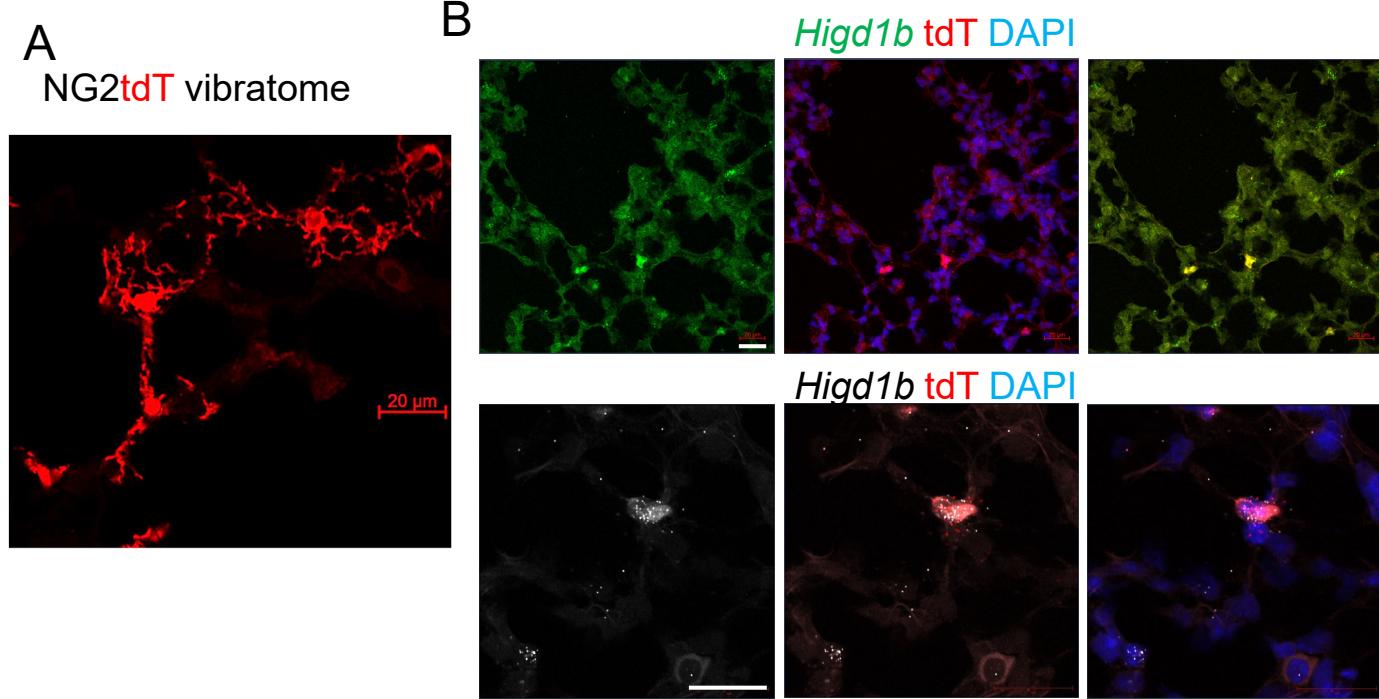
992 49 Dellavalle, A. *et al.* Pericytes resident in postnatal skeletal muscle differentiate into
993 muscle fibres and generate satellite cells. *Nat Commun* **2**, 499,
994 doi:10.1038/ncomms1508 (2011).

995 50 Özen, I. *et al.* Brain pericytes acquire a microglial phenotype after stroke. *Acta
996 Neuropathol* **128**, 381-396, doi:10.1007/s00401-014-1295-x (2014).

997 51 Quijada, P. *et al.* Cardiac pericytes mediate the remodeling response to myocardial
998 infarction. *J Clin Invest* **133**, doi:10.1172/jci162188 (2023).

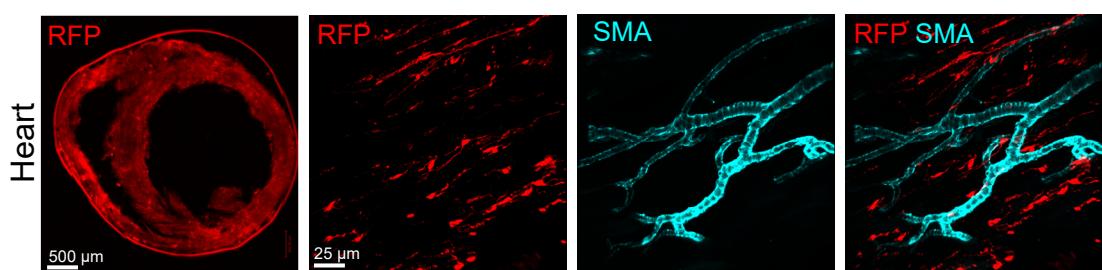

999 52 Humphreys, B. D. *et al.* Fate tracing reveals the pericyte and not epithelial origin of
1000 myofibroblasts in kidney fibrosis. *Am J Pathol* **176**, 85-97,
1001 doi:10.2353/ajpath.2010.090517 (2010).

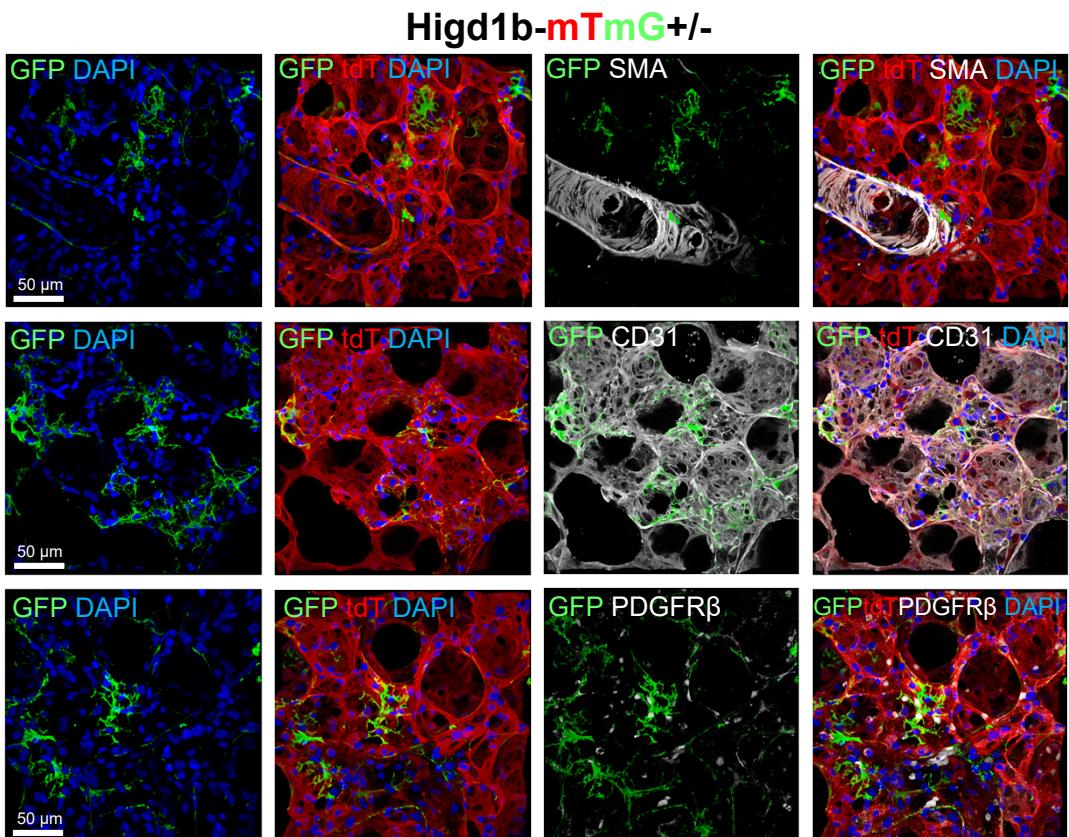
1002 53 Volz, K. S. *et al.* Pericytes are progenitors for coronary artery smooth muscle. *eLife* **4**,
1003 e10036, doi:10.7554/eLife.10036 (2015).



1004 54 Guimarães-Camboa, N. *et al.* Pericytes of Multiple Organs Do Not Behave as
1005 Mesenchymal Stem Cells In Vivo. *Cell Stem Cell* **20**, 345-359.e345,
1006 doi:10.1016/j.stem.2016.12.006 (2017).

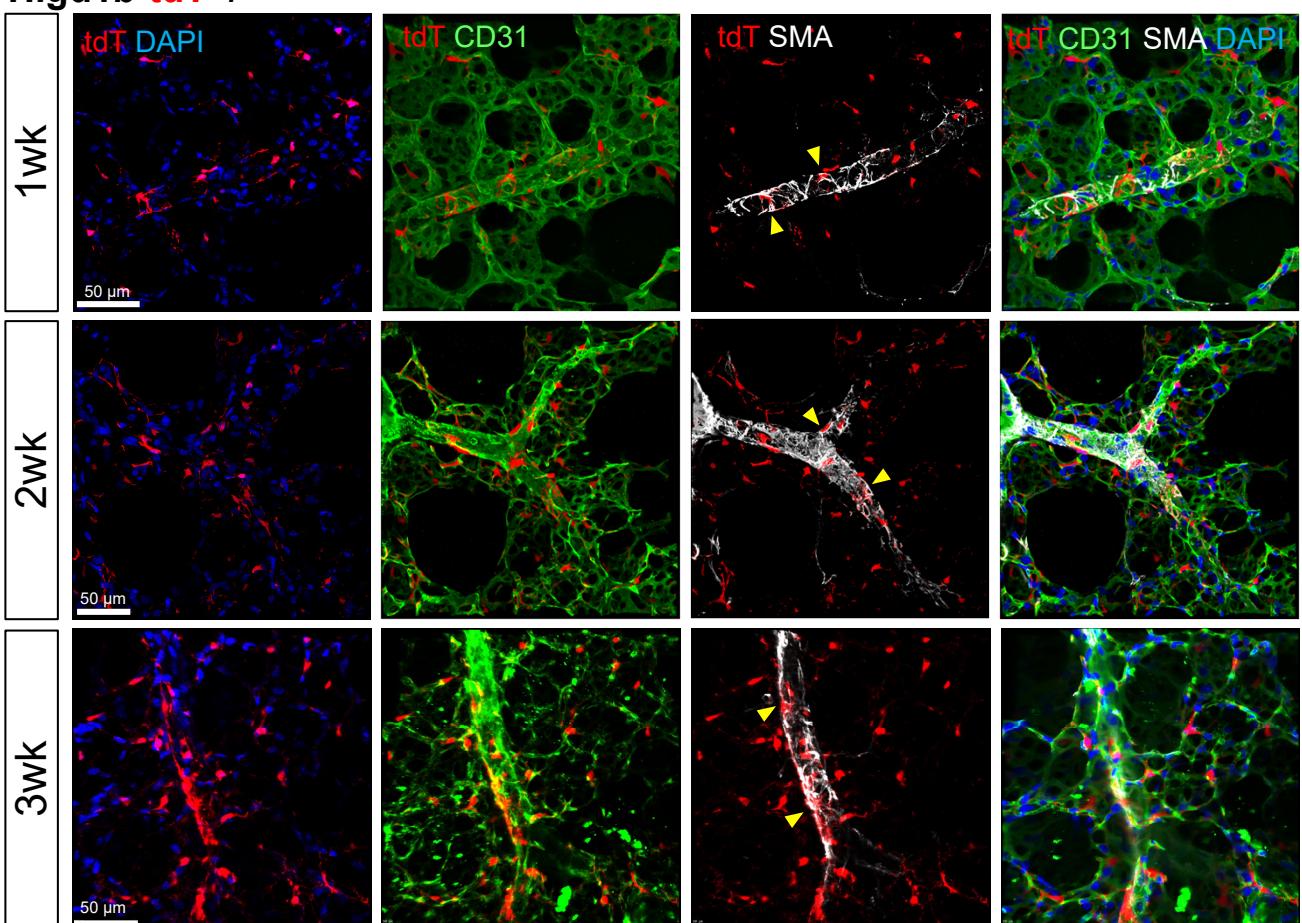
1007 55 Hall, C. N. *et al.* Capillary pericytes regulate cerebral blood flow in health and disease.
1008 *Nature* **508**, 55-60, doi:10.1038/nature13165 (2014).

1009 56 Yemisci, M. *et al.* Pericyte contraction induced by oxidative-nitrative stress impairs
1010 capillary reflow despite successful opening of an occluded cerebral artery. *Nat Med* **15**,
1011 1031-1037, doi:10.1038/nm.2022 (2009).
1012 57 Jespersen, S. N. & Østergaard, L. The roles of cerebral blood flow, capillary transit time
1013 heterogeneity, and oxygen tension in brain oxygenation and metabolism. *J Cereb Blood
1014 Flow Metab* **32**, 264-277, doi:10.1038/jcbfm.2011.153 (2012).
1015 58 Hartmann, D. A. *et al.* Pericyte structure and distribution in the cerebral cortex revealed
1016 by high-resolution imaging of transgenic mice. *Neurophotonics* **2**, 041402,
1017 doi:10.1117/1.NPh.2.4.041402 (2015).
1018 59 Birbrair, A. *et al.* Skeletal muscle pericyte subtypes differ in their differentiation potential.
1019 *Stem Cell Res* **10**, 67-84, doi:10.1016/j.scr.2012.09.003 (2013).
1020 60 Birbrair, A. *et al.* Type-2 pericytes participate in normal and tumoral angiogenesis. *Am J
1021 Physiol Cell Physiol* **307**, C25-38, doi:10.1152/ajpcell.00084.2014 (2014).
1022 61 Kumar, A. *et al.* Specification and Diversification of Pericytes and Smooth Muscle Cells
1023 from Mesenchymoangioblasts. *Cell Rep* **19**, 1902-1916,
1024 doi:10.1016/j.celrep.2017.05.019 (2017).
1025 62 Berthiaume, A. A. *et al.* Dynamic Remodeling of Pericytes In Vivo Maintains Capillary
1026 Coverage in the Adult Mouse Brain. *Cell Rep* **22**, 8-16, doi:10.1016/j.celrep.2017.12.016
1027 (2018).
1028 63 Jiu, Y. *et al.* Bidirectional Interplay between Vimentin Intermediate Filaments and
1029 Contractile Actin Stress Fibers. *Cell Rep* **11**, 1511-1518,
1030 doi:10.1016/j.celrep.2015.05.008 (2015).
1031 64 Gan, Z. *et al.* Vimentin Intermediate Filaments Template Microtubule Networks to
1032 Enhance Persistence in Cell Polarity and Directed Migration. *Cell Syst* **3**, 252-263.e258,
1033 doi:10.1016/j.cels.2016.08.007 (2016).
1034 65 Mendez, M. G., Kojima, S. & Goldman, R. D. Vimentin induces changes in cell shape,
1035 motility, and adhesion during the epithelial to mesenchymal transition. *Faseb J* **24**, 1838-
1036 1851, doi:10.1096/fj.09-151639 (2010).
1037 66 Li, L. *et al.* A mouse model with high clonal barcode diversity for joint lineage,
1038 transcriptomic, and epigenomic profiling in single cells. *Cell* **186**, 5183-5199.e5122,
1039 doi:10.1016/j.cell.2023.09.019 (2023).
1040 67 Dar, A. *et al.* Multipotent vasculogenic pericytes from human pluripotent stem cells
1041 promote recovery of murine ischemic limb. *Circulation* **125**, 87-99,
1042 doi:10.1161/circulationaha.111.048264 (2012).
1043 68 Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the
1044 mouse. *Nature* **583**, 590-595, doi:10.1038/s41586-020-2496-1 (2020).
1045 69 Litvinukova, M. *et al.* Cells of the adult human heart. *Nature* **588**, 466-472,
1046 doi:10.1038/s41586-020-2797-4 (2020).
1047 70 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587
1048 e3529, doi:10.1016/j.cell.2021.04.048 (2021).
1049 71 Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for
1050 scRNA-seq. *Genome Biol* **23**, 27, doi:10.1186/s13059-021-02584-9 (2022).
1051 72 Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nat
1052 Biotechnol*, doi:10.1038/nbt.4314 (2018).
1053 73 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1054 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
1055 15550, doi:10.1073/pnas.0506580102 (2005).
1056

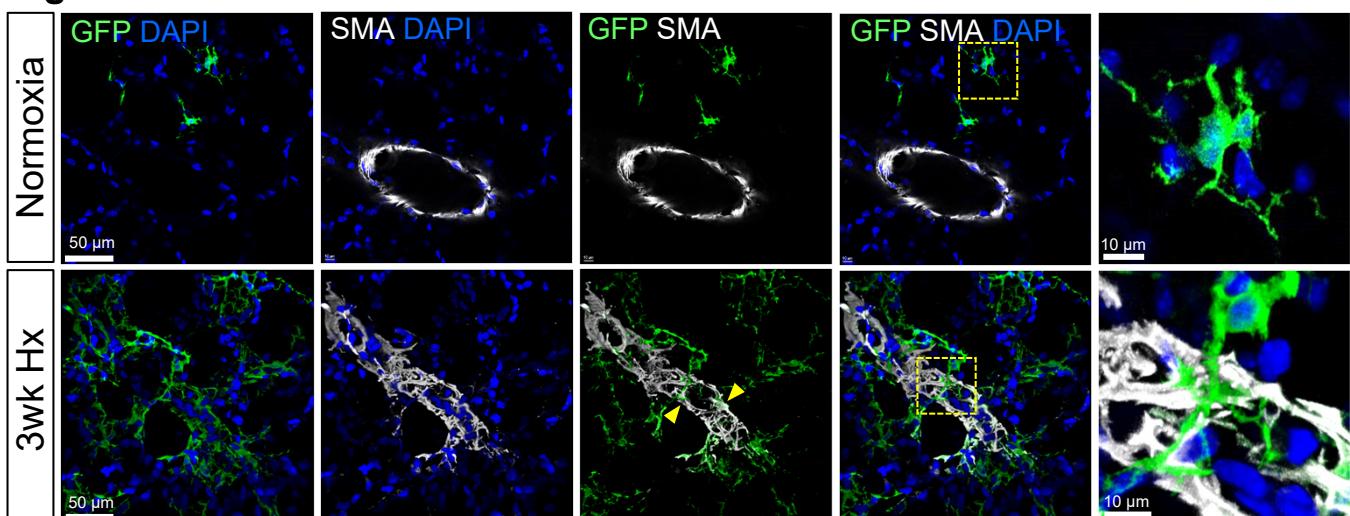

Fig 1. HIGD1B/Higd1b is identified as a unique and exclusive lung pericyte marker.


Fig 2. *Higd1b-CreERT2* construction using CRISPR.

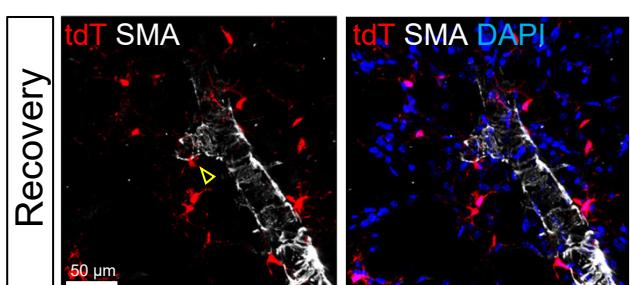
B



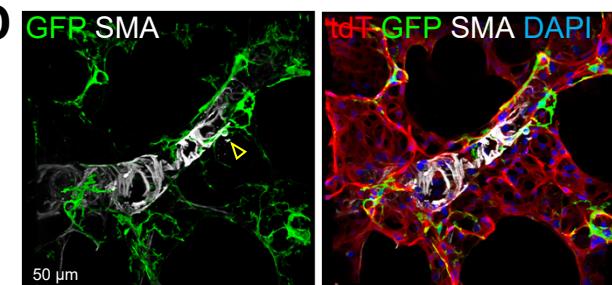
C

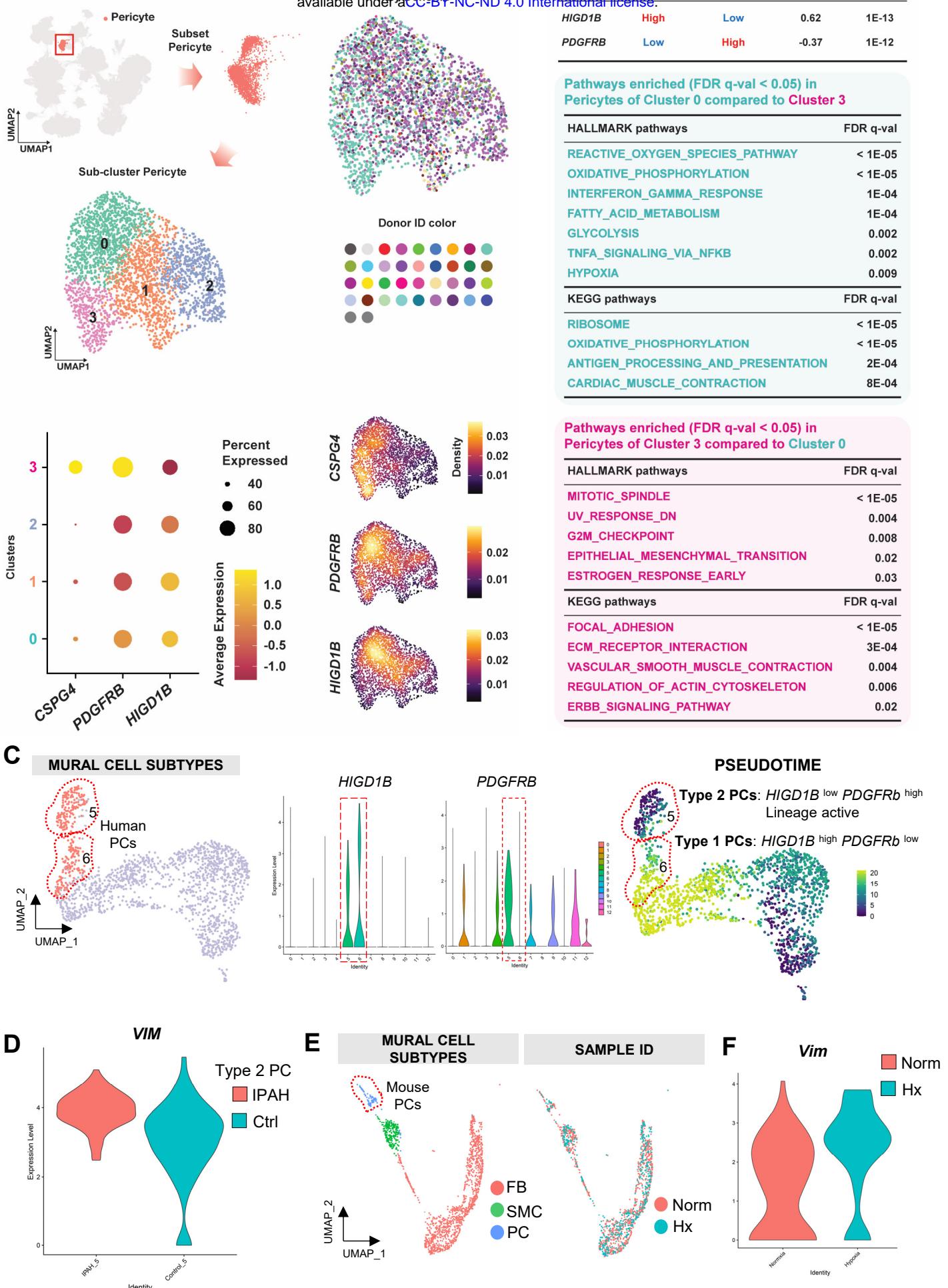

Fig 3. *Higd1b-Cre* $^{+}$ cells precisely label pulmonary and cardiac PCs.

A Higd1b-tdT^{+/−}



B


Higd1b-mTmG^{+/−}


C

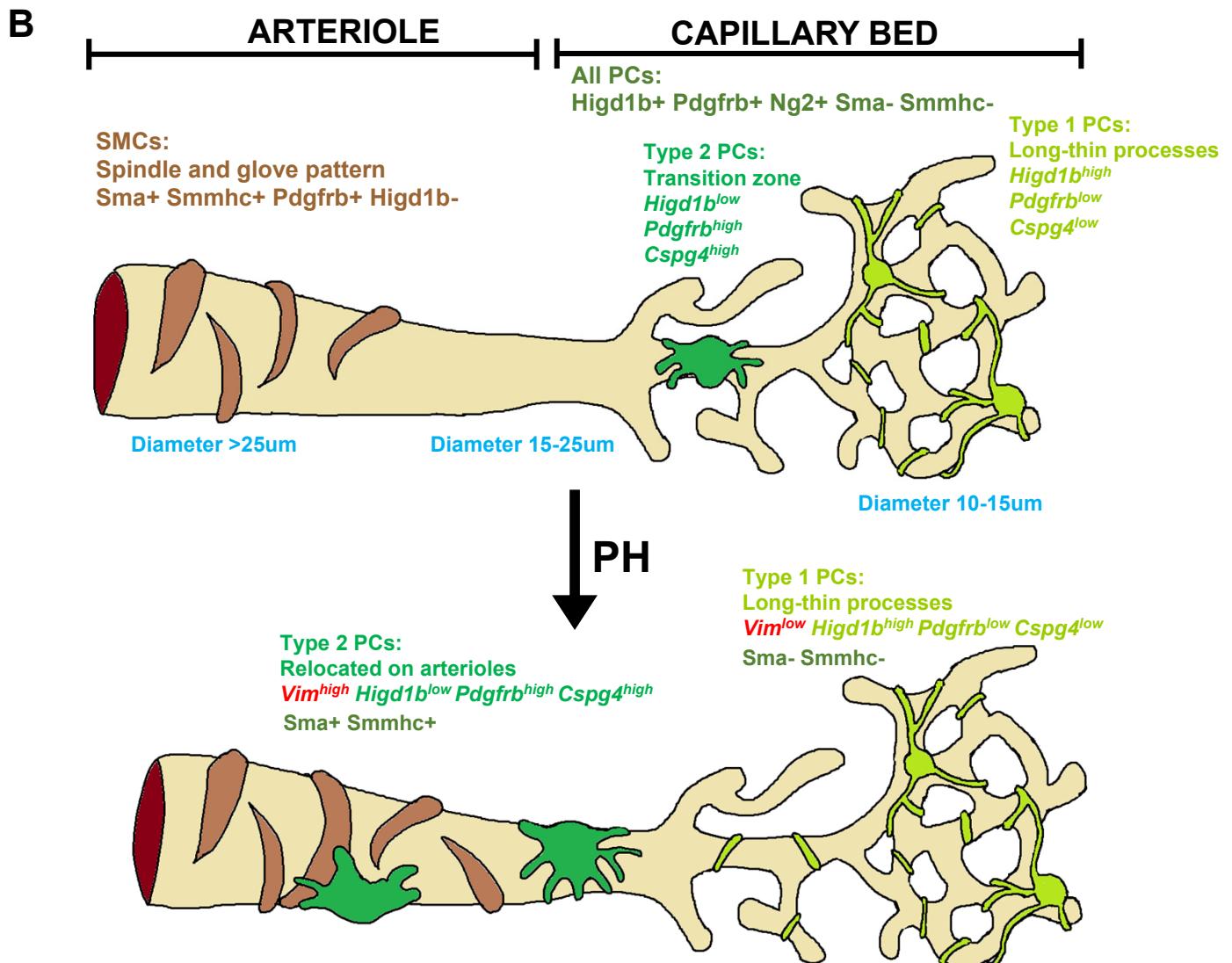
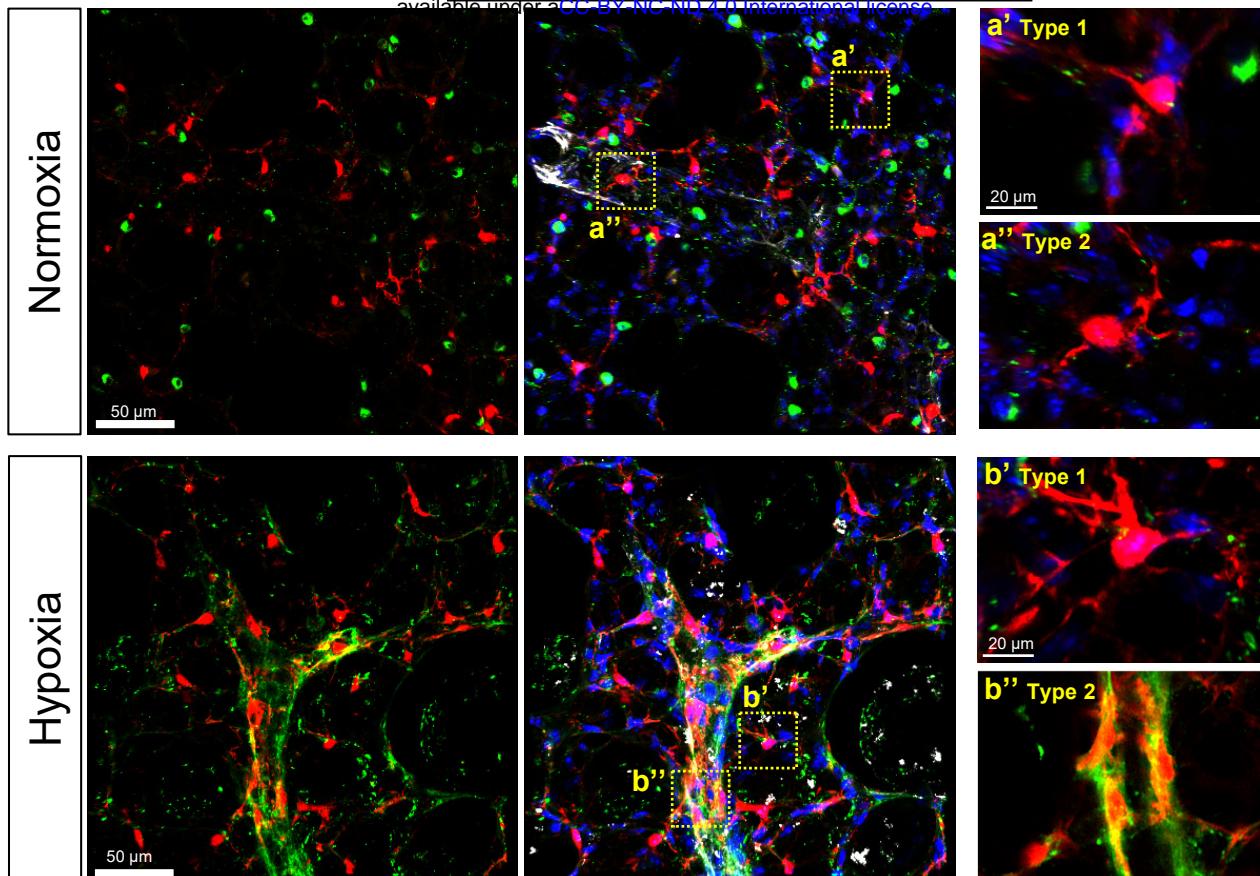


D

Fig 4. Lineage tracing shows that *Higd1b*-Cre⁺ cells are accumulated in muscularized distal arterioles by different hypoxic exposure times.

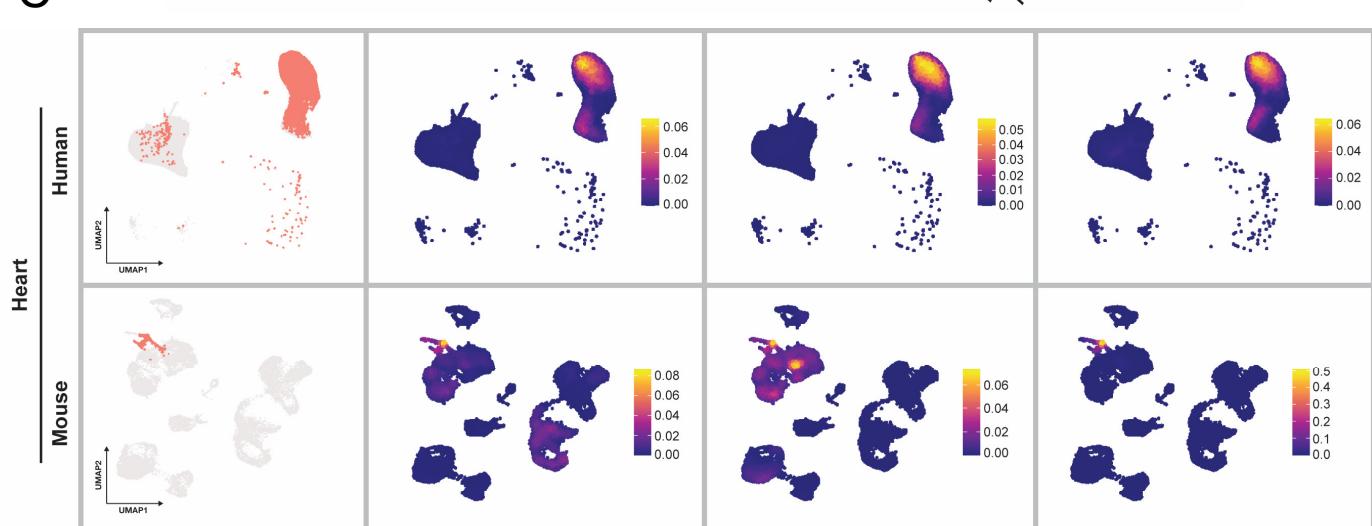
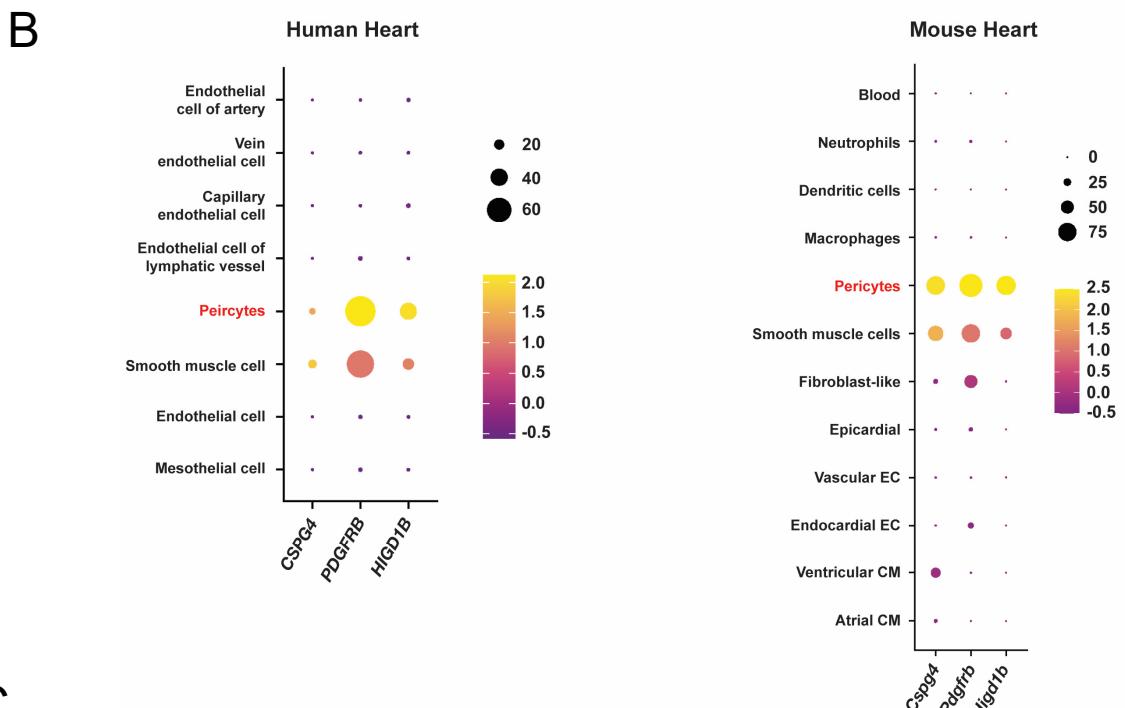
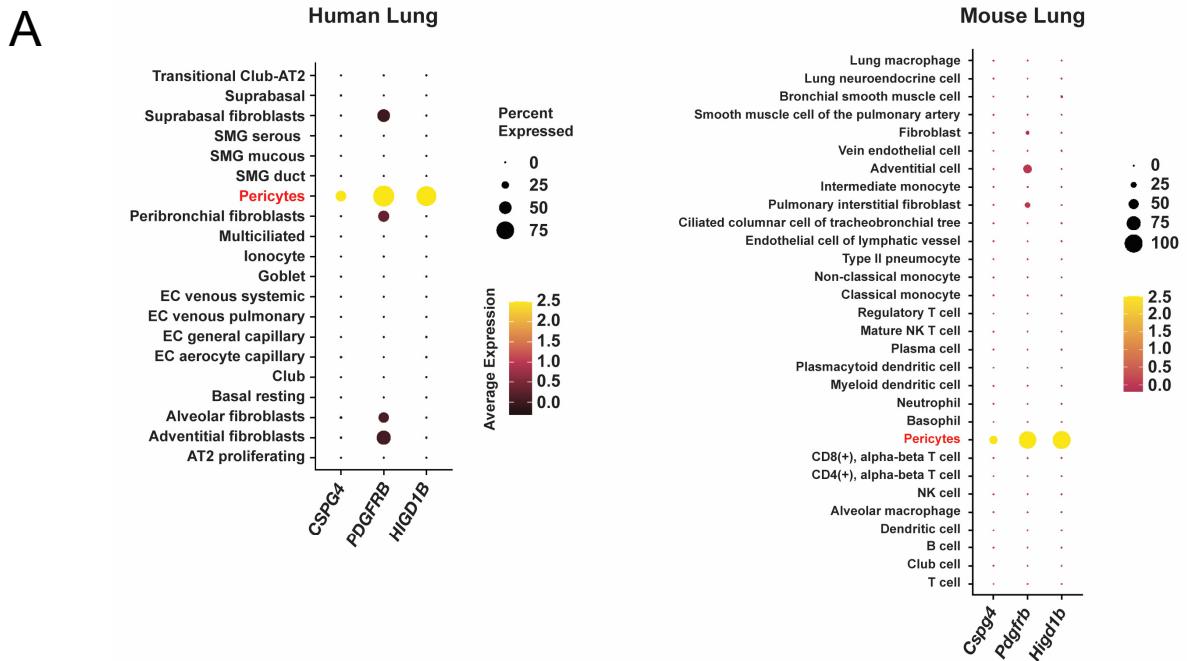




Fig 5. Two subtypes of PCs are identified.

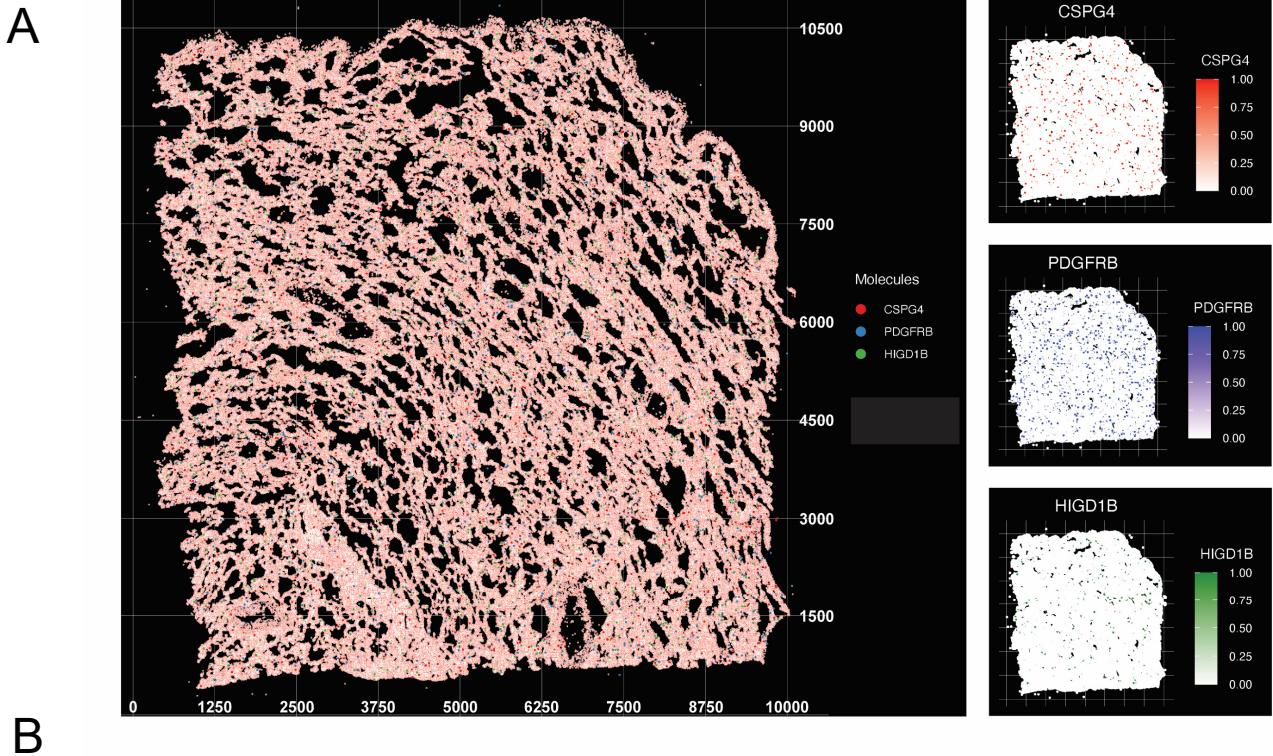
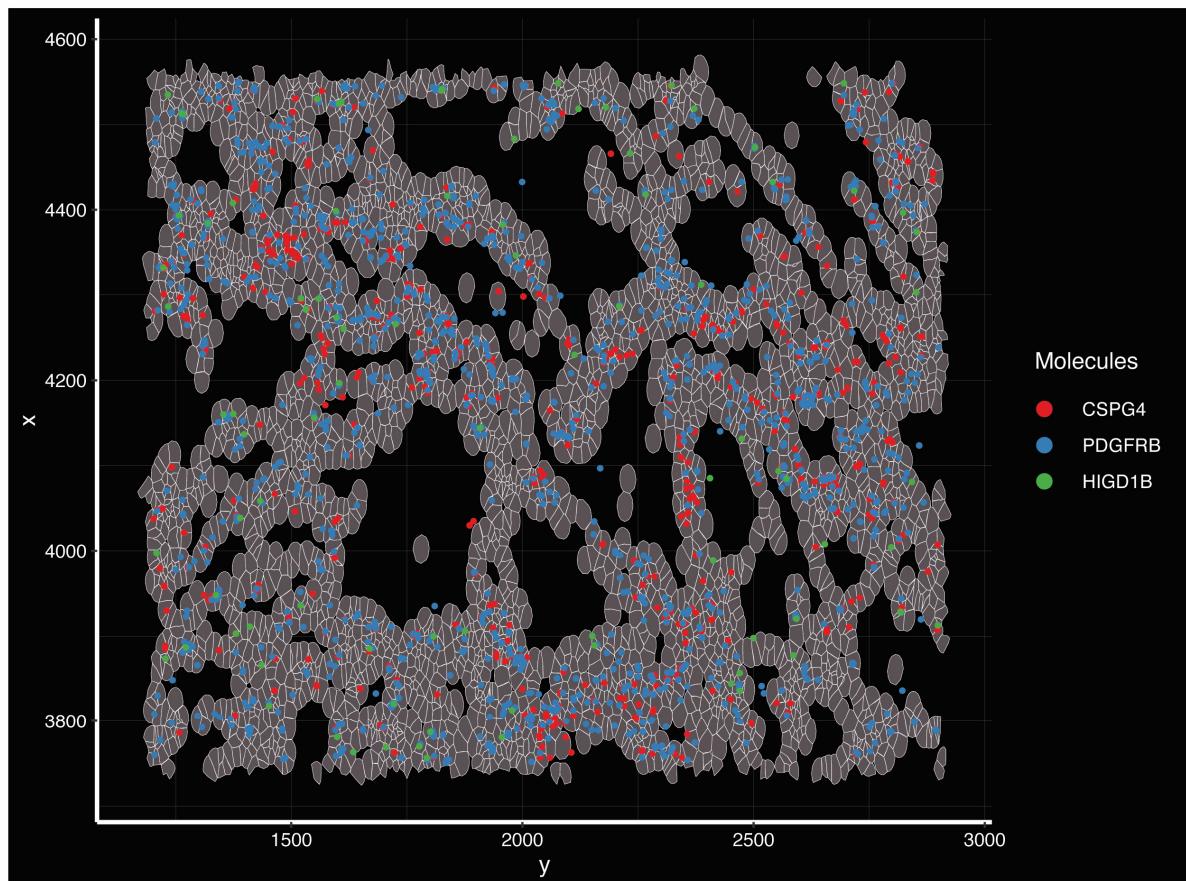
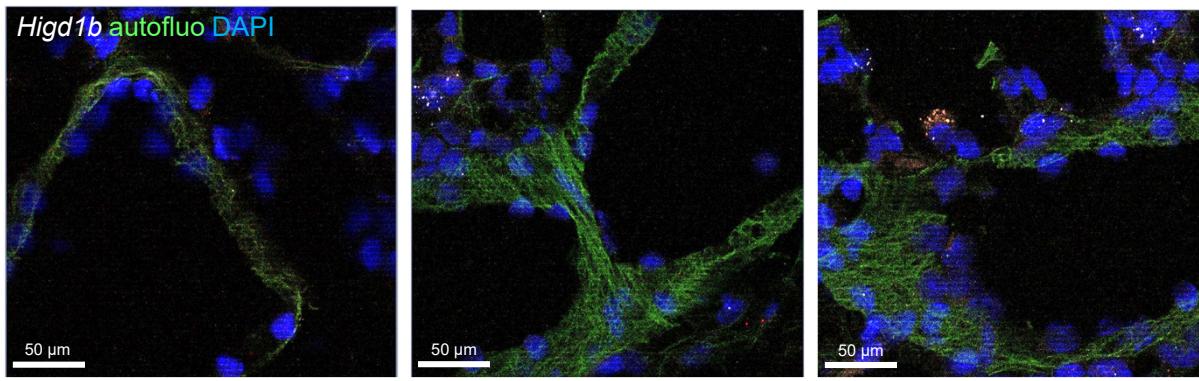


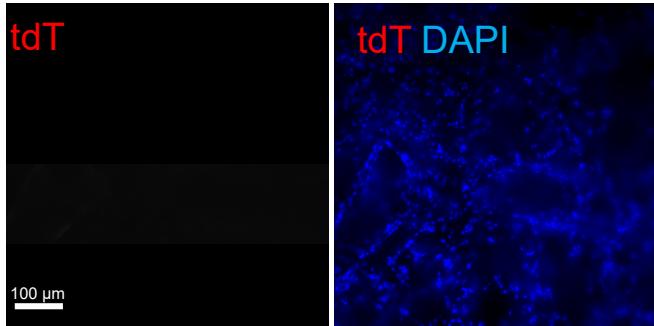
Fig 6. Type 2 PCs express upregulated Vimentin after Hx.


bioRxiv preprint doi: <https://doi.org/10.1101/2024.05.09.554711>; this version posted May 9, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


Supplementary figure 2

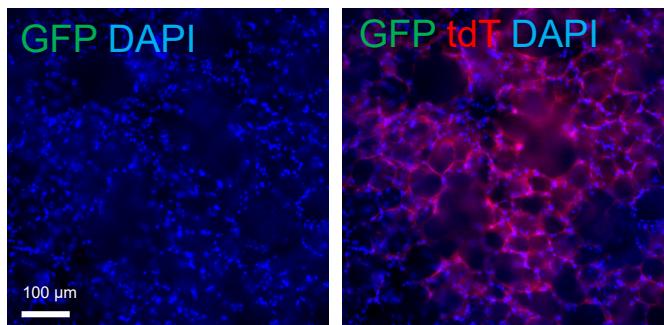
B

Supplementary figure 3. *Higd1b* is negative in arterial SMCs

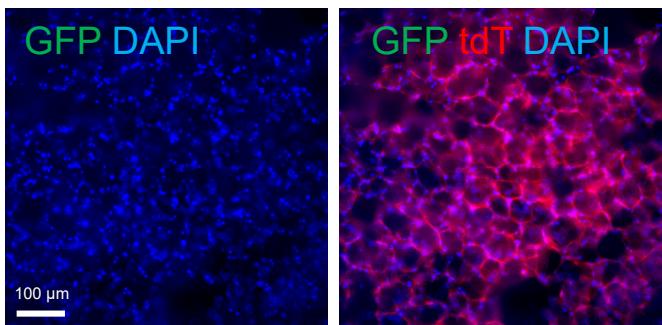


A

WT-tdT (+Tam)

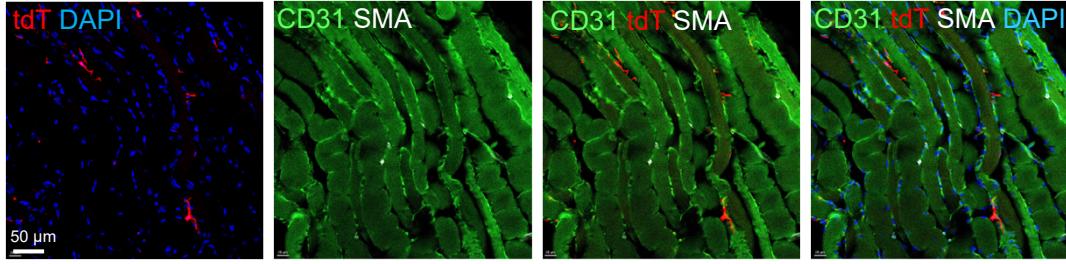


Higd1b-tdT (-Tam)

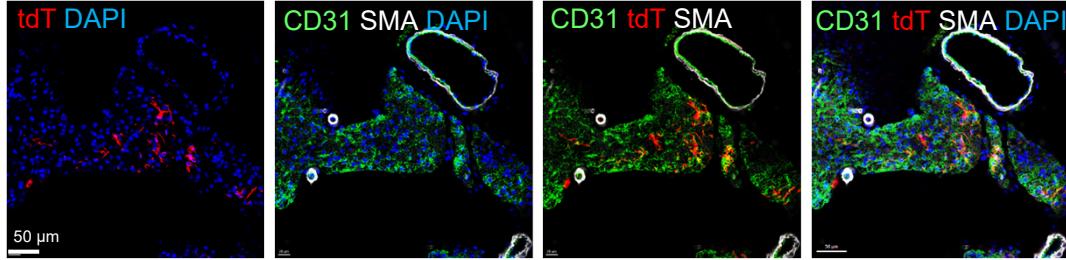


B

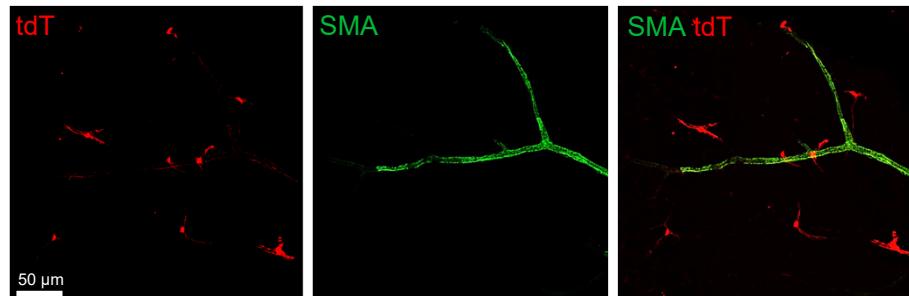
WT-mTmG (+Tam)


Higd1b-mTmG (-Tam)

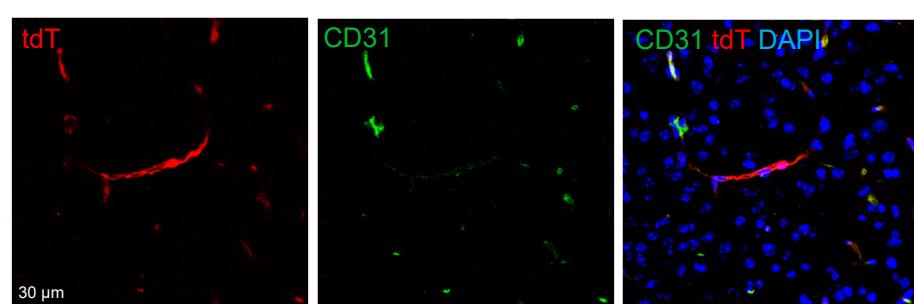
***Higd1b-tdT⁺⁻* labels some PCs in other organs *in vivo*.**


A

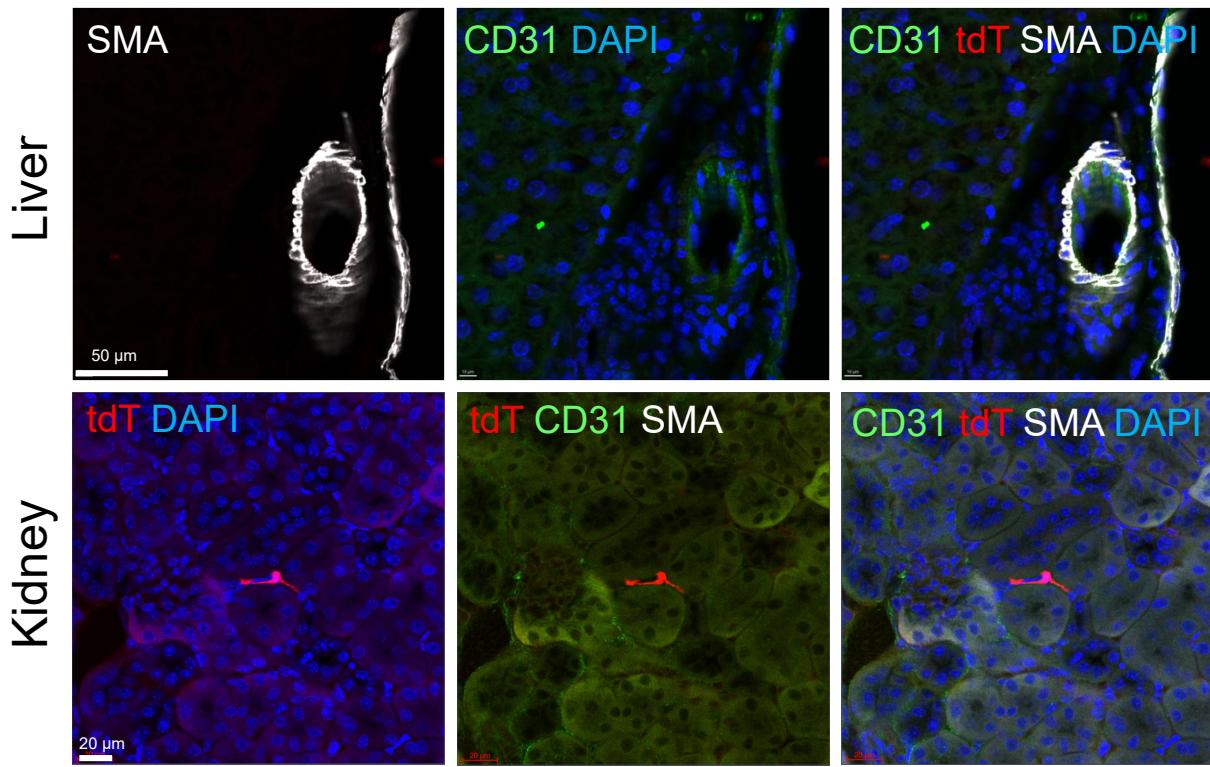
Skeletal muscle


B

Connective tissues around
descending aorta

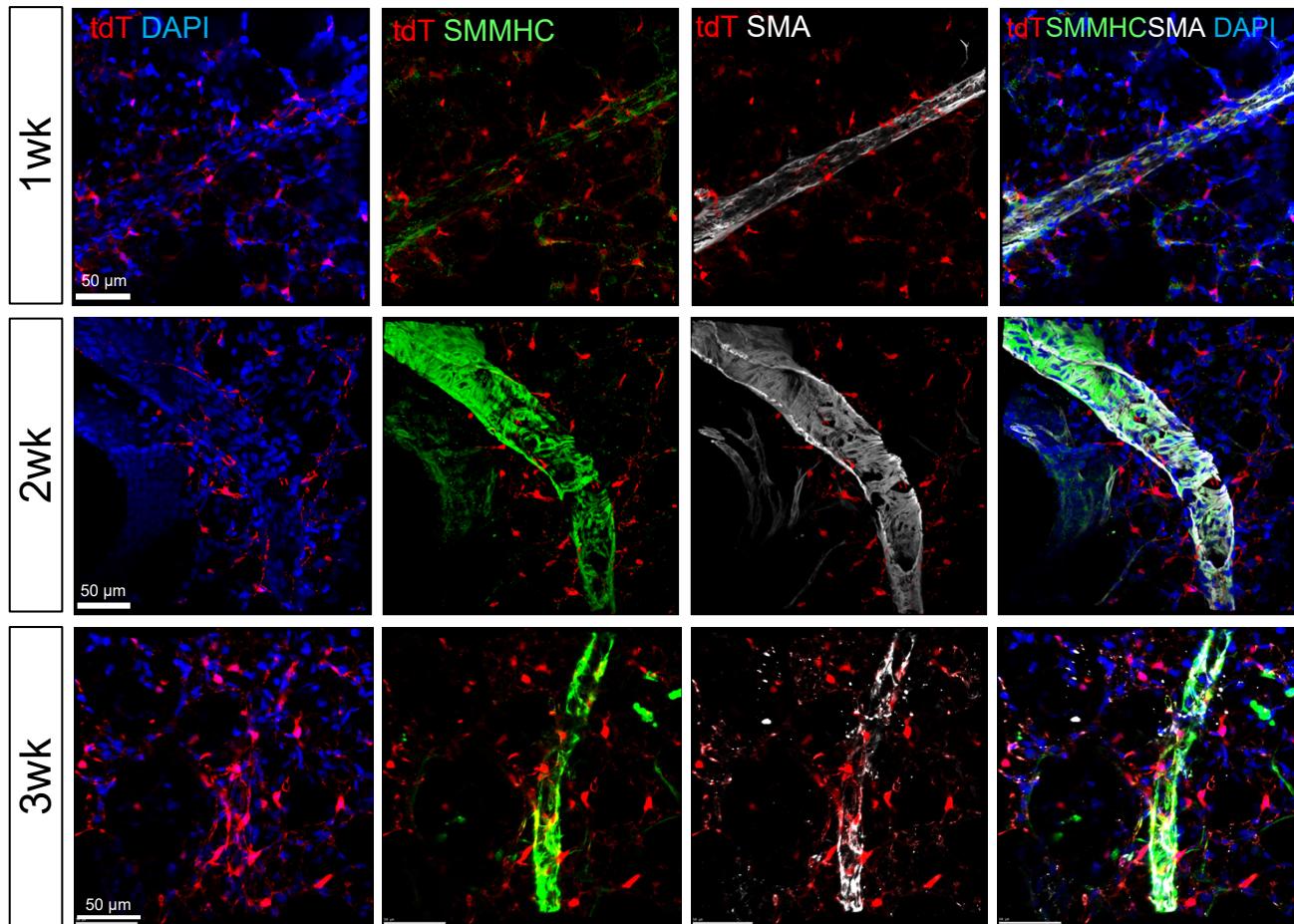

C

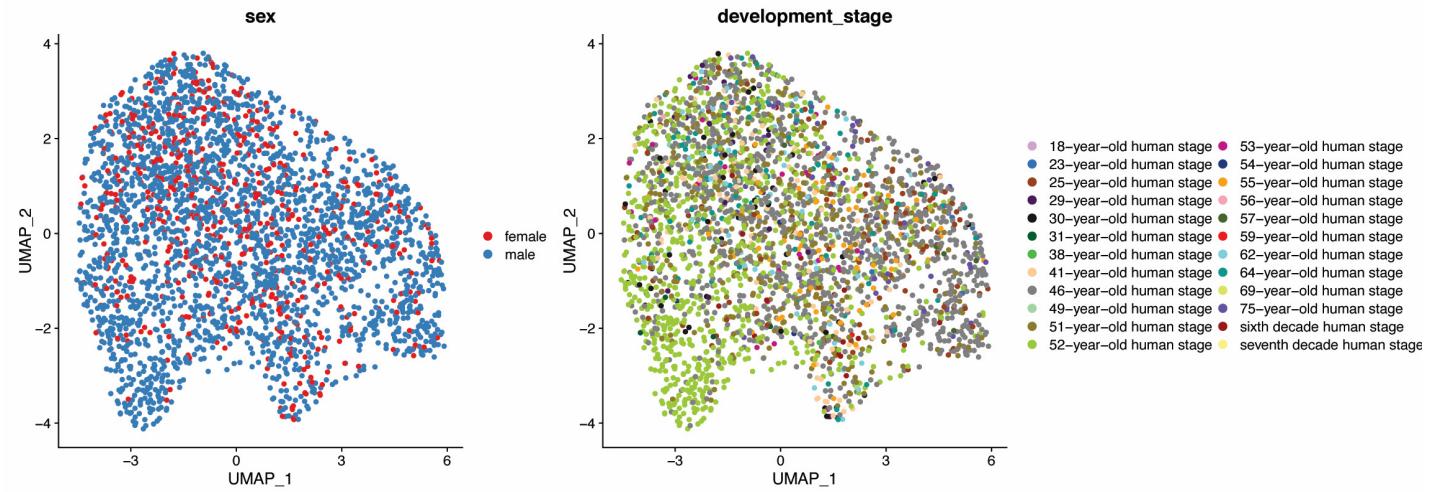
Retina


D

Brain

Supplementary figure 6


Higd1b-tdT⁺⁻ PCs are absent in the liver and the kidney.


Supplementary figure 7

Lineage tracing of Higd1b-tdT-/+ lung after the 1wk, 2wk, and 3wk hypoxia exposure by SMMHC and SMA staining.

A

Supplementary figure 8

Supplementary figure 9

GSEA

Pathways enriched (FDR q-val < 0.05) in Pericytes of Cluster 0 compared to Cluster 3

HALLMARK pathways	FDR q-val
REACTIVE_OXYGEN_SPECIES_PATHWAY	< 1E-05
OXIDATIVE_PHOSPHORYLATION	< 1E-05
MYC_TARGETS_V1	< 1E-05
INTERFERON_GAMMA_RESPONSE	1E-04
FATTY_ACID_METABOLISM	1E-04
PEROXISOME	3E-04
INTERFERON_ALPHA_RESPONSE	5E-04
DNA_REPAIR	8E-04
P53_PATHWAY	0.001
ADIPOGENESIS	0.002
GLYCOLYSIS	0.002
XENOBIOTIC_METABOLISM	0.002
TNFA_SIGNALING_VIA_NFKB	0.002
HYPOXIA	0.009
ALLOGRAFT_REJECTION	0.01
UNFOLDED_PROTEIN_RESPONSE	0.01
MTORC1_SIGNALING	0.01
UV_RESPONSE_UP	0.01
APOPTOSIS	0.02
KEGG pathways	FDR q-val
RIBOSOME	< 1E-05
PARKINSONS_DISEASE	< 1E-05
OXIDATIVE_PHOSPHORYLATION	< 1E-05
HUNTINGTONS_DISEASE	< 1E-05
ALZHEIMERS_DISEASE	< 1E-05
PROTEASOME	4E-05
ANTIGEN_PROCESSING_AND_PRESENTATION	2E-04
SYSTEMIC_LUPUS_ERYTHEMATOSUS	7E-04
CARDIAC_MUSCLE_CONTRACTION	8E-04
LYSOSOME	0.04
PYRIMIDINE_METABOLISM	0.04
VIBRIO_CHOLERAES_INFECTION	0.04

Pathways enriched (FDR q-val < 0.05) in Pericytes of Cluster 3 compared to Cluster 0

HALLMARK pathways	FDR q-val
MITOTIC_SPINDLE	< 1E-05
UV_RESPONSE_DN	0.004
G2M_CHECKPOINT	0.008
EPITHELIAL_MESENCHYMAL_TRANSITION	0.02
TGF_BETA_SIGNALING	0.03
ESTROGEN_RESPONSE_EARLY	0.03
APICAL_JUNCTION	0.04
KEGG pathways	FDR q-val
FOCAL_ADHESION	< 1E-05
ECM_RECECTOR_INTERACTION	3E-04
MELANOMA	0.001
LONG_TERM_DEPRESSION	0.002
PATHWAYS_IN_CANCER	0.004
VASCULAR_SMOOTH_MUSCLE_CONTRACTION	0.004
SMALL_CELL_LUNG_CANCER	0.004
GAP_JUNCTION	0.005
MELANOGENESIS	0.006
REGULATION_OF_ACTIN_CYTOSKELETON	0.006
PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM	0.008
JAK_STAT_SIGNALING_PATHWAY	0.008
NOTCH_SIGNALING_PATHWAY	0.009
DILATED_CARDIOMYOPATHY	0.009
GLIOMA	0.01
PROGESTERONE_MEDIATED_OOCYTE_MATURATION	0.01
CYTOKINE_CYTOKINE_RECECTOR_INTERACTION	0.01
AXON_GUIDANCE	0.01
CHEMOKINE_SIGNALING_PATHWAY	0.02
ADHERENS_JUNCTION	0.02
HYPERTROPHIC_CARDIOMYOPATHY_HCM	0.02
ERBB_SIGNALING_PATHWAY	0.02
PANCREATIC_CANCER	0.02
PROSTATE_CANCER	0.02
ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC	0.02
CHRONIC_MYELOID_LEUKEMIA	0.03
INOSITOL_PHOSPHATE_METABOLISM	0.03
ACUTE_MYELOID_LEUKEMIA	0.03
MAPK_SIGNALING_PATHWAY	0.03
GNRH_SIGNALING_PATHWAY	0.04
TGF_BETA_SIGNALING_PATHWAY	0.04
LONG_TERM_POTENTIATION	0.04