

1 **Modelling the gut microbiota of children with malnutrition: *in vitro* models reveal
2 differences in fermentability of widely consumed carbohydrates**

3
4 Jennifer Ahn-Jarvis^a, Kendall Corbin^b, Suzanne Harris^c, Perla Rey-Troncoso^a, Peter Olupot-
5 Olupot^d, Nuala Calder,^e Kevin Walsh,^{f,g} Kathryn Maitland,^{e,h} Gary Frost^f, Frederick J. Warren^{a*}

6
7 **Affiliations:**

8 ^aFood, Microbiome and Health, Quadram Institute Bioscience, Norwich, UK

9 ^bDepartment of Horticulture, College of Agriculture, Food and Environment, University of
10 Kentucky, Lexington, Kentucky, USA

11 ^cLondon School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK

12 ^dMbale Clinical Research Institute, Busitema University Faculty of Health Sciences, Mbale
13 Campus, Palissa Road, PO Box 1966, Mbale, Uganda

14 ^eDepartment of Paediatrics Faculty of Medicine, Imperial College, London, UK

15 ^fDivision of Diabetes, Endocrinology and Metabolism, Imperial College, 6th Floor
16 Commonwealth Building, Hammersmith Campus, DuCane Road, London W12, UK
17 and Nutrition Research Section, Imperial College, London UK

18 ^gDept. of Nutritional Sciences. School of Life Course & Population Sciences, Faculty of Life
19 Sciences & Medicine, King's College, London SE1 9NH, UK

20 ^hImperial College, Department of Infectious Disease and Institute of Global Health and
21 Innovation, Faculty of Medicine, Imperial College, London, UK

22
23 **Key words:**

24 Severe malnutrition, legume feed, gut microbiome, 16S rRNA sequencing, inulin

25
26
27
28
29 **Conflicts of interest/disclosures:** authors have no competing interests to declare

30
31
32
33
34
35
36 ***Address for reprints and correspondence:**

37 Fred Warren

38 Food, Microbiome and Health

39 Quadram Institute Bioscience

40 Colney

41 Norwich, Norfolk, NR4 7QA

46 **Abstract**

47 There is increasing evidence in children suffering from Severe Acute Malnutrition (SAM) that
48 there is disruption of the gut microbiome and low gut microbiota diversity, which may be
49 contributing factors to poor outcomes during nutritional treatment and recovery. The gut
50 microbiome of children with SAM has been demonstrated to have a lower production of
51 beneficial short chain fatty acids, which may contribute to impaired gut barrier function.
52 Recently, several microbiota-directed therapies have been tested in clinical trials in children with
53 SAM. Among them we hypothesized that feeds containing fermentable carbohydrates from
54 various sources (legumes, chicory, milk oligosaccharides) would be fermented to produce
55 beneficial microbial metabolites by the microbiota of children with SAM. In this study we used
56 an *in vitro* model system inoculated with stool from children with SAM to investigate the
57 fermentability of four substrates; inulin (a chicory-derived fructan), two milk powders (one
58 supplemented with a human milk oligosaccharide) and a chickpea enriched feed. We
59 demonstrated that while the milk powders and chickpea feed were fermented to produce short
60 chain fatty acids, inulin was only fermented to a very limited degree. Through 16S rRNA
61 sequencing we demonstrated that the samples inoculated with inulin had low microbial diversity
62 and linked this to the limited ability to metabolise inulin. Through revealing the fermentability of
63 different complementary feeds, the findings of this study will be of use for the design of future
64 therapeutic feeds for treatment of SAM.

65 **Importance**

66 Malnutrition is a major contributor to childhood mortality globally and is a major public health
67 problem primarily affecting Lower- and Middle-Income Countries. Despite the development of
68 nutritional recovery therapies, for those with the severe and complicated form of malnutrition

69 (SAM), mortality and relapse rates remain high. Emerging evidence suggests a role for the gut
70 microbiome in these poor outcomes, which is known to be significantly altered in children in
71 SAM, compared to healthy age matched controls. To aid in recovery from SAM, nutritional
72 interventions should be designed to support the gut microbiome, using a range of ingredients
73 targeted for colonic fermentation. It is important to understand the fermentation capacity of the
74 gut microbiome of children with SAM, to design future nutritional interventions. In this work,
75 we demonstrate that inulin, a widely used chicory-derived prebiotic, is not a suitable
76 fermentation substrate for the gut microbiome of SAM children, while legume-based
77 formulations and milk oligosaccharides result in increased production of beneficial metabolites.

78

79 **Introduction**

80 Undernutrition is still a widely prevalent problem in many Lower- and Middle-Income Countries
81 (LIMCs), affecting almost 25% children under the age of 5 years globally, and being implicated
82 in almost half of all childhood deaths (1, 2). Childhood undernutrition can be broadly split into
83 two categories, namely stunting (length-for-age Z-score [LAZ] ≤ 2) and wasting (weight-for-
84 height Z-score ≤ 2) (1). Although less prevalent than stunting, the most severe form of wasting,
85 Severe Acute Malnutrition (SAM) is associated with higher mortality rates. For children
86 hospitalised with SAM up to 20% die, with a high proportion of deaths occurring during the first
87 week of hospitalisation (3). Nutritional rehabilitation alongside supportive treatments has been
88 the cornerstone of SAM treatment. The feeding regimes have been developed to deliver optimum
89 nutrition to children hospitalized with SAM. The current WHO recommendation for nutritional
90 treatment of acutely sick children hospitalized with SAM are mainly milk-based feeds (called
91 F75 and F100 indicating their calorie content/100ml) for inpatient management followed by
92 Ready to Use Therapeutic Feeds (RUTF) as a paste for rehabilitation. This treatment regime
93 leads to weight gain and recovery of appetite, as well as improvement in other indicators such as
94 glycaemic control (4). Despite this, nutritional recovery (as well as recovery of anthropomorphic
95 indicators) in SAM is a poor indicator of long term outcomes (5, 6), indicating that the damage
96 caused by SAM is far more complex and long-lasting than simple nutritional deficiencies.
97 The human gut microbiota has recently become an area of intense research interest, driven by
98 advances in metagenomic sequencing technologies (7, 8), but also a greater understanding that
99 the gut microbiota influences many physiological processes including; nutrient acquisition (9);
100 growth hormone signalling and appetite control (mediated through production of Short Chain
101 Fatty Acids (SCFA)) (10); and immune regulation (11). During long term recovery from SAM

102 there is evidence of systematic dysregulation of many of these processes, leading to altered
103 appetite regulation impaired acquisition of key nutrients and increased susceptibility to a range
104 of infections (12). This points to the potential for a key role for the microbiota in the
105 pathogenesis and rehabilitation of SAM.

106 16S based amplicon sequencing studies of the stool microbiota of infants suffering from SAM
107 have revealed that there are dramatic alterations in the gut microbiota (13-17). Twins studies on
108 infants discordant for SAM have demonstrated that distinct microbiota changes occur as a result
109 of SAM, independent of host genetics, environment and background diet (13). These changes
110 include a general reduction in α and β diversity, as well as increases in potentially pathogenic
111 bacteria such as *Klebsiella* and Enterobacteriaceae, and a reduction in beneficial saccharolytic
112 bacteria in *Clostridium* clusters IV and XIVa (such as *Blautia*, Lachnospiraceae,
113 Ruminococcaceae and *Faecalibacterium prausnitzii*), *Bacteroides* species and *Lactobacillus* (15,
114 18). It has been hypothesised that some aspects of the microbiome of children with SAM
115 represent a failure of the gut microbiota to fully mature (15, 16), although there is also strong
116 evidence that there is significant overgrowth of potential enteropathogens (17, 18), and risk of
117 invasive bacterial infection (3).

118
119 Emerging evidence indicates that reversing the gut microbiota changes that occur as a result of
120 SAM have the potential to improve outcomes (19), although gut microbiome targeted therapies
121 have to be carefully designed as interventions using probiotics and synbiotics have had limited
122 success (18, 20). The most promising approach is the use of so called ‘microbiota directed foods’
123 (21, 22), in which food ingredients rich in carbohydrates that are fermentable by the gut
124 microbiota of children with SAM are supplemented conventional RUTFs. The selection of

125 fermentable carbohydrate is crucial as the damage to the gut microbiota diversity that occurs
126 during SAM has the potential to restrict the range of substrates which are accessible to the
127 microbiota. By successfully identifying substrates that support the metabolism of the broadest
128 range of microbial species possible, an increase in SCFAs may be achieved.

129 In this study, we aimed to directly determine the fermentability of potential microbiota directed
130 foods by the gut microbiota sampled from children with SAM by employing and *in vitro* batch
131 fermentation model seeded with stool samples collected from infants hospitalised with SAM. We
132 investigated the fermentation of 4 different substrates. Infant formula, similar in composition to
133 the F75/F100 formula was selected as a baseline for the standard SAM recovery formula. Inulin,
134 a chicory-root derive fructan oligosaccharide, was selected as it is a widely used prebiotic
135 carbohydrate (23) which is highly fermentable by the gut microbiota of healthy infants (24), but
136 conversely in animal models of the SAM gut microbiota it was shown to not to support growth
137 (25). The same animal study demonstrated that milk oligosaccharides similar to those found in
138 human milk did support weight gain (25), so we selected a milk powder supplemented with 2'-
139 Fucosyllactose to reflect this. Finally, we used a legume enriched feed designed to support
140 microbial recovery in SAM (26, 27) formulated with chickpea and high in resistant starch (28,
141 29). Chickpea has been successfully used as a feed supplement to support microbiota recovery in
142 moderate acute malnutrition (19), and the formulation used here has been specially formulated
143 for use in intervention trials to support recovery of infants with SAM (26). Each of these foods
144 was used as a substrate for *in vitro* batch fermentation in models seeded with stool samples from
145 children hospitalized with SAM. Metabolomic analysis of the fermentation media using ^1H NMR
146 was conducted to indicate substrate fermentability through production of microbial metabolites
147 during the time course of fermentation. Samples were also taken for 16S metataxonomic analysis

148 to determine the effects of each of the substrates on microbial diversity and potential pathogen
149 burden.

150

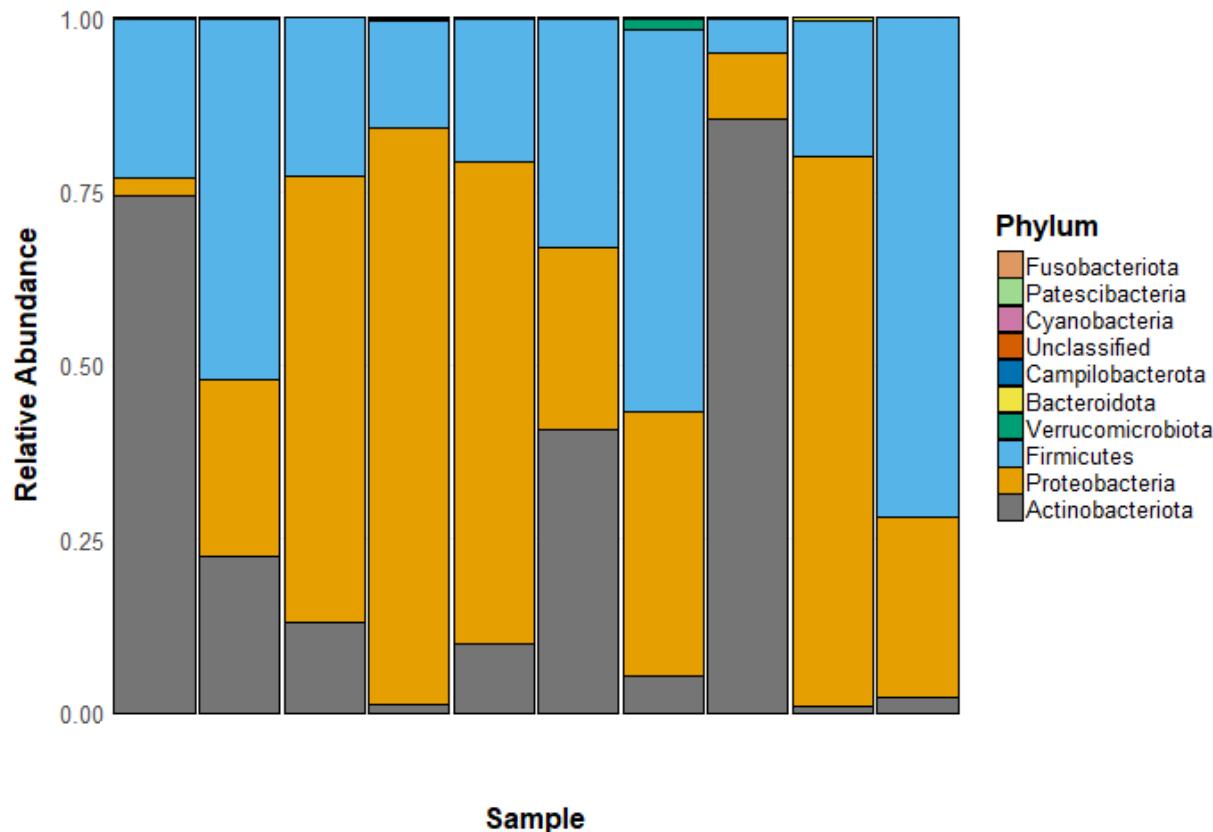
151 **Results**

152 *Cohort demographics and baseline microbiome composition*

153 The demographics of the cohort are shown in Table 1. The average age of the cohort is 2.4 years,
154 with an age range of 0.9 years to 4.5 years. All children included in this study met the criteria for
155 SAM with an average MUAC of 11.1 cm. Clinical data from this cohort was collected from
156 February to April 2016 from day of admission to day 7 of hospitalization.

157 **Table 1. Demographics of the study cohort. Values are given as mean \pm standard deviation.**

Demographic	Total (n=10)	Female (n=5)	Male (n=5)
Demographic (mean \pm SEM)			
Age (years)	2.2 \pm 0.4 [0.8 - 4.5]	2.1 \pm 0.6 [0.8 - 3.9]	2.4 \pm 0.6 [1.1 - 4.5]
MUAC (cm)	11.1 \pm 0.5 [9.0 - 13.2]	10.4 \pm 0.6 [9.0 - 12.3]	11.8 \pm 0.8 [9.1 - 13.2]
Height (cm)	74.9 \pm 4.0	71.2 \pm 4.8	78.6 \pm 6.6
Weight (kg)	7.3 \pm 0.9	6.0 \pm 0.8	8.7 \pm 1.5
Weight-for-height/length z score	-3.2 \pm 0.5	-3.9 \pm 0.6	-2.5 \pm 0.8
Oedema at admission: \geq 3 grade	6/10	3/5	3/5
Diarrhoea	3/10	2/5	1/5
Breast feeding	1/10	none	1/5
Days receiving F75 feed up to day 7	5.0 \pm 2.3	6.0 \pm 2.2	4.0 \pm 2.1
Days receiving F100 feed up to day 7	2.0 \pm 2.3	1.0 \pm 2.2	3.0 \pm 2.1
F75 feeding	5/10	4/10	1/10
F100 feeding	5/10	1/10	4/10


Clinical Features (mean \pm SEM) Day 7 after admission

Pulse (beats/minute)	131 ± 6 [94 - 180]	133 ± 8 [102 - 180]	130 ± 8 [94 - 175]
Resp Rate (breaths/minute)	30 ± 1 [94 - 180]	31 ± 2 [94 - 180]	30 ± 1 [94 - 180]
Temperature (Celsius)	36.5 ± 0.2 [35.0 – 38.0]	36.8 ± 0.2 [35.5 – 38.0]	36.2 ± 0.2 [35.0 – 37.3]
Mean blood glucose over 72hrs following admission (mmol/L)	5.2 ± 0.4 [2.8- 9.5]	5.1 ± 0.6 [2.8- 9.1]	5.4 ± 0.5 [3.8- 9.5]

*MUAC: Mid-upper arm circumference.

158

159 The baseline microbiome composition determined by 16S rRNA sequencing of the samples is
160 depicted in Fig. 1, showing large inter-individual differences in microbiome composition. All the
161 microbiomes sampled contained a high proportion of Proteobacteria, particularly *Escherichia*
162 *coli*, which represents up to 80% of the total microbial abundance in some samples. In addition
163 to Proteobacteria, the samples were dominated by bacteria from Actinobacteriota, a phylum
164 which is primarily represented by the genus *Bifidobacterium* in the human gut, and Firmicutes as
165 would be expected in developing children microbiomes (30). Conversely, very low abundances
166 of Bacteroidota were observed in these samples.

167

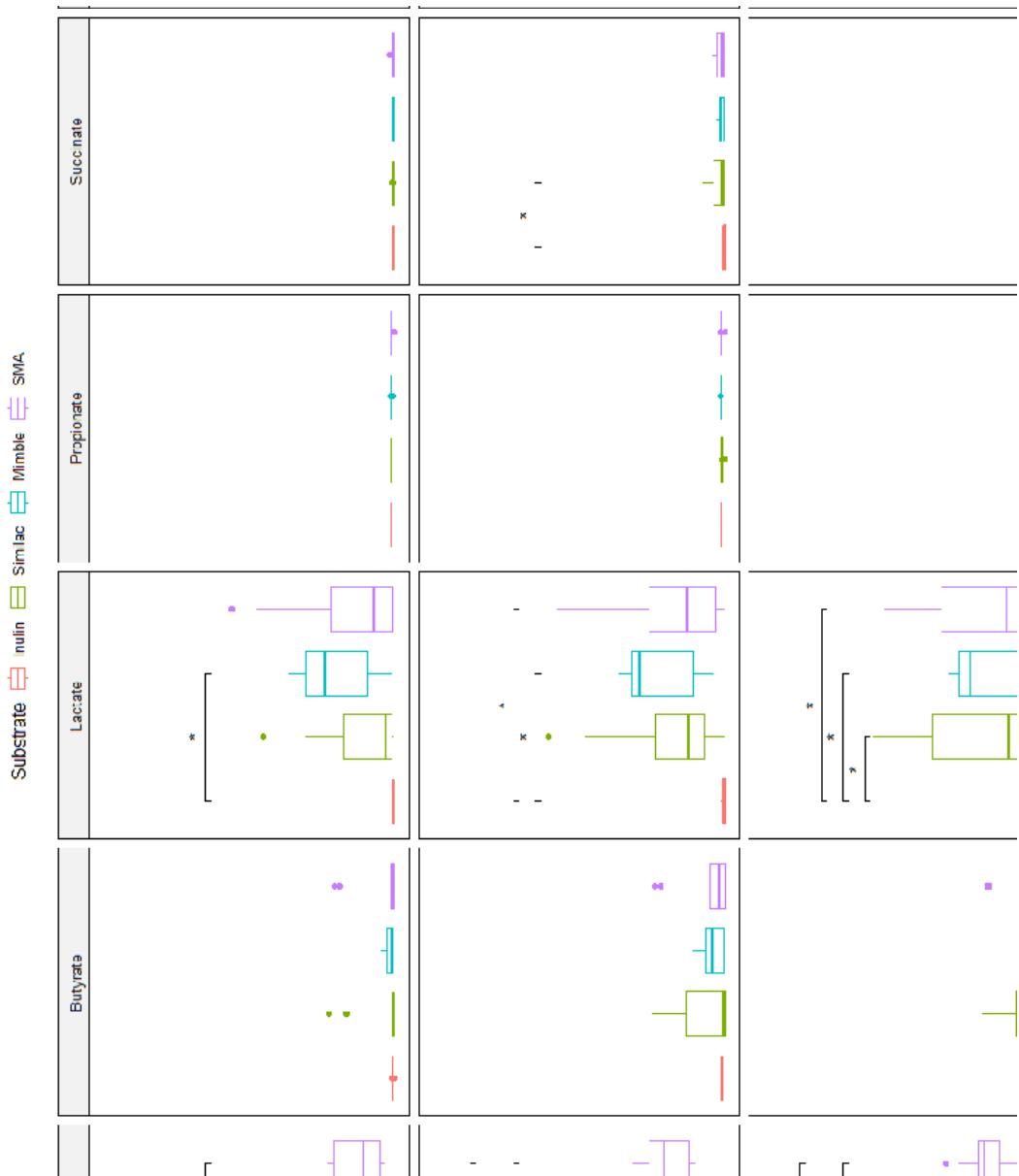
168 **Figure 1. Participant-level phylogeny profile showing the Phylum level abundances of**
169 **bacterial taxa determined by 16S sequencing at the start of the experiment (time = 0), prior**
170 **to *in vitro* fermentation.**

171

172 *In vitro* fermentation reveals substrate driven differences in SCFA production

173 *In vitro* fermentation experiments were established using a batch model colon fermentation

174 system seeded with stool samples from each of the 10 SAM trial participants who were on

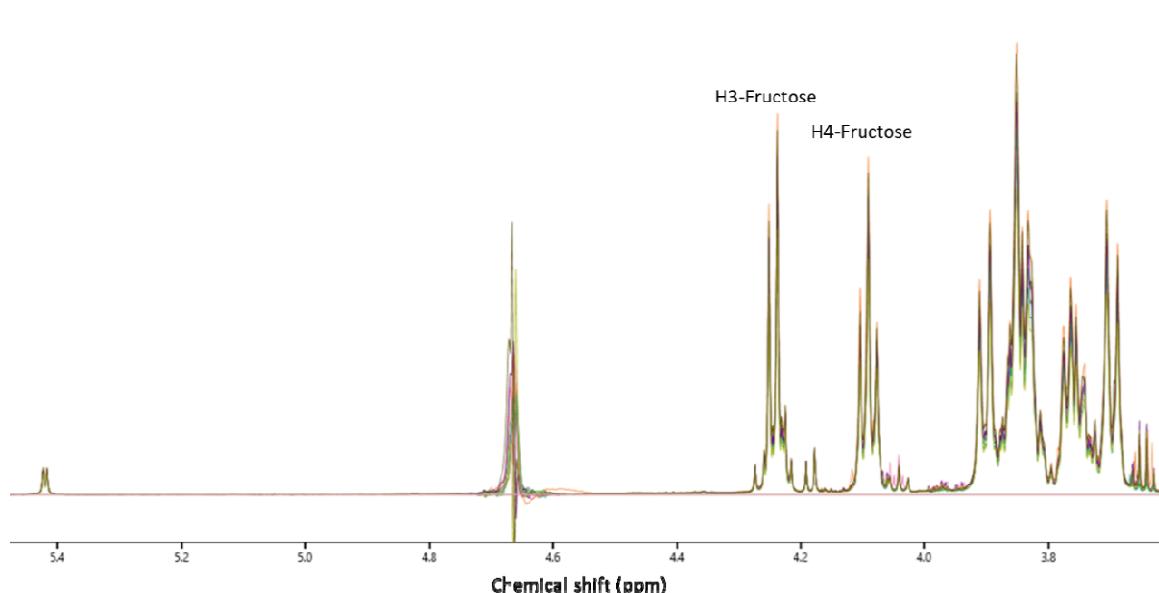

175 standard nutritional and supportive treatments. Each of the fermentation vessels included either

176 inulin, MIMBLE feed, SMA or Similac milk powders as substrates. Samples were taken at

177 defined timepoints (with baseline samples, time = 0, taken prior to fermentation), and microbial

178 metabolites were quantified using ^1H -NMR (Fig. 2, Table S1). Following up to 36 hours of

179 fermentation, all the substrates tested gave rise to production of SCFA's (p value = 0.007) and
180 other microbial metabolites, with significant differences identified between substrates.

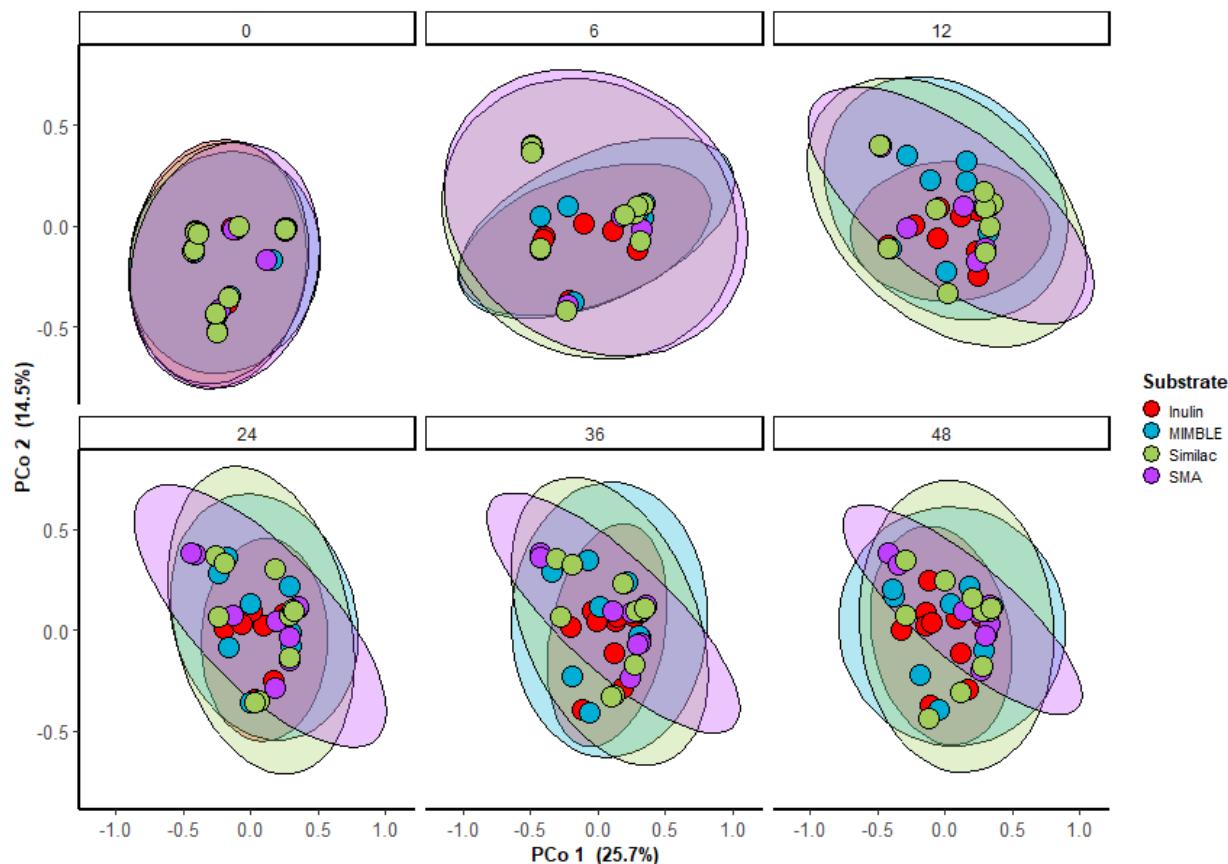

181
182 **Figure 2. Short chain fatty acid concentrations determined by ^1H NMR following 12, 24**

183 **and 36 hours of *in vitro* fermentation.** Metabolite differences were tested using ANOVA with a
184 post-hoc Tukey's test. Statistically significant differences are indicated with * p-value < 0.05, **
185 p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001. All SCFA concentrations are indicated in
186 mM.

187

188 The total SCFA production from the inulin substrate was significantly lower than from the other
189 three substrates after 24h of fermentation (Fig. 2). The differences in total SCFA were mainly
190 driven by acetate and butyrate production. Acetate was highest for the two milk powders, slightly
191 lower for the MIMBLE feed and significantly lower for the inulin. Butyrate levels were similar
192 between the MIMBLE, SMA and Similac substrates, but lower in the vessels with inulin.
193 Propionate production was not significantly different across all substrates and timepoints,
194 although it should be noted that propionate production was low in all the fermentations, and only
195 modest increases from baseline were seen with the MIMBLE and SMA substrates. The clearest
196 differences observed between the substrates were in the metabolic intermediates lactate and
197 succinate. Lactate was produced in response to MIMBLE, Similac and SMA substrates from 12
198 h of fermentation onwards, while succinate showed delayed kinetics of formation, with the peak
199 of metabolite production occurring between 12 and 24 h (Fig. 2, Table S1). Neither lactate nor
200 succinate were produced in significant quantities from the fermentation of inulin. The absence of
201 these metabolic intermediates would hinder the production of SCFA end products and may be
202 reflected in the lower butyrate and acetate concentrations observed for inulin compared to the
203 other substrates tested in this study (9, 31). It is likely that the low production of microbial
204 metabolic intermediates reflects limited breakdown of inulin by the microbiota inoculated into
205 these models. Evidence for limited breakdown of inulin can be derived from the ^1H NMR spectra
206 of the fermentation media following 36h of fermentation (**Fig 3**). Several peaks are observed
207 only in the inulin supplemented media which can be assigned to inulin, including the peaks at 4.3
208 and 4.1ppm which arise from protons in the fructose ring of inulin (32). These inulin peaks
209 remain invariant at all the timepoints, suggesting that the inoculum used in these fermentations is

210 unable to degrade and utilize inulin as a substrate and it remains unmetabolized throughout the
211 course of the fermentation experiments, unlike the three other substrates tested which were
212 fermented at similar rates.

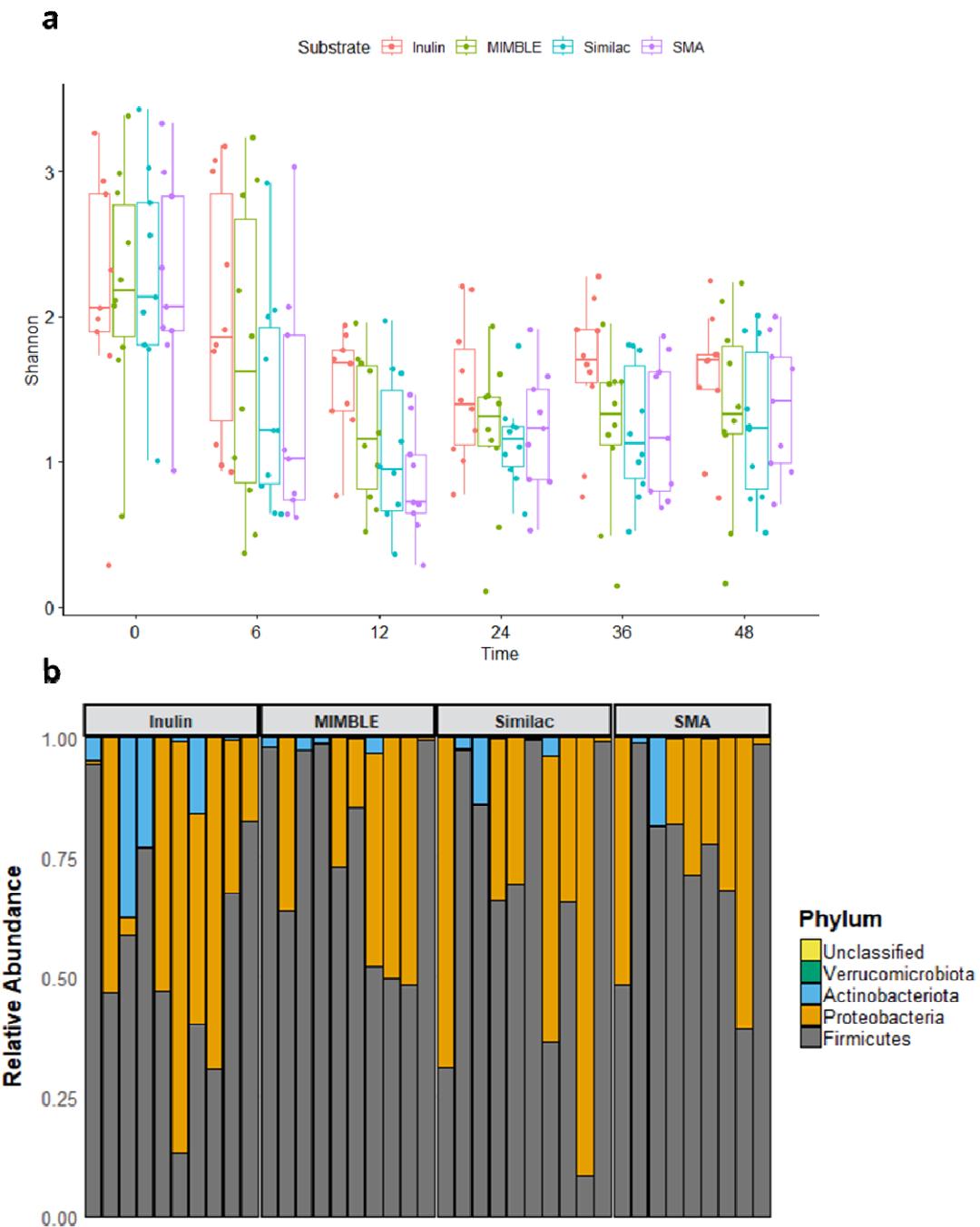


213
214 **Figure 3. ^1H NMR spectra for fermentation media sampled from each of the inulin
215 substrate fermentation vessels following 36h of fermentation. Peak assignments from
216 Caleffi et al.(32) for the H3 and H4 protons in the fructose ring.**
217

218
219 *Substrates drive differences in microbiome composition*
220 The microbial composition within the fermentation vessels (Fig. 4) changed over the time course
221 of the experiment, depending on both time and substrate. Immediately following inoculation, the
222 microbial community composition for each of the substrates was near identical (Fig. 4), with the
223 0 h timepoints, sampled immediately following inoculation, clustering very closely together on a
224 PCoA plot (Fig. 4) reflecting the individual microbial composition of each donor. Following
225 sampling at subsequent time points the microbiome compositions deviated from the composition
226 at 0h, depending both on the substrate and the time point and by 48 h the microbial community

227 composition has moved away from that seen at baseline, although there were not significant
228 differences observed between the substrates.

229


230

231 **Figure 4. PCoA plot based on Bray-Curtis dissimilarity at ASV level for microbial**
232 **communities coloured by substrate at 0, 6, 12, 24, 36 and 48 hours of fermentation.**

233

234 Across all the substrates there was reduction in microbial diversity (Shannon diversity) observed
235 over time in the models, although this did recover slightly at later time points (Fig. 5a). The
236 greatest reduction in microbial diversity was observed in the Similac and SMA milk powders at
237 the 12h time point. In contrast, the Shannon diversity in vessels inoculated with inulin was less
238 reduced at 12h, and at subsequent time points, compared to the other substrates. The changes in

239 microbial diversity are reflected in the phylogeny profiles (**Fig 5b**), where the inulin remains
240 similar to baseline after 24 h fermentation, whereas the other three substrates see reductions in
241 Actinobacteriota and Proteobacteria, and increased Firmicutes abundance.

243 **Figure 5. Microbiome changes during fermentation.** a. Changes in alpha-diversity (Shannon
244 index) over time for each of the substrates during fermentation. b. Phylogeny plot showing
245 phylum level taxa abundances for each participant fermenting each individual substrate
246 following 24h of fermentation.

247

248 **Discussion**

249 The gut microbiome has recently emerged as an important target in the treatment of SAM, due to
250 a series of studies indicating that SAM is associated with gut microbiome immaturity (15, 16,
251 33), leading to reduced production of beneficial microbial metabolites such as SCFA which are
252 protective of the gut endothelium and are crucial to healthy gut function. In a clinical setting, the
253 gut microbiome can be further damaged by the extensive use of antibiotics in treatment regimes.
254 In several studies, reduced stool SCFA has been associated with increased mortality in children
255 with SAM (27, 34). As a result, dietary interventions building on the standard WHO
256 recommendations to include ingredients which specifically target the gut microbiome, such as
257 chicory inulin and legume based ingredients have been developed and trialled in interventions
258 with SAM patients (21, 26, 27, 35, 36).

259 In this paper we have adapted an *in vitro* model colon protocol to mimic the gut microbiome of
260 SAM patients. The basal media used is a minimal media with only key vitamins and minerals for
261 microbial growth, but no additional carbon sources reflecting the restricted diet of SAM patients.
262 To establish the gut microbiota of the SAM patients *in vitro*, stool samples collected from the
263 patients are seeded into the vessels. The stool samples were selected from patients who had been
264 in clinical treatment for SAM for 7 days following a standard WHO treatment pathway, and
265 therefore reflected the impact of SAM, standard WHO milk-based nutritional feeds and
266 antibiotic treatment on the gut microbiota of SAM patients (27). This was reflected in the
267 microbial composition of the samples which were inoculated into the model, which showed high

268 levels of Proteobacteria and very low levels of Bacteroidetes. The high abundance of
269 Proteobacteria was also observed in the larger cohort that these samples were obtained from (27),
270 where Proteobacteria levels were found to peak at 7 days following hospital admission, the point
271 at which the samples in our study were taken. Low relative abundances of Bacteroidetes (<5% in
272 all samples) were observed in these samples, consistent with observations in previous studies of
273 infant malnutrition (15, 37).

274 Using this model, we demonstrate that inulin is almost completely unfermentable by the gut
275 microbiota sampled from infants with SAM. In previous studies investigating *in vitro*
276 fermentation of inulin by stool sampled from infants, there was a clear age dependent effect
277 where the gut microbiome of very young infants is unable to ferment inulin, while older infants
278 can partially ferment lower molecular weight inulin (24, 38). These studies, however,
279 investigated much younger infants than the current study (median age 2.2 years). This may
280 reflect the immaturity of the gut microbiome of children with SAM. In adults, short chain
281 inulin's are fermented preferentially by species of the genus *Bifidobacteria* while longer chain
282 inulin's are fermented preferentially by *Bacteroides* (39). The low levels of Bacteroidetes in the
283 samples analysed in this study, and in children with SAM, may limit the fermentability of inulin
284 in these groups. Recent animal model studies and an intervention study in children with SAM
285 found similar results, with inulin failing to increase faecal SCFA or increase weight gain (25,
286 27). The mechanism underpinning this is not clear from the data presented in this study.
287 *Bifidobacteria* were observed to be more abundant in the fermentation vessels containing inulin
288 compared to the other substrates, although the difference was not statistically significant (Fig.
289 S1). However, *Bacteroides* species were not observed to increase in abundance in the inulin
290 fermentation vessels (Fig. S2). The reasons for the lack of growth of *Bacteroides* species are not

291 known. In contrast, the 'MIMBLE' feed, which is enriched with legumes, and milk powders both
292 with and without human milk oligosaccharides, were found to be fermentable. Animal studies
293 have demonstrated that the human milk oligosaccharide (HMO) 2'-FL contributes to increased
294 SCFA output and supported weight gain in a model of SAM (25). In the present study the
295 fermentability of the two milk formulas tested was very similar, and the SCFA output of both
296 was high. In contrast to HMO's, legumes are cheap and widely produced, therefore making an
297 excellent candidate for addition to supplementary feeds for use in the treatment of SAM. In the
298 present study we tested the MIMBLE feed, containing 10% chickpea flour, which was found to
299 be fermented by the gut microbiota of children with SAM in an *in vitro* model, yielding a range
300 of SCFAs. The chickpea enriched feed also resulted in a greater reduction in Proteobacteria
301 abundance during fermentation than the other substrates tested. Several recent studies have
302 identified that feeds containing chickpea flour have the potential to act as a food source for the
303 gut microbiota of children with SAM, due to the diverse range of polysaccharides including
304 pectins and arabinoxylans present in the cell wall polysaccharides of chickpea. These
305 polysaccharides can be used to modulate the gut microbiome and promote the growth of
306 beneficial bacteria in the immature gut microbiota of SAM patients (19, 35, 36). These results
307 indicate the potential for the use of locally sourced plant-based foods, such as chickpeas, for use
308 in recovery foods which can support SCFA production in the colon as effectively as HMO's (21,
309 35, 40).
310 In conclusion, in this study we have used an *in vitro* model of the gut microbiome of children
311 with SAM to test the fermentability of four different substrates. Sequencing revealed that the
312 microbiome of the stool samples had low diversity with high Proteobacteria and low
313 Bacteroidetes abundance. We demonstrated that, while two milk powders and a legume-based

314 feed were fermentable and produced SCFA in the model, inulin was not fermented to a
315 significant degree. This may reflect the limited microbial diversity, in particular Bacteroidetes
316 needed to ferment longer chain inulin's. These results demonstrate that assumptions cannot be
317 made regarding the fermentability of carbohydrates by the gut microbiota of children with SAM,
318 and that results obtained in healthy childhood cohorts are not translatable to children with SAM.
319 This is, therefore, an urgent need for future studies screening the fermentability of carbohydrates
320 by the gut microbiota of children with SAM. The results presented in this paper provide insights
321 useful for the development of therapeutic and complimentary feeds for use during treatment and
322 recovery from SAM.

323

324 **Materials and Methods**

325 *Substrates*

326 Chicory inulin (catalogue no. I2255) was purchased from Sigma-Aldrich, (Gillingham, UK).
327 Similac Pro-Advance with HMO was purchased from Amazon (UK) and SMA Pro 3 Toddler
328 milk was purchased from Boots Pharmacists (UK). MIMBLE feed was prepared by Campden
329 BRI as described in Walsh et al.(26) Each substrate (0.500 ± 0.005 g, dry weight) was weighed
330 into sterilized fermentation bottles (100mL) prior to start of experiment. Nutrient composition
331 (Table S2) was approximated using Nutritics software (Ireland) or using manufacturer provided
332 information.

333

334 *Inoculum collection and preparation*

335 Modifying Intestinal Integrity and Microbiome in Malnutrition with Legume-Based Feeds
336 [MIMBLE] was a single centre (Mbale Regional Referral Hospital) randomised comparator trial

337 evaluating safety and feasibility of three feeding strategies (registered on
338 <https://pactr.samrc.ac.za> as PACTR201805003381361) (26, 27). The protocol was approved by
339 the ethics committees of Imperial College London (15IC3006) and Mbale Regional Referral
340 Hospital (UG-IRC-012). Following parental written consent children were enrolled on day 1
341 post-admission following consent and followed for 28 days. The trial was conducted to the
342 standards of ICH GCP. Children hospitalised with SAM (n=69) were screened for eligibility
343 (one or more of mid-upper arm circumference (MUAC) <11.5cm, weight-for-height Z-score
344 (WHZ) < -3 or Kwashiorkor) and randomized to either standard milk-feed F75 (n=18); inulin-
345 supplemented standard feeds (InF: n=20) to cowpea supplemented standard feed CPF: n=20).
346 Faecal samples were provided at 7 days following admission to hospital, from trial participants
347 receiving the standard WHO F75/F100 feeding regime and other supportive therapies including
348 antibiotics. Stools from children receiving legume-based feeds were not recruited to this study.
349 Stool samples were frozen and stored at -80°C prior to use. Stool sample was diluted 1:10 with
350 pre-warmed, anaerobic, sterile phosphate buffer saline (0.1M, pH 7.4) in a double meshed
351 stomacher bag (500 mL, Seward, Worthing, UK) and homogenized using a Stomacher 400
352 (Seward, Worthing, UK) at 200 rpm for 2 cycles at 60 minutes each.

353

354 *Batch fermentation*

355 Fermentation experiments were performed with media adapted from Warren and colleagues
356 (2018) (41). In brief, fermentation vessels (100 mL) each contained an aliquot (3.0 mL) of
357 filtered faecal slurry, 82mL of sterilized growth medium, and substrate. The growth medium
358 contained 76mL of basal solution, 5 mL vitamin phosphate and sodium carbonate solution, and 1
359 mL reducing agent. The composition of the solutions used in the preparation of the growth

360 medium is described in detail in Ravi et al. (42). A single stock (7 litres) of growth medium was
361 used for all vessels prepared for this experiment. Vessel fermentations were pH controlled and
362 maintained at pH 6.8 to 7.2 using 1N NaOH and 1N HCl regulated by a Fermac 260 (Electrolab
363 Biotech, Tewkesbury, UK). A circulating water jacket-maintained vessel temperature at 37°C. A
364 magnetic stirrer was used to keep mixture homogenous and the vessels were continuously
365 sparged with nitrogen (99% purity) maintaining anaerobic conditions. Media with no inoculum
366 was used as a blank whereas, chicory inulin, and SMA, Similac and chickpea supplemented feed
367 with inocula were the experimental conditions evaluated. Samples were collected at 0 (~5 min
368 post inoculation), 6, 12, 24, 36 and 48 hours after inoculation. The biomass from 1.8 mL aliquot
369 of sample was concentrated by refrigerated centrifugation (4°C; 10,000 g for 10 min),
370 supernatant removed, and then stored at -80°C until DNA extraction. The supernatants were
371 removed to a fresh tube and stored separately at -20°C for ¹H NMR metabolomic analysis.

372

373 *DNA extraction*

374 Concentrated biomass pellets were resuspended in 500 µL (samples collected at 0 and 6 hr) and
375 650 µL (samples collected at 12 and 24 hr) with sterile, nuclease-free water (Sigma-Aldrich,
376 Gillingham, UK) which was chilled (4°C). The resuspensions were frozen overnight at -80°C,
377 thawed on ice and an aliquot (400uL) was used for bacterial genomic DNA extraction.
378 FastDNA® Spin Kit for Soil (MP Biomedical, Solon, US) was used according to manufacturer's
379 instructions which included two bead-beating steps of 60s at a speed of 6.0m/s (FastPrep24, MP
380 Biomedical, Solon, US). DNA concentration was determined using the Quant-iT™ dsDNA
381 Assay Kit, high sensitivity kit (Invitrogen, Loughborough, UK) and quantified on a FLUOstar
382 Optima plate reader (BMG Labtech, Aylesbury, UK).

383

384 *Library preparation and 16S rRNA sequencing*

385 Extracted genomic DNA was normalised to 5ng/μl with elution buffer (10mM Tris-HCl). A PCR
386 master mix was made up using 4 ul kapa2G buffer, 0.4 μl dNTP's, 0.08 μl Polymerase, 0.4 μl 10
387 μM forward tailed specific primer, 0.4 μl 10 μM reverse tailed specific primer and 12.72 μl PCR
388 grade water (contained in the Kap2G Robust PCR kit Sigma Catalogue No. KK5005) per sample
389 and 18 μl added to each well to be used in a 96-well plate followed by 2 μl of DNA and mixed.
390 Specific PCR conditions were 95°C for 5 minutes, 30 cycles of 95°C for 30s, 55°C for 30s
391 and 72°C for 30 seconds followed by a final 72°C for 5 minutes. Following PCR, a 0.7X SPRI
392 clean-up was performed using KAPA Pure Beads (Roche Catalogue No. 07983298001) eluting
393 the DNA in 20ul of water. A second PCR master mix was made up using 4 ul kapa2G buffer, 0.4
394 μl dNTP's, 0.08 μl Polymerase, and 6.52 μl PCR grade water per sample and 11 μl added to
395 each well to be used in a 96-well plate. 2 μl of each P7 and P5 of Nextera XT Index Kit v2 index
396 primers (Illumina Catalogue No. FC-131-2001 to 2004) were added to each well. Finally, the 5
397 μl of the clean specific PCR was added and mixed. The second PCR was run using 95°C for 5
398 minutes, 10 cycles of 95°C for 30s, 55°C for 30s and 72°C for 30 seconds followed by a final
399 72°C for 5 minutes. Final libraries were quantified by Qubit and equimolar pooled together. A
400 single 0.7X SPRI clean-up was performed on the pool. A final Qubit and sizing on High
401 Sensitivity D1000 Screen Tape (Agilent Catalogue No. 5067-5579) using the Agilent
402 Tapestation 4200 was done to calculate the final library pool molarity. The pool was run at a
403 final concentration of 10pM on an Illumina MiSeq instrument using MiSeq® Reagent Kit v3
404 (600 cycle) (Illumina Catalogue FC-102-3003) following the Illumina recommended
405 denaturation and loading recommendations which included a 20% PhiX spike in (PhiX Control

406 v3 Illumina Catalogue FC-110-3001). The raw data was analysed locally on the MiSeq using
407 MiSeq reporter.

408

409 *Bioinformatics analysis*

410 Raw demultiplexed forward and reverse reads were processed using the methods implemented in
411 QIIME2 version 2020.11 with default parameters unless otherwise stated (43). DADA2 was used
412 for paired-end joining, quality filtering, denoising and calling Amplicon Sequence Variants
413 (ASV's) using the QIIME dada2 denoise-paired method (44). The first 13 bp and the final 50 bp
414 were trimmed before merging due to lower quality scores. The ASV's were aligned and used to
415 calculate a phylogenetic tree using the QIIME function phylogeny align to tree (45, 46).

416 Taxonomic assignment of the ASV's was performed using the QIIME naïve Bayesian classify
417 Scikit-learn using the Silva 99% OTU database (47-49).

418 The raw sequencing data had a median of 43,909 reads per sample. Following filtering,
419 denoising and merging this was reduced to 37,185 reads per sample. After the removal of
420 chimeric sequences this was further reduced to 32,378 reads per sample. A total of 855 ASV's
421 were identified across all the samples. Samples with fewer than 1000 reads were excluded from
422 subsequent analysis and the data were rarefied to 17,599 reads. Downstream analysis and
423 visualization was carried out using the PhyloSeq (50) and PhyloSmith (51) packages in the R
424 software package (version 4.0.3), including alpha and beta diversity metrics.

425

426 *¹H NMR metabolomics*

427 The samples containing the supernatant from the fermentation media were centrifuged (3,000 x
428 g, 3 min) and 400-μL aliquots were pipetted directly into NMR tubes (Norell® Standard

429 Series™, 5 mm), followed by the addition of 200 µL of phosphate buffer (NaH₂PO₄ (21.7 mM),
430 K₂HPO₄ (82.7 mM), NaN₃ (8.6 mM), 3-(trimethylsilyl)-propionate-d₄ (TMSP, 1.0 mM),
431 prepared in D₂O). Spectra were collected on a Bruker NEO 600 MHz spectrometer equipped
432 with a cryoprobe, at a ¹H frequency of 600 MHz. All experiments were acquired at room
433 temperature, using Bruker's 'noesygppr1d' pulse sequence, with a minimum of 64 scans. A 90°
434 pulse length of 11.09 µs was set for all samples with a mixing time of 0.01 s, acquisition time of
435 2.62 s, relaxation delay of 4 s, featuring selective pre-saturation (1.0 ms) on the residual H₂O
436 peak frequency during relaxation delay and mixing time for effective solvent suppression.
437 Spectra were referenced using the TMSP peak (0.0 ppm). The metabolites were quantified using
438 the NMR Suite v7.6 Profiler (Chenomx®, Edmonton, Canada).

439

440 *Statistical analysis*

441 Statistical analysis of the metabolite data was carried out in R (version 4.2.0) and SPSS.
442 ANOVA test with post-hoc Tukey's HSD was used to test for significant differences in
443 metabolite concentrations between substrates and over time.

444

445 **Data availability**

446 The raw sequencing data used in this manuscript can be accessed through the NCBI SRA project
447 number PRJNA1080518.

448

449 **Acknowledgements**

450 We gratefully acknowledge the technical assistance of David Baker with library preparation and
451 16S sequencing. We thank all the participants and trial staff participating in the MIMBLE trial.

452 The authors gratefully acknowledge the support of the Biotechnology and Biological Sciences

453 Research Council (BBSRC); this research was funded by the BBSRC Institute Strategic

454 Programme Food Microbiome and Health BB/X011054/1 and its constituent projects

455 BBS/E/F/000PR13631 and BB/X018857/1.

456

457

458 **References**

- 459 1. Robertson RC. 2020. The gut microbiome in child malnutrition, p 133-144, Global Landscape of
460 Nutrition Challenges in Infants and Children, vol 93. Karger Publishers.
- 461 2. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M, Grantham-
462 McGregor S, Katz J, Martorell R. 2013. Maternal and child undernutrition and overweight in low-
463 income and middle-income countries. *The lancet* 382:427-451.
- 464 3. Maitland K, Berkley JA, Shebbe M, Peshu N, English M, Newton CRC. 2006. Children with severe
465 malnutrition: can those at highest risk of death be identified with the WHO protocol? *PLoS Med*
466 3:e500.
- 467 4. Guideline W. 2013. Updates on the management of severe acute malnutrition in infants and
468 children. Geneva: World Health Organization 2013:6-54.
- 469 5. Kerac M, Bunn J, Chagaluka G, Bahwere P, Tomkins A, Collins S, Seal A. 2014. Follow-up of post-
470 discharge growth and mortality after treatment for severe acute malnutrition (FuSAM study): a
471 prospective cohort study. *PloS one* 9:e96030.
- 472 6. Ngari MM, Mwalekwa L, Timbwa M, Hamid F, Ali R, Iversen PO, Fegan GW, Berkley JA. 2018.
473 Changes in susceptibility to life-threatening infections after treatment for complicated severe
474 malnutrition in Kenya. *The American journal of clinical nutrition* 107:626-634.
- 475 7. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F,
476 Yamada T. 2010. A human gut microbial gene catalogue established by metagenomic
477 sequencing. *nature* 464:59-65.
- 478 8. Walker AW, Duncan SH, Louis P, Flint HJ. 2014. Phylogeny, culturing, and metagenomics of the
479 human gut microbiota. *Trends in microbiology* 22:267-274.
- 480 9. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. 2018. Gut microbiota
481 functions: metabolism of nutrients and other food components. *European journal of nutrition*
482 57:1-24.
- 483 10. Chambers ES, Preston T, Frost G, Morrison DJ. 2018. Role of gut microbiota-generated short-
484 chain fatty acids in metabolic and cardiovascular health. *Current nutrition reports* 7:198-206.
- 485 11. Spencer SP, Fragiadakis GK, Sonnenburg JL. 2019. Pursuing human-relevant gut microbiota-
486 immune interactions. *Immunity* 51:225-239.
- 487 12. Bhutta ZA, Berkley JA, Bandsma RH, Kerac M, Trehan I, Briand A. 2017. Severe childhood
488 malnutrition. *Nature reviews Disease primers* 3:1-18.
- 489 13. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon
490 P, Mychaleckyj JC. 2013. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.
491 *Science* 339:548-554.
- 492 14. Gordon JI, Dewey KG, Mills DA, Medzhitov RM. 2012. The human gut microbiota and
493 undernutrition. *Science translational medicine* 4:137ps12-137ps12.
- 494 15. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J,
495 Meier MF, Muegge BD. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi
496 children. *Nature* 510:417-421.
- 497 16. Raman AS, Gehrig JL, Venkatesh S, Chang H-W, Hibberd MC, Subramanian S, Kang G, Bessong
498 PO, Lima AA, Kosek MN. 2019. A sparse covarying unit that describes healthy and impaired
499 human gut microbiota development. *Science* 365:eaau4735.
- 500 17. Kristensen KHS, Wiese M, Rytter MJH, Özçam M, Hansen LH, Namusoke H, Friis H, Nielsen DS.
501 2016. Gut microbiota in children hospitalized with oedematous and non-oedematous severe
502 acute malnutrition in Uganda. *PLoS neglected tropical diseases* 10:e0004369.
- 503 18. Castro-Mejía JL, O'Ferrall S, Krych Ł, O'Mahony E, Namusoke H, Lanyero B, Kot W, Nabukeera-
504 Barungi N, Michaelsen KF, Mølgaard C. 2020. Restitution of gut microbiota in Ugandan children

505 administered with probiotics (*Lactobacillus rhamnosus* GG and *Bifidobacterium animalis* subsp.
506 *lactis* BB-12) during treatment for severe acute malnutrition. *Gut Microbes*:1-13.

507 19. Gehrig JL, Venkatesh S, Chang H-W, Hibberd MC, Kung VL, Cheng J, Chen RY, Subramanian S,
508 Cowardin CA, Meier MF. 2019. Effects of microbiota-directed foods in gnotobiotic animals and
509 undernourished children. *Science* 365:eaau4732.

510 20. Kerac M, Bunn J, Seal A, Thindwa M, Tomkins A, Sadler K, Bahwere P, Collins S. 2009. Probiotics
511 and prebiotics for severe acute malnutrition (PRONUT study): a double-blind efficacy
512 randomised controlled trial in Malawi. *The Lancet* 374:136-144.

513 21. Mostafa I, Nahar NN, Islam MM, Huq S, Mustafa M, Barratt M, Gordon JI, Ahmed T. 2020. Proof-
514 of-concept study of the efficacy of a microbiota-directed complementary food formulation
515 (MDCF) for treating moderate acute malnutrition. *BMC Public Health* 20:1-7.

516 22. Johnson CR, Fischer PR. 2020. Feeding the Microbiota: Complementary Foods Enhance Recovery
517 in Malnourished Children by Modulating the Gut Microbiota. *Infectious Disease Alert* 39.

518 23. Sheridan PO, Bindels LB, Saulnier DM, Reid G, Nova E, Holmgren K, O'Toole PW, Bunn J,
519 Delzenne N, Scott KP. 2014. Can prebiotics and probiotics improve therapeutic outcomes for
520 undernourished individuals? *Taylor & Francis*.

521 24. Logtenberg MJ, Akkerman R, An R, Hermes GD, de Haan BJ, Faas MM, Zoetendal EG, Schols HA,
522 de Vos P. 2020. Fermentation of Chicory Fructo-oligosaccharides and Native Inulin by Infant
523 Faecal Microbiota Attenuates Pro-inflammatory Responses in Immature Dendritic Cells in an
524 Infant-age Dependent and Fructan-Specific Way. *Molecular Nutrition & Food Research*:2000068.

525 25. Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J,
526 Talcott M, Bain JR. 2016. Sialylated milk oligosaccharides promote microbiota-dependent
527 growth in models of infant undernutrition. *Cell* 164:859-871.

528 26. Walsh K, Calder N, Olupot-Olupot P, Ssenyondo T, Okiror W, Okalebo CB, Muhindo R, Mpoya A,
529 Holmes E, Marchesi J. 2018. Modifying Intestinal Integrity and Micro Biome in Severe
530 Malnutrition with Legume-Based Feeds (MIMBLE 2.0): protocol for a phase II refined feed and
531 intervention trial. *Wellcome open research* 3.

532 27. Calder N, Walsh K, Olupot-Olupot P, Ssenyondo T, Muhindo R, Mpoya A, Brignardello J, Wang X,
533 McKay E, Morrison D. 2021. Modifying gut integrity and microbiome in children with severe
534 acute malnutrition using legume-based feeds (MIMBLE): A pilot trial. *Cell Reports Medicine*
535 2:100280.

536 28. Walsh K, McGurk J, Maitland K, Frost G. 2021. Development of a legume-enriched feed for
537 treatment of severe acute malnutrition. *Wellcome Open Research* 6.

538 29. Walsh K, Kiosa A, Olupot-Olupot P, Okiror W, Ssenyond T, Okalebo CB, Muhindo R, Mpoya A,
539 George EC, Frost G. 2023. Modifying gut integrity and microbiome in children with severe acute
540 malnutrition using legume-based feeds (MIMBLE II): A Phase II trial. *medRxiv*:2023.05.
541 29.23290673.

542 30. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. 2011.
543 Succession of microbial consortia in the developing infant gut microbiome. *Proceedings of the
544 National Academy of Sciences* 108:4578-4585.

545 31. Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer.
546 *Nature reviews microbiology* 12:661-672.

547 32. Caleffi ER, Krausová G, Hyršlová I, Paredes LLR, dos Santos MM, Sasaki GL, Gonçalves RAC, de
548 Oliveira AJB. 2015. Isolation and prebiotic activity of inulin-type fructan extracted from *Pfaffia*
549 *glomerata* (Spreng) Pedersen roots. *International Journal of Biological Macromolecules* 80:392-
550 399.

551 33. Million M, Raoult D. 2020. Gut dysbiosis in severe acute malnutrition is not an immaturity: The
552 irreversible quantitative-qualitative paradigm shift. *Human Microbiome Journal* 15:100067.

553 34. Attia S, Versloot CJ, Voskuijl W, van Vliet SJ, Di Giovanni V, Zhang L, Richardson S, Bourdon C,
554 Netea MG, Berkley JA. 2016. Mortality in children with complicated severe acute malnutrition is
555 related to intestinal and systemic inflammation: an observational cohort study. *The American
556 journal of clinical nutrition* 104:1441-1449.

557 35. Hibberd MC, Webber DM, Rodionov DA, Henrissat S, Chen RY, Zhou C, Lynn HM, Wang Y, Chang
558 H-W, Lee EM. 2023. Bioactive glycans in a microbiome-directed food for children with
559 malnutrition. *Nature*:1-9.

560 36. Mostafa I, Fahim SM, Das S, Gazi MA, Hasan MM, Saqeeb KN, Mahfuz M, Lynn HB, Barratt MJ,
561 Gordon JI. 2022. Developing shelf-stable Microbiota Directed Complementary Food (MDCF)
562 prototypes for malnourished children: study protocol for a randomized, single-blinded, clinical
563 study. *BMC pediatrics* 22:1-9.

564 37. Monira S, Nakamura S, Gotoh K, Izutsu K, Watanabe H, Alam NH, Endtz HP, Cravioto A, Ali S,
565 Nakaya T. 2011. Gut microbiota of healthy and malnourished children in Bangladesh. *Frontiers in
566 microbiology* 2:228.

567 38. Kong C, Akkerman R, Klostermann CE, Beukema M, Oerlemans MM, Schols HA, De Vos P. 2021.
568 Distinct fermentation of human milk oligosaccharides 3-FL and LNT2 and GOS/inulin by infant
569 gut microbiota and impact on adhesion of *Lactobacillus plantarum* WCFS1 to gut epithelial cells.
570 *Food & function* 12:12513-12525.

571 39. Falony G, Calmeyen T, Leroy F, De Vuyst L. 2009. Coculture fermentations of *Bifidobacterium*
572 species and *Bacteroides thetaiotaomicron* reveal a mechanistic insight into the prebiotic effect
573 of inulin-type fructans. *Applied and Environmental Microbiology* 75:2312-2319.

574 40. Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T, Gordon JI. 2016. Childhood undernutrition,
575 the gut microbiota, and microbiota-directed therapeutics. *Science* 352:1533-1533.

576 41. Warren FJ, Fukuma NM, Mikkelsen D, Flanagan BM, Williams BA, Lisle AT, Cuív PÓ, Morrison M,
577 Gidley MJ. 2018. Food starch structure impacts gut microbiome composition. *Msphere* 3.

578 42. Ravi A, Troncoso-Rey P, Ahn-Jarvis J, Corbin KR, Harris S, Harris H, Aydin A, Kay GL, Le-Viet T,
579 Gilroy R. 2021. Linking carbohydrate structure with function in the human gut microbiome using
580 hybrid metagenome assemblies. *bioRxiv*.

581 43. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ,
582 Arumugam M, Asnicar F. 2019. Reproducible, interactive, scalable and extensible microbiome
583 data science using QIIME 2. *Nature biotechnology* 37:852-857.

584 44. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-
585 resolution sample inference from Illumina amplicon data. *Nature methods* 13:581-583.

586 45. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
587 improvements in performance and usability. *Molecular biology and evolution* 30:772-780.

588 46. Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with
589 profiles instead of a distance matrix. *Molecular biology and evolution* 26:1641-1650.

590 47. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
591 Weiss R, Dubourg V. 2011. Scikit-learn: Machine learning in Python. *the Journal of machine
592 Learning research* 12:2825-2830.

593 48. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG.
594 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's
595 q2-feature-classifier plugin. *Microbiome* 6:1-17.

596 49. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The
597 SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
598 *Nucleic acids research* 41:D590-D596.

599 50. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and
600 graphics of microbiome census data. *PloS one* 8:e61217.

601 51. Smith S. 2019. Phylosmith: an R-package for reproducible and efficient microbiome analysis with
602 phyloseq-objects. *Journal of Open Source Software* 4.
603