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‭ABSTRACT‬

‭Time-‬ ‭and‬ ‭cost-saving‬ ‭surveillance‬ ‭of‬ ‭viral‬ ‭pathogens‬ ‭is‬ ‭achieved‬ ‭by‬ ‭tiled‬

‭sequencing‬ ‭in‬‭which‬‭a‬‭viral‬‭genome‬‭is‬‭amplified‬‭in‬‭overlapping‬‭PCR‬‭amplicons‬‭and‬

‭qPCR.‬ ‭However,‬ ‭designing‬ ‭pan-specific‬ ‭primers‬ ‭for‬ ‭viral‬ ‭pathogens‬ ‭that‬ ‭have‬ ‭high‬

‭genomic‬ ‭variability‬ ‭represents‬‭a‬‭major‬‭challenge.‬‭Here,‬‭we‬‭present‬‭a‬‭bioinformatics‬

‭command-line‬ ‭tool,‬ ‭called‬ ‭varVAMP‬ ‭(‬‭var‬‭iable‬ ‭v‬‭irus‬ ‭amp‬‭licons).‬ ‭It‬ ‭relies‬ ‭on‬ ‭multiple‬

‭sequence‬ ‭alignments‬ ‭of‬ ‭highly‬ ‭variable‬ ‭virus‬ ‭sequences‬ ‭and‬ ‭enables‬ ‭automatic‬

‭pan-specific‬ ‭primer‬ ‭design‬ ‭for‬ ‭qPCR‬ ‭or‬ ‭tiled‬ ‭amplicon‬ ‭whole‬ ‭genome‬ ‭sequencing.‬
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‭The‬‭varVAMP‬‭software‬‭guarantees‬‭pan-specificity‬‭by‬‭two‬‭means:‬‭it‬‭designs‬‭primers‬

‭in‬‭regions‬‭with‬‭minimal‬‭variability‬‭and‬‭introduces‬‭degenerate‬‭nucleotides‬‭into‬‭primer‬

‭sequences‬ ‭to‬ ‭compensate‬ ‭for‬ ‭common‬ ‭sequence‬ ‭variations.‬ ‭We‬ ‭demonstrate‬

‭varVAMP’s‬ ‭utility‬ ‭by‬ ‭designing‬ ‭and‬ ‭evaluating‬ ‭novel‬ ‭pan-specific‬ ‭primer‬ ‭schemes‬

‭suitable‬‭for‬‭sequencing‬‭the‬‭genomes‬‭of‬‭SARS-CoV-2,‬‭Hepatitis‬‭E‬‭virus,‬‭rat‬‭Hepatitis‬

‭E‬ ‭virus,‬ ‭Hepatitis‬ ‭A‬ ‭virus,‬ ‭Borna-disease-virus-1,‬ ‭and‬ ‭Poliovirus.‬ ‭Moreover,‬ ‭we‬

‭established‬ ‭highly‬ ‭sensitive‬ ‭and‬ ‭specific‬ ‭Poliovirus‬ ‭qPCR‬ ‭assays‬ ‭that‬ ‭could‬

‭potentially‬ ‭simplify‬ ‭current‬ ‭Poliovirus‬ ‭surveillance.‬ ‭Importantly,‬ ‭wet-lab‬ ‭and‬

‭bioinformatic‬ ‭techniques‬ ‭established‬ ‭for‬ ‭SARS-CoV-2‬ ‭tiled‬ ‭amplicon‬ ‭sequencing‬

‭were‬ ‭readily‬ ‭transferable‬ ‭to‬ ‭these‬ ‭new‬ ‭primer‬ ‭schemes‬ ‭and‬ ‭will‬ ‭allow‬ ‭sequencing‬

‭laboratories to extend their established methodology to other human pathogens.‬

‭INTRODUCTION‬

‭In‬ ‭recent‬ ‭years,‬ ‭next-generation‬ ‭full-genome‬ ‭sequencing‬ ‭of‬ ‭viruses‬ ‭has‬ ‭become‬ ‭an‬

‭irreplaceable‬‭method‬‭to‬‭track‬‭the‬‭evolution‬‭of‬‭viral‬‭pathogens,‬‭study‬‭outbreaks‬‭in‬‭the‬‭human‬

‭population‬ ‭and‬ ‭animal‬ ‭kingdom,‬ ‭and‬ ‭identify‬ ‭novel‬ ‭zoonotic‬‭threats‬‭1–3‬‭.‬‭While‬‭metagenomic‬

‭analyses‬ ‭enable‬ ‭the‬ ‭broad‬ ‭analysis‬ ‭of‬ ‭viromes‬‭and‬‭potentially‬‭identify‬‭novel‬‭pathogens‬‭4‬‭,‬‭a‬

‭high‬ ‭genome‬ ‭coverage‬‭is‬‭required‬‭to‬‭sufficiently‬‭analyze‬‭the‬‭genomic‬‭makeup‬‭of‬‭a‬‭specific‬

‭viral‬‭population‬‭in‬‭order‬‭to‬‭e.g.‬‭reconstruct‬‭viral‬‭intra-host‬‭evolution‬‭5,6‬‭.‬‭This‬‭can‬‭be‬‭achieved‬

‭by‬ ‭prior‬ ‭virus‬ ‭cultivation‬ ‭or‬ ‭increased‬ ‭sequencing‬ ‭depth,‬ ‭which‬ ‭have‬ ‭drawbacks.‬ ‭Virus‬

‭cultivation‬ ‭is‬ ‭not‬ ‭always‬ ‭successful‬ ‭and‬ ‭can‬ ‭lead‬ ‭to‬ ‭cell-culture‬ ‭adaptations‬‭7‬‭.‬ ‭Moreover,‬

‭increased‬ ‭sequencing‬ ‭depth‬ ‭is‬ ‭costly‬ ‭and‬ ‭might‬ ‭still‬ ‭result‬ ‭in‬ ‭poor‬ ‭genome‬ ‭coverage‬‭8‬‭.‬

‭Targeted‬ ‭sequencing‬ ‭approaches‬ ‭via‬ ‭PCR-tiling‬ ‭or‬ ‭DNA‬ ‭hybridization‬ ‭allow‬ ‭highly‬ ‭specific‬

‭sequencing‬ ‭on‬ ‭smaller‬ ‭machines‬ ‭without‬ ‭prior‬ ‭pathogen‬ ‭cultivation‬‭9,10‬‭.‬ ‭Particularly,‬

‭PCR-tiling,‬ ‭in‬ ‭which‬ ‭the‬ ‭viral‬ ‭genome‬ ‭is‬ ‭amplified‬ ‭in‬ ‭overlapping‬ ‭fragments,‬ ‭has‬ ‭gained‬

‭popularity‬ ‭due‬ ‭to‬ ‭its‬ ‭cost-effectiveness,‬ ‭low‬ ‭input‬ ‭requirement,‬ ‭and‬ ‭simple‬ ‭library‬

‭preparation.‬ ‭The‬ ‭most‬ ‭prominent‬ ‭viral‬‭amplicon‬‭schemes‬‭were‬‭developed‬‭for‬‭SARS-CoV-2‬

‭in‬ ‭early‬ ‭2020‬ ‭and‬ ‭have‬ ‭allowed‬ ‭the‬ ‭sequencing‬ ‭of‬ ‭millions‬ ‭of‬ ‭viral‬ ‭genomes‬ ‭during‬ ‭the‬

‭pandemic‬‭11‬‭,‬‭12‬‭.‬ ‭However,‬ ‭such‬ ‭amplicon‬ ‭schemes‬ ‭often‬ ‭need‬ ‭to‬ ‭be‬ ‭updated‬ ‭to‬ ‭reflect‬

‭evolutionary‬ ‭changes‬ ‭or‬ ‭they‬ ‭have‬ ‭not‬ ‭been‬ ‭developed‬ ‭at‬ ‭all‬ ‭for‬ ‭many‬ ‭viral‬ ‭pathogens.‬

‭Therefore,‬ ‭quantitative‬ ‭real-time‬ ‭PCR‬ ‭(qPCR)‬ ‭remains‬ ‭the‬ ‭diagnostic‬ ‭gold‬ ‭standard‬ ‭for‬

‭analyzing patient samples for the presence of a viral pathogen‬‭13‬‭.‬

‭In‬‭an‬‭optimal‬‭setting,‬‭tiled-sequencing‬‭and‬‭qPCR‬‭primer‬‭designs‬‭for‬‭viral‬‭pathogens‬‭should‬

‭be‬ ‭pan-specific.‬ ‭This‬ ‭can‬ ‭be‬ ‭challenging‬ ‭for‬ ‭viruses‬ ‭with‬ ‭a‬ ‭high‬ ‭genomic‬ ‭variability‬ ‭and‬

‭common‬ ‭insertions‬ ‭and‬ ‭deletions‬ ‭(INDELs)‬ ‭sites.‬ ‭Thus,‬ ‭primers‬ ‭have‬ ‭to‬ ‭be‬ ‭designed‬ ‭in‬

‭conserved‬‭regions‬‭with‬‭minimal‬‭genomic‬‭variation‬‭and‬‭should‬‭not‬‭span‬‭INDELs.‬‭As‬‭potential‬
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‭primer‬ ‭target‬ ‭regions‬ ‭might‬ ‭still‬‭display‬‭sequence‬‭variation,‬‭degenerate‬‭nucleotides‬‭can‬‭be‬

‭introduced‬ ‭into‬ ‭primer‬ ‭sequences‬ ‭to‬ ‭further‬ ‭broaden‬ ‭their‬ ‭binding‬ ‭capacity.‬ ‭Optimal‬

‭pan-specific‬ ‭primers‬ ‭should‬ ‭target‬ ‭highly‬ ‭conserved‬ ‭regions‬ ‭while‬ ‭keeping‬ ‭degeneracy‬

‭minimal.‬ ‭This‬‭problem,‬‭coined‬‭maximum‬‭coverage‬‭degenerate‬‭primer‬‭design‬‭(MC-DGD),‬‭is‬

‭a‬ ‭trade-off‬ ‭between‬ ‭specificity‬ ‭and‬ ‭sensitivity‬‭14‬‭.‬ ‭Primer-specific‬ ‭parameters‬ ‭complicate‬

‭MC-DGD‬‭as‬‭not‬‭all‬‭potential‬‭regions‬‭are‬‭also‬‭potential‬‭primer‬‭binding‬‭sites‬‭15‬‭.‬‭Notably,‬‭qPCR‬

‭designs‬ ‭have‬ ‭even‬‭more‬‭constraints‬‭due‬‭to‬‭additional‬‭hydrolysis‬‭probe-specific‬‭parameters‬

‭and a low Gibbs free energy change (ΔG) of the target region‬‭16‬‭.‬

‭Various‬ ‭commercial‬ ‭and‬ ‭open-source‬ ‭primer‬ ‭design‬ ‭applications‬ ‭are‬ ‭available‬ ‭and‬ ‭often‬

‭utilize‬‭primer3‬‭at‬‭their‬‭core‬‭to‬‭calculate‬‭various‬‭primer‬‭parameters‬‭17‬‭.‬‭However,‬‭many‬‭of‬‭these‬

‭tools‬ ‭were‬ ‭developed‬ ‭for‬ ‭a‬ ‭particular‬ ‭primer‬ ‭design‬ ‭problem‬ ‭and‬ ‭each‬ ‭of‬ ‭them‬ ‭only‬

‭addresses‬‭some‬‭of‬‭the‬‭previously‬‭mentioned‬‭problems‬‭18‬‭.‬‭Primalscheme‬‭is‬‭the‬‭gold‬‭standard‬

‭for‬ ‭designing‬ ‭tiled‬ ‭primer‬ ‭schemes‬ ‭for‬ ‭viral‬ ‭full‬ ‭genome‬ ‭sequencing‬‭10‬‭.‬ ‭However,‬

‭primalscheme‬ ‭only‬ ‭handles‬ ‭genomic‬ ‭variations‬ ‭up‬ ‭to‬ ‭a‬ ‭sequence‬ ‭divergence‬ ‭of‬ ‭5%,‬

‭precluding‬‭its‬‭use‬‭for‬‭viral‬‭pathogens‬‭with‬‭significantly‬‭higher‬‭sequence‬‭divergence,‬‭such‬‭as‬

‭Hepatitis‬ ‭E‬ ‭virus‬ ‭(HEV)‬ ‭or‬ ‭Hepatitis‬ ‭A‬ ‭virus‬ ‭(HAV)‬‭19‬‭.‬ ‭Moreover,‬ ‭primalscheme‬ ‭does‬ ‭not‬

‭introduce‬ ‭degenerate‬ ‭nucleotides‬ ‭into‬ ‭primer‬ ‭sequences,‬ ‭limiting‬ ‭or‬ ‭even‬ ‭abolishing‬ ‭the‬

‭binding‬‭affinity‬‭if‬‭mutations‬‭are‬‭located‬‭in‬‭the‬‭primer‬‭binding‬‭site‬‭20‬‭.‬‭Degenerate‬‭primer‬‭design‬

‭has‬ ‭been‬ ‭elegantly‬ ‭addressed‬ ‭by‬ ‭software‬ ‭packages‬ ‭like‬ ‭easyPAC‬ ‭or‬ ‭DegePrime‬‭21,22‬‭,‬ ‭but‬

‭they‬ ‭are‬ ‭not‬ ‭suited‬ ‭for‬ ‭the‬ ‭automatic‬ ‭design‬ ‭of‬ ‭tiled‬ ‭or‬ ‭qPCR‬ ‭schemes.‬ ‭For‬ ‭qPCR‬ ‭primer‬

‭design,‬ ‭there‬ ‭are‬ ‭only‬ ‭a‬ ‭few‬ ‭open-source‬ ‭projects‬ ‭like‬ ‭QuantPrime‬‭23‬‭,‬ ‭but‬‭most‬‭software‬‭is‬

‭not‬ ‭open‬ ‭access‬ ‭and‬ ‭available‬ ‭through‬ ‭commercial‬ ‭companies.‬ ‭However,‬ ‭none‬ ‭of‬ ‭these‬

‭applications‬ ‭address‬ ‭pan-specific‬ ‭primer‬ ‭design,‬ ‭and‬ ‭not‬ ‭all‬ ‭calculate‬ ‭ΔG,‬ ‭resulting‬ ‭in‬

‭time-intensive manual primer and amplicon evaluation.‬

‭Here,‬ ‭we‬ ‭present‬ ‭the‬ ‭command-line‬ ‭tool‬ ‭varVAMP‬ ‭(‬‭var‬‭iable‬ ‭v‬‭irus‬ ‭amp‬‭licons)‬ ‭that‬ ‭enables‬

‭fully‬ ‭automated‬ ‭pan-specific‬ ‭degenerate‬ ‭primer‬ ‭design‬ ‭for‬ ‭single‬‭amplicons,‬‭tiled‬‭amplicon‬

‭schemes‬ ‭and‬ ‭qPCR‬ ‭and‬ ‭was‬ ‭tailored‬ ‭to‬ ‭viral‬ ‭genomics.‬ ‭We‬ ‭show‬ ‭varVAMP’s‬ ‭utility‬ ‭by‬

‭designing‬ ‭and‬ ‭testing‬ ‭pan-specific‬ ‭tiled‬ ‭and‬ ‭qPCR‬ ‭primer‬ ‭sets‬ ‭for‬ ‭SARS-CoV-2,‬ ‭HEV‬

‭(‬‭Paslahepevirus‬ ‭balayani‬‭),‬ ‭ratHEV‬ ‭(‬‭Rocahepevirus‬ ‭ratti‬‭),‬ ‭HAV‬ ‭(‬‭Hepatovirus‬ ‭A‬‭),‬

‭Borna-disease-virus‬‭1‬‭(BoDV-1,‬‭Orthobornavirus‬‭bornaense‬‭),‬‭and‬‭Poliovirus‬‭(‬‭Enterovirus‬‭C,‬

‭PV) 1-3, that represent different levels of sequence variability.‬

‭MATERIAL AND METHODS‬

‭Software‬

‭varVAMP‬ ‭is‬ ‭an‬ ‭easy-to-use‬ ‭cross-platform‬ ‭command‬ ‭line‬ ‭tool‬ ‭that‬ ‭is‬ ‭available‬ ‭via‬ ‭PyPI,‬

‭DOCKER,‬ ‭BIOCONDA,‬ ‭and‬ ‭the‬ ‭Galaxy‬ ‭platform.‬ ‭It‬ ‭enables‬ ‭primer‬ ‭design‬ ‭for‬ ‭a‬ ‭variety‬ ‭of‬
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‭molecular‬‭techniques,‬‭including‬‭single‬‭amplicons,‬‭tiled‬‭full‬‭genome‬‭sequencing,‬‭and‬‭qPCR.‬

‭In‬‭the‬‭following,‬‭we‬‭describe‬‭the‬‭different‬‭algorithms‬‭and‬‭steps‬‭that‬‭have‬‭been‬‭implemented‬

‭for‬ ‭varVAMP.‬ ‭The‬ ‭primer‬ ‭design‬ ‭pipeline‬ ‭only‬ ‭requires‬ ‭an‬ ‭already‬ ‭computed‬ ‭multiple‬

‭sequence‬ ‭alignment‬ ‭as‬ ‭input.‬‭Importantly,‬‭all‬‭parameters‬‭are‬‭highly‬‭customizable‬‭via‬‭direct‬

‭arguments‬ ‭or‬ ‭a‬ ‭config‬ ‭file.‬ ‭varVAMP‬ ‭performs‬ ‭the‬ ‭following‬ ‭major‬ ‭steps‬ ‭(Fig.‬ ‭1a):‬ ‭(1)‬

‭Automatic‬ ‭parameter‬ ‭selection‬ ‭based‬ ‭on‬ ‭the‬ ‭input‬ ‭alignment,‬ ‭(2)‬ ‭alignment‬ ‭masking,‬ ‭(3)‬

‭consensus‬‭sequence‬‭generation,‬‭(4)‬‭potential‬‭primer‬‭region‬‭search,‬‭(5)‬‭evaluation‬‭for‬‭primer‬

‭or‬ ‭qPCR‬ ‭probe‬ ‭suitability‬ ‭of‬ ‭digested‬ ‭kmers,‬ ‭and‬ ‭(6)‬ ‭amplicon‬ ‭scheme‬ ‭creation.‬ ‭The‬ ‭last‬

‭step‬‭differs‬‭depending‬‭on‬‭the‬‭three‬‭different‬‭modes‬‭available‬‭for‬‭varVAMP:‬‭Single,‬‭tiled,‬‭and‬

‭qPCR.‬ ‭To‬ ‭evaluate‬ ‭potential‬ ‭off-targets,‬ ‭varVAMP‬ ‭can‬ ‭use‬ ‭a‬ ‭BLAST‬ ‭database‬ ‭to‬ ‭predict‬

‭off-target‬‭effects‬‭and‬‭preferentially‬‭selects‬‭amplicons‬‭without‬‭off-targets‬‭in‬‭the‬‭final‬‭amplicon‬

‭scheme.‬

‭In‬ ‭a‬ ‭first‬ ‭step,‬ ‭varVAMP‬ ‭can‬ ‭estimate‬ ‭some‬ ‭of‬ ‭the‬ ‭user-parameters.‬ ‭For‬ ‭a‬‭minimal‬‭primer‬

‭length‬ ‭,‬ ‭two‬ ‭main‬ ‭parameters‬ ‭influence‬ ‭the‬ ‭primer‬ ‭design:‬ ‭The‬ ‭number‬ ‭of‬ ‭ambiguous‬‭𝑙‬
‭𝑚𝑖𝑛‬

‭nucleotides‬‭tolerated‬‭within‬‭a‬‭primer‬‭sequence‬ ‭with‬ ‭and‬‭the‬‭identity‬‭𝑛‬
‭𝑎‬

‭𝑛‬
‭𝑎‬
‭ ‬ϵ‭ ‬‭ℕ‬, ‭ ‬‭0‬ ≤ ‭𝑛‬

‭𝑎‬
≤ ‭𝑙‬

‭𝑚𝑖𝑛‬

‭threshold‬ ‭for‬ ‭a‬ ‭nucleotide‬ ‭to‬ ‭be‬ ‭considered‬‭a‬‭consensus‬‭nucleotide‬‭with‬ ‭.‬‭𝑡‬ ‭𝑡‬‭ ‬ϵ‭ℝ‬, ‭0‬ ≤ ‭𝑡‬ ≤ ‭1‬

‭Optimization‬‭is‬‭only‬‭performed‬‭for‬ ‭or‬ ‭,‬‭the‬‭other‬‭parameter‬‭has‬‭to‬‭be‬‭set‬‭manually.‬‭If‬‭𝑛‬
‭𝑎‬

‭𝑡‬ ‭𝑛‬
‭𝑎‬

‭and‬ ‭are‬‭both‬‭not‬‭given,‬ ‭is‬‭optimized‬‭and‬ ‭.‬‭For‬‭each‬‭optimization‬‭iteration,‬ ‭or‬‭𝑡‬ ‭𝑡‬ ‭𝑛‬
‭𝑎‬

= ‭2‬‭ ‬ ‭𝑛‬
‭𝑎‬

‭𝑡‬

‭are‬ ‭incremented‬ ‭by‬ ‭or‬ ‭,‬ ‭respectively.‬ ‭To‬ ‭perform‬ ‭parameter‬ ‭selection,‬ ‭the‬ ‭highest‬− ‭1‬‭ ‬ ‭0‬. ‭1‬

‭nucleotide‬ ‭frequency‬ ‭at‬ ‭each‬ ‭alignment‬‭position‬‭is‬‭determined.‬‭For‬‭each‬‭optimization‬‭step,‬

‭the‬‭lengths‬‭of‬‭nucleotide‬‭stretches‬‭that‬‭consist‬‭of‬‭nucleotides‬‭reaching‬‭the‬‭current‬‭threshold‬

‭{‬ ‭,‬ ‭…‬ ‭are‬‭calculated.‬‭The‬‭coverage‬ ‭of‬‭the‬‭given‬‭alignment‬‭that‬‭can‬‭be‬‭considered‬‭for‬‭𝑙‬
‭1‬

‭𝑙‬
‭2‬

‭𝑙‬
‭𝑚‬

} ‭𝑐‬

‭potential primer regions is then estimated by:‬

‭,‬‭𝑐‬ ≈
‭𝑙‬

‭𝑖‬
∈‭𝐿‬
∑ ‭ ‬‭𝑙‬

‭𝑖‬
‭𝐿‬ = ‭ ‬{‭ ‬‭𝑙‬

‭𝑖‬
‭ ‬‭|‬‭ ‬‭𝑖‬ = ‭ ‬‭1‬, ‭ ‬... ‭ ‬, ‭ ‬‭𝑚‬; ‭ ‬‭𝑙‬

‭𝑖‬
‭ ‬ + ‭ ‬‭𝑛‬

‭𝑎‬
‭ ‬ ≥ ‭ ‬‭𝑙‬

‭𝑚𝑖𝑛‬
‭ ‬}

‭We‬‭define‬‭that‬‭optimization‬‭is‬‭reached‬‭if‬‭less‬‭than‬‭50%‬‭of‬‭the‬‭alignment‬‭can‬‭be‬‭considered‬

‭for‬ ‭potential‬ ‭primers.‬ ‭If‬ ‭varVAMP‬ ‭is‬ ‭used‬ ‭to‬ ‭design‬ ‭qPCR‬ ‭schemes,‬ ‭the‬ ‭number‬ ‭of‬

‭ambiguous‬ ‭characters‬ ‭for‬ ‭the‬ ‭qPCR‬ ‭probe‬ ‭is‬ ‭set‬ ‭to‬ ‭=‬ ‭to‬ ‭ensure‬ ‭a‬ ‭higher‬‭𝑛‬
‭𝑝‬

‭𝑛‬
‭𝑝‬

‭𝑛‬
‭𝑎‬
‭ ‬ − ‭ ‬‭1‬

‭specificity of the probe compared to the flanking primers.‬

‭In‬‭the‬‭following‬‭preprocessing‬‭step,‬‭gaps‬‭in‬‭the‬‭alignment‬‭are‬‭masked.‬‭Given‬ ‭,‬‭the‬‭number‬‭𝑛‬
‭𝑠‬

‭of‬ ‭sequences‬ ‭in‬ ‭the‬ ‭alignment,‬ ‭common‬ ‭gaps‬ ‭are‬ ‭defined‬ ‭as‬ ‭gaps‬ ‭present‬ ‭in‬ ‭more‬

‭sequences‬ ‭than‬ ‭.‬ ‭Common‬ ‭gaps‬ ‭are‬ ‭then‬ ‭masked‬ ‭with‬ ‭‘N’‬ ‭(single‬ ‭nucleotide‬‭𝑛‬
‭𝑠‬

· ‭ ‬(‭1‬ − ‭ ‬‭𝑡‬)

‭deletions)‬ ‭or‬ ‭‘NN’‬ ‭(larger‬ ‭deletions)‬ ‭in‬ ‭the‬ ‭multiple‬ ‭sequence‬ ‭alignment.‬ ‭This‬ ‭ensures‬ ‭that‬

‭102‬

‭103‬

‭104‬

‭105‬

‭106‬

‭107‬

‭108‬

‭109‬

‭110‬

‭111‬

‭112‬

‭113‬

‭114‬

‭115‬

‭116‬

‭117‬

‭118‬

‭119‬

‭120‬

‭121‬

‭122‬

‭123‬

‭124‬

‭125‬

‭126‬

‭127‬

‭128‬

‭129‬

‭130‬

‭131‬

‭132‬

‭133‬
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‭primers‬ ‭will‬ ‭not‬ ‭span‬ ‭regions‬ ‭that‬ ‭could‬ ‭be‬ ‭potential‬ ‭INDEL‬ ‭sites‬ ‭and‬ ‭that‬ ‭for‬ ‭the‬ ‭large‬

‭majority‬ ‭of‬ ‭sequences,‬ ‭the‬ ‭amplicon‬‭size‬‭is‬‭not‬‭overestimated.‬‭Moreover,‬‭qPCR‬‭amplicons‬

‭are‬ ‭not‬ ‭considered‬ ‭if‬ ‭they‬ ‭would‬ ‭span‬ ‭large‬ ‭deletions‬ ‭as‬ ‭small‬ ‭deviations‬ ‭in‬ ‭the‬ ‭amplicon‬

‭length are particularly problematic for smaller qPCR amplicons.‬

‭In‬‭the‬‭next‬‭step,‬‭two‬‭consensus‬‭sequences‬‭are‬‭deduced‬‭from‬‭the‬‭gap-masked‬‭alignment.‬‭At‬

‭each‬‭alignment‬‭position,‬‭the‬‭sorted‬‭list‬‭of‬‭observed‬‭nucleotide‬‭frequencies‬‭is‬‭calculated.‬‭If‬‭a‬

‭sequence‬ ‭in‬ ‭the‬ ‭alignment‬ ‭contains‬ ‭ambiguous‬ ‭nucleotides,‬ ‭all‬ ‭permutations‬ ‭of‬ ‭these‬

‭nucleotides‬ ‭are‬ ‭considered‬ ‭and‬ ‭added‬ ‭to‬ ‭the‬ ‭nucleotide‬ ‭frequencies‬ ‭proportionally‬ ‭to‬ ‭the‬

‭number‬ ‭of‬ ‭permutations.‬ ‭The‬ ‭first‬ ‭consensus‬ ‭sequence‬ ‭is‬‭generated‬‭simply‬‭from‬‭the‬‭most‬

‭frequent‬ ‭nucleotide‬ ‭at‬ ‭each‬ ‭site.‬ ‭This‬ ‭majority‬ ‭consensus‬ ‭sequence‬ ‭is‬ ‭the‬ ‭basis‬ ‭for‬ ‭the‬

‭primer‬‭search.‬‭For‬‭the‬‭second‬‭consensus‬‭sequence,‬‭the‬‭observed‬‭nucleotide‬‭frequencies‬‭at‬

‭each‬ ‭site‬ ‭are‬ ‭added‬ ‭up,‬ ‭starting‬‭from‬‭the‬‭highest‬‭frequency,‬‭until‬‭their‬‭sum‬‭reaches‬ ‭.‬‭The‬‭𝑡‬

‭IUPAC‬‭symbol‬‭for‬‭the‬‭set‬‭of‬‭nucleotides‬‭that‬‭contributed‬‭to‬‭the‬‭frequency‬‭sum‬‭is‬‭then‬‭taken‬

‭as‬‭the‬‭consensus‬‭at‬‭the‬‭site.‬‭This‬‭symbol‬‭will‬‭be‬‭identical‬‭to‬‭the‬‭corresponding‬‭nucleotide‬‭in‬

‭the‬‭majority‬‭consensus‬‭if‬‭the‬‭frequency‬‭of‬‭that‬‭nucleotide‬‭alone‬‭reaches‬‭or‬‭exceeds‬ ‭.‬‭This‬‭𝑡‬

‭second‬‭consensus‬‭sequence‬‭allows‬‭searching‬‭for‬‭regions‬‭that‬‭only‬‭have‬‭a‬‭certain‬‭amount‬‭of‬

‭ambiguous characters within the minimal primer length.‬

‭Next,‬ ‭the‬ ‭consensus‬ ‭sequence‬ ‭with‬ ‭ambiguous‬ ‭nucleotide‬ ‭characters‬ ‭is‬ ‭searched‬ ‭for‬

‭potential‬‭primer‬‭regions.‬‭The‬‭algorithm‬‭opens‬‭a‬‭region‬‭window‬‭at‬‭the‬‭start‬‭of‬‭the‬‭sequence.‬

‭The‬ ‭window‬ ‭is‬ ‭closed‬ ‭if‬ ‭ambiguous‬ ‭nucleotides‬ ‭are‬ ‭found‬ ‭within‬ ‭a‬ ‭sequence‬ ‭of‬> ‭𝑛‬
‭𝑎‬

‭𝑙‬
‭𝑚𝑖𝑛‬

‭nucleotides‬ ‭or‬ ‭a‬ ‭gap‬ ‭is‬ ‭reached.‬ ‭We‬ ‭define‬ ‭the‬‭resulting‬‭window‬‭as‬ ‭with‬‭𝑤‬ = [‭𝑤‬
‭𝑠𝑡𝑎𝑟𝑡‬

, ‭𝑤‬
‭𝑒𝑛𝑑‬

]

‭ambiguous‬ ‭character‬ ‭positions‬ ‭.‬ ‭If‬ ‭the‬ ‭window‬ ‭was‬ ‭closed‬ ‭due‬ ‭to‬ ‭a‬ ‭gap,‬ ‭a‬ ‭new‬‭𝑥‬
‭1‬
, ‭ ‬... , ‭𝑥‬

‭𝑚‬

‭window‬ ‭is‬ ‭opened‬ ‭at‬‭the‬‭subsequent‬‭nucleotide‬ ‭.‬‭If‬‭the‬‭window‬‭was‬‭closed‬‭due‬‭to‬‭𝑤‬
‭𝑒𝑛𝑑‬

+ ‭1‬

‭the‬‭number‬‭of‬‭ambiguous‬‭characters,‬‭the‬‭new‬‭window‬‭is‬‭opened‬‭at‬‭the‬‭position‬‭after‬‭the‬‭first‬

‭ambiguous‬ ‭character‬ ‭counting‬ ‭towards‬ ‭that‬ ‭led‬ ‭to‬ ‭closing‬ ‭the‬ ‭previous‬‭window,‬ ‭.‬‭𝑛‬
‭𝑎‬

‭𝑥‬
‭1‬

+ ‭1‬

‭Regions are only considered for the primer search if‬ ‭.‬‭𝑤‬
‭𝑒𝑛𝑑‬

− ‭𝑤‬
‭𝑠𝑡𝑎𝑟𝑡‬

≥ ‭𝑙‬
‭𝑚𝑖𝑛‬

‭In‬ ‭the‬ ‭identified‬ ‭primer‬ ‭search‬ ‭regions,‬ ‭the‬‭majority‬‭consensus‬‭is‬‭digested‬‭into‬‭all‬‭possible‬

‭unique‬ ‭-mers‬‭for‬ ‭.‬‭Afterwards,‬‭each‬‭kmer‬‭is‬‭evaluated‬‭for‬‭its‬‭suitability‬‭as‬‭a‬‭𝑘‬ ‭𝑙‬
‭𝑚𝑖𝑛‬

≤ ‭𝑘‬ ≤ ‭𝑙‬
‭𝑚𝑎𝑥‬

‭primer.‬‭For‬‭this‬‭primer3‬‭17‬ ‭is‬‭used‬‭and‬‭some‬‭of‬‭the‬‭rationals‬‭and‬‭functions‬‭were‬‭adapted‬‭from‬

‭primalscheme‬‭10‬‭.‬ ‭First,‬ ‭each‬ ‭kmer‬ ‭is‬ ‭hard-filtered‬ ‭independent‬ ‭of‬ ‭its‬ ‭direction‬ ‭for‬

‭unacceptable‬ ‭temperature,‬ ‭size,‬ ‭GC‬ ‭content,‬ ‭homopolymer‬ ‭length,‬ ‭di-nucleotide‬ ‭repeats,‬

‭and‬‭homodimer‬‭formation.‬‭Moreover‬‭and‬‭similar‬‭to‬‭primalscheme,‬‭a‬‭base‬‭penalty‬ ‭for‬‭the‬‭𝑝‬
‭𝑏‬‭ ‬

‭ ‬

‭kmers’‬‭deviations‬‭from‬‭the‬‭optimal‬‭temperature,‬‭size‬‭and‬‭GC‬‭content‬‭is‬‭calculated‬‭and‬‭also‬

‭134‬

‭135‬

‭136‬

‭137‬

‭138‬

‭139‬

‭140‬

‭141‬

‭142‬

‭143‬

‭144‬

‭145‬

‭146‬

‭147‬

‭148‬

‭149‬

‭150‬

‭151‬

‭152‬

‭153‬

‭154‬

‭155‬

‭156‬

‭157‬

‭158‬

‭159‬

‭160‬

‭161‬

‭162‬

‭163‬

‭164‬

‭165‬

‭166‬
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‭hard-filtered‬ ‭if‬ ‭it‬ ‭exceeds‬ ‭the‬ ‭base‬ ‭penalty‬ ‭threshold.‬ ‭Then‬ ‭primers‬ ‭are‬ ‭evaluated‬‭for‬‭their‬

‭suitability‬ ‭as‬ ‭forward‬ ‭or‬ ‭reverse‬ ‭primers‬ ‭by‬ ‭filtering‬ ‭out‬ ‭unacceptable‬ ‭hairpin‬ ‭formation‬

‭temperatures,‬ ‭the‬ ‭3-prime‬ ‭presence‬ ‭of‬ ‭ambiguous‬ ‭characters,‬ ‭and‬ ‭the‬ ‭absence‬ ‭of‬ ‭a‬ ‭GC‬

‭clamp.‬ ‭For‬‭primers‬‭surviving‬‭all‬‭filtering‬‭steps,‬‭a‬‭permutation‬‭penalty‬ ‭and‬‭a‬‭3’‬‭mismatch‬‭𝑝‬
‭𝑝‬‭ ‬

‭penalty‬ ‭are‬ ‭calculated.‬ ‭is‬ ‭calculated‬ ‭as‬ ‭the‬ ‭number‬ ‭of‬ ‭primer‬ ‭permutations‬ ‭of‬ ‭the‬‭𝑝‬
‭𝑚‬‭ ‬

‭𝑝‬
‭𝑝‬‭ ‬

‭primer‬‭version‬‭that‬‭has‬‭the‬‭ambiguous‬‭characters‬‭(deduced‬‭from‬‭the‬‭ambiguous‬‭consensus‬

‭sequence)‬‭multiplied‬‭by‬‭the‬‭permutation‬‭penalty.‬‭For‬‭a‬‭primer‬‭with‬ ‭characters,‬‭we‬‭define‬‭𝑛‬
‭𝑝‬

‭position-specific‬ ‭penalties‬ ‭{‬ ‭and‬ ‭calculate‬ ‭the‬ ‭mismatch‬ ‭frequencies‬ ‭at‬ ‭each‬‭𝑐‬
‭1‬
, ‭ ‬‭𝑐‬

‭2‬
, ‭ ‬... ‭ ‬‭𝑐‬

‭𝑛‬
‭𝑝‬

}

‭position {‬ ‭. We then calculate:‬‭𝑓‬
‭1‬
, ‭ ‬‭𝑓‬

‭2‬
, ‭ ‬... ‭ ‬‭𝑓‬

‭𝑛‬
‭𝑝‬

}

‭𝑝‬
‭𝑚‬‭ ‬

‭ ‬ = ‭ ‬
‭𝑖‬=‭1‬

‭𝑛‬
‭𝑝‬

∑ ‭𝑐‬
‭𝑖‬

· ‭𝑓‬
‭𝑖‬

‭Note‬‭that‬‭only‬‭the‬‭last‬‭5‬‭positions‬‭receive‬‭non-zero‬‭multipliers‬‭in‬‭the‬‭standard‬‭settings.‬‭The‬

‭final primer penalty‬ ‭is then calculated as:‬‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒𝑟‬‭ ‬

‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒𝑟‬‭ ‬

= ‭𝑝‬
‭𝑏‬‭ ‬

+ ‭𝑝‬
‭𝑚‬‭ ‬

+ ‭ ‬‭𝑝‬
‭𝑝‬‭ ‬

‭reflects‬ ‭the‬ ‭primers’‬ ‭deviations‬ ‭from‬ ‭base‬ ‭parameters,‬ ‭its‬ ‭number‬ ‭of‬ ‭permutations‬‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒𝑟‬‭ ‬

‭and‬ ‭number‬ ‭of‬ ‭mismatches‬ ‭at‬ ‭the‬ ‭3’-prime‬ ‭end.‬ ‭The‬ ‭closer‬ ‭is‬ ‭to‬ ‭zero,‬‭the‬‭better‬‭it‬‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒𝑟‬‭ ‬

‭represents an optimal primer.‬

‭To‬ ‭reduce‬ ‭the‬ ‭number‬ ‭of‬ ‭potential‬ ‭primers,‬‭all‬‭primers‬‭are‬‭penalty-sorted‬‭from‬‭low‬‭to‬‭high.‬

‭From‬ ‭this‬ ‭sorted‬ ‭list,‬ ‭primers‬ ‭are‬ ‭retained‬‭if‬‭they‬‭do‬‭not‬‭overlap‬‭with‬‭the‬‭middle‬‭third‬‭of‬‭an‬

‭already‬ ‭retained‬ ‭lower‬ ‭scoring‬ ‭primer,‬ ‭improving‬ ‭a‬ ‭final‬ ‭selection‬ ‭of‬ ‭primers‬ ‭with‬ ‭minimal‬

‭overlap‬ ‭and‬ ‭minimal‬ ‭.‬ ‭Next,‬ ‭all‬ ‭potential‬ ‭non-dimer‬ ‭forming‬‭combinations‬‭of‬‭forward‬‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒𝑟‬‭ ‬

‭and‬ ‭reverse‬ ‭primers‬ ‭within‬ ‭a‬ ‭given‬ ‭amplicon‬ ‭range‬ ‭length‬ ‭are‬ ‭computed.‬ ‭A‬ ‭resulting‬

‭amplicon‬ ‭is‬ ‭defined‬ ‭by‬ ‭primers‬ ‭.‬ ‭Given‬ ‭the‬ ‭length‬ ‭of‬ ‭the‬ ‭amplicon‬‭𝑎‬
‭𝑖‬

‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬
‭𝑓𝑤‬

, ‭ ‬‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬
‭𝑟𝑣‬

‭𝑙‬
‭𝑖‬

‭and the user-defined optimal amplicon length‬ ‭, we define the amplicon penalty‬ ‭:‬‭𝑙‬
‭𝑜𝑝𝑡‬

‭𝑝‬
‭𝑖‬‭ ‬

‭𝑝‬
‭𝑖‬‭ ‬
‭ ‬ = ‭ ‬(‭𝑝‬

‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬
‭𝑓𝑤‬

‭ ‬
+ ‭𝑝‬

‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬
‭𝑟𝑣‬

‭ ‬
)‭ ‬ · ‭𝑒‬

‭𝑙‬
‭𝑖‬

‭𝑙‬
‭𝑜𝑝𝑡‬ ‭ ‬

‭This‬ ‭ensures‬ ‭that‬ ‭the‬ ‭amplicon‬ ‭selection‬ ‭is‬ ‭length‬ ‭dependent‬ ‭and‬ ‭that‬ ‭it‬ ‭favors‬‭amplicons‬

‭with‬‭a‬‭length‬‭closer‬‭to‬‭the‬‭optimal‬‭amplicon‬‭length.‬‭For‬‭a‬‭single-amplicon‬‭design,‬‭amplicons‬

‭are‬ ‭sorted‬ ‭by‬ ‭their‬ ‭penalties‬ ‭from‬ ‭low‬ ‭to‬ ‭high‬ ‭and‬ ‭only‬ ‭low-scoring‬ ‭non-overlapping‬

‭amplicons are retained.‬
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‭For‬‭the‬‭tiled‬‭approach,‬‭a‬‭weighted‬‭directed‬‭graph‬ ‭with‬‭vertices‬ ‭and‬‭edges‬ ‭is‬‭𝐺‬‭ ‬ = ‭ ‬(‭𝑉‬, ‭𝐸‬) ‭𝑉‬ ‭𝐸‬

‭created.‬ ‭Each‬ ‭vertex‬ ‭represents‬ ‭an‬ ‭amplicon‬ ‭and‬ ‭the‬ ‭set‬ ‭of‬ ‭vertices‬ ‭is‬‭given‬‭by‬‭𝑣‬
‭𝑖‬‭ ‬

∈ ‭𝑉‬ ‭𝑎‬
‭𝑖‬

‭We‬‭define‬‭the‬‭vertex‬‭start‬ ‭as‬‭the‬‭position‬‭of‬‭the‬‭first‬‭nucleotide‬‭in‬‭𝑉‬ = {‭𝑣‬
‭1‬
, ‭ ‬‭𝑣‬

‭2‬
, ‭ ‬... ‭ ‬‭𝑣‬

‭𝑚‬
} . ‭𝑠𝑡𝑎𝑟‬‭𝑡‬

‭𝑣‬
‭𝑖‬

‭belonging‬ ‭to‬ ‭and‬‭the‬‭vertex‬‭stop‬ ‭as‬‭the‬‭position‬‭of‬‭the‬‭last‬‭nucleotide‬‭in‬‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬
‭𝑓𝑤‬

‭𝑎‬
‭𝑖‬

‭𝑠𝑡𝑜‬‭𝑝‬
‭𝑣‬

‭𝑖‬

‭belonging to‬ ‭. An edge‬ ‭is defined as a tupel‬ ‭of two distinct nodes.‬‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬
‭𝑟𝑣‬

‭𝑎‬
‭𝑖‬

‭𝑒‬ ∈ ‭𝐸‬ ‭𝑣‬
‭𝑖‬
, ‭ ‬‭𝑣‬

‭𝑗‬
, ‭ ‬‭𝑤‬

‭𝑗‬

‭The‬ ‭edge‬ ‭weight‬ ‭incorporates‬‭the‬‭information‬‭about‬‭whether‬‭or‬‭not‬‭amplicon‬‭𝑤‬
‭𝑗‬
‭ ‬ = ‭ ‬(‭𝑜‬

‭𝑗‬
, ‭ ‬‭𝑝‬

‭𝑗‬
)

‭generated‬ ‭an‬ ‭off-target‬‭hit‬‭with‬‭the‬‭optional‬‭BLAST‬‭database‬‭and‬‭amplicon‬‭penalty‬ ‭.‬‭If‬‭𝑎‬
‭𝑗‬

‭𝑝‬
‭𝑗‬

‭an‬ ‭off-target‬ ‭is‬ ‭generated‬ ‭is‬ ‭1‬ ‭otherwise‬ ‭it‬ ‭is‬ ‭0.‬ ‭The‬ ‭set‬ ‭of‬ ‭all‬ ‭edges‬ ‭is‬ ‭defined‬ ‭as‬‭𝑜‬
‭𝑗‬

‭𝐸‬

‭and‬ ‭and‬ ‭overlap‬ ‭.‬‭We‬‭say‬‭that‬ ‭overlap‬‭if‬‭they‬‭𝐸‬ = {(‭𝑣‬
‭𝑖‬
, ‭ ‬‭𝑣‬

‭𝑗‬
, ‭ ‬‭𝑤‬

‭𝑗‬
)‭ ‬‭|‬‭ ‬‭𝑣‬

‭𝑖‬
, ‭𝑣‬

‭𝑗‬
∈ ‭𝑉‬ ‭ ‬‭𝑖‬ ≠ ‭𝑗‬ ‭ ‬‭𝑣‬

‭𝑖‬
, ‭ ‬‭𝑣‬

‭𝑗‬
} ‭ ‬‭𝑣‬

‭𝑖‬
, ‭ ‬‭𝑣‬

‭𝑗‬

‭satisfy‬‭the‬‭user-defined‬‭reciprocal‬‭pairwise‬‭sequence‬‭overlap‬‭and‬ ‭is‬‭not‬‭located‬‭in‬‭the‬‭𝑠𝑡𝑎𝑟‬‭𝑡‬
‭𝑣‬

‭𝑗‬

‭first‬‭half‬‭of‬ ‭.‬‭Next,‬‭varVAMP‬‭searches‬‭for‬‭the‬‭shortest‬‭path‬‭in‬ ‭from‬‭a‬‭source‬‭vertex‬ ‭with‬‭𝑣‬
‭𝑖‬

‭𝐺‬ ‭𝑣‬
‭𝑠‬

‭Dijkstra’s‬ ‭algorithm‬‭24‬‭.‬ ‭The‬ ‭stop‬ ‭position‬ ‭with‬ ‭the‬ ‭highest‬ ‭genomic‬ ‭index‬ ‭of‬ ‭all‬ ‭is‬‭𝑣‬
‭𝑖‬

∈ ‭𝐺‬‭ ‬

‭denoted‬ ‭and‬ ‭the‬ ‭lowest‬ ‭penalized‬ ‭amplicon‬ ‭with‬ ‭the‬‭𝑠𝑡𝑜‬‭𝑝‬
‭𝑚𝑎𝑥‬

= ‭𝑚𝑎𝑥‬{‭𝑠𝑡𝑜‬‭𝑝‬
‭𝑣‬

‭𝑖‬

‭|‬‭ ‬‭𝑖‬ = ‭1‬, ‭ ‬..., ‭𝑚‬}

‭furthest‬ ‭stop‬ ‭position‬ ‭reached‬ ‭by‬‭Dijkstra’s‬‭search‬‭is‬‭termed‬ ‭.‬‭The‬‭amplicon‬‭coverage‬‭𝑣‬
‭𝑚𝑎𝑥‬

‭over‬ ‭the‬ ‭consensus‬‭sequence‬‭is‬‭defined‬‭as‬ ‭.‬‭We‬‭store‬‭the‬‭current‬‭𝑐‬
‭𝑐𝑜𝑛‬

= ‭ ‬‭𝑠𝑡𝑜‬‭𝑝‬
‭𝑣‬

‭𝑚𝑎𝑥‬

− ‭𝑠𝑡𝑎𝑟‬‭𝑡‬
‭𝑣‬

‭𝑠‬

‭ ‬

‭highest‬ ‭coverage‬ ‭and‬ ‭the‬ ‭shortest‬ ‭path‬ ‭search‬ ‭is‬ ‭repeated‬ ‭for‬ ‭all‬ ‭until‬‭𝑐‬*
‭𝑐𝑜𝑛‬

‭𝑣‬
‭𝑖‬

‭.‬‭Therefore,‬‭the‬‭shortest‬‭path‬‭resulting‬‭in‬‭the‬‭highest‬‭coverage‬‭is‬‭𝑠𝑡𝑎𝑟‬‭𝑡‬
‭𝑣‬

‭𝑖‬

‭ ‬ + ‭ ‬‭𝑐‬*
‭𝑐𝑜𝑛‬

‭ ‬ > ‭ ‬‭𝑠𝑡𝑜‬‭𝑝‬
‭𝑚𝑎𝑥‬

‭the‬‭path‬‭that‬‭resulted‬‭in‬ ‭.‬‭varVAMP‬‭defines‬‭two‬‭amplicon‬‭pools‬‭containing‬‭non-adjacent‬‭𝑐‬*
‭𝑐𝑜𝑛‬

‭ ‬

‭amplicons‬ ‭for‬ ‭the‬ ‭final‬‭scheme‬‭to‬‭allow‬‭primer‬‭multiplexing.‬‭In‬‭the‬‭last‬‭step,‬‭both‬‭pools‬‭are‬

‭analyzed‬ ‭for‬ ‭the‬ ‭presence‬ ‭of‬ ‭primer‬ ‭heterodimers.‬ ‭If‬ ‭heterodimers‬ ‭are‬ ‭found,‬ ‭varVAMP‬

‭considers‬ ‭the‬ ‭previously‬ ‭excluded‬ ‭primers‬ ‭overlapping‬ ‭with‬ ‭the‬ ‭middle‬ ‭third‬ ‭of‬ ‭the‬

‭heterodimer-forming‬ ‭pair‬ ‭and‬ ‭tries‬ ‭to‬ ‭find‬ ‭primers‬ ‭that‬ ‭do‬‭not‬‭form‬‭heterodimers‬‭within‬‭the‬

‭respective primer pools.‬

‭For‬ ‭the‬ ‭qPCR‬ ‭mode,‬ ‭the‬ ‭consensus‬ ‭sequence‬ ‭containing‬ ‭ambiguous‬ ‭nucleotides‬ ‭is‬

‭searched‬ ‭for‬ ‭regions‬ ‭that‬ ‭satisfy‬ ‭the‬ ‭qPCR‬ ‭probe‬ ‭specific‬‭length‬‭and‬ ‭constraints‬‭and‬‭is‬‭𝑛‬
‭𝑝‬

‭again‬‭digested‬‭into‬‭all‬‭possible‬‭unique‬‭kmers‬‭within‬‭the‬‭probe‬‭size‬‭range.‬‭These‬‭kmers‬‭are‬

‭tested‬ ‭and‬ ‭evaluated‬ ‭for‬ ‭their‬ ‭suitability‬ ‭as‬‭qPCR‬‭probes‬‭in‬‭a‬‭manner‬‭analogous‬‭to‬‭primer‬

‭screening.‬‭However,‬‭here‬‭we‬‭apply‬‭additional‬‭constraints:‬‭(i)‬‭probes‬‭are‬‭not‬‭allowed‬‭to‬‭have‬

‭ambiguous‬‭bases‬‭at‬‭either‬‭end,‬‭(ii)‬‭probes‬‭cannot‬‭have‬‭a‬‭guanine‬‭at‬‭the‬‭5’‬‭end‬‭as‬‭this‬‭might‬
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‭result‬ ‭in‬ ‭quenching,‬ ‭and‬ ‭(iii)‬ ‭their‬ ‭direction‬ ‭is‬ ‭defined‬ ‭so‬ ‭that‬‭the‬‭qPCR‬‭probes‬‭have‬‭more‬

‭cytosines‬ ‭than‬ ‭guanines.‬ ‭Next,‬ ‭varVAMP‬ ‭searches‬ ‭for‬ ‭potential‬ ‭qPCR‬ ‭amplicons.‬ ‭This‬ ‭is‬

‭achieved‬ ‭by‬ ‭searching‬ ‭for‬ ‭primer‬ ‭subsets‬ ‭within‬ ‭the‬ ‭amplicon‬ ‭length‬ ‭constraint‬ ‭flanking‬ ‭a‬

‭qPCR‬ ‭probe.‬ ‭Potential‬ ‭amplicons‬ ‭are‬ ‭excluded‬ ‭if‬ ‭they‬‭violate‬‭the‬‭GC‬‭content‬‭constraint‬‭or‬

‭contain‬‭large‬‭deletions.‬‭The‬‭flanking‬‭primers‬‭must‬‭be‬‭within‬‭a‬‭narrow‬‭temperature‬‭range,‬‭the‬

‭probe‬‭has‬‭to‬‭have‬‭a‬‭higher‬‭temperature‬‭than‬‭the‬‭primers,‬‭they‬‭cannot‬‭form‬‭dimers‬‭with‬‭each‬

‭other,‬ ‭and‬ ‭the‬ ‭probe‬ ‭has‬ ‭to‬ ‭be‬ ‭within‬ ‭a‬‭certain‬‭distance‬‭to‬‭the‬‭primer‬‭on‬‭the‬‭same‬‭strand.‬

‭varVAMP‬ ‭also‬ ‭evaluates‬ ‭the‬ ‭presence‬ ‭of‬ ‭dimers‬ ‭in‬ ‭all‬ ‭probe-primer‬ ‭permutations‬ ‭and‬

‭excludes‬ ‭primer-probe‬ ‭combinations‬ ‭that‬ ‭overlap‬ ‭at‬ ‭their‬ ‭ends,‬ ‭as‬ ‭this‬ ‭might‬ ‭also‬ ‭lead‬ ‭to‬

‭unspecific‬ ‭probe‬ ‭hydrolysis.‬ ‭Lastly,‬ ‭amplicons‬ ‭are‬ ‭sorted‬ ‭by‬ ‭their‬ ‭amplicon‬ ‭penalty‬ ‭𝑝‬
‭𝑖‬‭ ‬
‭ ‬ = ‭ ‬

‭and‬ ‭tested‬ ‭for‬‭their‬‭ΔG‬‭at‬‭the‬‭lowest‬‭primer‬‭temperature‬‭using‬‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬

‭𝑓𝑤‬
‭ ‬

+ ‭𝑝‬
‭𝑝𝑟𝑖𝑚𝑒‬‭𝑟‬

‭𝑟𝑤‬
‭ ‬

+ ‭ ‬‭𝑝‬
‭𝑝𝑟𝑜𝑏𝑒‬

‭ ‬

‭seqfold‬ ‭(‬‭https://github.com/Lattice-Automation/seqfold‬‭).‬ ‭varVAMP‬ ‭reports‬ ‭amplicons‬ ‭that‬

‭pass the ΔG cutoff.‬

‭varVAMP‬ ‭has‬ ‭an‬ ‭optional‬ ‭BLAST‬ ‭feature‬ ‭that‬ ‭allows‬ ‭evaluation‬ ‭if‬ ‭amplicon‬ ‭primers‬ ‭could‬

‭result‬ ‭in‬‭off-target‬‭products‬‭using‬‭a‬‭custom‬‭BLAST‬‭database‬‭25‬‭.‬‭Here,‬‭we‬‭perform‬‭a‬‭relaxed‬

‭BLAST‬‭search‬‭with‬‭the‬‭BLAST‬‭settings‬‭published‬‭for‬‭primerBLAST‬‭26‬‭.‬‭Afterwards,‬‭the‬‭results‬

‭are‬ ‭filtered‬ ‭for‬ ‭matches‬ ‭with‬ ‭a‬ ‭user-definable‬ ‭minimal‬ ‭overlap‬ ‭of‬ ‭identical‬ ‭nucleotides‬

‭considering‬ ‭both‬ ‭query‬ ‭coverage‬ ‭and‬ ‭mismatches.‬ ‭We‬ ‭now‬ ‭check‬ ‭each‬ ‭amplicon‬ ‭for‬

‭potential‬ ‭off-target‬ ‭hits‬ ‭defined‬ ‭as‬ ‭matches‬ ‭for‬ ‭both‬ ‭primers‬ ‭that‬ ‭are‬ ‭sufficiently‬ ‭close‬

‭together‬‭on‬‭the‬‭same‬‭reference‬‭sequence,‬‭but‬‭on‬‭opposite‬‭strands.‬‭Amplicons‬‭that‬‭result‬‭in‬

‭off-target‬‭hits,‬‭are‬‭preferentially‬‭not‬‭considered‬‭in‬‭the‬‭final‬‭scheme.‬‭In‬‭the‬‭single‬‭and‬‭qPCR‬

‭mode,‬ ‭amplicons‬ ‭are‬‭first‬‭sorted‬‭for‬‭the‬‭absence‬‭of‬‭off-targets‬‭and‬‭then‬‭by‬‭their‬‭penalty.‬‭In‬

‭the‬‭tiled‬‭mode,‬‭the‬‭shortest‬‭path‬‭is‬‭first‬‭evaluated‬‭on‬‭the‬‭amount‬‭of‬‭off-target‬‭hits‬‭generated‬

‭by‬ ‭the‬ ‭path‬ ‭before‬ ‭considering‬ ‭the‬ ‭cumulative‬ ‭amplicon‬ ‭penalty,‬ ‭thereby‬ ‭avoiding,‬ ‭but‬ ‭not‬

‭excluding amplicons with off-target effects.‬

‭The‬‭final‬‭primers‬‭(independently‬‭from‬‭the‬‭varVAMP‬‭mode)‬‭are‬‭deduced‬‭from‬‭the‬‭consensus‬

‭sequence incorporating degenerate nucleotides.‬

‭Primer design for the individual pathogens‬

‭Data‬‭selection‬‭for‬‭the‬‭multiple‬‭sequence‬‭alignments‬‭(‬‭MSAs)‬‭that‬‭were‬‭used‬‭as‬‭the‬‭inputs‬

‭for varVAMP were highly dependent on the individual pathogens.‬

‭For‬ ‭SARS-CoV-2,‬ ‭we‬ ‭obtained‬ ‭920,323‬ ‭full-length‬ ‭genome‬ ‭sequences,‬ ‭sampled‬ ‭between‬

‭2021-10-11‬ ‭and‬ ‭2023-09-26,‬ ‭and‬ ‭their‬ ‭lineage‬ ‭assignments‬ ‭from‬

‭https://github.com/robert-koch-institut/SARS-CoV-2-Sequenzdaten_aus_Deutschland‬

‭(accessed‬‭2023-10-13).‬‭Covsonar‬‭(‬‭https://github.com/rki-mf1/covsonar‬‭,‬‭v1.1.9)‬‭was‬‭used‬‭to‬
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‭calculate‬ ‭mutation‬ ‭profiles‬ ‭for‬ ‭all‬ ‭sequences,‬ ‭followed‬ ‭by‬ ‭a‬ ‭Python‬ ‭script‬

‭(‬‭https://github.com/rki-mf1/sc2-mutation-frequency-calculator‬‭,‬ ‭v0.0.2-alpha)‬ ‭to‬ ‭select‬

‭characteristic‬ ‭mutations‬ ‭per‬ ‭lineage‬ ‭(75%‬ ‭frequency).‬ ‭The‬ ‭script‬ ‭then‬ ‭uses‬ ‭these‬

‭characteristic‬ ‭mutations‬ ‭to‬ ‭construct‬ ‭a‬ ‭single,‬ ‭representative‬ ‭consensus‬ ‭sequence‬ ‭per‬

‭lineage.‬ ‭A‬ ‭representative‬‭consensus‬‭sequence‬‭was‬‭only‬‭calculated‬‭if‬‭at‬‭least‬‭ten‬‭genomes‬

‭were‬ ‭available‬ ‭for‬ ‭a‬ ‭particular‬‭lineage.‬‭This‬‭resulted‬‭in‬‭representative‬‭consensus‬‭genomes‬

‭for 865 SARS-CoV-2 lineages which were then used as input for varVAMP.‬

‭For‬ ‭BoDV-1‬ ‭we‬ ‭downloaded‬ ‭all‬ ‭available‬ ‭full-length‬ ‭sequences‬ ‭that‬ ‭belong‬ ‭to‬ ‭the‬

‭Orthobornavirus‬ ‭bornaense‬ ‭species‬ ‭(BoDV-1:‬ ‭54‬ ‭sequences,‬ ‭BoDV-2:‬ ‭1‬ ‭sequence).‬ ‭For‬

‭HAV‬ ‭we‬ ‭downloaded‬ ‭all‬ ‭available‬ ‭full-length‬ ‭sequences‬ ‭that‬ ‭belong‬ ‭to‬ ‭the‬ ‭Hepatovirus‬ ‭A‬

‭species‬ ‭(326‬ ‭sequences).‬ ‭Patent‬ ‭and‬ ‭artificial‬ ‭clone‬ ‭sequences‬‭were‬‭excluded‬‭resulting‬‭in‬

‭309‬ ‭HAV‬ ‭sequences.‬‭PV‬‭sequences‬‭were‬‭filtered‬‭in‬‭a‬‭similar‬‭manner‬‭and‬‭we‬‭excluded,‬‭by‬

‭manual‬ ‭alignment‬ ‭inspection,‬ ‭highly‬ ‭divergent‬ ‭sequences‬ ‭that‬ ‭were‬ ‭likely‬ ‭the‬ ‭result‬ ‭of‬

‭recombination‬ ‭events‬‭with‬‭other‬‭Enteroviruses‬‭yielding‬‭944‬‭sequences.‬‭For‬‭qPCR‬‭designs,‬

‭we‬ ‭split‬ ‭this‬ ‭dataset,‬ ‭based‬‭on‬‭metadata,‬‭into‬‭the‬‭individual‬‭serotypes‬‭1-3‬‭resulting‬‭in‬‭241,‬

‭494‬‭and‬‭209‬‭sequences,‬‭respectively.‬‭For‬‭HEV‬‭data‬‭selection,‬‭we‬‭downloaded‬‭all‬‭available‬

‭full-length‬‭sequences‬‭of‬‭the‬‭Hepeviridae‬‭family‬‭(1377‬‭sequences).‬‭Patent‬‭and‬‭artificial‬‭clone‬

‭sequences‬ ‭were‬ ‭excluded‬ ‭resulting‬ ‭in‬ ‭1349‬ ‭sequences.‬ ‭The‬ ‭remaining‬ ‭sequences‬ ‭were‬

‭compared‬ ‭to‬ ‭the‬ ‭HEV‬ ‭reference‬ ‭set‬ ‭by‬ ‭Smith‬ ‭et‬ ‭al.‬ ‭2020‬‭27‬‭,‬ ‭extended‬ ‭with‬ ‭the‬ ‭reference‬

‭sequences‬ ‭for‬ ‭rat,‬ ‭bird,‬ ‭bat,‬ ‭fish,‬‭frog‬‭and‬‭planthopper‬‭HEV‬‭(NC_038504.1,‬‭NC_023425.1,‬

‭NC_018382.1,‬ ‭NC_015521.1,‬ ‭NC_040835.1‬ ‭and‬ ‭NC_040710.1,‬ ‭respectively),‬ ‭using‬ ‭the‬

‭ggsearch36‬ ‭algorithm‬‭28‬‭.‬ ‭Classification‬ ‭resulted‬ ‭in‬ ‭1222‬ ‭HEV‬ ‭sequences‬ ‭and‬ ‭71‬ ‭ratHEV‬

‭sequences.‬ ‭Next,‬ ‭we‬ ‭used‬ ‭the‬ ‭greedy‬ ‭clustering‬ ‭algorithm‬ ‭of‬ ‭vsearch‬ ‭2.22.1‬‭29‬ ‭with‬ ‭global‬

‭clustering‬ ‭thresholds‬ ‭of‬ ‭0.82‬ ‭and‬ ‭0.71,‬ ‭respectively,‬ ‭to‬ ‭further‬ ‭split‬ ‭the‬ ‭HEV‬ ‭and‬ ‭ratHEV‬

‭datasets‬ ‭by‬ ‭similarity.‬ ‭Clustering‬ ‭results‬ ‭were‬ ‭manually‬ ‭inspected‬ ‭in‬ ‭phylogenetic‬ ‭trees‬

‭constructed‬ ‭with‬ ‭IQ-TREE‬‭2‬‭under‬‭the‬‭GTR+F+R10‬‭substitution‬‭model‬‭and‬‭1000‬‭bootstrap‬

‭replicates‬‭30‬‭.‬‭For‬‭HEV‬‭we‬‭choose‬‭two‬‭clusters‬‭that‬‭reflect‬‭the‬‭most‬‭common‬‭European‬‭HEV-3‬

‭subgenotypes‬ ‭(HEV-3‬ ‭f,‬ ‭e‬ ‭and‬ ‭HEV-3‬ ‭c,‬ ‭h1,‬ ‭m,‬ ‭i,‬ ‭uc,‬ ‭l).‬ ‭For‬ ‭ratHEV‬ ‭we‬ ‭focused‬ ‭on‬ ‭the‬

‭largest‬ ‭cluster‬ ‭essentially‬ ‭excluding‬ ‭ratHEV‬ ‭from‬ ‭non-rat‬ ‭species‬ ‭and‬ ‭further‬ ‭excluded‬

‭sequences that were too short resulting in a total of 41 sequences.‬

‭Next,‬‭the‬‭pairwise‬‭sequence‬‭identity‬‭within‬‭each‬‭sequence‬‭batch‬‭was‬‭calculated‬‭with‬‭Identity‬

‭(‬‭https://github.com/BioinformaticsToolsmith/Identity‬‭)‬‭31‬ ‭and‬ ‭the‬ ‭sequences‬ ‭were‬ ‭aligned‬‭with‬

‭MAFFT‬‭32‬ ‭with‬‭default‬‭settings.‬‭These‬‭alignments‬‭were‬‭then‬‭used‬‭as‬‭the‬‭input‬‭for‬‭varVAMP.‬

‭Based‬ ‭on‬ ‭the‬ ‭sequence‬ ‭identity,‬ ‭we‬ ‭chose,‬ ‭for‬ ‭tiled‬ ‭sequencing,‬ ‭to‬ ‭fix‬ ‭the‬ ‭allowed‬ ‭max‬

‭number‬ ‭of‬ ‭ambiguous‬ ‭characters‬ ‭within‬ ‭the‬ ‭minimum‬ ‭primer‬ ‭length‬ ‭depending‬ ‭on‬ ‭mean‬

‭sequence‬‭identity‬‭within‬‭the‬‭batch‬‭(‬ ‭=‬‭2‬‭with‬‭90%‬‭identity,‬ ‭=‬‭4‬‭between‬‭70‬‭and‬‭80%,‬‭𝑛‬
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‭=‬‭5‬‭below‬‭70%).‬‭Next,‬‭the‬‭identity‬‭threshold‬ ‭was‬‭maximized‬‭until‬‭varVAMP‬‭could‬‭not‬‭find‬‭a‬‭𝑡‬

‭tiled‬‭scheme‬‭that‬‭covered‬‭the‬‭whole‬‭genome‬‭(Table‬‭1).‬‭For‬‭the‬‭qPCR‬‭designs‬‭we‬‭chose‬‭to‬

‭allow‬ ‭one‬ ‭less‬ ‭ambiguous‬ ‭base‬ ‭for‬ ‭the‬ ‭probe‬ ‭compared‬ ‭to‬ ‭the‬ ‭primers‬ ‭(Table‬ ‭2).‬ ‭Here,‬

‭settings‬‭were‬‭selected‬‭based‬‭on‬‭if‬‭varVAMP‬‭was‬‭able‬‭to‬‭find‬‭a‬‭qPCR‬‭scheme‬‭under‬‭the‬‭ΔG‬

‭constraints‬ ‭rather‬ ‭than‬ ‭solely‬ ‭on‬ ‭sequence‬ ‭similarity.‬ ‭All‬ ‭input‬ ‭alignments‬ ‭and‬ ‭varVAMP‬

‭outputs are available at:‬‭https://github.com/jonas-fuchs/ViralPrimerSchemes‬‭.‬

‭HEV qPCR and HEV sub-genotyping‬

‭Patient‬ ‭serum‬ ‭samples‬ ‭were‬ ‭tested‬ ‭for‬ ‭HEV‬ ‭using‬ ‭the‬ ‭HEV‬ ‭RT-PCR‬ ‭Kit‬ ‭1.5‬‭(AS0271543,‬

‭Altona‬‭Diagnostics,‬‭AltoStar®).‬‭For‬‭HEV‬‭sub-genotyping‬‭of‬‭HEV-positive‬‭samples,‬‭we‬‭used‬

‭an‬ ‭in-house‬ ‭nested‬ ‭RT-PCR‬ ‭(210212,‬ ‭Qiagen,‬ ‭Hilden,‬ ‭Germany)‬ ‭protocol‬ ‭based‬ ‭on‬

‭previously‬‭published‬‭primers‬‭and‬‭nested‬‭primers‬‭in‬‭a‬‭conserved‬‭region‬‭of‬‭ORF1‬‭33‬‭.‬‭RT-PCR‬

‭was‬ ‭performed‬ ‭at‬ ‭42‬ ‭°C‬ ‭for‬ ‭60‬ ‭min,‬‭15‬‭min‬‭at‬‭95°C‬‭followed‬‭by‬‭40‬‭cycles‬‭at‬‭94‬‭°C‬‭(30‬‭s),‬

‭56.5‬ ‭°C‬ ‭(30‬ ‭s)‬ ‭and‬ ‭74‬ ‭°C‬ ‭(45‬ ‭s).‬ ‭Final‬ ‭elongation‬ ‭was‬ ‭at‬ ‭74‬ ‭°C‬ ‭for‬ ‭5‬ ‭min.‬ ‭Agarose‬ ‭gel‬

‭negative‬ ‭PCR‬ ‭reactions‬ ‭were‬ ‭subjected‬ ‭to‬ ‭a‬ ‭nested‬ ‭PCR‬ ‭reaction.‬ ‭Afterwards,‬ ‭PCR‬

‭products were Sanger sequenced.‬

‭Production of virus stocks‬

‭The‬ ‭BoDV-1‬ ‭strains‬ ‭were‬ ‭derived‬ ‭from‬ ‭native‬ ‭human‬ ‭brain‬ ‭sections‬‭34–36‬ ‭and‬ ‭were‬

‭propagated‬ ‭in‬ ‭Vero‬ ‭cells,‬ ‭which‬ ‭were‬ ‭grown‬ ‭in‬ ‭DMEM‬ ‭supplemented‬ ‭with‬ ‭10%‬

‭heat-inactivated‬‭fetal‬‭calf‬‭serum‬‭(FCS),‬‭90‬‭U/ml‬‭streptomycin,‬‭0.3‬‭mg/ml‬‭glutamine,‬‭and‬‭200‬

‭U/ml‬‭penicillin‬‭(all‬‭PAN‬‭Biotech,‬‭Aidenbach,‬‭Germany).‬‭Permanently‬‭infected‬‭cells‬‭were‬‭split‬

‭twice‬‭a‬‭week‬‭and‬‭monitored‬‭for‬‭Mycoplasma‬‭spp.‬‭contamination‬‭every‬‭12‬‭weeks.‬‭To‬‭obtain‬

‭a‬ ‭cell-free‬‭viral‬‭stock,‬‭cell‬‭culture‬‭supernatants‬‭were‬‭centrifuged‬‭at‬‭1,000‬‭rcf‬‭to‬‭remove‬‭cell‬

‭debris‬ ‭and‬ ‭filtered‬ ‭through‬ ‭Rotilab‬ ‭syringe‬ ‭filters‬ ‭with‬ ‭a‬ ‭pore‬ ‭size‬ ‭of‬ ‭0.22‬ ‭µm‬ ‭(Carl‬ ‭Roth,‬

‭Karlsruhe, Germany).‬

‭HEV-containing‬ ‭supernatant‬ ‭was‬ ‭harvested‬ ‭from‬ ‭persistently‬‭infected‬‭cell‬‭culture.‬‭The‬‭liver‬

‭carcinoma‬‭cell‬‭lines‬‭(PLC/PRF/5,‬‭ATCC:‬‭CRL-8024)‬‭persistently‬‭infected‬‭with‬‭HEV-3c‬‭strain‬

‭14-16753,‬ ‭HEV-3e‬ ‭strain‬ ‭14-22707‬ ‭or‬ ‭HEV-3f‬ ‭strain‬ ‭15-22016‬ ‭(provided‬ ‭by‬ ‭National‬

‭Consultant‬ ‭Laboratory‬‭for‬‭HAV‬‭and‬‭HEV,‬‭University‬‭Hospital‬‭Regensburg)‬‭were‬‭maintained‬

‭in modified Minimum Essential Medium at 37 °C and 5% CO‬‭2‬
‭37‬‭.‬

‭HAV‬‭genotype‬‭IB‬‭strains‬‭MBB‬‭38‬ ‭and‬‭V18-35519‬‭(derived‬‭from‬‭plasma‬‭of‬‭a‬‭patient‬‭with‬‭acute‬

‭hepatitis‬‭A)‬‭were‬‭both‬‭propagated‬‭in‬‭HuH-7‬‭cells‬‭maintained‬‭in‬‭BMEM‬‭and‬‭incubated‬‭at‬‭34.5‬

‭°C‬ ‭and‬ ‭5%‬ ‭CO‬‭2‬‭.‬ ‭MBB‬ ‭and‬ ‭V18-35519‬ ‭strains‬ ‭were‬ ‭harvested‬ ‭at‬ ‭665‬ ‭and‬ ‭378‬ ‭days‬ ‭post‬

‭inoculation, respectively.‬
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‭RD-A‬ ‭cells‬ ‭were‬ ‭infected‬ ‭with‬ ‭PV‬‭for‬‭virus‬‭propagation‬‭and‬‭cultivated‬‭in‬‭MEM‬‭Earls‬‭media‬

‭with‬ ‭L-glutamine,‬ ‭1x‬ ‭Non-essential‬ ‭amino‬ ‭acids,‬ ‭100‬ ‭U/ml‬ ‭penicillin‬ ‭and‬ ‭streptomycin‬

‭(61100087,‬ ‭11140050,‬ ‭15140122,‬ ‭Thermo‬ ‭Fisher‬ ‭Scientific,‬ ‭Germany)‬ ‭and‬ ‭7.3%‬ ‭heat‬

‭inactivated‬ ‭fetal‬ ‭calf‬ ‭serum‬ ‭(BioWest,‬ ‭South‬ ‭America).‬ ‭RD-A‬ ‭cells‬ ‭were‬ ‭split‬ ‭once‬ ‭a‬‭week‬

‭and‬ ‭an‬ ‭internal‬ ‭quality‬ ‭control‬ ‭performed‬‭at‬‭passage‬‭five‬‭to‬‭ensure‬‭cell‬‭sensitivity.‬‭The‬‭cell‬

‭culture‬ ‭was‬ ‭conducted‬ ‭at‬‭37‬‭°C‬‭and‬‭5%‬‭CO‬‭2‬‭.‬‭Cultures‬‭were‬‭checked‬‭daily‬‭for‬‭a‬‭cytopathic‬

‭effect‬‭(CPE)‬‭for‬‭a‬‭maximum‬‭of‬‭seven‬‭days.‬‭Up‬‭to‬‭2‬‭ml‬‭of‬‭cell‬‭cultures‬‭with‬‭an‬‭observed‬‭CPE‬

‭were centrifuged 4 min at 4000 rpm and the supernatant used as viral stock.‬

‭RatHEV‬ ‭strain‬ ‭R63‬‭39‬‭,‬ ‭which‬ ‭was‬ ‭originally‬ ‭detected‬ ‭in‬ ‭a‬ ‭Norway‬ ‭rat‬ ‭from‬ ‭Germany,‬ ‭and‬

‭ratHEV‬‭strain‬‭pt2‬‭40‬‭,‬‭which‬‭was‬‭identified‬‭in‬‭a‬‭human‬‭patient‬‭in‬‭Hong‬‭Kong,‬‭were‬‭generated‬

‭and‬‭propagated‬‭in‬‭HuH-7-Lunet‬‭BLR‬‭cells‬‭under‬‭conditions‬‭as‬‭described‬‭previously‬‭41,42‬ ‭.‬‭The‬

‭ratHEV positive culture supernatants were harvested after 66 days post infection‬

‭Tiled Illumina sequencing for HEV-3‬

‭Viral‬‭RNA‬‭was‬‭isolated‬‭using‬‭the‬‭QIAamp®‬‭Viral‬‭RNA‬‭kit‬‭(52904,‬‭Qiagen,‬‭Hilden,‬‭Germany)‬

‭following‬ ‭the‬ ‭manufacturer's‬ ‭protocol.‬ ‭Subsequently,‬ ‭a‬ ‭one-step‬ ‭RT-PCR‬ ‭using‬ ‭the‬

‭SuperScript™‬‭IV‬‭One-Step‬‭RT-PCR‬‭System‬‭(12594025,‬‭Thermo‬‭Fisher)‬‭was‬‭performed‬‭for‬

‭each‬ ‭amplicon‬ ‭separately‬‭with‬‭a‬‭total‬‭primer‬‭concentration‬‭of‬‭1‬‭µM.‬‭To‬‭reduce‬‭non-specific‬

‭amplification,‬ ‭reverse‬ ‭transcription‬ ‭was‬ ‭performed‬ ‭at‬ ‭55‬ ‭°C‬ ‭for‬ ‭60‬ ‭min‬ ‭and‬ ‭we‬ ‭gradually‬

‭reduced‬‭the‬‭primer‬‭annealing‬‭temperature‬‭during‬‭the‬‭PCR‬‭in‬‭the‬‭first‬‭10‬‭cycles‬‭(10‬‭sec‬‭at‬‭98‬

‭°C,‬‭10‬‭sec‬‭at‬‭63‬‭°C‬‭(-0.5°C/cycle),‬‭2‬‭min‬‭at‬‭72‬‭°C)‬‭and‬‭then‬‭performed‬‭another‬‭35‬‭cycles‬‭at‬

‭a‬‭constant‬‭annealing‬‭temperature‬‭(10‬‭sec‬‭at‬‭98‬‭°C,‬‭10‬‭sec‬‭at‬‭58‬‭°C,‬‭2‬‭min‬‭at‬‭72‬‭°C).‬‭Next,‬

‭amplicons‬ ‭were‬ ‭pooled‬ ‭and‬ ‭purified‬ ‭using‬ ‭AMPure‬ ‭XP‬‭beads‬‭(A63881,‬‭Beckman‬‭Coulter).‬

‭50-100‬ ‭ng‬ ‭of‬ ‭DNA‬ ‭were‬ ‭prepared‬ ‭for‬ ‭Illumina‬ ‭sequencing‬ ‭using‬ ‭the‬ ‭NEBNext‬ ‭Ultra‬ ‭II‬ ‭FS‬

‭DNA‬ ‭Library‬ ‭Prep‬ ‭Kit‬ ‭(E6177,‬‭NEB,‬‭Frankfurt‬‭am‬‭Main,‬‭Germany).‬‭Normalized‬‭and‬‭pooled‬

‭sequencing‬‭libraries‬‭were‬‭denatured‬‭with‬‭0.2 N‬‭NaOH‬‭and‬‭sequenced‬‭on‬‭an‬‭Illumina‬‭MiSeq‬

‭instrument using the 300-cycle MiSeq Reagent Kit v2 (MS-102-2002, Illumina).‬

‭Tiled Illumina sequencing for BoDV-1, HAV, ratHEV‬

‭Viral‬‭RNA‬‭was‬‭isolated‬‭using‬‭the‬‭QIAamp‬‭Viral‬‭RNA‬‭Mini‬‭Kit‬‭(Qiagen,‬‭Hilden,‬‭Germany)‬‭or‬

‭the‬ ‭EMAG‬ ‭Nucleic‬ ‭Acid‬ ‭Extraction‬ ‭System‬ ‭(Biomeriéux‬ ‭Deutschland‬ ‭GmbH,‬ ‭Nürtingen,‬

‭Germany).‬‭RNA‬‭was‬‭transcribed‬‭into‬‭cDNA‬‭with‬‭LunaScript‬‭RT‬‭SuperMix‬‭Kit‬‭(New‬‭England‬

‭Biolabs,‬ ‭Ipswich,‬ ‭MA,‬ ‭USA)‬ ‭for‬ ‭2‬ ‭min‬ ‭at‬ ‭25‬ ‭°C,‬ ‭10‬ ‭min‬ ‭at‬ ‭55‬ ‭°C‬ ‭and‬‭1‬‭min‬‭at‬‭95‬‭°C.‬‭The‬

‭cDNA‬ ‭was‬ ‭then‬ ‭amplified‬ ‭in‬ ‭single‬ ‭reactions‬ ‭with‬ ‭primer‬ ‭pairs,‬ ‭as‬ ‭well‬ ‭as‬ ‭multiplex‬ ‭PCRs‬

‭with‬‭primer‬‭pools‬‭using‬‭the‬‭Q5‬‭Hot‬‭Start-Fidelity‬‭DNA‬‭Polymerase‬‭Kit‬‭(New‬‭England‬‭Biolabs,‬

‭Ipswich,‬‭MA,‬‭USA)‬‭with‬‭an‬‭initial‬‭step‬‭at‬‭98‬‭°C‬‭for‬‭30‬‭sec,‬‭followed‬‭by‬‭35‬‭cycles‬‭(15‬‭sec‬‭at‬
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‭98‬‭°C,‬‭5‬‭min‬‭65‬‭°C)‬‭and‬‭a‬‭final‬‭extension‬‭step‬‭at‬‭65‬‭°C‬‭for‬‭5‬‭min.‬‭Illumina‬‭sequencing‬‭was‬

‭performed analogous to the HEV-3 sequencing protocol.‬

‭Tiled Illumina sequencing for PV‬

‭PV‬ ‭vaccine‬ ‭strain‬ ‭1-3‬ ‭(Sabin‬ ‭1-3)‬ ‭RNA‬ ‭was‬ ‭isolated‬ ‭using‬ ‭the‬ ‭QIAamp®‬ ‭Viral‬ ‭RNA‬ ‭kit‬

‭(52904,‬‭Qiagen,‬‭Hilden,‬‭Germany)‬‭following‬‭the‬‭manufacturers'‬‭protocol‬‭from‬‭infected‬‭RD-A‬

‭cells,‬ ‭with‬‭PV2‬‭being‬‭archived‬‭RNA‬‭due‬‭to‬‭containment‬‭reasons.‬‭Subsequently,‬‭a‬‭one-step‬

‭RT-PCR‬ ‭using‬ ‭the‬ ‭Qiagen‬ ‭One-step‬ ‭RT-PCR‬ ‭kit‬ ‭(210212,‬ ‭Qiagen,‬ ‭Hilden,‬ ‭Germany)‬ ‭was‬

‭performed‬ ‭for‬ ‭each‬ ‭amplicon‬ ‭separately‬ ‭or‬ ‭for‬ ‭the‬ ‭respective‬ ‭pools‬ ‭with‬ ‭a‬ ‭total‬ ‭primer‬

‭concentration‬ ‭of‬ ‭0.6‬ ‭µM.‬‭Reverse‬‭transcription‬‭step‬‭was‬‭done‬‭for‬‭30‬‭min‬‭at‬‭50‬‭°C‬‭followed‬

‭by‬ ‭an‬ ‭initial‬ ‭PCR‬ ‭activation‬ ‭step‬‭at‬‭95‬‭°C‬‭for‬‭15‬‭min.‬‭Product‬‭amplification‬‭was‬‭done‬‭in‬‭40‬

‭cycles‬ ‭with‬ ‭a‬ ‭stepwise‬ ‭reduction‬ ‭of‬ ‭the‬ ‭primer‬ ‭annealing‬ ‭temperature‬ ‭during‬ ‭the‬ ‭first‬ ‭10‬

‭cycles‬ ‭(30‬ ‭sec‬ ‭at‬ ‭94‬ ‭°C,‬ ‭45‬ ‭sec‬ ‭at‬ ‭70‬ ‭°C‬ ‭(𝜟T‬ ‭-1‬ ‭°C/cycle),‬ ‭90‬ ‭sec‬ ‭72‬ ‭°C)‬‭and‬‭a‬‭constant‬

‭annealing‬ ‭temperature‬ ‭for‬ ‭the‬ ‭next‬ ‭30‬ ‭cycles‬ ‭(30‬ ‭sec‬ ‭at‬ ‭94‬ ‭°C,‬ ‭45‬ ‭sec‬ ‭at‬ ‭60‬ ‭°C‬ ‭,‬ ‭90‬ ‭sec‬

‭72°C)‬‭and‬‭a‬‭final‬‭extension‬‭step‬‭for‬‭10‬‭min‬‭at‬‭72‬‭°C.‬‭Multiplex‬‭RT-PCR‬‭pools‬‭of‬‭each‬‭sample‬

‭were‬ ‭combined‬ ‭and‬ ‭purified‬ ‭using‬ ‭MagSi-NGSPREP-PLUS‬ ‭beads‬ ‭(MDKT00010075,‬

‭Steinbrenner,‬ ‭Germany)‬ ‭according‬ ‭to‬ ‭the‬ ‭manufacturer's‬ ‭manual‬ ‭and‬ ‭DNA‬ ‭concentration‬

‭measured‬ ‭using‬ ‭the‬ ‭Qubit™‬ ‭1X‬ ‭dsDNA‬ ‭Assay-Kit‬ ‭(Q33230,‬ ‭Thermo‬ ‭Fisher‬ ‭Scientific,‬

‭Germany).‬

‭For‬ ‭Illumina‬ ‭sequencing,‬ ‭library‬ ‭preparation‬ ‭was‬ ‭done‬ ‭using‬ ‭70-400‬ ‭ng‬ ‭DNA‬ ‭with‬ ‭the‬

‭Nextera‬ ‭XT‬ ‭DNA‬ ‭Library‬ ‭Preparation‬ ‭Kit‬ ‭(FC-131-1096,‬ ‭Illumina)‬ ‭and‬ ‭sequenced‬ ‭on‬ ‭an‬

‭Illumina MiSeq Instrument (2 x 300 bp read length).‬

‭Tiled ONT sequencing for HAV‬

‭Nucleic‬ ‭acid‬ ‭was‬ ‭extracted‬ ‭from‬ ‭samples‬ ‭on‬ ‭an‬‭EZ1®‬‭Advanced‬‭XL‬‭workstation‬‭using‬‭the‬

‭EZ1‬ ‭Virus‬ ‭Mini‬ ‭Kit‬ ‭v2.0‬ ‭(Qiagen,‬ ‭Hilden,‬ ‭Germany)‬ ‭and‬ ‭transcribed‬ ‭into‬ ‭cDNA‬ ‭with‬

‭LunaScript‬ ‭RT‬ ‭SuperMix‬ ‭Kit‬ ‭(New‬ ‭England‬‭Biolabs,‬‭Ipswich,‬‭MA,‬‭USA)‬‭for‬‭2‬‭min‬‭at‬‭25‬‭°C,‬

‭10‬ ‭min‬ ‭at‬ ‭55‬ ‭°C‬‭and‬‭1‬‭min‬‭at‬‭95‬‭°C.‬‭The‬‭cDNA‬‭was‬‭then‬‭amplified‬‭in‬‭multiplex‬‭PCRs‬‭with‬

‭HAV-specific‬‭primer‬‭pools‬‭using‬‭the‬‭Q5‬‭Hot‬‭Start-Fidelity‬‭DNA‬‭Polymerase‬‭Kit‬‭(New‬‭England‬

‭Biolabs,‬‭Ipswich,‬‭MA,‬‭USA)‬‭with‬‭an‬‭initial‬‭step‬‭at‬‭98‬‭°C‬‭for‬‭30‬‭sec,‬‭followed‬‭by‬‭35‬‭cycles‬‭(15‬

‭sec‬ ‭at‬ ‭98‬ ‭°C,‬ ‭5‬ ‭min‬ ‭65‬ ‭°C)‬ ‭and‬ ‭a‬ ‭final‬ ‭extension‬ ‭step‬ ‭at‬ ‭65‬ ‭°C‬ ‭for‬ ‭5‬ ‭min.‬‭Barcoding‬‭was‬

‭performed‬ ‭with‬ ‭eight‬ ‭samples‬ ‭per‬ ‭run‬ ‭using‬ ‭the‬ ‭Rapid‬ ‭Barcoding‬ ‭Kit‬ ‭96‬ ‭V14‬ ‭(Oxford‬

‭Nanopore‬ ‭Technologies,‬ ‭Oxford,‬ ‭UK).‬ ‭The‬ ‭library‬ ‭was‬‭sequenced‬‭on‬‭an‬‭Mk1C‬‭(MinKNOW‬

‭software version 23.07.12) for 72 hours using an R10.4.1 Flow Cell.‬

‭361‬

‭362‬

‭363‬

‭364‬

‭365‬

‭366‬

‭367‬

‭368‬

‭369‬

‭370‬

‭371‬

‭372‬

‭373‬

‭374‬

‭375‬

‭376‬

‭377‬

‭378‬

‭379‬

‭380‬

‭381‬

‭382‬

‭383‬

‭384‬

‭385‬

‭386‬

‭387‬

‭388‬

‭389‬

‭390‬

‭391‬

‭392‬

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.593102doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593102
http://creativecommons.org/licenses/by-nc-nd/4.0/


‭page‬‭13‬

‭Tiled ONT sequencing for SARS-CoV-2‬

‭A‬ ‭total‬ ‭of‬ ‭14‬ ‭SARS-CoV-2‬ ‭positive‬ ‭extracts,‬ ‭tested‬ ‭at‬ ‭the‬ ‭Robert‬ ‭Koch‬ ‭Institute‬ ‭were‬

‭selected.‬‭These‬‭samples‬‭originated‬‭from‬‭IMSSC2-lab‬‭networks‬‭that‬‭were‬‭received‬‭under‬‭the‬

‭RKI‬ ‭integrated‬ ‭genomic‬ ‭surveillance‬ ‭program.‬ ‭All‬ ‭samples‬ ‭were‬ ‭nasopharyngeal‬ ‭or‬

‭oropharyngeal‬ ‭swabs‬ ‭originating‬ ‭from‬ ‭patients‬ ‭in‬ ‭Germany‬ ‭during‬‭January-February‬‭2024.‬

‭Total‬ ‭nucleic‬ ‭acid‬ ‭extraction‬ ‭was‬ ‭done‬ ‭using‬ ‭MagNA‬ ‭Pure‬ ‭96‬ ‭DNA‬ ‭and‬ ‭viral‬ ‭NA‬ ‭Small‬

‭Volume‬ ‭kit‬ ‭(Roche‬ ‭Life‬ ‭Science,‬ ‭Mannheim,‬ ‭Germany)‬ ‭on‬ ‭an‬ ‭automated‬ ‭extraction‬

‭instrument‬ ‭(MagNA‬ ‭Pure‬ ‭96‬ ‭system,‬ ‭Roche‬ ‭Diagnostics)‬ ‭according‬ ‭to‬ ‭the‬ ‭manufacturer's‬

‭manual.‬ ‭Reverse-transcription‬ ‭was‬ ‭performed‬ ‭on‬ ‭viral‬‭RNA‬‭extracts‬‭using‬‭LunaScript®‬‭RT‬

‭SuperMix‬ ‭(New‬ ‭England‬ ‭Biolabs,‬ ‭as‬ ‭part‬‭of‬‭the‬‭NEBNext‬‭ARTIC‬‭SARS-CoV-2‬‭Companion‬

‭Kit‬ ‭(Oxford‬ ‭Nanopore‬‭Technologies)‬‭according‬‭to‬‭the‬‭manufacturer’s‬‭protocol.‬‭Amplification‬

‭was‬‭performed‬‭with‬‭35‬‭cycles‬‭of‬‭annealing‬‭temperature‬‭of‬‭60‬‭°C‬‭for‬‭2‬‭min‬‭and‬‭elongation‬‭at‬

‭72‬ ‭°C‬ ‭for‬ ‭3‬ ‭min‬ ‭for‬ ‭both‬ ‭pools,‬ ‭without‬ ‭amplicons‬ ‭cleanup‬ ‭afterward.‬ ‭The‬ ‭barcoding‬ ‭was‬

‭done‬‭using‬‭ONT‬‭Native‬‭Barcoding‬‭Expansion‬‭kit‬‭(EXP-NBD196).‬‭Fourteen‬‭samples‬‭together‬

‭with‬ ‭2‬ ‭negative‬ ‭controls‬ ‭were‬ ‭multiplexed‬ ‭on‬ ‭a‬ ‭FLO-MIN‬ ‭114‬ ‭flow‬ ‭cell‬ ‭version‬ ‭R10‬ ‭and‬

‭sequenced on a GridION Mk1 device for 16 hours.‬

‭RT-qPCR (PV 1-3)‬

‭The‬‭different‬‭varVAMP‬‭RT-qPCR‬‭assays‬‭were‬‭performed‬‭on‬‭serial‬‭dilution‬‭series‬‭of‬‭PV‬‭1-3‬

‭(Sabin)‬ ‭RNA‬ ‭with‬ ‭a‬ ‭RNA‬ ‭concentration‬ ‭ranging‬ ‭from‬ ‭1-3‬ ‭ng/µl‬ ‭of‬ ‭the‬ ‭stock‬ ‭solution‬ ‭to‬

‭evaluate‬ ‭the‬ ‭performance‬ ‭and‬ ‭sensitivity‬ ‭of‬ ‭the‬ ‭different‬ ‭assays.‬ ‭For‬ ‭proof‬ ‭of‬ ‭lack‬ ‭of‬

‭cross-detection‬ ‭between‬ ‭the‬ ‭PV‬ ‭vaccine‬ ‭strains,‬ ‭all‬ ‭possible‬ ‭combinations‬ ‭were‬ ‭tested.‬

‭Quantitative‬ ‭realtime‬ ‭RT-PCR‬ ‭was‬ ‭carried‬ ‭out‬ ‭using‬ ‭the‬ ‭4X‬ ‭CAPITAL™‬ ‭1-Step‬ ‭qRT-PCR‬

‭Probe‬ ‭Master‬ ‭Mix‬ ‭(BR0502002,‬ ‭Biotechrabbit,‬ ‭Germany)‬ ‭on‬‭a‬‭Roche‬‭instrument,‬‭following‬

‭the‬ ‭manufacturer’s‬ ‭instructions.‬ ‭The‬ ‭reaction‬ ‭contained‬ ‭0.4‬ ‭µM‬ ‭of‬ ‭each‬ ‭primer‬‭with‬‭a‬‭total‬

‭reaction‬ ‭volume‬ ‭of‬‭20‬‭µl.‬‭qRT-PCR‬‭cycling‬‭program‬‭started‬‭with‬‭reverse‬‭transcription‬‭at‬‭50‬

‭°C‬ ‭for‬ ‭10‬ ‭min‬ ‭followed‬ ‭by‬ ‭an‬ ‭activation‬ ‭step‬ ‭at‬ ‭95‬ ‭°C‬ ‭for‬ ‭3‬ ‭min‬ ‭and‬ ‭45‬ ‭cycles‬ ‭for‬ ‭target‬

‭amplification‬‭(95‬‭°C‬‭for‬‭10‬‭sec,‬‭59‬‭°C‬‭for‬‭30‬‭sec).‬‭Primer‬‭annealing‬‭temperature‬‭was‬‭chosen‬

‭after‬‭preliminary‬‭tests‬‭with‬‭different‬‭annealing‬‭temperature‬‭settings‬‭ranging‬‭from‬‭56‬‭-‬‭64‬‭°C‬

‭on‬ ‭a‬ ‭Biometra‬ ‭TAdvanced‬ ‭(analytik‬ ‭jena,‬ ‭Germany)‬ ‭and‬ ‭product‬ ‭observation‬ ‭on‬ ‭an‬ ‭1.5%‬

‭agarose‬‭gel.‬‭The‬‭fluorescence‬‭was‬‭measured‬‭during‬‭the‬‭extension‬‭step‬‭with‬‭three‬‭different‬

‭channel‬‭setups‬‭respective‬‭to‬‭the‬‭probe‬‭fluorophore‬‭(FAM‬‭=‬‭465-510‬‭nm,‬‭JOE‬‭=‬‭533-580‬‭nm,‬

‭CY5 = 618-660 nm).‬

‭Sequencing data analysis‬

‭The‬‭de-multiplexed‬‭raw‬‭Illumina‬‭reads‬‭were‬‭subjected‬‭to‬‭a‬‭custom‬‭Galaxy‬‭pipeline‬‭which‬‭we‬

‭had‬ ‭initially‬ ‭developed‬ ‭for‬ ‭tiled‬ ‭amplicon‬ ‭sequencing‬ ‭of‬ ‭SARS-CoV-2‬‭6‬‭.‬ ‭These‬ ‭reads‬ ‭were‬
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‭pre-processed‬ ‭with‬ ‭fastp‬ ‭(v0.20.1)‬ ‭43‬ ‭and‬ ‭mapped‬ ‭to‬ ‭respective‬ ‭closely‬ ‭related‬ ‭genomes‬

‭using‬‭BWA-MEM‬‭44‬ ‭(v0.7.17).‬‭Importantly,‬‭the‬‭3’‬‭and‬‭5’‬‭regions‬‭of‬‭the‬‭viral‬‭reference‬‭genome‬

‭were‬ ‭masked‬ ‭prior‬ ‭mapping‬ ‭until‬ ‭the‬ ‭5’‬ ‭and‬ ‭3’‬ ‭end‬ ‭of‬ ‭the‬ ‭flanking‬ ‭primer‬‭binding‬‭regions,‬

‭respectively,‬ ‭as‬ ‭no‬ ‭novel‬ ‭information‬ ‭can‬ ‭be‬ ‭generated‬ ‭in‬ ‭these‬ ‭regions.‬ ‭Post‬ ‭mapping,‬

‭primer‬ ‭sequences‬ ‭were‬ ‭trimmed‬ ‭with‬ ‭ivar‬ ‭trim‬ ‭(v1.3.1).‬ ‭Variants‬ ‭(SNPs‬‭and‬‭INDELs)‬‭were‬

‭called‬ ‭with‬ ‭the‬ ‭ultrasensitive‬ ‭variant‬ ‭caller‬ ‭LoFreq‬‭45‬ ‭(v2.1.5),‬ ‭demanding‬ ‭a‬ ‭minimum‬ ‭base‬

‭quality‬‭of‬‭30‬‭and‬‭a‬‭coverage‬‭of‬‭at‬‭least‬‭20-fold.‬‭Afterwards,‬‭the‬‭called‬‭variants‬‭were‬‭filtered‬

‭based‬ ‭on‬ ‭a‬ ‭minimum‬ ‭variant‬ ‭frequency‬ ‭of‬ ‭10%‬ ‭and‬ ‭on‬ ‭strand‬ ‭bias‬ ‭support.‬ ‭Finally,‬

‭consensus‬ ‭sequences‬ ‭were‬ ‭constructed‬ ‭with‬ ‭bcftools‬ ‭(v1.15.1)‬‭46‬‭.‬‭Regions‬‭at‬‭both‬‭genome‬

‭ends‬‭that‬‭lie‬‭outside‬‭the‬‭amplicons,‬‭regions‬‭with‬‭low‬‭coverage‬‭(<20x)‬‭or‬‭variant‬‭frequencies‬

‭between 0.3 and 0.7 were masked with Ns.‬

‭For‬ ‭Oxford‬ ‭nanopore‬ ‭sequencing‬ ‭of‬ ‭SARS-CoV-2,‬ ‭poreCov‬ ‭(v1.9.3),‬ ‭a‬ ‭Nextflow‬ ‭workflow‬

‭specifically‬ ‭tailored‬ ‭for‬ ‭SARS-CoV-2‬ ‭genome‬ ‭reconstruction‬ ‭from‬‭nanopore‬‭amplicon‬‭data,‬

‭was‬‭used‬‭to‬‭perform‬‭mapping‬‭(minimap2;‬‭v2.17)‬‭47‬‭,‬‭primer‬‭clipping,‬‭variant‬‭calling‬‭(Medaka;‬

‭v1.8.0),‬ ‭and‬ ‭consensus‬ ‭genome‬ ‭reconstruction‬‭48‬‭.‬ ‭We‬ ‭ran‬ ‭poreCov‬ ‭to‬ ‭initially‬ ‭filter‬ ‭reads‬

‭below‬ ‭400‬ ‭bp‬ ‭(--minLength‬ ‭400)‬ ‭and‬ ‭above‬ ‭1‬ ‭kbp‬ ‭(--maxLength‬ ‭1000)‬ ‭while‬ ‭coverage‬

‭downsampling‬ ‭was‬ ‭disabled‬ ‭(--artic_normalize‬ ‭0).‬ ‭The‬ ‭r1041_e82_400bps_sup_v4.2.0‬

‭model‬ ‭was‬ ‭used‬ ‭for‬ ‭variant‬ ‭calling‬ ‭with‬ ‭Medaka‬ ‭and‬ ‭detected‬ ‭variant‬ ‭calls‬ ‭filtered‬ ‭by‬ ‭a‬

‭minimum‬‭base‬‭quality‬‭of‬‭20‬‭and‬‭a‬‭coverage‬‭of‬‭at‬‭least‬‭20-fold.‬‭We‬‭set‬‭the‬‭allelic‬‭frequency‬

‭of called mutations to 1 to ensure compatibility with the Illumina data for the in silico analysis.‬

‭For‬ ‭Oxford‬ ‭nanopore‬ ‭sequencing‬ ‭of‬ ‭HAV‬ ‭samples,‬ ‭pod5‬ ‭raw‬ ‭data‬ ‭was‬ ‭duplex‬ ‭basecalled‬

‭with‬‭Dorado‬‭version‬‭0.5.3‬‭and‬‭demultiplexed.‬‭Subsequent,‬‭fastq‬‭files‬‭were‬‭again‬‭processed‬

‭using‬ ‭a‬ ‭custom‬ ‭Galaxy‬ ‭pipeline.‬ ‭First,‬ ‭raw‬ ‭data‬ ‭was‬ ‭pre-processed‬ ‭with‬ ‭fastp‬‭43‬ ‭excluding‬

‭reads‬‭<50‬‭bp‬‭and‬‭>2000‬‭bp.‬‭Afterwards,‬‭reads‬‭were‬‭mapped‬‭to‬‭the‬‭HAV‬‭reference‬‭genome‬

‭NC_001607‬ ‭using‬ ‭minimap2‬ ‭(v2.17)‬‭47‬ ‭and‬ ‭trimmed‬ ‭with‬ ‭ivar‬ ‭trim‬ ‭(v1.3.1).‬ ‭Variants‬ ‭were‬

‭called‬ ‭with‬ ‭medaka‬ ‭(v1.3.2)‬ ‭and‬ ‭consensus‬ ‭sequences‬ ‭were‬ ‭constructed‬ ‭with‬ ‭bcftools‬

‭(v.1.15.1)‬‭46‬‭.‬ ‭Regions‬ ‭at‬ ‭both‬ ‭genome‬ ‭ends‬ ‭that‬ ‭lie‬ ‭outside‬ ‭the‬ ‭amplicons‬‭and‬‭regions‬‭with‬

‭low coverage (<20x) were masked with Ns.‬

‭Data analysis and visualization‬

‭qPCR‬ ‭amplification‬ ‭curves‬ ‭were‬ ‭analyzed‬ ‭using‬ ‭the‬ ‭Roche‬ ‭LightCycler‬ ‭480‬ ‭II‬ ‭device‬

‭software‬ ‭version‬ ‭LCS480‬ ‭1.5.1.62‬ ‭(Roche‬ ‭Applied‬ ‭Science).‬ ‭Data‬ ‭was‬‭analyzed‬‭using‬‭the‬

‭2nd‬ ‭derivative.‬ ‭Mapped‬ ‭bam‬ ‭files‬ ‭were‬ ‭analyzed‬ ‭and‬ ‭visualized‬ ‭with‬ ‭BAMdash‬ ‭v.0.2.4‬

‭(‬‭https://github.com/jonas-fuchs/BAMdash‬‭).‬ ‭We‬ ‭used‬ ‭GraphPad‬ ‭Prism‬ ‭8‬ ‭(genome‬ ‭recovery‬

‭and‬ ‭qPCR),‬‭R‬‭4.3.2‬‭(phylogenetic‬‭tree)‬‭or‬‭python‬‭3.11‬‭(remaining‬‭figures)‬‭for‬‭data‬‭analysis‬

‭and‬ ‭visualization.‬ ‭The‬ ‭data‬ ‭and‬ ‭code‬ ‭to‬ ‭reproduce‬ ‭the‬ ‭figures‬ ‭is‬ ‭available‬ ‭at:‬
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‭https://github.com/jonas-fuchs/varVAMP_in_silico_analysis‬‭.‬ ‭The‬ ‭schematic‬ ‭varVAMP‬

‭workflow‬ ‭and‬ ‭data‬ ‭preparation‬ ‭workflow‬ ‭were‬ ‭created‬ ‭with‬ ‭biorender‬

‭(‬‭https://www.biorender.com‬‭).‬

‭RESULTS‬

‭Software and output‬

‭The‬ ‭command-line‬ ‭tool‬ ‭varVAMP‬‭was‬‭written‬‭in‬‭python3‬‭and‬‭requires‬‭only‬‭a‬‭pre-computed‬

‭MSA‬ ‭as‬ ‭input.‬ ‭Notably,‬ ‭varVAMP‬ ‭is‬ ‭cross-platform‬ ‭(Windows‬ ‭11,‬ ‭MacOS‬ ‭and‬ ‭Linux)‬ ‭with‬

‭python‬ ‭3.9‬ ‭or‬‭higher‬‭being‬‭the‬‭single‬‭requirement‬‭prior‬‭to‬‭installation.‬‭varVAMP‬‭can‬‭design‬

‭primers‬ ‭for‬ ‭single‬ ‭amplicons,‬ ‭tiled‬ ‭amplicon‬ ‭schemes‬ ‭and‬ ‭qPCR.‬ ‭The‬ ‭pipeline‬ ‭consists‬ ‭of‬

‭multiple‬‭steps‬‭that‬‭are‬‭common‬‭to‬‭all‬‭different‬‭modes‬‭(alignment‬‭preprocessing,‬‭consensus‬

‭generation‬ ‭and‬ ‭primer‬ ‭evaluation),‬ ‭mode-specific‬ ‭or‬ ‭optional‬ ‭(automatic‬ ‭parameter‬ ‭search‬

‭and‬ ‭BLAST‬ ‭evaluation)‬ ‭(Fig.‬ ‭1a).‬ ‭At‬ ‭its‬ ‭core,‬ ‭varVAMP‬ ‭wraps‬ ‭Primer3‬‭17‬ ‭and‬ ‭uses‬ ‭a‬

‭kmer-based‬‭approach‬‭to‬‭find‬‭all‬‭potential‬‭primers‬‭in‬‭a‬‭consensus‬‭sequence‬‭calculated‬‭from‬

‭the‬‭input‬‭MSA.‬‭varVAMP‬‭addresses‬‭the‬‭MC-DGD‬‭problem‬‭by‬‭first‬‭calculating‬‭two‬‭consensus‬

‭sequences‬ ‭that‬ ‭consist‬ ‭either‬ ‭of‬ ‭the‬ ‭majority‬ ‭nucleotides‬ ‭at‬ ‭each‬ ‭position‬ ‭or‬ ‭integrate‬

‭degenerate‬ ‭nucleotides.‬ ‭The‬ ‭latter‬ ‭is‬ ‭used‬ ‭to‬ ‭find‬ ‭potential‬‭primer‬‭regions‬‭that‬‭are‬‭regions‬

‭with‬ ‭a‬ ‭user-defined‬ ‭maximum‬ ‭amount‬ ‭of‬ ‭degenerate‬ ‭nucleotides‬‭within‬‭the‬‭minimal‬‭primer‬

‭length.‬‭Afterwards,‬‭kmers‬‭of‬‭the‬‭majority‬‭consensus‬‭sequence‬‭that‬‭lie‬‭within‬‭these‬‭potential‬

‭primer‬ ‭regions‬ ‭are‬ ‭tested‬ ‭for‬ ‭all‬ ‭relevant‬ ‭primer‬ ‭parameters.‬ ‭varVAMP‬ ‭evaluates‬ ‭these‬

‭primers‬ ‭via‬ ‭a‬ ‭penalty‬ ‭system‬ ‭that‬ ‭incorporates‬ ‭information‬ ‭about‬ ‭primer‬ ‭parameters,‬ ‭3’‬

‭mismatches,‬ ‭and‬ ‭degeneracy.‬ ‭In‬ ‭its‬ ‭tiled‬ ‭sequencing‬ ‭mode,‬ ‭varVAMP‬ ‭finds‬ ‭overlapping‬

‭amplicons‬ ‭spanning‬ ‭the‬ ‭alignment‬ ‭while‬ ‭minimizing‬ ‭primer‬ ‭penalties‬ ‭by‬ ‭using‬ ‭Dijkstra’s‬

‭algorithm‬ ‭for‬ ‭finding‬ ‭the‬ ‭shortest‬ ‭paths‬ ‭between‬ ‭nodes‬ ‭in‬ ‭a‬‭weighted‬‭graph‬‭24‬‭.‬‭For‬‭qPCRs,‬

‭varVAMP‬ ‭evaluates‬ ‭probe‬ ‭and‬ ‭primer‬ ‭parameters‬ ‭independently‬ ‭and‬ ‭tests‬ ‭the‬ ‭ΔG‬ ‭of‬

‭potential‬ ‭qPCR‬ ‭amplicons.‬ ‭The‬ ‭final‬ ‭primers‬ ‭are‬ ‭then‬ ‭deduced‬ ‭from‬ ‭the‬ ‭consensus‬

‭sequence‬ ‭incorporating‬ ‭degenerate‬ ‭nucleotides.‬ ‭For‬ ‭some‬ ‭of‬ ‭the‬ ‭more‬ ‭computationally‬

‭intensive‬‭tasks,‬‭the‬‭program‬‭is‬‭capable‬‭of‬‭using‬‭multicore‬‭processing.‬‭Although‬‭we‬‭have‬‭not‬

‭extensively‬ ‭evaluated‬ ‭the‬ ‭running‬ ‭times,‬ ‭varVAMP‬ ‭typically‬ ‭finishes‬ ‭within‬ ‭seconds‬ ‭to‬

‭minutes.‬‭This‬‭is‬‭highly‬‭dependent‬‭on‬‭the‬‭alignment’s‬‭size‬‭and‬‭number‬‭of‬‭sequences,‬‭as‬‭well‬

‭as‬‭the‬‭alignment’s‬‭sequence‬‭variability‬‭that‬‭directly‬‭influences‬‭the‬‭amount‬‭of‬‭found‬‭primers.‬

‭varVAMP‬ ‭produces‬ ‭multiple‬ ‭outputs‬ ‭in‬ ‭standardized‬ ‭formats‬ ‭and‬ ‭a‬ ‭plot‬ ‭displaying‬ ‭the‬

‭alignment’s‬ ‭normalized‬ ‭Shannon’s‬ ‭entropy,‬ ‭all‬ ‭potential‬ ‭target‬ ‭regions,‬ ‭all‬ ‭primers‬ ‭that‬

‭passed‬‭the‬‭initial‬‭filtering‬‭steps‬‭and‬‭the‬‭final‬‭amplicon‬‭design‬‭with‬‭low‬‭penalty‬‭primers‬‭(Fig.‬

‭1b).‬
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‭Design and evaluation of HEV pan-specific primers‬

‭HEV‬ ‭of‬ ‭the‬ ‭genus‬ ‭Paslahepevirus‬ ‭is‬ ‭the‬ ‭most‬ ‭common‬ ‭cause‬ ‭of‬ ‭acute‬ ‭viral‬ ‭hepatitis‬

‭worldwide‬‭and‬‭is‬‭phylogenetically‬‭separated‬‭into‬‭four‬‭distinct‬‭genotypes‬‭(genotypes‬‭1-4).‬‭In‬

‭risk‬ ‭groups‬ ‭such‬ ‭as‬ ‭immunocompromised‬ ‭patients,‬ ‭the‬ ‭zoonotic‬ ‭HEV‬ ‭genotype‬ ‭3‬‭(HEV-3)‬

‭can‬ ‭cause‬ ‭acute‬ ‭or‬ ‭chronic‬ ‭hepatitis‬‭49‬‭.‬ ‭HEV-3‬ ‭has‬ ‭a‬ ‭high‬ ‭prevalence‬ ‭in‬ ‭industrialized‬

‭countries‬ ‭and‬ ‭is‬ ‭further‬‭classified‬‭into‬‭subgenotypes‬‭with‬‭varying‬‭prevalence‬‭depending‬‭on‬

‭the‬‭geographic‬‭region‬‭50‬‭.‬‭Most‬‭genome‬‭sequences‬‭show‬‭exceptional‬‭variability‬‭51‬ ‭and‬‭have‬‭to‬

‭be‬‭generated‬‭from‬‭the‬‭initial‬‭patient‬‭material‬‭as‬‭virus‬‭isolations‬‭require‬‭optimized‬‭cell‬‭culture‬

‭systems‬‭37‬‭.‬ ‭To‬ ‭provide‬ ‭a‬ ‭simple‬ ‭sequencing‬ ‭procedure‬ ‭from‬ ‭patient‬ ‭material‬ ‭and‬ ‭to‬ ‭test‬

‭varVAMP’s‬ ‭real-world‬ ‭applicability,‬‭we‬‭set‬‭out‬‭to‬‭design‬‭primers‬‭for‬‭HEV-3‬‭tiled‬‭sequencing‬

‭as‬ ‭a‬ ‭proof-of-principle.‬ ‭We‬ ‭initially‬ ‭downloaded‬ ‭all‬ ‭available‬ ‭full-genome‬ ‭HEV‬ ‭sequences‬

‭from‬ ‭NCBI’s‬ ‭genbank‬ ‭and‬ ‭classified‬ ‭the‬ ‭(sub-)‬ ‭genotypes‬ ‭using‬ ‭fasta36‬ ‭as‬ ‭previously‬

‭described‬‭(Fig.‬‭2a)‬‭2‬‭.‬‭Our‬‭aim‬‭was‬‭to‬‭design‬‭primers‬‭that‬‭would‬‭be‬‭specific‬‭for‬‭multiple‬‭HEV-3‬

‭sub-genotypes.‬ ‭Therefore,‬ ‭sequences‬ ‭were‬ ‭clustered‬ ‭based‬ ‭on‬ ‭their‬ ‭similarity‬ ‭using‬

‭vsearch‬‭29‬ ‭and‬ ‭the‬ ‭clustering‬ ‭result‬ ‭evaluated‬ ‭by‬ ‭constructing‬ ‭a‬ ‭maximum-likelihood‬

‭phylogenetic‬ ‭tree‬ ‭with‬ ‭IQ-TREE‬ ‭2‬‭30‬‭.‬ ‭Clustering‬‭resulted‬‭in‬‭seven‬‭clusters‬‭with‬‭more‬‭than‬‭6‬

‭sequences‬ ‭(Fig.‬ ‭2b).‬ ‭Four‬ ‭large‬ ‭clusters‬ ‭belonged‬ ‭to‬ ‭HEV-3‬ ‭each‬ ‭comprising‬ ‭multiple‬

‭subgenotypes.‬‭We‬‭decided‬‭to‬‭design‬‭primers‬‭for‬‭cluster‬‭2‬‭(HEV-3‬‭f,‬‭e)‬‭and‬‭cluster‬‭4‬‭(HEV-3‬

‭c,‬ ‭h1,‬ ‭m,‬ ‭i,‬ ‭uc,‬ ‭l)‬ ‭to‬ ‭reflect‬ ‭the‬ ‭most‬ ‭common‬ ‭European‬ ‭HEV-3‬ ‭subgenotypes‬‭2‬‭.‬‭Therefore,‬

‭sequences‬ ‭of‬ ‭cluster‬ ‭2‬ ‭and‬ ‭4‬ ‭were‬ ‭separately‬ ‭aligned‬ ‭with‬ ‭MAFFT‬‭32‬ ‭and‬ ‭the‬ ‭alignments‬

‭used‬‭as‬‭the‬‭input‬‭for‬‭varVAMP‬‭yielding‬‭seven‬‭and‬‭six‬‭1-1.5‬‭kb‬‭amplicons,‬‭respectively‬‭(Fig.‬

‭2a‬ ‭and‬ ‭Table‬ ‭1).‬‭Next,‬‭we‬‭evaluated‬‭these‬‭primer‬‭schemes‬‭on‬‭persistently‬‭HEV-3‬‭f‬‭(strain:‬

‭15-22016)‬‭and‬‭c‬‭(strain:‬‭14-16753)‬‭infected‬‭cell‬‭cultures‬‭using‬‭a‬‭one-step‬‭RT-PCR‬‭protocol.‬

‭Agarose‬ ‭gel‬ ‭electrophoresis‬ ‭showed‬ ‭consistent‬ ‭and‬ ‭strong‬ ‭amplification‬ ‭for‬ ‭all‬ ‭amplicons‬

‭with‬‭only‬‭a‬‭few‬‭unspecific‬‭bands‬‭for‬‭amplicon‬‭2‬‭and‬‭3‬‭of‬‭cluster‬‭4‬‭(Fig.‬‭2c).‬‭Next‬‭generation‬

‭Illumina‬‭sequencing‬‭of‬‭the‬‭pooled‬‭PCR‬‭products‬‭resulted‬‭in‬‭an‬‭even‬‭and‬‭high‬‭coverage‬‭for‬

‭both‬‭samples‬‭(Fig.‬‭2d).‬‭To‬‭further‬‭evaluate‬‭the‬‭primer‬‭schemes,‬‭we‬‭applied‬‭our‬‭protocol‬‭to‬‭a‬

‭third‬ ‭HEV-3‬‭e‬‭(strain:‬‭14-22707)‬‭persistently‬‭infected‬‭cell‬‭culture‬‭for‬‭cluster‬‭2‬‭and‬‭to‬‭HEV-3‬

‭positive‬‭patient‬‭material‬‭for‬‭both‬‭clusters.‬‭In‬‭order‬‭to‬‭select‬‭the‬‭proper‬‭amplicon‬‭scheme,‬‭we‬

‭first‬ ‭subclassified‬ ‭HEV-3‬ ‭positive‬ ‭blood‬ ‭samples.‬ ‭Next,‬ ‭we‬ ‭evaluated‬ ‭the‬ ‭cluster‬ ‭2‬ ‭and‬ ‭4‬

‭primer‬‭schemes‬‭on‬‭HEV-3‬‭e‬‭(n=2)‬‭or‬‭HEV-3‬‭c‬‭(n=4)‬‭samples,‬‭respectively.‬‭Next-generation‬

‭sequencing‬ ‭results‬ ‭were‬ ‭comparable‬ ‭to‬ ‭the‬ ‭prior‬ ‭results‬ ‭and‬ ‭allowed‬ ‭HEV-3‬ ‭genome‬

‭reconstruction‬‭(Fig.‬‭2e‬‭and‬‭S1).‬‭However,‬‭for‬‭patient‬‭2‬‭of‬‭cluster‬‭2‬‭and‬‭patient‬‭4‬‭of‬‭cluster‬‭4‬

‭we‬ ‭observed‬ ‭a‬ ‭single‬ ‭amplicon‬ ‭dropout‬ ‭(S1).‬ ‭Interestingly,‬ ‭both‬ ‭dropouts‬ ‭were‬ ‭caused‬ ‭by‬

‭amplicons‬ ‭with‬ ‭a‬ ‭forward‬ ‭primer‬ ‭close‬ ‭to‬ ‭the‬ ‭HEV-3‬ ‭hypervariable‬ ‭region‬‭51‬ ‭suggesting‬‭the‬

‭presence of potential INDELs or variations that might have restricted primer binding.‬
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‭In‬‭summary,‬‭we‬‭used‬‭varVAMP‬‭to‬‭design‬‭two‬‭tiled‬‭primer‬‭schemes‬‭each‬‭specific‬‭for‬‭multiple‬

‭HEV-3‬ ‭sub-genotypes‬ ‭and‬ ‭used‬ ‭Illumina‬ ‭sequencing‬ ‭to‬ ‭recover‬ ‭near-to-complete‬ ‭viral‬

‭genomes for both infected cell cultures and patient material.‬

‭In‬‭silico‬‭design‬‭and‬‭evaluation‬‭of‬‭primer‬‭schemes‬‭for‬‭multiple‬‭viral‬‭pathogens‬
‭with diverse sequencing variability‬

‭We‬ ‭designed‬ ‭primer‬ ‭schemes‬ ‭for‬ ‭tiled‬ ‭full-genome‬ ‭sequencing‬ ‭for‬ ‭SARS-CoV-2,‬ ‭BoDV-1,‬

‭HAV,‬‭PV‬‭and‬‭ratHEV‬‭that‬‭display‬‭different‬‭degrees‬‭of‬‭sequence‬‭conservation‬‭over‬‭the‬‭whole‬

‭genome‬‭with‬‭SARS-CoV-2‬‭having‬‭the‬‭lowest‬‭(99‬‭%‬‭pairwise‬‭identity)‬‭and‬‭ratHEV‬‭the‬‭highest‬

‭overall‬‭sequence‬‭variability‬‭(57‬‭%‬‭pairwise‬‭identity)‬‭(Table‬‭1‬‭and‬‭Fig.‬‭3a).‬‭Similar‬‭to‬‭HEV-3,‬

‭pan-specific‬ ‭amplicon‬ ‭sequencing‬ ‭protocols‬ ‭would‬ ‭massively‬ ‭simplify‬ ‭diagnostics‬ ‭and‬

‭surveillance.‬ ‭The‬ ‭initial‬ ‭data‬ ‭selection‬ ‭and‬ ‭pre-processing‬ ‭was‬ ‭highly‬ ‭dependent‬ ‭on‬ ‭the‬

‭individual‬‭data‬‭sets‬‭and‬‭inspired‬‭by‬‭our‬‭experiences‬‭with‬‭HEV-3.‬‭Only‬‭for‬‭SARS-CoV-2,‬‭we‬

‭did‬ ‭not‬ ‭directly‬ ‭align‬ ‭sequences‬ ‭from‬ ‭public‬ ‭databases,‬ ‭but‬ ‭created‬ ‭representative‬

‭consensus‬ ‭sequences‬ ‭of‬ ‭circulating‬ ‭lineages‬ ‭in‬ ‭Germany‬ ‭between‬ ‭October‬ ‭2021‬ ‭and‬

‭September‬‭2023‬‭(920k‬‭samples)‬‭to‬‭represent‬‭the‬‭most‬‭prevalent‬‭variations‬‭for‬‭each‬‭lineage‬

‭within‬ ‭the‬ ‭alignment.‬‭Depending‬‭on‬‭the‬‭mean‬‭pairwise‬‭identity,‬‭we‬‭chose‬‭to‬‭tolerate‬‭one‬‭to‬

‭five‬ ‭ambiguous‬ ‭bases‬ ‭within‬ ‭the‬ ‭primer‬ ‭sequences‬ ‭and‬ ‭optimized‬ ‭the‬ ‭identity‬ ‭threshold‬

‭(Table‬‭1).‬‭With‬‭the‬‭exception‬‭of‬‭BoDV-1‬‭and‬‭SARS-CoV-2,‬‭we‬‭aimed‬‭for‬‭an‬‭amplicon‬‭size‬‭of‬

‭over‬ ‭1000‬ ‭bp‬ ‭so‬ ‭amplicons‬ ‭could‬ ‭span‬ ‭regions‬ ‭with‬ ‭an‬ ‭overall‬ ‭higher‬ ‭variability‬ ‭in‬ ‭which‬

‭potential‬ ‭primers‬ ‭are‬ ‭scarce‬ ‭(Fig.‬‭3a).‬‭Next,‬‭we‬‭evaluated‬‭the‬‭designed‬‭primer‬‭schemes‬‭in‬

‭silico‬‭prior to wet-lab evaluation.‬

‭First,‬‭we‬‭analyzed‬‭the‬‭degeneracy‬‭per‬‭primer‬‭as‬‭this‬‭is‬‭highly‬‭penalized‬‭by‬‭varVAMP‬‭to‬‭keep‬

‭the‬‭number‬‭of‬‭permutations‬‭minimal.‬‭Two,‬‭four‬‭and‬‭five‬‭tolerated‬‭ambiguous‬‭bases‬‭within‬‭a‬

‭primer‬ ‭sequence‬ ‭can‬ ‭lead‬ ‭to‬ ‭a‬ ‭maximum‬ ‭degeneracy‬ ‭of‬ ‭4,‬ ‭256‬ ‭and‬ ‭1024,‬ ‭respectively.‬

‭However,‬ ‭for‬ ‭the‬ ‭primer‬ ‭schemes‬ ‭with‬ ‭four‬ ‭and‬ ‭five‬ ‭tolerated‬ ‭ambiguous‬ ‭bases‬ ‭the‬ ‭mean‬

‭number‬ ‭of‬ ‭permutations‬ ‭was‬ ‭over‬ ‭10-fold‬ ‭lower‬ ‭than‬ ‭theoretically‬ ‭possible,‬ ‭indicating‬ ‭a‬

‭preferential‬ ‭selection‬ ‭of‬ ‭primers‬ ‭with‬ ‭a‬ ‭low‬ ‭degeneracy‬ ‭(Fig.‬ ‭3b).‬ ‭With‬ ‭the‬ ‭integration‬ ‭of‬

‭ambiguous‬ ‭bases,‬ ‭varVAMP‬ ‭aims‬ ‭to‬ ‭minimize‬ ‭mismatches‬ ‭with‬ ‭the‬ ‭input‬‭MSA.‬‭Therefore,‬

‭we‬ ‭analyzed‬ ‭for‬ ‭each‬ ‭scheme‬ ‭the‬ ‭number‬ ‭of‬ ‭mismatches‬ ‭against‬ ‭sequences‬ ‭in‬ ‭the‬ ‭MSA‬

‭(Fig.‬ ‭3c).‬ ‭Indeed,‬ ‭the‬ ‭large‬ ‭majority‬ ‭of‬ ‭build‬ ‭consensus‬ ‭sequences‬‭did‬‭not‬‭have‬‭sequence‬

‭variations‬ ‭not‬ ‭covered‬ ‭by‬ ‭any‬ ‭primer‬ ‭permutations‬ ‭with‬ ‭ratHEV‬ ‭having‬ ‭higher‬ ‭number‬ ‭of‬

‭mismatches‬‭likely‬‭due‬‭to‬‭the‬‭sequence‬‭variability‬‭of‬‭the‬‭MSA‬‭(Fig.‬‭3‬‭a).‬‭varVAMP‬‭penalizes‬

‭mismatches‬ ‭in‬ ‭the‬ ‭last‬ ‭five‬ ‭bases‬ ‭of‬ ‭a‬ ‭primer’s‬ ‭3’‬ ‭end‬ ‭to‬ ‭ensure‬ ‭stable‬ ‭target‬ ‭binding.‬‭By‬

‭analyzing‬ ‭the‬ ‭position-dependent‬ ‭mismatches‬ ‭of‬ ‭all‬ ‭primers‬ ‭in‬ ‭a‬ ‭scheme,‬ ‭we‬ ‭indeed‬

‭observed‬‭that‬‭most‬‭sequences‬‭of‬‭the‬‭input‬‭MSA‬‭displayed‬‭a‬‭low‬‭frequency‬‭of‬‭mismatches‬‭at‬
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‭the‬ ‭3’‬ ‭end‬ ‭of‬ ‭the‬ ‭primers‬ ‭(Fig.‬ ‭3d).‬ ‭Starting‬ ‭at‬ ‭the‬ ‭3’‬ ‭end,‬ ‭the‬ ‭number‬ ‭of‬ ‭mismatches‬

‭increased‬ ‭in‬ ‭consistent‬ ‭waves‬ ‭of‬ ‭three‬ ‭nucleotides‬ ‭for‬ ‭all‬ ‭primer‬ ‭schemes‬ ‭except‬

‭SARS-CoV-2.‬‭We‬‭hypothesized‬‭that‬‭this‬‭might‬‭be‬‭due‬‭to‬‭synonymous‬‭codon‬‭usage‬‭caused‬

‭by‬ ‭variations‬ ‭in‬ ‭the‬ ‭second‬ ‭and‬ ‭third‬ ‭codon‬ ‭position‬‭52,53‬‭.‬ ‭Manual‬ ‭inspection‬‭of‬‭the‬‭primers’‬

‭locations‬ ‭in‬ ‭the‬ ‭MSAs‬ ‭indeed‬ ‭confirmed‬ ‭that‬ ‭our‬ ‭3’‬ ‭penalty‬ ‭system‬ ‭preferentially‬ ‭selected‬

‭primers‬ ‭if‬ ‭their‬ ‭3’‬ ‭ends‬ ‭are‬ ‭located‬ ‭at‬ ‭the‬ ‭first‬ ‭and‬ ‭not‬ ‭at‬ ‭the‬ ‭second‬ ‭or‬‭third‬‭position‬‭of‬‭a‬

‭codon.‬ ‭Lastly,‬ ‭we‬ ‭explored‬ ‭the‬ ‭hypothesis‬ ‭that‬ ‭the‬ ‭mean‬ ‭primer‬ ‭parameters‬ ‭of‬ ‭all‬ ‭primer‬

‭permutations‬ ‭would‬ ‭lie‬ ‭within‬ ‭our‬ ‭target‬ ‭range‬ ‭even‬ ‭if‬ ‭they‬ ‭were‬ ‭initially‬ ‭calculated‬ ‭on‬ ‭the‬

‭basis‬ ‭of‬ ‭the‬ ‭primer‬ ‭sequence‬ ‭including‬ ‭the‬ ‭most‬ ‭common‬ ‭nucleotides.‬ ‭We‬ ‭therefore‬

‭calculated‬ ‭melting‬ ‭temperature,‬ ‭hairpin‬ ‭temperature,‬ ‭homo-dimer‬ ‭temperature‬ ‭and‬ ‭GC‬

‭content‬ ‭(Fig.‬ ‭3‬ ‭e-h).‬ ‭In‬ ‭most‬ ‭cases,‬ ‭the‬ ‭mean‬ ‭of‬ ‭the‬ ‭primer‬ ‭permutations‬ ‭were‬ ‭within‬ ‭the‬

‭target‬‭range‬‭or‬‭below‬‭the‬‭cutoff‬‭but‬‭showed‬‭a‬‭higher‬‭deviation‬‭from‬‭the‬‭optimum‬‭compared‬

‭to‬ ‭the‬ ‭primer‬ ‭that‬ ‭was‬ ‭initially‬ ‭used‬ ‭for‬ ‭parameter‬ ‭calculation.‬ ‭The‬‭GC‬‭content‬‭is‬‭the‬‭least‬

‭penalized‬ ‭parameter‬ ‭by‬ ‭varVAMP‬ ‭and‬ ‭other‬ ‭parameters‬ ‭should‬ ‭have‬ ‭a‬ ‭more‬ ‭pronounced‬

‭effect‬ ‭on‬ ‭primer‬‭selection‬‭with‬‭the‬‭current‬‭settings.‬‭Indeed,‬‭the‬‭GC‬‭content‬‭was‬‭also‬‭within‬

‭the target range but overall more dependent on the MSA’s GC content (Fig. 3 h).‬

‭In‬‭conclusion,‬‭the‬‭newly‬‭designed‬‭primers‬‭should‬‭recognize‬‭the‬‭majority‬‭of‬‭sequences‬‭in‬‭the‬

‭initial MSA while minimizing degeneracy, overall mismatches, and 3’ mismatches.‬

‭Full‬ ‭genome‬ ‭tiled‬ ‭amplicon‬ ‭sequencing‬‭of‬‭SARS-CoV-2,‬‭BoDV-1,‬‭HAV,‬‭PV‬‭and‬
‭ratHEV‬

‭In‬ ‭a‬ ‭multi-center‬ ‭study‬ ‭with‬ ‭specialists‬ ‭for‬ ‭the‬ ‭respective‬ ‭pathogens,‬ ‭we‬ ‭evaluated‬ ‭if‬ ‭the‬

‭newly‬ ‭designed‬ ‭primers‬ ‭for‬ ‭SARS-CoV-2,‬ ‭BoDV-1,‬ ‭HAV,‬ ‭PV‬ ‭and‬ ‭ratHEV‬ ‭were‬ ‭suitable‬‭for‬

‭whole-genome‬ ‭sequencing‬ ‭and‬ ‭genome‬ ‭reconstruction.‬ ‭Similar‬ ‭to‬ ‭the‬ ‭HEV-3‬ ‭primer‬

‭schemes,‬‭we‬‭performed‬‭amplicon-based‬‭Illumina‬‭and,‬‭in‬‭the‬‭case‬‭of‬‭SARS-CoV-2‬‭and‬‭some‬

‭of‬ ‭the‬ ‭HAV‬ ‭samples,‬ ‭ONT‬ ‭sequencing‬ ‭on‬ ‭various‬‭samples‬‭in‬‭either‬‭singleplex‬‭or‬‭multiplex‬

‭PCR‬ ‭reactions.‬ ‭Sequencing‬ ‭protocols‬ ‭and‬ ‭selection‬ ‭of‬ ‭samples‬ ‭differed‬ ‭due‬ ‭to‬

‭center-specific‬ ‭preferences.‬ ‭For‬ ‭SARS-CoV-2,‬ ‭we‬ ‭tested‬ ‭the‬ ‭novel‬ ‭primer‬ ‭scheme‬ ‭in‬

‭multiplex‬ ‭PCR‬ ‭reactions‬ ‭on‬ ‭a‬ ‭random‬ ‭set‬ ‭of‬ ‭respiratory‬ ‭patient‬ ‭specimens‬ ‭from‬ ‭currently‬

‭circulating‬ ‭variants‬ ‭with‬ ‭different‬ ‭viral‬ ‭loads.‬ ‭Although‬ ‭some‬ ‭amplicons‬ ‭had‬ ‭a‬ ‭lower‬

‭coverage,‬‭we‬‭were‬‭able‬‭to‬‭construct‬‭complete‬‭genomes‬‭in‬‭the‬‭majority‬‭of‬‭cases‬‭(Fig.‬‭4a‬‭and‬

‭S1).‬‭We‬‭evaluated‬‭the‬‭BoDV-1‬‭primers‬‭in‬‭multiplex‬‭reactions‬‭on‬‭three‬‭different‬‭virus‬‭stocks‬

‭that‬ ‭had‬ ‭been‬ ‭isolated‬ ‭from‬ ‭brains‬ ‭of‬ ‭diseased‬ ‭patients‬ ‭in‬ ‭2019,‬ ‭2020‬ ‭and‬ ‭2022‬‭34–36‬ ‭and‬

‭were‬ ‭cultivated‬ ‭on‬ ‭Vero‬ ‭cells.‬ ‭For‬ ‭all‬ ‭isolates‬ ‭we‬ ‭were‬ ‭able‬ ‭to‬ ‭recover‬ ‭highly‬ ‭covered‬

‭genome‬ ‭sequences‬ ‭(Fig.‬ ‭4b‬ ‭and‬ ‭S1).‬ ‭Only‬ ‭for‬ ‭the‬ ‭2022‬ ‭isolate,‬ ‭the‬ ‭last‬ ‭three‬ ‭amplicons‬

‭were‬‭poorly‬‭amplified,‬‭leading‬‭to‬‭a‬‭slightly‬‭lower‬‭genome‬‭recovery‬‭(S1).‬‭For‬‭HAV,‬‭we‬‭tested‬
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‭the‬ ‭HAV-specific‬ ‭primers‬ ‭on‬ ‭the‬ ‭cell‬ ‭culture‬ ‭derived‬ ‭lab‬ ‭strain‬ ‭V18-35519.‬ ‭Illumina‬

‭sequencing‬‭yielded‬‭consistent‬‭and‬‭high‬‭coverage‬‭over‬‭all‬‭amplicons‬‭independent‬‭of‬‭multi-‬‭or‬

‭singleplex‬ ‭reactions‬ ‭(Fig.‬ ‭4c).‬ ‭Next,‬ ‭we‬ ‭transferred‬ ‭the‬ ‭protocol‬ ‭to‬ ‭three‬ ‭different‬

‭HAV-positive‬‭patient‬‭samples:‬‭genotype‬‭IB-positive‬‭feces‬‭(patient‬‭1)‬‭and‬‭sera‬‭(patient‬‭3)‬‭as‬

‭well‬ ‭as‬ ‭genotype‬ ‭IA‬ ‭positive‬ ‭feces‬ ‭(patient‬ ‭2).‬‭Finally,‬‭we‬‭sequenced‬‭another‬‭four‬‭patients‬

‭sera‬ ‭via‬ ‭Oxford‬ ‭Nanopore:‬ ‭IA-positive‬ ‭(patient‬ ‭4‬ ‭and‬ ‭5),‬ ‭IB-positive‬ ‭(patient‬ ‭6)‬ ‭and‬

‭IIIA-positive‬ ‭(patient‬ ‭7).‬ ‭Full-genome‬‭recovery‬‭was‬‭achieved‬‭with‬‭all‬‭samples.‬‭However,‬‭for‬

‭some‬‭of‬‭the‬‭amplicons‬‭we‬‭observed‬‭a‬‭lower‬‭overall‬‭coverage‬‭compared‬‭to‬‭the‬‭virus‬‭isolate‬

‭(S1).‬‭Next,‬‭the‬‭PV‬‭primer‬‭scheme‬‭was‬‭tested‬‭on‬‭the‬‭Sabin‬‭1-3‬‭vaccine‬‭strains.‬‭Similar‬‭to‬‭our‬

‭prior‬ ‭results,‬ ‭sequencing‬‭resulted‬‭in‬‭high‬‭coverage‬‭and‬‭full-genome‬‭recovery.‬‭However,‬‭we‬

‭observed‬ ‭that‬ ‭the‬ ‭third‬ ‭amplicon‬ ‭overall‬ ‭under-performed‬ ‭in‬ ‭multiplex‬ ‭but‬‭not‬‭in‬‭singleplex‬

‭reactions‬‭(Fig.‬‭4d‬‭and‬‭S1).‬‭Lastly,‬‭we‬‭evaluated‬‭the‬‭ratHEV‬‭primers‬‭that‬‭we‬‭designed‬‭to‬‭test‬

‭the‬ ‭limits‬ ‭of‬ ‭varVAMP‬ ‭given‬ ‭the‬ ‭highest‬ ‭sequence‬ ‭variability‬ ‭and‬ ‭low‬ ‭number‬ ‭of‬ ‭MSA‬

‭sequences‬ ‭(Table‬ ‭1).‬ ‭We‬ ‭tested‬ ‭either‬ ‭single-‬ ‭or‬ ‭multiplex‬ ‭PCR‬ ‭reactions‬ ‭for‬ ‭the‬ ‭two‬

‭previously‬‭described‬‭isolates‬‭R63‬‭and‬‭pt2‬‭39,40‬ ‭(Fig.‬‭4e).‬‭While‬‭we‬‭were‬‭able‬‭to‬‭achieve‬‭high‬

‭coverage‬ ‭and‬ ‭genome‬ ‭recovery‬ ‭for‬ ‭the‬ ‭R63‬ ‭isolate,‬ ‭we‬ ‭observed‬ ‭one‬ ‭and‬ ‭two‬ ‭amplicon‬

‭dropouts for the pt2 single- and multiplex reactions, respectively (S1).‬

‭We‬ ‭systematically‬ ‭evaluated‬ ‭the‬ ‭coverage‬ ‭and‬ ‭amplicon‬ ‭recovery‬ ‭for‬ ‭all‬ ‭primer‬ ‭schemes‬

‭and‬ ‭samples‬ ‭(Fig.‬ ‭5a).‬ ‭Most‬ ‭amplicons‬ ‭performed‬ ‭in‬ ‭a‬ ‭sample-dependent‬ ‭manner‬ ‭but‬ ‭in‬

‭some‬‭cases‬‭multiplex‬‭performance‬‭was‬‭intrinsic‬‭to‬‭specific‬‭amplicons‬‭as‬‭exemplified‬‭by‬‭the‬

‭third‬‭amplicon‬‭of‬‭the‬‭PV‬‭scheme‬‭(Fig.‬‭4c).‬‭As‬‭all‬‭multiplex‬‭reactions‬‭across‬‭tested‬‭schemes‬

‭were‬ ‭performed‬ ‭with‬ ‭equimolar‬ ‭primer‬ ‭concentrations,‬ ‭we‬ ‭hypothesized‬ ‭that‬ ‭the‬

‭performance‬‭could‬‭be‬‭improved‬‭by‬‭balancing‬‭primer‬‭concentrations.‬‭Therefore,‬‭we‬‭adjusted‬

‭the‬ ‭molarity‬ ‭of‬ ‭the‬ ‭PV‬ ‭primers‬ ‭in‬ ‭two‬ ‭consecutive‬ ‭rounds‬ ‭as‬ ‭a‬‭proof-of-concept‬‭for‬‭further‬

‭wet-lab‬‭optimization.‬‭For‬‭the‬‭final‬‭iteration,‬‭we‬‭achieved‬‭a‬‭coverage‬‭for‬‭all‬‭Sabin‬‭strains‬‭that‬

‭was‬ ‭comparable‬ ‭to‬ ‭the‬ ‭respective‬ ‭singleplex‬ ‭reactions‬ ‭(S2).‬ ‭Analogous‬ ‭to‬ ‭the‬ ‭mismatch‬

‭analysis‬ ‭with‬ ‭the‬‭input‬‭MSA‬‭(Fig.‬‭3c),‬‭we‬‭also‬‭examined‬‭how‬‭many‬‭nucleotide‬‭mismatches‬

‭between‬‭the‬‭primers‬‭and‬‭their‬‭target‬‭regions‬‭are‬‭present‬‭in‬‭our‬‭sequencing‬‭results‬‭(Fig.‬‭5b).‬

‭The‬ ‭primer‬ ‭target‬ ‭regions‬ ‭of‬ ‭the‬ ‭new‬ ‭sequences‬ ‭showed‬ ‭up‬ ‭to‬ ‭two‬ ‭mismatches‬ ‭to‬ ‭the‬

‭degenerated‬ ‭primer‬ ‭sequences‬ ‭with‬ ‭the‬ ‭majority‬ ‭having‬ ‭no‬ ‭mismatches.‬ ‭Similar‬ ‭to‬ ‭the‬

‭amplicon‬ ‭performance,‬ ‭the‬ ‭number‬ ‭of‬ ‭mismatches‬ ‭were‬ ‭mostly‬ ‭sample-dependent.‬‭As‬‭the‬

‭samples‬ ‭used‬ ‭for‬ ‭evaluation‬ ‭were‬ ‭selected‬ ‭in‬ ‭the‬ ‭respective‬ ‭centers‬ ‭based‬ ‭on‬ ‭availability‬

‭and‬ ‭not‬ ‭sequence‬ ‭diversity,‬ ‭we‬ ‭tested‬ ‭if‬ ‭this‬‭could‬‭have‬‭produced‬‭an‬‭unintended‬‭selection‬

‭bias‬ ‭towards‬ ‭specific‬ ‭viral‬ ‭strains.‬ ‭Therefore,‬ ‭we‬ ‭evaluated‬ ‭if‬ ‭the‬ ‭novel‬ ‭consensus‬

‭sequences‬ ‭of‬ ‭each‬ ‭scheme‬ ‭have‬ ‭a‬ ‭variability‬ ‭that‬ ‭is‬ ‭comparable‬ ‭to‬ ‭that‬ ‭of‬ ‭the‬ ‭respective‬

‭input‬‭alignments.‬‭Pairwise‬‭sequence‬‭identities‬‭of‬‭these‬‭small‬‭datasets‬‭were‬‭highly‬‭similar‬‭or‬
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‭lower‬ ‭to‬ ‭that‬ ‭of‬ ‭the‬ ‭alignment‬ ‭with‬ ‭only‬ ‭the‬ ‭newly‬ ‭produced‬ ‭sequences‬ ‭for‬ ‭HEV‬ ‭cluster‬ ‭4‬

‭showing‬‭a‬‭significantly‬‭higher‬‭mean‬‭pairwise‬‭sequence‬‭identity‬‭of‬‭7‬‭%,‬‭respectively‬‭(Fig.‬‭5c),‬

‭indicating a slight bias for higher conserved sequences.‬

‭In‬‭summary,‬‭all‬‭primer‬‭schemes‬‭were‬‭suitable‬‭for‬‭tiled‬‭amplicon‬‭Illumina‬‭or‬‭ONT‬‭sequencing‬

‭and‬ ‭resulted‬ ‭in‬ ‭highly‬ ‭covered‬ ‭full-genome‬ ‭sequences‬ ‭by‬ ‭applying‬ ‭center-specific‬

‭sequencing‬ ‭protocols‬ ‭and‬ ‭bioinformatic‬ ‭pipelines‬ ‭initially‬ ‭developed‬ ‭for‬ ‭tiled‬ ‭amplicon‬

‭sequencing of SARS-CoV-2.‬

‭Design and wet-lab evaluation of PV qPCR primers designed with varVAMP‬

‭The‬ ‭WHO‬ ‭gold‬ ‭standard‬ ‭for‬ ‭PV‬ ‭detection‬‭is‬‭based‬‭on‬‭time-‬‭and‬‭resource-consuming‬‭virus‬

‭cultivation.‬ ‭Molecular‬ ‭detection‬ ‭by‬ ‭qPCR‬ ‭is‬ ‭available‬ ‭but‬ ‭was‬ ‭designed‬ ‭for‬ ‭virus‬ ‭isolates‬

‭propagated‬ ‭in‬ ‭cell‬ ‭culture‬‭54‬‭.‬ ‭Moreover,‬ ‭primers‬ ‭and‬ ‭probes‬ ‭display‬ ‭a‬ ‭high‬ ‭level‬ ‭of‬

‭degeneracy,‬‭decreasing‬‭the‬‭assay's‬‭sensitivity‬‭and‬‭increasing‬‭the‬‭risk‬‭of‬‭unspecific‬‭non-viral‬

‭amplification‬ ‭products‬ ‭for‬ ‭other‬ ‭specimen‬ ‭sources‬ ‭like‬ ‭wastewater‬‭samples.‬‭Therefore,‬‭we‬

‭used‬ ‭varVAMP‬ ‭to‬ ‭design‬ ‭PV‬ ‭serotype-specific‬ ‭assays.‬ ‭Optimal‬ ‭primer‬ ‭annealing‬

‭temperature‬ ‭of‬ ‭each‬ ‭assay‬ ‭was‬ ‭tested‬ ‭with‬ ‭a‬ ‭gradient‬ ‭PCR‬ ‭ranging‬ ‭from‬ ‭56‬ ‭-‬ ‭64‬ ‭°C.‬ ‭All‬

‭annealing‬‭temperatures‬‭resulted‬‭in‬‭the‬‭expected‬‭product‬‭size‬‭with‬‭59‬‭°C‬‭showing‬‭the‬‭lowest‬

‭abundance‬‭of‬‭unspecific‬‭products.‬‭PV‬‭serotype‬‭specific‬‭RT-qPCR‬‭assays‬‭were‬‭performed‬‭in‬

‭a‬‭serial‬‭dilution‬‭experiment‬‭between‬‭10‬‭-1‬ ‭and‬‭10‬‭-8‬ ‭with‬‭RNA‬‭extracted‬‭from‬‭viral‬‭supernatant.‬

‭For‬‭all‬‭three‬‭types,‬‭PV‬‭detection‬‭was‬‭achieved‬‭up‬‭to‬‭a‬‭dilution‬‭of‬‭10‬‭-7‬ ‭(Fig.‬‭6‬‭a-c).‬‭Absolute‬

‭quantification‬ ‭analysis‬ ‭based‬ ‭on‬ ‭the‬ ‭dilution‬ ‭series‬ ‭calculated‬ ‭an‬ ‭efficiency‬ ‭value‬ ‭(PV1‬ ‭=‬

‭1.88,‬‭PV2‬‭=‬‭1.87,‬‭PV‬‭3‬‭=‬‭1.90)‬‭close‬‭to‬‭2‬‭corresponding‬‭to‬‭a‬‭perfect‬‭amplification‬‭reaction.‬

‭Cross-specificity‬ ‭testing‬ ‭showed‬ ‭no‬ ‭detection‬ ‭between‬ ‭the‬‭Sabin‬‭strains‬‭indicating‬‭that‬‭the‬

‭designed‬ ‭primers‬ ‭and‬ ‭probes‬ ‭are‬ ‭highly‬ ‭specific‬ ‭for‬ ‭their‬ ‭respective‬ ‭PV‬ ‭serotype,‬ ‭despite‬

‭primer and probe degeneration.‬

‭DISCUSSION‬

‭Here,‬‭we‬‭describe‬‭varVAMP,‬‭a‬‭command-line‬‭software‬‭tailored‬‭to‬‭pan-specific‬‭primer‬‭design‬

‭for‬ ‭highly‬ ‭variable‬ ‭MSAs.‬ ‭Importantly,‬ ‭varVAMP‬ ‭is‬ ‭available‬ ‭through‬ ‭various‬ ‭bioinformatic‬

‭repositories‬ ‭and‬ ‭has‬ ‭also‬ ‭been‬ ‭deployed‬ ‭to‬ ‭Galaxy‬ ‭Europe‬ ‭(usegalaxy.eu),‬ ‭a‬ ‭web-based‬

‭platform‬ ‭for‬ ‭bioinformatic‬ ‭data‬ ‭analysis‬‭55‬‭.‬ ‭On‬ ‭the‬ ‭basis‬ ‭of‬ ‭the‬ ‭input‬ ‭MSA,‬ ‭varVAMP‬

‭generates‬ ‭consensus‬ ‭sequences‬ ‭and‬ ‭analyzes‬ ‭them‬ ‭for‬ ‭the‬ ‭presence‬ ‭of‬ ‭potential‬ ‭primer‬

‭sequences.‬ ‭From‬ ‭the‬ ‭subsequent‬ ‭pool‬ ‭of‬ ‭found‬ ‭primers,‬ ‭varVAMP‬ ‭chooses‬ ‭optimal‬

‭amplicons‬ ‭for‬ ‭specific‬ ‭molecular‬ ‭techniques‬ ‭such‬ ‭as‬ ‭tiled‬ ‭sequencing‬ ‭or‬ ‭qPCR‬ ‭and‬

‭introduces‬ ‭degenerated‬ ‭nucleotides‬ ‭into‬ ‭primer‬ ‭sequences‬ ‭to‬ ‭compensate‬ ‭for‬ ‭sequence‬

‭variations.‬
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‭To‬ ‭demonstrate‬ ‭varVAMP’s‬ ‭applicability,‬ ‭we‬ ‭used‬ ‭the‬ ‭software‬ ‭to‬ ‭design‬ ‭and‬ ‭evaluate‬

‭primers‬ ‭for‬‭tiled‬‭sequencing‬‭schemes‬‭of‬‭SARS-CoV-2,‬‭BoDV-1,‬‭HAV,‬‭HEV,‬‭PV‬‭and‬‭ratHEV‬

‭and‬ ‭for‬ ‭qPCR‬ ‭of‬ ‭PV.‬ ‭With‬ ‭the‬ ‭exception‬ ‭of‬ ‭SARS-CoV-2,‬ ‭these‬ ‭pathogens‬ ‭have‬ ‭a‬ ‭high‬

‭genomic‬ ‭diversity‬ ‭restricting‬ ‭conventional‬ ‭primer‬ ‭design.‬ ‭While‬ ‭varVAMP‬ ‭provides‬ ‭a‬ ‭fully‬

‭automated‬ ‭solution,‬ ‭selecting‬ ‭appropriate‬ ‭reference‬‭data‬‭prior‬‭to‬‭primer‬‭design‬‭can‬‭pose‬‭a‬

‭challenge‬‭.‬‭The‬‭core‬‭concept‬‭of‬‭varVAMP‬‭is‬‭based‬‭on‬‭the‬‭assumption‬‭that‬‭the‬‭sequences‬‭in‬

‭the‬ ‭input‬ ‭MSA‬ ‭reflect‬ ‭the‬ ‭majority‬ ‭of‬ ‭variations‬ ‭within‬ ‭the‬ ‭viral‬ ‭genome.‬ ‭However,‬ ‭in‬

‭sequence‬‭data‬‭repositories,‬‭particular‬‭in‬‭the‬‭case‬‭of‬‭viral‬‭sequences,‬‭there‬‭can‬‭be‬‭a‬‭lack‬‭of‬

‭associated‬ ‭metadata,‬ ‭the‬ ‭presence‬ ‭of‬ ‭recombinant‬ ‭sequences,‬ ‭bias‬ ‭towards‬ ‭sequencing‬

‭labs,‬ ‭geographic‬ ‭biases‬ ‭towards‬ ‭circulating‬ ‭strains‬ ‭or‬ ‭an‬ ‭underrepresented‬ ‭amount‬ ‭of‬

‭recently‬ ‭discovered‬ ‭or‬ ‭understudied‬ ‭viral‬ ‭pathogens‬‭56,57‬‭.‬ ‭Therefore,‬ ‭a‬ ‭prior‬ ‭careful‬ ‭data‬

‭selection‬ ‭is‬ ‭a‬ ‭key‬ ‭requirement‬ ‭for‬ ‭a‬ ‭successful‬ ‭primer‬ ‭design‬ ‭and‬ ‭might‬ ‭require‬ ‭the‬

‭additional‬ ‭use‬‭of‬‭clustering‬‭algorithms‬‭and‬‭phylogenetic‬‭assessment‬‭tools‬‭29,30,58,59‬‭.‬‭This‬‭was‬

‭most‬ ‭prominently‬ ‭observed‬ ‭for‬ ‭our‬ ‭ratHEV‬ ‭tiled‬ ‭sequencing‬ ‭scheme.‬ ‭Here,‬ ‭we‬ ‭could‬ ‭only‬

‭successfully‬ ‭generate‬ ‭full‬ ‭length‬ ‭sequences‬ ‭for‬ ‭the‬ ‭R63‬ ‭but‬ ‭not‬ ‭for‬ ‭the‬ ‭pt2‬ ‭isolate.‬ ‭The‬

‭ratHEV‬ ‭primer‬ ‭design‬ ‭was‬ ‭challenging‬ ‭as‬‭ratHEV‬‭full-length‬‭sequences‬‭are‬‭highly‬‭variable‬

‭and‬ ‭scarce‬ ‭in‬ ‭NCBI’s‬ ‭genbank.‬ ‭In‬ ‭such‬ ‭cases,‬ ‭PCR‬ ‭reactions‬ ‭might‬ ‭not‬‭be‬‭successful‬‭for‬

‭viral‬‭genomes‬‭that‬‭are‬‭only‬‭distantly‬‭related‬‭to‬‭the‬‭majority‬‭of‬‭sequences‬‭in‬‭the‬‭input‬‭MSA.‬

‭The‬ ‭pathogenicity‬ ‭of‬ ‭ratHEV‬ ‭for‬ ‭humans‬ ‭has‬ ‭been‬‭only‬‭recently‬‭identified‬‭60‬‭.‬‭We‬‭expect‬‭an‬

‭increase‬ ‭in‬ ‭reported‬ ‭sequence‬ ‭data‬ ‭over‬ ‭the‬ ‭coming‬ ‭years,‬ ‭which‬ ‭will‬ ‭help‬ ‭to‬ ‭overcome‬

‭current‬‭limitations.‬‭The‬‭second‬‭challenge‬‭for‬‭varVAMP‬‭users‬‭is‬‭the‬‭proper‬‭selection‬‭of‬‭input‬

‭parameters.‬‭While‬‭varVAMP‬‭offers‬‭an‬‭automated‬‭solution,‬‭it‬‭often‬‭requires‬‭multiple‬‭rounds‬‭of‬

‭manual optimizations that should, however, be computationally inexpensive.‬

‭It‬‭is‬‭worth‬‭mentioning‬‭that‬‭we‬‭did‬‭not‬‭compare‬‭our‬‭primer‬‭design‬‭suite‬‭to‬‭other‬‭primer‬‭design‬

‭software,‬ ‭as‬ ‭we‬ ‭are‬ ‭not‬ ‭aware‬ ‭of‬ ‭other‬ ‭tools‬ ‭that‬‭handle‬‭similar‬‭sequence‬‭variability‬‭while‬

‭being‬ ‭able‬ ‭to‬ ‭design‬ ‭degenerate‬‭primers‬‭for‬‭tiled‬‭sequencing‬‭or‬‭qPCR.‬‭Primalscheme‬‭was‬

‭highly‬‭successful‬‭during‬‭the‬‭SARS-CoV-2‬‭pandemic‬‭and‬‭has‬‭been‬‭also‬‭used‬‭to‬‭design‬‭tiled‬

‭amplicon‬ ‭schemes‬ ‭for‬ ‭viruses‬ ‭such‬ ‭as‬ ‭West-Nile‬ ‭or‬ ‭Monkeypox‬ ‭virus‬‭61–63‬ ‭but‬ ‭limits‬ ‭the‬

‭variability‬ ‭of‬ ‭the‬ ‭input‬ ‭alignment‬ ‭at‬ ‭5%‬‭10‬ ‭.‬ ‭Despite‬ ‭the‬‭fact‬‭that‬‭varVAMP‬‭adapted‬‭some‬‭of‬

‭primalscheme’s‬‭primer‬‭assessment‬‭functionality,‬‭a‬‭head-to-head‬‭comparison‬‭is‬‭not‬‭possible‬

‭as varVAMP was not designed as an alternative but as a solution for highly variable MSAs.‬

‭We‬ ‭did‬ ‭observe‬‭sample-dependent‬‭and‬‭independent‬‭amplicon‬‭performance.‬‭The‬‭molecular‬

‭reasons‬‭for‬‭sample-dependent‬‭PCR‬‭performance‬‭can‬‭be‬‭diverse.‬‭We‬‭show‬‭that‬‭primers‬‭lead‬

‭to‬ ‭amplification‬ ‭even‬ ‭if‬ ‭there‬ ‭are‬ ‭one‬ ‭or‬ ‭two‬ ‭mismatches‬ ‭between‬ ‭primer‬ ‭and‬ ‭target‬

‭sequence.‬ ‭However,‬ ‭if‬ ‭more‬ ‭mismatches‬ ‭are‬ ‭present,‬ ‭poorer‬ ‭amplification‬ ‭or‬ ‭complete‬

‭dropouts‬ ‭could‬ ‭be‬ ‭the‬ ‭result‬‭.‬ ‭For‬ ‭patient‬ ‭samples,‬ ‭we‬ ‭used‬ ‭archived‬‭material‬‭with‬‭varying‬
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‭storage‬ ‭times‬ ‭and‬ ‭viral‬ ‭loads‬ ‭that‬ ‭both‬ ‭could‬ ‭have‬ ‭impacted‬ ‭PCR‬ ‭amplification.‬ ‭Another‬

‭problem‬ ‭can‬ ‭be‬ ‭the‬ ‭presence‬ ‭of‬ ‭sample-specific‬ ‭non-viral‬ ‭nucleic‬ ‭acid‬ ‭that‬ ‭could‬ ‭provide‬

‭additional‬ ‭primer‬ ‭binding‬ ‭sites‬ ‭and‬ ‭result‬ ‭in‬ ‭unspecific‬‭amplification.‬‭To‬‭address‬‭this‬‭issue,‬

‭varVAMP‬‭provides‬‭a‬‭BLAST‬‭module‬‭that‬‭allows‬‭users‬‭to‬‭check‬‭for‬‭potential‬‭off-target‬‭effects‬

‭with‬ ‭a‬ ‭custom‬ ‭database.‬ ‭Sample-independent‬ ‭amplicon‬ ‭performance‬ ‭is‬ ‭likely‬ ‭a‬ ‭PCR‬

‭optimization‬ ‭issue.‬ ‭Compared‬ ‭to‬ ‭popular‬ ‭SARS-CoV-2‬ ‭schemes‬‭64‬‭,‬ ‭we‬ ‭have‬ ‭not‬ ‭optimized‬

‭the‬ ‭PCR‬ ‭conditions,‬ ‭nor‬ ‭the‬ ‭primer‬ ‭pooling‬ ‭ratios.‬ ‭That‬ ‭was‬ ‭reflected‬‭by‬‭varying‬‭amplicon‬

‭performance‬ ‭in‬ ‭multiplex‬ ‭reactions.‬ ‭To‬ ‭give‬ ‭an‬ ‭example‬ ‭of‬ ‭how‬ ‭to‬ ‭further‬ ‭optimize‬ ‭the‬

‭multiplex‬‭PCRs,‬‭we‬‭adjusted‬‭the‬‭primer‬‭concentrations‬‭of‬‭the‬‭PV‬‭scheme‬‭and‬‭show‬‭this‬‭can‬

‭lead to a more balanced overall coverage.‬

‭All‬ ‭primer‬ ‭schemes‬ ‭described‬ ‭here‬ ‭have‬ ‭been‬ ‭developed‬ ‭because‬ ‭of‬ ‭a‬ ‭methodology‬‭gap.‬

‭HEV‬ ‭phylogeny‬ ‭and‬ ‭sub-typing‬ ‭is‬ ‭mostly‬ ‭restricted‬ ‭to‬ ‭Sanger‬ ‭sequencing‬ ‭of‬ ‭ORF2‬

‭fragments‬ ‭thereby‬ ‭neglecting‬ ‭viral‬ ‭evolution‬ ‭in‬ ‭the‬ ‭remaining‬ ‭genome‬‭65,66‬‭.‬ ‭Current‬

‭methodology‬ ‭to‬ ‭generate‬ ‭highly‬ ‭covered‬ ‭HEV‬ ‭full-genome‬ ‭sequences‬ ‭via‬ ‭Illumina‬ ‭or‬

‭Nanopore‬ ‭sequencing‬ ‭requires‬ ‭costly‬ ‭RNA-Seq‬ ‭protocols‬ ‭using‬ ‭hybridization‬‭probes‬‭67,68‬ ‭or‬

‭powerful‬ ‭sequencing‬ ‭machines.‬ ‭Our‬ ‭newly‬ ‭developed‬ ‭primer‬ ‭schemes‬ ‭could‬ ‭simplify‬

‭sequencing‬‭and‬‭aid,‬‭for‬‭example,‬‭analyses‬‭of‬‭Ribavirin‬‭resistance-associated‬‭mutations‬‭that‬

‭can‬ ‭develop‬ ‭in‬ ‭immunocompromised‬ ‭HEV‬ ‭patients‬‭69‬‭.‬ ‭For‬ ‭PV,‬ ‭molecular‬ ‭assays‬ ‭used‬ ‭for‬

‭detection‬ ‭and‬ ‭intratypic‬‭differentiation‬‭of‬‭serotypes‬‭are‬‭well‬‭suited‬‭for‬‭cell-culture‬‭isolates‬‭70‬‭.‬

‭However,‬ ‭these‬ ‭techniques‬ ‭are‬ ‭laborious‬ ‭and‬ ‭time-consuming.‬ ‭qPCR‬ ‭and‬‭amplicon-based‬

‭NGS‬ ‭protocols‬ ‭for‬ ‭the‬ ‭rapid‬ ‭analysis‬ ‭of‬ ‭PV‬ ‭from‬ ‭patient‬ ‭and‬ ‭environmental‬ ‭samples‬ ‭are‬

‭imperative‬ ‭for‬ ‭fast‬ ‭public‬ ‭health‬ ‭decisions.‬ ‭There‬ ‭are‬ ‭protocols‬ ‭for‬ ‭high-throughput‬

‭sequencing‬ ‭of‬ ‭PV‬ ‭but‬ ‭similar‬ ‭to‬ ‭HEV‬ ‭they‬ ‭are‬ ‭restricted‬ ‭to‬ ‭a‬ ‭conserved‬ ‭part‬ ‭of‬ ‭the‬

‭enterovirus‬ ‭genome‬‭71‬‭.‬ ‭Our‬ ‭novel‬ ‭methods‬ ‭for‬ ‭PV‬ ‭detection‬ ‭by‬ ‭qPCR‬ ‭and‬ ‭whole-genome‬

‭sequencing‬ ‭could‬ ‭not‬ ‭only‬ ‭benefit‬ ‭existing‬ ‭surveillance‬ ‭programs‬ ‭but‬ ‭might‬ ‭also‬ ‭lay‬ ‭the‬

‭foundation‬ ‭for‬ ‭wastewater‬ ‭surveillance‬ ‭strategies‬ ‭within‬ ‭the‬ ‭global‬ ‭PV‬ ‭eradication‬

‭program‬‭72,73‬‭.‬

‭In‬ ‭conclusion,‬‭the‬‭varVAMP‬‭pipeline‬‭was‬‭developed‬‭because‬‭primer‬‭design‬‭on‬‭the‬‭basis‬‭of‬

‭highly‬ ‭variable‬ ‭MSAs‬ ‭is‬ ‭difficult,‬ ‭time‬ ‭consuming‬ ‭and‬ ‭there‬‭are‬‭no‬‭automated‬‭solutions‬‭for‬

‭qPCR‬ ‭and‬ ‭tiled‬ ‭sequencing.‬ ‭The‬ ‭designed‬ ‭and‬ ‭validated‬ ‭primer‬ ‭schemes‬ ‭for‬ ‭the‬ ‭different‬

‭viruses‬‭are‬‭not‬‭only‬‭a‬‭proof-of-concept‬‭for‬‭varVAMP’s‬‭applicability‬‭but‬‭have‬‭been‬‭developed‬

‭because‬ ‭they‬ ‭could‬ ‭directly‬ ‭benefit‬ ‭viral‬ ‭diagnostics‬ ‭and‬ ‭epidemiology.‬ ‭Laboratories‬ ‭that‬

‭have‬ ‭already‬ ‭established‬ ‭SARS-CoV-2‬ ‭sequencing‬ ‭pipelines‬ ‭or‬ ‭in-house‬ ‭qPCR‬ ‭protocols‬

‭should‬ ‭be‬ ‭able‬ ‭to‬ ‭adapt‬ ‭their‬‭methodologies‬‭to‬‭these‬‭new‬‭primer‬‭schemes‬‭with‬‭only‬‭minor‬

‭modifications.‬
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‭DATA AVAILABILITY‬

‭varVAMP‬ ‭v.1.2.0‬ ‭and‬ ‭BAMdash‬ ‭v.0.2.4‬ ‭are‬ ‭open‬ ‭source‬ ‭and‬ ‭available‬ ‭at‬

‭https://github.com/jonas-fuchs/varVAMP‬ ‭(DOI:‬ ‭10.5281/zenodo.11125498)‬ ‭and‬

‭https://github.com/jonas-fuchs/BAMdash‬ ‭(DOI:‬ ‭10.5281/zenodo.10804160).‬ ‭The‬ ‭Galaxy‬

‭version‬ ‭of‬ ‭varVAMP‬ ‭is‬ ‭available‬ ‭at‬

‭https://usegalaxy.eu/root?tool_id=toolshed.g2.bx.psu.edu/repos/iuc/varvamp/varvamp/‬‭.‬ ‭The‬

‭code‬ ‭and‬ ‭data‬ ‭to‬ ‭reproduce‬ ‭the‬ ‭figures‬ ‭is‬ ‭available‬ ‭at‬

‭https://github.com/jonas-fuchs/varVAMP_in_silico_analysis‬ ‭(DOI:‬

‭10.5281/zenodo.10942525).‬ ‭All‬ ‭input‬ ‭multiple‬ ‭sequence‬ ‭alignments‬ ‭and‬ ‭varVAMP‬ ‭outputs‬

‭for‬ ‭primers‬ ‭that‬ ‭have‬ ‭been‬ ‭evaluated‬ ‭in‬ ‭this‬ ‭study‬ ‭are‬ ‭available‬ ‭at:‬

‭https://github.com/jonas-fuchs/ViralPrimerSchemes‬ ‭(DOI:‬ ‭10.5281/zenodo.10562882).‬ ‭Raw‬

‭sequencing‬ ‭data‬ ‭has‬ ‭been‬ ‭deposited‬ ‭at‬ ‭ENA‬ ‭under‬ ‭the‬ ‭study‬ ‭accession‬ ‭number:‬

‭PRJEB74744.‬
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‭Table‬ ‭1.‬ ‭Summary‬ ‭of‬ ‭varVAMP‬ ‭designs‬ ‭for‬ ‭tiled‬ ‭sequencing.‬ ‭The‬ ‭table‬ ‭lists‬ ‭important‬

‭alignment‬ ‭statistics,‬ ‭varVAMP‬ ‭input‬ ‭parameters‬ ‭and‬ ‭output‬ ‭information‬ ‭including‬ ‭the‬

‭varVAMP‬ ‭version.‬ ‭Pairwise‬ ‭sequence‬ ‭identity‬ ‭was‬ ‭calculated‬ ‭with‬ ‭Identity‬

‭(‬‭https://github.com/BioinformaticsToolsmith/Identity‬‭).‬ ‭All‬ ‭primers‬ ‭and‬ ‭respective‬ ‭varVAMP‬

‭outputs are accessible at:‬‭https://github.com/jonas-fuchs/ViralPrimerSchemes‬‭.‬
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‭together‬ ‭with‬ ‭varVAMP‬ ‭input‬ ‭parameters‬ ‭and‬ ‭output‬ ‭information‬ ‭including‬ ‭the‬ ‭varVAMP‬

‭version.‬ ‭Pairwise‬ ‭sequence‬ ‭identity‬ ‭was‬ ‭calculated‬ ‭with‬ ‭Identity‬
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‭Figure‬ ‭1.‬ ‭Schematic‬ ‭varVAMP‬ ‭overview‬ ‭and‬ ‭example‬ ‭output.‬ ‭(a)‬ ‭Overview‬ ‭of‬ ‭the‬

‭varVAMP‬ ‭workflow.‬ ‭White‬ ‭boxes‬ ‭represent‬ ‭steps‬ ‭of‬ ‭the‬ ‭pipeline‬ ‭that‬ ‭are‬ ‭common‬ ‭to‬ ‭all‬

‭modes.‬‭Consecutive‬‭steps‬‭are‬‭connected‬‭by‬‭arrows‬‭and‬‭optional‬‭steps‬‭are‬‭indicated‬‭with‬‭a‬

‭dotted‬ ‭border.‬ ‭Colored‬ ‭boxes‬ ‭mark‬ ‭unique‬ ‭steps‬ ‭for‬ ‭each‬ ‭varVAMP‬ ‭mode‬ ‭(blue‬ ‭-‬ ‭single,‬

‭orange‬‭-‬‭tiled,‬‭green‬‭-‬‭qPCR).‬‭Steps‬‭that‬‭produce‬‭outputs‬‭end‬‭in‬‭schematic‬‭folder‬‭icons‬‭for‬

‭the‬‭main‬‭output‬‭and‬‭the‬‭additional‬‭data‬‭subfolder.‬‭(n‬‭-‬‭number,‬‭nt‬‭-‬‭nucleotide).‬‭(b)‬‭Example‬

‭overview‬ ‭plot‬ ‭that‬ ‭is‬ ‭produced‬ ‭when‬ ‭running‬ ‭varVAMP.‬ ‭This‬ ‭plot‬ ‭was‬ ‭generated‬ ‭with‬

‭varVAMP’s‬‭tiled‬‭mode‬‭on‬‭the‬‭example‬‭MSA‬‭of‬‭HEV-3‬‭sequences‬‭provided‬‭as‬‭example‬‭data‬

‭within‬‭the‬‭varVAMP‬‭github‬‭repository.‬‭Shown‬‭is‬‭the‬‭normalized‬‭Shannon’s‬‭entropy‬‭for‬‭each‬

‭alignment‬ ‭position‬ ‭(gray)‬ ‭and‬ ‭its‬ ‭rolling‬ ‭average‬ ‭over‬ ‭10‬ ‭nucleotides‬ ‭(black‬ ‭curve).‬ ‭The‬

‭orange‬ ‭boxes‬ ‭below‬ ‭the‬ ‭plot‬ ‭mark‬ ‭the‬ ‭start‬ ‭and‬ ‭stop‬ ‭MSA‬ ‭positions‬ ‭of‬ ‭potential‬ ‭primer‬

‭regions‬ ‭(regions‬ ‭that‬ ‭have,‬ ‭in‬ ‭this‬ ‭case,‬ ‭a‬ ‭maximum‬ ‭of‬ ‭4‬ ‭ambiguous‬ ‭bases‬ ‭within‬ ‭the‬

‭minimal‬‭primer‬‭length‬‭of‬‭19)‬‭and‬‭the‬‭gray‬‭and‬‭light‬‭gray‬‭boxes‬‭mark‬‭all‬‭considered‬‭forward‬

‭and‬ ‭reverse‬ ‭primers,‬ ‭respectively.‬‭The‬‭final‬‭scheme‬‭that‬‭was‬‭selected‬‭by‬‭the‬‭graph‬‭search‬

‭for overlapping amplicons (blue) with low-penalty primers (red) is depicted at the bottom.‬

‭Figure‬ ‭2.‬ ‭Primer‬ ‭design‬ ‭and‬ ‭tiled‬ ‭sequencing‬ ‭of‬ ‭HEV-3.‬ ‭(a)‬ ‭Schematic‬‭overview‬‭of‬‭the‬

‭data‬ ‭preparation‬ ‭steps‬ ‭preceding‬ ‭primer‬ ‭design.‬ ‭All‬ ‭full-length‬ ‭sequences‬ ‭of‬ ‭HEV‬ ‭were‬

‭downloaded‬‭from‬‭NCBI,‬‭sub-genotyped‬‭with‬‭fasta36‬‭and‬‭clustered‬‭by‬‭similarity‬‭with‬‭vsearch.‬

‭The‬ ‭clustering‬ ‭result‬ ‭was‬ ‭evaluated‬ ‭by‬ ‭phylogenetic‬‭tree‬‭construction.‬‭Afterwards,‬‭clusters‬

‭comprising‬‭multiple‬‭subgenotypes‬‭were‬‭aligned‬‭with‬‭MAFFT‬‭and‬‭the‬‭MSA‬‭used‬‭as‬‭the‬‭input‬

‭for‬‭varVAMP‬‭(b)‬‭Phylogenetic‬‭tree‬‭of‬‭full-length‬‭HEV‬‭sequences‬‭constructed‬‭with‬‭IQ-TREE‬‭2‬

‭(GTR+F+R10,‬‭1000‬‭bootstrap‬‭replicates).‬‭The‬‭vsearch‬‭clustering‬‭results‬‭for‬‭each‬‭sequence‬

‭is‬ ‭displayed‬ ‭in‬ ‭colors‬ ‭and‬ ‭the‬ ‭HEV‬ ‭genotypes‬ ‭and‬ ‭subgenotypes‬ ‭are‬ ‭indicated‬ ‭at‬ ‭the‬

‭respective‬‭branches‬‭(n‬‭=‬‭number‬‭of‬‭sequences).‬‭(c)‬‭Agarose‬‭electrophoresis‬‭pictures‬‭of‬‭the‬

‭individual‬ ‭PCR‬ ‭products‬ ‭for‬ ‭the‬ ‭cluster‬ ‭2‬ ‭(upper‬ ‭plot)‬ ‭and‬ ‭cluster‬ ‭4‬ ‭(lower‬ ‭plot)‬ ‭primer‬

‭schemes‬ ‭tested‬ ‭with‬ ‭supernatant‬ ‭of‬ ‭HEV-3‬ ‭f‬ ‭or‬ ‭HEV-3‬ ‭c‬ ‭stably‬ ‭infected‬ ‭PLC/PRF/5‬ ‭cells,‬

‭respectively.‬‭Triangles‬‭indicate‬‭bands‬‭at‬‭the‬‭expected‬‭molecular‬‭weight‬‭of‬‭the‬‭PCR‬‭products‬

‭(kb‬‭-‬‭kilobases)‬‭(d)‬‭Coverage‬‭plots‬‭of‬‭the‬‭Illumina‬‭sequencing‬‭results‬‭of‬‭the‬‭in‬‭(c)‬‭amplified‬

‭PCR‬‭products‬‭for‬‭cluster‬‭2‬‭(upper‬‭plot)‬‭and‬‭cluster‬‭4‬‭(lower‬‭plot)‬‭mapped‬‭to‬‭their‬‭respective‬

‭NCBI‬ ‭reference‬ ‭sequences‬ ‭MK089847‬ ‭and‬ ‭MK089849.‬ ‭Below‬ ‭each‬ ‭coverage‬ ‭plot‬ ‭the‬

‭genomic‬ ‭start‬ ‭and‬ ‭stop‬ ‭positions‬ ‭of‬ ‭each‬ ‭amplicon‬ ‭are‬ ‭displayed‬ ‭as‬ ‭gray‬ ‭boxes‬ ‭with‬‭their‬

‭respective‬ ‭amplicon‬ ‭number.‬ ‭Dotted‬ ‭lines‬ ‭indicate‬ ‭mean‬ ‭coverages.‬ ‭Coverage‬ ‭plots‬ ‭were‬

‭created‬ ‭with‬ ‭BAMdash‬‭(individual‬‭coverage‬‭plots‬‭are‬‭given‬‭in‬‭S1).‬‭(e)‬‭Genome‬‭recovery‬‭of‬

‭HEV-3‬ ‭persistently‬ ‭infected‬ ‭cell‬ ‭cultures‬ ‭and‬‭sub-genotyped‬‭HEV-3‬‭positive‬‭blood‬‭samples‬

‭that‬ ‭were‬ ‭subjected‬ ‭to‬ ‭their‬ ‭respective‬ ‭tiled‬ ‭amplicon‬ ‭workflow‬ ‭for‬‭cluster‬‭2‬‭(upper‬‭plot)‬‭or‬
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‭cluster‬ ‭4‬ ‭(lower‬ ‭plot).‬ ‭Genome‬ ‭recovery‬ ‭was‬ ‭calculated‬ ‭as‬ ‭%‬ ‭of‬ ‭reference‬ ‭nucleotides‬

‭covered at least 20 fold. All PCR reactions were performed in the singleplex setting.‬

‭Figure‬ ‭3.‬ ‭In‬ ‭silico‬‭evaluation‬‭of‬‭novel‬‭tiled‬‭primer‬‭schemes‬‭for‬‭SARS-CoV-2,‬‭BoDV-1,‬
‭HAV,‬ ‭HEV,‬ ‭PV‬ ‭and‬ ‭ratHEV.‬ ‭(a)‬ ‭Normalized‬ ‭Shannon’s‬‭entropy‬‭(1%‬‭rolling‬‭average)‬‭of‬‭the‬

‭MSA‬‭used‬‭as‬‭the‬‭varVAMP‬‭input.‬‭(b)‬‭Number‬‭of‬‭permutations‬‭(degeneracy)‬‭of‬‭each‬‭primer‬

‭in‬‭the‬‭tiled‬‭sequencing‬‭scheme‬‭for‬‭the‬‭respective‬‭viruses.‬‭Each‬‭dot‬‭shows‬‭the‬‭degeneracy‬‭of‬

‭a‬ ‭single‬ ‭primer.‬ ‭Horizontal‬ ‭lines‬ ‭indicate‬ ‭the‬ ‭mean.‬ ‭(n‬ ‭-‬ ‭number)‬ ‭(c)‬ ‭Cumulative‬‭counts‬‭of‬

‭mismatches‬ ‭between‬ ‭primers‬ ‭and‬ ‭sequences‬ ‭in‬ ‭the‬ ‭varVAMP‬‭input‬‭MSA.‬‭For‬‭each‬‭primer‬

‭the‬ ‭number‬ ‭of‬ ‭mismatches‬ ‭with‬ ‭each‬ ‭sequence‬ ‭of‬ ‭the‬ ‭MSA‬ ‭was‬ ‭counted‬ ‭if‬ ‭it‬ ‭was‬ ‭not‬

‭covered‬‭by‬‭any‬‭primer‬‭permutation.‬‭Shown‬‭are‬‭the‬‭cumulative‬‭mismatches‬‭between‬‭primers‬

‭and‬‭MSA‬‭sequences‬‭in‬‭the‬‭tiled‬‭primer‬‭schemes‬‭for‬‭the‬‭respective‬‭viruses.‬‭Dot‬‭area‬‭size‬‭is‬

‭proportionate‬ ‭to‬ ‭the‬ ‭percentage.‬ ‭(d)‬ ‭Analogous‬ ‭to‬ ‭(c)‬ ‭the‬ ‭mismatches‬ ‭with‬ ‭the‬ ‭MSA‬

‭sequences‬ ‭were‬ ‭counted‬ ‭per‬‭primer‬‭nucleotide‬‭position‬‭and‬‭averaged‬‭over‬‭all‬‭primers‬‭in‬‭a‬

‭scheme.‬ ‭As‬ ‭primers‬ ‭vary‬ ‭in‬ ‭their‬ ‭length,‬ ‭the‬ ‭%‬ ‭mismatches‬ ‭are‬ ‭displayed‬ ‭starting‬ ‭at‬ ‭the‬

‭primer’s‬‭3’‬‭end‬‭(position‬‭0‬‭is‬‭the‬‭most‬‭3’‬‭nucleotide‬‭position).‬‭The‬‭gray‬‭triangle‬‭schematically‬

‭indicates‬ ‭the‬ ‭primer‬ ‭positions‬ ‭that‬ ‭varVAMP‬ ‭penalizes‬ ‭and‬ ‭the‬ ‭position-specific‬ ‭penalty‬

‭multipliers‬ ‭(32,‬ ‭16,‬‭8,‬‭4,‬‭2).‬‭(e-h)‬‭Primer‬‭melting‬‭temperatures‬‭(e)‬‭,‬‭hairpin‬‭temperatures‬‭(f)‬‭,‬
‭homo-dimer‬ ‭temperatures‬ ‭(g)‬ ‭or‬ ‭the‬ ‭GC‬ ‭content‬ ‭(h)‬ ‭were‬ ‭calculated‬ ‭either‬ ‭for‬ ‭the‬ ‭primer‬

‭sequence‬ ‭including‬ ‭the‬‭most‬‭common‬‭nucleotides‬‭or‬‭averaged‬‭over‬‭all‬‭permutations‬‭of‬‭the‬

‭final‬ ‭primer‬ ‭sequences‬ ‭that‬ ‭include‬ ‭degenerate‬ ‭nucleotides.‬ ‭(e-f)‬ ‭were‬ ‭calculated‬ ‭with‬

‭primer3.‬‭Each‬‭dot‬‭represents‬‭a‬‭single‬‭primer‬‭of‬‭the‬‭respective‬‭tiled‬‭primer‬‭schemes.‬‭Dotted‬

‭lines‬ ‭indicate‬ ‭the‬ ‭upper‬ ‭target‬ ‭cut-offs‬ ‭or‬ ‭target‬ ‭ranges‬ ‭employed‬ ‭by‬ ‭varVAMP‬ ‭(nt‬ ‭-‬

‭nucleotide).‬

‭Figure‬ ‭4.‬ ‭Whole‬ ‭genome‬ ‭sequencing‬‭utilizing‬‭the‬‭SARS-CoV-2,‬‭BoDV-1,‬‭HAV,‬‭PV‬‭and‬
‭ratHEV‬ ‭primer‬ ‭schemes.‬ ‭Representative‬ ‭coverage‬ ‭plots‬ ‭(left)‬ ‭and‬ ‭%‬ ‭genome‬ ‭recovery‬

‭(right)‬‭of‬‭the‬‭different‬‭(a)‬‭SARS-CoV-2,‬‭(b)‬‭BoDV-1,‬‭(c)‬‭HAV,‬‭(d)‬‭PV‬‭and‬‭(e)‬‭ratHEV‬‭samples‬

‭subjected‬ ‭to‬ ‭their‬ ‭respective‬ ‭tiled‬‭amplicon‬‭whole‬‭genome‬‭sequencing‬‭workflow.‬‭Coverage‬

‭plots‬ ‭were‬ ‭created‬ ‭with‬ ‭BAMdash.‬ ‭Dotted‬ ‭lines‬ ‭indicate‬ ‭mean‬ ‭coverages.‬ ‭Reference‬

‭genomes‬ ‭used‬ ‭for‬ ‭mapping‬ ‭are‬ ‭indicated‬ ‭in‬ ‭the‬ ‭header‬ ‭of‬ ‭the‬ ‭coverage‬ ‭plots‬ ‭(individual‬

‭coverage‬ ‭plots‬ ‭are‬ ‭given‬ ‭in‬ ‭S1).‬ ‭Genome‬ ‭recovery‬ ‭was‬ ‭calculated‬ ‭as‬ ‭%‬ ‭of‬ ‭reference‬

‭nucleotides‬‭covered‬‭at‬‭least‬‭20‬‭fold‬‭(sp‬‭-‬‭single‬‭plex,‬‭mp‬‭-‬‭multiplex).‬‭Dark‬‭grey‬‭bars‬‭-‬‭ONT‬

‭generated data, light grey bars - Illumina generated data.‬

‭Figure‬‭5.‬‭Amplicon‬‭performance‬‭and‬‭mismatch‬‭analysis.‬‭(a)‬‭For‬‭each‬‭sequencing‬‭result‬

‭using‬‭the‬‭virus‬‭specific‬‭primer‬‭scheme‬‭the‬‭amplicon‬‭recovery‬‭(upper‬‭panel)‬‭and‬‭normalized‬

‭coverage‬‭(lower‬‭panel)‬‭was‬‭calculated.‬‭Each‬‭color‬‭represents‬‭an‬‭individual‬‭amplicon‬‭tracked‬

‭over‬ ‭different‬ ‭samples.‬ ‭Amplicon‬ ‭recovery‬ ‭was‬ ‭calculated‬ ‭as‬ ‭%‬ ‭of‬ ‭reference‬ ‭nucleotides‬
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‭covered‬ ‭at‬ ‭least‬ ‭20‬ ‭fold‬ ‭between‬ ‭the‬ ‭genomic‬ ‭start‬ ‭and‬ ‭stop‬ ‭position‬ ‭of‬ ‭the‬ ‭individual‬

‭amplicons.‬ ‭For‬ ‭the‬ ‭normalized‬ ‭amplicon‬ ‭coverage,‬ ‭the‬ ‭mean‬ ‭coverage‬ ‭was‬ ‭calculated‬ ‭for‬

‭each‬‭amplicon‬‭and‬‭normalized‬‭to‬‭the‬‭highest‬‭covered‬‭amplicon‬‭of‬‭each‬‭scheme‬‭(set‬‭to‬‭100).‬

‭(b)‬‭For‬‭each‬‭sequencing‬‭result,‬‭each‬‭primer‬‭binding‬‭region‬‭was‬‭analyzed‬‭for‬‭the‬‭number‬‭of‬

‭mismatches‬ ‭not‬ ‭covered‬ ‭by‬ ‭any‬ ‭permutation‬ ‭of‬ ‭the‬ ‭corresponding‬ ‭primer‬ ‭sequence.‬

‭Mutations‬‭were‬‭only‬‭considered‬‭if‬‭their‬‭variant‬‭frequency‬‭was‬‭>=‬‭0.7.‬‭Primers‬‭were‬‭excluded‬

‭from‬ ‭the‬ ‭analysis‬ ‭if‬ ‭any‬ ‭primer‬ ‭binding‬ ‭position‬ ‭was‬ ‭not‬ ‭covered‬ ‭at‬ ‭least‬ ‭20-fold.‬ ‭(c)‬
‭Dumbbell‬ ‭plot‬ ‭showing‬ ‭the‬ ‭pairwise‬ ‭identities‬ ‭of‬ ‭the‬ ‭newly‬ ‭generated‬ ‭fasta‬ ‭consensus‬

‭sequences‬ ‭(blue‬ ‭dot)‬ ‭or‬ ‭the‬‭sequences‬‭of‬‭the‬‭varVAMP‬‭input‬‭MSA‬‭(dark‬‭gray‬‭dot)‬‭of‬‭each‬

‭respective‬ ‭primer‬ ‭scheme.‬ ‭Light‬ ‭gray‬ ‭and‬ ‭red‬ ‭lines‬ ‭indicate‬ ‭the‬ ‭percent‬ ‭pairwise‬ ‭identity‬

‭increase‬ ‭or‬ ‭decrease,‬ ‭respectively.‬ ‭Significance‬‭was‬‭calculated‬‭with‬‭a‬‭Welch's‬‭t‬‭-test‬‭(n.d.‬‭-‬

‭not determined as n < 3, n.s. - not significant, *: p ≤ 0.05, **: p ≤ 0.05).‬

‭Figure‬ ‭6.‬ ‭Specificity‬ ‭and‬ ‭sensitivity‬ ‭of‬ ‭the‬ ‭novel‬ ‭PV‬ ‭qPCR‬ ‭schemes.‬ ‭qPCR‬ ‭primers‬

‭specific‬‭for‬‭(a)‬‭PV1,‬‭(b)‬‭PV2‬‭and‬‭(c)‬‭PV3‬‭were‬‭tested‬‭on‬‭serial‬‭RNA‬‭dilutions‬‭extracted‬‭from‬

‭viral‬ ‭supernatants‬ ‭of‬ ‭Sabin‬ ‭1,‬ ‭Sabin‬ ‭2‬ ‭and‬ ‭Sabin‬ ‭3‬ ‭infected‬ ‭cell‬ ‭cultures‬ ‭(n=3).‬ ‭The‬

‭fluorescence‬ ‭was‬ ‭measured‬ ‭during‬ ‭the‬ ‭extension‬ ‭step‬ ‭with‬ ‭three‬ ‭different‬ ‭channel‬ ‭setups‬

‭respective‬‭to‬‭the‬‭probe‬‭fluorophore‬‭(FAM‬‭=‬‭465-510‬‭nm,‬‭JOE‬‭=‬‭533-580‬‭nm,‬‭CY5‬‭=‬‭618-660‬

‭nm). Amplification curves were analyzed using the Roche LightCycler 480 II device software.‬

‭S1.‬ ‭Coverage‬ ‭plots‬ ‭for‬ ‭all‬ ‭sequencing‬ ‭results.‬ ‭Coverage‬ ‭plots‬ ‭of‬ ‭the‬ ‭different‬

‭SARS-CoV-2,‬ ‭BoDV-1,‬ ‭HAV,‬ ‭PV‬ ‭and‬ ‭ratHEV‬ ‭samples‬ ‭subjected‬ ‭to‬ ‭their‬ ‭respective‬ ‭tiled‬

‭amplicon‬ ‭whole‬ ‭genome‬ ‭Illumina‬ ‭sequencing‬ ‭workflow.‬ ‭Dotted‬ ‭lines‬ ‭indicate‬ ‭mean‬

‭coverages.‬ ‭NCBI‬ ‭accession‬ ‭numbers‬ ‭of‬ ‭the‬ ‭reference‬ ‭sequences‬ ‭used‬ ‭for‬ ‭mappings‬ ‭are‬

‭indicated in the headers. Coverage plots were created with BAMdash.‬

‭S2.‬ ‭Primer‬ ‭balancing‬ ‭for‬ ‭PV‬ ‭whole‬ ‭genome‬ ‭sequencing.‬ ‭The‬ ‭PV‬ ‭tiled‬ ‭primers‬ ‭initially‬

‭used‬ ‭in‬ ‭equimolar‬ ‭concentrations‬ ‭for‬ ‭multiplex‬‭reactions‬‭were‬‭balanced‬‭in‬‭two‬‭consecutive‬

‭rounds‬ ‭based‬ ‭on‬ ‭prior‬ ‭results‬ ‭and‬ ‭then‬ ‭the‬ ‭balanced‬ ‭primers‬ ‭were‬ ‭used‬‭in‬‭multiplex‬‭PCR‬

‭reactions‬‭for‬‭Sabin‬‭1-3‬‭and‬‭the‬‭amplicons‬‭subjected‬‭to‬‭Illumina‬‭sequencing.‬‭The‬‭respective‬

‭concentrations‬ ‭for‬‭each‬‭iteration‬‭are‬‭given‬‭above‬‭the‬‭coverage‬‭plots‬‭(blue‬‭arrow‬‭-‬‭increase‬

‭in‬‭molarity,‬‭gray‬‭arrow‬‭-‬‭no‬‭change‬‭in‬‭molarity,‬‭red‬‭arrow‬‭-‬‭decrease‬‭in‬‭molarity).‬‭Dotted‬‭lines‬

‭indicate‬ ‭mean‬ ‭coverages.‬ ‭NCBI‬ ‭accession‬ ‭numbers‬ ‭of‬ ‭the‬ ‭reference‬ ‭sequences‬ ‭used‬ ‭for‬

‭mappings are indicated in the headers. Coverage plots were created with BAMdash.‬
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alignment statistics varVAMP parameters varVAMP output

virus subtypes n sequences
% mean
sequence
identiy

max ambig
bases threshold

optimal
amplicon
size

maximum
amplicon
size

expected
recovery n amplicons varVAMP

version

SARS-CoV-2 B.1 - XBB 865 99 ± 1 1 0.99875 700 800 99.72 % 55 v.0.9.4

BoDV-1 all 55 89 ± 8 2 0.94 400 550 98.6 % 27 v.0.6

HAV all 309 81 ± 10 4 0.93 1000 1600 95.65 % 7 v.0.8.3

HEV
genotype 3 f, e 376 76 ± 6 4 0.91 1000 1500 99.02 % 7 v.0.8.2

HEV
genotype 3

c, h1, m, i, uc,
l 201 75 ± 9 4 0.90 1000 1500 99.28 % 6 v.0.8.2

PV 1-3 944 71 ± 13 4 0.91 1000 1400 99.63 % 7 v.0.8

ratHEV all 41 57 ± 10 5 0.82 1200 1700 97.41 % 6 v.0.8.3

Table 1
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alignment statistics varVAMP parameters varVAMP output

virus subtypes n sequences
% mean
sequence
identiy

primer max
ambig bases

probe max
ambig bases threshold ΔG cutoff

(kcal/mol)
n found
schemes

varVAMP
version

PV 1 241 86 ± 12 2 1 0.93 -3 3 0.7

PV 2 494 88 ± 8 1 0 0.98 -3 4 0.7

PV 3 209 91 ± 9 2 1 0.93 -3 3 0.7

Table 2
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